1 /* 2 * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciFlatArrayKlass.hpp" 35 #include "ci/ciInlineKlass.hpp" 36 #include "ci/ciInstance.hpp" 37 #include "ci/ciObjArray.hpp" 38 #include "ci/ciUtilities.hpp" 39 #include "compiler/compilerDefinitions.inline.hpp" 40 #include "compiler/compilerOracle.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/c1/barrierSetC1.hpp" 43 #include "oops/klass.inline.hpp" 44 #include "oops/methodCounters.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "runtime/stubRoutines.hpp" 47 #include "runtime/vm_version.hpp" 48 #include "utilities/bitMap.inline.hpp" 49 #include "utilities/macros.hpp" 50 #include "utilities/powerOfTwo.hpp" 51 52 #ifdef ASSERT 53 #define __ gen()->lir(__FILE__, __LINE__)-> 54 #else 55 #define __ gen()->lir()-> 56 #endif 57 58 #ifndef PATCHED_ADDR 59 #define PATCHED_ADDR (max_jint) 60 #endif 61 62 void PhiResolverState::reset() { 63 _virtual_operands.clear(); 64 _other_operands.clear(); 65 _vreg_table.clear(); 66 } 67 68 69 //-------------------------------------------------------------- 70 // PhiResolver 71 72 // Resolves cycles: 73 // 74 // r1 := r2 becomes temp := r1 75 // r2 := r1 r1 := r2 76 // r2 := temp 77 // and orders moves: 78 // 79 // r2 := r3 becomes r1 := r2 80 // r1 := r2 r2 := r3 81 82 PhiResolver::PhiResolver(LIRGenerator* gen) 83 : _gen(gen) 84 , _state(gen->resolver_state()) 85 , _loop(nullptr) 86 , _temp(LIR_OprFact::illegalOpr) 87 { 88 // reinitialize the shared state arrays 89 _state.reset(); 90 } 91 92 93 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 94 assert(src->is_valid(), ""); 95 assert(dest->is_valid(), ""); 96 __ move(src, dest); 97 } 98 99 100 void PhiResolver::move_temp_to(LIR_Opr dest) { 101 assert(_temp->is_valid(), ""); 102 emit_move(_temp, dest); 103 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 104 } 105 106 107 void PhiResolver::move_to_temp(LIR_Opr src) { 108 assert(_temp->is_illegal(), ""); 109 _temp = _gen->new_register(src->type()); 110 emit_move(src, _temp); 111 } 112 113 114 // Traverse assignment graph in depth first order and generate moves in post order 115 // ie. two assignments: b := c, a := b start with node c: 116 // Call graph: move(null, c) -> move(c, b) -> move(b, a) 117 // Generates moves in this order: move b to a and move c to b 118 // ie. cycle a := b, b := a start with node a 119 // Call graph: move(null, a) -> move(a, b) -> move(b, a) 120 // Generates moves in this order: move b to temp, move a to b, move temp to a 121 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 122 if (!dest->visited()) { 123 dest->set_visited(); 124 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 125 move(dest, dest->destination_at(i)); 126 } 127 } else if (!dest->start_node()) { 128 // cylce in graph detected 129 assert(_loop == nullptr, "only one loop valid!"); 130 _loop = dest; 131 move_to_temp(src->operand()); 132 return; 133 } // else dest is a start node 134 135 if (!dest->assigned()) { 136 if (_loop == dest) { 137 move_temp_to(dest->operand()); 138 dest->set_assigned(); 139 } else if (src != nullptr) { 140 emit_move(src->operand(), dest->operand()); 141 dest->set_assigned(); 142 } 143 } 144 } 145 146 147 PhiResolver::~PhiResolver() { 148 int i; 149 // resolve any cycles in moves from and to virtual registers 150 for (i = virtual_operands().length() - 1; i >= 0; i --) { 151 ResolveNode* node = virtual_operands().at(i); 152 if (!node->visited()) { 153 _loop = nullptr; 154 move(nullptr, node); 155 node->set_start_node(); 156 assert(_temp->is_illegal(), "move_temp_to() call missing"); 157 } 158 } 159 160 // generate move for move from non virtual register to abitrary destination 161 for (i = other_operands().length() - 1; i >= 0; i --) { 162 ResolveNode* node = other_operands().at(i); 163 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 164 emit_move(node->operand(), node->destination_at(j)->operand()); 165 } 166 } 167 } 168 169 170 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 171 ResolveNode* node; 172 if (opr->is_virtual()) { 173 int vreg_num = opr->vreg_number(); 174 node = vreg_table().at_grow(vreg_num, nullptr); 175 assert(node == nullptr || node->operand() == opr, ""); 176 if (node == nullptr) { 177 node = new ResolveNode(opr); 178 vreg_table().at_put(vreg_num, node); 179 } 180 // Make sure that all virtual operands show up in the list when 181 // they are used as the source of a move. 182 if (source && !virtual_operands().contains(node)) { 183 virtual_operands().append(node); 184 } 185 } else { 186 assert(source, ""); 187 node = new ResolveNode(opr); 188 other_operands().append(node); 189 } 190 return node; 191 } 192 193 194 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 195 assert(dest->is_virtual(), ""); 196 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 197 assert(src->is_valid(), ""); 198 assert(dest->is_valid(), ""); 199 ResolveNode* source = source_node(src); 200 source->append(destination_node(dest)); 201 } 202 203 204 //-------------------------------------------------------------- 205 // LIRItem 206 207 void LIRItem::set_result(LIR_Opr opr) { 208 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 209 value()->set_operand(opr); 210 211 #ifdef ASSERT 212 if (opr->is_virtual()) { 213 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr); 214 } 215 #endif 216 217 _result = opr; 218 } 219 220 void LIRItem::load_item() { 221 assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code"); 222 223 if (result()->is_illegal()) { 224 // update the items result 225 _result = value()->operand(); 226 } 227 if (!result()->is_register()) { 228 LIR_Opr reg = _gen->new_register(value()->type()); 229 __ move(result(), reg); 230 if (result()->is_constant()) { 231 _result = reg; 232 } else { 233 set_result(reg); 234 } 235 } 236 } 237 238 239 void LIRItem::load_for_store(BasicType type) { 240 if (_gen->can_store_as_constant(value(), type)) { 241 _result = value()->operand(); 242 if (!_result->is_constant()) { 243 _result = LIR_OprFact::value_type(value()->type()); 244 } 245 } else if (type == T_BYTE || type == T_BOOLEAN) { 246 load_byte_item(); 247 } else { 248 load_item(); 249 } 250 } 251 252 void LIRItem::load_item_force(LIR_Opr reg) { 253 LIR_Opr r = result(); 254 if (r != reg) { 255 #if !defined(ARM) && !defined(E500V2) 256 if (r->type() != reg->type()) { 257 // moves between different types need an intervening spill slot 258 r = _gen->force_to_spill(r, reg->type()); 259 } 260 #endif 261 __ move(r, reg); 262 _result = reg; 263 } 264 } 265 266 ciObject* LIRItem::get_jobject_constant() const { 267 ObjectType* oc = type()->as_ObjectType(); 268 if (oc) { 269 return oc->constant_value(); 270 } 271 return nullptr; 272 } 273 274 275 jint LIRItem::get_jint_constant() const { 276 assert(is_constant() && value() != nullptr, ""); 277 assert(type()->as_IntConstant() != nullptr, "type check"); 278 return type()->as_IntConstant()->value(); 279 } 280 281 282 jint LIRItem::get_address_constant() const { 283 assert(is_constant() && value() != nullptr, ""); 284 assert(type()->as_AddressConstant() != nullptr, "type check"); 285 return type()->as_AddressConstant()->value(); 286 } 287 288 289 jfloat LIRItem::get_jfloat_constant() const { 290 assert(is_constant() && value() != nullptr, ""); 291 assert(type()->as_FloatConstant() != nullptr, "type check"); 292 return type()->as_FloatConstant()->value(); 293 } 294 295 296 jdouble LIRItem::get_jdouble_constant() const { 297 assert(is_constant() && value() != nullptr, ""); 298 assert(type()->as_DoubleConstant() != nullptr, "type check"); 299 return type()->as_DoubleConstant()->value(); 300 } 301 302 303 jlong LIRItem::get_jlong_constant() const { 304 assert(is_constant() && value() != nullptr, ""); 305 assert(type()->as_LongConstant() != nullptr, "type check"); 306 return type()->as_LongConstant()->value(); 307 } 308 309 310 311 //-------------------------------------------------------------- 312 313 314 void LIRGenerator::block_do_prolog(BlockBegin* block) { 315 #ifndef PRODUCT 316 if (PrintIRWithLIR) { 317 block->print(); 318 } 319 #endif 320 321 // set up the list of LIR instructions 322 assert(block->lir() == nullptr, "LIR list already computed for this block"); 323 _lir = new LIR_List(compilation(), block); 324 block->set_lir(_lir); 325 326 __ branch_destination(block->label()); 327 328 if (LIRTraceExecution && 329 Compilation::current()->hir()->start()->block_id() != block->block_id() && 330 !block->is_set(BlockBegin::exception_entry_flag)) { 331 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 332 trace_block_entry(block); 333 } 334 } 335 336 337 void LIRGenerator::block_do_epilog(BlockBegin* block) { 338 #ifndef PRODUCT 339 if (PrintIRWithLIR) { 340 tty->cr(); 341 } 342 #endif 343 344 // LIR_Opr for unpinned constants shouldn't be referenced by other 345 // blocks so clear them out after processing the block. 346 for (int i = 0; i < _unpinned_constants.length(); i++) { 347 _unpinned_constants.at(i)->clear_operand(); 348 } 349 _unpinned_constants.trunc_to(0); 350 351 // clear our any registers for other local constants 352 _constants.trunc_to(0); 353 _reg_for_constants.trunc_to(0); 354 } 355 356 357 void LIRGenerator::block_do(BlockBegin* block) { 358 CHECK_BAILOUT(); 359 360 block_do_prolog(block); 361 set_block(block); 362 363 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) { 364 if (instr->is_pinned()) do_root(instr); 365 } 366 367 set_block(nullptr); 368 block_do_epilog(block); 369 } 370 371 372 //-------------------------LIRGenerator----------------------------- 373 374 // This is where the tree-walk starts; instr must be root; 375 void LIRGenerator::do_root(Value instr) { 376 CHECK_BAILOUT(); 377 378 InstructionMark im(compilation(), instr); 379 380 assert(instr->is_pinned(), "use only with roots"); 381 assert(instr->subst() == instr, "shouldn't have missed substitution"); 382 383 instr->visit(this); 384 385 assert(!instr->has_uses() || instr->operand()->is_valid() || 386 instr->as_Constant() != nullptr || bailed_out(), "invalid item set"); 387 } 388 389 390 // This is called for each node in tree; the walk stops if a root is reached 391 void LIRGenerator::walk(Value instr) { 392 InstructionMark im(compilation(), instr); 393 //stop walk when encounter a root 394 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) { 395 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited"); 396 } else { 397 assert(instr->subst() == instr, "shouldn't have missed substitution"); 398 instr->visit(this); 399 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use"); 400 } 401 } 402 403 404 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 405 assert(state != nullptr, "state must be defined"); 406 407 #ifndef PRODUCT 408 state->verify(); 409 #endif 410 411 ValueStack* s = state; 412 for_each_state(s) { 413 if (s->kind() == ValueStack::EmptyExceptionState || 414 s->kind() == ValueStack::CallerEmptyExceptionState) 415 { 416 #ifdef ASSERT 417 int index; 418 Value value; 419 for_each_stack_value(s, index, value) { 420 fatal("state must be empty"); 421 } 422 for_each_local_value(s, index, value) { 423 fatal("state must be empty"); 424 } 425 #endif 426 assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty"); 427 continue; 428 } 429 430 int index; 431 Value value; 432 for_each_stack_value(s, index, value) { 433 assert(value->subst() == value, "missed substitution"); 434 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 435 walk(value); 436 assert(value->operand()->is_valid(), "must be evaluated now"); 437 } 438 } 439 440 int bci = s->bci(); 441 IRScope* scope = s->scope(); 442 ciMethod* method = scope->method(); 443 444 MethodLivenessResult liveness = method->liveness_at_bci(bci); 445 if (bci == SynchronizationEntryBCI) { 446 if (x->as_ExceptionObject() || x->as_Throw()) { 447 // all locals are dead on exit from the synthetic unlocker 448 liveness.clear(); 449 } else { 450 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 451 } 452 } 453 if (!liveness.is_valid()) { 454 // Degenerate or breakpointed method. 455 bailout("Degenerate or breakpointed method"); 456 } else { 457 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 458 for_each_local_value(s, index, value) { 459 assert(value->subst() == value, "missed substitution"); 460 if (liveness.at(index) && !value->type()->is_illegal()) { 461 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 462 walk(value); 463 assert(value->operand()->is_valid(), "must be evaluated now"); 464 } 465 } else { 466 // null out this local so that linear scan can assume that all non-null values are live. 467 s->invalidate_local(index); 468 } 469 } 470 } 471 } 472 473 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 474 } 475 476 477 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 478 return state_for(x, x->exception_state()); 479 } 480 481 482 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 483 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 484 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 485 * the class. */ 486 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 487 assert(info != nullptr, "info must be set if class is not loaded"); 488 __ klass2reg_patch(nullptr, r, info); 489 } else { 490 // no patching needed 491 __ metadata2reg(obj->constant_encoding(), r); 492 } 493 } 494 495 496 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 497 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 498 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 499 if (index->is_constant()) { 500 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 501 index->as_jint(), null_check_info); 502 __ branch(lir_cond_belowEqual, stub); // forward branch 503 } else { 504 cmp_reg_mem(lir_cond_aboveEqual, index, array, 505 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 506 __ branch(lir_cond_aboveEqual, stub); // forward branch 507 } 508 } 509 510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 511 LIR_Opr result_op = result; 512 LIR_Opr left_op = left; 513 LIR_Opr right_op = right; 514 515 if (two_operand_lir_form && left_op != result_op) { 516 assert(right_op != result_op, "malformed"); 517 __ move(left_op, result_op); 518 left_op = result_op; 519 } 520 521 switch(code) { 522 case Bytecodes::_dadd: 523 case Bytecodes::_fadd: 524 case Bytecodes::_ladd: 525 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 526 case Bytecodes::_fmul: 527 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 528 529 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 530 531 case Bytecodes::_imul: 532 { 533 bool did_strength_reduce = false; 534 535 if (right->is_constant()) { 536 jint c = right->as_jint(); 537 if (c > 0 && is_power_of_2(c)) { 538 // do not need tmp here 539 __ shift_left(left_op, exact_log2(c), result_op); 540 did_strength_reduce = true; 541 } else { 542 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 543 } 544 } 545 // we couldn't strength reduce so just emit the multiply 546 if (!did_strength_reduce) { 547 __ mul(left_op, right_op, result_op); 548 } 549 } 550 break; 551 552 case Bytecodes::_dsub: 553 case Bytecodes::_fsub: 554 case Bytecodes::_lsub: 555 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 556 557 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 558 // ldiv and lrem are implemented with a direct runtime call 559 560 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 561 562 case Bytecodes::_drem: 563 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 564 565 default: ShouldNotReachHere(); 566 } 567 } 568 569 570 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 571 arithmetic_op(code, result, left, right, tmp); 572 } 573 574 575 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 576 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 577 } 578 579 580 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 581 arithmetic_op(code, result, left, right, tmp); 582 } 583 584 585 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 586 587 if (two_operand_lir_form && value != result_op 588 // Only 32bit right shifts require two operand form on S390. 589 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 590 assert(count != result_op, "malformed"); 591 __ move(value, result_op); 592 value = result_op; 593 } 594 595 assert(count->is_constant() || count->is_register(), "must be"); 596 switch(code) { 597 case Bytecodes::_ishl: 598 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 599 case Bytecodes::_ishr: 600 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 601 case Bytecodes::_iushr: 602 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 603 default: ShouldNotReachHere(); 604 } 605 } 606 607 608 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 609 if (two_operand_lir_form && left_op != result_op) { 610 assert(right_op != result_op, "malformed"); 611 __ move(left_op, result_op); 612 left_op = result_op; 613 } 614 615 switch(code) { 616 case Bytecodes::_iand: 617 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 618 619 case Bytecodes::_ior: 620 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 621 622 case Bytecodes::_ixor: 623 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 624 625 default: ShouldNotReachHere(); 626 } 627 } 628 629 630 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, 631 CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_ie_stub) { 632 if (!GenerateSynchronizationCode) return; 633 // for slow path, use debug info for state after successful locking 634 CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_ie_stub, scratch); 635 __ load_stack_address_monitor(monitor_no, lock); 636 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 637 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_ie_stub); 638 } 639 640 641 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 642 if (!GenerateSynchronizationCode) return; 643 // setup registers 644 LIR_Opr hdr = lock; 645 lock = new_hdr; 646 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no); 647 __ load_stack_address_monitor(monitor_no, lock); 648 __ unlock_object(hdr, object, lock, scratch, slow_path); 649 } 650 651 #ifndef PRODUCT 652 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 653 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 654 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 655 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 656 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 657 } 658 } 659 #endif 660 661 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 662 if (allow_inline) { 663 assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved"); 664 __ metadata2reg(klass->constant_encoding(), klass_reg); 665 } else { 666 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 667 } 668 // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass 669 if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype()) 670 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 671 672 C1StubId stub_id = klass->is_initialized() ? C1StubId::fast_new_instance_id : C1StubId::fast_new_instance_init_check_id; 673 674 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 675 676 assert(klass->is_loaded(), "must be loaded"); 677 // allocate space for instance 678 assert(klass->size_helper() > 0, "illegal instance size"); 679 const int instance_size = align_object_size(klass->size_helper()); 680 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 681 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 682 } else { 683 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, C1StubId::new_instance_id); 684 __ jump(slow_path); 685 __ branch_destination(slow_path->continuation()); 686 } 687 } 688 689 690 static bool is_constant_zero(Instruction* inst) { 691 IntConstant* c = inst->type()->as_IntConstant(); 692 if (c) { 693 return (c->value() == 0); 694 } 695 return false; 696 } 697 698 699 static bool positive_constant(Instruction* inst) { 700 IntConstant* c = inst->type()->as_IntConstant(); 701 if (c) { 702 return (c->value() >= 0); 703 } 704 return false; 705 } 706 707 708 static ciArrayKlass* as_array_klass(ciType* type) { 709 if (type != nullptr && type->is_array_klass() && type->is_loaded()) { 710 return (ciArrayKlass*)type; 711 } else { 712 return nullptr; 713 } 714 } 715 716 static ciType* phi_declared_type(Phi* phi) { 717 ciType* t = phi->operand_at(0)->declared_type(); 718 if (t == nullptr) { 719 return nullptr; 720 } 721 for(int i = 1; i < phi->operand_count(); i++) { 722 if (t != phi->operand_at(i)->declared_type()) { 723 return nullptr; 724 } 725 } 726 return t; 727 } 728 729 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 730 Instruction* src = x->argument_at(0); 731 Instruction* src_pos = x->argument_at(1); 732 Instruction* dst = x->argument_at(2); 733 Instruction* dst_pos = x->argument_at(3); 734 Instruction* length = x->argument_at(4); 735 736 // first try to identify the likely type of the arrays involved 737 ciArrayKlass* expected_type = nullptr; 738 bool is_exact = false, src_objarray = false, dst_objarray = false; 739 { 740 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 741 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 742 Phi* phi; 743 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) { 744 src_declared_type = as_array_klass(phi_declared_type(phi)); 745 } 746 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 747 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 748 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) { 749 dst_declared_type = as_array_klass(phi_declared_type(phi)); 750 } 751 752 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) { 753 // the types exactly match so the type is fully known 754 is_exact = true; 755 expected_type = src_exact_type; 756 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) { 757 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 758 ciArrayKlass* src_type = nullptr; 759 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) { 760 src_type = (ciArrayKlass*) src_exact_type; 761 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) { 762 src_type = (ciArrayKlass*) src_declared_type; 763 } 764 if (src_type != nullptr) { 765 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 766 is_exact = true; 767 expected_type = dst_type; 768 } 769 } 770 } 771 // at least pass along a good guess 772 if (expected_type == nullptr) expected_type = dst_exact_type; 773 if (expected_type == nullptr) expected_type = src_declared_type; 774 if (expected_type == nullptr) expected_type = dst_declared_type; 775 776 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 777 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 778 } 779 780 // if a probable array type has been identified, figure out if any 781 // of the required checks for a fast case can be elided. 782 int flags = LIR_OpArrayCopy::all_flags; 783 784 if (!src->is_loaded_flat_array() && !dst->is_loaded_flat_array()) { 785 flags &= ~LIR_OpArrayCopy::always_slow_path; 786 } 787 if (!src->maybe_flat_array()) { 788 flags &= ~LIR_OpArrayCopy::src_inlinetype_check; 789 } 790 if (!dst->maybe_flat_array() && !dst->maybe_null_free_array()) { 791 flags &= ~LIR_OpArrayCopy::dst_inlinetype_check; 792 } 793 794 if (!src_objarray) 795 flags &= ~LIR_OpArrayCopy::src_objarray; 796 if (!dst_objarray) 797 flags &= ~LIR_OpArrayCopy::dst_objarray; 798 799 if (!x->arg_needs_null_check(0)) 800 flags &= ~LIR_OpArrayCopy::src_null_check; 801 if (!x->arg_needs_null_check(2)) 802 flags &= ~LIR_OpArrayCopy::dst_null_check; 803 804 805 if (expected_type != nullptr) { 806 Value length_limit = nullptr; 807 808 IfOp* ifop = length->as_IfOp(); 809 if (ifop != nullptr) { 810 // look for expressions like min(v, a.length) which ends up as 811 // x > y ? y : x or x >= y ? y : x 812 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 813 ifop->x() == ifop->fval() && 814 ifop->y() == ifop->tval()) { 815 length_limit = ifop->y(); 816 } 817 } 818 819 // try to skip null checks and range checks 820 NewArray* src_array = src->as_NewArray(); 821 if (src_array != nullptr) { 822 flags &= ~LIR_OpArrayCopy::src_null_check; 823 if (length_limit != nullptr && 824 src_array->length() == length_limit && 825 is_constant_zero(src_pos)) { 826 flags &= ~LIR_OpArrayCopy::src_range_check; 827 } 828 } 829 830 NewArray* dst_array = dst->as_NewArray(); 831 if (dst_array != nullptr) { 832 flags &= ~LIR_OpArrayCopy::dst_null_check; 833 if (length_limit != nullptr && 834 dst_array->length() == length_limit && 835 is_constant_zero(dst_pos)) { 836 flags &= ~LIR_OpArrayCopy::dst_range_check; 837 } 838 } 839 840 // check from incoming constant values 841 if (positive_constant(src_pos)) 842 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 843 if (positive_constant(dst_pos)) 844 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 845 if (positive_constant(length)) 846 flags &= ~LIR_OpArrayCopy::length_positive_check; 847 848 // see if the range check can be elided, which might also imply 849 // that src or dst is non-null. 850 ArrayLength* al = length->as_ArrayLength(); 851 if (al != nullptr) { 852 if (al->array() == src) { 853 // it's the length of the source array 854 flags &= ~LIR_OpArrayCopy::length_positive_check; 855 flags &= ~LIR_OpArrayCopy::src_null_check; 856 if (is_constant_zero(src_pos)) 857 flags &= ~LIR_OpArrayCopy::src_range_check; 858 } 859 if (al->array() == dst) { 860 // it's the length of the destination array 861 flags &= ~LIR_OpArrayCopy::length_positive_check; 862 flags &= ~LIR_OpArrayCopy::dst_null_check; 863 if (is_constant_zero(dst_pos)) 864 flags &= ~LIR_OpArrayCopy::dst_range_check; 865 } 866 } 867 if (is_exact) { 868 flags &= ~LIR_OpArrayCopy::type_check; 869 } 870 } 871 872 IntConstant* src_int = src_pos->type()->as_IntConstant(); 873 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 874 if (src_int && dst_int) { 875 int s_offs = src_int->value(); 876 int d_offs = dst_int->value(); 877 if (src_int->value() >= dst_int->value()) { 878 flags &= ~LIR_OpArrayCopy::overlapping; 879 } 880 if (expected_type != nullptr) { 881 BasicType t = expected_type->element_type()->basic_type(); 882 int element_size = type2aelembytes(t); 883 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) && 884 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) { 885 flags &= ~LIR_OpArrayCopy::unaligned; 886 } 887 } 888 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 889 // src and dest positions are the same, or dst is zero so assume 890 // nonoverlapping copy. 891 flags &= ~LIR_OpArrayCopy::overlapping; 892 } 893 894 if (src == dst) { 895 // moving within a single array so no type checks are needed 896 if (flags & LIR_OpArrayCopy::type_check) { 897 flags &= ~LIR_OpArrayCopy::type_check; 898 } 899 } 900 *flagsp = flags; 901 *expected_typep = (ciArrayKlass*)expected_type; 902 } 903 904 905 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 906 assert(opr->is_register(), "why spill if item is not register?"); 907 908 if (strict_fp_requires_explicit_rounding) { 909 #ifdef IA32 910 if (UseSSE < 1 && opr->is_single_fpu()) { 911 LIR_Opr result = new_register(T_FLOAT); 912 set_vreg_flag(result, must_start_in_memory); 913 assert(opr->is_register(), "only a register can be spilled"); 914 assert(opr->value_type()->is_float(), "rounding only for floats available"); 915 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 916 return result; 917 } 918 #else 919 Unimplemented(); 920 #endif // IA32 921 } 922 return opr; 923 } 924 925 926 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 927 assert(type2size[t] == type2size[value->type()], 928 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 929 if (!value->is_register()) { 930 // force into a register 931 LIR_Opr r = new_register(value->type()); 932 __ move(value, r); 933 value = r; 934 } 935 936 // create a spill location 937 LIR_Opr tmp = new_register(t); 938 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 939 940 // move from register to spill 941 __ move(value, tmp); 942 return tmp; 943 } 944 945 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 946 if (if_instr->should_profile()) { 947 ciMethod* method = if_instr->profiled_method(); 948 assert(method != nullptr, "method should be set if branch is profiled"); 949 ciMethodData* md = method->method_data_or_null(); 950 assert(md != nullptr, "Sanity"); 951 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 952 assert(data != nullptr, "must have profiling data"); 953 assert(data->is_BranchData(), "need BranchData for two-way branches"); 954 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 955 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 956 if (if_instr->is_swapped()) { 957 int t = taken_count_offset; 958 taken_count_offset = not_taken_count_offset; 959 not_taken_count_offset = t; 960 } 961 962 LIR_Opr md_reg = new_register(T_METADATA); 963 __ metadata2reg(md->constant_encoding(), md_reg); 964 965 LIR_Opr data_offset_reg = new_pointer_register(); 966 __ cmove(lir_cond(cond), 967 LIR_OprFact::intptrConst(taken_count_offset), 968 LIR_OprFact::intptrConst(not_taken_count_offset), 969 data_offset_reg, as_BasicType(if_instr->x()->type())); 970 971 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 972 LIR_Opr data_reg = new_pointer_register(); 973 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 974 __ move(data_addr, data_reg); 975 // Use leal instead of add to avoid destroying condition codes on x86 976 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 977 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 978 __ move(data_reg, data_addr); 979 } 980 } 981 982 // Phi technique: 983 // This is about passing live values from one basic block to the other. 984 // In code generated with Java it is rather rare that more than one 985 // value is on the stack from one basic block to the other. 986 // We optimize our technique for efficient passing of one value 987 // (of type long, int, double..) but it can be extended. 988 // When entering or leaving a basic block, all registers and all spill 989 // slots are release and empty. We use the released registers 990 // and spill slots to pass the live values from one block 991 // to the other. The topmost value, i.e., the value on TOS of expression 992 // stack is passed in registers. All other values are stored in spilling 993 // area. Every Phi has an index which designates its spill slot 994 // At exit of a basic block, we fill the register(s) and spill slots. 995 // At entry of a basic block, the block_prolog sets up the content of phi nodes 996 // and locks necessary registers and spilling slots. 997 998 999 // move current value to referenced phi function 1000 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 1001 Phi* phi = sux_val->as_Phi(); 1002 // cur_val can be null without phi being null in conjunction with inlining 1003 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) { 1004 if (phi->is_local()) { 1005 for (int i = 0; i < phi->operand_count(); i++) { 1006 Value op = phi->operand_at(i); 1007 if (op != nullptr && op->type()->is_illegal()) { 1008 bailout("illegal phi operand"); 1009 } 1010 } 1011 } 1012 Phi* cur_phi = cur_val->as_Phi(); 1013 if (cur_phi != nullptr && cur_phi->is_illegal()) { 1014 // Phi and local would need to get invalidated 1015 // (which is unexpected for Linear Scan). 1016 // But this case is very rare so we simply bail out. 1017 bailout("propagation of illegal phi"); 1018 return; 1019 } 1020 LIR_Opr operand = cur_val->operand(); 1021 if (operand->is_illegal()) { 1022 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr, 1023 "these can be produced lazily"); 1024 operand = operand_for_instruction(cur_val); 1025 } 1026 resolver->move(operand, operand_for_instruction(phi)); 1027 } 1028 } 1029 1030 1031 // Moves all stack values into their PHI position 1032 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 1033 BlockBegin* bb = block(); 1034 if (bb->number_of_sux() == 1) { 1035 BlockBegin* sux = bb->sux_at(0); 1036 assert(sux->number_of_preds() > 0, "invalid CFG"); 1037 1038 // a block with only one predecessor never has phi functions 1039 if (sux->number_of_preds() > 1) { 1040 PhiResolver resolver(this); 1041 1042 ValueStack* sux_state = sux->state(); 1043 Value sux_value; 1044 int index; 1045 1046 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1047 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1048 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1049 1050 for_each_stack_value(sux_state, index, sux_value) { 1051 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1052 } 1053 1054 for_each_local_value(sux_state, index, sux_value) { 1055 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1056 } 1057 1058 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1059 } 1060 } 1061 } 1062 1063 1064 LIR_Opr LIRGenerator::new_register(BasicType type) { 1065 int vreg_num = _virtual_register_number; 1066 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1067 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1068 if (vreg_num + 20 >= LIR_Opr::vreg_max) { 1069 bailout("out of virtual registers in LIR generator"); 1070 if (vreg_num + 2 >= LIR_Opr::vreg_max) { 1071 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1072 _virtual_register_number = LIR_Opr::vreg_base; 1073 vreg_num = LIR_Opr::vreg_base; 1074 } 1075 } 1076 _virtual_register_number += 1; 1077 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1078 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1079 return vreg; 1080 } 1081 1082 1083 // Try to lock using register in hint 1084 LIR_Opr LIRGenerator::rlock(Value instr) { 1085 return new_register(instr->type()); 1086 } 1087 1088 1089 // does an rlock and sets result 1090 LIR_Opr LIRGenerator::rlock_result(Value x) { 1091 LIR_Opr reg = rlock(x); 1092 set_result(x, reg); 1093 return reg; 1094 } 1095 1096 1097 // does an rlock and sets result 1098 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1099 LIR_Opr reg; 1100 switch (type) { 1101 case T_BYTE: 1102 case T_BOOLEAN: 1103 reg = rlock_byte(type); 1104 break; 1105 default: 1106 reg = rlock(x); 1107 break; 1108 } 1109 1110 set_result(x, reg); 1111 return reg; 1112 } 1113 1114 1115 //--------------------------------------------------------------------- 1116 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1117 ObjectType* oc = value->type()->as_ObjectType(); 1118 if (oc) { 1119 return oc->constant_value(); 1120 } 1121 return nullptr; 1122 } 1123 1124 1125 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1126 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1127 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1128 1129 // no moves are created for phi functions at the begin of exception 1130 // handlers, so assign operands manually here 1131 for_each_phi_fun(block(), phi, 1132 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1133 1134 LIR_Opr thread_reg = getThreadPointer(); 1135 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1136 exceptionOopOpr()); 1137 __ move_wide(LIR_OprFact::oopConst(nullptr), 1138 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1139 __ move_wide(LIR_OprFact::oopConst(nullptr), 1140 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1141 1142 LIR_Opr result = new_register(T_OBJECT); 1143 __ move(exceptionOopOpr(), result); 1144 set_result(x, result); 1145 } 1146 1147 1148 //---------------------------------------------------------------------- 1149 //---------------------------------------------------------------------- 1150 //---------------------------------------------------------------------- 1151 //---------------------------------------------------------------------- 1152 // visitor functions 1153 //---------------------------------------------------------------------- 1154 //---------------------------------------------------------------------- 1155 //---------------------------------------------------------------------- 1156 //---------------------------------------------------------------------- 1157 1158 void LIRGenerator::do_Phi(Phi* x) { 1159 // phi functions are never visited directly 1160 ShouldNotReachHere(); 1161 } 1162 1163 1164 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1165 void LIRGenerator::do_Constant(Constant* x) { 1166 if (x->state_before() != nullptr) { 1167 // Any constant with a ValueStack requires patching so emit the patch here 1168 LIR_Opr reg = rlock_result(x); 1169 CodeEmitInfo* info = state_for(x, x->state_before()); 1170 __ oop2reg_patch(nullptr, reg, info); 1171 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1172 if (!x->is_pinned()) { 1173 // unpinned constants are handled specially so that they can be 1174 // put into registers when they are used multiple times within a 1175 // block. After the block completes their operand will be 1176 // cleared so that other blocks can't refer to that register. 1177 set_result(x, load_constant(x)); 1178 } else { 1179 LIR_Opr res = x->operand(); 1180 if (!res->is_valid()) { 1181 res = LIR_OprFact::value_type(x->type()); 1182 } 1183 if (res->is_constant()) { 1184 LIR_Opr reg = rlock_result(x); 1185 __ move(res, reg); 1186 } else { 1187 set_result(x, res); 1188 } 1189 } 1190 } else { 1191 set_result(x, LIR_OprFact::value_type(x->type())); 1192 } 1193 } 1194 1195 1196 void LIRGenerator::do_Local(Local* x) { 1197 // operand_for_instruction has the side effect of setting the result 1198 // so there's no need to do it here. 1199 operand_for_instruction(x); 1200 } 1201 1202 1203 void LIRGenerator::do_Return(Return* x) { 1204 if (compilation()->env()->dtrace_method_probes()) { 1205 BasicTypeList signature; 1206 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1207 signature.append(T_METADATA); // Method* 1208 LIR_OprList* args = new LIR_OprList(); 1209 args->append(getThreadPointer()); 1210 LIR_Opr meth = new_register(T_METADATA); 1211 __ metadata2reg(method()->constant_encoding(), meth); 1212 args->append(meth); 1213 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr); 1214 } 1215 1216 if (x->type()->is_void()) { 1217 __ return_op(LIR_OprFact::illegalOpr); 1218 } else { 1219 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1220 LIRItem result(x->result(), this); 1221 1222 result.load_item_force(reg); 1223 __ return_op(result.result()); 1224 } 1225 set_no_result(x); 1226 } 1227 1228 // Example: ref.get() 1229 // Combination of LoadField and g1 pre-write barrier 1230 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1231 1232 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1233 1234 assert(x->number_of_arguments() == 1, "wrong type"); 1235 1236 LIRItem reference(x->argument_at(0), this); 1237 reference.load_item(); 1238 1239 // need to perform the null check on the reference object 1240 CodeEmitInfo* info = nullptr; 1241 if (x->needs_null_check()) { 1242 info = state_for(x); 1243 } 1244 1245 LIR_Opr result = rlock_result(x, T_OBJECT); 1246 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1247 reference, LIR_OprFact::intConst(referent_offset), result, 1248 nullptr, info); 1249 } 1250 1251 // Example: clazz.isInstance(object) 1252 void LIRGenerator::do_isInstance(Intrinsic* x) { 1253 assert(x->number_of_arguments() == 2, "wrong type"); 1254 1255 // TODO could try to substitute this node with an equivalent InstanceOf 1256 // if clazz is known to be a constant Class. This will pick up newly found 1257 // constants after HIR construction. I'll leave this to a future change. 1258 1259 // as a first cut, make a simple leaf call to runtime to stay platform independent. 1260 // could follow the aastore example in a future change. 1261 1262 LIRItem clazz(x->argument_at(0), this); 1263 LIRItem object(x->argument_at(1), this); 1264 clazz.load_item(); 1265 object.load_item(); 1266 LIR_Opr result = rlock_result(x); 1267 1268 // need to perform null check on clazz 1269 if (x->needs_null_check()) { 1270 CodeEmitInfo* info = state_for(x); 1271 __ null_check(clazz.result(), info); 1272 } 1273 1274 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1275 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), 1276 x->type(), 1277 nullptr); // null CodeEmitInfo results in a leaf call 1278 __ move(call_result, result); 1279 } 1280 1281 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1282 __ load_klass(obj, klass, null_check_info); 1283 } 1284 1285 // Example: object.getClass () 1286 void LIRGenerator::do_getClass(Intrinsic* x) { 1287 assert(x->number_of_arguments() == 1, "wrong type"); 1288 1289 LIRItem rcvr(x->argument_at(0), this); 1290 rcvr.load_item(); 1291 LIR_Opr temp = new_register(T_ADDRESS); 1292 LIR_Opr result = rlock_result(x); 1293 1294 // need to perform the null check on the rcvr 1295 CodeEmitInfo* info = nullptr; 1296 if (x->needs_null_check()) { 1297 info = state_for(x); 1298 } 1299 1300 LIR_Opr klass = new_register(T_METADATA); 1301 load_klass(rcvr.result(), klass, info); 1302 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1303 // mirror = ((OopHandle)mirror)->resolve(); 1304 access_load(IN_NATIVE, T_OBJECT, 1305 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1306 } 1307 1308 // java.lang.Class::isPrimitive() 1309 void LIRGenerator::do_isPrimitive(Intrinsic* x) { 1310 assert(x->number_of_arguments() == 1, "wrong type"); 1311 1312 LIRItem rcvr(x->argument_at(0), this); 1313 rcvr.load_item(); 1314 LIR_Opr temp = new_register(T_METADATA); 1315 LIR_Opr result = rlock_result(x); 1316 1317 CodeEmitInfo* info = nullptr; 1318 if (x->needs_null_check()) { 1319 info = state_for(x); 1320 } 1321 1322 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info); 1323 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(nullptr)); 1324 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN); 1325 } 1326 1327 // Example: Foo.class.getModifiers() 1328 void LIRGenerator::do_getModifiers(Intrinsic* x) { 1329 assert(x->number_of_arguments() == 1, "wrong type"); 1330 1331 LIRItem receiver(x->argument_at(0), this); 1332 receiver.load_item(); 1333 LIR_Opr result = rlock_result(x); 1334 1335 CodeEmitInfo* info = nullptr; 1336 if (x->needs_null_check()) { 1337 info = state_for(x); 1338 } 1339 1340 // While reading off the universal constant mirror is less efficient than doing 1341 // another branch and returning the constant answer, this branchless code runs into 1342 // much less risk of confusion for C1 register allocator. The choice of the universe 1343 // object here is correct as long as it returns the same modifiers we would expect 1344 // from the primitive class itself. See spec for Class.getModifiers that provides 1345 // the typed array klasses with similar modifiers as their component types. 1346 1347 // Valhalla update: the code is now a bit convuloted because arrays and primitive 1348 // classes don't have the same modifiers set anymore, but we cannot introduce 1349 // branches in LIR generation (JDK-8211231). So, the first part of the code remains 1350 // identical, using the byteArrayKlass object to avoid a NPE when accessing the 1351 // modifiers. But then the code also prepares the correct modifiers set for 1352 // primitive classes, and there's a second conditional move to put the right 1353 // value into result. 1354 1355 1356 Klass* univ_klass = Universe::byteArrayKlass(); 1357 assert(univ_klass->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC 1358 | (Arguments::enable_preview() ? JVM_ACC_IDENTITY : 0)), "Sanity"); 1359 LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass); 1360 1361 LIR_Opr recv_klass = new_register(T_METADATA); 1362 __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info); 1363 1364 // Check if this is a Java mirror of primitive type, and select the appropriate klass. 1365 LIR_Opr klass = new_register(T_METADATA); 1366 __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(nullptr)); 1367 __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS); 1368 LIR_Opr klass_modifiers = new_register(T_INT); 1369 __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), klass_modifiers); 1370 1371 LIR_Opr prim_modifiers = load_immediate(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC, T_INT); 1372 1373 __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0)); 1374 __ cmove(lir_cond_equal, prim_modifiers, klass_modifiers, result, T_INT); 1375 1376 } 1377 1378 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1379 assert(x->number_of_arguments() == 3, "wrong type"); 1380 LIR_Opr result_reg = rlock_result(x); 1381 1382 LIRItem value(x->argument_at(2), this); 1383 value.load_item(); 1384 1385 LIR_Opr klass = new_register(T_METADATA); 1386 load_klass(value.result(), klass, nullptr); 1387 LIR_Opr layout = new_register(T_INT); 1388 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1389 1390 LabelObj* L_done = new LabelObj(); 1391 LabelObj* L_array = new LabelObj(); 1392 1393 __ cmp(lir_cond_lessEqual, layout, 0); 1394 __ branch(lir_cond_lessEqual, L_array->label()); 1395 1396 // Instance case: the layout helper gives us instance size almost directly, 1397 // but we need to mask out the _lh_instance_slow_path_bit. 1398 1399 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1400 1401 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT); 1402 __ logical_and(layout, mask, layout); 1403 __ convert(Bytecodes::_i2l, layout, result_reg); 1404 1405 __ branch(lir_cond_always, L_done->label()); 1406 1407 // Array case: size is round(header + element_size*arraylength). 1408 // Since arraylength is different for every array instance, we have to 1409 // compute the whole thing at runtime. 1410 1411 __ branch_destination(L_array->label()); 1412 1413 int round_mask = MinObjAlignmentInBytes - 1; 1414 1415 // Figure out header sizes first. 1416 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT); 1417 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT); 1418 1419 LIR_Opr header_size = new_register(T_INT); 1420 __ move(layout, header_size); 1421 LIR_Opr tmp = new_register(T_INT); 1422 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1423 __ logical_and(header_size, hsm, header_size); 1424 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1425 1426 // Figure out the array length in bytes 1427 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1428 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT); 1429 __ logical_and(layout, l2esm, layout); 1430 1431 LIR_Opr length_int = new_register(T_INT); 1432 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1433 1434 #ifdef _LP64 1435 LIR_Opr length = new_register(T_LONG); 1436 __ convert(Bytecodes::_i2l, length_int, length); 1437 #endif 1438 1439 // Shift-left awkwardness. Normally it is just: 1440 // __ shift_left(length, layout, length); 1441 // But C1 cannot perform shift_left with non-constant count, so we end up 1442 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1443 // longs, so we have to act on ints. 1444 LabelObj* L_shift_loop = new LabelObj(); 1445 LabelObj* L_shift_exit = new LabelObj(); 1446 1447 __ branch_destination(L_shift_loop->label()); 1448 __ cmp(lir_cond_equal, layout, 0); 1449 __ branch(lir_cond_equal, L_shift_exit->label()); 1450 1451 #ifdef _LP64 1452 __ shift_left(length, 1, length); 1453 #else 1454 __ shift_left(length_int, 1, length_int); 1455 #endif 1456 1457 __ sub(layout, LIR_OprFact::intConst(1), layout); 1458 1459 __ branch(lir_cond_always, L_shift_loop->label()); 1460 __ branch_destination(L_shift_exit->label()); 1461 1462 // Mix all up, round, and push to the result. 1463 #ifdef _LP64 1464 LIR_Opr header_size_long = new_register(T_LONG); 1465 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1466 __ add(length, header_size_long, length); 1467 if (round_mask != 0) { 1468 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG); 1469 __ logical_and(length, round_mask_opr, length); 1470 } 1471 __ move(length, result_reg); 1472 #else 1473 __ add(length_int, header_size, length_int); 1474 if (round_mask != 0) { 1475 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT); 1476 __ logical_and(length_int, round_mask_opr, length_int); 1477 } 1478 __ convert(Bytecodes::_i2l, length_int, result_reg); 1479 #endif 1480 1481 __ branch_destination(L_done->label()); 1482 } 1483 1484 void LIRGenerator::do_scopedValueCache(Intrinsic* x) { 1485 do_JavaThreadField(x, JavaThread::scopedValueCache_offset()); 1486 } 1487 1488 // Example: Thread.currentCarrierThread() 1489 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) { 1490 do_JavaThreadField(x, JavaThread::threadObj_offset()); 1491 } 1492 1493 void LIRGenerator::do_vthread(Intrinsic* x) { 1494 do_JavaThreadField(x, JavaThread::vthread_offset()); 1495 } 1496 1497 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) { 1498 assert(x->number_of_arguments() == 0, "wrong type"); 1499 LIR_Opr temp = new_register(T_ADDRESS); 1500 LIR_Opr reg = rlock_result(x); 1501 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp); 1502 access_load(IN_NATIVE, T_OBJECT, 1503 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1504 } 1505 1506 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1507 assert(x->number_of_arguments() == 1, "wrong type"); 1508 LIRItem receiver(x->argument_at(0), this); 1509 1510 receiver.load_item(); 1511 BasicTypeList signature; 1512 signature.append(T_OBJECT); // receiver 1513 LIR_OprList* args = new LIR_OprList(); 1514 args->append(receiver.result()); 1515 CodeEmitInfo* info = state_for(x, x->state()); 1516 call_runtime(&signature, args, 1517 CAST_FROM_FN_PTR(address, Runtime1::entry_for(C1StubId::register_finalizer_id)), 1518 voidType, info); 1519 1520 set_no_result(x); 1521 } 1522 1523 1524 //------------------------local access-------------------------------------- 1525 1526 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1527 if (x->operand()->is_illegal()) { 1528 Constant* c = x->as_Constant(); 1529 if (c != nullptr) { 1530 x->set_operand(LIR_OprFact::value_type(c->type())); 1531 } else { 1532 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local"); 1533 // allocate a virtual register for this local or phi 1534 x->set_operand(rlock(x)); 1535 #ifdef ASSERT 1536 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr); 1537 #endif 1538 } 1539 } 1540 return x->operand(); 1541 } 1542 1543 #ifdef ASSERT 1544 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1545 if (reg_num < _instruction_for_operand.length()) { 1546 return _instruction_for_operand.at(reg_num); 1547 } 1548 return nullptr; 1549 } 1550 #endif 1551 1552 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1553 if (_vreg_flags.size_in_bits() == 0) { 1554 BitMap2D temp(100, num_vreg_flags); 1555 _vreg_flags = temp; 1556 } 1557 _vreg_flags.at_put_grow(vreg_num, f, true); 1558 } 1559 1560 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1561 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1562 return false; 1563 } 1564 return _vreg_flags.at(vreg_num, f); 1565 } 1566 1567 1568 // Block local constant handling. This code is useful for keeping 1569 // unpinned constants and constants which aren't exposed in the IR in 1570 // registers. Unpinned Constant instructions have their operands 1571 // cleared when the block is finished so that other blocks can't end 1572 // up referring to their registers. 1573 1574 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1575 assert(!x->is_pinned(), "only for unpinned constants"); 1576 _unpinned_constants.append(x); 1577 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1578 } 1579 1580 1581 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1582 BasicType t = c->type(); 1583 for (int i = 0; i < _constants.length(); i++) { 1584 LIR_Const* other = _constants.at(i); 1585 if (t == other->type()) { 1586 switch (t) { 1587 case T_INT: 1588 case T_FLOAT: 1589 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1590 break; 1591 case T_LONG: 1592 case T_DOUBLE: 1593 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1594 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1595 break; 1596 case T_OBJECT: 1597 if (c->as_jobject() != other->as_jobject()) continue; 1598 break; 1599 default: 1600 break; 1601 } 1602 return _reg_for_constants.at(i); 1603 } 1604 } 1605 1606 LIR_Opr result = new_register(t); 1607 __ move((LIR_Opr)c, result); 1608 if (!in_conditional_code()) { 1609 _constants.append(c); 1610 _reg_for_constants.append(result); 1611 } 1612 return result; 1613 } 1614 1615 void LIRGenerator::set_in_conditional_code(bool v) { 1616 assert(v != _in_conditional_code, "must change state"); 1617 _in_conditional_code = v; 1618 } 1619 1620 1621 //------------------------field access-------------------------------------- 1622 1623 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1624 assert(x->number_of_arguments() == 4, "wrong type"); 1625 LIRItem obj (x->argument_at(0), this); // object 1626 LIRItem offset(x->argument_at(1), this); // offset of field 1627 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1628 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1629 assert(obj.type()->tag() == objectTag, "invalid type"); 1630 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1631 assert(val.type()->tag() == type->tag(), "invalid type"); 1632 1633 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1634 obj, offset, cmp, val); 1635 set_result(x, result); 1636 } 1637 1638 // Comment copied form templateTable_i486.cpp 1639 // ---------------------------------------------------------------------------- 1640 // Volatile variables demand their effects be made known to all CPU's in 1641 // order. Store buffers on most chips allow reads & writes to reorder; the 1642 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1643 // memory barrier (i.e., it's not sufficient that the interpreter does not 1644 // reorder volatile references, the hardware also must not reorder them). 1645 // 1646 // According to the new Java Memory Model (JMM): 1647 // (1) All volatiles are serialized wrt to each other. 1648 // ALSO reads & writes act as acquire & release, so: 1649 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1650 // the read float up to before the read. It's OK for non-volatile memory refs 1651 // that happen before the volatile read to float down below it. 1652 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1653 // that happen BEFORE the write float down to after the write. It's OK for 1654 // non-volatile memory refs that happen after the volatile write to float up 1655 // before it. 1656 // 1657 // We only put in barriers around volatile refs (they are expensive), not 1658 // _between_ memory refs (that would require us to track the flavor of the 1659 // previous memory refs). Requirements (2) and (3) require some barriers 1660 // before volatile stores and after volatile loads. These nearly cover 1661 // requirement (1) but miss the volatile-store-volatile-load case. This final 1662 // case is placed after volatile-stores although it could just as well go 1663 // before volatile-loads. 1664 1665 1666 void LIRGenerator::do_StoreField(StoreField* x) { 1667 bool needs_patching = x->needs_patching(); 1668 bool is_volatile = x->field()->is_volatile(); 1669 BasicType field_type = x->field_type(); 1670 1671 CodeEmitInfo* info = nullptr; 1672 if (needs_patching) { 1673 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1674 info = state_for(x, x->state_before()); 1675 } else if (x->needs_null_check()) { 1676 NullCheck* nc = x->explicit_null_check(); 1677 if (nc == nullptr) { 1678 info = state_for(x); 1679 } else { 1680 info = state_for(nc); 1681 } 1682 } 1683 1684 LIRItem object(x->obj(), this); 1685 LIRItem value(x->value(), this); 1686 1687 object.load_item(); 1688 1689 if (is_volatile || needs_patching) { 1690 // load item if field is volatile (fewer special cases for volatiles) 1691 // load item if field not initialized 1692 // load item if field not constant 1693 // because of code patching we cannot inline constants 1694 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1695 value.load_byte_item(); 1696 } else { 1697 value.load_item(); 1698 } 1699 } else { 1700 value.load_for_store(field_type); 1701 } 1702 1703 set_no_result(x); 1704 1705 #ifndef PRODUCT 1706 if (PrintNotLoaded && needs_patching) { 1707 tty->print_cr(" ###class not loaded at store_%s bci %d", 1708 x->is_static() ? "static" : "field", x->printable_bci()); 1709 } 1710 #endif 1711 1712 if (x->needs_null_check() && 1713 (needs_patching || 1714 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1715 // Emit an explicit null check because the offset is too large. 1716 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1717 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1718 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1719 } 1720 1721 DecoratorSet decorators = IN_HEAP; 1722 if (is_volatile) { 1723 decorators |= MO_SEQ_CST; 1724 } 1725 if (needs_patching) { 1726 decorators |= C1_NEEDS_PATCHING; 1727 } 1728 1729 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1730 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info); 1731 } 1732 1733 // FIXME -- I can't find any other way to pass an address to access_load_at(). 1734 class TempResolvedAddress: public Instruction { 1735 public: 1736 TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) { 1737 set_operand(addr); 1738 } 1739 virtual void input_values_do(ValueVisitor*) {} 1740 virtual void visit(InstructionVisitor* v) {} 1741 virtual const char* name() const { return "TempResolvedAddress"; } 1742 }; 1743 1744 LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) { 1745 ciType* array_type = array.value()->declared_type(); 1746 ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass(); 1747 assert(flat_array_klass->is_loaded(), "must be"); 1748 1749 int array_header_size = flat_array_klass->array_header_in_bytes(); 1750 int shift = flat_array_klass->log2_element_size(); 1751 1752 #ifndef _LP64 1753 LIR_Opr index_op = new_register(T_INT); 1754 // FIXME -- on 32-bit, the shift below can overflow, so we need to check that 1755 // the top (shift+1) bits of index_op must be zero, or 1756 // else throw ArrayIndexOutOfBoundsException 1757 if (index.result()->is_constant()) { 1758 jint const_index = index.result()->as_jint(); 1759 __ move(LIR_OprFact::intConst(const_index << shift), index_op); 1760 } else { 1761 __ shift_left(index_op, shift, index.result()); 1762 } 1763 #else 1764 LIR_Opr index_op = new_register(T_LONG); 1765 if (index.result()->is_constant()) { 1766 jint const_index = index.result()->as_jint(); 1767 __ move(LIR_OprFact::longConst(const_index << shift), index_op); 1768 } else { 1769 __ convert(Bytecodes::_i2l, index.result(), index_op); 1770 // Need to shift manually, as LIR_Address can scale only up to 3. 1771 __ shift_left(index_op, shift, index_op); 1772 } 1773 #endif 1774 1775 LIR_Opr elm_op = new_pointer_register(); 1776 LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS); 1777 __ leal(LIR_OprFact::address(elm_address), elm_op); 1778 return elm_op; 1779 } 1780 1781 void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, int sub_offset) { 1782 assert(field != nullptr, "Need a subelement type specified"); 1783 1784 // Find the starting address of the source (inside the array) 1785 LIR_Opr elm_op = get_and_load_element_address(array, index); 1786 1787 BasicType subelt_type = field->type()->basic_type(); 1788 TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op); 1789 LIRItem elm_item(elm_resolved_addr, this); 1790 1791 DecoratorSet decorators = IN_HEAP; 1792 access_load_at(decorators, subelt_type, 1793 elm_item, LIR_OprFact::intConst(sub_offset), result, 1794 nullptr, nullptr); 1795 1796 if (field->is_null_free()) { 1797 assert(field->type()->is_loaded(), "Must be"); 1798 assert(field->type()->is_inlinetype(), "Must be if loaded"); 1799 assert(field->type()->as_inline_klass()->is_initialized(), "Must be"); 1800 LabelObj* L_end = new LabelObj(); 1801 __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(nullptr)); 1802 __ branch(lir_cond_notEqual, L_end->label()); 1803 set_in_conditional_code(true); 1804 Constant* default_value = new Constant(new InstanceConstant(field->type()->as_inline_klass()->default_instance())); 1805 if (default_value->is_pinned()) { 1806 __ move(LIR_OprFact::value_type(default_value->type()), result); 1807 } else { 1808 __ move(load_constant(default_value), result); 1809 } 1810 __ branch_destination(L_end->label()); 1811 set_in_conditional_code(false); 1812 } 1813 } 1814 1815 void LIRGenerator::access_flat_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item, 1816 ciField* field, int sub_offset) { 1817 assert(sub_offset == 0 || field != nullptr, "Sanity check"); 1818 1819 // Find the starting address of the source (inside the array) 1820 LIR_Opr elm_op = get_and_load_element_address(array, index); 1821 1822 ciInlineKlass* elem_klass = nullptr; 1823 if (field != nullptr) { 1824 elem_klass = field->type()->as_inline_klass(); 1825 } else { 1826 elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass(); 1827 } 1828 for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) { 1829 ciField* inner_field = elem_klass->nonstatic_field_at(i); 1830 assert(!inner_field->is_flat(), "flat fields must have been expanded"); 1831 int obj_offset = inner_field->offset_in_bytes(); 1832 int elm_offset = obj_offset - elem_klass->first_field_offset() + sub_offset; // object header is not stored in array. 1833 BasicType field_type = inner_field->type()->basic_type(); 1834 1835 // Types which are smaller than int are still passed in an int register. 1836 BasicType reg_type = field_type; 1837 switch (reg_type) { 1838 case T_BYTE: 1839 case T_BOOLEAN: 1840 case T_SHORT: 1841 case T_CHAR: 1842 reg_type = T_INT; 1843 break; 1844 default: 1845 break; 1846 } 1847 1848 LIR_Opr temp = new_register(reg_type); 1849 TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op); 1850 LIRItem elm_item(elm_resolved_addr, this); 1851 1852 DecoratorSet decorators = IN_HEAP; 1853 if (is_load) { 1854 access_load_at(decorators, field_type, 1855 elm_item, LIR_OprFact::intConst(elm_offset), temp, 1856 nullptr, nullptr); 1857 access_store_at(decorators, field_type, 1858 obj_item, LIR_OprFact::intConst(obj_offset), temp, 1859 nullptr, nullptr); 1860 } else { 1861 access_load_at(decorators, field_type, 1862 obj_item, LIR_OprFact::intConst(obj_offset), temp, 1863 nullptr, nullptr); 1864 access_store_at(decorators, field_type, 1865 elm_item, LIR_OprFact::intConst(elm_offset), temp, 1866 nullptr, nullptr); 1867 } 1868 } 1869 } 1870 1871 void LIRGenerator::check_flat_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) { 1872 LIR_Opr tmp = new_register(T_METADATA); 1873 __ check_flat_array(array, value, tmp, slow_path); 1874 } 1875 1876 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) { 1877 LabelObj* L_end = new LabelObj(); 1878 LIR_Opr tmp = new_register(T_METADATA); 1879 __ check_null_free_array(array.result(), tmp); 1880 __ branch(lir_cond_equal, L_end->label()); 1881 __ null_check(value.result(), info); 1882 __ branch_destination(L_end->label()); 1883 } 1884 1885 bool LIRGenerator::needs_flat_array_store_check(StoreIndexed* x) { 1886 if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) { 1887 ciType* type = x->value()->declared_type(); 1888 if (type != nullptr && type->is_klass()) { 1889 ciKlass* klass = type->as_klass(); 1890 if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->flat_in_array())) { 1891 // This is known to be a non-flat object. If the array is a flat array, 1892 // it will be caught by the code generated by array_store_check(). 1893 return false; 1894 } 1895 } 1896 // We're not 100% sure, so let's do the flat_array_store_check. 1897 return true; 1898 } 1899 return false; 1900 } 1901 1902 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) { 1903 return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array(); 1904 } 1905 1906 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1907 assert(x->is_pinned(),""); 1908 assert(x->elt_type() != T_ARRAY, "never used"); 1909 bool is_loaded_flat_array = x->array()->is_loaded_flat_array(); 1910 bool needs_range_check = x->compute_needs_range_check(); 1911 bool use_length = x->length() != nullptr; 1912 bool obj_store = is_reference_type(x->elt_type()); 1913 bool needs_store_check = obj_store && !(is_loaded_flat_array && x->is_exact_flat_array_store()) && 1914 (x->value()->as_Constant() == nullptr || 1915 !get_jobject_constant(x->value())->is_null_object()); 1916 1917 LIRItem array(x->array(), this); 1918 LIRItem index(x->index(), this); 1919 LIRItem value(x->value(), this); 1920 LIRItem length(this); 1921 1922 array.load_item(); 1923 index.load_nonconstant(); 1924 1925 if (use_length && needs_range_check) { 1926 length.set_instruction(x->length()); 1927 length.load_item(); 1928 } 1929 1930 if (needs_store_check || x->check_boolean() 1931 || is_loaded_flat_array || needs_flat_array_store_check(x) || needs_null_free_array_store_check(x)) { 1932 value.load_item(); 1933 } else { 1934 value.load_for_store(x->elt_type()); 1935 } 1936 1937 set_no_result(x); 1938 1939 // the CodeEmitInfo must be duplicated for each different 1940 // LIR-instruction because spilling can occur anywhere between two 1941 // instructions and so the debug information must be different 1942 CodeEmitInfo* range_check_info = state_for(x); 1943 CodeEmitInfo* null_check_info = nullptr; 1944 if (x->needs_null_check()) { 1945 null_check_info = new CodeEmitInfo(range_check_info); 1946 } 1947 1948 if (needs_range_check) { 1949 if (use_length) { 1950 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1951 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1952 } else { 1953 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1954 // range_check also does the null check 1955 null_check_info = nullptr; 1956 } 1957 } 1958 1959 if (x->should_profile()) { 1960 if (x->array()->is_loaded_flat_array()) { 1961 // No need to profile a store to a flat array of known type. This can happen if 1962 // the type only became known after optimizations (for example, after the PhiSimplifier). 1963 x->set_should_profile(false); 1964 } else { 1965 int bci = x->profiled_bci(); 1966 ciMethodData* md = x->profiled_method()->method_data(); 1967 assert(md != nullptr, "Sanity"); 1968 ciProfileData* data = md->bci_to_data(bci); 1969 assert(data != nullptr && data->is_ArrayStoreData(), "incorrect profiling entry"); 1970 ciArrayStoreData* store_data = (ciArrayStoreData*)data; 1971 profile_array_type(x, md, store_data); 1972 assert(store_data->is_ArrayStoreData(), "incorrect profiling entry"); 1973 if (x->array()->maybe_null_free_array()) { 1974 profile_null_free_array(array, md, store_data); 1975 } 1976 } 1977 } 1978 1979 if (GenerateArrayStoreCheck && needs_store_check) { 1980 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1981 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1982 } 1983 1984 if (is_loaded_flat_array) { 1985 if (!x->value()->is_null_free()) { 1986 __ null_check(value.result(), new CodeEmitInfo(range_check_info)); 1987 } 1988 // If array element is an empty inline type, no need to copy anything 1989 if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) { 1990 access_flat_array(false, array, index, value); 1991 } 1992 } else { 1993 StoreFlattenedArrayStub* slow_path = nullptr; 1994 1995 if (needs_flat_array_store_check(x)) { 1996 // Check if we indeed have a flat array 1997 index.load_item(); 1998 slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before())); 1999 check_flat_array(array.result(), value.result(), slow_path); 2000 set_in_conditional_code(true); 2001 } else if (needs_null_free_array_store_check(x)) { 2002 CodeEmitInfo* info = new CodeEmitInfo(range_check_info); 2003 check_null_free_array(array, value, info); 2004 } 2005 2006 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 2007 if (x->check_boolean()) { 2008 decorators |= C1_MASK_BOOLEAN; 2009 } 2010 2011 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 2012 nullptr, null_check_info); 2013 if (slow_path != nullptr) { 2014 __ branch_destination(slow_path->continuation()); 2015 set_in_conditional_code(false); 2016 } 2017 } 2018 } 2019 2020 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 2021 LIRItem& base, LIR_Opr offset, LIR_Opr result, 2022 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 2023 decorators |= ACCESS_READ; 2024 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 2025 if (access.is_raw()) { 2026 _barrier_set->BarrierSetC1::load_at(access, result); 2027 } else { 2028 _barrier_set->load_at(access, result); 2029 } 2030 } 2031 2032 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 2033 LIR_Opr addr, LIR_Opr result) { 2034 decorators |= ACCESS_READ; 2035 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 2036 access.set_resolved_addr(addr); 2037 if (access.is_raw()) { 2038 _barrier_set->BarrierSetC1::load(access, result); 2039 } else { 2040 _barrier_set->load(access, result); 2041 } 2042 } 2043 2044 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 2045 LIRItem& base, LIR_Opr offset, LIR_Opr value, 2046 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 2047 decorators |= ACCESS_WRITE; 2048 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 2049 if (access.is_raw()) { 2050 _barrier_set->BarrierSetC1::store_at(access, value); 2051 } else { 2052 _barrier_set->store_at(access, value); 2053 } 2054 } 2055 2056 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 2057 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 2058 decorators |= ACCESS_READ; 2059 decorators |= ACCESS_WRITE; 2060 // Atomic operations are SEQ_CST by default 2061 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 2062 LIRAccess access(this, decorators, base, offset, type); 2063 if (access.is_raw()) { 2064 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 2065 } else { 2066 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 2067 } 2068 } 2069 2070 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 2071 LIRItem& base, LIRItem& offset, LIRItem& value) { 2072 decorators |= ACCESS_READ; 2073 decorators |= ACCESS_WRITE; 2074 // Atomic operations are SEQ_CST by default 2075 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 2076 LIRAccess access(this, decorators, base, offset, type); 2077 if (access.is_raw()) { 2078 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 2079 } else { 2080 return _barrier_set->atomic_xchg_at(access, value); 2081 } 2082 } 2083 2084 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 2085 LIRItem& base, LIRItem& offset, LIRItem& value) { 2086 decorators |= ACCESS_READ; 2087 decorators |= ACCESS_WRITE; 2088 // Atomic operations are SEQ_CST by default 2089 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 2090 LIRAccess access(this, decorators, base, offset, type); 2091 if (access.is_raw()) { 2092 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 2093 } else { 2094 return _barrier_set->atomic_add_at(access, value); 2095 } 2096 } 2097 2098 void LIRGenerator::do_LoadField(LoadField* x) { 2099 bool needs_patching = x->needs_patching(); 2100 bool is_volatile = x->field()->is_volatile(); 2101 BasicType field_type = x->field_type(); 2102 2103 CodeEmitInfo* info = nullptr; 2104 if (needs_patching) { 2105 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 2106 info = state_for(x, x->state_before()); 2107 } else if (x->needs_null_check()) { 2108 NullCheck* nc = x->explicit_null_check(); 2109 if (nc == nullptr) { 2110 info = state_for(x); 2111 } else { 2112 info = state_for(nc); 2113 } 2114 } 2115 2116 LIRItem object(x->obj(), this); 2117 2118 object.load_item(); 2119 2120 #ifndef PRODUCT 2121 if (PrintNotLoaded && needs_patching) { 2122 tty->print_cr(" ###class not loaded at load_%s bci %d", 2123 x->is_static() ? "static" : "field", x->printable_bci()); 2124 } 2125 #endif 2126 2127 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 2128 if (x->needs_null_check() && 2129 (needs_patching || 2130 MacroAssembler::needs_explicit_null_check(x->offset()) || 2131 stress_deopt)) { 2132 LIR_Opr obj = object.result(); 2133 if (stress_deopt) { 2134 obj = new_register(T_OBJECT); 2135 __ move(LIR_OprFact::oopConst(nullptr), obj); 2136 } 2137 // Emit an explicit null check because the offset is too large. 2138 // If the class is not loaded and the object is null, we need to deoptimize to throw a 2139 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 2140 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 2141 } 2142 2143 DecoratorSet decorators = IN_HEAP; 2144 if (is_volatile) { 2145 decorators |= MO_SEQ_CST; 2146 } 2147 if (needs_patching) { 2148 decorators |= C1_NEEDS_PATCHING; 2149 } 2150 2151 LIR_Opr result = rlock_result(x, field_type); 2152 access_load_at(decorators, field_type, 2153 object, LIR_OprFact::intConst(x->offset()), result, 2154 info ? new CodeEmitInfo(info) : nullptr, info); 2155 2156 ciField* field = x->field(); 2157 if (field->is_null_free()) { 2158 // Load from non-flat inline type field requires 2159 // a null check to replace null with the default value. 2160 ciInstanceKlass* holder = field->holder(); 2161 if (field->is_static() && holder->is_loaded()) { 2162 ciObject* val = holder->java_mirror()->field_value(field).as_object(); 2163 if (!val->is_null_object()) { 2164 // Static field is initialized, we don't need to perform a null check. 2165 return; 2166 } 2167 } 2168 ciInlineKlass* inline_klass = field->type()->as_inline_klass(); 2169 if (inline_klass->is_initialized()) { 2170 LabelObj* L_end = new LabelObj(); 2171 __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(nullptr)); 2172 __ branch(lir_cond_notEqual, L_end->label()); 2173 set_in_conditional_code(true); 2174 Constant* default_value = new Constant(new InstanceConstant(inline_klass->default_instance())); 2175 if (default_value->is_pinned()) { 2176 __ move(LIR_OprFact::value_type(default_value->type()), result); 2177 } else { 2178 __ move(load_constant(default_value), result); 2179 } 2180 __ branch_destination(L_end->label()); 2181 set_in_conditional_code(false); 2182 } else { 2183 info = state_for(x, x->state_before()); 2184 __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(nullptr)); 2185 __ branch(lir_cond_equal, new DeoptimizeStub(info, Deoptimization::Reason_uninitialized, 2186 Deoptimization::Action_make_not_entrant)); 2187 } 2188 } 2189 } 2190 2191 // int/long jdk.internal.util.Preconditions.checkIndex 2192 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) { 2193 assert(x->number_of_arguments() == 3, "wrong type"); 2194 LIRItem index(x->argument_at(0), this); 2195 LIRItem length(x->argument_at(1), this); 2196 LIRItem oobef(x->argument_at(2), this); 2197 2198 index.load_item(); 2199 length.load_item(); 2200 oobef.load_item(); 2201 2202 LIR_Opr result = rlock_result(x); 2203 // x->state() is created from copy_state_for_exception, it does not contains arguments 2204 // we should prepare them before entering into interpreter mode due to deoptimization. 2205 ValueStack* state = x->state(); 2206 for (int i = 0; i < x->number_of_arguments(); i++) { 2207 Value arg = x->argument_at(i); 2208 state->push(arg->type(), arg); 2209 } 2210 CodeEmitInfo* info = state_for(x, state); 2211 2212 LIR_Opr len = length.result(); 2213 LIR_Opr zero; 2214 if (type == T_INT) { 2215 zero = LIR_OprFact::intConst(0); 2216 if (length.result()->is_constant()){ 2217 len = LIR_OprFact::intConst(length.result()->as_jint()); 2218 } 2219 } else { 2220 assert(type == T_LONG, "sanity check"); 2221 zero = LIR_OprFact::longConst(0); 2222 if (length.result()->is_constant()){ 2223 len = LIR_OprFact::longConst(length.result()->as_jlong()); 2224 } 2225 } 2226 // C1 can not handle the case that comparing index with constant value while condition 2227 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op. 2228 LIR_Opr zero_reg = new_register(type); 2229 __ move(zero, zero_reg); 2230 #if defined(X86) && !defined(_LP64) 2231 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 2232 LIR_Opr index_copy = new_register(index.type()); 2233 // index >= 0 2234 __ move(index.result(), index_copy); 2235 __ cmp(lir_cond_less, index_copy, zero_reg); 2236 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2237 Deoptimization::Action_make_not_entrant)); 2238 // index < length 2239 __ move(index.result(), index_copy); 2240 __ cmp(lir_cond_greaterEqual, index_copy, len); 2241 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2242 Deoptimization::Action_make_not_entrant)); 2243 #else 2244 // index >= 0 2245 __ cmp(lir_cond_less, index.result(), zero_reg); 2246 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2247 Deoptimization::Action_make_not_entrant)); 2248 // index < length 2249 __ cmp(lir_cond_greaterEqual, index.result(), len); 2250 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2251 Deoptimization::Action_make_not_entrant)); 2252 #endif 2253 __ move(index.result(), result); 2254 } 2255 2256 //------------------------array access-------------------------------------- 2257 2258 2259 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 2260 LIRItem array(x->array(), this); 2261 array.load_item(); 2262 LIR_Opr reg = rlock_result(x); 2263 2264 CodeEmitInfo* info = nullptr; 2265 if (x->needs_null_check()) { 2266 NullCheck* nc = x->explicit_null_check(); 2267 if (nc == nullptr) { 2268 info = state_for(x); 2269 } else { 2270 info = state_for(nc); 2271 } 2272 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 2273 LIR_Opr obj = new_register(T_OBJECT); 2274 __ move(LIR_OprFact::oopConst(nullptr), obj); 2275 __ null_check(obj, new CodeEmitInfo(info)); 2276 } 2277 } 2278 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 2279 } 2280 2281 2282 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 2283 bool use_length = x->length() != nullptr; 2284 LIRItem array(x->array(), this); 2285 LIRItem index(x->index(), this); 2286 LIRItem length(this); 2287 bool needs_range_check = x->compute_needs_range_check(); 2288 2289 if (use_length && needs_range_check) { 2290 length.set_instruction(x->length()); 2291 length.load_item(); 2292 } 2293 2294 array.load_item(); 2295 if (index.is_constant() && can_inline_as_constant(x->index())) { 2296 // let it be a constant 2297 index.dont_load_item(); 2298 } else { 2299 index.load_item(); 2300 } 2301 2302 CodeEmitInfo* range_check_info = state_for(x); 2303 CodeEmitInfo* null_check_info = nullptr; 2304 if (x->needs_null_check()) { 2305 NullCheck* nc = x->explicit_null_check(); 2306 if (nc != nullptr) { 2307 null_check_info = state_for(nc); 2308 } else { 2309 null_check_info = range_check_info; 2310 } 2311 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 2312 LIR_Opr obj = new_register(T_OBJECT); 2313 __ move(LIR_OprFact::oopConst(nullptr), obj); 2314 __ null_check(obj, new CodeEmitInfo(null_check_info)); 2315 } 2316 } 2317 2318 if (needs_range_check) { 2319 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 2320 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 2321 } else if (use_length) { 2322 // TODO: use a (modified) version of array_range_check that does not require a 2323 // constant length to be loaded to a register 2324 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 2325 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 2326 } else { 2327 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 2328 // The range check performs the null check, so clear it out for the load 2329 null_check_info = nullptr; 2330 } 2331 } 2332 2333 ciMethodData* md = nullptr; 2334 ciArrayLoadData* load_data = nullptr; 2335 if (x->should_profile()) { 2336 if (x->array()->is_loaded_flat_array()) { 2337 // No need to profile a load from a flat array of known type. This can happen if 2338 // the type only became known after optimizations (for example, after the PhiSimplifier). 2339 x->set_should_profile(false); 2340 } else { 2341 int bci = x->profiled_bci(); 2342 md = x->profiled_method()->method_data(); 2343 assert(md != nullptr, "Sanity"); 2344 ciProfileData* data = md->bci_to_data(bci); 2345 assert(data != nullptr && data->is_ArrayLoadData(), "incorrect profiling entry"); 2346 load_data = (ciArrayLoadData*)data; 2347 profile_array_type(x, md, load_data); 2348 } 2349 } 2350 2351 Value element; 2352 if (x->vt() != nullptr) { 2353 assert(x->array()->is_loaded_flat_array(), "must be"); 2354 // Find the destination address (of the NewInlineTypeInstance). 2355 LIRItem obj_item(x->vt(), this); 2356 2357 access_flat_array(true, array, index, obj_item, 2358 x->delayed() == nullptr ? 0 : x->delayed()->field(), 2359 x->delayed() == nullptr ? 0 : x->delayed()->offset()); 2360 set_no_result(x); 2361 } else if (x->delayed() != nullptr) { 2362 assert(x->array()->is_loaded_flat_array(), "must be"); 2363 LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type()); 2364 access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset()); 2365 } else if (x->array() != nullptr && x->array()->is_loaded_flat_array() && 2366 x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_initialized() && 2367 x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) { 2368 // Load the default instance instead of reading the element 2369 ciInlineKlass* elem_klass = x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass(); 2370 LIR_Opr result = rlock_result(x, x->elt_type()); 2371 assert(elem_klass->is_initialized(), "Must be"); 2372 Constant* default_value = new Constant(new InstanceConstant(elem_klass->default_instance())); 2373 if (default_value->is_pinned()) { 2374 __ move(LIR_OprFact::value_type(default_value->type()), result); 2375 } else { 2376 __ move(load_constant(default_value), result); 2377 } 2378 } else { 2379 LIR_Opr result = rlock_result(x, x->elt_type()); 2380 LoadFlattenedArrayStub* slow_path = nullptr; 2381 2382 if (x->should_profile() && x->array()->maybe_null_free_array()) { 2383 profile_null_free_array(array, md, load_data); 2384 } 2385 2386 if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) { 2387 assert(x->delayed() == nullptr, "Delayed LoadIndexed only apply to loaded_flat_arrays"); 2388 index.load_item(); 2389 // if we are loading from a flat array, load it using a runtime call 2390 slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before())); 2391 check_flat_array(array.result(), LIR_OprFact::illegalOpr, slow_path); 2392 set_in_conditional_code(true); 2393 } 2394 2395 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 2396 access_load_at(decorators, x->elt_type(), 2397 array, index.result(), result, 2398 nullptr, null_check_info); 2399 2400 if (slow_path != nullptr) { 2401 __ branch_destination(slow_path->continuation()); 2402 set_in_conditional_code(false); 2403 } 2404 2405 element = x; 2406 } 2407 2408 if (x->should_profile()) { 2409 profile_element_type(element, md, load_data); 2410 } 2411 } 2412 2413 2414 void LIRGenerator::do_NullCheck(NullCheck* x) { 2415 if (x->can_trap()) { 2416 LIRItem value(x->obj(), this); 2417 value.load_item(); 2418 CodeEmitInfo* info = state_for(x); 2419 __ null_check(value.result(), info); 2420 } 2421 } 2422 2423 2424 void LIRGenerator::do_TypeCast(TypeCast* x) { 2425 LIRItem value(x->obj(), this); 2426 value.load_item(); 2427 // the result is the same as from the node we are casting 2428 set_result(x, value.result()); 2429 } 2430 2431 2432 void LIRGenerator::do_Throw(Throw* x) { 2433 LIRItem exception(x->exception(), this); 2434 exception.load_item(); 2435 set_no_result(x); 2436 LIR_Opr exception_opr = exception.result(); 2437 CodeEmitInfo* info = state_for(x, x->state()); 2438 2439 #ifndef PRODUCT 2440 if (PrintC1Statistics) { 2441 increment_counter(Runtime1::throw_count_address(), T_INT); 2442 } 2443 #endif 2444 2445 // check if the instruction has an xhandler in any of the nested scopes 2446 bool unwind = false; 2447 if (info->exception_handlers()->length() == 0) { 2448 // this throw is not inside an xhandler 2449 unwind = true; 2450 } else { 2451 // get some idea of the throw type 2452 bool type_is_exact = true; 2453 ciType* throw_type = x->exception()->exact_type(); 2454 if (throw_type == nullptr) { 2455 type_is_exact = false; 2456 throw_type = x->exception()->declared_type(); 2457 } 2458 if (throw_type != nullptr && throw_type->is_instance_klass()) { 2459 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2460 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2461 } 2462 } 2463 2464 // do null check before moving exception oop into fixed register 2465 // to avoid a fixed interval with an oop during the null check. 2466 // Use a copy of the CodeEmitInfo because debug information is 2467 // different for null_check and throw. 2468 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) { 2469 // if the exception object wasn't created using new then it might be null. 2470 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2471 } 2472 2473 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2474 // we need to go through the exception lookup path to get JVMTI 2475 // notification done 2476 unwind = false; 2477 } 2478 2479 // move exception oop into fixed register 2480 __ move(exception_opr, exceptionOopOpr()); 2481 2482 if (unwind) { 2483 __ unwind_exception(exceptionOopOpr()); 2484 } else { 2485 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2486 } 2487 } 2488 2489 2490 void LIRGenerator::do_RoundFP(RoundFP* x) { 2491 assert(strict_fp_requires_explicit_rounding, "not required"); 2492 2493 LIRItem input(x->input(), this); 2494 input.load_item(); 2495 LIR_Opr input_opr = input.result(); 2496 assert(input_opr->is_register(), "why round if value is not in a register?"); 2497 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 2498 if (input_opr->is_single_fpu()) { 2499 set_result(x, round_item(input_opr)); // This code path not currently taken 2500 } else { 2501 LIR_Opr result = new_register(T_DOUBLE); 2502 set_vreg_flag(result, must_start_in_memory); 2503 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 2504 set_result(x, result); 2505 } 2506 } 2507 2508 2509 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) { 2510 BasicType type = x->basic_type(); 2511 LIRItem src(x->object(), this); 2512 LIRItem off(x->offset(), this); 2513 2514 off.load_item(); 2515 src.load_item(); 2516 2517 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2518 2519 if (x->is_volatile()) { 2520 decorators |= MO_SEQ_CST; 2521 } 2522 if (type == T_BOOLEAN) { 2523 decorators |= C1_MASK_BOOLEAN; 2524 } 2525 if (is_reference_type(type)) { 2526 decorators |= ON_UNKNOWN_OOP_REF; 2527 } 2528 2529 LIR_Opr result = rlock_result(x, type); 2530 if (!x->is_raw()) { 2531 access_load_at(decorators, type, src, off.result(), result); 2532 } else { 2533 // Currently it is only used in GraphBuilder::setup_osr_entry_block. 2534 // It reads the value from [src + offset] directly. 2535 #ifdef _LP64 2536 LIR_Opr offset = new_register(T_LONG); 2537 __ convert(Bytecodes::_i2l, off.result(), offset); 2538 #else 2539 LIR_Opr offset = off.result(); 2540 #endif 2541 LIR_Address* addr = new LIR_Address(src.result(), offset, type); 2542 if (is_reference_type(type)) { 2543 __ move_wide(addr, result); 2544 } else { 2545 __ move(addr, result); 2546 } 2547 } 2548 } 2549 2550 2551 void LIRGenerator::do_UnsafePut(UnsafePut* x) { 2552 BasicType type = x->basic_type(); 2553 LIRItem src(x->object(), this); 2554 LIRItem off(x->offset(), this); 2555 LIRItem data(x->value(), this); 2556 2557 src.load_item(); 2558 if (type == T_BOOLEAN || type == T_BYTE) { 2559 data.load_byte_item(); 2560 } else { 2561 data.load_item(); 2562 } 2563 off.load_item(); 2564 2565 set_no_result(x); 2566 2567 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2568 if (is_reference_type(type)) { 2569 decorators |= ON_UNKNOWN_OOP_REF; 2570 } 2571 if (x->is_volatile()) { 2572 decorators |= MO_SEQ_CST; 2573 } 2574 access_store_at(decorators, type, src, off.result(), data.result()); 2575 } 2576 2577 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) { 2578 BasicType type = x->basic_type(); 2579 LIRItem src(x->object(), this); 2580 LIRItem off(x->offset(), this); 2581 LIRItem value(x->value(), this); 2582 2583 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2584 2585 if (is_reference_type(type)) { 2586 decorators |= ON_UNKNOWN_OOP_REF; 2587 } 2588 2589 LIR_Opr result; 2590 if (x->is_add()) { 2591 result = access_atomic_add_at(decorators, type, src, off, value); 2592 } else { 2593 result = access_atomic_xchg_at(decorators, type, src, off, value); 2594 } 2595 set_result(x, result); 2596 } 2597 2598 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2599 int lng = x->length(); 2600 2601 for (int i = 0; i < lng; i++) { 2602 C1SwitchRange* one_range = x->at(i); 2603 int low_key = one_range->low_key(); 2604 int high_key = one_range->high_key(); 2605 BlockBegin* dest = one_range->sux(); 2606 if (low_key == high_key) { 2607 __ cmp(lir_cond_equal, value, low_key); 2608 __ branch(lir_cond_equal, dest); 2609 } else if (high_key - low_key == 1) { 2610 __ cmp(lir_cond_equal, value, low_key); 2611 __ branch(lir_cond_equal, dest); 2612 __ cmp(lir_cond_equal, value, high_key); 2613 __ branch(lir_cond_equal, dest); 2614 } else { 2615 LabelObj* L = new LabelObj(); 2616 __ cmp(lir_cond_less, value, low_key); 2617 __ branch(lir_cond_less, L->label()); 2618 __ cmp(lir_cond_lessEqual, value, high_key); 2619 __ branch(lir_cond_lessEqual, dest); 2620 __ branch_destination(L->label()); 2621 } 2622 } 2623 __ jump(default_sux); 2624 } 2625 2626 2627 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2628 SwitchRangeList* res = new SwitchRangeList(); 2629 int len = x->length(); 2630 if (len > 0) { 2631 BlockBegin* sux = x->sux_at(0); 2632 int low = x->lo_key(); 2633 BlockBegin* default_sux = x->default_sux(); 2634 C1SwitchRange* range = new C1SwitchRange(low, sux); 2635 for (int i = 0; i < len; i++) { 2636 int key = low + i; 2637 BlockBegin* new_sux = x->sux_at(i); 2638 if (sux == new_sux) { 2639 // still in same range 2640 range->set_high_key(key); 2641 } else { 2642 // skip tests which explicitly dispatch to the default 2643 if (sux != default_sux) { 2644 res->append(range); 2645 } 2646 range = new C1SwitchRange(key, new_sux); 2647 } 2648 sux = new_sux; 2649 } 2650 if (res->length() == 0 || res->last() != range) res->append(range); 2651 } 2652 return res; 2653 } 2654 2655 2656 // we expect the keys to be sorted by increasing value 2657 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2658 SwitchRangeList* res = new SwitchRangeList(); 2659 int len = x->length(); 2660 if (len > 0) { 2661 BlockBegin* default_sux = x->default_sux(); 2662 int key = x->key_at(0); 2663 BlockBegin* sux = x->sux_at(0); 2664 C1SwitchRange* range = new C1SwitchRange(key, sux); 2665 for (int i = 1; i < len; i++) { 2666 int new_key = x->key_at(i); 2667 BlockBegin* new_sux = x->sux_at(i); 2668 if (key+1 == new_key && sux == new_sux) { 2669 // still in same range 2670 range->set_high_key(new_key); 2671 } else { 2672 // skip tests which explicitly dispatch to the default 2673 if (range->sux() != default_sux) { 2674 res->append(range); 2675 } 2676 range = new C1SwitchRange(new_key, new_sux); 2677 } 2678 key = new_key; 2679 sux = new_sux; 2680 } 2681 if (res->length() == 0 || res->last() != range) res->append(range); 2682 } 2683 return res; 2684 } 2685 2686 2687 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2688 LIRItem tag(x->tag(), this); 2689 tag.load_item(); 2690 set_no_result(x); 2691 2692 if (x->is_safepoint()) { 2693 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2694 } 2695 2696 // move values into phi locations 2697 move_to_phi(x->state()); 2698 2699 int lo_key = x->lo_key(); 2700 int len = x->length(); 2701 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2702 LIR_Opr value = tag.result(); 2703 2704 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2705 ciMethod* method = x->state()->scope()->method(); 2706 ciMethodData* md = method->method_data_or_null(); 2707 assert(md != nullptr, "Sanity"); 2708 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2709 assert(data != nullptr, "must have profiling data"); 2710 assert(data->is_MultiBranchData(), "bad profile data?"); 2711 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2712 LIR_Opr md_reg = new_register(T_METADATA); 2713 __ metadata2reg(md->constant_encoding(), md_reg); 2714 LIR_Opr data_offset_reg = new_pointer_register(); 2715 LIR_Opr tmp_reg = new_pointer_register(); 2716 2717 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2718 for (int i = 0; i < len; i++) { 2719 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2720 __ cmp(lir_cond_equal, value, i + lo_key); 2721 __ move(data_offset_reg, tmp_reg); 2722 __ cmove(lir_cond_equal, 2723 LIR_OprFact::intptrConst(count_offset), 2724 tmp_reg, 2725 data_offset_reg, T_INT); 2726 } 2727 2728 LIR_Opr data_reg = new_pointer_register(); 2729 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2730 __ move(data_addr, data_reg); 2731 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2732 __ move(data_reg, data_addr); 2733 } 2734 2735 if (UseTableRanges) { 2736 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2737 } else { 2738 for (int i = 0; i < len; i++) { 2739 __ cmp(lir_cond_equal, value, i + lo_key); 2740 __ branch(lir_cond_equal, x->sux_at(i)); 2741 } 2742 __ jump(x->default_sux()); 2743 } 2744 } 2745 2746 2747 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2748 LIRItem tag(x->tag(), this); 2749 tag.load_item(); 2750 set_no_result(x); 2751 2752 if (x->is_safepoint()) { 2753 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2754 } 2755 2756 // move values into phi locations 2757 move_to_phi(x->state()); 2758 2759 LIR_Opr value = tag.result(); 2760 int len = x->length(); 2761 2762 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2763 ciMethod* method = x->state()->scope()->method(); 2764 ciMethodData* md = method->method_data_or_null(); 2765 assert(md != nullptr, "Sanity"); 2766 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2767 assert(data != nullptr, "must have profiling data"); 2768 assert(data->is_MultiBranchData(), "bad profile data?"); 2769 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2770 LIR_Opr md_reg = new_register(T_METADATA); 2771 __ metadata2reg(md->constant_encoding(), md_reg); 2772 LIR_Opr data_offset_reg = new_pointer_register(); 2773 LIR_Opr tmp_reg = new_pointer_register(); 2774 2775 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2776 for (int i = 0; i < len; i++) { 2777 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2778 __ cmp(lir_cond_equal, value, x->key_at(i)); 2779 __ move(data_offset_reg, tmp_reg); 2780 __ cmove(lir_cond_equal, 2781 LIR_OprFact::intptrConst(count_offset), 2782 tmp_reg, 2783 data_offset_reg, T_INT); 2784 } 2785 2786 LIR_Opr data_reg = new_pointer_register(); 2787 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2788 __ move(data_addr, data_reg); 2789 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2790 __ move(data_reg, data_addr); 2791 } 2792 2793 if (UseTableRanges) { 2794 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2795 } else { 2796 int len = x->length(); 2797 for (int i = 0; i < len; i++) { 2798 __ cmp(lir_cond_equal, value, x->key_at(i)); 2799 __ branch(lir_cond_equal, x->sux_at(i)); 2800 } 2801 __ jump(x->default_sux()); 2802 } 2803 } 2804 2805 2806 void LIRGenerator::do_Goto(Goto* x) { 2807 set_no_result(x); 2808 2809 if (block()->next()->as_OsrEntry()) { 2810 // need to free up storage used for OSR entry point 2811 LIR_Opr osrBuffer = block()->next()->operand(); 2812 BasicTypeList signature; 2813 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2814 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2815 __ move(osrBuffer, cc->args()->at(0)); 2816 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2817 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2818 } 2819 2820 if (x->is_safepoint()) { 2821 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2822 2823 // increment backedge counter if needed 2824 CodeEmitInfo* info = state_for(x, state); 2825 increment_backedge_counter(info, x->profiled_bci()); 2826 CodeEmitInfo* safepoint_info = state_for(x, state); 2827 __ safepoint(safepoint_poll_register(), safepoint_info); 2828 } 2829 2830 // Gotos can be folded Ifs, handle this case. 2831 if (x->should_profile()) { 2832 ciMethod* method = x->profiled_method(); 2833 assert(method != nullptr, "method should be set if branch is profiled"); 2834 ciMethodData* md = method->method_data_or_null(); 2835 assert(md != nullptr, "Sanity"); 2836 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2837 assert(data != nullptr, "must have profiling data"); 2838 int offset; 2839 if (x->direction() == Goto::taken) { 2840 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2841 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2842 } else if (x->direction() == Goto::not_taken) { 2843 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2844 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2845 } else { 2846 assert(data->is_JumpData(), "need JumpData for branches"); 2847 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2848 } 2849 LIR_Opr md_reg = new_register(T_METADATA); 2850 __ metadata2reg(md->constant_encoding(), md_reg); 2851 2852 increment_counter(new LIR_Address(md_reg, offset, 2853 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2854 } 2855 2856 // emit phi-instruction move after safepoint since this simplifies 2857 // describing the state as the safepoint. 2858 move_to_phi(x->state()); 2859 2860 __ jump(x->default_sux()); 2861 } 2862 2863 /** 2864 * Emit profiling code if needed for arguments, parameters, return value types 2865 * 2866 * @param md MDO the code will update at runtime 2867 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2868 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2869 * @param profiled_k current profile 2870 * @param obj IR node for the object to be profiled 2871 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2872 * Set once we find an update to make and use for next ones. 2873 * @param not_null true if we know obj cannot be null 2874 * @param signature_at_call_k signature at call for obj 2875 * @param callee_signature_k signature of callee for obj 2876 * at call and callee signatures differ at method handle call 2877 * @return the only klass we know will ever be seen at this profile point 2878 */ 2879 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2880 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2881 ciKlass* callee_signature_k) { 2882 ciKlass* result = nullptr; 2883 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2884 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2885 // known not to be null or null bit already set and already set to 2886 // unknown: nothing we can do to improve profiling 2887 if (!do_null && !do_update) { 2888 return result; 2889 } 2890 2891 ciKlass* exact_klass = nullptr; 2892 Compilation* comp = Compilation::current(); 2893 if (do_update) { 2894 // try to find exact type, using CHA if possible, so that loading 2895 // the klass from the object can be avoided 2896 ciType* type = obj->exact_type(); 2897 if (type == nullptr) { 2898 type = obj->declared_type(); 2899 type = comp->cha_exact_type(type); 2900 } 2901 assert(type == nullptr || type->is_klass(), "type should be class"); 2902 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr; 2903 2904 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2905 } 2906 2907 if (!do_null && !do_update) { 2908 return result; 2909 } 2910 2911 ciKlass* exact_signature_k = nullptr; 2912 if (do_update && signature_at_call_k != nullptr) { 2913 // Is the type from the signature exact (the only one possible)? 2914 exact_signature_k = signature_at_call_k->exact_klass(); 2915 if (exact_signature_k == nullptr) { 2916 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2917 } else { 2918 result = exact_signature_k; 2919 // Known statically. No need to emit any code: prevent 2920 // LIR_Assembler::emit_profile_type() from emitting useless code 2921 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2922 } 2923 // exact_klass and exact_signature_k can be both non null but 2924 // different if exact_klass is loaded after the ciObject for 2925 // exact_signature_k is created. 2926 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) { 2927 // sometimes the type of the signature is better than the best type 2928 // the compiler has 2929 exact_klass = exact_signature_k; 2930 } 2931 if (callee_signature_k != nullptr && 2932 callee_signature_k != signature_at_call_k) { 2933 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2934 if (improved_klass == nullptr) { 2935 improved_klass = comp->cha_exact_type(callee_signature_k); 2936 } 2937 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) { 2938 exact_klass = exact_signature_k; 2939 } 2940 } 2941 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2942 } 2943 2944 if (!do_null && !do_update) { 2945 return result; 2946 } 2947 2948 if (mdp == LIR_OprFact::illegalOpr) { 2949 mdp = new_register(T_METADATA); 2950 __ metadata2reg(md->constant_encoding(), mdp); 2951 if (md_base_offset != 0) { 2952 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2953 mdp = new_pointer_register(); 2954 __ leal(LIR_OprFact::address(base_type_address), mdp); 2955 } 2956 } 2957 LIRItem value(obj, this); 2958 value.load_item(); 2959 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2960 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr); 2961 return result; 2962 } 2963 2964 // profile parameters on entry to the root of the compilation 2965 void LIRGenerator::profile_parameters(Base* x) { 2966 if (compilation()->profile_parameters()) { 2967 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2968 ciMethodData* md = scope()->method()->method_data_or_null(); 2969 assert(md != nullptr, "Sanity"); 2970 2971 if (md->parameters_type_data() != nullptr) { 2972 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2973 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2974 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2975 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2976 LIR_Opr src = args->at(i); 2977 assert(!src->is_illegal(), "check"); 2978 BasicType t = src->type(); 2979 if (is_reference_type(t)) { 2980 intptr_t profiled_k = parameters->type(j); 2981 Local* local = x->state()->local_at(java_index)->as_Local(); 2982 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2983 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2984 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr); 2985 // If the profile is known statically set it once for all and do not emit any code 2986 if (exact != nullptr) { 2987 md->set_parameter_type(j, exact); 2988 } 2989 j++; 2990 } 2991 java_index += type2size[t]; 2992 } 2993 } 2994 } 2995 } 2996 2997 void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) { 2998 assert(md != nullptr && data != nullptr, "should have been initialized"); 2999 LIR_Opr mdp = new_register(T_METADATA); 3000 __ metadata2reg(md->constant_encoding(), mdp); 3001 LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE); 3002 LIR_Opr flags = new_register(T_INT); 3003 __ move(addr, flags); 3004 if (condition != lir_cond_always) { 3005 LIR_Opr update = new_register(T_INT); 3006 __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT); 3007 } else { 3008 __ logical_or(flags, LIR_OprFact::intConst(flag), flags); 3009 } 3010 __ store(flags, addr); 3011 } 3012 3013 template <class ArrayData> void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ArrayData* load_store) { 3014 assert(compilation()->profile_array_accesses(), "array access profiling is disabled"); 3015 LabelObj* L_end = new LabelObj(); 3016 LIR_Opr tmp = new_register(T_METADATA); 3017 __ check_null_free_array(array.result(), tmp); 3018 3019 profile_flags(md, load_store, ArrayStoreData::null_free_array_byte_constant(), lir_cond_equal); 3020 } 3021 3022 template <class ArrayData> void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ArrayData*& load_store) { 3023 assert(compilation()->profile_array_accesses(), "array access profiling is disabled"); 3024 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3025 profile_type(md, md->byte_offset_of_slot(load_store, ArrayData::array_offset()), 0, 3026 load_store->array()->type(), x->array(), mdp, true, nullptr, nullptr); 3027 } 3028 3029 void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadData* load_data) { 3030 assert(compilation()->profile_array_accesses(), "array access profiling is disabled"); 3031 assert(md != nullptr && load_data != nullptr, "should have been initialized"); 3032 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3033 profile_type(md, md->byte_offset_of_slot(load_data, ArrayLoadData::element_offset()), 0, 3034 load_data->element()->type(), element, mdp, false, nullptr, nullptr); 3035 } 3036 3037 void LIRGenerator::do_Base(Base* x) { 3038 __ std_entry(LIR_OprFact::illegalOpr); 3039 // Emit moves from physical registers / stack slots to virtual registers 3040 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 3041 IRScope* irScope = compilation()->hir()->top_scope(); 3042 int java_index = 0; 3043 for (int i = 0; i < args->length(); i++) { 3044 LIR_Opr src = args->at(i); 3045 assert(!src->is_illegal(), "check"); 3046 BasicType t = src->type(); 3047 3048 // Types which are smaller than int are passed as int, so 3049 // correct the type which passed. 3050 switch (t) { 3051 case T_BYTE: 3052 case T_BOOLEAN: 3053 case T_SHORT: 3054 case T_CHAR: 3055 t = T_INT; 3056 break; 3057 default: 3058 break; 3059 } 3060 3061 LIR_Opr dest = new_register(t); 3062 __ move(src, dest); 3063 3064 // Assign new location to Local instruction for this local 3065 Local* local = x->state()->local_at(java_index)->as_Local(); 3066 assert(local != nullptr, "Locals for incoming arguments must have been created"); 3067 #ifndef __SOFTFP__ 3068 // The java calling convention passes double as long and float as int. 3069 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 3070 #endif // __SOFTFP__ 3071 local->set_operand(dest); 3072 #ifdef ASSERT 3073 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr); 3074 #endif 3075 java_index += type2size[t]; 3076 } 3077 3078 if (compilation()->env()->dtrace_method_probes()) { 3079 BasicTypeList signature; 3080 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3081 signature.append(T_METADATA); // Method* 3082 LIR_OprList* args = new LIR_OprList(); 3083 args->append(getThreadPointer()); 3084 LIR_Opr meth = new_register(T_METADATA); 3085 __ metadata2reg(method()->constant_encoding(), meth); 3086 args->append(meth); 3087 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr); 3088 } 3089 3090 if (method()->is_synchronized()) { 3091 LIR_Opr obj; 3092 if (method()->is_static()) { 3093 obj = new_register(T_OBJECT); 3094 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 3095 } else { 3096 Local* receiver = x->state()->local_at(0)->as_Local(); 3097 assert(receiver != nullptr, "must already exist"); 3098 obj = receiver->operand(); 3099 } 3100 assert(obj->is_valid(), "must be valid"); 3101 3102 if (method()->is_synchronized() && GenerateSynchronizationCode) { 3103 LIR_Opr lock = syncLockOpr(); 3104 __ load_stack_address_monitor(0, lock); 3105 3106 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException)); 3107 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 3108 3109 // receiver is guaranteed non-null so don't need CodeEmitInfo 3110 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr); 3111 } 3112 } 3113 // increment invocation counters if needed 3114 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 3115 profile_parameters(x); 3116 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false); 3117 increment_invocation_counter(info); 3118 } 3119 if (method()->has_scalarized_args()) { 3120 // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments 3121 // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state. 3122 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), nullptr, false); 3123 CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none); 3124 __ append(new LIR_Op0(lir_check_orig_pc)); 3125 __ branch(lir_cond_notEqual, deopt_stub); 3126 } 3127 3128 // all blocks with a successor must end with an unconditional jump 3129 // to the successor even if they are consecutive 3130 __ jump(x->default_sux()); 3131 } 3132 3133 3134 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 3135 // construct our frame and model the production of incoming pointer 3136 // to the OSR buffer. 3137 __ osr_entry(LIR_Assembler::osrBufferPointer()); 3138 LIR_Opr result = rlock_result(x); 3139 __ move(LIR_Assembler::osrBufferPointer(), result); 3140 } 3141 3142 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) { 3143 if (loc->is_register()) { 3144 param->load_item_force(loc); 3145 } else { 3146 LIR_Address* addr = loc->as_address_ptr(); 3147 param->load_for_store(addr->type()); 3148 if (addr->type() == T_OBJECT) { 3149 __ move_wide(param->result(), addr); 3150 } else { 3151 __ move(param->result(), addr); 3152 } 3153 } 3154 } 3155 3156 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 3157 assert(args->length() == arg_list->length(), 3158 "args=%d, arg_list=%d", args->length(), arg_list->length()); 3159 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 3160 LIRItem* param = args->at(i); 3161 LIR_Opr loc = arg_list->at(i); 3162 invoke_load_one_argument(param, loc); 3163 } 3164 3165 if (x->has_receiver()) { 3166 LIRItem* receiver = args->at(0); 3167 LIR_Opr loc = arg_list->at(0); 3168 if (loc->is_register()) { 3169 receiver->load_item_force(loc); 3170 } else { 3171 assert(loc->is_address(), "just checking"); 3172 receiver->load_for_store(T_OBJECT); 3173 __ move_wide(receiver->result(), loc->as_address_ptr()); 3174 } 3175 } 3176 } 3177 3178 3179 // Visits all arguments, returns appropriate items without loading them 3180 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 3181 LIRItemList* argument_items = new LIRItemList(); 3182 if (x->has_receiver()) { 3183 LIRItem* receiver = new LIRItem(x->receiver(), this); 3184 argument_items->append(receiver); 3185 } 3186 for (int i = 0; i < x->number_of_arguments(); i++) { 3187 LIRItem* param = new LIRItem(x->argument_at(i), this); 3188 argument_items->append(param); 3189 } 3190 return argument_items; 3191 } 3192 3193 3194 // The invoke with receiver has following phases: 3195 // a) traverse and load/lock receiver; 3196 // b) traverse all arguments -> item-array (invoke_visit_argument) 3197 // c) push receiver on stack 3198 // d) load each of the items and push on stack 3199 // e) unlock receiver 3200 // f) move receiver into receiver-register %o0 3201 // g) lock result registers and emit call operation 3202 // 3203 // Before issuing a call, we must spill-save all values on stack 3204 // that are in caller-save register. "spill-save" moves those registers 3205 // either in a free callee-save register or spills them if no free 3206 // callee save register is available. 3207 // 3208 // The problem is where to invoke spill-save. 3209 // - if invoked between e) and f), we may lock callee save 3210 // register in "spill-save" that destroys the receiver register 3211 // before f) is executed 3212 // - if we rearrange f) to be earlier (by loading %o0) it 3213 // may destroy a value on the stack that is currently in %o0 3214 // and is waiting to be spilled 3215 // - if we keep the receiver locked while doing spill-save, 3216 // we cannot spill it as it is spill-locked 3217 // 3218 void LIRGenerator::do_Invoke(Invoke* x) { 3219 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 3220 3221 LIR_OprList* arg_list = cc->args(); 3222 LIRItemList* args = invoke_visit_arguments(x); 3223 LIR_Opr receiver = LIR_OprFact::illegalOpr; 3224 3225 // setup result register 3226 LIR_Opr result_register = LIR_OprFact::illegalOpr; 3227 if (x->type() != voidType) { 3228 result_register = result_register_for(x->type()); 3229 } 3230 3231 CodeEmitInfo* info = state_for(x, x->state()); 3232 3233 invoke_load_arguments(x, args, arg_list); 3234 3235 if (x->has_receiver()) { 3236 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 3237 receiver = args->at(0)->result(); 3238 } 3239 3240 // emit invoke code 3241 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 3242 3243 // JSR 292 3244 // Preserve the SP over MethodHandle call sites, if needed. 3245 ciMethod* target = x->target(); 3246 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 3247 target->is_method_handle_intrinsic() || 3248 target->is_compiled_lambda_form()); 3249 if (is_method_handle_invoke) { 3250 info->set_is_method_handle_invoke(true); 3251 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 3252 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 3253 } 3254 } 3255 3256 switch (x->code()) { 3257 case Bytecodes::_invokestatic: 3258 __ call_static(target, result_register, 3259 SharedRuntime::get_resolve_static_call_stub(), 3260 arg_list, info); 3261 break; 3262 case Bytecodes::_invokespecial: 3263 case Bytecodes::_invokevirtual: 3264 case Bytecodes::_invokeinterface: 3265 // for loaded and final (method or class) target we still produce an inline cache, 3266 // in order to be able to call mixed mode 3267 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 3268 __ call_opt_virtual(target, receiver, result_register, 3269 SharedRuntime::get_resolve_opt_virtual_call_stub(), 3270 arg_list, info); 3271 } else { 3272 __ call_icvirtual(target, receiver, result_register, 3273 SharedRuntime::get_resolve_virtual_call_stub(), 3274 arg_list, info); 3275 } 3276 break; 3277 case Bytecodes::_invokedynamic: { 3278 __ call_dynamic(target, receiver, result_register, 3279 SharedRuntime::get_resolve_static_call_stub(), 3280 arg_list, info); 3281 break; 3282 } 3283 default: 3284 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 3285 break; 3286 } 3287 3288 // JSR 292 3289 // Restore the SP after MethodHandle call sites, if needed. 3290 if (is_method_handle_invoke 3291 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 3292 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 3293 } 3294 3295 if (result_register->is_valid()) { 3296 LIR_Opr result = rlock_result(x); 3297 __ move(result_register, result); 3298 } 3299 } 3300 3301 3302 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 3303 assert(x->number_of_arguments() == 1, "wrong type"); 3304 LIRItem value (x->argument_at(0), this); 3305 LIR_Opr reg = rlock_result(x); 3306 value.load_item(); 3307 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 3308 __ move(tmp, reg); 3309 } 3310 3311 3312 3313 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 3314 void LIRGenerator::do_IfOp(IfOp* x) { 3315 #ifdef ASSERT 3316 { 3317 ValueTag xtag = x->x()->type()->tag(); 3318 ValueTag ttag = x->tval()->type()->tag(); 3319 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 3320 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 3321 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 3322 } 3323 #endif 3324 3325 LIRItem left(x->x(), this); 3326 LIRItem right(x->y(), this); 3327 left.load_item(); 3328 if (can_inline_as_constant(right.value()) && !x->substitutability_check()) { 3329 right.dont_load_item(); 3330 } else { 3331 // substitutability_check() needs to use right as a base register. 3332 right.load_item(); 3333 } 3334 3335 LIRItem t_val(x->tval(), this); 3336 LIRItem f_val(x->fval(), this); 3337 t_val.dont_load_item(); 3338 f_val.dont_load_item(); 3339 3340 if (x->substitutability_check()) { 3341 substitutability_check(x, left, right, t_val, f_val); 3342 } else { 3343 LIR_Opr reg = rlock_result(x); 3344 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 3345 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 3346 } 3347 } 3348 3349 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) { 3350 assert(x->cond() == If::eql || x->cond() == If::neq, "must be"); 3351 bool is_acmpeq = (x->cond() == If::eql); 3352 LIR_Opr equal_result = is_acmpeq ? t_val.result() : f_val.result(); 3353 LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result(); 3354 LIR_Opr result = rlock_result(x); 3355 CodeEmitInfo* info = state_for(x, x->state_before()); 3356 3357 substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info); 3358 } 3359 3360 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) { 3361 LIR_Opr equal_result = LIR_OprFact::intConst(1); 3362 LIR_Opr not_equal_result = LIR_OprFact::intConst(0); 3363 LIR_Opr result = new_register(T_INT); 3364 CodeEmitInfo* info = state_for(x, x->state_before()); 3365 3366 substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info); 3367 3368 assert(x->cond() == If::eql || x->cond() == If::neq, "must be"); 3369 __ cmp(lir_cond(x->cond()), result, equal_result); 3370 } 3371 3372 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right, 3373 LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result, 3374 CodeEmitInfo* info) { 3375 LIR_Opr tmp1 = LIR_OprFact::illegalOpr; 3376 LIR_Opr tmp2 = LIR_OprFact::illegalOpr; 3377 LIR_Opr left_klass_op = LIR_OprFact::illegalOpr; 3378 LIR_Opr right_klass_op = LIR_OprFact::illegalOpr; 3379 3380 ciKlass* left_klass = left_val ->as_loaded_klass_or_null(); 3381 ciKlass* right_klass = right_val->as_loaded_klass_or_null(); 3382 3383 if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node. 3384 !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) { 3385 init_temps_for_substitutability_check(tmp1, tmp2); 3386 } 3387 3388 if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) { 3389 // No need to load klass -- the operands are statically known to be the same inline klass. 3390 } else { 3391 BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA; 3392 left_klass_op = new_register(t_klass); 3393 right_klass_op = new_register(t_klass); 3394 } 3395 3396 CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info); 3397 __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result, 3398 tmp1, tmp2, 3399 left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path); 3400 } 3401 3402 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 3403 assert(x->number_of_arguments() == 0, "wrong type"); 3404 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 3405 BasicTypeList signature; 3406 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 3407 LIR_Opr reg = result_register_for(x->type()); 3408 __ call_runtime_leaf(routine, getThreadTemp(), 3409 reg, new LIR_OprList()); 3410 LIR_Opr result = rlock_result(x); 3411 __ move(reg, result); 3412 } 3413 3414 3415 3416 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 3417 switch (x->id()) { 3418 case vmIntrinsics::_intBitsToFloat : 3419 case vmIntrinsics::_doubleToRawLongBits : 3420 case vmIntrinsics::_longBitsToDouble : 3421 case vmIntrinsics::_floatToRawIntBits : { 3422 do_FPIntrinsics(x); 3423 break; 3424 } 3425 3426 #ifdef JFR_HAVE_INTRINSICS 3427 case vmIntrinsics::_counterTime: 3428 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x); 3429 break; 3430 #endif 3431 3432 case vmIntrinsics::_currentTimeMillis: 3433 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 3434 break; 3435 3436 case vmIntrinsics::_nanoTime: 3437 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 3438 break; 3439 3440 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 3441 case vmIntrinsics::_isInstance: do_isInstance(x); break; 3442 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break; 3443 case vmIntrinsics::_getModifiers: do_getModifiers(x); break; 3444 case vmIntrinsics::_getClass: do_getClass(x); break; 3445 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 3446 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break; 3447 case vmIntrinsics::_currentThread: do_vthread(x); break; 3448 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break; 3449 3450 case vmIntrinsics::_dlog: // fall through 3451 case vmIntrinsics::_dlog10: // fall through 3452 case vmIntrinsics::_dabs: // fall through 3453 case vmIntrinsics::_dsqrt: // fall through 3454 case vmIntrinsics::_dsqrt_strict: // fall through 3455 case vmIntrinsics::_dtan: // fall through 3456 case vmIntrinsics::_dtanh: // fall through 3457 case vmIntrinsics::_dsin : // fall through 3458 case vmIntrinsics::_dcos : // fall through 3459 case vmIntrinsics::_dexp : // fall through 3460 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 3461 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 3462 3463 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 3464 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 3465 3466 // Use java.lang.Math intrinsics code since it works for these intrinsics too. 3467 case vmIntrinsics::_floatToFloat16: // fall through 3468 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break; 3469 3470 case vmIntrinsics::_Preconditions_checkIndex: 3471 do_PreconditionsCheckIndex(x, T_INT); 3472 break; 3473 case vmIntrinsics::_Preconditions_checkLongIndex: 3474 do_PreconditionsCheckIndex(x, T_LONG); 3475 break; 3476 3477 case vmIntrinsics::_compareAndSetReference: 3478 do_CompareAndSwap(x, objectType); 3479 break; 3480 case vmIntrinsics::_compareAndSetInt: 3481 do_CompareAndSwap(x, intType); 3482 break; 3483 case vmIntrinsics::_compareAndSetLong: 3484 do_CompareAndSwap(x, longType); 3485 break; 3486 3487 case vmIntrinsics::_loadFence : 3488 __ membar_acquire(); 3489 break; 3490 case vmIntrinsics::_storeFence: 3491 __ membar_release(); 3492 break; 3493 case vmIntrinsics::_storeStoreFence: 3494 __ membar_storestore(); 3495 break; 3496 case vmIntrinsics::_fullFence : 3497 __ membar(); 3498 break; 3499 case vmIntrinsics::_onSpinWait: 3500 __ on_spin_wait(); 3501 break; 3502 case vmIntrinsics::_Reference_get: 3503 do_Reference_get(x); 3504 break; 3505 3506 case vmIntrinsics::_updateCRC32: 3507 case vmIntrinsics::_updateBytesCRC32: 3508 case vmIntrinsics::_updateByteBufferCRC32: 3509 do_update_CRC32(x); 3510 break; 3511 3512 case vmIntrinsics::_updateBytesCRC32C: 3513 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3514 do_update_CRC32C(x); 3515 break; 3516 3517 case vmIntrinsics::_vectorizedMismatch: 3518 do_vectorizedMismatch(x); 3519 break; 3520 3521 case vmIntrinsics::_blackhole: 3522 do_blackhole(x); 3523 break; 3524 3525 default: ShouldNotReachHere(); break; 3526 } 3527 } 3528 3529 void LIRGenerator::profile_arguments(ProfileCall* x) { 3530 if (compilation()->profile_arguments()) { 3531 int bci = x->bci_of_invoke(); 3532 ciMethodData* md = x->method()->method_data_or_null(); 3533 assert(md != nullptr, "Sanity"); 3534 ciProfileData* data = md->bci_to_data(bci); 3535 if (data != nullptr) { 3536 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3537 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3538 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3539 int base_offset = md->byte_offset_of_slot(data, extra); 3540 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3541 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3542 3543 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3544 int start = 0; 3545 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3546 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3547 // first argument is not profiled at call (method handle invoke) 3548 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3549 start = 1; 3550 } 3551 ciSignature* callee_signature = x->callee()->signature(); 3552 // method handle call to virtual method 3553 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3554 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr); 3555 3556 bool ignored_will_link; 3557 ciSignature* signature_at_call = nullptr; 3558 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3559 ciSignatureStream signature_at_call_stream(signature_at_call); 3560 3561 // if called through method handle invoke, some arguments may have been popped 3562 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3563 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3564 ciKlass* exact = profile_type(md, base_offset, off, 3565 args->type(i), x->profiled_arg_at(i+start), mdp, 3566 !x->arg_needs_null_check(i+start), 3567 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3568 if (exact != nullptr) { 3569 md->set_argument_type(bci, i, exact); 3570 } 3571 } 3572 } else { 3573 #ifdef ASSERT 3574 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3575 int n = x->nb_profiled_args(); 3576 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3577 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3578 "only at JSR292 bytecodes"); 3579 #endif 3580 } 3581 } 3582 } 3583 } 3584 3585 // profile parameters on entry to an inlined method 3586 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3587 if (compilation()->profile_parameters() && x->inlined()) { 3588 ciMethodData* md = x->callee()->method_data_or_null(); 3589 if (md != nullptr) { 3590 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3591 if (parameters_type_data != nullptr) { 3592 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3593 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3594 bool has_receiver = !x->callee()->is_static(); 3595 ciSignature* sig = x->callee()->signature(); 3596 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr); 3597 int i = 0; // to iterate on the Instructions 3598 Value arg = x->recv(); 3599 bool not_null = false; 3600 int bci = x->bci_of_invoke(); 3601 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3602 // The first parameter is the receiver so that's what we start 3603 // with if it exists. One exception is method handle call to 3604 // virtual method: the receiver is in the args list 3605 if (arg == nullptr || !Bytecodes::has_receiver(bc)) { 3606 i = 1; 3607 arg = x->profiled_arg_at(0); 3608 not_null = !x->arg_needs_null_check(0); 3609 } 3610 int k = 0; // to iterate on the profile data 3611 for (;;) { 3612 intptr_t profiled_k = parameters->type(k); 3613 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3614 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3615 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr); 3616 // If the profile is known statically set it once for all and do not emit any code 3617 if (exact != nullptr) { 3618 md->set_parameter_type(k, exact); 3619 } 3620 k++; 3621 if (k >= parameters_type_data->number_of_parameters()) { 3622 #ifdef ASSERT 3623 int extra = 0; 3624 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3625 x->nb_profiled_args() >= TypeProfileParmsLimit && 3626 x->recv() != nullptr && Bytecodes::has_receiver(bc)) { 3627 extra += 1; 3628 } 3629 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3630 #endif 3631 break; 3632 } 3633 arg = x->profiled_arg_at(i); 3634 not_null = !x->arg_needs_null_check(i); 3635 i++; 3636 } 3637 } 3638 } 3639 } 3640 } 3641 3642 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3643 // Need recv in a temporary register so it interferes with the other temporaries 3644 LIR_Opr recv = LIR_OprFact::illegalOpr; 3645 LIR_Opr mdo = new_register(T_METADATA); 3646 // tmp is used to hold the counters on SPARC 3647 LIR_Opr tmp = new_pointer_register(); 3648 3649 if (x->nb_profiled_args() > 0) { 3650 profile_arguments(x); 3651 } 3652 3653 // profile parameters on inlined method entry including receiver 3654 if (x->recv() != nullptr || x->nb_profiled_args() > 0) { 3655 profile_parameters_at_call(x); 3656 } 3657 3658 if (x->recv() != nullptr) { 3659 LIRItem value(x->recv(), this); 3660 value.load_item(); 3661 recv = new_register(T_OBJECT); 3662 __ move(value.result(), recv); 3663 } 3664 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3665 } 3666 3667 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3668 int bci = x->bci_of_invoke(); 3669 ciMethodData* md = x->method()->method_data_or_null(); 3670 assert(md != nullptr, "Sanity"); 3671 ciProfileData* data = md->bci_to_data(bci); 3672 if (data != nullptr) { 3673 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3674 ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3675 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3676 3677 bool ignored_will_link; 3678 ciSignature* signature_at_call = nullptr; 3679 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3680 3681 // The offset within the MDO of the entry to update may be too large 3682 // to be used in load/store instructions on some platforms. So have 3683 // profile_type() compute the address of the profile in a register. 3684 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3685 ret->type(), x->ret(), mdp, 3686 !x->needs_null_check(), 3687 signature_at_call->return_type()->as_klass(), 3688 x->callee()->signature()->return_type()->as_klass()); 3689 if (exact != nullptr) { 3690 md->set_return_type(bci, exact); 3691 } 3692 } 3693 } 3694 3695 bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) { 3696 ciKlass* klass = value->as_loaded_klass_or_null(); 3697 if (klass != nullptr) { 3698 if (klass->is_inlinetype()) { 3699 profile_flags(md, data, flag, lir_cond_always); 3700 } else if (klass->can_be_inline_klass()) { 3701 return false; 3702 } 3703 } else { 3704 return false; 3705 } 3706 return true; 3707 } 3708 3709 3710 void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) { 3711 ciMethod* method = x->method(); 3712 assert(method != nullptr, "method should be set if branch is profiled"); 3713 ciMethodData* md = method->method_data_or_null(); 3714 assert(md != nullptr, "Sanity"); 3715 ciProfileData* data = md->bci_to_data(x->bci()); 3716 assert(data != nullptr, "must have profiling data"); 3717 assert(data->is_ACmpData(), "need BranchData for two-way branches"); 3718 ciACmpData* acmp = (ciACmpData*)data; 3719 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3720 profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0, 3721 acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), nullptr, nullptr); 3722 int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset()); 3723 if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) { 3724 LIR_Opr mdp = new_register(T_METADATA); 3725 __ metadata2reg(md->constant_encoding(), mdp); 3726 LIRItem value(x->left(), this); 3727 value.load_item(); 3728 __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null()); 3729 } 3730 profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 3731 in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()), 3732 acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), nullptr, nullptr); 3733 if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) { 3734 LIR_Opr mdp = new_register(T_METADATA); 3735 __ metadata2reg(md->constant_encoding(), mdp); 3736 LIRItem value(x->right(), this); 3737 value.load_item(); 3738 __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null()); 3739 } 3740 } 3741 3742 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3743 // We can safely ignore accessors here, since c2 will inline them anyway, 3744 // accessors are also always mature. 3745 if (!x->inlinee()->is_accessor()) { 3746 CodeEmitInfo* info = state_for(x, x->state(), true); 3747 // Notify the runtime very infrequently only to take care of counter overflows 3748 int freq_log = Tier23InlineeNotifyFreqLog; 3749 double scale; 3750 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3751 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3752 } 3753 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3754 } 3755 } 3756 3757 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3758 if (compilation()->is_profiling()) { 3759 #if defined(X86) && !defined(_LP64) 3760 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3761 LIR_Opr left_copy = new_register(left->type()); 3762 __ move(left, left_copy); 3763 __ cmp(cond, left_copy, right); 3764 #else 3765 __ cmp(cond, left, right); 3766 #endif 3767 LIR_Opr step = new_register(T_INT); 3768 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3769 LIR_Opr zero = LIR_OprFact::intConst(0); 3770 __ cmove(cond, 3771 (left_bci < bci) ? plus_one : zero, 3772 (right_bci < bci) ? plus_one : zero, 3773 step, left->type()); 3774 increment_backedge_counter(info, step, bci); 3775 } 3776 } 3777 3778 3779 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3780 int freq_log = 0; 3781 int level = compilation()->env()->comp_level(); 3782 if (level == CompLevel_limited_profile) { 3783 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3784 } else if (level == CompLevel_full_profile) { 3785 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3786 } else { 3787 ShouldNotReachHere(); 3788 } 3789 // Increment the appropriate invocation/backedge counter and notify the runtime. 3790 double scale; 3791 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3792 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3793 } 3794 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3795 } 3796 3797 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3798 ciMethod *method, LIR_Opr step, int frequency, 3799 int bci, bool backedge, bool notify) { 3800 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3801 int level = _compilation->env()->comp_level(); 3802 assert(level > CompLevel_simple, "Shouldn't be here"); 3803 3804 int offset = -1; 3805 LIR_Opr counter_holder; 3806 if (level == CompLevel_limited_profile) { 3807 MethodCounters* counters_adr = method->ensure_method_counters(); 3808 if (counters_adr == nullptr) { 3809 bailout("method counters allocation failed"); 3810 return; 3811 } 3812 counter_holder = new_pointer_register(); 3813 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3814 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3815 MethodCounters::invocation_counter_offset()); 3816 } else if (level == CompLevel_full_profile) { 3817 counter_holder = new_register(T_METADATA); 3818 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3819 MethodData::invocation_counter_offset()); 3820 ciMethodData* md = method->method_data_or_null(); 3821 assert(md != nullptr, "Sanity"); 3822 __ metadata2reg(md->constant_encoding(), counter_holder); 3823 } else { 3824 ShouldNotReachHere(); 3825 } 3826 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3827 LIR_Opr result = new_register(T_INT); 3828 __ load(counter, result); 3829 __ add(result, step, result); 3830 __ store(result, counter); 3831 if (notify && (!backedge || UseOnStackReplacement)) { 3832 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3833 // The bci for info can point to cmp for if's we want the if bci 3834 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3835 int freq = frequency << InvocationCounter::count_shift; 3836 if (freq == 0) { 3837 if (!step->is_constant()) { 3838 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3839 __ branch(lir_cond_notEqual, overflow); 3840 } else { 3841 __ branch(lir_cond_always, overflow); 3842 } 3843 } else { 3844 LIR_Opr mask = load_immediate(freq, T_INT); 3845 if (!step->is_constant()) { 3846 // If step is 0, make sure the overflow check below always fails 3847 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3848 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3849 } 3850 __ logical_and(result, mask, result); 3851 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3852 __ branch(lir_cond_equal, overflow); 3853 } 3854 __ branch_destination(overflow->continuation()); 3855 } 3856 } 3857 3858 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3859 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3860 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3861 3862 if (x->pass_thread()) { 3863 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3864 args->append(getThreadPointer()); 3865 } 3866 3867 for (int i = 0; i < x->number_of_arguments(); i++) { 3868 Value a = x->argument_at(i); 3869 LIRItem* item = new LIRItem(a, this); 3870 item->load_item(); 3871 args->append(item->result()); 3872 signature->append(as_BasicType(a->type())); 3873 } 3874 3875 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr); 3876 if (x->type() == voidType) { 3877 set_no_result(x); 3878 } else { 3879 __ move(result, rlock_result(x)); 3880 } 3881 } 3882 3883 #ifdef ASSERT 3884 void LIRGenerator::do_Assert(Assert *x) { 3885 ValueTag tag = x->x()->type()->tag(); 3886 If::Condition cond = x->cond(); 3887 3888 LIRItem xitem(x->x(), this); 3889 LIRItem yitem(x->y(), this); 3890 LIRItem* xin = &xitem; 3891 LIRItem* yin = &yitem; 3892 3893 assert(tag == intTag, "Only integer assertions are valid!"); 3894 3895 xin->load_item(); 3896 yin->dont_load_item(); 3897 3898 set_no_result(x); 3899 3900 LIR_Opr left = xin->result(); 3901 LIR_Opr right = yin->result(); 3902 3903 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3904 } 3905 #endif 3906 3907 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3908 3909 3910 Instruction *a = x->x(); 3911 Instruction *b = x->y(); 3912 if (!a || StressRangeCheckElimination) { 3913 assert(!b || StressRangeCheckElimination, "B must also be null"); 3914 3915 CodeEmitInfo *info = state_for(x, x->state()); 3916 CodeStub* stub = new PredicateFailedStub(info); 3917 3918 __ jump(stub); 3919 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3920 int a_int = a->type()->as_IntConstant()->value(); 3921 int b_int = b->type()->as_IntConstant()->value(); 3922 3923 bool ok = false; 3924 3925 switch(x->cond()) { 3926 case Instruction::eql: ok = (a_int == b_int); break; 3927 case Instruction::neq: ok = (a_int != b_int); break; 3928 case Instruction::lss: ok = (a_int < b_int); break; 3929 case Instruction::leq: ok = (a_int <= b_int); break; 3930 case Instruction::gtr: ok = (a_int > b_int); break; 3931 case Instruction::geq: ok = (a_int >= b_int); break; 3932 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3933 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3934 default: ShouldNotReachHere(); 3935 } 3936 3937 if (ok) { 3938 3939 CodeEmitInfo *info = state_for(x, x->state()); 3940 CodeStub* stub = new PredicateFailedStub(info); 3941 3942 __ jump(stub); 3943 } 3944 } else { 3945 3946 ValueTag tag = x->x()->type()->tag(); 3947 If::Condition cond = x->cond(); 3948 LIRItem xitem(x->x(), this); 3949 LIRItem yitem(x->y(), this); 3950 LIRItem* xin = &xitem; 3951 LIRItem* yin = &yitem; 3952 3953 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3954 3955 xin->load_item(); 3956 yin->dont_load_item(); 3957 set_no_result(x); 3958 3959 LIR_Opr left = xin->result(); 3960 LIR_Opr right = yin->result(); 3961 3962 CodeEmitInfo *info = state_for(x, x->state()); 3963 CodeStub* stub = new PredicateFailedStub(info); 3964 3965 __ cmp(lir_cond(cond), left, right); 3966 __ branch(lir_cond(cond), stub); 3967 } 3968 } 3969 3970 void LIRGenerator::do_blackhole(Intrinsic *x) { 3971 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3972 for (int c = 0; c < x->number_of_arguments(); c++) { 3973 // Load the argument 3974 LIRItem vitem(x->argument_at(c), this); 3975 vitem.load_item(); 3976 // ...and leave it unused. 3977 } 3978 } 3979 3980 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3981 LIRItemList args(1); 3982 LIRItem value(arg1, this); 3983 args.append(&value); 3984 BasicTypeList signature; 3985 signature.append(as_BasicType(arg1->type())); 3986 3987 return call_runtime(&signature, &args, entry, result_type, info); 3988 } 3989 3990 3991 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3992 LIRItemList args(2); 3993 LIRItem value1(arg1, this); 3994 LIRItem value2(arg2, this); 3995 args.append(&value1); 3996 args.append(&value2); 3997 BasicTypeList signature; 3998 signature.append(as_BasicType(arg1->type())); 3999 signature.append(as_BasicType(arg2->type())); 4000 4001 return call_runtime(&signature, &args, entry, result_type, info); 4002 } 4003 4004 4005 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 4006 address entry, ValueType* result_type, CodeEmitInfo* info) { 4007 // get a result register 4008 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 4009 LIR_Opr result = LIR_OprFact::illegalOpr; 4010 if (result_type->tag() != voidTag) { 4011 result = new_register(result_type); 4012 phys_reg = result_register_for(result_type); 4013 } 4014 4015 // move the arguments into the correct location 4016 CallingConvention* cc = frame_map()->c_calling_convention(signature); 4017 assert(cc->length() == args->length(), "argument mismatch"); 4018 for (int i = 0; i < args->length(); i++) { 4019 LIR_Opr arg = args->at(i); 4020 LIR_Opr loc = cc->at(i); 4021 if (loc->is_register()) { 4022 __ move(arg, loc); 4023 } else { 4024 LIR_Address* addr = loc->as_address_ptr(); 4025 // if (!can_store_as_constant(arg)) { 4026 // LIR_Opr tmp = new_register(arg->type()); 4027 // __ move(arg, tmp); 4028 // arg = tmp; 4029 // } 4030 __ move(arg, addr); 4031 } 4032 } 4033 4034 if (info) { 4035 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 4036 } else { 4037 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 4038 } 4039 if (result->is_valid()) { 4040 __ move(phys_reg, result); 4041 } 4042 return result; 4043 } 4044 4045 4046 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 4047 address entry, ValueType* result_type, CodeEmitInfo* info) { 4048 // get a result register 4049 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 4050 LIR_Opr result = LIR_OprFact::illegalOpr; 4051 if (result_type->tag() != voidTag) { 4052 result = new_register(result_type); 4053 phys_reg = result_register_for(result_type); 4054 } 4055 4056 // move the arguments into the correct location 4057 CallingConvention* cc = frame_map()->c_calling_convention(signature); 4058 4059 assert(cc->length() == args->length(), "argument mismatch"); 4060 for (int i = 0; i < args->length(); i++) { 4061 LIRItem* arg = args->at(i); 4062 LIR_Opr loc = cc->at(i); 4063 if (loc->is_register()) { 4064 arg->load_item_force(loc); 4065 } else { 4066 LIR_Address* addr = loc->as_address_ptr(); 4067 arg->load_for_store(addr->type()); 4068 __ move(arg->result(), addr); 4069 } 4070 } 4071 4072 if (info) { 4073 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 4074 } else { 4075 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 4076 } 4077 if (result->is_valid()) { 4078 __ move(phys_reg, result); 4079 } 4080 return result; 4081 } 4082 4083 void LIRGenerator::do_MemBar(MemBar* x) { 4084 LIR_Code code = x->code(); 4085 switch(code) { 4086 case lir_membar_acquire : __ membar_acquire(); break; 4087 case lir_membar_release : __ membar_release(); break; 4088 case lir_membar : __ membar(); break; 4089 case lir_membar_loadload : __ membar_loadload(); break; 4090 case lir_membar_storestore: __ membar_storestore(); break; 4091 case lir_membar_loadstore : __ membar_loadstore(); break; 4092 case lir_membar_storeload : __ membar_storeload(); break; 4093 default : ShouldNotReachHere(); break; 4094 } 4095 } 4096 4097 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 4098 LIR_Opr value_fixed = rlock_byte(T_BYTE); 4099 if (two_operand_lir_form) { 4100 __ move(value, value_fixed); 4101 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 4102 } else { 4103 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 4104 } 4105 LIR_Opr klass = new_register(T_METADATA); 4106 load_klass(array, klass, null_check_info); 4107 null_check_info = nullptr; 4108 LIR_Opr layout = new_register(T_INT); 4109 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 4110 int diffbit = Klass::layout_helper_boolean_diffbit(); 4111 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 4112 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 4113 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 4114 value = value_fixed; 4115 return value; 4116 }