1 /*
   2  * Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciFlatArrayKlass.hpp"
  35 #include "ci/ciInlineKlass.hpp"
  36 #include "ci/ciInstance.hpp"
  37 #include "ci/ciObjArray.hpp"
  38 #include "ci/ciUtilities.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/c1/barrierSetC1.hpp"
  41 #include "oops/klass.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 
  49 #ifdef ASSERT
  50 #define __ gen()->lir(__FILE__, __LINE__)->
  51 #else
  52 #define __ gen()->lir()->
  53 #endif
  54 
  55 #ifndef PATCHED_ADDR
  56 #define PATCHED_ADDR  (max_jint)
  57 #endif
  58 
  59 void PhiResolverState::reset() {
  60   _virtual_operands.clear();
  61   _other_operands.clear();
  62   _vreg_table.clear();
  63 }
  64 
  65 
  66 //--------------------------------------------------------------
  67 // PhiResolver
  68 
  69 // Resolves cycles:
  70 //
  71 //  r1 := r2  becomes  temp := r1
  72 //  r2 := r1           r1 := r2
  73 //                     r2 := temp
  74 // and orders moves:
  75 //
  76 //  r2 := r3  becomes  r1 := r2
  77 //  r1 := r2           r2 := r3
  78 
  79 PhiResolver::PhiResolver(LIRGenerator* gen)
  80  : _gen(gen)
  81  , _state(gen->resolver_state())
  82  , _temp(LIR_OprFact::illegalOpr)
  83 {
  84   // reinitialize the shared state arrays
  85   _state.reset();
  86 }
  87 
  88 
  89 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  90   assert(src->is_valid(), "");
  91   assert(dest->is_valid(), "");
  92   __ move(src, dest);
  93 }
  94 
  95 
  96 void PhiResolver::move_temp_to(LIR_Opr dest) {
  97   assert(_temp->is_valid(), "");
  98   emit_move(_temp, dest);
  99   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 100 }
 101 
 102 
 103 void PhiResolver::move_to_temp(LIR_Opr src) {
 104   assert(_temp->is_illegal(), "");
 105   _temp = _gen->new_register(src->type());
 106   emit_move(src, _temp);
 107 }
 108 
 109 
 110 // Traverse assignment graph in depth first order and generate moves in post order
 111 // ie. two assignments: b := c, a := b start with node c:
 112 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 113 // Generates moves in this order: move b to a and move c to b
 114 // ie. cycle a := b, b := a start with node a
 115 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 116 // Generates moves in this order: move b to temp, move a to b, move temp to a
 117 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 118   if (!dest->visited()) {
 119     dest->set_visited();
 120     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 121       move(dest, dest->destination_at(i));
 122     }
 123   } else if (!dest->start_node()) {
 124     // cylce in graph detected
 125     assert(_loop == NULL, "only one loop valid!");
 126     _loop = dest;
 127     move_to_temp(src->operand());
 128     return;
 129   } // else dest is a start node
 130 
 131   if (!dest->assigned()) {
 132     if (_loop == dest) {
 133       move_temp_to(dest->operand());
 134       dest->set_assigned();
 135     } else if (src != NULL) {
 136       emit_move(src->operand(), dest->operand());
 137       dest->set_assigned();
 138     }
 139   }
 140 }
 141 
 142 
 143 PhiResolver::~PhiResolver() {
 144   int i;
 145   // resolve any cycles in moves from and to virtual registers
 146   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 147     ResolveNode* node = virtual_operands().at(i);
 148     if (!node->visited()) {
 149       _loop = NULL;
 150       move(NULL, node);
 151       node->set_start_node();
 152       assert(_temp->is_illegal(), "move_temp_to() call missing");
 153     }
 154   }
 155 
 156   // generate move for move from non virtual register to abitrary destination
 157   for (i = other_operands().length() - 1; i >= 0; i --) {
 158     ResolveNode* node = other_operands().at(i);
 159     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 160       emit_move(node->operand(), node->destination_at(j)->operand());
 161     }
 162   }
 163 }
 164 
 165 
 166 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 167   ResolveNode* node;
 168   if (opr->is_virtual()) {
 169     int vreg_num = opr->vreg_number();
 170     node = vreg_table().at_grow(vreg_num, NULL);
 171     assert(node == NULL || node->operand() == opr, "");
 172     if (node == NULL) {
 173       node = new ResolveNode(opr);
 174       vreg_table().at_put(vreg_num, node);
 175     }
 176     // Make sure that all virtual operands show up in the list when
 177     // they are used as the source of a move.
 178     if (source && !virtual_operands().contains(node)) {
 179       virtual_operands().append(node);
 180     }
 181   } else {
 182     assert(source, "");
 183     node = new ResolveNode(opr);
 184     other_operands().append(node);
 185   }
 186   return node;
 187 }
 188 
 189 
 190 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 191   assert(dest->is_virtual(), "");
 192   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 193   assert(src->is_valid(), "");
 194   assert(dest->is_valid(), "");
 195   ResolveNode* source = source_node(src);
 196   source->append(destination_node(dest));
 197 }
 198 
 199 
 200 //--------------------------------------------------------------
 201 // LIRItem
 202 
 203 void LIRItem::set_result(LIR_Opr opr) {
 204   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 205   value()->set_operand(opr);
 206 
 207   if (opr->is_virtual()) {
 208     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 209   }
 210 
 211   _result = opr;
 212 }
 213 
 214 void LIRItem::load_item() {
 215   assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code");
 216 
 217   if (result()->is_illegal()) {
 218     // update the items result
 219     _result = value()->operand();
 220   }
 221   if (!result()->is_register()) {
 222     LIR_Opr reg = _gen->new_register(value()->type());
 223     __ move(result(), reg);
 224     if (result()->is_constant()) {
 225       _result = reg;
 226     } else {
 227       set_result(reg);
 228     }
 229   }
 230 }
 231 
 232 
 233 void LIRItem::load_for_store(BasicType type) {
 234   if (_gen->can_store_as_constant(value(), type)) {
 235     _result = value()->operand();
 236     if (!_result->is_constant()) {
 237       _result = LIR_OprFact::value_type(value()->type());
 238     }
 239   } else if (type == T_BYTE || type == T_BOOLEAN) {
 240     load_byte_item();
 241   } else {
 242     load_item();
 243   }
 244 }
 245 
 246 void LIRItem::load_item_force(LIR_Opr reg) {
 247   LIR_Opr r = result();
 248   if (r != reg) {
 249 #if !defined(ARM) && !defined(E500V2)
 250     if (r->type() != reg->type()) {
 251       // moves between different types need an intervening spill slot
 252       r = _gen->force_to_spill(r, reg->type());
 253     }
 254 #endif
 255     __ move(r, reg);
 256     _result = reg;
 257   }
 258 }
 259 
 260 ciObject* LIRItem::get_jobject_constant() const {
 261   ObjectType* oc = type()->as_ObjectType();
 262   if (oc) {
 263     return oc->constant_value();
 264   }
 265   return NULL;
 266 }
 267 
 268 
 269 jint LIRItem::get_jint_constant() const {
 270   assert(is_constant() && value() != NULL, "");
 271   assert(type()->as_IntConstant() != NULL, "type check");
 272   return type()->as_IntConstant()->value();
 273 }
 274 
 275 
 276 jint LIRItem::get_address_constant() const {
 277   assert(is_constant() && value() != NULL, "");
 278   assert(type()->as_AddressConstant() != NULL, "type check");
 279   return type()->as_AddressConstant()->value();
 280 }
 281 
 282 
 283 jfloat LIRItem::get_jfloat_constant() const {
 284   assert(is_constant() && value() != NULL, "");
 285   assert(type()->as_FloatConstant() != NULL, "type check");
 286   return type()->as_FloatConstant()->value();
 287 }
 288 
 289 
 290 jdouble LIRItem::get_jdouble_constant() const {
 291   assert(is_constant() && value() != NULL, "");
 292   assert(type()->as_DoubleConstant() != NULL, "type check");
 293   return type()->as_DoubleConstant()->value();
 294 }
 295 
 296 
 297 jlong LIRItem::get_jlong_constant() const {
 298   assert(is_constant() && value() != NULL, "");
 299   assert(type()->as_LongConstant() != NULL, "type check");
 300   return type()->as_LongConstant()->value();
 301 }
 302 
 303 
 304 
 305 //--------------------------------------------------------------
 306 
 307 
 308 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 309 #ifndef PRODUCT
 310   if (PrintIRWithLIR) {
 311     block->print();
 312   }
 313 #endif
 314 
 315   // set up the list of LIR instructions
 316   assert(block->lir() == NULL, "LIR list already computed for this block");
 317   _lir = new LIR_List(compilation(), block);
 318   block->set_lir(_lir);
 319 
 320   __ branch_destination(block->label());
 321 
 322   if (LIRTraceExecution &&
 323       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 324       !block->is_set(BlockBegin::exception_entry_flag)) {
 325     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 326     trace_block_entry(block);
 327   }
 328 }
 329 
 330 
 331 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 332 #ifndef PRODUCT
 333   if (PrintIRWithLIR) {
 334     tty->cr();
 335   }
 336 #endif
 337 
 338   // LIR_Opr for unpinned constants shouldn't be referenced by other
 339   // blocks so clear them out after processing the block.
 340   for (int i = 0; i < _unpinned_constants.length(); i++) {
 341     _unpinned_constants.at(i)->clear_operand();
 342   }
 343   _unpinned_constants.trunc_to(0);
 344 
 345   // clear our any registers for other local constants
 346   _constants.trunc_to(0);
 347   _reg_for_constants.trunc_to(0);
 348 }
 349 
 350 
 351 void LIRGenerator::block_do(BlockBegin* block) {
 352   CHECK_BAILOUT();
 353 
 354   block_do_prolog(block);
 355   set_block(block);
 356 
 357   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 358     if (instr->is_pinned()) do_root(instr);
 359   }
 360 
 361   set_block(NULL);
 362   block_do_epilog(block);
 363 }
 364 
 365 
 366 //-------------------------LIRGenerator-----------------------------
 367 
 368 // This is where the tree-walk starts; instr must be root;
 369 void LIRGenerator::do_root(Value instr) {
 370   CHECK_BAILOUT();
 371 
 372   InstructionMark im(compilation(), instr);
 373 
 374   assert(instr->is_pinned(), "use only with roots");
 375   assert(instr->subst() == instr, "shouldn't have missed substitution");
 376 
 377   instr->visit(this);
 378 
 379   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 380          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 381 }
 382 
 383 
 384 // This is called for each node in tree; the walk stops if a root is reached
 385 void LIRGenerator::walk(Value instr) {
 386   InstructionMark im(compilation(), instr);
 387   //stop walk when encounter a root
 388   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 389     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 390   } else {
 391     assert(instr->subst() == instr, "shouldn't have missed substitution");
 392     instr->visit(this);
 393     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 394   }
 395 }
 396 
 397 
 398 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 399   assert(state != NULL, "state must be defined");
 400 
 401 #ifndef PRODUCT
 402   state->verify();
 403 #endif
 404 
 405   ValueStack* s = state;
 406   for_each_state(s) {
 407     if (s->kind() == ValueStack::EmptyExceptionState) {
 408       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 409       continue;
 410     }
 411 
 412     int index;
 413     Value value;
 414     for_each_stack_value(s, index, value) {
 415       assert(value->subst() == value, "missed substitution");
 416       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 417         walk(value);
 418         assert(value->operand()->is_valid(), "must be evaluated now");
 419       }
 420     }
 421 
 422     int bci = s->bci();
 423     IRScope* scope = s->scope();
 424     ciMethod* method = scope->method();
 425 
 426     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 427     if (bci == SynchronizationEntryBCI) {
 428       if (x->as_ExceptionObject() || x->as_Throw()) {
 429         // all locals are dead on exit from the synthetic unlocker
 430         liveness.clear();
 431       } else {
 432         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 433       }
 434     }
 435     if (!liveness.is_valid()) {
 436       // Degenerate or breakpointed method.
 437       bailout("Degenerate or breakpointed method");
 438     } else {
 439       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 440       for_each_local_value(s, index, value) {
 441         assert(value->subst() == value, "missed substition");
 442         if (liveness.at(index) && !value->type()->is_illegal()) {
 443           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 444             walk(value);
 445             assert(value->operand()->is_valid(), "must be evaluated now");
 446           }
 447         } else {
 448           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 449           s->invalidate_local(index);
 450         }
 451       }
 452     }
 453   }
 454 
 455   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 456 }
 457 
 458 
 459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 460   return state_for(x, x->exception_state());
 461 }
 462 
 463 
 464 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 465   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
 466    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 467    * the class. */
 468   if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
 469     assert(info != NULL, "info must be set if class is not loaded");
 470     __ klass2reg_patch(NULL, r, info);
 471   } else {
 472     // no patching needed
 473     __ metadata2reg(obj->constant_encoding(), r);
 474   }
 475 }
 476 
 477 
 478 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 479                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 480   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 481   if (index->is_constant()) {
 482     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 483                 index->as_jint(), null_check_info);
 484     __ branch(lir_cond_belowEqual, stub); // forward branch
 485   } else {
 486     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 487                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 488     __ branch(lir_cond_aboveEqual, stub); // forward branch
 489   }
 490 }
 491 
 492 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
 493   LIR_Opr result_op = result;
 494   LIR_Opr left_op   = left;
 495   LIR_Opr right_op  = right;
 496 
 497   if (TwoOperandLIRForm && left_op != result_op) {
 498     assert(right_op != result_op, "malformed");
 499     __ move(left_op, result_op);
 500     left_op = result_op;
 501   }
 502 
 503   switch(code) {
 504     case Bytecodes::_dadd:
 505     case Bytecodes::_fadd:
 506     case Bytecodes::_ladd:
 507     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 508     case Bytecodes::_fmul:
 509     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 510 
 511     case Bytecodes::_dmul:  __ mul(left_op, right_op, result_op, tmp_op); break;
 512 
 513     case Bytecodes::_imul:
 514       {
 515         bool did_strength_reduce = false;
 516 
 517         if (right->is_constant()) {
 518           jint c = right->as_jint();
 519           if (c > 0 && is_power_of_2(c)) {
 520             // do not need tmp here
 521             __ shift_left(left_op, exact_log2(c), result_op);
 522             did_strength_reduce = true;
 523           } else {
 524             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 525           }
 526         }
 527         // we couldn't strength reduce so just emit the multiply
 528         if (!did_strength_reduce) {
 529           __ mul(left_op, right_op, result_op);
 530         }
 531       }
 532       break;
 533 
 534     case Bytecodes::_dsub:
 535     case Bytecodes::_fsub:
 536     case Bytecodes::_lsub:
 537     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 538 
 539     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 540     // ldiv and lrem are implemented with a direct runtime call
 541 
 542     case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
 543 
 544     case Bytecodes::_drem:
 545     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 546 
 547     default: ShouldNotReachHere();
 548   }
 549 }
 550 
 551 
 552 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 553   arithmetic_op(code, result, left, right, tmp);
 554 }
 555 
 556 
 557 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 558   arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
 559 }
 560 
 561 
 562 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 563   arithmetic_op(code, result, left, right, tmp);
 564 }
 565 
 566 
 567 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 568 
 569   if (TwoOperandLIRForm && value != result_op
 570       // Only 32bit right shifts require two operand form on S390.
 571       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 572     assert(count != result_op, "malformed");
 573     __ move(value, result_op);
 574     value = result_op;
 575   }
 576 
 577   assert(count->is_constant() || count->is_register(), "must be");
 578   switch(code) {
 579   case Bytecodes::_ishl:
 580   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 581   case Bytecodes::_ishr:
 582   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 583   case Bytecodes::_iushr:
 584   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 585   default: ShouldNotReachHere();
 586   }
 587 }
 588 
 589 
 590 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 591   if (TwoOperandLIRForm && left_op != result_op) {
 592     assert(right_op != result_op, "malformed");
 593     __ move(left_op, result_op);
 594     left_op = result_op;
 595   }
 596 
 597   switch(code) {
 598     case Bytecodes::_iand:
 599     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 600 
 601     case Bytecodes::_ior:
 602     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 603 
 604     case Bytecodes::_ixor:
 605     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 606 
 607     default: ShouldNotReachHere();
 608   }
 609 }
 610 
 611 
 612 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
 613                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_imse_stub) {
 614   if (!GenerateSynchronizationCode) return;
 615   // for slow path, use debug info for state after successful locking
 616   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_imse_stub, scratch);
 617   __ load_stack_address_monitor(monitor_no, lock);
 618   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 619   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_imse_stub);
 620 }
 621 
 622 
 623 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 624   if (!GenerateSynchronizationCode) return;
 625   // setup registers
 626   LIR_Opr hdr = lock;
 627   lock = new_hdr;
 628   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 629   __ load_stack_address_monitor(monitor_no, lock);
 630   __ unlock_object(hdr, object, lock, scratch, slow_path);
 631 }
 632 
 633 #ifndef PRODUCT
 634 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 635   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 636     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 637   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 638     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 639   }
 640 }
 641 #endif
 642 
 643 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 644   if (allow_inline) {
 645     assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved");
 646     __ metadata2reg(klass->constant_encoding(), klass_reg);
 647   } else {
 648     klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 649   }
 650   // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass
 651   if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype())
 652       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 653 
 654     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 655 
 656     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 657 
 658     assert(klass->is_loaded(), "must be loaded");
 659     // allocate space for instance
 660     assert(klass->size_helper() > 0, "illegal instance size");
 661     const int instance_size = align_object_size(klass->size_helper());
 662     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 663                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 664   } else {
 665     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, allow_inline ? Runtime1::new_instance_id : Runtime1::new_instance_no_inline_id);
 666     __ jump(slow_path);
 667     __ branch_destination(slow_path->continuation());
 668   }
 669 }
 670 
 671 
 672 static bool is_constant_zero(Instruction* inst) {
 673   IntConstant* c = inst->type()->as_IntConstant();
 674   if (c) {
 675     return (c->value() == 0);
 676   }
 677   return false;
 678 }
 679 
 680 
 681 static bool positive_constant(Instruction* inst) {
 682   IntConstant* c = inst->type()->as_IntConstant();
 683   if (c) {
 684     return (c->value() >= 0);
 685   }
 686   return false;
 687 }
 688 
 689 
 690 static ciArrayKlass* as_array_klass(ciType* type) {
 691   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 692     return (ciArrayKlass*)type;
 693   } else {
 694     return NULL;
 695   }
 696 }
 697 
 698 static ciType* phi_declared_type(Phi* phi) {
 699   ciType* t = phi->operand_at(0)->declared_type();
 700   if (t == NULL) {
 701     return NULL;
 702   }
 703   for(int i = 1; i < phi->operand_count(); i++) {
 704     if (t != phi->operand_at(i)->declared_type()) {
 705       return NULL;
 706     }
 707   }
 708   return t;
 709 }
 710 
 711 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 712   Instruction* src     = x->argument_at(0);
 713   Instruction* src_pos = x->argument_at(1);
 714   Instruction* dst     = x->argument_at(2);
 715   Instruction* dst_pos = x->argument_at(3);
 716   Instruction* length  = x->argument_at(4);
 717 
 718   // first try to identify the likely type of the arrays involved
 719   ciArrayKlass* expected_type = NULL;
 720   bool is_exact = false, src_objarray = false, dst_objarray = false;
 721   {
 722     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 723     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 724     Phi* phi;
 725     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 726       src_declared_type = as_array_klass(phi_declared_type(phi));
 727     }
 728     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 729     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 730     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 731       dst_declared_type = as_array_klass(phi_declared_type(phi));
 732     }
 733 
 734     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 735       // the types exactly match so the type is fully known
 736       is_exact = true;
 737       expected_type = src_exact_type;
 738     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 739       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 740       ciArrayKlass* src_type = NULL;
 741       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 742         src_type = (ciArrayKlass*) src_exact_type;
 743       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 744         src_type = (ciArrayKlass*) src_declared_type;
 745       }
 746       if (src_type != NULL) {
 747         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 748           is_exact = true;
 749           expected_type = dst_type;
 750         }
 751       }
 752     }
 753     // at least pass along a good guess
 754     if (expected_type == NULL) expected_type = dst_exact_type;
 755     if (expected_type == NULL) expected_type = src_declared_type;
 756     if (expected_type == NULL) expected_type = dst_declared_type;
 757 
 758     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 759     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 760   }
 761 
 762   // if a probable array type has been identified, figure out if any
 763   // of the required checks for a fast case can be elided.
 764   int flags = LIR_OpArrayCopy::all_flags;
 765 
 766   if (!src->is_loaded_flattened_array() && !dst->is_loaded_flattened_array()) {
 767     flags &= ~LIR_OpArrayCopy::always_slow_path;
 768   }
 769   if (!src->maybe_flattened_array()) {
 770     flags &= ~LIR_OpArrayCopy::src_inlinetype_check;
 771   }
 772   if (!dst->maybe_flattened_array() && !dst->maybe_null_free_array()) {
 773     flags &= ~LIR_OpArrayCopy::dst_inlinetype_check;
 774   }
 775 
 776   if (!src_objarray)
 777     flags &= ~LIR_OpArrayCopy::src_objarray;
 778   if (!dst_objarray)
 779     flags &= ~LIR_OpArrayCopy::dst_objarray;
 780 
 781   if (!x->arg_needs_null_check(0))
 782     flags &= ~LIR_OpArrayCopy::src_null_check;
 783   if (!x->arg_needs_null_check(2))
 784     flags &= ~LIR_OpArrayCopy::dst_null_check;
 785 
 786 
 787   if (expected_type != NULL) {
 788     Value length_limit = NULL;
 789 
 790     IfOp* ifop = length->as_IfOp();
 791     if (ifop != NULL) {
 792       // look for expressions like min(v, a.length) which ends up as
 793       //   x > y ? y : x  or  x >= y ? y : x
 794       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 795           ifop->x() == ifop->fval() &&
 796           ifop->y() == ifop->tval()) {
 797         length_limit = ifop->y();
 798       }
 799     }
 800 
 801     // try to skip null checks and range checks
 802     NewArray* src_array = src->as_NewArray();
 803     if (src_array != NULL) {
 804       flags &= ~LIR_OpArrayCopy::src_null_check;
 805       if (length_limit != NULL &&
 806           src_array->length() == length_limit &&
 807           is_constant_zero(src_pos)) {
 808         flags &= ~LIR_OpArrayCopy::src_range_check;
 809       }
 810     }
 811 
 812     NewArray* dst_array = dst->as_NewArray();
 813     if (dst_array != NULL) {
 814       flags &= ~LIR_OpArrayCopy::dst_null_check;
 815       if (length_limit != NULL &&
 816           dst_array->length() == length_limit &&
 817           is_constant_zero(dst_pos)) {
 818         flags &= ~LIR_OpArrayCopy::dst_range_check;
 819       }
 820     }
 821 
 822     // check from incoming constant values
 823     if (positive_constant(src_pos))
 824       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 825     if (positive_constant(dst_pos))
 826       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 827     if (positive_constant(length))
 828       flags &= ~LIR_OpArrayCopy::length_positive_check;
 829 
 830     // see if the range check can be elided, which might also imply
 831     // that src or dst is non-null.
 832     ArrayLength* al = length->as_ArrayLength();
 833     if (al != NULL) {
 834       if (al->array() == src) {
 835         // it's the length of the source array
 836         flags &= ~LIR_OpArrayCopy::length_positive_check;
 837         flags &= ~LIR_OpArrayCopy::src_null_check;
 838         if (is_constant_zero(src_pos))
 839           flags &= ~LIR_OpArrayCopy::src_range_check;
 840       }
 841       if (al->array() == dst) {
 842         // it's the length of the destination array
 843         flags &= ~LIR_OpArrayCopy::length_positive_check;
 844         flags &= ~LIR_OpArrayCopy::dst_null_check;
 845         if (is_constant_zero(dst_pos))
 846           flags &= ~LIR_OpArrayCopy::dst_range_check;
 847       }
 848     }
 849     if (is_exact) {
 850       flags &= ~LIR_OpArrayCopy::type_check;
 851     }
 852   }
 853 
 854   IntConstant* src_int = src_pos->type()->as_IntConstant();
 855   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 856   if (src_int && dst_int) {
 857     int s_offs = src_int->value();
 858     int d_offs = dst_int->value();
 859     if (src_int->value() >= dst_int->value()) {
 860       flags &= ~LIR_OpArrayCopy::overlapping;
 861     }
 862     if (expected_type != NULL) {
 863       BasicType t = expected_type->element_type()->basic_type();
 864       int element_size = type2aelembytes(t);
 865       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 866           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 867         flags &= ~LIR_OpArrayCopy::unaligned;
 868       }
 869     }
 870   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 871     // src and dest positions are the same, or dst is zero so assume
 872     // nonoverlapping copy.
 873     flags &= ~LIR_OpArrayCopy::overlapping;
 874   }
 875 
 876   if (src == dst) {
 877     // moving within a single array so no type checks are needed
 878     if (flags & LIR_OpArrayCopy::type_check) {
 879       flags &= ~LIR_OpArrayCopy::type_check;
 880     }
 881   }
 882   *flagsp = flags;
 883   *expected_typep = (ciArrayKlass*)expected_type;
 884 }
 885 
 886 
 887 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 888   assert(opr->is_register(), "why spill if item is not register?");
 889 
 890   if (strict_fp_requires_explicit_rounding) {
 891 #ifdef IA32
 892     if (UseSSE < 1 && opr->is_single_fpu()) {
 893       LIR_Opr result = new_register(T_FLOAT);
 894       set_vreg_flag(result, must_start_in_memory);
 895       assert(opr->is_register(), "only a register can be spilled");
 896       assert(opr->value_type()->is_float(), "rounding only for floats available");
 897       __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 898       return result;
 899     }
 900 #else
 901     Unimplemented();
 902 #endif // IA32
 903   }
 904   return opr;
 905 }
 906 
 907 
 908 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 909   assert(type2size[t] == type2size[value->type()],
 910          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 911   if (!value->is_register()) {
 912     // force into a register
 913     LIR_Opr r = new_register(value->type());
 914     __ move(value, r);
 915     value = r;
 916   }
 917 
 918   // create a spill location
 919   LIR_Opr tmp = new_register(t);
 920   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 921 
 922   // move from register to spill
 923   __ move(value, tmp);
 924   return tmp;
 925 }
 926 
 927 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 928   if (if_instr->should_profile()) {
 929     ciMethod* method = if_instr->profiled_method();
 930     assert(method != NULL, "method should be set if branch is profiled");
 931     ciMethodData* md = method->method_data_or_null();
 932     assert(md != NULL, "Sanity");
 933     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 934     assert(data != NULL, "must have profiling data");
 935     assert(data->is_BranchData(), "need BranchData for two-way branches");
 936     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 937     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 938     if (if_instr->is_swapped()) {
 939       int t = taken_count_offset;
 940       taken_count_offset = not_taken_count_offset;
 941       not_taken_count_offset = t;
 942     }
 943 
 944     LIR_Opr md_reg = new_register(T_METADATA);
 945     __ metadata2reg(md->constant_encoding(), md_reg);
 946 
 947     LIR_Opr data_offset_reg = new_pointer_register();
 948     __ cmove(lir_cond(cond),
 949              LIR_OprFact::intptrConst(taken_count_offset),
 950              LIR_OprFact::intptrConst(not_taken_count_offset),
 951              data_offset_reg, as_BasicType(if_instr->x()->type()));
 952 
 953     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 954     LIR_Opr data_reg = new_pointer_register();
 955     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 956     __ move(data_addr, data_reg);
 957     // Use leal instead of add to avoid destroying condition codes on x86
 958     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 959     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 960     __ move(data_reg, data_addr);
 961   }
 962 }
 963 
 964 // Phi technique:
 965 // This is about passing live values from one basic block to the other.
 966 // In code generated with Java it is rather rare that more than one
 967 // value is on the stack from one basic block to the other.
 968 // We optimize our technique for efficient passing of one value
 969 // (of type long, int, double..) but it can be extended.
 970 // When entering or leaving a basic block, all registers and all spill
 971 // slots are release and empty. We use the released registers
 972 // and spill slots to pass the live values from one block
 973 // to the other. The topmost value, i.e., the value on TOS of expression
 974 // stack is passed in registers. All other values are stored in spilling
 975 // area. Every Phi has an index which designates its spill slot
 976 // At exit of a basic block, we fill the register(s) and spill slots.
 977 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 978 // and locks necessary registers and spilling slots.
 979 
 980 
 981 // move current value to referenced phi function
 982 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 983   Phi* phi = sux_val->as_Phi();
 984   // cur_val can be null without phi being null in conjunction with inlining
 985   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 986     Phi* cur_phi = cur_val->as_Phi();
 987     if (cur_phi != NULL && cur_phi->is_illegal()) {
 988       // Phi and local would need to get invalidated
 989       // (which is unexpected for Linear Scan).
 990       // But this case is very rare so we simply bail out.
 991       bailout("propagation of illegal phi");
 992       return;
 993     }
 994     LIR_Opr operand = cur_val->operand();
 995     if (operand->is_illegal()) {
 996       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
 997              "these can be produced lazily");
 998       operand = operand_for_instruction(cur_val);
 999     }
1000     resolver->move(operand, operand_for_instruction(phi));
1001   }
1002 }
1003 
1004 
1005 // Moves all stack values into their PHI position
1006 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1007   BlockBegin* bb = block();
1008   if (bb->number_of_sux() == 1) {
1009     BlockBegin* sux = bb->sux_at(0);
1010     assert(sux->number_of_preds() > 0, "invalid CFG");
1011 
1012     // a block with only one predecessor never has phi functions
1013     if (sux->number_of_preds() > 1) {
1014       PhiResolver resolver(this);
1015 
1016       ValueStack* sux_state = sux->state();
1017       Value sux_value;
1018       int index;
1019 
1020       assert(cur_state->scope() == sux_state->scope(), "not matching");
1021       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1022       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1023 
1024       for_each_stack_value(sux_state, index, sux_value) {
1025         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1026       }
1027 
1028       for_each_local_value(sux_state, index, sux_value) {
1029         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1030       }
1031 
1032       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1033     }
1034   }
1035 }
1036 
1037 
1038 LIR_Opr LIRGenerator::new_register(BasicType type) {
1039   int vreg_num = _virtual_register_number;
1040   // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1041   // a few extra registers before we really run out which helps to avoid to trip over assertions.
1042   if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1043     bailout("out of virtual registers in LIR generator");
1044     if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1045       // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1046       _virtual_register_number = LIR_Opr::vreg_base;
1047       vreg_num = LIR_Opr::vreg_base;
1048     }
1049   }
1050   _virtual_register_number += 1;
1051   LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1052   assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1053   return vreg;
1054 }
1055 
1056 
1057 // Try to lock using register in hint
1058 LIR_Opr LIRGenerator::rlock(Value instr) {
1059   return new_register(instr->type());
1060 }
1061 
1062 
1063 // does an rlock and sets result
1064 LIR_Opr LIRGenerator::rlock_result(Value x) {
1065   LIR_Opr reg = rlock(x);
1066   set_result(x, reg);
1067   return reg;
1068 }
1069 
1070 
1071 // does an rlock and sets result
1072 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1073   LIR_Opr reg;
1074   switch (type) {
1075   case T_BYTE:
1076   case T_BOOLEAN:
1077     reg = rlock_byte(type);
1078     break;
1079   default:
1080     reg = rlock(x);
1081     break;
1082   }
1083 
1084   set_result(x, reg);
1085   return reg;
1086 }
1087 
1088 
1089 //---------------------------------------------------------------------
1090 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1091   ObjectType* oc = value->type()->as_ObjectType();
1092   if (oc) {
1093     return oc->constant_value();
1094   }
1095   return NULL;
1096 }
1097 
1098 
1099 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1100   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1101   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1102 
1103   // no moves are created for phi functions at the begin of exception
1104   // handlers, so assign operands manually here
1105   for_each_phi_fun(block(), phi,
1106                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1107 
1108   LIR_Opr thread_reg = getThreadPointer();
1109   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1110                exceptionOopOpr());
1111   __ move_wide(LIR_OprFact::oopConst(NULL),
1112                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1113   __ move_wide(LIR_OprFact::oopConst(NULL),
1114                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1115 
1116   LIR_Opr result = new_register(T_OBJECT);
1117   __ move(exceptionOopOpr(), result);
1118   set_result(x, result);
1119 }
1120 
1121 
1122 //----------------------------------------------------------------------
1123 //----------------------------------------------------------------------
1124 //----------------------------------------------------------------------
1125 //----------------------------------------------------------------------
1126 //                        visitor functions
1127 //----------------------------------------------------------------------
1128 //----------------------------------------------------------------------
1129 //----------------------------------------------------------------------
1130 //----------------------------------------------------------------------
1131 
1132 void LIRGenerator::do_Phi(Phi* x) {
1133   // phi functions are never visited directly
1134   ShouldNotReachHere();
1135 }
1136 
1137 
1138 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1139 void LIRGenerator::do_Constant(Constant* x) {
1140   if (x->state_before() != NULL) {
1141     // Any constant with a ValueStack requires patching so emit the patch here
1142     LIR_Opr reg = rlock_result(x);
1143     CodeEmitInfo* info = state_for(x, x->state_before());
1144     __ oop2reg_patch(NULL, reg, info);
1145   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1146     if (!x->is_pinned()) {
1147       // unpinned constants are handled specially so that they can be
1148       // put into registers when they are used multiple times within a
1149       // block.  After the block completes their operand will be
1150       // cleared so that other blocks can't refer to that register.
1151       set_result(x, load_constant(x));
1152     } else {
1153       LIR_Opr res = x->operand();
1154       if (!res->is_valid()) {
1155         res = LIR_OprFact::value_type(x->type());
1156       }
1157       if (res->is_constant()) {
1158         LIR_Opr reg = rlock_result(x);
1159         __ move(res, reg);
1160       } else {
1161         set_result(x, res);
1162       }
1163     }
1164   } else {
1165     set_result(x, LIR_OprFact::value_type(x->type()));
1166   }
1167 }
1168 
1169 
1170 void LIRGenerator::do_Local(Local* x) {
1171   // operand_for_instruction has the side effect of setting the result
1172   // so there's no need to do it here.
1173   operand_for_instruction(x);
1174 }
1175 
1176 
1177 void LIRGenerator::do_Return(Return* x) {
1178   if (compilation()->env()->dtrace_method_probes()) {
1179     BasicTypeList signature;
1180     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1181     signature.append(T_METADATA); // Method*
1182     LIR_OprList* args = new LIR_OprList();
1183     args->append(getThreadPointer());
1184     LIR_Opr meth = new_register(T_METADATA);
1185     __ metadata2reg(method()->constant_encoding(), meth);
1186     args->append(meth);
1187     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1188   }
1189 
1190   if (x->type()->is_void()) {
1191     __ return_op(LIR_OprFact::illegalOpr);
1192   } else {
1193     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1194     LIRItem result(x->result(), this);
1195 
1196     result.load_item_force(reg);
1197     __ return_op(result.result());
1198   }
1199   set_no_result(x);
1200 }
1201 
1202 // Examble: ref.get()
1203 // Combination of LoadField and g1 pre-write barrier
1204 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1205 
1206   const int referent_offset = java_lang_ref_Reference::referent_offset();
1207 
1208   assert(x->number_of_arguments() == 1, "wrong type");
1209 
1210   LIRItem reference(x->argument_at(0), this);
1211   reference.load_item();
1212 
1213   // need to perform the null check on the reference objecy
1214   CodeEmitInfo* info = NULL;
1215   if (x->needs_null_check()) {
1216     info = state_for(x);
1217   }
1218 
1219   LIR_Opr result = rlock_result(x, T_OBJECT);
1220   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1221                  reference, LIR_OprFact::intConst(referent_offset), result);
1222 }
1223 
1224 // Example: clazz.isInstance(object)
1225 void LIRGenerator::do_isInstance(Intrinsic* x) {
1226   assert(x->number_of_arguments() == 2, "wrong type");
1227 
1228   // TODO could try to substitute this node with an equivalent InstanceOf
1229   // if clazz is known to be a constant Class. This will pick up newly found
1230   // constants after HIR construction. I'll leave this to a future change.
1231 
1232   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1233   // could follow the aastore example in a future change.
1234 
1235   LIRItem clazz(x->argument_at(0), this);
1236   LIRItem object(x->argument_at(1), this);
1237   clazz.load_item();
1238   object.load_item();
1239   LIR_Opr result = rlock_result(x);
1240 
1241   // need to perform null check on clazz
1242   if (x->needs_null_check()) {
1243     CodeEmitInfo* info = state_for(x);
1244     __ null_check(clazz.result(), info);
1245   }
1246 
1247   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1248                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1249                                      x->type(),
1250                                      NULL); // NULL CodeEmitInfo results in a leaf call
1251   __ move(call_result, result);
1252 }
1253 
1254 // Example: object.getClass ()
1255 void LIRGenerator::do_getClass(Intrinsic* x) {
1256   assert(x->number_of_arguments() == 1, "wrong type");
1257 
1258   LIRItem rcvr(x->argument_at(0), this);
1259   rcvr.load_item();
1260   LIR_Opr temp = new_register(T_METADATA);
1261   LIR_Opr result = rlock_result(x);
1262 
1263   // need to perform the null check on the rcvr
1264   CodeEmitInfo* info = NULL;
1265   if (x->needs_null_check()) {
1266     info = state_for(x);
1267   }
1268 
1269   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1270   // meaning of these two is mixed up (see JDK-8026837).
1271   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1272   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1273   // mirror = ((OopHandle)mirror)->resolve();
1274   access_load(IN_NATIVE, T_OBJECT,
1275               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1276 }
1277 
1278 // java.lang.Class::isPrimitive()
1279 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1280   assert(x->number_of_arguments() == 1, "wrong type");
1281 
1282   LIRItem rcvr(x->argument_at(0), this);
1283   rcvr.load_item();
1284   LIR_Opr temp = new_register(T_METADATA);
1285   LIR_Opr result = rlock_result(x);
1286 
1287   CodeEmitInfo* info = NULL;
1288   if (x->needs_null_check()) {
1289     info = state_for(x);
1290   }
1291 
1292   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info);
1293   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0));
1294   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1295 }
1296 
1297 // Example: Foo.class.getModifiers()
1298 void LIRGenerator::do_getModifiers(Intrinsic* x) {
1299   assert(x->number_of_arguments() == 1, "wrong type");
1300 
1301   LIRItem receiver(x->argument_at(0), this);
1302   receiver.load_item();
1303   LIR_Opr result = rlock_result(x);
1304 
1305   CodeEmitInfo* info = NULL;
1306   if (x->needs_null_check()) {
1307     info = state_for(x);
1308   }
1309 
1310   LabelObj* L_not_prim = new LabelObj();
1311   LabelObj* L_done = new LabelObj();
1312 
1313   LIR_Opr klass = new_register(T_METADATA);
1314   // Checking if it's a java mirror of primitive type
1315   __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), klass, info);
1316   __ cmp(lir_cond_notEqual, klass, LIR_OprFact::metadataConst(0));
1317   __ branch(lir_cond_notEqual, L_not_prim->label());
1318   __ move(LIR_OprFact::intConst(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), result);
1319   __ branch(lir_cond_always, L_done->label());
1320 
1321   __ branch_destination(L_not_prim->label());
1322   __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result);
1323   __ branch_destination(L_done->label());
1324 }
1325 
1326 // Example: Thread.currentThread()
1327 void LIRGenerator::do_currentThread(Intrinsic* x) {
1328   assert(x->number_of_arguments() == 0, "wrong type");
1329   LIR_Opr temp = new_register(T_ADDRESS);
1330   LIR_Opr reg = rlock_result(x);
1331   __ move(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_ADDRESS), temp);
1332   // threadObj = ((OopHandle)_threadObj)->resolve();
1333   access_load(IN_NATIVE, T_OBJECT,
1334               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1335 }
1336 
1337 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1338   assert(x->number_of_arguments() == 3, "wrong type");
1339   LIR_Opr result_reg = rlock_result(x);
1340 
1341   LIRItem value(x->argument_at(2), this);
1342   value.load_item();
1343 
1344   LIR_Opr klass = new_register(T_METADATA);
1345   __ move(new LIR_Address(value.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, NULL);
1346   LIR_Opr layout = new_register(T_INT);
1347   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1348 
1349   LabelObj* L_done = new LabelObj();
1350   LabelObj* L_array = new LabelObj();
1351 
1352   __ cmp(lir_cond_lessEqual, layout, 0);
1353   __ branch(lir_cond_lessEqual, L_array->label());
1354 
1355   // Instance case: the layout helper gives us instance size almost directly,
1356   // but we need to mask out the _lh_instance_slow_path_bit.
1357   __ convert(Bytecodes::_i2l, layout, result_reg);
1358 
1359   assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1360   jlong mask = ~(jlong) right_n_bits(LogBytesPerLong);
1361   __ logical_and(result_reg, LIR_OprFact::longConst(mask), result_reg);
1362 
1363   __ branch(lir_cond_always, L_done->label());
1364 
1365   // Array case: size is round(header + element_size*arraylength).
1366   // Since arraylength is different for every array instance, we have to
1367   // compute the whole thing at runtime.
1368 
1369   __ branch_destination(L_array->label());
1370 
1371   int round_mask = MinObjAlignmentInBytes - 1;
1372 
1373   // Figure out header sizes first.
1374   LIR_Opr hss = LIR_OprFact::intConst(Klass::_lh_header_size_shift);
1375   LIR_Opr hsm = LIR_OprFact::intConst(Klass::_lh_header_size_mask);
1376 
1377   LIR_Opr header_size = new_register(T_INT);
1378   __ move(layout, header_size);
1379   LIR_Opr tmp = new_register(T_INT);
1380   __ unsigned_shift_right(header_size, hss, header_size, tmp);
1381   __ logical_and(header_size, hsm, header_size);
1382   __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1383 
1384   // Figure out the array length in bytes
1385   assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1386   LIR_Opr l2esm = LIR_OprFact::intConst(Klass::_lh_log2_element_size_mask);
1387   __ logical_and(layout, l2esm, layout);
1388 
1389   LIR_Opr length_int = new_register(T_INT);
1390   __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1391 
1392 #ifdef _LP64
1393   LIR_Opr length = new_register(T_LONG);
1394   __ convert(Bytecodes::_i2l, length_int, length);
1395 #endif
1396 
1397   // Shift-left awkwardness. Normally it is just:
1398   //   __ shift_left(length, layout, length);
1399   // But C1 cannot perform shift_left with non-constant count, so we end up
1400   // doing the per-bit loop dance here. x86_32 also does not know how to shift
1401   // longs, so we have to act on ints.
1402   LabelObj* L_shift_loop = new LabelObj();
1403   LabelObj* L_shift_exit = new LabelObj();
1404 
1405   __ branch_destination(L_shift_loop->label());
1406   __ cmp(lir_cond_equal, layout, 0);
1407   __ branch(lir_cond_equal, L_shift_exit->label());
1408 
1409 #ifdef _LP64
1410   __ shift_left(length, 1, length);
1411 #else
1412   __ shift_left(length_int, 1, length_int);
1413 #endif
1414 
1415   __ sub(layout, LIR_OprFact::intConst(1), layout);
1416 
1417   __ branch(lir_cond_always, L_shift_loop->label());
1418   __ branch_destination(L_shift_exit->label());
1419 
1420   // Mix all up, round, and push to the result.
1421 #ifdef _LP64
1422   LIR_Opr header_size_long = new_register(T_LONG);
1423   __ convert(Bytecodes::_i2l, header_size, header_size_long);
1424   __ add(length, header_size_long, length);
1425   if (round_mask != 0) {
1426     __ logical_and(length, LIR_OprFact::longConst(~round_mask), length);
1427   }
1428   __ move(length, result_reg);
1429 #else
1430   __ add(length_int, header_size, length_int);
1431   if (round_mask != 0) {
1432     __ logical_and(length_int, LIR_OprFact::intConst(~round_mask), length_int);
1433   }
1434   __ convert(Bytecodes::_i2l, length_int, result_reg);
1435 #endif
1436 
1437   __ branch_destination(L_done->label());
1438 }
1439 
1440 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1441   assert(x->number_of_arguments() == 1, "wrong type");
1442   LIRItem receiver(x->argument_at(0), this);
1443 
1444   receiver.load_item();
1445   BasicTypeList signature;
1446   signature.append(T_OBJECT); // receiver
1447   LIR_OprList* args = new LIR_OprList();
1448   args->append(receiver.result());
1449   CodeEmitInfo* info = state_for(x, x->state());
1450   call_runtime(&signature, args,
1451                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1452                voidType, info);
1453 
1454   set_no_result(x);
1455 }
1456 
1457 
1458 //------------------------local access--------------------------------------
1459 
1460 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1461   if (x->operand()->is_illegal()) {
1462     Constant* c = x->as_Constant();
1463     if (c != NULL) {
1464       x->set_operand(LIR_OprFact::value_type(c->type()));
1465     } else {
1466       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1467       // allocate a virtual register for this local or phi
1468       x->set_operand(rlock(x));
1469       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1470     }
1471   }
1472   return x->operand();
1473 }
1474 
1475 
1476 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1477   if (opr->is_virtual()) {
1478     return instruction_for_vreg(opr->vreg_number());
1479   }
1480   return NULL;
1481 }
1482 
1483 
1484 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1485   if (reg_num < _instruction_for_operand.length()) {
1486     return _instruction_for_operand.at(reg_num);
1487   }
1488   return NULL;
1489 }
1490 
1491 
1492 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1493   if (_vreg_flags.size_in_bits() == 0) {
1494     BitMap2D temp(100, num_vreg_flags);
1495     _vreg_flags = temp;
1496   }
1497   _vreg_flags.at_put_grow(vreg_num, f, true);
1498 }
1499 
1500 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1501   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1502     return false;
1503   }
1504   return _vreg_flags.at(vreg_num, f);
1505 }
1506 
1507 
1508 // Block local constant handling.  This code is useful for keeping
1509 // unpinned constants and constants which aren't exposed in the IR in
1510 // registers.  Unpinned Constant instructions have their operands
1511 // cleared when the block is finished so that other blocks can't end
1512 // up referring to their registers.
1513 
1514 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1515   assert(!x->is_pinned(), "only for unpinned constants");
1516   _unpinned_constants.append(x);
1517   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1518 }
1519 
1520 
1521 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1522   BasicType t = c->type();
1523   for (int i = 0; i < _constants.length(); i++) {
1524     LIR_Const* other = _constants.at(i);
1525     if (t == other->type()) {
1526       switch (t) {
1527       case T_INT:
1528       case T_FLOAT:
1529         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1530         break;
1531       case T_LONG:
1532       case T_DOUBLE:
1533         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1534         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1535         break;
1536       case T_OBJECT:
1537         if (c->as_jobject() != other->as_jobject()) continue;
1538         break;
1539       default:
1540         break;
1541       }
1542       return _reg_for_constants.at(i);
1543     }
1544   }
1545 
1546   LIR_Opr result = new_register(t);
1547   __ move((LIR_Opr)c, result);
1548   if (!in_conditional_code()) {
1549     _constants.append(c);
1550     _reg_for_constants.append(result);
1551   }
1552   return result;
1553 }
1554 
1555 void LIRGenerator::set_in_conditional_code(bool v) {
1556   assert(v != _in_conditional_code, "must change state");
1557   _in_conditional_code = v;
1558 }
1559 
1560 
1561 //------------------------field access--------------------------------------
1562 
1563 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1564   assert(x->number_of_arguments() == 4, "wrong type");
1565   LIRItem obj   (x->argument_at(0), this);  // object
1566   LIRItem offset(x->argument_at(1), this);  // offset of field
1567   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1568   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1569   assert(obj.type()->tag() == objectTag, "invalid type");
1570   assert(cmp.type()->tag() == type->tag(), "invalid type");
1571   assert(val.type()->tag() == type->tag(), "invalid type");
1572 
1573   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1574                                             obj, offset, cmp, val);
1575   set_result(x, result);
1576 }
1577 
1578 // Comment copied form templateTable_i486.cpp
1579 // ----------------------------------------------------------------------------
1580 // Volatile variables demand their effects be made known to all CPU's in
1581 // order.  Store buffers on most chips allow reads & writes to reorder; the
1582 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1583 // memory barrier (i.e., it's not sufficient that the interpreter does not
1584 // reorder volatile references, the hardware also must not reorder them).
1585 //
1586 // According to the new Java Memory Model (JMM):
1587 // (1) All volatiles are serialized wrt to each other.
1588 // ALSO reads & writes act as aquire & release, so:
1589 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1590 // the read float up to before the read.  It's OK for non-volatile memory refs
1591 // that happen before the volatile read to float down below it.
1592 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1593 // that happen BEFORE the write float down to after the write.  It's OK for
1594 // non-volatile memory refs that happen after the volatile write to float up
1595 // before it.
1596 //
1597 // We only put in barriers around volatile refs (they are expensive), not
1598 // _between_ memory refs (that would require us to track the flavor of the
1599 // previous memory refs).  Requirements (2) and (3) require some barriers
1600 // before volatile stores and after volatile loads.  These nearly cover
1601 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1602 // case is placed after volatile-stores although it could just as well go
1603 // before volatile-loads.
1604 
1605 
1606 void LIRGenerator::do_StoreField(StoreField* x) {
1607   bool needs_patching = x->needs_patching();
1608   bool is_volatile = x->field()->is_volatile();
1609   BasicType field_type = x->field_type();
1610 
1611   CodeEmitInfo* info = NULL;
1612   if (needs_patching) {
1613     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1614     info = state_for(x, x->state_before());
1615   } else if (x->needs_null_check()) {
1616     NullCheck* nc = x->explicit_null_check();
1617     if (nc == NULL) {
1618       info = state_for(x);
1619     } else {
1620       info = state_for(nc);
1621     }
1622   }
1623 
1624   LIRItem object(x->obj(), this);
1625   LIRItem value(x->value(),  this);
1626 
1627   object.load_item();
1628 
1629   if (is_volatile || needs_patching) {
1630     // load item if field is volatile (fewer special cases for volatiles)
1631     // load item if field not initialized
1632     // load item if field not constant
1633     // because of code patching we cannot inline constants
1634     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1635       value.load_byte_item();
1636     } else  {
1637       value.load_item();
1638     }
1639   } else {
1640     value.load_for_store(field_type);
1641   }
1642 
1643   set_no_result(x);
1644 
1645 #ifndef PRODUCT
1646   if (PrintNotLoaded && needs_patching) {
1647     tty->print_cr("   ###class not loaded at store_%s bci %d",
1648                   x->is_static() ?  "static" : "field", x->printable_bci());
1649   }
1650 #endif
1651 
1652   if (!inline_type_field_access_prolog(x)) {
1653     // Field store will always deopt due to unloaded field or holder klass
1654     return;
1655   }
1656 
1657   if (x->needs_null_check() &&
1658       (needs_patching ||
1659        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1660     // Emit an explicit null check because the offset is too large.
1661     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1662     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1663     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1664   }
1665 
1666   DecoratorSet decorators = IN_HEAP;
1667   if (is_volatile) {
1668     decorators |= MO_SEQ_CST;
1669   }
1670   if (needs_patching) {
1671     decorators |= C1_NEEDS_PATCHING;
1672   }
1673 
1674   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1675                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1676 }
1677 
1678 // FIXME -- I can't find any other way to pass an address to access_load_at().
1679 class TempResolvedAddress: public Instruction {
1680  public:
1681   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1682     set_operand(addr);
1683   }
1684   virtual void input_values_do(ValueVisitor*) {}
1685   virtual void visit(InstructionVisitor* v)   {}
1686   virtual const char* name() const  { return "TempResolvedAddress"; }
1687 };
1688 
1689 LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) {
1690   ciType* array_type = array.value()->declared_type();
1691   ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass();
1692   assert(flat_array_klass->is_loaded(), "must be");
1693 
1694   int array_header_size = flat_array_klass->array_header_in_bytes();
1695   int shift = flat_array_klass->log2_element_size();
1696 
1697 #ifndef _LP64
1698   LIR_Opr index_op = new_register(T_INT);
1699   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1700   // the top (shift+1) bits of index_op must be zero, or
1701   // else throw ArrayIndexOutOfBoundsException
1702   if (index.result()->is_constant()) {
1703     jint const_index = index.result()->as_jint();
1704     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1705   } else {
1706     __ shift_left(index_op, shift, index.result());
1707   }
1708 #else
1709   LIR_Opr index_op = new_register(T_LONG);
1710   if (index.result()->is_constant()) {
1711     jint const_index = index.result()->as_jint();
1712     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1713   } else {
1714     __ convert(Bytecodes::_i2l, index.result(), index_op);
1715     // Need to shift manually, as LIR_Address can scale only up to 3.
1716     __ shift_left(index_op, shift, index_op);
1717   }
1718 #endif
1719 
1720   LIR_Opr elm_op = new_pointer_register();
1721   LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS);
1722   __ leal(LIR_OprFact::address(elm_address), elm_op);
1723   return elm_op;
1724 }
1725 
1726 void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, int sub_offset) {
1727   assert(field != NULL, "Need a subelement type specified");
1728 
1729   // Find the starting address of the source (inside the array)
1730   LIR_Opr elm_op = get_and_load_element_address(array, index);
1731 
1732   BasicType subelt_type = field->type()->basic_type();
1733   TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op);
1734   LIRItem elm_item(elm_resolved_addr, this);
1735 
1736   DecoratorSet decorators = IN_HEAP;
1737   access_load_at(decorators, subelt_type,
1738                      elm_item, LIR_OprFact::intConst(sub_offset), result,
1739                      NULL, NULL);
1740 
1741   if (field->is_null_free()) {
1742     assert(field->type()->is_loaded(), "Must be");
1743     assert(field->type()->is_inlinetype(), "Must be if loaded");
1744     assert(field->type()->as_inline_klass()->is_initialized(), "Must be");
1745     LabelObj* L_end = new LabelObj();
1746     __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(NULL));
1747     __ branch(lir_cond_notEqual, L_end->label());
1748     set_in_conditional_code(true);
1749     Constant* default_value = new Constant(new InstanceConstant(field->type()->as_inline_klass()->default_instance()));
1750     if (default_value->is_pinned()) {
1751       __ move(LIR_OprFact::value_type(default_value->type()), result);
1752     } else {
1753       __ move(load_constant(default_value), result);
1754     }
1755     __ branch_destination(L_end->label());
1756     set_in_conditional_code(false);
1757   }
1758 }
1759 
1760 void LIRGenerator::access_flattened_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item,
1761                                           ciField* field, int sub_offset) {
1762   assert(sub_offset == 0 || field != NULL, "Sanity check");
1763 
1764   // Find the starting address of the source (inside the array)
1765   LIR_Opr elm_op = get_and_load_element_address(array, index);
1766 
1767   ciInlineKlass* elem_klass = NULL;
1768   if (field != NULL) {
1769     elem_klass = field->type()->as_inline_klass();
1770   } else {
1771     elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
1772   }
1773   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1774     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1775     assert(!inner_field->is_flattened(), "flattened fields must have been expanded");
1776     int obj_offset = inner_field->offset();
1777     int elm_offset = obj_offset - elem_klass->first_field_offset() + sub_offset; // object header is not stored in array.
1778     BasicType field_type = inner_field->type()->basic_type();
1779 
1780     // Types which are smaller than int are still passed in an int register.
1781     BasicType reg_type = field_type;
1782     switch (reg_type) {
1783     case T_BYTE:
1784     case T_BOOLEAN:
1785     case T_SHORT:
1786     case T_CHAR:
1787       reg_type = T_INT;
1788       break;
1789     default:
1790       break;
1791     }
1792 
1793     LIR_Opr temp = new_register(reg_type);
1794     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1795     LIRItem elm_item(elm_resolved_addr, this);
1796 
1797     DecoratorSet decorators = IN_HEAP;
1798     if (is_load) {
1799       access_load_at(decorators, field_type,
1800                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1801                      NULL, NULL);
1802       access_store_at(decorators, field_type,
1803                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1804                       NULL, NULL);
1805     } else {
1806       access_load_at(decorators, field_type,
1807                      obj_item, LIR_OprFact::intConst(obj_offset), temp,
1808                      NULL, NULL);
1809       access_store_at(decorators, field_type,
1810                       elm_item, LIR_OprFact::intConst(elm_offset), temp,
1811                       NULL, NULL);
1812     }
1813   }
1814 }
1815 
1816 void LIRGenerator::check_flattened_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) {
1817   LIR_Opr tmp = new_register(T_METADATA);
1818   __ check_flattened_array(array, value, tmp, slow_path);
1819 }
1820 
1821 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) {
1822   LabelObj* L_end = new LabelObj();
1823   LIR_Opr tmp = new_register(T_METADATA);
1824   __ check_null_free_array(array.result(), tmp);
1825   __ branch(lir_cond_equal, L_end->label());
1826   __ null_check(value.result(), info);
1827   __ branch_destination(L_end->label());
1828 }
1829 
1830 bool LIRGenerator::needs_flattened_array_store_check(StoreIndexed* x) {
1831   if (x->elt_type() == T_OBJECT && x->array()->maybe_flattened_array()) {
1832     ciType* type = x->value()->declared_type();
1833     if (type != NULL && type->is_klass()) {
1834       ciKlass* klass = type->as_klass();
1835       if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->flatten_array())) {
1836         // This is known to be a non-flattened object. If the array is flattened,
1837         // it will be caught by the code generated by array_store_check().
1838         return false;
1839       }
1840     }
1841     // We're not 100% sure, so let's do the flattened_array_store_check.
1842     return true;
1843   }
1844   return false;
1845 }
1846 
1847 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) {
1848   return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array();
1849 }
1850 
1851 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1852   assert(x->is_pinned(),"");
1853   assert(x->elt_type() != T_ARRAY, "never used");
1854   bool is_loaded_flattened_array = x->array()->is_loaded_flattened_array();
1855   bool needs_range_check = x->compute_needs_range_check();
1856   bool use_length = x->length() != NULL;
1857   bool obj_store = is_reference_type(x->elt_type());
1858   bool needs_store_check = obj_store && !(is_loaded_flattened_array && x->is_exact_flattened_array_store()) &&
1859                                         (x->value()->as_Constant() == NULL ||
1860                                          !get_jobject_constant(x->value())->is_null_object());
1861 
1862   LIRItem array(x->array(), this);
1863   LIRItem index(x->index(), this);
1864   LIRItem value(x->value(), this);
1865   LIRItem length(this);
1866 
1867   array.load_item();
1868   index.load_nonconstant();
1869 
1870   if (use_length && needs_range_check) {
1871     length.set_instruction(x->length());
1872     length.load_item();
1873   }
1874 
1875   if (needs_store_check || x->check_boolean()
1876       || is_loaded_flattened_array || needs_flattened_array_store_check(x) || needs_null_free_array_store_check(x)) {
1877     value.load_item();
1878   } else {
1879     value.load_for_store(x->elt_type());
1880   }
1881 
1882   set_no_result(x);
1883 
1884   // the CodeEmitInfo must be duplicated for each different
1885   // LIR-instruction because spilling can occur anywhere between two
1886   // instructions and so the debug information must be different
1887   CodeEmitInfo* range_check_info = state_for(x);
1888   CodeEmitInfo* null_check_info = NULL;
1889   if (x->needs_null_check()) {
1890     null_check_info = new CodeEmitInfo(range_check_info);
1891   }
1892 
1893   if (GenerateRangeChecks && needs_range_check) {
1894     if (use_length) {
1895       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1896       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1897     } else {
1898       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1899       // range_check also does the null check
1900       null_check_info = NULL;
1901     }
1902   }
1903 
1904   if (x->should_profile()) {
1905     if (x->array()->is_loaded_flattened_array()) {
1906       // No need to profile a store to a flattened array of known type. This can happen if
1907       // the type only became known after optimizations (for example, after the PhiSimplifier).
1908       x->set_should_profile(false);
1909     } else {
1910       ciMethodData* md = NULL;
1911       ciArrayLoadStoreData* load_store = NULL;
1912       profile_array_type(x, md, load_store);
1913       if (x->array()->maybe_null_free_array()) {
1914         profile_null_free_array(array, md, load_store);
1915       }
1916       profile_element_type(x->value(), md, load_store);
1917     }
1918   }
1919 
1920   if (GenerateArrayStoreCheck && needs_store_check) {
1921     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1922     array_store_check(value.result(), array.result(), store_check_info, NULL, -1);
1923   }
1924 
1925   if (is_loaded_flattened_array) {
1926     if (!x->value()->is_null_free()) {
1927       __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1928     }
1929     // If array element is an empty inline type, no need to copy anything
1930     if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
1931       access_flattened_array(false, array, index, value);
1932     }
1933   } else {
1934     StoreFlattenedArrayStub* slow_path = NULL;
1935 
1936     if (needs_flattened_array_store_check(x)) {
1937       // Check if we indeed have a flattened array
1938       index.load_item();
1939       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before()));
1940       check_flattened_array(array.result(), value.result(), slow_path);
1941       set_in_conditional_code(true);
1942     } else if (needs_null_free_array_store_check(x)) {
1943       CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1944       check_null_free_array(array, value, info);
1945     }
1946 
1947     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1948     if (x->check_boolean()) {
1949       decorators |= C1_MASK_BOOLEAN;
1950     }
1951 
1952     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1953                     NULL, null_check_info);
1954     if (slow_path != NULL) {
1955       __ branch_destination(slow_path->continuation());
1956       set_in_conditional_code(false);
1957     }
1958   }
1959 }
1960 
1961 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1962                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1963                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1964   decorators |= ACCESS_READ;
1965   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1966   if (access.is_raw()) {
1967     _barrier_set->BarrierSetC1::load_at(access, result);
1968   } else {
1969     _barrier_set->load_at(access, result);
1970   }
1971 }
1972 
1973 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1974                                LIR_Opr addr, LIR_Opr result) {
1975   decorators |= ACCESS_READ;
1976   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1977   access.set_resolved_addr(addr);
1978   if (access.is_raw()) {
1979     _barrier_set->BarrierSetC1::load(access, result);
1980   } else {
1981     _barrier_set->load(access, result);
1982   }
1983 }
1984 
1985 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1986                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1987                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1988   decorators |= ACCESS_WRITE;
1989   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1990   if (access.is_raw()) {
1991     _barrier_set->BarrierSetC1::store_at(access, value);
1992   } else {
1993     _barrier_set->store_at(access, value);
1994   }
1995 }
1996 
1997 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1998                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1999   decorators |= ACCESS_READ;
2000   decorators |= ACCESS_WRITE;
2001   // Atomic operations are SEQ_CST by default
2002   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2003   LIRAccess access(this, decorators, base, offset, type);
2004   if (access.is_raw()) {
2005     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
2006   } else {
2007     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
2008   }
2009 }
2010 
2011 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
2012                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
2013   decorators |= ACCESS_READ;
2014   decorators |= ACCESS_WRITE;
2015   // Atomic operations are SEQ_CST by default
2016   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2017   LIRAccess access(this, decorators, base, offset, type);
2018   if (access.is_raw()) {
2019     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
2020   } else {
2021     return _barrier_set->atomic_xchg_at(access, value);
2022   }
2023 }
2024 
2025 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
2026                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
2027   decorators |= ACCESS_READ;
2028   decorators |= ACCESS_WRITE;
2029   // Atomic operations are SEQ_CST by default
2030   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2031   LIRAccess access(this, decorators, base, offset, type);
2032   if (access.is_raw()) {
2033     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
2034   } else {
2035     return _barrier_set->atomic_add_at(access, value);
2036   }
2037 }
2038 
2039 bool LIRGenerator::inline_type_field_access_prolog(AccessField* x) {
2040   ciField* field = x->field();
2041   assert(!field->is_flattened(), "Flattened field access should have been expanded");
2042   if (!field->is_null_free()) {
2043     return true; // Not an inline type field
2044   }
2045   // Deoptimize if the access is non-static and requires patching (holder not loaded
2046   // or not accessible) because then we only have partial field information and the
2047   // field could be flattened (see ciField constructor).
2048   bool could_be_flat = !x->is_static() && x->needs_patching();
2049   // Deoptimize if we load from a static field with an uninitialized type because we
2050   // need to throw an exception if initialization of the type failed.
2051   bool not_initialized = x->is_static() && x->as_LoadField() != NULL &&
2052       !field->type()->as_instance_klass()->is_initialized();
2053   if (could_be_flat || not_initialized) {
2054     CodeEmitInfo* info = state_for(x, x->state_before());
2055     CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
2056                                         Deoptimization::Reason_unloaded,
2057                                         Deoptimization::Action_make_not_entrant);
2058     __ jump(stub);
2059     return false;
2060   }
2061   return true;
2062 }
2063 
2064 void LIRGenerator::do_LoadField(LoadField* x) {
2065   bool needs_patching = x->needs_patching();
2066   bool is_volatile = x->field()->is_volatile();
2067   BasicType field_type = x->field_type();
2068 
2069   CodeEmitInfo* info = NULL;
2070   if (needs_patching) {
2071     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
2072     info = state_for(x, x->state_before());
2073   } else if (x->needs_null_check()) {
2074     NullCheck* nc = x->explicit_null_check();
2075     if (nc == NULL) {
2076       info = state_for(x);
2077     } else {
2078       info = state_for(nc);
2079     }
2080   }
2081 
2082   LIRItem object(x->obj(), this);
2083 
2084   object.load_item();
2085 
2086 #ifndef PRODUCT
2087   if (PrintNotLoaded && needs_patching) {
2088     tty->print_cr("   ###class not loaded at load_%s bci %d",
2089                   x->is_static() ?  "static" : "field", x->printable_bci());
2090   }
2091 #endif
2092 
2093   if (!inline_type_field_access_prolog(x)) {
2094     // Field load will always deopt due to unloaded field or holder klass
2095     LIR_Opr result = rlock_result(x, field_type);
2096     __ move(LIR_OprFact::oopConst(NULL), result);
2097     return;
2098   }
2099 
2100   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
2101   if (x->needs_null_check() &&
2102       (needs_patching ||
2103        MacroAssembler::needs_explicit_null_check(x->offset()) ||
2104        stress_deopt)) {
2105     LIR_Opr obj = object.result();
2106     if (stress_deopt) {
2107       obj = new_register(T_OBJECT);
2108       __ move(LIR_OprFact::oopConst(NULL), obj);
2109     }
2110     // Emit an explicit null check because the offset is too large.
2111     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
2112     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
2113     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
2114   }
2115 
2116   DecoratorSet decorators = IN_HEAP;
2117   if (is_volatile) {
2118     decorators |= MO_SEQ_CST;
2119   }
2120   if (needs_patching) {
2121     decorators |= C1_NEEDS_PATCHING;
2122   }
2123 
2124   LIR_Opr result = rlock_result(x, field_type);
2125   access_load_at(decorators, field_type,
2126                  object, LIR_OprFact::intConst(x->offset()), result,
2127                  info ? new CodeEmitInfo(info) : NULL, info);
2128 
2129   ciField* field = x->field();
2130   if (field->is_null_free()) {
2131     // Load from non-flattened inline type field requires
2132     // a null check to replace null with the default value.
2133     ciInstanceKlass* holder = field->holder();
2134     if (field->is_static() && holder->is_loaded()) {
2135       ciObject* val = holder->java_mirror()->field_value(field).as_object();
2136       if (!val->is_null_object()) {
2137         // Static field is initialized, we don't need to perform a null check.
2138         return;
2139       }
2140     }
2141     ciInlineKlass* inline_klass = field->type()->as_inline_klass();
2142     if (inline_klass->is_initialized()) {
2143       LabelObj* L_end = new LabelObj();
2144       __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(NULL));
2145       __ branch(lir_cond_notEqual, L_end->label());
2146       set_in_conditional_code(true);
2147       Constant* default_value = new Constant(new InstanceConstant(inline_klass->default_instance()));
2148       if (default_value->is_pinned()) {
2149         __ move(LIR_OprFact::value_type(default_value->type()), result);
2150       } else {
2151         __ move(load_constant(default_value), result);
2152       }
2153       __ branch_destination(L_end->label());
2154       set_in_conditional_code(false);
2155     } else {
2156       __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
2157       __ branch(lir_cond_equal, new DeoptimizeStub(info, Deoptimization::Reason_uninitialized,
2158                                                          Deoptimization::Action_make_not_entrant));
2159     }
2160   }
2161 }
2162 
2163 // int/long jdk.internal.util.Preconditions.checkIndex
2164 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
2165   assert(x->number_of_arguments() == 3, "wrong type");
2166   LIRItem index(x->argument_at(0), this);
2167   LIRItem length(x->argument_at(1), this);
2168   LIRItem oobef(x->argument_at(2), this);
2169 
2170   index.load_item();
2171   length.load_item();
2172   oobef.load_item();
2173 
2174   LIR_Opr result = rlock_result(x);
2175   // x->state() is created from copy_state_for_exception, it does not contains arguments
2176   // we should prepare them before entering into interpreter mode due to deoptimization.
2177   ValueStack* state = x->state();
2178   for (int i = 0; i < x->number_of_arguments(); i++) {
2179     Value arg = x->argument_at(i);
2180     state->push(arg->type(), arg);
2181   }
2182   CodeEmitInfo* info = state_for(x, state);
2183 
2184   LIR_Opr len = length.result();
2185   LIR_Opr zero;
2186   if (type == T_INT) {
2187     zero = LIR_OprFact::intConst(0);
2188     if (length.result()->is_constant()){
2189       len = LIR_OprFact::intConst(length.result()->as_jint());
2190     }
2191   } else {
2192     assert(type == T_LONG, "sanity check");
2193     zero = LIR_OprFact::longConst(0);
2194     if (length.result()->is_constant()){
2195       len = LIR_OprFact::longConst(length.result()->as_jlong());
2196     }
2197   }
2198   // C1 can not handle the case that comparing index with constant value while condition
2199   // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
2200   LIR_Opr zero_reg = new_register(type);
2201   __ move(zero, zero_reg);
2202 #if defined(X86) && !defined(_LP64)
2203   // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
2204   LIR_Opr index_copy = new_register(index.type());
2205   // index >= 0
2206   __ move(index.result(), index_copy);
2207   __ cmp(lir_cond_less, index_copy, zero_reg);
2208   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2209                                                     Deoptimization::Action_make_not_entrant));
2210   // index < length
2211   __ move(index.result(), index_copy);
2212   __ cmp(lir_cond_greaterEqual, index_copy, len);
2213   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2214                                                             Deoptimization::Action_make_not_entrant));
2215 #else
2216   // index >= 0
2217   __ cmp(lir_cond_less, index.result(), zero_reg);
2218   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2219                                                     Deoptimization::Action_make_not_entrant));
2220   // index < length
2221   __ cmp(lir_cond_greaterEqual, index.result(), len);
2222   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2223                                                             Deoptimization::Action_make_not_entrant));
2224 #endif
2225   __ move(index.result(), result);
2226 }
2227 
2228 //------------------------array access--------------------------------------
2229 
2230 
2231 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
2232   LIRItem array(x->array(), this);
2233   array.load_item();
2234   LIR_Opr reg = rlock_result(x);
2235 
2236   CodeEmitInfo* info = NULL;
2237   if (x->needs_null_check()) {
2238     NullCheck* nc = x->explicit_null_check();
2239     if (nc == NULL) {
2240       info = state_for(x);
2241     } else {
2242       info = state_for(nc);
2243     }
2244     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
2245       LIR_Opr obj = new_register(T_OBJECT);
2246       __ move(LIR_OprFact::oopConst(NULL), obj);
2247       __ null_check(obj, new CodeEmitInfo(info));
2248     }
2249   }
2250   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
2251 }
2252 
2253 
2254 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
2255   bool use_length = x->length() != NULL;
2256   LIRItem array(x->array(), this);
2257   LIRItem index(x->index(), this);
2258   LIRItem length(this);
2259   bool needs_range_check = x->compute_needs_range_check();
2260 
2261   if (use_length && needs_range_check) {
2262     length.set_instruction(x->length());
2263     length.load_item();
2264   }
2265 
2266   array.load_item();
2267   if (index.is_constant() && can_inline_as_constant(x->index())) {
2268     // let it be a constant
2269     index.dont_load_item();
2270   } else {
2271     index.load_item();
2272   }
2273 
2274   CodeEmitInfo* range_check_info = state_for(x);
2275   CodeEmitInfo* null_check_info = NULL;
2276   if (x->needs_null_check()) {
2277     NullCheck* nc = x->explicit_null_check();
2278     if (nc != NULL) {
2279       null_check_info = state_for(nc);
2280     } else {
2281       null_check_info = range_check_info;
2282     }
2283     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2284       LIR_Opr obj = new_register(T_OBJECT);
2285       __ move(LIR_OprFact::oopConst(NULL), obj);
2286       __ null_check(obj, new CodeEmitInfo(null_check_info));
2287     }
2288   }
2289 
2290   if (GenerateRangeChecks && needs_range_check) {
2291     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2292       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2293     } else if (use_length) {
2294       // TODO: use a (modified) version of array_range_check that does not require a
2295       //       constant length to be loaded to a register
2296       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2297       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2298     } else {
2299       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2300       // The range check performs the null check, so clear it out for the load
2301       null_check_info = NULL;
2302     }
2303   }
2304 
2305   ciMethodData* md = NULL;
2306   ciArrayLoadStoreData* load_store = NULL;
2307   if (x->should_profile()) {
2308     if (x->array()->is_loaded_flattened_array()) {
2309       // No need to profile a load from a flattened array of known type. This can happen if
2310       // the type only became known after optimizations (for example, after the PhiSimplifier).
2311       x->set_should_profile(false);
2312     } else {
2313       profile_array_type(x, md, load_store);
2314     }
2315   }
2316 
2317   Value element;
2318   if (x->vt() != NULL) {
2319     assert(x->array()->is_loaded_flattened_array(), "must be");
2320     // Find the destination address (of the NewInlineTypeInstance).
2321     LIRItem obj_item(x->vt(), this);
2322 
2323     access_flattened_array(true, array, index, obj_item,
2324                            x->delayed() == NULL ? 0 : x->delayed()->field(),
2325                            x->delayed() == NULL ? 0 : x->delayed()->offset());
2326     set_no_result(x);
2327   } else if (x->delayed() != NULL) {
2328     assert(x->array()->is_loaded_flattened_array(), "must be");
2329     LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type());
2330     access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset());
2331   } else if (x->array() != NULL && x->array()->is_loaded_flattened_array() &&
2332              x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_initialized() &&
2333              x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
2334     // Load the default instance instead of reading the element
2335     ciInlineKlass* elem_klass = x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
2336     LIR_Opr result = rlock_result(x, x->elt_type());
2337     assert(elem_klass->is_initialized(), "Must be");
2338     Constant* default_value = new Constant(new InstanceConstant(elem_klass->default_instance()));
2339     if (default_value->is_pinned()) {
2340       __ move(LIR_OprFact::value_type(default_value->type()), result);
2341     } else {
2342       __ move(load_constant(default_value), result);
2343     }
2344   } else {
2345     LIR_Opr result = rlock_result(x, x->elt_type());
2346     LoadFlattenedArrayStub* slow_path = NULL;
2347 
2348     if (x->should_profile() && x->array()->maybe_null_free_array()) {
2349       profile_null_free_array(array, md, load_store);
2350     }
2351 
2352     if (x->elt_type() == T_OBJECT && x->array()->maybe_flattened_array()) {
2353       assert(x->delayed() == NULL, "Delayed LoadIndexed only apply to loaded_flattened_arrays");
2354       index.load_item();
2355       // if we are loading from flattened array, load it using a runtime call
2356       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before()));
2357       check_flattened_array(array.result(), LIR_OprFact::illegalOpr, slow_path);
2358       set_in_conditional_code(true);
2359     }
2360 
2361     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2362     access_load_at(decorators, x->elt_type(),
2363                    array, index.result(), result,
2364                    NULL, null_check_info);
2365 
2366     if (slow_path != NULL) {
2367       __ branch_destination(slow_path->continuation());
2368       set_in_conditional_code(false);
2369     }
2370 
2371     element = x;
2372   }
2373 
2374   if (x->should_profile()) {
2375     profile_element_type(element, md, load_store);
2376   }
2377 }
2378 
2379 void LIRGenerator::do_Deoptimize(Deoptimize* x) {
2380   // This happens only when a class X uses the withfield/aconst_init bytecode
2381   // to refer to an inline class V, where V has not yet been loaded/resolved.
2382   // This is not a common case. Let's just deoptimize.
2383   CodeEmitInfo* info = state_for(x, x->state_before());
2384   CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
2385                                       Deoptimization::Reason_unloaded,
2386                                       Deoptimization::Action_make_not_entrant);
2387   __ jump(stub);
2388   LIR_Opr reg = rlock_result(x, T_OBJECT);
2389   __ move(LIR_OprFact::oopConst(NULL), reg);
2390 }
2391 
2392 void LIRGenerator::do_NullCheck(NullCheck* x) {
2393   if (x->can_trap()) {
2394     LIRItem value(x->obj(), this);
2395     value.load_item();
2396     CodeEmitInfo* info = state_for(x);
2397     __ null_check(value.result(), info);
2398   }
2399 }
2400 
2401 
2402 void LIRGenerator::do_TypeCast(TypeCast* x) {
2403   LIRItem value(x->obj(), this);
2404   value.load_item();
2405   // the result is the same as from the node we are casting
2406   set_result(x, value.result());
2407 }
2408 
2409 
2410 void LIRGenerator::do_Throw(Throw* x) {
2411   LIRItem exception(x->exception(), this);
2412   exception.load_item();
2413   set_no_result(x);
2414   LIR_Opr exception_opr = exception.result();
2415   CodeEmitInfo* info = state_for(x, x->state());
2416 
2417 #ifndef PRODUCT
2418   if (PrintC1Statistics) {
2419     increment_counter(Runtime1::throw_count_address(), T_INT);
2420   }
2421 #endif
2422 
2423   // check if the instruction has an xhandler in any of the nested scopes
2424   bool unwind = false;
2425   if (info->exception_handlers()->length() == 0) {
2426     // this throw is not inside an xhandler
2427     unwind = true;
2428   } else {
2429     // get some idea of the throw type
2430     bool type_is_exact = true;
2431     ciType* throw_type = x->exception()->exact_type();
2432     if (throw_type == NULL) {
2433       type_is_exact = false;
2434       throw_type = x->exception()->declared_type();
2435     }
2436     if (throw_type != NULL && throw_type->is_instance_klass()) {
2437       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2438       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2439     }
2440   }
2441 
2442   // do null check before moving exception oop into fixed register
2443   // to avoid a fixed interval with an oop during the null check.
2444   // Use a copy of the CodeEmitInfo because debug information is
2445   // different for null_check and throw.
2446   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2447     // if the exception object wasn't created using new then it might be null.
2448     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2449   }
2450 
2451   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2452     // we need to go through the exception lookup path to get JVMTI
2453     // notification done
2454     unwind = false;
2455   }
2456 
2457   // move exception oop into fixed register
2458   __ move(exception_opr, exceptionOopOpr());
2459 
2460   if (unwind) {
2461     __ unwind_exception(exceptionOopOpr());
2462   } else {
2463     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2464   }
2465 }
2466 
2467 
2468 void LIRGenerator::do_RoundFP(RoundFP* x) {
2469   assert(strict_fp_requires_explicit_rounding, "not required");
2470 
2471   LIRItem input(x->input(), this);
2472   input.load_item();
2473   LIR_Opr input_opr = input.result();
2474   assert(input_opr->is_register(), "why round if value is not in a register?");
2475   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2476   if (input_opr->is_single_fpu()) {
2477     set_result(x, round_item(input_opr)); // This code path not currently taken
2478   } else {
2479     LIR_Opr result = new_register(T_DOUBLE);
2480     set_vreg_flag(result, must_start_in_memory);
2481     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2482     set_result(x, result);
2483   }
2484 }
2485 
2486 
2487 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2488   BasicType type = x->basic_type();
2489   LIRItem src(x->object(), this);
2490   LIRItem off(x->offset(), this);
2491 
2492   off.load_item();
2493   src.load_item();
2494 
2495   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2496 
2497   if (x->is_volatile()) {
2498     decorators |= MO_SEQ_CST;
2499   }
2500   if (type == T_BOOLEAN) {
2501     decorators |= C1_MASK_BOOLEAN;
2502   }
2503   if (is_reference_type(type)) {
2504     decorators |= ON_UNKNOWN_OOP_REF;
2505   }
2506 
2507   LIR_Opr result = rlock_result(x, type);
2508   if (!x->is_raw()) {
2509     access_load_at(decorators, type, src, off.result(), result);
2510   } else {
2511     // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2512     // It reads the value from [src + offset] directly.
2513 #ifdef _LP64
2514     LIR_Opr offset = new_register(T_LONG);
2515     __ convert(Bytecodes::_i2l, off.result(), offset);
2516 #else
2517     LIR_Opr offset = off.result();
2518 #endif
2519     LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2520     if (is_reference_type(type)) {
2521       __ move_wide(addr, result);
2522     } else {
2523       __ move(addr, result);
2524     }
2525   }
2526 }
2527 
2528 
2529 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2530   BasicType type = x->basic_type();
2531   LIRItem src(x->object(), this);
2532   LIRItem off(x->offset(), this);
2533   LIRItem data(x->value(), this);
2534 
2535   src.load_item();
2536   if (type == T_BOOLEAN || type == T_BYTE) {
2537     data.load_byte_item();
2538   } else {
2539     data.load_item();
2540   }
2541   off.load_item();
2542 
2543   set_no_result(x);
2544 
2545   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2546   if (is_reference_type(type)) {
2547     decorators |= ON_UNKNOWN_OOP_REF;
2548   }
2549   if (x->is_volatile()) {
2550     decorators |= MO_SEQ_CST;
2551   }
2552   access_store_at(decorators, type, src, off.result(), data.result());
2553 }
2554 
2555 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2556   BasicType type = x->basic_type();
2557   LIRItem src(x->object(), this);
2558   LIRItem off(x->offset(), this);
2559   LIRItem value(x->value(), this);
2560 
2561   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2562 
2563   if (is_reference_type(type)) {
2564     decorators |= ON_UNKNOWN_OOP_REF;
2565   }
2566 
2567   LIR_Opr result;
2568   if (x->is_add()) {
2569     result = access_atomic_add_at(decorators, type, src, off, value);
2570   } else {
2571     result = access_atomic_xchg_at(decorators, type, src, off, value);
2572   }
2573   set_result(x, result);
2574 }
2575 
2576 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2577   int lng = x->length();
2578 
2579   for (int i = 0; i < lng; i++) {
2580     C1SwitchRange* one_range = x->at(i);
2581     int low_key = one_range->low_key();
2582     int high_key = one_range->high_key();
2583     BlockBegin* dest = one_range->sux();
2584     if (low_key == high_key) {
2585       __ cmp(lir_cond_equal, value, low_key);
2586       __ branch(lir_cond_equal, dest);
2587     } else if (high_key - low_key == 1) {
2588       __ cmp(lir_cond_equal, value, low_key);
2589       __ branch(lir_cond_equal, dest);
2590       __ cmp(lir_cond_equal, value, high_key);
2591       __ branch(lir_cond_equal, dest);
2592     } else {
2593       LabelObj* L = new LabelObj();
2594       __ cmp(lir_cond_less, value, low_key);
2595       __ branch(lir_cond_less, L->label());
2596       __ cmp(lir_cond_lessEqual, value, high_key);
2597       __ branch(lir_cond_lessEqual, dest);
2598       __ branch_destination(L->label());
2599     }
2600   }
2601   __ jump(default_sux);
2602 }
2603 
2604 
2605 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2606   SwitchRangeList* res = new SwitchRangeList();
2607   int len = x->length();
2608   if (len > 0) {
2609     BlockBegin* sux = x->sux_at(0);
2610     int key = x->lo_key();
2611     BlockBegin* default_sux = x->default_sux();
2612     C1SwitchRange* range = new C1SwitchRange(key, sux);
2613     for (int i = 0; i < len; i++, key++) {
2614       BlockBegin* new_sux = x->sux_at(i);
2615       if (sux == new_sux) {
2616         // still in same range
2617         range->set_high_key(key);
2618       } else {
2619         // skip tests which explicitly dispatch to the default
2620         if (sux != default_sux) {
2621           res->append(range);
2622         }
2623         range = new C1SwitchRange(key, new_sux);
2624       }
2625       sux = new_sux;
2626     }
2627     if (res->length() == 0 || res->last() != range)  res->append(range);
2628   }
2629   return res;
2630 }
2631 
2632 
2633 // we expect the keys to be sorted by increasing value
2634 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2635   SwitchRangeList* res = new SwitchRangeList();
2636   int len = x->length();
2637   if (len > 0) {
2638     BlockBegin* default_sux = x->default_sux();
2639     int key = x->key_at(0);
2640     BlockBegin* sux = x->sux_at(0);
2641     C1SwitchRange* range = new C1SwitchRange(key, sux);
2642     for (int i = 1; i < len; i++) {
2643       int new_key = x->key_at(i);
2644       BlockBegin* new_sux = x->sux_at(i);
2645       if (key+1 == new_key && sux == new_sux) {
2646         // still in same range
2647         range->set_high_key(new_key);
2648       } else {
2649         // skip tests which explicitly dispatch to the default
2650         if (range->sux() != default_sux) {
2651           res->append(range);
2652         }
2653         range = new C1SwitchRange(new_key, new_sux);
2654       }
2655       key = new_key;
2656       sux = new_sux;
2657     }
2658     if (res->length() == 0 || res->last() != range)  res->append(range);
2659   }
2660   return res;
2661 }
2662 
2663 
2664 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2665   LIRItem tag(x->tag(), this);
2666   tag.load_item();
2667   set_no_result(x);
2668 
2669   if (x->is_safepoint()) {
2670     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2671   }
2672 
2673   // move values into phi locations
2674   move_to_phi(x->state());
2675 
2676   int lo_key = x->lo_key();
2677   int len = x->length();
2678   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2679   LIR_Opr value = tag.result();
2680 
2681   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2682     ciMethod* method = x->state()->scope()->method();
2683     ciMethodData* md = method->method_data_or_null();
2684     assert(md != NULL, "Sanity");
2685     ciProfileData* data = md->bci_to_data(x->state()->bci());
2686     assert(data != NULL, "must have profiling data");
2687     assert(data->is_MultiBranchData(), "bad profile data?");
2688     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2689     LIR_Opr md_reg = new_register(T_METADATA);
2690     __ metadata2reg(md->constant_encoding(), md_reg);
2691     LIR_Opr data_offset_reg = new_pointer_register();
2692     LIR_Opr tmp_reg = new_pointer_register();
2693 
2694     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2695     for (int i = 0; i < len; i++) {
2696       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2697       __ cmp(lir_cond_equal, value, i + lo_key);
2698       __ move(data_offset_reg, tmp_reg);
2699       __ cmove(lir_cond_equal,
2700                LIR_OprFact::intptrConst(count_offset),
2701                tmp_reg,
2702                data_offset_reg, T_INT);
2703     }
2704 
2705     LIR_Opr data_reg = new_pointer_register();
2706     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2707     __ move(data_addr, data_reg);
2708     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2709     __ move(data_reg, data_addr);
2710   }
2711 
2712   if (UseTableRanges) {
2713     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2714   } else {
2715     for (int i = 0; i < len; i++) {
2716       __ cmp(lir_cond_equal, value, i + lo_key);
2717       __ branch(lir_cond_equal, x->sux_at(i));
2718     }
2719     __ jump(x->default_sux());
2720   }
2721 }
2722 
2723 
2724 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2725   LIRItem tag(x->tag(), this);
2726   tag.load_item();
2727   set_no_result(x);
2728 
2729   if (x->is_safepoint()) {
2730     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2731   }
2732 
2733   // move values into phi locations
2734   move_to_phi(x->state());
2735 
2736   LIR_Opr value = tag.result();
2737   int len = x->length();
2738 
2739   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2740     ciMethod* method = x->state()->scope()->method();
2741     ciMethodData* md = method->method_data_or_null();
2742     assert(md != NULL, "Sanity");
2743     ciProfileData* data = md->bci_to_data(x->state()->bci());
2744     assert(data != NULL, "must have profiling data");
2745     assert(data->is_MultiBranchData(), "bad profile data?");
2746     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2747     LIR_Opr md_reg = new_register(T_METADATA);
2748     __ metadata2reg(md->constant_encoding(), md_reg);
2749     LIR_Opr data_offset_reg = new_pointer_register();
2750     LIR_Opr tmp_reg = new_pointer_register();
2751 
2752     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2753     for (int i = 0; i < len; i++) {
2754       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2755       __ cmp(lir_cond_equal, value, x->key_at(i));
2756       __ move(data_offset_reg, tmp_reg);
2757       __ cmove(lir_cond_equal,
2758                LIR_OprFact::intptrConst(count_offset),
2759                tmp_reg,
2760                data_offset_reg, T_INT);
2761     }
2762 
2763     LIR_Opr data_reg = new_pointer_register();
2764     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2765     __ move(data_addr, data_reg);
2766     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2767     __ move(data_reg, data_addr);
2768   }
2769 
2770   if (UseTableRanges) {
2771     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2772   } else {
2773     int len = x->length();
2774     for (int i = 0; i < len; i++) {
2775       __ cmp(lir_cond_equal, value, x->key_at(i));
2776       __ branch(lir_cond_equal, x->sux_at(i));
2777     }
2778     __ jump(x->default_sux());
2779   }
2780 }
2781 
2782 
2783 void LIRGenerator::do_Goto(Goto* x) {
2784   set_no_result(x);
2785 
2786   if (block()->next()->as_OsrEntry()) {
2787     // need to free up storage used for OSR entry point
2788     LIR_Opr osrBuffer = block()->next()->operand();
2789     BasicTypeList signature;
2790     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2791     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2792     __ move(osrBuffer, cc->args()->at(0));
2793     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2794                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2795   }
2796 
2797   if (x->is_safepoint()) {
2798     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2799 
2800     // increment backedge counter if needed
2801     CodeEmitInfo* info = state_for(x, state);
2802     increment_backedge_counter(info, x->profiled_bci());
2803     CodeEmitInfo* safepoint_info = state_for(x, state);
2804     __ safepoint(safepoint_poll_register(), safepoint_info);
2805   }
2806 
2807   // Gotos can be folded Ifs, handle this case.
2808   if (x->should_profile()) {
2809     ciMethod* method = x->profiled_method();
2810     assert(method != NULL, "method should be set if branch is profiled");
2811     ciMethodData* md = method->method_data_or_null();
2812     assert(md != NULL, "Sanity");
2813     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2814     assert(data != NULL, "must have profiling data");
2815     int offset;
2816     if (x->direction() == Goto::taken) {
2817       assert(data->is_BranchData(), "need BranchData for two-way branches");
2818       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2819     } else if (x->direction() == Goto::not_taken) {
2820       assert(data->is_BranchData(), "need BranchData for two-way branches");
2821       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2822     } else {
2823       assert(data->is_JumpData(), "need JumpData for branches");
2824       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2825     }
2826     LIR_Opr md_reg = new_register(T_METADATA);
2827     __ metadata2reg(md->constant_encoding(), md_reg);
2828 
2829     increment_counter(new LIR_Address(md_reg, offset,
2830                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2831   }
2832 
2833   // emit phi-instruction move after safepoint since this simplifies
2834   // describing the state as the safepoint.
2835   move_to_phi(x->state());
2836 
2837   __ jump(x->default_sux());
2838 }
2839 
2840 /**
2841  * Emit profiling code if needed for arguments, parameters, return value types
2842  *
2843  * @param md                    MDO the code will update at runtime
2844  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2845  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2846  * @param profiled_k            current profile
2847  * @param obj                   IR node for the object to be profiled
2848  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2849  *                              Set once we find an update to make and use for next ones.
2850  * @param not_null              true if we know obj cannot be null
2851  * @param signature_at_call_k   signature at call for obj
2852  * @param callee_signature_k    signature of callee for obj
2853  *                              at call and callee signatures differ at method handle call
2854  * @return                      the only klass we know will ever be seen at this profile point
2855  */
2856 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2857                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2858                                     ciKlass* callee_signature_k) {
2859   ciKlass* result = NULL;
2860   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2861   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2862   // known not to be null or null bit already set and already set to
2863   // unknown: nothing we can do to improve profiling
2864   if (!do_null && !do_update) {
2865     return result;
2866   }
2867 
2868   ciKlass* exact_klass = NULL;
2869   Compilation* comp = Compilation::current();
2870   if (do_update) {
2871     // try to find exact type, using CHA if possible, so that loading
2872     // the klass from the object can be avoided
2873     ciType* type = obj->exact_type();
2874     if (type == NULL) {
2875       type = obj->declared_type();
2876       type = comp->cha_exact_type(type);
2877     }
2878     assert(type == NULL || type->is_klass(), "type should be class");
2879     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2880 
2881     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2882   }
2883 
2884   if (!do_null && !do_update) {
2885     return result;
2886   }
2887 
2888   ciKlass* exact_signature_k = NULL;
2889   if (do_update && signature_at_call_k != NULL) {
2890     // Is the type from the signature exact (the only one possible)?
2891     exact_signature_k = signature_at_call_k->exact_klass();
2892     if (exact_signature_k == NULL) {
2893       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2894     } else {
2895       result = exact_signature_k;
2896       // Known statically. No need to emit any code: prevent
2897       // LIR_Assembler::emit_profile_type() from emitting useless code
2898       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2899     }
2900     // exact_klass and exact_signature_k can be both non NULL but
2901     // different if exact_klass is loaded after the ciObject for
2902     // exact_signature_k is created.
2903     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2904       // sometimes the type of the signature is better than the best type
2905       // the compiler has
2906       exact_klass = exact_signature_k;
2907     }
2908     if (callee_signature_k != NULL &&
2909         callee_signature_k != signature_at_call_k) {
2910       ciKlass* improved_klass = callee_signature_k->exact_klass();
2911       if (improved_klass == NULL) {
2912         improved_klass = comp->cha_exact_type(callee_signature_k);
2913       }
2914       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2915         exact_klass = exact_signature_k;
2916       }
2917     }
2918     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2919   }
2920 
2921   if (!do_null && !do_update) {
2922     return result;
2923   }
2924 
2925   if (mdp == LIR_OprFact::illegalOpr) {
2926     mdp = new_register(T_METADATA);
2927     __ metadata2reg(md->constant_encoding(), mdp);
2928     if (md_base_offset != 0) {
2929       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2930       mdp = new_pointer_register();
2931       __ leal(LIR_OprFact::address(base_type_address), mdp);
2932     }
2933   }
2934   LIRItem value(obj, this);
2935   value.load_item();
2936   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2937                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2938   return result;
2939 }
2940 
2941 // profile parameters on entry to the root of the compilation
2942 void LIRGenerator::profile_parameters(Base* x) {
2943   if (compilation()->profile_parameters()) {
2944     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2945     ciMethodData* md = scope()->method()->method_data_or_null();
2946     assert(md != NULL, "Sanity");
2947 
2948     if (md->parameters_type_data() != NULL) {
2949       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2950       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2951       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2952       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2953         LIR_Opr src = args->at(i);
2954         assert(!src->is_illegal(), "check");
2955         BasicType t = src->type();
2956         if (is_reference_type(t)) {
2957           intptr_t profiled_k = parameters->type(j);
2958           Local* local = x->state()->local_at(java_index)->as_Local();
2959           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2960                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2961                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2962           // If the profile is known statically set it once for all and do not emit any code
2963           if (exact != NULL) {
2964             md->set_parameter_type(j, exact);
2965           }
2966           j++;
2967         }
2968         java_index += type2size[t];
2969       }
2970     }
2971   }
2972 }
2973 
2974 void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) {
2975   assert(md != NULL && data != NULL, "should have been initialized");
2976   LIR_Opr mdp = new_register(T_METADATA);
2977   __ metadata2reg(md->constant_encoding(), mdp);
2978   LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE);
2979   LIR_Opr flags = new_register(T_INT);
2980   __ move(addr, flags);
2981   if (condition != lir_cond_always) {
2982     LIR_Opr update = new_register(T_INT);
2983     __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT);
2984   } else {
2985     __ logical_or(flags, LIR_OprFact::intConst(flag), flags);
2986   }
2987   __ store(flags, addr);
2988 }
2989 
2990 void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ciArrayLoadStoreData* load_store) {
2991   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2992   LabelObj* L_end = new LabelObj();
2993   LIR_Opr tmp = new_register(T_METADATA);
2994   __ check_null_free_array(array.result(), tmp);
2995 
2996   profile_flags(md, load_store, ArrayLoadStoreData::null_free_array_byte_constant(), lir_cond_equal);
2997 }
2998 
2999 void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ciArrayLoadStoreData*& load_store) {
3000   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
3001   int bci = x->profiled_bci();
3002   md = x->profiled_method()->method_data();
3003   assert(md != NULL, "Sanity");
3004   ciProfileData* data = md->bci_to_data(bci);
3005   assert(data != NULL && data->is_ArrayLoadStoreData(), "incorrect profiling entry");
3006   load_store = (ciArrayLoadStoreData*)data;
3007   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3008   profile_type(md, md->byte_offset_of_slot(load_store, ArrayLoadStoreData::array_offset()), 0,
3009                load_store->array()->type(), x->array(), mdp, true, NULL, NULL);
3010 }
3011 
3012 void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadStoreData* load_store) {
3013   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
3014   assert(md != NULL && load_store != NULL, "should have been initialized");
3015   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3016   profile_type(md, md->byte_offset_of_slot(load_store, ArrayLoadStoreData::element_offset()), 0,
3017                load_store->element()->type(), element, mdp, false, NULL, NULL);
3018 }
3019 
3020 void LIRGenerator::do_Base(Base* x) {
3021   __ std_entry(LIR_OprFact::illegalOpr);
3022   // Emit moves from physical registers / stack slots to virtual registers
3023   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3024   IRScope* irScope = compilation()->hir()->top_scope();
3025   int java_index = 0;
3026   for (int i = 0; i < args->length(); i++) {
3027     LIR_Opr src = args->at(i);
3028     assert(!src->is_illegal(), "check");
3029     BasicType t = src->type();
3030 
3031     // Types which are smaller than int are passed as int, so
3032     // correct the type which passed.
3033     switch (t) {
3034     case T_BYTE:
3035     case T_BOOLEAN:
3036     case T_SHORT:
3037     case T_CHAR:
3038       t = T_INT;
3039       break;
3040     default:
3041       break;
3042     }
3043 
3044     LIR_Opr dest = new_register(t);
3045     __ move(src, dest);
3046 
3047     // Assign new location to Local instruction for this local
3048     Local* local = x->state()->local_at(java_index)->as_Local();
3049     assert(local != NULL, "Locals for incoming arguments must have been created");
3050 #ifndef __SOFTFP__
3051     // The java calling convention passes double as long and float as int.
3052     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
3053 #endif // __SOFTFP__
3054     local->set_operand(dest);
3055     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
3056     java_index += type2size[t];
3057   }
3058 
3059   if (compilation()->env()->dtrace_method_probes()) {
3060     BasicTypeList signature;
3061     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3062     signature.append(T_METADATA); // Method*
3063     LIR_OprList* args = new LIR_OprList();
3064     args->append(getThreadPointer());
3065     LIR_Opr meth = new_register(T_METADATA);
3066     __ metadata2reg(method()->constant_encoding(), meth);
3067     args->append(meth);
3068     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
3069   }
3070 
3071   if (method()->is_synchronized()) {
3072     LIR_Opr obj;
3073     if (method()->is_static()) {
3074       obj = new_register(T_OBJECT);
3075       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
3076     } else {
3077       Local* receiver = x->state()->local_at(0)->as_Local();
3078       assert(receiver != NULL, "must already exist");
3079       obj = receiver->operand();
3080     }
3081     assert(obj->is_valid(), "must be valid");
3082 
3083     if (method()->is_synchronized() && GenerateSynchronizationCode) {
3084       LIR_Opr lock = syncLockOpr();
3085       __ load_stack_address_monitor(0, lock);
3086 
3087       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
3088       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
3089 
3090       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
3091       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
3092     }
3093   }
3094   if (compilation()->age_code()) {
3095     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
3096     decrement_age(info);
3097   }
3098   // increment invocation counters if needed
3099   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
3100     profile_parameters(x);
3101     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
3102     increment_invocation_counter(info);
3103   }
3104   if (method()->has_scalarized_args()) {
3105     // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments
3106     // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state.
3107     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
3108     CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none);
3109     __ append(new LIR_Op0(lir_check_orig_pc));
3110     __ branch(lir_cond_notEqual, deopt_stub);
3111   }
3112 
3113   // all blocks with a successor must end with an unconditional jump
3114   // to the successor even if they are consecutive
3115   __ jump(x->default_sux());
3116 }
3117 
3118 
3119 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
3120   // construct our frame and model the production of incoming pointer
3121   // to the OSR buffer.
3122   __ osr_entry(LIR_Assembler::osrBufferPointer());
3123   LIR_Opr result = rlock_result(x);
3124   __ move(LIR_Assembler::osrBufferPointer(), result);
3125 }
3126 
3127 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) {
3128   if (loc->is_register()) {
3129     param->load_item_force(loc);
3130   } else {
3131     LIR_Address* addr = loc->as_address_ptr();
3132     param->load_for_store(addr->type());
3133     assert(addr->type() != T_INLINE_TYPE, "not supported yet");
3134     if (addr->type() == T_OBJECT) {
3135       __ move_wide(param->result(), addr);
3136     } else {
3137       __ move(param->result(), addr);
3138     }
3139   }
3140 }
3141 
3142 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3143   assert(args->length() == arg_list->length(),
3144          "args=%d, arg_list=%d", args->length(), arg_list->length());
3145   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3146     LIRItem* param = args->at(i);
3147     LIR_Opr loc = arg_list->at(i);
3148     invoke_load_one_argument(param, loc);
3149   }
3150 
3151   if (x->has_receiver()) {
3152     LIRItem* receiver = args->at(0);
3153     LIR_Opr loc = arg_list->at(0);
3154     if (loc->is_register()) {
3155       receiver->load_item_force(loc);
3156     } else {
3157       assert(loc->is_address(), "just checking");
3158       receiver->load_for_store(T_OBJECT);
3159       __ move_wide(receiver->result(), loc->as_address_ptr());
3160     }
3161   }
3162 }
3163 
3164 
3165 // Visits all arguments, returns appropriate items without loading them
3166 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3167   LIRItemList* argument_items = new LIRItemList();
3168   if (x->has_receiver()) {
3169     LIRItem* receiver = new LIRItem(x->receiver(), this);
3170     argument_items->append(receiver);
3171   }
3172   for (int i = 0; i < x->number_of_arguments(); i++) {
3173     LIRItem* param = new LIRItem(x->argument_at(i), this);
3174     argument_items->append(param);
3175   }
3176   return argument_items;
3177 }
3178 
3179 
3180 // The invoke with receiver has following phases:
3181 //   a) traverse and load/lock receiver;
3182 //   b) traverse all arguments -> item-array (invoke_visit_argument)
3183 //   c) push receiver on stack
3184 //   d) load each of the items and push on stack
3185 //   e) unlock receiver
3186 //   f) move receiver into receiver-register %o0
3187 //   g) lock result registers and emit call operation
3188 //
3189 // Before issuing a call, we must spill-save all values on stack
3190 // that are in caller-save register. "spill-save" moves those registers
3191 // either in a free callee-save register or spills them if no free
3192 // callee save register is available.
3193 //
3194 // The problem is where to invoke spill-save.
3195 // - if invoked between e) and f), we may lock callee save
3196 //   register in "spill-save" that destroys the receiver register
3197 //   before f) is executed
3198 // - if we rearrange f) to be earlier (by loading %o0) it
3199 //   may destroy a value on the stack that is currently in %o0
3200 //   and is waiting to be spilled
3201 // - if we keep the receiver locked while doing spill-save,
3202 //   we cannot spill it as it is spill-locked
3203 //
3204 void LIRGenerator::do_Invoke(Invoke* x) {
3205   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
3206 
3207   LIR_OprList* arg_list = cc->args();
3208   LIRItemList* args = invoke_visit_arguments(x);
3209   LIR_Opr receiver = LIR_OprFact::illegalOpr;
3210 
3211   // setup result register
3212   LIR_Opr result_register = LIR_OprFact::illegalOpr;
3213   if (x->type() != voidType) {
3214     result_register = result_register_for(x->type());
3215   }
3216 
3217   CodeEmitInfo* info = state_for(x, x->state());
3218 
3219   invoke_load_arguments(x, args, arg_list);
3220 
3221   if (x->has_receiver()) {
3222     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3223     receiver = args->at(0)->result();
3224   }
3225 
3226   // emit invoke code
3227   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3228 
3229   // JSR 292
3230   // Preserve the SP over MethodHandle call sites, if needed.
3231   ciMethod* target = x->target();
3232   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3233                                   target->is_method_handle_intrinsic() ||
3234                                   target->is_compiled_lambda_form());
3235   if (is_method_handle_invoke) {
3236     info->set_is_method_handle_invoke(true);
3237     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3238         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3239     }
3240   }
3241 
3242   switch (x->code()) {
3243     case Bytecodes::_invokestatic:
3244       __ call_static(target, result_register,
3245                      SharedRuntime::get_resolve_static_call_stub(),
3246                      arg_list, info);
3247       break;
3248     case Bytecodes::_invokespecial:
3249     case Bytecodes::_invokevirtual:
3250     case Bytecodes::_invokeinterface:
3251       // for loaded and final (method or class) target we still produce an inline cache,
3252       // in order to be able to call mixed mode
3253       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3254         __ call_opt_virtual(target, receiver, result_register,
3255                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3256                             arg_list, info);
3257       } else {
3258         __ call_icvirtual(target, receiver, result_register,
3259                           SharedRuntime::get_resolve_virtual_call_stub(),
3260                           arg_list, info);
3261       }
3262       break;
3263     case Bytecodes::_invokedynamic: {
3264       __ call_dynamic(target, receiver, result_register,
3265                       SharedRuntime::get_resolve_static_call_stub(),
3266                       arg_list, info);
3267       break;
3268     }
3269     default:
3270       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3271       break;
3272   }
3273 
3274   // JSR 292
3275   // Restore the SP after MethodHandle call sites, if needed.
3276   if (is_method_handle_invoke
3277       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3278     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3279   }
3280 
3281   if (result_register->is_valid()) {
3282     LIR_Opr result = rlock_result(x);
3283     __ move(result_register, result);
3284   }
3285 }
3286 
3287 
3288 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3289   assert(x->number_of_arguments() == 1, "wrong type");
3290   LIRItem value       (x->argument_at(0), this);
3291   LIR_Opr reg = rlock_result(x);
3292   value.load_item();
3293   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3294   __ move(tmp, reg);
3295 }
3296 
3297 
3298 
3299 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3300 void LIRGenerator::do_IfOp(IfOp* x) {
3301 #ifdef ASSERT
3302   {
3303     ValueTag xtag = x->x()->type()->tag();
3304     ValueTag ttag = x->tval()->type()->tag();
3305     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3306     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3307     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3308   }
3309 #endif
3310 
3311   LIRItem left(x->x(), this);
3312   LIRItem right(x->y(), this);
3313   left.load_item();
3314   if (can_inline_as_constant(right.value()) && !x->substitutability_check()) {
3315     right.dont_load_item();
3316   } else {
3317     // substitutability_check() needs to use right as a base register.
3318     right.load_item();
3319   }
3320 
3321   LIRItem t_val(x->tval(), this);
3322   LIRItem f_val(x->fval(), this);
3323   t_val.dont_load_item();
3324   f_val.dont_load_item();
3325 
3326   if (x->substitutability_check()) {
3327     substitutability_check(x, left, right, t_val, f_val);
3328   } else {
3329     LIR_Opr reg = rlock_result(x);
3330     __ cmp(lir_cond(x->cond()), left.result(), right.result());
3331     __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3332   }
3333 }
3334 
3335 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) {
3336   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3337   bool is_acmpeq = (x->cond() == If::eql);
3338   LIR_Opr equal_result     = is_acmpeq ? t_val.result() : f_val.result();
3339   LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result();
3340   LIR_Opr result = rlock_result(x);
3341   CodeEmitInfo* info = state_for(x, x->state_before());
3342 
3343   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3344 }
3345 
3346 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) {
3347   LIR_Opr equal_result     = LIR_OprFact::intConst(1);
3348   LIR_Opr not_equal_result = LIR_OprFact::intConst(0);
3349   LIR_Opr result = new_register(T_INT);
3350   CodeEmitInfo* info = state_for(x, x->state_before());
3351 
3352   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3353 
3354   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3355   __ cmp(lir_cond(x->cond()), result, equal_result);
3356 }
3357 
3358 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right,
3359                                                  LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result,
3360                                                  CodeEmitInfo* info) {
3361   LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
3362   LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
3363   LIR_Opr left_klass_op = LIR_OprFact::illegalOpr;
3364   LIR_Opr right_klass_op = LIR_OprFact::illegalOpr;
3365 
3366   ciKlass* left_klass  = left_val ->as_loaded_klass_or_null();
3367   ciKlass* right_klass = right_val->as_loaded_klass_or_null();
3368 
3369   if ((left_klass == NULL || right_klass == NULL) ||// The klass is still unloaded, or came from a Phi node.
3370       !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) {
3371     init_temps_for_substitutability_check(tmp1, tmp2);
3372   }
3373 
3374   if (left_klass != NULL && left_klass->is_inlinetype() && left_klass == right_klass) {
3375     // No need to load klass -- the operands are statically known to be the same inline klass.
3376   } else {
3377     BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA;
3378     left_klass_op = new_register(t_klass);
3379     right_klass_op = new_register(t_klass);
3380   }
3381 
3382   CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info);
3383   __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result,
3384                             tmp1, tmp2,
3385                             left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path);
3386 }
3387 
3388 #ifdef JFR_HAVE_INTRINSICS
3389 
3390 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
3391   LabelObj* L_end = new LabelObj();
3392 
3393   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
3394   // meaning of these two is mixed up (see JDK-8026837).
3395   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3396                                            in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
3397                                            T_ADDRESS);
3398   LIR_Opr result = rlock_result(x);
3399   __ move(LIR_OprFact::oopConst(NULL), result);
3400   LIR_Opr jobj = new_register(T_METADATA);
3401   __ move_wide(jobj_addr, jobj);
3402   __ cmp(lir_cond_equal, jobj, LIR_OprFact::metadataConst(0));
3403   __ branch(lir_cond_equal, L_end->label());
3404 
3405   access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
3406 
3407   __ branch_destination(L_end->label());
3408 }
3409 
3410 #endif
3411 
3412 
3413 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3414   assert(x->number_of_arguments() == 0, "wrong type");
3415   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3416   BasicTypeList signature;
3417   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3418   LIR_Opr reg = result_register_for(x->type());
3419   __ call_runtime_leaf(routine, getThreadTemp(),
3420                        reg, new LIR_OprList());
3421   LIR_Opr result = rlock_result(x);
3422   __ move(reg, result);
3423 }
3424 
3425 
3426 
3427 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3428   switch (x->id()) {
3429   case vmIntrinsics::_intBitsToFloat      :
3430   case vmIntrinsics::_doubleToRawLongBits :
3431   case vmIntrinsics::_longBitsToDouble    :
3432   case vmIntrinsics::_floatToRawIntBits   : {
3433     do_FPIntrinsics(x);
3434     break;
3435   }
3436 
3437 #ifdef JFR_HAVE_INTRINSICS
3438   case vmIntrinsics::_getEventWriter:
3439     do_getEventWriter(x);
3440     break;
3441   case vmIntrinsics::_counterTime:
3442     do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
3443     break;
3444 #endif
3445 
3446   case vmIntrinsics::_currentTimeMillis:
3447     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3448     break;
3449 
3450   case vmIntrinsics::_nanoTime:
3451     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3452     break;
3453 
3454   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3455   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3456   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3457   case vmIntrinsics::_getModifiers:   do_getModifiers(x);  break;
3458   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3459   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3460   case vmIntrinsics::_getObjectSize:  do_getObjectSize(x); break;
3461 
3462   case vmIntrinsics::_dlog:           // fall through
3463   case vmIntrinsics::_dlog10:         // fall through
3464   case vmIntrinsics::_dabs:           // fall through
3465   case vmIntrinsics::_dsqrt:          // fall through
3466   case vmIntrinsics::_dsqrt_strict:   // fall through
3467   case vmIntrinsics::_dtan:           // fall through
3468   case vmIntrinsics::_dsin :          // fall through
3469   case vmIntrinsics::_dcos :          // fall through
3470   case vmIntrinsics::_dexp :          // fall through
3471   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3472   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3473 
3474   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3475   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3476 
3477   case vmIntrinsics::_Preconditions_checkIndex:
3478     do_PreconditionsCheckIndex(x, T_INT);
3479     break;
3480   case vmIntrinsics::_Preconditions_checkLongIndex:
3481     do_PreconditionsCheckIndex(x, T_LONG);
3482     break;
3483 
3484   case vmIntrinsics::_compareAndSetReference:
3485     do_CompareAndSwap(x, objectType);
3486     break;
3487   case vmIntrinsics::_compareAndSetInt:
3488     do_CompareAndSwap(x, intType);
3489     break;
3490   case vmIntrinsics::_compareAndSetLong:
3491     do_CompareAndSwap(x, longType);
3492     break;
3493 
3494   case vmIntrinsics::_loadFence :
3495     __ membar_acquire();
3496     break;
3497   case vmIntrinsics::_storeFence:
3498     __ membar_release();
3499     break;
3500   case vmIntrinsics::_storeStoreFence:
3501     __ membar_storestore();
3502     break;
3503   case vmIntrinsics::_fullFence :
3504     __ membar();
3505     break;
3506   case vmIntrinsics::_onSpinWait:
3507     __ on_spin_wait();
3508     break;
3509   case vmIntrinsics::_Reference_get:
3510     do_Reference_get(x);
3511     break;
3512 
3513   case vmIntrinsics::_updateCRC32:
3514   case vmIntrinsics::_updateBytesCRC32:
3515   case vmIntrinsics::_updateByteBufferCRC32:
3516     do_update_CRC32(x);
3517     break;
3518 
3519   case vmIntrinsics::_updateBytesCRC32C:
3520   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3521     do_update_CRC32C(x);
3522     break;
3523 
3524   case vmIntrinsics::_vectorizedMismatch:
3525     do_vectorizedMismatch(x);
3526     break;
3527 
3528   case vmIntrinsics::_blackhole:
3529     do_blackhole(x);
3530     break;
3531 
3532   default: ShouldNotReachHere(); break;
3533   }
3534 }
3535 
3536 void LIRGenerator::profile_arguments(ProfileCall* x) {
3537   if (compilation()->profile_arguments()) {
3538     int bci = x->bci_of_invoke();
3539     ciMethodData* md = x->method()->method_data_or_null();
3540     assert(md != NULL, "Sanity");
3541     ciProfileData* data = md->bci_to_data(bci);
3542     if (data != NULL) {
3543       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3544           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3545         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3546         int base_offset = md->byte_offset_of_slot(data, extra);
3547         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3548         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3549 
3550         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3551         int start = 0;
3552         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3553         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3554           // first argument is not profiled at call (method handle invoke)
3555           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3556           start = 1;
3557         }
3558         ciSignature* callee_signature = x->callee()->signature();
3559         // method handle call to virtual method
3560         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3561         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3562 
3563         bool ignored_will_link;
3564         ciSignature* signature_at_call = NULL;
3565         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3566         ciSignatureStream signature_at_call_stream(signature_at_call);
3567 
3568         // if called through method handle invoke, some arguments may have been popped
3569         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3570           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3571           ciKlass* exact = profile_type(md, base_offset, off,
3572               args->type(i), x->profiled_arg_at(i+start), mdp,
3573               !x->arg_needs_null_check(i+start),
3574               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3575           if (exact != NULL) {
3576             md->set_argument_type(bci, i, exact);
3577           }
3578         }
3579       } else {
3580 #ifdef ASSERT
3581         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3582         int n = x->nb_profiled_args();
3583         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3584             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3585             "only at JSR292 bytecodes");
3586 #endif
3587       }
3588     }
3589   }
3590 }
3591 
3592 // profile parameters on entry to an inlined method
3593 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3594   if (compilation()->profile_parameters() && x->inlined()) {
3595     ciMethodData* md = x->callee()->method_data_or_null();
3596     if (md != NULL) {
3597       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3598       if (parameters_type_data != NULL) {
3599         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3600         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3601         bool has_receiver = !x->callee()->is_static();
3602         ciSignature* sig = x->callee()->signature();
3603         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3604         int i = 0; // to iterate on the Instructions
3605         Value arg = x->recv();
3606         bool not_null = false;
3607         int bci = x->bci_of_invoke();
3608         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3609         // The first parameter is the receiver so that's what we start
3610         // with if it exists. One exception is method handle call to
3611         // virtual method: the receiver is in the args list
3612         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3613           i = 1;
3614           arg = x->profiled_arg_at(0);
3615           not_null = !x->arg_needs_null_check(0);
3616         }
3617         int k = 0; // to iterate on the profile data
3618         for (;;) {
3619           intptr_t profiled_k = parameters->type(k);
3620           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3621                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3622                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3623           // If the profile is known statically set it once for all and do not emit any code
3624           if (exact != NULL) {
3625             md->set_parameter_type(k, exact);
3626           }
3627           k++;
3628           if (k >= parameters_type_data->number_of_parameters()) {
3629 #ifdef ASSERT
3630             int extra = 0;
3631             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3632                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3633                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3634               extra += 1;
3635             }
3636             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3637 #endif
3638             break;
3639           }
3640           arg = x->profiled_arg_at(i);
3641           not_null = !x->arg_needs_null_check(i);
3642           i++;
3643         }
3644       }
3645     }
3646   }
3647 }
3648 
3649 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3650   // Need recv in a temporary register so it interferes with the other temporaries
3651   LIR_Opr recv = LIR_OprFact::illegalOpr;
3652   LIR_Opr mdo = new_register(T_METADATA);
3653   // tmp is used to hold the counters on SPARC
3654   LIR_Opr tmp = new_pointer_register();
3655 
3656   if (x->nb_profiled_args() > 0) {
3657     profile_arguments(x);
3658   }
3659 
3660   // profile parameters on inlined method entry including receiver
3661   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3662     profile_parameters_at_call(x);
3663   }
3664 
3665   if (x->recv() != NULL) {
3666     LIRItem value(x->recv(), this);
3667     value.load_item();
3668     recv = new_register(T_OBJECT);
3669     __ move(value.result(), recv);
3670   }
3671   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3672 }
3673 
3674 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3675   int bci = x->bci_of_invoke();
3676   ciMethodData* md = x->method()->method_data_or_null();
3677   assert(md != NULL, "Sanity");
3678   ciProfileData* data = md->bci_to_data(bci);
3679   if (data != NULL) {
3680     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3681     ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3682     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3683 
3684     bool ignored_will_link;
3685     ciSignature* signature_at_call = NULL;
3686     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3687 
3688     // The offset within the MDO of the entry to update may be too large
3689     // to be used in load/store instructions on some platforms. So have
3690     // profile_type() compute the address of the profile in a register.
3691     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3692         ret->type(), x->ret(), mdp,
3693         !x->needs_null_check(),
3694         signature_at_call->return_type()->as_klass(),
3695         x->callee()->signature()->return_type()->as_klass());
3696     if (exact != NULL) {
3697       md->set_return_type(bci, exact);
3698     }
3699   }
3700 }
3701 
3702 bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) {
3703   ciKlass* klass = value->as_loaded_klass_or_null();
3704   if (klass != NULL) {
3705     if (klass->is_inlinetype()) {
3706       profile_flags(md, data, flag, lir_cond_always);
3707     } else if (klass->can_be_inline_klass()) {
3708       return false;
3709     }
3710   } else {
3711     return false;
3712   }
3713   return true;
3714 }
3715 
3716 
3717 void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) {
3718   ciMethod* method = x->method();
3719   assert(method != NULL, "method should be set if branch is profiled");
3720   ciMethodData* md = method->method_data_or_null();
3721   assert(md != NULL, "Sanity");
3722   ciProfileData* data = md->bci_to_data(x->bci());
3723   assert(data != NULL, "must have profiling data");
3724   assert(data->is_ACmpData(), "need BranchData for two-way branches");
3725   ciACmpData* acmp = (ciACmpData*)data;
3726   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3727   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0,
3728                acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), NULL, NULL);
3729   int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset());
3730   if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) {
3731     LIR_Opr mdp = new_register(T_METADATA);
3732     __ metadata2reg(md->constant_encoding(), mdp);
3733     LIRItem value(x->left(), this);
3734     value.load_item();
3735     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3736   }
3737   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()),
3738                in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()),
3739                acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), NULL, NULL);
3740   if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) {
3741     LIR_Opr mdp = new_register(T_METADATA);
3742     __ metadata2reg(md->constant_encoding(), mdp);
3743     LIRItem value(x->right(), this);
3744     value.load_item();
3745     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3746   }
3747 }
3748 
3749 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3750   // We can safely ignore accessors here, since c2 will inline them anyway,
3751   // accessors are also always mature.
3752   if (!x->inlinee()->is_accessor()) {
3753     CodeEmitInfo* info = state_for(x, x->state(), true);
3754     // Notify the runtime very infrequently only to take care of counter overflows
3755     int freq_log = Tier23InlineeNotifyFreqLog;
3756     double scale;
3757     if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3758       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3759     }
3760     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3761   }
3762 }
3763 
3764 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3765   if (compilation()->is_profiling()) {
3766 #if defined(X86) && !defined(_LP64)
3767     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3768     LIR_Opr left_copy = new_register(left->type());
3769     __ move(left, left_copy);
3770     __ cmp(cond, left_copy, right);
3771 #else
3772     __ cmp(cond, left, right);
3773 #endif
3774     LIR_Opr step = new_register(T_INT);
3775     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3776     LIR_Opr zero = LIR_OprFact::intConst(0);
3777     __ cmove(cond,
3778         (left_bci < bci) ? plus_one : zero,
3779         (right_bci < bci) ? plus_one : zero,
3780         step, left->type());
3781     increment_backedge_counter(info, step, bci);
3782   }
3783 }
3784 
3785 
3786 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3787   int freq_log = 0;
3788   int level = compilation()->env()->comp_level();
3789   if (level == CompLevel_limited_profile) {
3790     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3791   } else if (level == CompLevel_full_profile) {
3792     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3793   } else {
3794     ShouldNotReachHere();
3795   }
3796   // Increment the appropriate invocation/backedge counter and notify the runtime.
3797   double scale;
3798   if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3799     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3800   }
3801   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3802 }
3803 
3804 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3805   ciMethod* method = info->scope()->method();
3806   MethodCounters* mc_adr = method->ensure_method_counters();
3807   if (mc_adr != NULL) {
3808     LIR_Opr mc = new_pointer_register();
3809     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3810     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3811     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3812     LIR_Opr result = new_register(T_INT);
3813     __ load(counter, result);
3814     __ sub(result, LIR_OprFact::intConst(1), result);
3815     __ store(result, counter);
3816     // DeoptimizeStub will reexecute from the current state in code info.
3817     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3818                                          Deoptimization::Action_make_not_entrant);
3819     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3820     __ branch(lir_cond_lessEqual, deopt);
3821   }
3822 }
3823 
3824 
3825 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3826                                                 ciMethod *method, LIR_Opr step, int frequency,
3827                                                 int bci, bool backedge, bool notify) {
3828   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3829   int level = _compilation->env()->comp_level();
3830   assert(level > CompLevel_simple, "Shouldn't be here");
3831 
3832   int offset = -1;
3833   LIR_Opr counter_holder;
3834   if (level == CompLevel_limited_profile) {
3835     MethodCounters* counters_adr = method->ensure_method_counters();
3836     if (counters_adr == NULL) {
3837       bailout("method counters allocation failed");
3838       return;
3839     }
3840     counter_holder = new_pointer_register();
3841     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3842     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3843                                  MethodCounters::invocation_counter_offset());
3844   } else if (level == CompLevel_full_profile) {
3845     counter_holder = new_register(T_METADATA);
3846     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3847                                  MethodData::invocation_counter_offset());
3848     ciMethodData* md = method->method_data_or_null();
3849     assert(md != NULL, "Sanity");
3850     __ metadata2reg(md->constant_encoding(), counter_holder);
3851   } else {
3852     ShouldNotReachHere();
3853   }
3854   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3855   LIR_Opr result = new_register(T_INT);
3856   __ load(counter, result);
3857   __ add(result, step, result);
3858   __ store(result, counter);
3859   if (notify && (!backedge || UseOnStackReplacement)) {
3860     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3861     // The bci for info can point to cmp for if's we want the if bci
3862     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3863     int freq = frequency << InvocationCounter::count_shift;
3864     if (freq == 0) {
3865       if (!step->is_constant()) {
3866         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3867         __ branch(lir_cond_notEqual, overflow);
3868       } else {
3869         __ branch(lir_cond_always, overflow);
3870       }
3871     } else {
3872       LIR_Opr mask = load_immediate(freq, T_INT);
3873       if (!step->is_constant()) {
3874         // If step is 0, make sure the overflow check below always fails
3875         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3876         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3877       }
3878       __ logical_and(result, mask, result);
3879       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3880       __ branch(lir_cond_equal, overflow);
3881     }
3882     __ branch_destination(overflow->continuation());
3883   }
3884 }
3885 
3886 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3887   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3888   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3889 
3890   if (x->pass_thread()) {
3891     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3892     args->append(getThreadPointer());
3893   }
3894 
3895   for (int i = 0; i < x->number_of_arguments(); i++) {
3896     Value a = x->argument_at(i);
3897     LIRItem* item = new LIRItem(a, this);
3898     item->load_item();
3899     args->append(item->result());
3900     signature->append(as_BasicType(a->type()));
3901   }
3902 
3903   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3904   if (x->type() == voidType) {
3905     set_no_result(x);
3906   } else {
3907     __ move(result, rlock_result(x));
3908   }
3909 }
3910 
3911 #ifdef ASSERT
3912 void LIRGenerator::do_Assert(Assert *x) {
3913   ValueTag tag = x->x()->type()->tag();
3914   If::Condition cond = x->cond();
3915 
3916   LIRItem xitem(x->x(), this);
3917   LIRItem yitem(x->y(), this);
3918   LIRItem* xin = &xitem;
3919   LIRItem* yin = &yitem;
3920 
3921   assert(tag == intTag, "Only integer assertions are valid!");
3922 
3923   xin->load_item();
3924   yin->dont_load_item();
3925 
3926   set_no_result(x);
3927 
3928   LIR_Opr left = xin->result();
3929   LIR_Opr right = yin->result();
3930 
3931   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3932 }
3933 #endif
3934 
3935 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3936 
3937 
3938   Instruction *a = x->x();
3939   Instruction *b = x->y();
3940   if (!a || StressRangeCheckElimination) {
3941     assert(!b || StressRangeCheckElimination, "B must also be null");
3942 
3943     CodeEmitInfo *info = state_for(x, x->state());
3944     CodeStub* stub = new PredicateFailedStub(info);
3945 
3946     __ jump(stub);
3947   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3948     int a_int = a->type()->as_IntConstant()->value();
3949     int b_int = b->type()->as_IntConstant()->value();
3950 
3951     bool ok = false;
3952 
3953     switch(x->cond()) {
3954       case Instruction::eql: ok = (a_int == b_int); break;
3955       case Instruction::neq: ok = (a_int != b_int); break;
3956       case Instruction::lss: ok = (a_int < b_int); break;
3957       case Instruction::leq: ok = (a_int <= b_int); break;
3958       case Instruction::gtr: ok = (a_int > b_int); break;
3959       case Instruction::geq: ok = (a_int >= b_int); break;
3960       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3961       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3962       default: ShouldNotReachHere();
3963     }
3964 
3965     if (ok) {
3966 
3967       CodeEmitInfo *info = state_for(x, x->state());
3968       CodeStub* stub = new PredicateFailedStub(info);
3969 
3970       __ jump(stub);
3971     }
3972   } else {
3973 
3974     ValueTag tag = x->x()->type()->tag();
3975     If::Condition cond = x->cond();
3976     LIRItem xitem(x->x(), this);
3977     LIRItem yitem(x->y(), this);
3978     LIRItem* xin = &xitem;
3979     LIRItem* yin = &yitem;
3980 
3981     assert(tag == intTag, "Only integer deoptimizations are valid!");
3982 
3983     xin->load_item();
3984     yin->dont_load_item();
3985     set_no_result(x);
3986 
3987     LIR_Opr left = xin->result();
3988     LIR_Opr right = yin->result();
3989 
3990     CodeEmitInfo *info = state_for(x, x->state());
3991     CodeStub* stub = new PredicateFailedStub(info);
3992 
3993     __ cmp(lir_cond(cond), left, right);
3994     __ branch(lir_cond(cond), stub);
3995   }
3996 }
3997 
3998 void LIRGenerator::do_blackhole(Intrinsic *x) {
3999   assert(!x->has_receiver(), "Should have been checked before: only static methods here");
4000   for (int c = 0; c < x->number_of_arguments(); c++) {
4001     // Load the argument
4002     LIRItem vitem(x->argument_at(c), this);
4003     vitem.load_item();
4004     // ...and leave it unused.
4005   }
4006 }
4007 
4008 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
4009   LIRItemList args(1);
4010   LIRItem value(arg1, this);
4011   args.append(&value);
4012   BasicTypeList signature;
4013   signature.append(as_BasicType(arg1->type()));
4014 
4015   return call_runtime(&signature, &args, entry, result_type, info);
4016 }
4017 
4018 
4019 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
4020   LIRItemList args(2);
4021   LIRItem value1(arg1, this);
4022   LIRItem value2(arg2, this);
4023   args.append(&value1);
4024   args.append(&value2);
4025   BasicTypeList signature;
4026   signature.append(as_BasicType(arg1->type()));
4027   signature.append(as_BasicType(arg2->type()));
4028 
4029   return call_runtime(&signature, &args, entry, result_type, info);
4030 }
4031 
4032 
4033 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
4034                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
4035   // get a result register
4036   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
4037   LIR_Opr result = LIR_OprFact::illegalOpr;
4038   if (result_type->tag() != voidTag) {
4039     result = new_register(result_type);
4040     phys_reg = result_register_for(result_type);
4041   }
4042 
4043   // move the arguments into the correct location
4044   CallingConvention* cc = frame_map()->c_calling_convention(signature);
4045   assert(cc->length() == args->length(), "argument mismatch");
4046   for (int i = 0; i < args->length(); i++) {
4047     LIR_Opr arg = args->at(i);
4048     LIR_Opr loc = cc->at(i);
4049     if (loc->is_register()) {
4050       __ move(arg, loc);
4051     } else {
4052       LIR_Address* addr = loc->as_address_ptr();
4053 //           if (!can_store_as_constant(arg)) {
4054 //             LIR_Opr tmp = new_register(arg->type());
4055 //             __ move(arg, tmp);
4056 //             arg = tmp;
4057 //           }
4058       __ move(arg, addr);
4059     }
4060   }
4061 
4062   if (info) {
4063     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
4064   } else {
4065     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
4066   }
4067   if (result->is_valid()) {
4068     __ move(phys_reg, result);
4069   }
4070   return result;
4071 }
4072 
4073 
4074 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
4075                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
4076   // get a result register
4077   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
4078   LIR_Opr result = LIR_OprFact::illegalOpr;
4079   if (result_type->tag() != voidTag) {
4080     result = new_register(result_type);
4081     phys_reg = result_register_for(result_type);
4082   }
4083 
4084   // move the arguments into the correct location
4085   CallingConvention* cc = frame_map()->c_calling_convention(signature);
4086 
4087   assert(cc->length() == args->length(), "argument mismatch");
4088   for (int i = 0; i < args->length(); i++) {
4089     LIRItem* arg = args->at(i);
4090     LIR_Opr loc = cc->at(i);
4091     if (loc->is_register()) {
4092       arg->load_item_force(loc);
4093     } else {
4094       LIR_Address* addr = loc->as_address_ptr();
4095       arg->load_for_store(addr->type());
4096       __ move(arg->result(), addr);
4097     }
4098   }
4099 
4100   if (info) {
4101     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
4102   } else {
4103     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
4104   }
4105   if (result->is_valid()) {
4106     __ move(phys_reg, result);
4107   }
4108   return result;
4109 }
4110 
4111 void LIRGenerator::do_MemBar(MemBar* x) {
4112   LIR_Code code = x->code();
4113   switch(code) {
4114   case lir_membar_acquire   : __ membar_acquire(); break;
4115   case lir_membar_release   : __ membar_release(); break;
4116   case lir_membar           : __ membar(); break;
4117   case lir_membar_loadload  : __ membar_loadload(); break;
4118   case lir_membar_storestore: __ membar_storestore(); break;
4119   case lir_membar_loadstore : __ membar_loadstore(); break;
4120   case lir_membar_storeload : __ membar_storeload(); break;
4121   default                   : ShouldNotReachHere(); break;
4122   }
4123 }
4124 
4125 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
4126   LIR_Opr value_fixed = rlock_byte(T_BYTE);
4127   if (TwoOperandLIRForm) {
4128     __ move(value, value_fixed);
4129     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
4130   } else {
4131     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
4132   }
4133   LIR_Opr klass = new_register(T_METADATA);
4134   __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
4135   null_check_info = NULL;
4136   LIR_Opr layout = new_register(T_INT);
4137   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
4138   int diffbit = Klass::layout_helper_boolean_diffbit();
4139   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
4140   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
4141   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
4142   value = value_fixed;
4143   return value;
4144 }