1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "c1/c1_Compilation.hpp"
  26 #include "c1/c1_Defs.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciFlatArrayKlass.hpp"
  34 #include "ci/ciInlineKlass.hpp"
  35 #include "ci/ciInstance.hpp"
  36 #include "ci/ciObjArray.hpp"
  37 #include "ci/ciObjArrayKlass.hpp"
  38 #include "ci/ciUtilities.hpp"
  39 #include "compiler/compilerDefinitions.inline.hpp"
  40 #include "compiler/compilerOracle.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/c1/barrierSetC1.hpp"
  43 #include "oops/klass.inline.hpp"
  44 #include "oops/methodCounters.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/vm_version.hpp"
  48 #include "utilities/bitMap.inline.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 
  52 #ifdef ASSERT
  53 #define __ gen()->lir(__FILE__, __LINE__)->
  54 #else
  55 #define __ gen()->lir()->
  56 #endif
  57 
  58 #ifndef PATCHED_ADDR
  59 #define PATCHED_ADDR  (max_jint)
  60 #endif
  61 
  62 void PhiResolverState::reset() {
  63   _virtual_operands.clear();
  64   _other_operands.clear();
  65   _vreg_table.clear();
  66 }
  67 
  68 
  69 //--------------------------------------------------------------
  70 // PhiResolver
  71 
  72 // Resolves cycles:
  73 //
  74 //  r1 := r2  becomes  temp := r1
  75 //  r2 := r1           r1 := r2
  76 //                     r2 := temp
  77 // and orders moves:
  78 //
  79 //  r2 := r3  becomes  r1 := r2
  80 //  r1 := r2           r2 := r3
  81 
  82 PhiResolver::PhiResolver(LIRGenerator* gen)
  83  : _gen(gen)
  84  , _state(gen->resolver_state())
  85  , _loop(nullptr)
  86  , _temp(LIR_OprFact::illegalOpr)
  87 {
  88   // reinitialize the shared state arrays
  89   _state.reset();
  90 }
  91 
  92 
  93 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  94   assert(src->is_valid(), "");
  95   assert(dest->is_valid(), "");
  96   __ move(src, dest);
  97 }
  98 
  99 
 100 void PhiResolver::move_temp_to(LIR_Opr dest) {
 101   assert(_temp->is_valid(), "");
 102   emit_move(_temp, dest);
 103   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 104 }
 105 
 106 
 107 void PhiResolver::move_to_temp(LIR_Opr src) {
 108   assert(_temp->is_illegal(), "");
 109   _temp = _gen->new_register(src->type());
 110   emit_move(src, _temp);
 111 }
 112 
 113 
 114 // Traverse assignment graph in depth first order and generate moves in post order
 115 // ie. two assignments: b := c, a := b start with node c:
 116 // Call graph: move(null, c) -> move(c, b) -> move(b, a)
 117 // Generates moves in this order: move b to a and move c to b
 118 // ie. cycle a := b, b := a start with node a
 119 // Call graph: move(null, a) -> move(a, b) -> move(b, a)
 120 // Generates moves in this order: move b to temp, move a to b, move temp to a
 121 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 122   if (!dest->visited()) {
 123     dest->set_visited();
 124     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 125       move(dest, dest->destination_at(i));
 126     }
 127   } else if (!dest->start_node()) {
 128     // cylce in graph detected
 129     assert(_loop == nullptr, "only one loop valid!");
 130     _loop = dest;
 131     move_to_temp(src->operand());
 132     return;
 133   } // else dest is a start node
 134 
 135   if (!dest->assigned()) {
 136     if (_loop == dest) {
 137       move_temp_to(dest->operand());
 138       dest->set_assigned();
 139     } else if (src != nullptr) {
 140       emit_move(src->operand(), dest->operand());
 141       dest->set_assigned();
 142     }
 143   }
 144 }
 145 
 146 
 147 PhiResolver::~PhiResolver() {
 148   int i;
 149   // resolve any cycles in moves from and to virtual registers
 150   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 151     ResolveNode* node = virtual_operands().at(i);
 152     if (!node->visited()) {
 153       _loop = nullptr;
 154       move(nullptr, node);
 155       node->set_start_node();
 156       assert(_temp->is_illegal(), "move_temp_to() call missing");
 157     }
 158   }
 159 
 160   // generate move for move from non virtual register to abitrary destination
 161   for (i = other_operands().length() - 1; i >= 0; i --) {
 162     ResolveNode* node = other_operands().at(i);
 163     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 164       emit_move(node->operand(), node->destination_at(j)->operand());
 165     }
 166   }
 167 }
 168 
 169 
 170 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 171   ResolveNode* node;
 172   if (opr->is_virtual()) {
 173     int vreg_num = opr->vreg_number();
 174     node = vreg_table().at_grow(vreg_num, nullptr);
 175     assert(node == nullptr || node->operand() == opr, "");
 176     if (node == nullptr) {
 177       node = new ResolveNode(opr);
 178       vreg_table().at_put(vreg_num, node);
 179     }
 180     // Make sure that all virtual operands show up in the list when
 181     // they are used as the source of a move.
 182     if (source && !virtual_operands().contains(node)) {
 183       virtual_operands().append(node);
 184     }
 185   } else {
 186     assert(source, "");
 187     node = new ResolveNode(opr);
 188     other_operands().append(node);
 189   }
 190   return node;
 191 }
 192 
 193 
 194 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 195   assert(dest->is_virtual(), "");
 196   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 197   assert(src->is_valid(), "");
 198   assert(dest->is_valid(), "");
 199   ResolveNode* source = source_node(src);
 200   source->append(destination_node(dest));
 201 }
 202 
 203 
 204 //--------------------------------------------------------------
 205 // LIRItem
 206 
 207 void LIRItem::set_result(LIR_Opr opr) {
 208   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 209   value()->set_operand(opr);
 210 
 211 #ifdef ASSERT
 212   if (opr->is_virtual()) {
 213     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 214   }
 215 #endif
 216 
 217   _result = opr;
 218 }
 219 
 220 void LIRItem::load_item() {
 221   assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code");
 222 
 223   if (result()->is_illegal()) {
 224     // update the items result
 225     _result = value()->operand();
 226   }
 227   if (!result()->is_register()) {
 228     LIR_Opr reg = _gen->new_register(value()->type());
 229     __ move(result(), reg);
 230     if (result()->is_constant()) {
 231       _result = reg;
 232     } else {
 233       set_result(reg);
 234     }
 235   }
 236 }
 237 
 238 
 239 void LIRItem::load_for_store(BasicType type) {
 240   if (_gen->can_store_as_constant(value(), type)) {
 241     _result = value()->operand();
 242     if (!_result->is_constant()) {
 243       _result = LIR_OprFact::value_type(value()->type());
 244     }
 245   } else if (type == T_BYTE || type == T_BOOLEAN) {
 246     load_byte_item();
 247   } else {
 248     load_item();
 249   }
 250 }
 251 
 252 void LIRItem::load_item_force(LIR_Opr reg) {
 253   LIR_Opr r = result();
 254   if (r != reg) {
 255 #if !defined(ARM) && !defined(E500V2)
 256     if (r->type() != reg->type()) {
 257       // moves between different types need an intervening spill slot
 258       r = _gen->force_to_spill(r, reg->type());
 259     }
 260 #endif
 261     __ move(r, reg);
 262     _result = reg;
 263   }
 264 }
 265 
 266 ciObject* LIRItem::get_jobject_constant() const {
 267   ObjectType* oc = type()->as_ObjectType();
 268   if (oc) {
 269     return oc->constant_value();
 270   }
 271   return nullptr;
 272 }
 273 
 274 
 275 jint LIRItem::get_jint_constant() const {
 276   assert(is_constant() && value() != nullptr, "");
 277   assert(type()->as_IntConstant() != nullptr, "type check");
 278   return type()->as_IntConstant()->value();
 279 }
 280 
 281 
 282 jint LIRItem::get_address_constant() const {
 283   assert(is_constant() && value() != nullptr, "");
 284   assert(type()->as_AddressConstant() != nullptr, "type check");
 285   return type()->as_AddressConstant()->value();
 286 }
 287 
 288 
 289 jfloat LIRItem::get_jfloat_constant() const {
 290   assert(is_constant() && value() != nullptr, "");
 291   assert(type()->as_FloatConstant() != nullptr, "type check");
 292   return type()->as_FloatConstant()->value();
 293 }
 294 
 295 
 296 jdouble LIRItem::get_jdouble_constant() const {
 297   assert(is_constant() && value() != nullptr, "");
 298   assert(type()->as_DoubleConstant() != nullptr, "type check");
 299   return type()->as_DoubleConstant()->value();
 300 }
 301 
 302 
 303 jlong LIRItem::get_jlong_constant() const {
 304   assert(is_constant() && value() != nullptr, "");
 305   assert(type()->as_LongConstant() != nullptr, "type check");
 306   return type()->as_LongConstant()->value();
 307 }
 308 
 309 
 310 
 311 //--------------------------------------------------------------
 312 
 313 
 314 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 315 #ifndef PRODUCT
 316   if (PrintIRWithLIR) {
 317     block->print();
 318   }
 319 #endif
 320 
 321   // set up the list of LIR instructions
 322   assert(block->lir() == nullptr, "LIR list already computed for this block");
 323   _lir = new LIR_List(compilation(), block);
 324   block->set_lir(_lir);
 325 
 326   __ branch_destination(block->label());
 327 
 328   if (LIRTraceExecution &&
 329       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 330       !block->is_set(BlockBegin::exception_entry_flag)) {
 331     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 332     trace_block_entry(block);
 333   }
 334 }
 335 
 336 
 337 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 338 #ifndef PRODUCT
 339   if (PrintIRWithLIR) {
 340     tty->cr();
 341   }
 342 #endif
 343 
 344   // LIR_Opr for unpinned constants shouldn't be referenced by other
 345   // blocks so clear them out after processing the block.
 346   for (int i = 0; i < _unpinned_constants.length(); i++) {
 347     _unpinned_constants.at(i)->clear_operand();
 348   }
 349   _unpinned_constants.trunc_to(0);
 350 
 351   // clear our any registers for other local constants
 352   _constants.trunc_to(0);
 353   _reg_for_constants.trunc_to(0);
 354 }
 355 
 356 
 357 void LIRGenerator::block_do(BlockBegin* block) {
 358   CHECK_BAILOUT();
 359 
 360   block_do_prolog(block);
 361   set_block(block);
 362 
 363   for (Instruction* instr = block; instr != nullptr; instr = instr->next()) {
 364     if (instr->is_pinned()) do_root(instr);
 365   }
 366 
 367   set_block(nullptr);
 368   block_do_epilog(block);
 369 }
 370 
 371 
 372 //-------------------------LIRGenerator-----------------------------
 373 
 374 // This is where the tree-walk starts; instr must be root;
 375 void LIRGenerator::do_root(Value instr) {
 376   CHECK_BAILOUT();
 377 
 378   InstructionMark im(compilation(), instr);
 379 
 380   assert(instr->is_pinned(), "use only with roots");
 381   assert(instr->subst() == instr, "shouldn't have missed substitution");
 382 
 383   instr->visit(this);
 384 
 385   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 386          instr->as_Constant() != nullptr || bailed_out(), "invalid item set");
 387 }
 388 
 389 
 390 // This is called for each node in tree; the walk stops if a root is reached
 391 void LIRGenerator::walk(Value instr) {
 392   InstructionMark im(compilation(), instr);
 393   //stop walk when encounter a root
 394   if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) {
 395     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited");
 396   } else {
 397     assert(instr->subst() == instr, "shouldn't have missed substitution");
 398     instr->visit(this);
 399     // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use");
 400   }
 401 }
 402 
 403 
 404 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 405   assert(state != nullptr, "state must be defined");
 406 
 407 #ifndef PRODUCT
 408   state->verify();
 409 #endif
 410 
 411   ValueStack* s = state;
 412   for_each_state(s) {
 413     if (s->kind() == ValueStack::EmptyExceptionState ||
 414         s->kind() == ValueStack::CallerEmptyExceptionState)
 415     {
 416 #ifdef ASSERT
 417       int index;
 418       Value value;
 419       for_each_stack_value(s, index, value) {
 420         fatal("state must be empty");
 421       }
 422       for_each_local_value(s, index, value) {
 423         fatal("state must be empty");
 424       }
 425 #endif
 426       assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty");
 427       continue;
 428     }
 429 
 430     int index;
 431     Value value;
 432     for_each_stack_value(s, index, value) {
 433       assert(value->subst() == value, "missed substitution");
 434       if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
 435         walk(value);
 436         assert(value->operand()->is_valid(), "must be evaluated now");
 437       }
 438     }
 439 
 440     int bci = s->bci();
 441     IRScope* scope = s->scope();
 442     ciMethod* method = scope->method();
 443 
 444     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 445     if (bci == SynchronizationEntryBCI) {
 446       if (x->as_ExceptionObject() || x->as_Throw()) {
 447         // all locals are dead on exit from the synthetic unlocker
 448         liveness.clear();
 449       } else {
 450         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 451       }
 452     }
 453     if (!liveness.is_valid()) {
 454       // Degenerate or breakpointed method.
 455       bailout("Degenerate or breakpointed method");
 456     } else {
 457       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 458       for_each_local_value(s, index, value) {
 459         assert(value->subst() == value, "missed substitution");
 460         if (liveness.at(index) && !value->type()->is_illegal()) {
 461           if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
 462             walk(value);
 463             assert(value->operand()->is_valid(), "must be evaluated now");
 464           }
 465         } else {
 466           // null out this local so that linear scan can assume that all non-null values are live.
 467           s->invalidate_local(index);
 468         }
 469       }
 470     }
 471   }
 472 
 473   return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 474 }
 475 
 476 
 477 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 478   return state_for(x, x->exception_state());
 479 }
 480 
 481 
 482 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 483   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
 484    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 485    * the class. */
 486   if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
 487     assert(info != nullptr, "info must be set if class is not loaded");
 488     __ klass2reg_patch(nullptr, r, info);
 489   } else {
 490     // no patching needed
 491     __ metadata2reg(obj->constant_encoding(), r);
 492   }
 493 }
 494 
 495 
 496 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 497                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 498   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 499   if (index->is_constant()) {
 500     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 501                 index->as_jint(), null_check_info);
 502     __ branch(lir_cond_belowEqual, stub); // forward branch
 503   } else {
 504     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 505                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 506     __ branch(lir_cond_aboveEqual, stub); // forward branch
 507   }
 508 }
 509 
 510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
 511   LIR_Opr result_op = result;
 512   LIR_Opr left_op   = left;
 513   LIR_Opr right_op  = right;
 514 
 515   if (two_operand_lir_form && left_op != result_op) {
 516     assert(right_op != result_op, "malformed");
 517     __ move(left_op, result_op);
 518     left_op = result_op;
 519   }
 520 
 521   switch(code) {
 522     case Bytecodes::_dadd:
 523     case Bytecodes::_fadd:
 524     case Bytecodes::_ladd:
 525     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 526     case Bytecodes::_fmul:
 527     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 528 
 529     case Bytecodes::_dmul:  __ mul(left_op, right_op, result_op, tmp_op); break;
 530 
 531     case Bytecodes::_imul:
 532       {
 533         bool did_strength_reduce = false;
 534 
 535         if (right->is_constant()) {
 536           jint c = right->as_jint();
 537           if (c > 0 && is_power_of_2(c)) {
 538             // do not need tmp here
 539             __ shift_left(left_op, exact_log2(c), result_op);
 540             did_strength_reduce = true;
 541           } else {
 542             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 543           }
 544         }
 545         // we couldn't strength reduce so just emit the multiply
 546         if (!did_strength_reduce) {
 547           __ mul(left_op, right_op, result_op);
 548         }
 549       }
 550       break;
 551 
 552     case Bytecodes::_dsub:
 553     case Bytecodes::_fsub:
 554     case Bytecodes::_lsub:
 555     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 556 
 557     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 558     // ldiv and lrem are implemented with a direct runtime call
 559 
 560     case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
 561 
 562     case Bytecodes::_drem:
 563     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 564 
 565     default: ShouldNotReachHere();
 566   }
 567 }
 568 
 569 
 570 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 571   arithmetic_op(code, result, left, right, tmp);
 572 }
 573 
 574 
 575 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 576   arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
 577 }
 578 
 579 
 580 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 581   arithmetic_op(code, result, left, right, tmp);
 582 }
 583 
 584 
 585 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 586 
 587   if (two_operand_lir_form && value != result_op
 588       // Only 32bit right shifts require two operand form on S390.
 589       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 590     assert(count != result_op, "malformed");
 591     __ move(value, result_op);
 592     value = result_op;
 593   }
 594 
 595   assert(count->is_constant() || count->is_register(), "must be");
 596   switch(code) {
 597   case Bytecodes::_ishl:
 598   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 599   case Bytecodes::_ishr:
 600   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 601   case Bytecodes::_iushr:
 602   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 603   default: ShouldNotReachHere();
 604   }
 605 }
 606 
 607 
 608 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 609   if (two_operand_lir_form && left_op != result_op) {
 610     assert(right_op != result_op, "malformed");
 611     __ move(left_op, result_op);
 612     left_op = result_op;
 613   }
 614 
 615   switch(code) {
 616     case Bytecodes::_iand:
 617     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 618 
 619     case Bytecodes::_ior:
 620     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 621 
 622     case Bytecodes::_ixor:
 623     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 624 
 625     default: ShouldNotReachHere();
 626   }
 627 }
 628 
 629 
 630 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
 631                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_ie_stub) {
 632   // for slow path, use debug info for state after successful locking
 633   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_ie_stub, scratch);
 634   __ load_stack_address_monitor(monitor_no, lock);
 635   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 636   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_ie_stub);
 637 }
 638 
 639 
 640 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 641   // setup registers
 642   LIR_Opr hdr = lock;
 643   lock = new_hdr;
 644   CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
 645   __ load_stack_address_monitor(monitor_no, lock);
 646   __ unlock_object(hdr, object, lock, scratch, slow_path);
 647 }
 648 
 649 #ifndef PRODUCT
 650 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 651   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 652     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 653   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 654     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 655   }
 656 }
 657 #endif
 658 
 659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 660   if (allow_inline) {
 661     assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved");
 662     __ metadata2reg(klass->constant_encoding(), klass_reg);
 663   } else {
 664     klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 665   }
 666   // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass
 667   if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype())
 668       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 669 
 670     StubId stub_id = klass->is_initialized() ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id;
 671 
 672     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 673 
 674     assert(klass->is_loaded(), "must be loaded");
 675     // allocate space for instance
 676     assert(klass->size_helper() > 0, "illegal instance size");
 677     const int instance_size = align_object_size(klass->size_helper());
 678     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 679                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 680   } else {
 681     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id);
 682     __ jump(slow_path);
 683     __ branch_destination(slow_path->continuation());
 684   }
 685 }
 686 
 687 
 688 static bool is_constant_zero(Instruction* inst) {
 689   IntConstant* c = inst->type()->as_IntConstant();
 690   if (c) {
 691     return (c->value() == 0);
 692   }
 693   return false;
 694 }
 695 
 696 
 697 static bool positive_constant(Instruction* inst) {
 698   IntConstant* c = inst->type()->as_IntConstant();
 699   if (c) {
 700     return (c->value() >= 0);
 701   }
 702   return false;
 703 }
 704 
 705 
 706 static ciArrayKlass* as_array_klass(ciType* type) {
 707   if (type != nullptr && type->is_array_klass() && type->is_loaded()) {
 708     return (ciArrayKlass*)type;
 709   } else {
 710     return nullptr;
 711   }
 712 }
 713 
 714 static ciType* phi_declared_type(Phi* phi) {
 715   ciType* t = phi->operand_at(0)->declared_type();
 716   if (t == nullptr) {
 717     return nullptr;
 718   }
 719   for(int i = 1; i < phi->operand_count(); i++) {
 720     if (t != phi->operand_at(i)->declared_type()) {
 721       return nullptr;
 722     }
 723   }
 724   return t;
 725 }
 726 
 727 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 728   Instruction* src     = x->argument_at(0);
 729   Instruction* src_pos = x->argument_at(1);
 730   Instruction* dst     = x->argument_at(2);
 731   Instruction* dst_pos = x->argument_at(3);
 732   Instruction* length  = x->argument_at(4);
 733 
 734   // first try to identify the likely type of the arrays involved
 735   ciArrayKlass* expected_type = nullptr;
 736   bool is_exact = false, src_objarray = false, dst_objarray = false;
 737   {
 738     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 739     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 740     Phi* phi;
 741     if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) {
 742       src_declared_type = as_array_klass(phi_declared_type(phi));
 743     }
 744     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 745     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 746     if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) {
 747       dst_declared_type = as_array_klass(phi_declared_type(phi));
 748     }
 749 
 750     if (src_exact_type != nullptr && src_exact_type == dst_exact_type) {
 751       // the types exactly match so the type is fully known
 752       is_exact = true;
 753       expected_type = src_exact_type;
 754     } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
 755       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 756       ciArrayKlass* src_type = nullptr;
 757       if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
 758         src_type = (ciArrayKlass*) src_exact_type;
 759       } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
 760         src_type = (ciArrayKlass*) src_declared_type;
 761       }
 762       if (src_type != nullptr) {
 763         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 764           is_exact = true;
 765           expected_type = dst_type;
 766         }
 767       }
 768     }
 769     // at least pass along a good guess
 770     if (expected_type == nullptr) expected_type = dst_exact_type;
 771     if (expected_type == nullptr) expected_type = src_declared_type;
 772     if (expected_type == nullptr) expected_type = dst_declared_type;
 773 
 774     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 775     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 776   }
 777 
 778   // if a probable array type has been identified, figure out if any
 779   // of the required checks for a fast case can be elided.
 780   int flags = LIR_OpArrayCopy::all_flags;
 781 
 782   if (!src->is_loaded_flat_array() && !dst->is_loaded_flat_array()) {
 783     flags &= ~LIR_OpArrayCopy::always_slow_path;
 784   }
 785   if (!src->maybe_flat_array()) {
 786     flags &= ~LIR_OpArrayCopy::src_inlinetype_check;
 787   }
 788   if (!dst->maybe_flat_array() && !dst->maybe_null_free_array()) {
 789     flags &= ~LIR_OpArrayCopy::dst_inlinetype_check;
 790   }
 791 
 792   if (!src_objarray)
 793     flags &= ~LIR_OpArrayCopy::src_objarray;
 794   if (!dst_objarray)
 795     flags &= ~LIR_OpArrayCopy::dst_objarray;
 796 
 797   if (!x->arg_needs_null_check(0))
 798     flags &= ~LIR_OpArrayCopy::src_null_check;
 799   if (!x->arg_needs_null_check(2))
 800     flags &= ~LIR_OpArrayCopy::dst_null_check;
 801 
 802 
 803   if (expected_type != nullptr) {
 804     Value length_limit = nullptr;
 805 
 806     IfOp* ifop = length->as_IfOp();
 807     if (ifop != nullptr) {
 808       // look for expressions like min(v, a.length) which ends up as
 809       //   x > y ? y : x  or  x >= y ? y : x
 810       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 811           ifop->x() == ifop->fval() &&
 812           ifop->y() == ifop->tval()) {
 813         length_limit = ifop->y();
 814       }
 815     }
 816 
 817     // try to skip null checks and range checks
 818     NewArray* src_array = src->as_NewArray();
 819     if (src_array != nullptr) {
 820       flags &= ~LIR_OpArrayCopy::src_null_check;
 821       if (length_limit != nullptr &&
 822           src_array->length() == length_limit &&
 823           is_constant_zero(src_pos)) {
 824         flags &= ~LIR_OpArrayCopy::src_range_check;
 825       }
 826     }
 827 
 828     NewArray* dst_array = dst->as_NewArray();
 829     if (dst_array != nullptr) {
 830       flags &= ~LIR_OpArrayCopy::dst_null_check;
 831       if (length_limit != nullptr &&
 832           dst_array->length() == length_limit &&
 833           is_constant_zero(dst_pos)) {
 834         flags &= ~LIR_OpArrayCopy::dst_range_check;
 835       }
 836     }
 837 
 838     // check from incoming constant values
 839     if (positive_constant(src_pos))
 840       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 841     if (positive_constant(dst_pos))
 842       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 843     if (positive_constant(length))
 844       flags &= ~LIR_OpArrayCopy::length_positive_check;
 845 
 846     // see if the range check can be elided, which might also imply
 847     // that src or dst is non-null.
 848     ArrayLength* al = length->as_ArrayLength();
 849     if (al != nullptr) {
 850       if (al->array() == src) {
 851         // it's the length of the source array
 852         flags &= ~LIR_OpArrayCopy::length_positive_check;
 853         flags &= ~LIR_OpArrayCopy::src_null_check;
 854         if (is_constant_zero(src_pos))
 855           flags &= ~LIR_OpArrayCopy::src_range_check;
 856       }
 857       if (al->array() == dst) {
 858         // it's the length of the destination array
 859         flags &= ~LIR_OpArrayCopy::length_positive_check;
 860         flags &= ~LIR_OpArrayCopy::dst_null_check;
 861         if (is_constant_zero(dst_pos))
 862           flags &= ~LIR_OpArrayCopy::dst_range_check;
 863       }
 864     }
 865     if (is_exact) {
 866       flags &= ~LIR_OpArrayCopy::type_check;
 867     }
 868   }
 869 
 870   IntConstant* src_int = src_pos->type()->as_IntConstant();
 871   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 872   if (src_int && dst_int) {
 873     int s_offs = src_int->value();
 874     int d_offs = dst_int->value();
 875     if (src_int->value() >= dst_int->value()) {
 876       flags &= ~LIR_OpArrayCopy::overlapping;
 877     }
 878     if (expected_type != nullptr) {
 879       BasicType t = expected_type->element_type()->basic_type();
 880       int element_size = type2aelembytes(t);
 881       if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
 882           ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
 883         flags &= ~LIR_OpArrayCopy::unaligned;
 884       }
 885     }
 886   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 887     // src and dest positions are the same, or dst is zero so assume
 888     // nonoverlapping copy.
 889     flags &= ~LIR_OpArrayCopy::overlapping;
 890   }
 891 
 892   if (src == dst) {
 893     // moving within a single array so no type checks are needed
 894     if (flags & LIR_OpArrayCopy::type_check) {
 895       flags &= ~LIR_OpArrayCopy::type_check;
 896     }
 897   }
 898   *flagsp = flags;
 899 
 900   // TODO 8366668
 901   if (expected_type != nullptr && expected_type->is_obj_array_klass()) {
 902     expected_type = ciArrayKlass::make(expected_type->as_array_klass()->element_klass(), false, true, true);
 903   }
 904 
 905   *expected_typep = (ciArrayKlass*)expected_type;
 906 }
 907 
 908 
 909 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 910   assert(type2size[t] == type2size[value->type()],
 911          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 912   if (!value->is_register()) {
 913     // force into a register
 914     LIR_Opr r = new_register(value->type());
 915     __ move(value, r);
 916     value = r;
 917   }
 918 
 919   // create a spill location
 920   LIR_Opr tmp = new_register(t);
 921   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 922 
 923   // move from register to spill
 924   __ move(value, tmp);
 925   return tmp;
 926 }
 927 
 928 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 929   if (if_instr->should_profile()) {
 930     ciMethod* method = if_instr->profiled_method();
 931     assert(method != nullptr, "method should be set if branch is profiled");
 932     ciMethodData* md = method->method_data_or_null();
 933     assert(md != nullptr, "Sanity");
 934     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 935     assert(data != nullptr, "must have profiling data");
 936     assert(data->is_BranchData(), "need BranchData for two-way branches");
 937     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 938     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 939     if (if_instr->is_swapped()) {
 940       int t = taken_count_offset;
 941       taken_count_offset = not_taken_count_offset;
 942       not_taken_count_offset = t;
 943     }
 944 
 945     LIR_Opr md_reg = new_register(T_METADATA);
 946     __ metadata2reg(md->constant_encoding(), md_reg);
 947 
 948     LIR_Opr data_offset_reg = new_pointer_register();
 949     __ cmove(lir_cond(cond),
 950              LIR_OprFact::intptrConst(taken_count_offset),
 951              LIR_OprFact::intptrConst(not_taken_count_offset),
 952              data_offset_reg, as_BasicType(if_instr->x()->type()));
 953 
 954     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 955     LIR_Opr data_reg = new_pointer_register();
 956     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 957     __ move(data_addr, data_reg);
 958     // Use leal instead of add to avoid destroying condition codes on x86
 959     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 960     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 961     __ move(data_reg, data_addr);
 962   }
 963 }
 964 
 965 // Phi technique:
 966 // This is about passing live values from one basic block to the other.
 967 // In code generated with Java it is rather rare that more than one
 968 // value is on the stack from one basic block to the other.
 969 // We optimize our technique for efficient passing of one value
 970 // (of type long, int, double..) but it can be extended.
 971 // When entering or leaving a basic block, all registers and all spill
 972 // slots are release and empty. We use the released registers
 973 // and spill slots to pass the live values from one block
 974 // to the other. The topmost value, i.e., the value on TOS of expression
 975 // stack is passed in registers. All other values are stored in spilling
 976 // area. Every Phi has an index which designates its spill slot
 977 // At exit of a basic block, we fill the register(s) and spill slots.
 978 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 979 // and locks necessary registers and spilling slots.
 980 
 981 
 982 // move current value to referenced phi function
 983 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 984   Phi* phi = sux_val->as_Phi();
 985   // cur_val can be null without phi being null in conjunction with inlining
 986   if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) {
 987     if (phi->is_local()) {
 988       for (int i = 0; i < phi->operand_count(); i++) {
 989         Value op = phi->operand_at(i);
 990         if (op != nullptr && op->type()->is_illegal()) {
 991           bailout("illegal phi operand");
 992         }
 993       }
 994     }
 995     Phi* cur_phi = cur_val->as_Phi();
 996     if (cur_phi != nullptr && cur_phi->is_illegal()) {
 997       // Phi and local would need to get invalidated
 998       // (which is unexpected for Linear Scan).
 999       // But this case is very rare so we simply bail out.
1000       bailout("propagation of illegal phi");
1001       return;
1002     }
1003     LIR_Opr operand = cur_val->operand();
1004     if (operand->is_illegal()) {
1005       assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr,
1006              "these can be produced lazily");
1007       operand = operand_for_instruction(cur_val);
1008     }
1009     resolver->move(operand, operand_for_instruction(phi));
1010   }
1011 }
1012 
1013 
1014 // Moves all stack values into their PHI position
1015 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1016   BlockBegin* bb = block();
1017   if (bb->number_of_sux() == 1) {
1018     BlockBegin* sux = bb->sux_at(0);
1019     assert(sux->number_of_preds() > 0, "invalid CFG");
1020 
1021     // a block with only one predecessor never has phi functions
1022     if (sux->number_of_preds() > 1) {
1023       PhiResolver resolver(this);
1024 
1025       ValueStack* sux_state = sux->state();
1026       Value sux_value;
1027       int index;
1028 
1029       assert(cur_state->scope() == sux_state->scope(), "not matching");
1030       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1031       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1032 
1033       for_each_stack_value(sux_state, index, sux_value) {
1034         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1035       }
1036 
1037       for_each_local_value(sux_state, index, sux_value) {
1038         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1039       }
1040 
1041       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1042     }
1043   }
1044 }
1045 
1046 
1047 LIR_Opr LIRGenerator::new_register(BasicType type) {
1048   int vreg_num = _virtual_register_number;
1049   // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1050   // a few extra registers before we really run out which helps to avoid to trip over assertions.
1051   if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1052     bailout("out of virtual registers in LIR generator");
1053     if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1054       // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1055       _virtual_register_number = LIR_Opr::vreg_base;
1056       vreg_num = LIR_Opr::vreg_base;
1057     }
1058   }
1059   _virtual_register_number += 1;
1060   LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1061   assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1062   return vreg;
1063 }
1064 
1065 
1066 // Try to lock using register in hint
1067 LIR_Opr LIRGenerator::rlock(Value instr) {
1068   return new_register(instr->type());
1069 }
1070 
1071 
1072 // does an rlock and sets result
1073 LIR_Opr LIRGenerator::rlock_result(Value x) {
1074   LIR_Opr reg = rlock(x);
1075   set_result(x, reg);
1076   return reg;
1077 }
1078 
1079 
1080 // does an rlock and sets result
1081 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1082   LIR_Opr reg;
1083   switch (type) {
1084   case T_BYTE:
1085   case T_BOOLEAN:
1086     reg = rlock_byte(type);
1087     break;
1088   default:
1089     reg = rlock(x);
1090     break;
1091   }
1092 
1093   set_result(x, reg);
1094   return reg;
1095 }
1096 
1097 
1098 //---------------------------------------------------------------------
1099 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1100   ObjectType* oc = value->type()->as_ObjectType();
1101   if (oc) {
1102     return oc->constant_value();
1103   }
1104   return nullptr;
1105 }
1106 
1107 
1108 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1109   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1110   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1111 
1112   // no moves are created for phi functions at the begin of exception
1113   // handlers, so assign operands manually here
1114   for_each_phi_fun(block(), phi,
1115                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1116 
1117   LIR_Opr thread_reg = getThreadPointer();
1118   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1119                exceptionOopOpr());
1120   __ move_wide(LIR_OprFact::oopConst(nullptr),
1121                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1122   __ move_wide(LIR_OprFact::oopConst(nullptr),
1123                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1124 
1125   LIR_Opr result = new_register(T_OBJECT);
1126   __ move(exceptionOopOpr(), result);
1127   set_result(x, result);
1128 }
1129 
1130 
1131 //----------------------------------------------------------------------
1132 //----------------------------------------------------------------------
1133 //----------------------------------------------------------------------
1134 //----------------------------------------------------------------------
1135 //                        visitor functions
1136 //----------------------------------------------------------------------
1137 //----------------------------------------------------------------------
1138 //----------------------------------------------------------------------
1139 //----------------------------------------------------------------------
1140 
1141 void LIRGenerator::do_Phi(Phi* x) {
1142   // phi functions are never visited directly
1143   ShouldNotReachHere();
1144 }
1145 
1146 
1147 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1148 void LIRGenerator::do_Constant(Constant* x) {
1149   if (x->state_before() != nullptr) {
1150     // Any constant with a ValueStack requires patching so emit the patch here
1151     LIR_Opr reg = rlock_result(x);
1152     CodeEmitInfo* info = state_for(x, x->state_before());
1153     __ oop2reg_patch(nullptr, reg, info);
1154   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1155     if (!x->is_pinned()) {
1156       // unpinned constants are handled specially so that they can be
1157       // put into registers when they are used multiple times within a
1158       // block.  After the block completes their operand will be
1159       // cleared so that other blocks can't refer to that register.
1160       set_result(x, load_constant(x));
1161     } else {
1162       LIR_Opr res = x->operand();
1163       if (!res->is_valid()) {
1164         res = LIR_OprFact::value_type(x->type());
1165       }
1166       if (res->is_constant()) {
1167         LIR_Opr reg = rlock_result(x);
1168         __ move(res, reg);
1169       } else {
1170         set_result(x, res);
1171       }
1172     }
1173   } else {
1174     set_result(x, LIR_OprFact::value_type(x->type()));
1175   }
1176 }
1177 
1178 
1179 void LIRGenerator::do_Local(Local* x) {
1180   // operand_for_instruction has the side effect of setting the result
1181   // so there's no need to do it here.
1182   operand_for_instruction(x);
1183 }
1184 
1185 
1186 void LIRGenerator::do_Return(Return* x) {
1187   if (compilation()->env()->dtrace_method_probes()) {
1188     BasicTypeList signature;
1189     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1190     signature.append(T_METADATA); // Method*
1191     LIR_OprList* args = new LIR_OprList();
1192     args->append(getThreadPointer());
1193     LIR_Opr meth = new_register(T_METADATA);
1194     __ metadata2reg(method()->constant_encoding(), meth);
1195     args->append(meth);
1196     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr);
1197   }
1198 
1199   if (x->type()->is_void()) {
1200     __ return_op(LIR_OprFact::illegalOpr);
1201   } else {
1202     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1203     LIRItem result(x->result(), this);
1204 
1205     result.load_item_force(reg);
1206     __ return_op(result.result());
1207   }
1208   set_no_result(x);
1209 }
1210 
1211 // Example: ref.get()
1212 // Combination of LoadField and g1 pre-write barrier
1213 void LIRGenerator::do_Reference_get0(Intrinsic* x) {
1214 
1215   const int referent_offset = java_lang_ref_Reference::referent_offset();
1216 
1217   assert(x->number_of_arguments() == 1, "wrong type");
1218 
1219   LIRItem reference(x->argument_at(0), this);
1220   reference.load_item();
1221 
1222   // need to perform the null check on the reference object
1223   CodeEmitInfo* info = nullptr;
1224   if (x->needs_null_check()) {
1225     info = state_for(x);
1226   }
1227 
1228   LIR_Opr result = rlock_result(x, T_OBJECT);
1229   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1230                  reference, LIR_OprFact::intConst(referent_offset), result,
1231                  nullptr, info);
1232 }
1233 
1234 // Example: clazz.isInstance(object)
1235 void LIRGenerator::do_isInstance(Intrinsic* x) {
1236   assert(x->number_of_arguments() == 2, "wrong type");
1237 
1238   LIRItem clazz(x->argument_at(0), this);
1239   LIRItem object(x->argument_at(1), this);
1240   clazz.load_item();
1241   object.load_item();
1242   LIR_Opr result = rlock_result(x);
1243 
1244   // need to perform null check on clazz
1245   if (x->needs_null_check()) {
1246     CodeEmitInfo* info = state_for(x);
1247     __ null_check(clazz.result(), info);
1248   }
1249 
1250   address pd_instanceof_fn = isInstance_entry();
1251   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1252                                      pd_instanceof_fn,
1253                                      x->type(),
1254                                      nullptr); // null CodeEmitInfo results in a leaf call
1255   __ move(call_result, result);
1256 }
1257 
1258 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1259   __ load_klass(obj, klass, null_check_info);
1260 }
1261 
1262 // Example: object.getClass ()
1263 void LIRGenerator::do_getClass(Intrinsic* x) {
1264   assert(x->number_of_arguments() == 1, "wrong type");
1265 
1266   LIRItem rcvr(x->argument_at(0), this);
1267   rcvr.load_item();
1268   LIR_Opr temp = new_register(T_ADDRESS);
1269   LIR_Opr result = rlock_result(x);
1270 
1271   // need to perform the null check on the rcvr
1272   CodeEmitInfo* info = nullptr;
1273   if (x->needs_null_check()) {
1274     info = state_for(x);
1275   }
1276 
1277   LIR_Opr klass = new_register(T_METADATA);
1278   load_klass(rcvr.result(), klass, info);
1279   __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1280   // mirror = ((OopHandle)mirror)->resolve();
1281   access_load(IN_NATIVE, T_OBJECT,
1282               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1283 }
1284 
1285 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1286   assert(x->number_of_arguments() == 3, "wrong type");
1287   LIR_Opr result_reg = rlock_result(x);
1288 
1289   LIRItem value(x->argument_at(2), this);
1290   value.load_item();
1291 
1292   LIR_Opr klass = new_register(T_METADATA);
1293   load_klass(value.result(), klass, nullptr);
1294   LIR_Opr layout = new_register(T_INT);
1295   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1296 
1297   LabelObj* L_done = new LabelObj();
1298   LabelObj* L_array = new LabelObj();
1299 
1300   __ cmp(lir_cond_lessEqual, layout, 0);
1301   __ branch(lir_cond_lessEqual, L_array->label());
1302 
1303   // Instance case: the layout helper gives us instance size almost directly,
1304   // but we need to mask out the _lh_instance_slow_path_bit.
1305 
1306   assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1307 
1308   LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT);
1309   __ logical_and(layout, mask, layout);
1310   __ convert(Bytecodes::_i2l, layout, result_reg);
1311 
1312   __ branch(lir_cond_always, L_done->label());
1313 
1314   // Array case: size is round(header + element_size*arraylength).
1315   // Since arraylength is different for every array instance, we have to
1316   // compute the whole thing at runtime.
1317 
1318   __ branch_destination(L_array->label());
1319 
1320   int round_mask = MinObjAlignmentInBytes - 1;
1321 
1322   // Figure out header sizes first.
1323   LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT);
1324   LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT);
1325 
1326   LIR_Opr header_size = new_register(T_INT);
1327   __ move(layout, header_size);
1328   LIR_Opr tmp = new_register(T_INT);
1329   __ unsigned_shift_right(header_size, hss, header_size, tmp);
1330   __ logical_and(header_size, hsm, header_size);
1331   __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1332 
1333   // Figure out the array length in bytes
1334   assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1335   LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT);
1336   __ logical_and(layout, l2esm, layout);
1337 
1338   LIR_Opr length_int = new_register(T_INT);
1339   __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1340 
1341 #ifdef _LP64
1342   LIR_Opr length = new_register(T_LONG);
1343   __ convert(Bytecodes::_i2l, length_int, length);
1344 #endif
1345 
1346   // Shift-left awkwardness. Normally it is just:
1347   //   __ shift_left(length, layout, length);
1348   // But C1 cannot perform shift_left with non-constant count, so we end up
1349   // doing the per-bit loop dance here. x86_32 also does not know how to shift
1350   // longs, so we have to act on ints.
1351   LabelObj* L_shift_loop = new LabelObj();
1352   LabelObj* L_shift_exit = new LabelObj();
1353 
1354   __ branch_destination(L_shift_loop->label());
1355   __ cmp(lir_cond_equal, layout, 0);
1356   __ branch(lir_cond_equal, L_shift_exit->label());
1357 
1358 #ifdef _LP64
1359   __ shift_left(length, 1, length);
1360 #else
1361   __ shift_left(length_int, 1, length_int);
1362 #endif
1363 
1364   __ sub(layout, LIR_OprFact::intConst(1), layout);
1365 
1366   __ branch(lir_cond_always, L_shift_loop->label());
1367   __ branch_destination(L_shift_exit->label());
1368 
1369   // Mix all up, round, and push to the result.
1370 #ifdef _LP64
1371   LIR_Opr header_size_long = new_register(T_LONG);
1372   __ convert(Bytecodes::_i2l, header_size, header_size_long);
1373   __ add(length, header_size_long, length);
1374   if (round_mask != 0) {
1375     LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG);
1376     __ logical_and(length, round_mask_opr, length);
1377   }
1378   __ move(length, result_reg);
1379 #else
1380   __ add(length_int, header_size, length_int);
1381   if (round_mask != 0) {
1382     LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT);
1383     __ logical_and(length_int, round_mask_opr, length_int);
1384   }
1385   __ convert(Bytecodes::_i2l, length_int, result_reg);
1386 #endif
1387 
1388   __ branch_destination(L_done->label());
1389 }
1390 
1391 void LIRGenerator::do_scopedValueCache(Intrinsic* x) {
1392   do_JavaThreadField(x, JavaThread::scopedValueCache_offset());
1393 }
1394 
1395 // Example: Thread.currentCarrierThread()
1396 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) {
1397   do_JavaThreadField(x, JavaThread::threadObj_offset());
1398 }
1399 
1400 void LIRGenerator::do_vthread(Intrinsic* x) {
1401   do_JavaThreadField(x, JavaThread::vthread_offset());
1402 }
1403 
1404 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) {
1405   assert(x->number_of_arguments() == 0, "wrong type");
1406   LIR_Opr temp = new_register(T_ADDRESS);
1407   LIR_Opr reg = rlock_result(x);
1408   __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp);
1409   access_load(IN_NATIVE, T_OBJECT,
1410               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1411 }
1412 
1413 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1414   assert(x->number_of_arguments() == 1, "wrong type");
1415   LIRItem receiver(x->argument_at(0), this);
1416 
1417   receiver.load_item();
1418   BasicTypeList signature;
1419   signature.append(T_OBJECT); // receiver
1420   LIR_OprList* args = new LIR_OprList();
1421   args->append(receiver.result());
1422   CodeEmitInfo* info = state_for(x, x->state());
1423   call_runtime(&signature, args,
1424                CAST_FROM_FN_PTR(address, Runtime1::entry_for(StubId::c1_register_finalizer_id)),
1425                voidType, info);
1426 
1427   set_no_result(x);
1428 }
1429 
1430 
1431 //------------------------local access--------------------------------------
1432 
1433 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1434   if (x->operand()->is_illegal()) {
1435     Constant* c = x->as_Constant();
1436     if (c != nullptr) {
1437       x->set_operand(LIR_OprFact::value_type(c->type()));
1438     } else {
1439       assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local");
1440       // allocate a virtual register for this local or phi
1441       x->set_operand(rlock(x));
1442 #ifdef ASSERT
1443       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr);
1444 #endif
1445     }
1446   }
1447   return x->operand();
1448 }
1449 
1450 #ifdef ASSERT
1451 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1452   if (reg_num < _instruction_for_operand.length()) {
1453     return _instruction_for_operand.at(reg_num);
1454   }
1455   return nullptr;
1456 }
1457 #endif
1458 
1459 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1460   if (_vreg_flags.size_in_bits() == 0) {
1461     BitMap2D temp(100, num_vreg_flags);
1462     _vreg_flags = temp;
1463   }
1464   _vreg_flags.at_put_grow(vreg_num, f, true);
1465 }
1466 
1467 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1468   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1469     return false;
1470   }
1471   return _vreg_flags.at(vreg_num, f);
1472 }
1473 
1474 
1475 // Block local constant handling.  This code is useful for keeping
1476 // unpinned constants and constants which aren't exposed in the IR in
1477 // registers.  Unpinned Constant instructions have their operands
1478 // cleared when the block is finished so that other blocks can't end
1479 // up referring to their registers.
1480 
1481 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1482   assert(!x->is_pinned(), "only for unpinned constants");
1483   _unpinned_constants.append(x);
1484   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1485 }
1486 
1487 
1488 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1489   BasicType t = c->type();
1490   for (int i = 0; i < _constants.length() && !in_conditional_code(); i++) {
1491     LIR_Const* other = _constants.at(i);
1492     if (t == other->type()) {
1493       switch (t) {
1494       case T_INT:
1495       case T_FLOAT:
1496         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1497         break;
1498       case T_LONG:
1499       case T_DOUBLE:
1500         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1501         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1502         break;
1503       case T_OBJECT:
1504         if (c->as_jobject() != other->as_jobject()) continue;
1505         break;
1506       default:
1507         break;
1508       }
1509       return _reg_for_constants.at(i);
1510     }
1511   }
1512 
1513   LIR_Opr result = new_register(t);
1514   __ move((LIR_Opr)c, result);
1515   if (!in_conditional_code()) {
1516     _constants.append(c);
1517     _reg_for_constants.append(result);
1518   }
1519   return result;
1520 }
1521 
1522 void LIRGenerator::set_in_conditional_code(bool v) {
1523   assert(v != _in_conditional_code, "must change state");
1524   _in_conditional_code = v;
1525 }
1526 
1527 
1528 //------------------------field access--------------------------------------
1529 
1530 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1531   assert(x->number_of_arguments() == 4, "wrong type");
1532   LIRItem obj   (x->argument_at(0), this);  // object
1533   LIRItem offset(x->argument_at(1), this);  // offset of field
1534   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1535   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1536   assert(obj.type()->tag() == objectTag, "invalid type");
1537   assert(cmp.type()->tag() == type->tag(), "invalid type");
1538   assert(val.type()->tag() == type->tag(), "invalid type");
1539 
1540   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1541                                             obj, offset, cmp, val);
1542   set_result(x, result);
1543 }
1544 
1545 // Returns a int/long value with the null marker bit set
1546 static LIR_Opr null_marker_mask(BasicType bt, ciField* field) {
1547   assert(field->null_marker_offset() != -1, "field does not have null marker");
1548   int nm_offset = field->null_marker_offset() - field->offset_in_bytes();
1549   jlong null_marker = 1ULL << (nm_offset << LogBitsPerByte);
1550   return (bt == T_LONG) ? LIR_OprFact::longConst(null_marker) : LIR_OprFact::intConst(null_marker);
1551 }
1552 
1553 // Comment copied form templateTable_i486.cpp
1554 // ----------------------------------------------------------------------------
1555 // Volatile variables demand their effects be made known to all CPU's in
1556 // order.  Store buffers on most chips allow reads & writes to reorder; the
1557 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1558 // memory barrier (i.e., it's not sufficient that the interpreter does not
1559 // reorder volatile references, the hardware also must not reorder them).
1560 //
1561 // According to the new Java Memory Model (JMM):
1562 // (1) All volatiles are serialized wrt to each other.
1563 // ALSO reads & writes act as acquire & release, so:
1564 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1565 // the read float up to before the read.  It's OK for non-volatile memory refs
1566 // that happen before the volatile read to float down below it.
1567 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1568 // that happen BEFORE the write float down to after the write.  It's OK for
1569 // non-volatile memory refs that happen after the volatile write to float up
1570 // before it.
1571 //
1572 // We only put in barriers around volatile refs (they are expensive), not
1573 // _between_ memory refs (that would require us to track the flavor of the
1574 // previous memory refs).  Requirements (2) and (3) require some barriers
1575 // before volatile stores and after volatile loads.  These nearly cover
1576 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1577 // case is placed after volatile-stores although it could just as well go
1578 // before volatile-loads.
1579 
1580 
1581 void LIRGenerator::do_StoreField(StoreField* x) {
1582   ciField* field = x->field();
1583   bool needs_patching = x->needs_patching();
1584   bool is_volatile = field->is_volatile();
1585   BasicType field_type = x->field_type();
1586 
1587   CodeEmitInfo* info = nullptr;
1588   if (needs_patching) {
1589     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1590     info = state_for(x, x->state_before());
1591   } else if (x->needs_null_check()) {
1592     NullCheck* nc = x->explicit_null_check();
1593     if (nc == nullptr) {
1594       info = state_for(x);
1595     } else {
1596       info = state_for(nc);
1597     }
1598   }
1599 
1600   LIRItem object(x->obj(), this);
1601   LIRItem value(x->value(),  this);
1602 
1603   object.load_item();
1604 
1605   if (field->is_flat()) {
1606     value.load_item();
1607   } else {
1608     if (is_volatile || needs_patching) {
1609       // load item if field is volatile (fewer special cases for volatiles)
1610       // load item if field not initialized
1611       // load item if field not constant
1612       // because of code patching we cannot inline constants
1613       if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1614         value.load_byte_item();
1615       } else  {
1616         value.load_item();
1617       }
1618     } else {
1619       value.load_for_store(field_type);
1620     }
1621   }
1622 
1623   set_no_result(x);
1624 
1625 #ifndef PRODUCT
1626   if (PrintNotLoaded && needs_patching) {
1627     tty->print_cr("   ###class not loaded at store_%s bci %d",
1628                   x->is_static() ?  "static" : "field", x->printable_bci());
1629   }
1630 #endif
1631 
1632   if (x->needs_null_check() &&
1633       (needs_patching ||
1634        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1635     // Emit an explicit null check because the offset is too large.
1636     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1637     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1638     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1639   }
1640 
1641   DecoratorSet decorators = IN_HEAP;
1642   if (is_volatile) {
1643     decorators |= MO_SEQ_CST;
1644   }
1645   if (needs_patching) {
1646     decorators |= C1_NEEDS_PATCHING;
1647   }
1648 
1649   if (field->is_flat()) {
1650     ciInlineKlass* vk = field->type()->as_inline_klass();
1651 
1652 #ifdef ASSERT
1653     bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1;
1654     bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
1655     assert(needs_atomic_access, "No atomic access required");
1656     // ZGC does not support compressed oops, so only one oop can be in the payload which is written by a "normal" oop store.
1657     assert(!vk->contains_oops() || !UseZGC, "ZGC does not support embedded oops in flat fields");
1658 #endif
1659 
1660     // Zero the payload
1661     BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free());
1662     LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT);
1663     LIR_Opr zero = (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0);
1664     __ move(zero, payload);
1665 
1666     bool is_constant_null = value.is_constant() && value.value()->is_null_obj();
1667     if (!is_constant_null) {
1668       LabelObj* L_isNull = new LabelObj();
1669       bool needs_null_check = !value.is_constant() || value.value()->is_null_obj();
1670       if (needs_null_check) {
1671         __ cmp(lir_cond_equal, value.result(), LIR_OprFact::oopConst(nullptr));
1672         __ branch(lir_cond_equal, L_isNull->label());
1673       }
1674       // Load payload (if not empty) and set null marker (if not null-free)
1675       if (!vk->is_empty()) {
1676         access_load_at(decorators, bt, value, LIR_OprFact::intConst(vk->payload_offset()), payload);
1677       }
1678       if (!field->is_null_free()) {
1679         __ logical_or(payload, null_marker_mask(bt, field), payload);
1680       }
1681       if (needs_null_check) {
1682         __ branch_destination(L_isNull->label());
1683       }
1684     }
1685     access_store_at(decorators, bt, object, LIR_OprFact::intConst(x->offset()), payload,
1686                     // Make sure to emit an implicit null check and pass the information
1687                     // that this is a flat store that might require gc barriers for oop fields.
1688                     info != nullptr ? new CodeEmitInfo(info) : nullptr, info, vk);
1689     return;
1690   }
1691 
1692   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1693                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1694 }
1695 
1696 // FIXME -- I can't find any other way to pass an address to access_load_at().
1697 class TempResolvedAddress: public Instruction {
1698  public:
1699   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1700     set_operand(addr);
1701   }
1702   virtual void input_values_do(ValueVisitor*) {}
1703   virtual void visit(InstructionVisitor* v)   {}
1704   virtual const char* name() const  { return "TempResolvedAddress"; }
1705 };
1706 
1707 LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) {
1708   ciType* array_type = array.value()->declared_type();
1709   ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass();
1710   assert(flat_array_klass->is_loaded(), "must be");
1711 
1712   int array_header_size = flat_array_klass->array_header_in_bytes();
1713   int shift = flat_array_klass->log2_element_size();
1714 
1715 #ifndef _LP64
1716   LIR_Opr index_op = new_register(T_INT);
1717   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1718   // the top (shift+1) bits of index_op must be zero, or
1719   // else throw ArrayIndexOutOfBoundsException
1720   if (index.result()->is_constant()) {
1721     jint const_index = index.result()->as_jint();
1722     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1723   } else {
1724     __ shift_left(index_op, shift, index.result());
1725   }
1726 #else
1727   LIR_Opr index_op = new_register(T_LONG);
1728   if (index.result()->is_constant()) {
1729     jint const_index = index.result()->as_jint();
1730     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1731   } else {
1732     __ convert(Bytecodes::_i2l, index.result(), index_op);
1733     // Need to shift manually, as LIR_Address can scale only up to 3.
1734     __ shift_left(index_op, shift, index_op);
1735   }
1736 #endif
1737 
1738   LIR_Opr elm_op = new_pointer_register();
1739   LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS);
1740   __ leal(LIR_OprFact::address(elm_address), elm_op);
1741   return elm_op;
1742 }
1743 
1744 void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, int sub_offset) {
1745   assert(field != nullptr, "Need a subelement type specified");
1746 
1747   // Find the starting address of the source (inside the array)
1748   LIR_Opr elm_op = get_and_load_element_address(array, index);
1749 
1750   BasicType subelt_type = field->type()->basic_type();
1751   TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op);
1752   LIRItem elm_item(elm_resolved_addr, this);
1753 
1754   DecoratorSet decorators = IN_HEAP;
1755   access_load_at(decorators, subelt_type,
1756                      elm_item, LIR_OprFact::intConst(sub_offset), result,
1757                      nullptr, nullptr);
1758 }
1759 
1760 void LIRGenerator::access_flat_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item,
1761                                           ciField* field, int sub_offset) {
1762   assert(sub_offset == 0 || field != nullptr, "Sanity check");
1763 
1764   // Find the starting address of the source (inside the array)
1765   LIR_Opr elm_op = get_and_load_element_address(array, index);
1766 
1767   ciInlineKlass* elem_klass = nullptr;
1768   if (field != nullptr) {
1769     elem_klass = field->type()->as_inline_klass();
1770   } else {
1771     elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
1772   }
1773   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1774     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1775     assert(!inner_field->is_flat(), "flat fields must have been expanded");
1776     int obj_offset = inner_field->offset_in_bytes();
1777     int elm_offset = obj_offset - elem_klass->payload_offset() + sub_offset; // object header is not stored in array.
1778     BasicType field_type = inner_field->type()->basic_type();
1779 
1780     // Types which are smaller than int are still passed in an int register.
1781     BasicType reg_type = field_type;
1782     switch (reg_type) {
1783     case T_BYTE:
1784     case T_BOOLEAN:
1785     case T_SHORT:
1786     case T_CHAR:
1787       reg_type = T_INT;
1788       break;
1789     default:
1790       break;
1791     }
1792 
1793     LIR_Opr temp = new_register(reg_type);
1794     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1795     LIRItem elm_item(elm_resolved_addr, this);
1796 
1797     DecoratorSet decorators = IN_HEAP;
1798     if (is_load) {
1799       access_load_at(decorators, field_type,
1800                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1801                      nullptr, nullptr);
1802       access_store_at(decorators, field_type,
1803                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1804                       nullptr, nullptr);
1805     } else {
1806       access_load_at(decorators, field_type,
1807                      obj_item, LIR_OprFact::intConst(obj_offset), temp,
1808                      nullptr, nullptr);
1809       access_store_at(decorators, field_type,
1810                       elm_item, LIR_OprFact::intConst(elm_offset), temp,
1811                       nullptr, nullptr);
1812     }
1813   }
1814 }
1815 
1816 void LIRGenerator::check_flat_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) {
1817   LIR_Opr tmp = new_register(T_METADATA);
1818   __ check_flat_array(array, value, tmp, slow_path);
1819 }
1820 
1821 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) {
1822   LabelObj* L_end = new LabelObj();
1823   LIR_Opr tmp = new_register(T_METADATA);
1824   __ check_null_free_array(array.result(), tmp);
1825   __ branch(lir_cond_equal, L_end->label());
1826   __ null_check(value.result(), info);
1827   __ branch_destination(L_end->label());
1828 }
1829 
1830 bool LIRGenerator::needs_flat_array_store_check(StoreIndexed* x) {
1831   if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
1832     ciType* type = x->value()->declared_type();
1833     if (type != nullptr && type->is_klass()) {
1834       ciKlass* klass = type->as_klass();
1835       if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->maybe_flat_in_array())) {
1836         // This is known to be a non-flat object. If the array is a flat array,
1837         // it will be caught by the code generated by array_store_check().
1838         return false;
1839       }
1840     }
1841     // We're not 100% sure, so let's do the flat_array_store_check.
1842     return true;
1843   }
1844   return false;
1845 }
1846 
1847 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) {
1848   return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array();
1849 }
1850 
1851 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1852   assert(x->is_pinned(),"");
1853   assert(x->elt_type() != T_ARRAY, "never used");
1854   bool is_loaded_flat_array = x->array()->is_loaded_flat_array();
1855   bool needs_range_check = x->compute_needs_range_check();
1856   bool use_length = x->length() != nullptr;
1857   bool obj_store = is_reference_type(x->elt_type());
1858   bool needs_store_check = obj_store && !(is_loaded_flat_array && x->is_exact_flat_array_store()) &&
1859                                         (x->value()->as_Constant() == nullptr ||
1860                                          !get_jobject_constant(x->value())->is_null_object());
1861 
1862   LIRItem array(x->array(), this);
1863   LIRItem index(x->index(), this);
1864   LIRItem value(x->value(), this);
1865   LIRItem length(this);
1866 
1867   array.load_item();
1868   index.load_nonconstant();
1869 
1870   if (use_length && needs_range_check) {
1871     length.set_instruction(x->length());
1872     length.load_item();
1873   }
1874 
1875   if (needs_store_check || x->check_boolean()
1876       || is_loaded_flat_array || needs_flat_array_store_check(x) || needs_null_free_array_store_check(x)) {
1877     value.load_item();
1878   } else {
1879     value.load_for_store(x->elt_type());
1880   }
1881 
1882   set_no_result(x);
1883 
1884   // the CodeEmitInfo must be duplicated for each different
1885   // LIR-instruction because spilling can occur anywhere between two
1886   // instructions and so the debug information must be different
1887   CodeEmitInfo* range_check_info = state_for(x);
1888   CodeEmitInfo* null_check_info = nullptr;
1889   if (x->needs_null_check()) {
1890     null_check_info = new CodeEmitInfo(range_check_info);
1891   }
1892 
1893   if (needs_range_check) {
1894     if (use_length) {
1895       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1896       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1897     } else {
1898       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1899       // range_check also does the null check
1900       null_check_info = nullptr;
1901     }
1902   }
1903 
1904   if (x->should_profile()) {
1905     if (is_loaded_flat_array) {
1906       // No need to profile a store to a flat array of known type. This can happen if
1907       // the type only became known after optimizations (for example, after the PhiSimplifier).
1908       x->set_should_profile(false);
1909     } else {
1910       int bci = x->profiled_bci();
1911       ciMethodData* md = x->profiled_method()->method_data();
1912       assert(md != nullptr, "Sanity");
1913       ciProfileData* data = md->bci_to_data(bci);
1914       assert(data != nullptr && data->is_ArrayStoreData(), "incorrect profiling entry");
1915       ciArrayStoreData* store_data = (ciArrayStoreData*)data;
1916       profile_array_type(x, md, store_data);
1917       assert(store_data->is_ArrayStoreData(), "incorrect profiling entry");
1918       if (x->array()->maybe_null_free_array()) {
1919         profile_null_free_array(array, md, store_data);
1920       }
1921     }
1922   }
1923 
1924   if (GenerateArrayStoreCheck && needs_store_check) {
1925     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1926     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1927   }
1928 
1929   if (is_loaded_flat_array) {
1930     // TODO 8350865 This is currently dead code
1931     if (!x->value()->is_null_free()) {
1932       __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1933     }
1934     // If array element is an empty inline type, no need to copy anything
1935     if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
1936       access_flat_array(false, array, index, value);
1937     }
1938   } else {
1939     StoreFlattenedArrayStub* slow_path = nullptr;
1940 
1941     if (needs_flat_array_store_check(x)) {
1942       // Check if we indeed have a flat array
1943       index.load_item();
1944       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before()));
1945       check_flat_array(array.result(), value.result(), slow_path);
1946       set_in_conditional_code(true);
1947     } else if (needs_null_free_array_store_check(x)) {
1948       CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1949       check_null_free_array(array, value, info);
1950     }
1951 
1952     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1953     if (x->check_boolean()) {
1954       decorators |= C1_MASK_BOOLEAN;
1955     }
1956 
1957     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), nullptr, null_check_info);
1958     if (slow_path != nullptr) {
1959       __ branch_destination(slow_path->continuation());
1960       set_in_conditional_code(false);
1961     }
1962   }
1963 }
1964 
1965 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1966                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1967                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1968   decorators |= ACCESS_READ;
1969   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1970   if (access.is_raw()) {
1971     _barrier_set->BarrierSetC1::load_at(access, result);
1972   } else {
1973     _barrier_set->load_at(access, result);
1974   }
1975 }
1976 
1977 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1978                                LIR_Opr addr, LIR_Opr result) {
1979   decorators |= ACCESS_READ;
1980   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1981   access.set_resolved_addr(addr);
1982   if (access.is_raw()) {
1983     _barrier_set->BarrierSetC1::load(access, result);
1984   } else {
1985     _barrier_set->load(access, result);
1986   }
1987 }
1988 
1989 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1990                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1991                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info,
1992                                    ciInlineKlass* vk) {
1993   decorators |= ACCESS_WRITE;
1994   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info, vk);
1995   if (access.is_raw()) {
1996     _barrier_set->BarrierSetC1::store_at(access, value);
1997   } else {
1998     _barrier_set->store_at(access, value);
1999   }
2000 }
2001 
2002 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
2003                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
2004   decorators |= ACCESS_READ;
2005   decorators |= ACCESS_WRITE;
2006   // Atomic operations are SEQ_CST by default
2007   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2008   LIRAccess access(this, decorators, base, offset, type);
2009   if (access.is_raw()) {
2010     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
2011   } else {
2012     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
2013   }
2014 }
2015 
2016 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
2017                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
2018   decorators |= ACCESS_READ;
2019   decorators |= ACCESS_WRITE;
2020   // Atomic operations are SEQ_CST by default
2021   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2022   LIRAccess access(this, decorators, base, offset, type);
2023   if (access.is_raw()) {
2024     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
2025   } else {
2026     return _barrier_set->atomic_xchg_at(access, value);
2027   }
2028 }
2029 
2030 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
2031                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
2032   decorators |= ACCESS_READ;
2033   decorators |= ACCESS_WRITE;
2034   // Atomic operations are SEQ_CST by default
2035   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2036   LIRAccess access(this, decorators, base, offset, type);
2037   if (access.is_raw()) {
2038     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
2039   } else {
2040     return _barrier_set->atomic_add_at(access, value);
2041   }
2042 }
2043 
2044 void LIRGenerator::do_LoadField(LoadField* x) {
2045   ciField* field = x->field();
2046   bool needs_patching = x->needs_patching();
2047   bool is_volatile = field->is_volatile();
2048   BasicType field_type = x->field_type();
2049 
2050   CodeEmitInfo* info = nullptr;
2051   if (needs_patching) {
2052     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
2053     info = state_for(x, x->state_before());
2054   } else if (x->needs_null_check()) {
2055     NullCheck* nc = x->explicit_null_check();
2056     if (nc == nullptr) {
2057       info = state_for(x);
2058     } else {
2059       info = state_for(nc);
2060     }
2061   }
2062 
2063   LIRItem object(x->obj(), this);
2064 
2065   object.load_item();
2066 
2067 #ifndef PRODUCT
2068   if (PrintNotLoaded && needs_patching) {
2069     tty->print_cr("   ###class not loaded at load_%s bci %d",
2070                   x->is_static() ?  "static" : "field", x->printable_bci());
2071   }
2072 #endif
2073 
2074   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
2075   if (x->needs_null_check() &&
2076       (needs_patching ||
2077        MacroAssembler::needs_explicit_null_check(x->offset()) ||
2078        stress_deopt)) {
2079     LIR_Opr obj = object.result();
2080     if (stress_deopt) {
2081       obj = new_register(T_OBJECT);
2082       __ move(LIR_OprFact::oopConst(nullptr), obj);
2083     }
2084     // Emit an explicit null check because the offset is too large.
2085     // If the class is not loaded and the object is null, we need to deoptimize to throw a
2086     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
2087     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
2088   }
2089 
2090   DecoratorSet decorators = IN_HEAP;
2091   if (is_volatile) {
2092     decorators |= MO_SEQ_CST;
2093   }
2094   if (needs_patching) {
2095     decorators |= C1_NEEDS_PATCHING;
2096   }
2097 
2098   if (field->is_flat()) {
2099     ciInlineKlass* vk = field->type()->as_inline_klass();
2100 #ifdef ASSERT
2101     bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1;
2102     bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
2103     assert(needs_atomic_access, "No atomic access required");
2104     assert(x->state_before() != nullptr, "Needs state before");
2105 #endif
2106 
2107     // Allocate buffer (we can't easily do this conditionally on the null check below
2108     // because branches added in the LIR are opaque to the register allocator).
2109     NewInstance* buffer = new NewInstance(vk, x->state_before(), false, true);
2110     do_NewInstance(buffer);
2111     LIRItem dest(buffer, this);
2112 
2113     // Copy the payload to the buffer
2114     BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free());
2115     LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT);
2116     access_load_at(decorators, bt, object, LIR_OprFact::intConst(field->offset_in_bytes()), payload,
2117                    // Make sure to emit an implicit null check
2118                    info ? new CodeEmitInfo(info) : nullptr, info);
2119     access_store_at(decorators, bt, dest, LIR_OprFact::intConst(vk->payload_offset()), payload);
2120 
2121     if (field->is_null_free()) {
2122       set_result(x, buffer->operand());
2123     } else {
2124       // Check the null marker and set result to null if it's not set
2125       __ logical_and(payload, null_marker_mask(bt, field), payload);
2126       __ cmp(lir_cond_equal, payload, (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0));
2127       __ cmove(lir_cond_equal, LIR_OprFact::oopConst(nullptr), buffer->operand(), rlock_result(x), T_OBJECT);
2128     }
2129 
2130     // Ensure the copy is visible before any subsequent store that publishes the buffer.
2131     __ membar_storestore();
2132     return;
2133   }
2134 
2135   LIR_Opr result = rlock_result(x, field_type);
2136   access_load_at(decorators, field_type,
2137                  object, LIR_OprFact::intConst(x->offset()), result,
2138                  info ? new CodeEmitInfo(info) : nullptr, info);
2139 }
2140 
2141 // int/long jdk.internal.util.Preconditions.checkIndex
2142 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
2143   assert(x->number_of_arguments() == 3, "wrong type");
2144   LIRItem index(x->argument_at(0), this);
2145   LIRItem length(x->argument_at(1), this);
2146   LIRItem oobef(x->argument_at(2), this);
2147 
2148   index.load_item();
2149   length.load_item();
2150   oobef.load_item();
2151 
2152   LIR_Opr result = rlock_result(x);
2153   // x->state() is created from copy_state_for_exception, it does not contains arguments
2154   // we should prepare them before entering into interpreter mode due to deoptimization.
2155   ValueStack* state = x->state();
2156   for (int i = 0; i < x->number_of_arguments(); i++) {
2157     Value arg = x->argument_at(i);
2158     state->push(arg->type(), arg);
2159   }
2160   CodeEmitInfo* info = state_for(x, state);
2161 
2162   LIR_Opr len = length.result();
2163   LIR_Opr zero;
2164   if (type == T_INT) {
2165     zero = LIR_OprFact::intConst(0);
2166     if (length.result()->is_constant()){
2167       len = LIR_OprFact::intConst(length.result()->as_jint());
2168     }
2169   } else {
2170     assert(type == T_LONG, "sanity check");
2171     zero = LIR_OprFact::longConst(0);
2172     if (length.result()->is_constant()){
2173       len = LIR_OprFact::longConst(length.result()->as_jlong());
2174     }
2175   }
2176   // C1 can not handle the case that comparing index with constant value while condition
2177   // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
2178   LIR_Opr zero_reg = new_register(type);
2179   __ move(zero, zero_reg);
2180 #if defined(X86) && !defined(_LP64)
2181   // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
2182   LIR_Opr index_copy = new_register(index.type());
2183   // index >= 0
2184   __ move(index.result(), index_copy);
2185   __ cmp(lir_cond_less, index_copy, zero_reg);
2186   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2187                                                     Deoptimization::Action_make_not_entrant));
2188   // index < length
2189   __ move(index.result(), index_copy);
2190   __ cmp(lir_cond_greaterEqual, index_copy, len);
2191   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2192                                                             Deoptimization::Action_make_not_entrant));
2193 #else
2194   // index >= 0
2195   __ cmp(lir_cond_less, index.result(), zero_reg);
2196   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2197                                                     Deoptimization::Action_make_not_entrant));
2198   // index < length
2199   __ cmp(lir_cond_greaterEqual, index.result(), len);
2200   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2201                                                             Deoptimization::Action_make_not_entrant));
2202 #endif
2203   __ move(index.result(), result);
2204 }
2205 
2206 //------------------------array access--------------------------------------
2207 
2208 
2209 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
2210   LIRItem array(x->array(), this);
2211   array.load_item();
2212   LIR_Opr reg = rlock_result(x);
2213 
2214   CodeEmitInfo* info = nullptr;
2215   if (x->needs_null_check()) {
2216     NullCheck* nc = x->explicit_null_check();
2217     if (nc == nullptr) {
2218       info = state_for(x);
2219     } else {
2220       info = state_for(nc);
2221     }
2222     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
2223       LIR_Opr obj = new_register(T_OBJECT);
2224       __ move(LIR_OprFact::oopConst(nullptr), obj);
2225       __ null_check(obj, new CodeEmitInfo(info));
2226     }
2227   }
2228   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
2229 }
2230 
2231 
2232 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
2233   bool use_length = x->length() != nullptr;
2234   LIRItem array(x->array(), this);
2235   LIRItem index(x->index(), this);
2236   LIRItem length(this);
2237   bool needs_range_check = x->compute_needs_range_check();
2238 
2239   if (use_length && needs_range_check) {
2240     length.set_instruction(x->length());
2241     length.load_item();
2242   }
2243 
2244   array.load_item();
2245   if (index.is_constant() && can_inline_as_constant(x->index())) {
2246     // let it be a constant
2247     index.dont_load_item();
2248   } else {
2249     index.load_item();
2250   }
2251 
2252   CodeEmitInfo* range_check_info = state_for(x);
2253   CodeEmitInfo* null_check_info = nullptr;
2254   if (x->needs_null_check()) {
2255     NullCheck* nc = x->explicit_null_check();
2256     if (nc != nullptr) {
2257       null_check_info = state_for(nc);
2258     } else {
2259       null_check_info = range_check_info;
2260     }
2261     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2262       LIR_Opr obj = new_register(T_OBJECT);
2263       __ move(LIR_OprFact::oopConst(nullptr), obj);
2264       __ null_check(obj, new CodeEmitInfo(null_check_info));
2265     }
2266   }
2267 
2268   if (needs_range_check) {
2269     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2270       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2271     } else if (use_length) {
2272       // TODO: use a (modified) version of array_range_check that does not require a
2273       //       constant length to be loaded to a register
2274       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2275       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2276     } else {
2277       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2278       // The range check performs the null check, so clear it out for the load
2279       null_check_info = nullptr;
2280     }
2281   }
2282 
2283   ciMethodData* md = nullptr;
2284   ciArrayLoadData* load_data = nullptr;
2285   if (x->should_profile()) {
2286     if (x->array()->is_loaded_flat_array()) {
2287       // No need to profile a load from a flat array of known type. This can happen if
2288       // the type only became known after optimizations (for example, after the PhiSimplifier).
2289       x->set_should_profile(false);
2290     } else {
2291       int bci = x->profiled_bci();
2292       md = x->profiled_method()->method_data();
2293       assert(md != nullptr, "Sanity");
2294       ciProfileData* data = md->bci_to_data(bci);
2295       assert(data != nullptr && data->is_ArrayLoadData(), "incorrect profiling entry");
2296       load_data = (ciArrayLoadData*)data;
2297       profile_array_type(x, md, load_data);
2298     }
2299   }
2300 
2301   Value element;
2302   if (x->vt() != nullptr) {
2303     assert(x->array()->is_loaded_flat_array(), "must be");
2304     // Find the destination address (of the NewInlineTypeInstance).
2305     LIRItem obj_item(x->vt(), this);
2306 
2307     access_flat_array(true, array, index, obj_item,
2308                       x->delayed() == nullptr ? 0 : x->delayed()->field(),
2309                       x->delayed() == nullptr ? 0 : x->delayed()->offset());
2310     set_no_result(x);
2311   } else if (x->delayed() != nullptr) {
2312     assert(x->array()->is_loaded_flat_array(), "must be");
2313     LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type());
2314     access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset());
2315   } else {
2316     LIR_Opr result = rlock_result(x, x->elt_type());
2317     LoadFlattenedArrayStub* slow_path = nullptr;
2318 
2319     if (x->should_profile() && x->array()->maybe_null_free_array()) {
2320       profile_null_free_array(array, md, load_data);
2321     }
2322 
2323     if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
2324       assert(x->delayed() == nullptr, "Delayed LoadIndexed only apply to loaded_flat_arrays");
2325       index.load_item();
2326       // if we are loading from a flat array, load it using a runtime call
2327       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before()));
2328       check_flat_array(array.result(), LIR_OprFact::illegalOpr, slow_path);
2329       set_in_conditional_code(true);
2330     }
2331 
2332     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2333     access_load_at(decorators, x->elt_type(),
2334                    array, index.result(), result,
2335                    nullptr, null_check_info);
2336 
2337     if (slow_path != nullptr) {
2338       __ branch_destination(slow_path->continuation());
2339       set_in_conditional_code(false);
2340     }
2341 
2342     element = x;
2343   }
2344 
2345   if (x->should_profile()) {
2346     profile_element_type(element, md, load_data);
2347   }
2348 }
2349 
2350 
2351 void LIRGenerator::do_NullCheck(NullCheck* x) {
2352   if (x->can_trap()) {
2353     LIRItem value(x->obj(), this);
2354     value.load_item();
2355     CodeEmitInfo* info = state_for(x);
2356     __ null_check(value.result(), info);
2357   }
2358 }
2359 
2360 
2361 void LIRGenerator::do_TypeCast(TypeCast* x) {
2362   LIRItem value(x->obj(), this);
2363   value.load_item();
2364   // the result is the same as from the node we are casting
2365   set_result(x, value.result());
2366 }
2367 
2368 
2369 void LIRGenerator::do_Throw(Throw* x) {
2370   LIRItem exception(x->exception(), this);
2371   exception.load_item();
2372   set_no_result(x);
2373   LIR_Opr exception_opr = exception.result();
2374   CodeEmitInfo* info = state_for(x, x->state());
2375 
2376 #ifndef PRODUCT
2377   if (PrintC1Statistics) {
2378     increment_counter(Runtime1::throw_count_address(), T_INT);
2379   }
2380 #endif
2381 
2382   // check if the instruction has an xhandler in any of the nested scopes
2383   bool unwind = false;
2384   if (info->exception_handlers()->length() == 0) {
2385     // this throw is not inside an xhandler
2386     unwind = true;
2387   } else {
2388     // get some idea of the throw type
2389     bool type_is_exact = true;
2390     ciType* throw_type = x->exception()->exact_type();
2391     if (throw_type == nullptr) {
2392       type_is_exact = false;
2393       throw_type = x->exception()->declared_type();
2394     }
2395     if (throw_type != nullptr && throw_type->is_instance_klass()) {
2396       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2397       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2398     }
2399   }
2400 
2401   // do null check before moving exception oop into fixed register
2402   // to avoid a fixed interval with an oop during the null check.
2403   // Use a copy of the CodeEmitInfo because debug information is
2404   // different for null_check and throw.
2405   if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) {
2406     // if the exception object wasn't created using new then it might be null.
2407     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2408   }
2409 
2410   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2411     // we need to go through the exception lookup path to get JVMTI
2412     // notification done
2413     unwind = false;
2414   }
2415 
2416   // move exception oop into fixed register
2417   __ move(exception_opr, exceptionOopOpr());
2418 
2419   if (unwind) {
2420     __ unwind_exception(exceptionOopOpr());
2421   } else {
2422     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2423   }
2424 }
2425 
2426 
2427 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2428   BasicType type = x->basic_type();
2429   LIRItem src(x->object(), this);
2430   LIRItem off(x->offset(), this);
2431 
2432   off.load_item();
2433   src.load_item();
2434 
2435   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2436 
2437   if (x->is_volatile()) {
2438     decorators |= MO_SEQ_CST;
2439   }
2440   if (type == T_BOOLEAN) {
2441     decorators |= C1_MASK_BOOLEAN;
2442   }
2443   if (is_reference_type(type)) {
2444     decorators |= ON_UNKNOWN_OOP_REF;
2445   }
2446 
2447   LIR_Opr result = rlock_result(x, type);
2448   if (!x->is_raw()) {
2449     access_load_at(decorators, type, src, off.result(), result);
2450   } else {
2451     // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2452     // It reads the value from [src + offset] directly.
2453 #ifdef _LP64
2454     LIR_Opr offset = new_register(T_LONG);
2455     __ convert(Bytecodes::_i2l, off.result(), offset);
2456 #else
2457     LIR_Opr offset = off.result();
2458 #endif
2459     LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2460     if (is_reference_type(type)) {
2461       __ move_wide(addr, result);
2462     } else {
2463       __ move(addr, result);
2464     }
2465   }
2466 }
2467 
2468 
2469 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2470   BasicType type = x->basic_type();
2471   LIRItem src(x->object(), this);
2472   LIRItem off(x->offset(), this);
2473   LIRItem data(x->value(), this);
2474 
2475   src.load_item();
2476   if (type == T_BOOLEAN || type == T_BYTE) {
2477     data.load_byte_item();
2478   } else {
2479     data.load_item();
2480   }
2481   off.load_item();
2482 
2483   set_no_result(x);
2484 
2485   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2486   if (is_reference_type(type)) {
2487     decorators |= ON_UNKNOWN_OOP_REF;
2488   }
2489   if (x->is_volatile()) {
2490     decorators |= MO_SEQ_CST;
2491   }
2492   access_store_at(decorators, type, src, off.result(), data.result());
2493 }
2494 
2495 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2496   BasicType type = x->basic_type();
2497   LIRItem src(x->object(), this);
2498   LIRItem off(x->offset(), this);
2499   LIRItem value(x->value(), this);
2500 
2501   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2502 
2503   if (is_reference_type(type)) {
2504     decorators |= ON_UNKNOWN_OOP_REF;
2505   }
2506 
2507   LIR_Opr result;
2508   if (x->is_add()) {
2509     result = access_atomic_add_at(decorators, type, src, off, value);
2510   } else {
2511     result = access_atomic_xchg_at(decorators, type, src, off, value);
2512   }
2513   set_result(x, result);
2514 }
2515 
2516 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2517   int lng = x->length();
2518 
2519   for (int i = 0; i < lng; i++) {
2520     C1SwitchRange* one_range = x->at(i);
2521     int low_key = one_range->low_key();
2522     int high_key = one_range->high_key();
2523     BlockBegin* dest = one_range->sux();
2524     if (low_key == high_key) {
2525       __ cmp(lir_cond_equal, value, low_key);
2526       __ branch(lir_cond_equal, dest);
2527     } else if (high_key - low_key == 1) {
2528       __ cmp(lir_cond_equal, value, low_key);
2529       __ branch(lir_cond_equal, dest);
2530       __ cmp(lir_cond_equal, value, high_key);
2531       __ branch(lir_cond_equal, dest);
2532     } else {
2533       LabelObj* L = new LabelObj();
2534       __ cmp(lir_cond_less, value, low_key);
2535       __ branch(lir_cond_less, L->label());
2536       __ cmp(lir_cond_lessEqual, value, high_key);
2537       __ branch(lir_cond_lessEqual, dest);
2538       __ branch_destination(L->label());
2539     }
2540   }
2541   __ jump(default_sux);
2542 }
2543 
2544 
2545 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2546   SwitchRangeList* res = new SwitchRangeList();
2547   int len = x->length();
2548   if (len > 0) {
2549     BlockBegin* sux = x->sux_at(0);
2550     int low = x->lo_key();
2551     BlockBegin* default_sux = x->default_sux();
2552     C1SwitchRange* range = new C1SwitchRange(low, sux);
2553     for (int i = 0; i < len; i++) {
2554       int key = low + i;
2555       BlockBegin* new_sux = x->sux_at(i);
2556       if (sux == new_sux) {
2557         // still in same range
2558         range->set_high_key(key);
2559       } else {
2560         // skip tests which explicitly dispatch to the default
2561         if (sux != default_sux) {
2562           res->append(range);
2563         }
2564         range = new C1SwitchRange(key, new_sux);
2565       }
2566       sux = new_sux;
2567     }
2568     if (res->length() == 0 || res->last() != range)  res->append(range);
2569   }
2570   return res;
2571 }
2572 
2573 
2574 // we expect the keys to be sorted by increasing value
2575 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2576   SwitchRangeList* res = new SwitchRangeList();
2577   int len = x->length();
2578   if (len > 0) {
2579     BlockBegin* default_sux = x->default_sux();
2580     int key = x->key_at(0);
2581     BlockBegin* sux = x->sux_at(0);
2582     C1SwitchRange* range = new C1SwitchRange(key, sux);
2583     for (int i = 1; i < len; i++) {
2584       int new_key = x->key_at(i);
2585       BlockBegin* new_sux = x->sux_at(i);
2586       if (key+1 == new_key && sux == new_sux) {
2587         // still in same range
2588         range->set_high_key(new_key);
2589       } else {
2590         // skip tests which explicitly dispatch to the default
2591         if (range->sux() != default_sux) {
2592           res->append(range);
2593         }
2594         range = new C1SwitchRange(new_key, new_sux);
2595       }
2596       key = new_key;
2597       sux = new_sux;
2598     }
2599     if (res->length() == 0 || res->last() != range)  res->append(range);
2600   }
2601   return res;
2602 }
2603 
2604 
2605 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2606   LIRItem tag(x->tag(), this);
2607   tag.load_item();
2608   set_no_result(x);
2609 
2610   if (x->is_safepoint()) {
2611     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2612   }
2613 
2614   // move values into phi locations
2615   move_to_phi(x->state());
2616 
2617   int lo_key = x->lo_key();
2618   int len = x->length();
2619   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2620   LIR_Opr value = tag.result();
2621 
2622   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2623     ciMethod* method = x->state()->scope()->method();
2624     ciMethodData* md = method->method_data_or_null();
2625     assert(md != nullptr, "Sanity");
2626     ciProfileData* data = md->bci_to_data(x->state()->bci());
2627     assert(data != nullptr, "must have profiling data");
2628     assert(data->is_MultiBranchData(), "bad profile data?");
2629     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2630     LIR_Opr md_reg = new_register(T_METADATA);
2631     __ metadata2reg(md->constant_encoding(), md_reg);
2632     LIR_Opr data_offset_reg = new_pointer_register();
2633     LIR_Opr tmp_reg = new_pointer_register();
2634 
2635     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2636     for (int i = 0; i < len; i++) {
2637       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2638       __ cmp(lir_cond_equal, value, i + lo_key);
2639       __ move(data_offset_reg, tmp_reg);
2640       __ cmove(lir_cond_equal,
2641                LIR_OprFact::intptrConst(count_offset),
2642                tmp_reg,
2643                data_offset_reg, T_INT);
2644     }
2645 
2646     LIR_Opr data_reg = new_pointer_register();
2647     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2648     __ move(data_addr, data_reg);
2649     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2650     __ move(data_reg, data_addr);
2651   }
2652 
2653   if (UseTableRanges) {
2654     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2655   } else {
2656     for (int i = 0; i < len; i++) {
2657       __ cmp(lir_cond_equal, value, i + lo_key);
2658       __ branch(lir_cond_equal, x->sux_at(i));
2659     }
2660     __ jump(x->default_sux());
2661   }
2662 }
2663 
2664 
2665 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2666   LIRItem tag(x->tag(), this);
2667   tag.load_item();
2668   set_no_result(x);
2669 
2670   if (x->is_safepoint()) {
2671     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2672   }
2673 
2674   // move values into phi locations
2675   move_to_phi(x->state());
2676 
2677   LIR_Opr value = tag.result();
2678   int len = x->length();
2679 
2680   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2681     ciMethod* method = x->state()->scope()->method();
2682     ciMethodData* md = method->method_data_or_null();
2683     assert(md != nullptr, "Sanity");
2684     ciProfileData* data = md->bci_to_data(x->state()->bci());
2685     assert(data != nullptr, "must have profiling data");
2686     assert(data->is_MultiBranchData(), "bad profile data?");
2687     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2688     LIR_Opr md_reg = new_register(T_METADATA);
2689     __ metadata2reg(md->constant_encoding(), md_reg);
2690     LIR_Opr data_offset_reg = new_pointer_register();
2691     LIR_Opr tmp_reg = new_pointer_register();
2692 
2693     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2694     for (int i = 0; i < len; i++) {
2695       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2696       __ cmp(lir_cond_equal, value, x->key_at(i));
2697       __ move(data_offset_reg, tmp_reg);
2698       __ cmove(lir_cond_equal,
2699                LIR_OprFact::intptrConst(count_offset),
2700                tmp_reg,
2701                data_offset_reg, T_INT);
2702     }
2703 
2704     LIR_Opr data_reg = new_pointer_register();
2705     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2706     __ move(data_addr, data_reg);
2707     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2708     __ move(data_reg, data_addr);
2709   }
2710 
2711   if (UseTableRanges) {
2712     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2713   } else {
2714     int len = x->length();
2715     for (int i = 0; i < len; i++) {
2716       __ cmp(lir_cond_equal, value, x->key_at(i));
2717       __ branch(lir_cond_equal, x->sux_at(i));
2718     }
2719     __ jump(x->default_sux());
2720   }
2721 }
2722 
2723 
2724 void LIRGenerator::do_Goto(Goto* x) {
2725   set_no_result(x);
2726 
2727   if (block()->next()->as_OsrEntry()) {
2728     // need to free up storage used for OSR entry point
2729     LIR_Opr osrBuffer = block()->next()->operand();
2730     BasicTypeList signature;
2731     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2732     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2733     __ move(osrBuffer, cc->args()->at(0));
2734     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2735                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2736   }
2737 
2738   if (x->is_safepoint()) {
2739     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2740 
2741     // increment backedge counter if needed
2742     CodeEmitInfo* info = state_for(x, state);
2743     increment_backedge_counter(info, x->profiled_bci());
2744     CodeEmitInfo* safepoint_info = state_for(x, state);
2745     __ safepoint(safepoint_poll_register(), safepoint_info);
2746   }
2747 
2748   // Gotos can be folded Ifs, handle this case.
2749   if (x->should_profile()) {
2750     ciMethod* method = x->profiled_method();
2751     assert(method != nullptr, "method should be set if branch is profiled");
2752     ciMethodData* md = method->method_data_or_null();
2753     assert(md != nullptr, "Sanity");
2754     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2755     assert(data != nullptr, "must have profiling data");
2756     int offset;
2757     if (x->direction() == Goto::taken) {
2758       assert(data->is_BranchData(), "need BranchData for two-way branches");
2759       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2760     } else if (x->direction() == Goto::not_taken) {
2761       assert(data->is_BranchData(), "need BranchData for two-way branches");
2762       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2763     } else {
2764       assert(data->is_JumpData(), "need JumpData for branches");
2765       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2766     }
2767     LIR_Opr md_reg = new_register(T_METADATA);
2768     __ metadata2reg(md->constant_encoding(), md_reg);
2769 
2770     increment_counter(new LIR_Address(md_reg, offset,
2771                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2772   }
2773 
2774   // emit phi-instruction move after safepoint since this simplifies
2775   // describing the state as the safepoint.
2776   move_to_phi(x->state());
2777 
2778   __ jump(x->default_sux());
2779 }
2780 
2781 /**
2782  * Emit profiling code if needed for arguments, parameters, return value types
2783  *
2784  * @param md                    MDO the code will update at runtime
2785  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2786  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2787  * @param profiled_k            current profile
2788  * @param obj                   IR node for the object to be profiled
2789  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2790  *                              Set once we find an update to make and use for next ones.
2791  * @param not_null              true if we know obj cannot be null
2792  * @param signature_at_call_k   signature at call for obj
2793  * @param callee_signature_k    signature of callee for obj
2794  *                              at call and callee signatures differ at method handle call
2795  * @return                      the only klass we know will ever be seen at this profile point
2796  */
2797 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2798                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2799                                     ciKlass* callee_signature_k) {
2800   ciKlass* result = nullptr;
2801   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2802   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2803   // known not to be null or null bit already set and already set to
2804   // unknown: nothing we can do to improve profiling
2805   if (!do_null && !do_update) {
2806     return result;
2807   }
2808 
2809   ciKlass* exact_klass = nullptr;
2810   Compilation* comp = Compilation::current();
2811   if (do_update) {
2812     // try to find exact type, using CHA if possible, so that loading
2813     // the klass from the object can be avoided
2814     ciType* type = obj->exact_type();
2815     if (type == nullptr) {
2816       type = obj->declared_type();
2817       type = comp->cha_exact_type(type);
2818     }
2819     assert(type == nullptr || type->is_klass(), "type should be class");
2820     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2821 
2822     // TODO 8366668
2823     if (exact_klass != nullptr && exact_klass->is_obj_array_klass()) {
2824       if (exact_klass->as_obj_array_klass()->element_klass()->is_inlinetype()) {
2825         // Could be flat, null free etc.
2826         exact_klass = nullptr;
2827       } else {
2828         exact_klass = ciObjArrayKlass::make(exact_klass->as_array_klass()->element_klass(), true);
2829       }
2830     }
2831 
2832     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2833   }
2834 
2835   if (!do_null && !do_update) {
2836     return result;
2837   }
2838 
2839   ciKlass* exact_signature_k = nullptr;
2840   if (do_update && signature_at_call_k != nullptr) {
2841     // Is the type from the signature exact (the only one possible)?
2842     exact_signature_k = signature_at_call_k->exact_klass();
2843     if (exact_signature_k == nullptr) {
2844       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2845     } else {
2846       result = exact_signature_k;
2847       // Known statically. No need to emit any code: prevent
2848       // LIR_Assembler::emit_profile_type() from emitting useless code
2849       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2850     }
2851     // exact_klass and exact_signature_k can be both non null but
2852     // different if exact_klass is loaded after the ciObject for
2853     // exact_signature_k is created.
2854     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2855       // sometimes the type of the signature is better than the best type
2856       // the compiler has
2857       exact_klass = exact_signature_k;
2858     }
2859     if (callee_signature_k != nullptr &&
2860         callee_signature_k != signature_at_call_k) {
2861       ciKlass* improved_klass = callee_signature_k->exact_klass();
2862       if (improved_klass == nullptr) {
2863         improved_klass = comp->cha_exact_type(callee_signature_k);
2864       }
2865       if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2866         exact_klass = exact_signature_k;
2867       }
2868     }
2869 
2870     // TODO 8366668
2871     if (exact_klass != nullptr && exact_klass->is_obj_array_klass()) {
2872       if (exact_klass->as_obj_array_klass()->element_klass()->is_inlinetype()) {
2873         // Could be flat, null free etc.
2874         exact_klass = nullptr;
2875       } else {
2876         exact_klass = ciObjArrayKlass::make(exact_klass->as_array_klass()->element_klass(), true);
2877       }
2878     }
2879 
2880     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2881   }
2882 
2883   if (!do_null && !do_update) {
2884     return result;
2885   }
2886 
2887   if (mdp == LIR_OprFact::illegalOpr) {
2888     mdp = new_register(T_METADATA);
2889     __ metadata2reg(md->constant_encoding(), mdp);
2890     if (md_base_offset != 0) {
2891       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2892       mdp = new_pointer_register();
2893       __ leal(LIR_OprFact::address(base_type_address), mdp);
2894     }
2895   }
2896   LIRItem value(obj, this);
2897   value.load_item();
2898   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2899                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2900   return result;
2901 }
2902 
2903 // profile parameters on entry to the root of the compilation
2904 void LIRGenerator::profile_parameters(Base* x) {
2905   if (compilation()->profile_parameters()) {
2906     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2907     ciMethodData* md = scope()->method()->method_data_or_null();
2908     assert(md != nullptr, "Sanity");
2909 
2910     if (md->parameters_type_data() != nullptr) {
2911       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2912       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2913       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2914       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2915         LIR_Opr src = args->at(i);
2916         assert(!src->is_illegal(), "check");
2917         BasicType t = src->type();
2918         if (is_reference_type(t)) {
2919           intptr_t profiled_k = parameters->type(j);
2920           Local* local = x->state()->local_at(java_index)->as_Local();
2921           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2922                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2923                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2924           // If the profile is known statically set it once for all and do not emit any code
2925           if (exact != nullptr) {
2926             md->set_parameter_type(j, exact);
2927           }
2928           j++;
2929         }
2930         java_index += type2size[t];
2931       }
2932     }
2933   }
2934 }
2935 
2936 void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) {
2937   assert(md != nullptr && data != nullptr, "should have been initialized");
2938   LIR_Opr mdp = new_register(T_METADATA);
2939   __ metadata2reg(md->constant_encoding(), mdp);
2940   LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE);
2941   LIR_Opr flags = new_register(T_INT);
2942   __ move(addr, flags);
2943   if (condition != lir_cond_always) {
2944     LIR_Opr update = new_register(T_INT);
2945     __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT);
2946   } else {
2947     __ logical_or(flags, LIR_OprFact::intConst(flag), flags);
2948   }
2949   __ store(flags, addr);
2950 }
2951 
2952 template <class ArrayData> void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ArrayData* load_store) {
2953   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2954   LabelObj* L_end = new LabelObj();
2955   LIR_Opr tmp = new_register(T_METADATA);
2956   __ check_null_free_array(array.result(), tmp);
2957 
2958   profile_flags(md, load_store, ArrayStoreData::null_free_array_byte_constant(), lir_cond_equal);
2959 }
2960 
2961 template <class ArrayData> void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ArrayData*& load_store) {
2962   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2963   LIR_Opr mdp = LIR_OprFact::illegalOpr;
2964   profile_type(md, md->byte_offset_of_slot(load_store, ArrayData::array_offset()), 0,
2965                load_store->array()->type(), x->array(), mdp, true, nullptr, nullptr);
2966 }
2967 
2968 void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadData* load_data) {
2969   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2970   assert(md != nullptr && load_data != nullptr, "should have been initialized");
2971   LIR_Opr mdp = LIR_OprFact::illegalOpr;
2972   profile_type(md, md->byte_offset_of_slot(load_data, ArrayLoadData::element_offset()), 0,
2973                load_data->element()->type(), element, mdp, false, nullptr, nullptr);
2974 }
2975 
2976 void LIRGenerator::do_Base(Base* x) {
2977   __ std_entry(LIR_OprFact::illegalOpr);
2978   // Emit moves from physical registers / stack slots to virtual registers
2979   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2980   IRScope* irScope = compilation()->hir()->top_scope();
2981   int java_index = 0;
2982   for (int i = 0; i < args->length(); i++) {
2983     LIR_Opr src = args->at(i);
2984     assert(!src->is_illegal(), "check");
2985     BasicType t = src->type();
2986 
2987     // Types which are smaller than int are passed as int, so
2988     // correct the type which passed.
2989     switch (t) {
2990     case T_BYTE:
2991     case T_BOOLEAN:
2992     case T_SHORT:
2993     case T_CHAR:
2994       t = T_INT;
2995       break;
2996     default:
2997       break;
2998     }
2999 
3000     LIR_Opr dest = new_register(t);
3001     __ move(src, dest);
3002 
3003     // Assign new location to Local instruction for this local
3004     Local* local = x->state()->local_at(java_index)->as_Local();
3005     assert(local != nullptr, "Locals for incoming arguments must have been created");
3006 #ifndef __SOFTFP__
3007     // The java calling convention passes double as long and float as int.
3008     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
3009 #endif // __SOFTFP__
3010     local->set_operand(dest);
3011 #ifdef ASSERT
3012     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
3013 #endif
3014     java_index += type2size[t];
3015   }
3016 
3017   // Check if we need a membar at the beginning of the java.lang.Object
3018   // constructor to satisfy the memory model for strict fields.
3019   if (EnableValhalla && method()->intrinsic_id() == vmIntrinsics::_Object_init) {
3020     __ membar_storestore();
3021   }
3022 
3023   if (compilation()->env()->dtrace_method_probes()) {
3024     BasicTypeList signature;
3025     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3026     signature.append(T_METADATA); // Method*
3027     LIR_OprList* args = new LIR_OprList();
3028     args->append(getThreadPointer());
3029     LIR_Opr meth = new_register(T_METADATA);
3030     __ metadata2reg(method()->constant_encoding(), meth);
3031     args->append(meth);
3032     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
3033   }
3034 
3035   if (method()->is_synchronized()) {
3036     LIR_Opr obj;
3037     if (method()->is_static()) {
3038       obj = new_register(T_OBJECT);
3039       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
3040     } else {
3041       Local* receiver = x->state()->local_at(0)->as_Local();
3042       assert(receiver != nullptr, "must already exist");
3043       obj = receiver->operand();
3044     }
3045     assert(obj->is_valid(), "must be valid");
3046 
3047     if (method()->is_synchronized()) {
3048       LIR_Opr lock = syncLockOpr();
3049       __ load_stack_address_monitor(0, lock);
3050 
3051       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
3052       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
3053 
3054       // receiver is guaranteed non-null so don't need CodeEmitInfo
3055       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
3056     }
3057   }
3058   // increment invocation counters if needed
3059   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
3060     profile_parameters(x);
3061     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
3062     increment_invocation_counter(info);
3063   }
3064   if (method()->has_scalarized_args()) {
3065     // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments
3066     // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state.
3067     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), nullptr, false);
3068     CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none);
3069     __ append(new LIR_Op0(lir_check_orig_pc));
3070     __ branch(lir_cond_notEqual, deopt_stub);
3071   }
3072 
3073   // all blocks with a successor must end with an unconditional jump
3074   // to the successor even if they are consecutive
3075   __ jump(x->default_sux());
3076 }
3077 
3078 
3079 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
3080   // construct our frame and model the production of incoming pointer
3081   // to the OSR buffer.
3082   __ osr_entry(LIR_Assembler::osrBufferPointer());
3083   LIR_Opr result = rlock_result(x);
3084   __ move(LIR_Assembler::osrBufferPointer(), result);
3085 }
3086 
3087 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) {
3088   if (loc->is_register()) {
3089     param->load_item_force(loc);
3090   } else {
3091     LIR_Address* addr = loc->as_address_ptr();
3092     param->load_for_store(addr->type());
3093     if (addr->type() == T_OBJECT) {
3094       __ move_wide(param->result(), addr);
3095     } else {
3096       __ move(param->result(), addr);
3097     }
3098   }
3099 }
3100 
3101 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3102   assert(args->length() == arg_list->length(),
3103          "args=%d, arg_list=%d", args->length(), arg_list->length());
3104   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3105     LIRItem* param = args->at(i);
3106     LIR_Opr loc = arg_list->at(i);
3107     invoke_load_one_argument(param, loc);
3108   }
3109 
3110   if (x->has_receiver()) {
3111     LIRItem* receiver = args->at(0);
3112     LIR_Opr loc = arg_list->at(0);
3113     if (loc->is_register()) {
3114       receiver->load_item_force(loc);
3115     } else {
3116       assert(loc->is_address(), "just checking");
3117       receiver->load_for_store(T_OBJECT);
3118       __ move_wide(receiver->result(), loc->as_address_ptr());
3119     }
3120   }
3121 }
3122 
3123 
3124 // Visits all arguments, returns appropriate items without loading them
3125 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3126   LIRItemList* argument_items = new LIRItemList();
3127   if (x->has_receiver()) {
3128     LIRItem* receiver = new LIRItem(x->receiver(), this);
3129     argument_items->append(receiver);
3130   }
3131   for (int i = 0; i < x->number_of_arguments(); i++) {
3132     LIRItem* param = new LIRItem(x->argument_at(i), this);
3133     argument_items->append(param);
3134   }
3135   return argument_items;
3136 }
3137 
3138 
3139 // The invoke with receiver has following phases:
3140 //   a) traverse and load/lock receiver;
3141 //   b) traverse all arguments -> item-array (invoke_visit_argument)
3142 //   c) push receiver on stack
3143 //   d) load each of the items and push on stack
3144 //   e) unlock receiver
3145 //   f) move receiver into receiver-register %o0
3146 //   g) lock result registers and emit call operation
3147 //
3148 // Before issuing a call, we must spill-save all values on stack
3149 // that are in caller-save register. "spill-save" moves those registers
3150 // either in a free callee-save register or spills them if no free
3151 // callee save register is available.
3152 //
3153 // The problem is where to invoke spill-save.
3154 // - if invoked between e) and f), we may lock callee save
3155 //   register in "spill-save" that destroys the receiver register
3156 //   before f) is executed
3157 // - if we rearrange f) to be earlier (by loading %o0) it
3158 //   may destroy a value on the stack that is currently in %o0
3159 //   and is waiting to be spilled
3160 // - if we keep the receiver locked while doing spill-save,
3161 //   we cannot spill it as it is spill-locked
3162 //
3163 void LIRGenerator::do_Invoke(Invoke* x) {
3164   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
3165 
3166   LIR_OprList* arg_list = cc->args();
3167   LIRItemList* args = invoke_visit_arguments(x);
3168   LIR_Opr receiver = LIR_OprFact::illegalOpr;
3169 
3170   // setup result register
3171   LIR_Opr result_register = LIR_OprFact::illegalOpr;
3172   if (x->type() != voidType) {
3173     result_register = result_register_for(x->type());
3174   }
3175 
3176   CodeEmitInfo* info = state_for(x, x->state());
3177 
3178   invoke_load_arguments(x, args, arg_list);
3179 
3180   if (x->has_receiver()) {
3181     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3182     receiver = args->at(0)->result();
3183   }
3184 
3185   // emit invoke code
3186   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3187 
3188   // JSR 292
3189   // Preserve the SP over MethodHandle call sites, if needed.
3190   ciMethod* target = x->target();
3191   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3192                                   target->is_method_handle_intrinsic() ||
3193                                   target->is_compiled_lambda_form());
3194   if (is_method_handle_invoke) {
3195     info->set_is_method_handle_invoke(true);
3196     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3197         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3198     }
3199   }
3200 
3201   switch (x->code()) {
3202     case Bytecodes::_invokestatic:
3203       __ call_static(target, result_register,
3204                      SharedRuntime::get_resolve_static_call_stub(),
3205                      arg_list, info);
3206       break;
3207     case Bytecodes::_invokespecial:
3208     case Bytecodes::_invokevirtual:
3209     case Bytecodes::_invokeinterface:
3210       // for loaded and final (method or class) target we still produce an inline cache,
3211       // in order to be able to call mixed mode
3212       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3213         __ call_opt_virtual(target, receiver, result_register,
3214                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3215                             arg_list, info);
3216       } else {
3217         __ call_icvirtual(target, receiver, result_register,
3218                           SharedRuntime::get_resolve_virtual_call_stub(),
3219                           arg_list, info);
3220       }
3221       break;
3222     case Bytecodes::_invokedynamic: {
3223       __ call_dynamic(target, receiver, result_register,
3224                       SharedRuntime::get_resolve_static_call_stub(),
3225                       arg_list, info);
3226       break;
3227     }
3228     default:
3229       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3230       break;
3231   }
3232 
3233   // JSR 292
3234   // Restore the SP after MethodHandle call sites, if needed.
3235   if (is_method_handle_invoke
3236       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3237     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3238   }
3239 
3240   if (result_register->is_valid()) {
3241     LIR_Opr result = rlock_result(x);
3242     __ move(result_register, result);
3243   }
3244 }
3245 
3246 
3247 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3248   assert(x->number_of_arguments() == 1, "wrong type");
3249   LIRItem value       (x->argument_at(0), this);
3250   LIR_Opr reg = rlock_result(x);
3251   value.load_item();
3252   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3253   __ move(tmp, reg);
3254 }
3255 
3256 
3257 
3258 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3259 void LIRGenerator::do_IfOp(IfOp* x) {
3260 #ifdef ASSERT
3261   {
3262     ValueTag xtag = x->x()->type()->tag();
3263     ValueTag ttag = x->tval()->type()->tag();
3264     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3265     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3266     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3267   }
3268 #endif
3269 
3270   LIRItem left(x->x(), this);
3271   LIRItem right(x->y(), this);
3272   left.load_item();
3273   if (can_inline_as_constant(right.value()) && !x->substitutability_check()) {
3274     right.dont_load_item();
3275   } else {
3276     // substitutability_check() needs to use right as a base register.
3277     right.load_item();
3278   }
3279 
3280   LIRItem t_val(x->tval(), this);
3281   LIRItem f_val(x->fval(), this);
3282   t_val.dont_load_item();
3283   f_val.dont_load_item();
3284 
3285   if (x->substitutability_check()) {
3286     substitutability_check(x, left, right, t_val, f_val);
3287   } else {
3288     LIR_Opr reg = rlock_result(x);
3289     __ cmp(lir_cond(x->cond()), left.result(), right.result());
3290     __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3291   }
3292 }
3293 
3294 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) {
3295   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3296   bool is_acmpeq = (x->cond() == If::eql);
3297   LIR_Opr equal_result     = is_acmpeq ? t_val.result() : f_val.result();
3298   LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result();
3299   LIR_Opr result = rlock_result(x);
3300   CodeEmitInfo* info = state_for(x, x->state_before());
3301 
3302   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3303 }
3304 
3305 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) {
3306   LIR_Opr equal_result     = LIR_OprFact::intConst(1);
3307   LIR_Opr not_equal_result = LIR_OprFact::intConst(0);
3308   LIR_Opr result = new_register(T_INT);
3309   CodeEmitInfo* info = state_for(x, x->state_before());
3310 
3311   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3312 
3313   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3314   __ cmp(lir_cond(x->cond()), result, equal_result);
3315 }
3316 
3317 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right,
3318                                                  LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result,
3319                                                  CodeEmitInfo* info) {
3320   LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
3321   LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
3322   LIR_Opr left_klass_op = LIR_OprFact::illegalOpr;
3323   LIR_Opr right_klass_op = LIR_OprFact::illegalOpr;
3324 
3325   ciKlass* left_klass  = left_val ->as_loaded_klass_or_null();
3326   ciKlass* right_klass = right_val->as_loaded_klass_or_null();
3327 
3328   if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node.
3329       !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) {
3330     init_temps_for_substitutability_check(tmp1, tmp2);
3331   }
3332 
3333   if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) {
3334     // No need to load klass -- the operands are statically known to be the same inline klass.
3335   } else {
3336     BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA;
3337     left_klass_op = new_register(t_klass);
3338     right_klass_op = new_register(t_klass);
3339   }
3340 
3341   CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info);
3342   __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result,
3343                             tmp1, tmp2,
3344                             left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path);
3345 }
3346 
3347 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3348   assert(x->number_of_arguments() == 0, "wrong type");
3349   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3350   BasicTypeList signature;
3351   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3352   LIR_Opr reg = result_register_for(x->type());
3353   __ call_runtime_leaf(routine, getThreadTemp(),
3354                        reg, new LIR_OprList());
3355   LIR_Opr result = rlock_result(x);
3356   __ move(reg, result);
3357 }
3358 
3359 
3360 
3361 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3362   switch (x->id()) {
3363   case vmIntrinsics::_intBitsToFloat      :
3364   case vmIntrinsics::_doubleToRawLongBits :
3365   case vmIntrinsics::_longBitsToDouble    :
3366   case vmIntrinsics::_floatToRawIntBits   : {
3367     do_FPIntrinsics(x);
3368     break;
3369   }
3370 
3371 #ifdef JFR_HAVE_INTRINSICS
3372   case vmIntrinsics::_counterTime:
3373     do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x);
3374     break;
3375 #endif
3376 
3377   case vmIntrinsics::_currentTimeMillis:
3378     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3379     break;
3380 
3381   case vmIntrinsics::_nanoTime:
3382     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3383     break;
3384 
3385   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3386   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3387   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3388   case vmIntrinsics::_getObjectSize:  do_getObjectSize(x); break;
3389   case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break;
3390   case vmIntrinsics::_currentThread:  do_vthread(x);       break;
3391   case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break;
3392 
3393   case vmIntrinsics::_dlog:           // fall through
3394   case vmIntrinsics::_dlog10:         // fall through
3395   case vmIntrinsics::_dabs:           // fall through
3396   case vmIntrinsics::_dsqrt:          // fall through
3397   case vmIntrinsics::_dsqrt_strict:   // fall through
3398   case vmIntrinsics::_dtan:           // fall through
3399   case vmIntrinsics::_dsinh:          // fall through
3400   case vmIntrinsics::_dtanh:          // fall through
3401   case vmIntrinsics::_dsin :          // fall through
3402   case vmIntrinsics::_dcos :          // fall through
3403   case vmIntrinsics::_dcbrt :         // fall through
3404   case vmIntrinsics::_dexp :          // fall through
3405   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3406   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3407 
3408   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3409   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3410 
3411   // Use java.lang.Math intrinsics code since it works for these intrinsics too.
3412   case vmIntrinsics::_floatToFloat16: // fall through
3413   case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break;
3414 
3415   case vmIntrinsics::_Preconditions_checkIndex:
3416     do_PreconditionsCheckIndex(x, T_INT);
3417     break;
3418   case vmIntrinsics::_Preconditions_checkLongIndex:
3419     do_PreconditionsCheckIndex(x, T_LONG);
3420     break;
3421 
3422   case vmIntrinsics::_compareAndSetReference:
3423     do_CompareAndSwap(x, objectType);
3424     break;
3425   case vmIntrinsics::_compareAndSetInt:
3426     do_CompareAndSwap(x, intType);
3427     break;
3428   case vmIntrinsics::_compareAndSetLong:
3429     do_CompareAndSwap(x, longType);
3430     break;
3431 
3432   case vmIntrinsics::_loadFence :
3433     __ membar_acquire();
3434     break;
3435   case vmIntrinsics::_storeFence:
3436     __ membar_release();
3437     break;
3438   case vmIntrinsics::_storeStoreFence:
3439     __ membar_storestore();
3440     break;
3441   case vmIntrinsics::_fullFence :
3442     __ membar();
3443     break;
3444   case vmIntrinsics::_onSpinWait:
3445     __ on_spin_wait();
3446     break;
3447   case vmIntrinsics::_Reference_get0:
3448     do_Reference_get0(x);
3449     break;
3450 
3451   case vmIntrinsics::_updateCRC32:
3452   case vmIntrinsics::_updateBytesCRC32:
3453   case vmIntrinsics::_updateByteBufferCRC32:
3454     do_update_CRC32(x);
3455     break;
3456 
3457   case vmIntrinsics::_updateBytesCRC32C:
3458   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3459     do_update_CRC32C(x);
3460     break;
3461 
3462   case vmIntrinsics::_vectorizedMismatch:
3463     do_vectorizedMismatch(x);
3464     break;
3465 
3466   case vmIntrinsics::_blackhole:
3467     do_blackhole(x);
3468     break;
3469 
3470   default: ShouldNotReachHere(); break;
3471   }
3472 }
3473 
3474 void LIRGenerator::profile_arguments(ProfileCall* x) {
3475   if (compilation()->profile_arguments()) {
3476     int bci = x->bci_of_invoke();
3477     ciMethodData* md = x->method()->method_data_or_null();
3478     assert(md != nullptr, "Sanity");
3479     ciProfileData* data = md->bci_to_data(bci);
3480     if (data != nullptr) {
3481       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3482           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3483         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3484         int base_offset = md->byte_offset_of_slot(data, extra);
3485         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3486         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3487 
3488         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3489         int start = 0;
3490         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3491         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3492           // first argument is not profiled at call (method handle invoke)
3493           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3494           start = 1;
3495         }
3496         ciSignature* callee_signature = x->callee()->signature();
3497         // method handle call to virtual method
3498         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3499         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr);
3500 
3501         bool ignored_will_link;
3502         ciSignature* signature_at_call = nullptr;
3503         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3504         ciSignatureStream signature_at_call_stream(signature_at_call);
3505 
3506         // if called through method handle invoke, some arguments may have been popped
3507         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3508           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3509           ciKlass* exact = profile_type(md, base_offset, off,
3510               args->type(i), x->profiled_arg_at(i+start), mdp,
3511               !x->arg_needs_null_check(i+start),
3512               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3513           if (exact != nullptr) {
3514             md->set_argument_type(bci, i, exact);
3515           }
3516         }
3517       } else {
3518 #ifdef ASSERT
3519         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3520         int n = x->nb_profiled_args();
3521         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3522             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3523             "only at JSR292 bytecodes");
3524 #endif
3525       }
3526     }
3527   }
3528 }
3529 
3530 // profile parameters on entry to an inlined method
3531 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3532   if (compilation()->profile_parameters() && x->inlined()) {
3533     ciMethodData* md = x->callee()->method_data_or_null();
3534     if (md != nullptr) {
3535       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3536       if (parameters_type_data != nullptr) {
3537         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3538         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3539         bool has_receiver = !x->callee()->is_static();
3540         ciSignature* sig = x->callee()->signature();
3541         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr);
3542         int i = 0; // to iterate on the Instructions
3543         Value arg = x->recv();
3544         bool not_null = false;
3545         int bci = x->bci_of_invoke();
3546         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3547         // The first parameter is the receiver so that's what we start
3548         // with if it exists. One exception is method handle call to
3549         // virtual method: the receiver is in the args list
3550         if (arg == nullptr || !Bytecodes::has_receiver(bc)) {
3551           i = 1;
3552           arg = x->profiled_arg_at(0);
3553           not_null = !x->arg_needs_null_check(0);
3554         }
3555         int k = 0; // to iterate on the profile data
3556         for (;;) {
3557           intptr_t profiled_k = parameters->type(k);
3558           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3559                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3560                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr);
3561           // If the profile is known statically set it once for all and do not emit any code
3562           if (exact != nullptr) {
3563             md->set_parameter_type(k, exact);
3564           }
3565           k++;
3566           if (k >= parameters_type_data->number_of_parameters()) {
3567 #ifdef ASSERT
3568             int extra = 0;
3569             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3570                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3571                 x->recv() != nullptr && Bytecodes::has_receiver(bc)) {
3572               extra += 1;
3573             }
3574             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3575 #endif
3576             break;
3577           }
3578           arg = x->profiled_arg_at(i);
3579           not_null = !x->arg_needs_null_check(i);
3580           i++;
3581         }
3582       }
3583     }
3584   }
3585 }
3586 
3587 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3588   // Need recv in a temporary register so it interferes with the other temporaries
3589   LIR_Opr recv = LIR_OprFact::illegalOpr;
3590   LIR_Opr mdo = new_register(T_METADATA);
3591   // tmp is used to hold the counters on SPARC
3592   LIR_Opr tmp = new_pointer_register();
3593 
3594   if (x->nb_profiled_args() > 0) {
3595     profile_arguments(x);
3596   }
3597 
3598   // profile parameters on inlined method entry including receiver
3599   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3600     profile_parameters_at_call(x);
3601   }
3602 
3603   if (x->recv() != nullptr) {
3604     LIRItem value(x->recv(), this);
3605     value.load_item();
3606     recv = new_register(T_OBJECT);
3607     __ move(value.result(), recv);
3608   }
3609   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3610 }
3611 
3612 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3613   int bci = x->bci_of_invoke();
3614   ciMethodData* md = x->method()->method_data_or_null();
3615   assert(md != nullptr, "Sanity");
3616   ciProfileData* data = md->bci_to_data(bci);
3617   if (data != nullptr) {
3618     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3619     ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3620     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3621 
3622     bool ignored_will_link;
3623     ciSignature* signature_at_call = nullptr;
3624     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3625 
3626     // The offset within the MDO of the entry to update may be too large
3627     // to be used in load/store instructions on some platforms. So have
3628     // profile_type() compute the address of the profile in a register.
3629     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3630         ret->type(), x->ret(), mdp,
3631         !x->needs_null_check(),
3632         signature_at_call->return_type()->as_klass(),
3633         x->callee()->signature()->return_type()->as_klass());
3634     if (exact != nullptr) {
3635       md->set_return_type(bci, exact);
3636     }
3637   }
3638 }
3639 
3640 bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) {
3641   ciKlass* klass = value->as_loaded_klass_or_null();
3642   if (klass != nullptr) {
3643     if (klass->is_inlinetype()) {
3644       profile_flags(md, data, flag, lir_cond_always);
3645     } else if (klass->can_be_inline_klass()) {
3646       return false;
3647     }
3648   } else {
3649     return false;
3650   }
3651   return true;
3652 }
3653 
3654 
3655 void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) {
3656   ciMethod* method = x->method();
3657   assert(method != nullptr, "method should be set if branch is profiled");
3658   ciMethodData* md = method->method_data_or_null();
3659   assert(md != nullptr, "Sanity");
3660   ciProfileData* data = md->bci_to_data(x->bci());
3661   assert(data != nullptr, "must have profiling data");
3662   assert(data->is_ACmpData(), "need BranchData for two-way branches");
3663   ciACmpData* acmp = (ciACmpData*)data;
3664   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3665   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0,
3666                acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), nullptr, nullptr);
3667   int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset());
3668   if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) {
3669     LIR_Opr mdp = new_register(T_METADATA);
3670     __ metadata2reg(md->constant_encoding(), mdp);
3671     LIRItem value(x->left(), this);
3672     value.load_item();
3673     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3674   }
3675   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()),
3676                in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()),
3677                acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), nullptr, nullptr);
3678   if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) {
3679     LIR_Opr mdp = new_register(T_METADATA);
3680     __ metadata2reg(md->constant_encoding(), mdp);
3681     LIRItem value(x->right(), this);
3682     value.load_item();
3683     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3684   }
3685 }
3686 
3687 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3688   // We can safely ignore accessors here, since c2 will inline them anyway,
3689   // accessors are also always mature.
3690   if (!x->inlinee()->is_accessor()) {
3691     CodeEmitInfo* info = state_for(x, x->state(), true);
3692     // Notify the runtime very infrequently only to take care of counter overflows
3693     int freq_log = Tier23InlineeNotifyFreqLog;
3694     double scale;
3695     if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3696       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3697     }
3698     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3699   }
3700 }
3701 
3702 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3703   if (compilation()->is_profiling()) {
3704 #if defined(X86) && !defined(_LP64)
3705     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3706     LIR_Opr left_copy = new_register(left->type());
3707     __ move(left, left_copy);
3708     __ cmp(cond, left_copy, right);
3709 #else
3710     __ cmp(cond, left, right);
3711 #endif
3712     LIR_Opr step = new_register(T_INT);
3713     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3714     LIR_Opr zero = LIR_OprFact::intConst(0);
3715     __ cmove(cond,
3716         (left_bci < bci) ? plus_one : zero,
3717         (right_bci < bci) ? plus_one : zero,
3718         step, left->type());
3719     increment_backedge_counter(info, step, bci);
3720   }
3721 }
3722 
3723 
3724 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3725   int freq_log = 0;
3726   int level = compilation()->env()->comp_level();
3727   if (level == CompLevel_limited_profile) {
3728     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3729   } else if (level == CompLevel_full_profile) {
3730     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3731   } else {
3732     ShouldNotReachHere();
3733   }
3734   // Increment the appropriate invocation/backedge counter and notify the runtime.
3735   double scale;
3736   if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3737     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3738   }
3739   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3740 }
3741 
3742 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3743                                                 ciMethod *method, LIR_Opr step, int frequency,
3744                                                 int bci, bool backedge, bool notify) {
3745   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3746   int level = _compilation->env()->comp_level();
3747   assert(level > CompLevel_simple, "Shouldn't be here");
3748 
3749   int offset = -1;
3750   LIR_Opr counter_holder;
3751   if (level == CompLevel_limited_profile) {
3752     MethodCounters* counters_adr = method->ensure_method_counters();
3753     if (counters_adr == nullptr) {
3754       bailout("method counters allocation failed");
3755       return;
3756     }
3757     counter_holder = new_pointer_register();
3758     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3759     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3760                                  MethodCounters::invocation_counter_offset());
3761   } else if (level == CompLevel_full_profile) {
3762     counter_holder = new_register(T_METADATA);
3763     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3764                                  MethodData::invocation_counter_offset());
3765     ciMethodData* md = method->method_data_or_null();
3766     assert(md != nullptr, "Sanity");
3767     __ metadata2reg(md->constant_encoding(), counter_holder);
3768   } else {
3769     ShouldNotReachHere();
3770   }
3771   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3772   LIR_Opr result = new_register(T_INT);
3773   __ load(counter, result);
3774   __ add(result, step, result);
3775   __ store(result, counter);
3776   if (notify && (!backedge || UseOnStackReplacement)) {
3777     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3778     // The bci for info can point to cmp for if's we want the if bci
3779     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3780     int freq = frequency << InvocationCounter::count_shift;
3781     if (freq == 0) {
3782       if (!step->is_constant()) {
3783         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3784         __ branch(lir_cond_notEqual, overflow);
3785       } else {
3786         __ branch(lir_cond_always, overflow);
3787       }
3788     } else {
3789       LIR_Opr mask = load_immediate(freq, T_INT);
3790       if (!step->is_constant()) {
3791         // If step is 0, make sure the overflow check below always fails
3792         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3793         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3794       }
3795       __ logical_and(result, mask, result);
3796       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3797       __ branch(lir_cond_equal, overflow);
3798     }
3799     __ branch_destination(overflow->continuation());
3800   }
3801 }
3802 
3803 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3804   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3805   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3806 
3807   if (x->pass_thread()) {
3808     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3809     args->append(getThreadPointer());
3810   }
3811 
3812   for (int i = 0; i < x->number_of_arguments(); i++) {
3813     Value a = x->argument_at(i);
3814     LIRItem* item = new LIRItem(a, this);
3815     item->load_item();
3816     args->append(item->result());
3817     signature->append(as_BasicType(a->type()));
3818   }
3819 
3820   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr);
3821   if (x->type() == voidType) {
3822     set_no_result(x);
3823   } else {
3824     __ move(result, rlock_result(x));
3825   }
3826 }
3827 
3828 #ifdef ASSERT
3829 void LIRGenerator::do_Assert(Assert *x) {
3830   ValueTag tag = x->x()->type()->tag();
3831   If::Condition cond = x->cond();
3832 
3833   LIRItem xitem(x->x(), this);
3834   LIRItem yitem(x->y(), this);
3835   LIRItem* xin = &xitem;
3836   LIRItem* yin = &yitem;
3837 
3838   assert(tag == intTag, "Only integer assertions are valid!");
3839 
3840   xin->load_item();
3841   yin->dont_load_item();
3842 
3843   set_no_result(x);
3844 
3845   LIR_Opr left = xin->result();
3846   LIR_Opr right = yin->result();
3847 
3848   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3849 }
3850 #endif
3851 
3852 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3853 
3854 
3855   Instruction *a = x->x();
3856   Instruction *b = x->y();
3857   if (!a || StressRangeCheckElimination) {
3858     assert(!b || StressRangeCheckElimination, "B must also be null");
3859 
3860     CodeEmitInfo *info = state_for(x, x->state());
3861     CodeStub* stub = new PredicateFailedStub(info);
3862 
3863     __ jump(stub);
3864   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3865     int a_int = a->type()->as_IntConstant()->value();
3866     int b_int = b->type()->as_IntConstant()->value();
3867 
3868     bool ok = false;
3869 
3870     switch(x->cond()) {
3871       case Instruction::eql: ok = (a_int == b_int); break;
3872       case Instruction::neq: ok = (a_int != b_int); break;
3873       case Instruction::lss: ok = (a_int < b_int); break;
3874       case Instruction::leq: ok = (a_int <= b_int); break;
3875       case Instruction::gtr: ok = (a_int > b_int); break;
3876       case Instruction::geq: ok = (a_int >= b_int); break;
3877       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3878       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3879       default: ShouldNotReachHere();
3880     }
3881 
3882     if (ok) {
3883 
3884       CodeEmitInfo *info = state_for(x, x->state());
3885       CodeStub* stub = new PredicateFailedStub(info);
3886 
3887       __ jump(stub);
3888     }
3889   } else {
3890 
3891     ValueTag tag = x->x()->type()->tag();
3892     If::Condition cond = x->cond();
3893     LIRItem xitem(x->x(), this);
3894     LIRItem yitem(x->y(), this);
3895     LIRItem* xin = &xitem;
3896     LIRItem* yin = &yitem;
3897 
3898     assert(tag == intTag, "Only integer deoptimizations are valid!");
3899 
3900     xin->load_item();
3901     yin->dont_load_item();
3902     set_no_result(x);
3903 
3904     LIR_Opr left = xin->result();
3905     LIR_Opr right = yin->result();
3906 
3907     CodeEmitInfo *info = state_for(x, x->state());
3908     CodeStub* stub = new PredicateFailedStub(info);
3909 
3910     __ cmp(lir_cond(cond), left, right);
3911     __ branch(lir_cond(cond), stub);
3912   }
3913 }
3914 
3915 void LIRGenerator::do_blackhole(Intrinsic *x) {
3916   assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3917   for (int c = 0; c < x->number_of_arguments(); c++) {
3918     // Load the argument
3919     LIRItem vitem(x->argument_at(c), this);
3920     vitem.load_item();
3921     // ...and leave it unused.
3922   }
3923 }
3924 
3925 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3926   LIRItemList args(1);
3927   LIRItem value(arg1, this);
3928   args.append(&value);
3929   BasicTypeList signature;
3930   signature.append(as_BasicType(arg1->type()));
3931 
3932   return call_runtime(&signature, &args, entry, result_type, info);
3933 }
3934 
3935 
3936 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3937   LIRItemList args(2);
3938   LIRItem value1(arg1, this);
3939   LIRItem value2(arg2, this);
3940   args.append(&value1);
3941   args.append(&value2);
3942   BasicTypeList signature;
3943   signature.append(as_BasicType(arg1->type()));
3944   signature.append(as_BasicType(arg2->type()));
3945 
3946   return call_runtime(&signature, &args, entry, result_type, info);
3947 }
3948 
3949 
3950 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3951                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3952   // get a result register
3953   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3954   LIR_Opr result = LIR_OprFact::illegalOpr;
3955   if (result_type->tag() != voidTag) {
3956     result = new_register(result_type);
3957     phys_reg = result_register_for(result_type);
3958   }
3959 
3960   // move the arguments into the correct location
3961   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3962   assert(cc->length() == args->length(), "argument mismatch");
3963   for (int i = 0; i < args->length(); i++) {
3964     LIR_Opr arg = args->at(i);
3965     LIR_Opr loc = cc->at(i);
3966     if (loc->is_register()) {
3967       __ move(arg, loc);
3968     } else {
3969       LIR_Address* addr = loc->as_address_ptr();
3970 //           if (!can_store_as_constant(arg)) {
3971 //             LIR_Opr tmp = new_register(arg->type());
3972 //             __ move(arg, tmp);
3973 //             arg = tmp;
3974 //           }
3975       __ move(arg, addr);
3976     }
3977   }
3978 
3979   if (info) {
3980     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3981   } else {
3982     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3983   }
3984   if (result->is_valid()) {
3985     __ move(phys_reg, result);
3986   }
3987   return result;
3988 }
3989 
3990 
3991 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3992                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3993   // get a result register
3994   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3995   LIR_Opr result = LIR_OprFact::illegalOpr;
3996   if (result_type->tag() != voidTag) {
3997     result = new_register(result_type);
3998     phys_reg = result_register_for(result_type);
3999   }
4000 
4001   // move the arguments into the correct location
4002   CallingConvention* cc = frame_map()->c_calling_convention(signature);
4003 
4004   assert(cc->length() == args->length(), "argument mismatch");
4005   for (int i = 0; i < args->length(); i++) {
4006     LIRItem* arg = args->at(i);
4007     LIR_Opr loc = cc->at(i);
4008     if (loc->is_register()) {
4009       arg->load_item_force(loc);
4010     } else {
4011       LIR_Address* addr = loc->as_address_ptr();
4012       arg->load_for_store(addr->type());
4013       __ move(arg->result(), addr);
4014     }
4015   }
4016 
4017   if (info) {
4018     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
4019   } else {
4020     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
4021   }
4022   if (result->is_valid()) {
4023     __ move(phys_reg, result);
4024   }
4025   return result;
4026 }
4027 
4028 void LIRGenerator::do_MemBar(MemBar* x) {
4029   LIR_Code code = x->code();
4030   switch(code) {
4031   case lir_membar_acquire   : __ membar_acquire(); break;
4032   case lir_membar_release   : __ membar_release(); break;
4033   case lir_membar           : __ membar(); break;
4034   case lir_membar_loadload  : __ membar_loadload(); break;
4035   case lir_membar_storestore: __ membar_storestore(); break;
4036   case lir_membar_loadstore : __ membar_loadstore(); break;
4037   case lir_membar_storeload : __ membar_storeload(); break;
4038   default                   : ShouldNotReachHere(); break;
4039   }
4040 }
4041 
4042 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
4043   LIR_Opr value_fixed = rlock_byte(T_BYTE);
4044   if (two_operand_lir_form) {
4045     __ move(value, value_fixed);
4046     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
4047   } else {
4048     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
4049   }
4050   LIR_Opr klass = new_register(T_METADATA);
4051   load_klass(array, klass, null_check_info);
4052   null_check_info = nullptr;
4053   LIR_Opr layout = new_register(T_INT);
4054   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
4055   int diffbit = Klass::layout_helper_boolean_diffbit();
4056   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
4057   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
4058   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
4059   value = value_fixed;
4060   return value;
4061 }