1 /*
2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "c1/c1_Compilation.hpp"
26 #include "c1/c1_Defs.hpp"
27 #include "c1/c1_FrameMap.hpp"
28 #include "c1/c1_Instruction.hpp"
29 #include "c1/c1_LIRAssembler.hpp"
30 #include "c1/c1_LIRGenerator.hpp"
31 #include "c1/c1_ValueStack.hpp"
32 #include "ci/ciArrayKlass.hpp"
33 #include "ci/ciFlatArrayKlass.hpp"
34 #include "ci/ciInlineKlass.hpp"
35 #include "ci/ciInstance.hpp"
36 #include "ci/ciObjArray.hpp"
37 #include "ci/ciObjArrayKlass.hpp"
38 #include "ci/ciUtilities.hpp"
39 #include "compiler/compilerDefinitions.inline.hpp"
40 #include "compiler/compilerOracle.hpp"
41 #include "gc/shared/barrierSet.hpp"
42 #include "gc/shared/c1/barrierSetC1.hpp"
43 #include "oops/klass.inline.hpp"
44 #include "oops/methodCounters.hpp"
45 #include "runtime/sharedRuntime.hpp"
46 #include "runtime/stubRoutines.hpp"
47 #include "runtime/vm_version.hpp"
48 #include "utilities/bitMap.inline.hpp"
49 #include "utilities/macros.hpp"
50 #include "utilities/powerOfTwo.hpp"
51
52 #ifdef ASSERT
53 #define __ gen()->lir(__FILE__, __LINE__)->
54 #else
55 #define __ gen()->lir()->
56 #endif
57
58 #ifndef PATCHED_ADDR
59 #define PATCHED_ADDR (max_jint)
60 #endif
61
62 void PhiResolverState::reset() {
63 _virtual_operands.clear();
64 _other_operands.clear();
65 _vreg_table.clear();
66 }
67
68
69 //--------------------------------------------------------------
70 // PhiResolver
71
72 // Resolves cycles:
73 //
74 // r1 := r2 becomes temp := r1
75 // r2 := r1 r1 := r2
76 // r2 := temp
77 // and orders moves:
78 //
79 // r2 := r3 becomes r1 := r2
80 // r1 := r2 r2 := r3
81
82 PhiResolver::PhiResolver(LIRGenerator* gen)
83 : _gen(gen)
84 , _state(gen->resolver_state())
85 , _loop(nullptr)
86 , _temp(LIR_OprFact::illegalOpr)
87 {
88 // reinitialize the shared state arrays
89 _state.reset();
90 }
91
92
93 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
94 assert(src->is_valid(), "");
95 assert(dest->is_valid(), "");
96 __ move(src, dest);
97 }
98
99
100 void PhiResolver::move_temp_to(LIR_Opr dest) {
101 assert(_temp->is_valid(), "");
102 emit_move(_temp, dest);
103 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
104 }
105
106
107 void PhiResolver::move_to_temp(LIR_Opr src) {
108 assert(_temp->is_illegal(), "");
109 _temp = _gen->new_register(src->type());
110 emit_move(src, _temp);
111 }
112
113
114 // Traverse assignment graph in depth first order and generate moves in post order
115 // ie. two assignments: b := c, a := b start with node c:
116 // Call graph: move(null, c) -> move(c, b) -> move(b, a)
117 // Generates moves in this order: move b to a and move c to b
118 // ie. cycle a := b, b := a start with node a
119 // Call graph: move(null, a) -> move(a, b) -> move(b, a)
120 // Generates moves in this order: move b to temp, move a to b, move temp to a
121 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
122 if (!dest->visited()) {
123 dest->set_visited();
124 for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
125 move(dest, dest->destination_at(i));
126 }
127 } else if (!dest->start_node()) {
128 // cylce in graph detected
129 assert(_loop == nullptr, "only one loop valid!");
130 _loop = dest;
131 move_to_temp(src->operand());
132 return;
133 } // else dest is a start node
134
135 if (!dest->assigned()) {
136 if (_loop == dest) {
137 move_temp_to(dest->operand());
138 dest->set_assigned();
139 } else if (src != nullptr) {
140 emit_move(src->operand(), dest->operand());
141 dest->set_assigned();
142 }
143 }
144 }
145
146
147 PhiResolver::~PhiResolver() {
148 int i;
149 // resolve any cycles in moves from and to virtual registers
150 for (i = virtual_operands().length() - 1; i >= 0; i --) {
151 ResolveNode* node = virtual_operands().at(i);
152 if (!node->visited()) {
153 _loop = nullptr;
154 move(nullptr, node);
155 node->set_start_node();
156 assert(_temp->is_illegal(), "move_temp_to() call missing");
157 }
158 }
159
160 // generate move for move from non virtual register to abitrary destination
161 for (i = other_operands().length() - 1; i >= 0; i --) {
162 ResolveNode* node = other_operands().at(i);
163 for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
164 emit_move(node->operand(), node->destination_at(j)->operand());
165 }
166 }
167 }
168
169
170 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
171 ResolveNode* node;
172 if (opr->is_virtual()) {
173 int vreg_num = opr->vreg_number();
174 node = vreg_table().at_grow(vreg_num, nullptr);
175 assert(node == nullptr || node->operand() == opr, "");
176 if (node == nullptr) {
177 node = new ResolveNode(opr);
178 vreg_table().at_put(vreg_num, node);
179 }
180 // Make sure that all virtual operands show up in the list when
181 // they are used as the source of a move.
182 if (source && !virtual_operands().contains(node)) {
183 virtual_operands().append(node);
184 }
185 } else {
186 assert(source, "");
187 node = new ResolveNode(opr);
188 other_operands().append(node);
189 }
190 return node;
191 }
192
193
194 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
195 assert(dest->is_virtual(), "");
196 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
197 assert(src->is_valid(), "");
198 assert(dest->is_valid(), "");
199 ResolveNode* source = source_node(src);
200 source->append(destination_node(dest));
201 }
202
203
204 //--------------------------------------------------------------
205 // LIRItem
206
207 void LIRItem::set_result(LIR_Opr opr) {
208 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
209 value()->set_operand(opr);
210
211 #ifdef ASSERT
212 if (opr->is_virtual()) {
213 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
214 }
215 #endif
216
217 _result = opr;
218 }
219
220 void LIRItem::load_item() {
221 assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code");
222
223 if (result()->is_illegal()) {
224 // update the items result
225 _result = value()->operand();
226 }
227 if (!result()->is_register()) {
228 LIR_Opr reg = _gen->new_register(value()->type());
229 __ move(result(), reg);
230 if (result()->is_constant()) {
231 _result = reg;
232 } else {
233 set_result(reg);
234 }
235 }
236 }
237
238
239 void LIRItem::load_for_store(BasicType type) {
240 if (_gen->can_store_as_constant(value(), type)) {
241 _result = value()->operand();
242 if (!_result->is_constant()) {
243 _result = LIR_OprFact::value_type(value()->type());
244 }
245 } else if (type == T_BYTE || type == T_BOOLEAN) {
246 load_byte_item();
247 } else {
248 load_item();
249 }
250 }
251
252 void LIRItem::load_item_force(LIR_Opr reg) {
253 LIR_Opr r = result();
254 if (r != reg) {
255 #if !defined(ARM) && !defined(E500V2)
256 if (r->type() != reg->type()) {
257 // moves between different types need an intervening spill slot
258 r = _gen->force_to_spill(r, reg->type());
259 }
260 #endif
261 __ move(r, reg);
262 _result = reg;
263 }
264 }
265
266 ciObject* LIRItem::get_jobject_constant() const {
267 ObjectType* oc = type()->as_ObjectType();
268 if (oc) {
269 return oc->constant_value();
270 }
271 return nullptr;
272 }
273
274
275 jint LIRItem::get_jint_constant() const {
276 assert(is_constant() && value() != nullptr, "");
277 assert(type()->as_IntConstant() != nullptr, "type check");
278 return type()->as_IntConstant()->value();
279 }
280
281
282 jint LIRItem::get_address_constant() const {
283 assert(is_constant() && value() != nullptr, "");
284 assert(type()->as_AddressConstant() != nullptr, "type check");
285 return type()->as_AddressConstant()->value();
286 }
287
288
289 jfloat LIRItem::get_jfloat_constant() const {
290 assert(is_constant() && value() != nullptr, "");
291 assert(type()->as_FloatConstant() != nullptr, "type check");
292 return type()->as_FloatConstant()->value();
293 }
294
295
296 jdouble LIRItem::get_jdouble_constant() const {
297 assert(is_constant() && value() != nullptr, "");
298 assert(type()->as_DoubleConstant() != nullptr, "type check");
299 return type()->as_DoubleConstant()->value();
300 }
301
302
303 jlong LIRItem::get_jlong_constant() const {
304 assert(is_constant() && value() != nullptr, "");
305 assert(type()->as_LongConstant() != nullptr, "type check");
306 return type()->as_LongConstant()->value();
307 }
308
309
310
311 //--------------------------------------------------------------
312
313
314 void LIRGenerator::block_do_prolog(BlockBegin* block) {
315 #ifndef PRODUCT
316 if (PrintIRWithLIR) {
317 block->print();
318 }
319 #endif
320
321 // set up the list of LIR instructions
322 assert(block->lir() == nullptr, "LIR list already computed for this block");
323 _lir = new LIR_List(compilation(), block);
324 block->set_lir(_lir);
325
326 __ branch_destination(block->label());
327
328 if (LIRTraceExecution &&
329 Compilation::current()->hir()->start()->block_id() != block->block_id() &&
330 !block->is_set(BlockBegin::exception_entry_flag)) {
331 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
332 trace_block_entry(block);
333 }
334 }
335
336
337 void LIRGenerator::block_do_epilog(BlockBegin* block) {
338 #ifndef PRODUCT
339 if (PrintIRWithLIR) {
340 tty->cr();
341 }
342 #endif
343
344 // LIR_Opr for unpinned constants shouldn't be referenced by other
345 // blocks so clear them out after processing the block.
346 for (int i = 0; i < _unpinned_constants.length(); i++) {
347 _unpinned_constants.at(i)->clear_operand();
348 }
349 _unpinned_constants.trunc_to(0);
350
351 // clear our any registers for other local constants
352 _constants.trunc_to(0);
353 _reg_for_constants.trunc_to(0);
354 }
355
356
357 void LIRGenerator::block_do(BlockBegin* block) {
358 CHECK_BAILOUT();
359
360 block_do_prolog(block);
361 set_block(block);
362
363 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) {
364 if (instr->is_pinned()) do_root(instr);
365 }
366
367 set_block(nullptr);
368 block_do_epilog(block);
369 }
370
371
372 //-------------------------LIRGenerator-----------------------------
373
374 // This is where the tree-walk starts; instr must be root;
375 void LIRGenerator::do_root(Value instr) {
376 CHECK_BAILOUT();
377
378 InstructionMark im(compilation(), instr);
379
380 assert(instr->is_pinned(), "use only with roots");
381 assert(instr->subst() == instr, "shouldn't have missed substitution");
382
383 instr->visit(this);
384
385 assert(!instr->has_uses() || instr->operand()->is_valid() ||
386 instr->as_Constant() != nullptr || bailed_out(), "invalid item set");
387 }
388
389
390 // This is called for each node in tree; the walk stops if a root is reached
391 void LIRGenerator::walk(Value instr) {
392 InstructionMark im(compilation(), instr);
393 //stop walk when encounter a root
394 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) {
395 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited");
396 } else {
397 assert(instr->subst() == instr, "shouldn't have missed substitution");
398 instr->visit(this);
399 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use");
400 }
401 }
402
403
404 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
405 assert(state != nullptr, "state must be defined");
406
407 #ifndef PRODUCT
408 state->verify();
409 #endif
410
411 ValueStack* s = state;
412 for_each_state(s) {
413 if (s->kind() == ValueStack::EmptyExceptionState ||
414 s->kind() == ValueStack::CallerEmptyExceptionState)
415 {
416 #ifdef ASSERT
417 int index;
418 Value value;
419 for_each_stack_value(s, index, value) {
420 fatal("state must be empty");
421 }
422 for_each_local_value(s, index, value) {
423 fatal("state must be empty");
424 }
425 #endif
426 assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty");
427 continue;
428 }
429
430 int index;
431 Value value;
432 for_each_stack_value(s, index, value) {
433 assert(value->subst() == value, "missed substitution");
434 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
435 walk(value);
436 assert(value->operand()->is_valid(), "must be evaluated now");
437 }
438 }
439
440 int bci = s->bci();
441 IRScope* scope = s->scope();
442 ciMethod* method = scope->method();
443
444 MethodLivenessResult liveness = method->liveness_at_bci(bci);
445 if (bci == SynchronizationEntryBCI) {
446 if (x->as_ExceptionObject() || x->as_Throw()) {
447 // all locals are dead on exit from the synthetic unlocker
448 liveness.clear();
449 } else {
450 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
451 }
452 }
453 if (!liveness.is_valid()) {
454 // Degenerate or breakpointed method.
455 bailout("Degenerate or breakpointed method");
456 } else {
457 assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
458 for_each_local_value(s, index, value) {
459 assert(value->subst() == value, "missed substitution");
460 if (liveness.at(index) && !value->type()->is_illegal()) {
461 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
462 walk(value);
463 assert(value->operand()->is_valid(), "must be evaluated now");
464 }
465 } else {
466 // null out this local so that linear scan can assume that all non-null values are live.
467 s->invalidate_local(index);
468 }
469 }
470 }
471 }
472
473 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
474 }
475
476
477 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
478 return state_for(x, x->exception_state());
479 }
480
481
482 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
483 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
484 * is active and the class hasn't yet been resolved we need to emit a patch that resolves
485 * the class. */
486 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
487 assert(info != nullptr, "info must be set if class is not loaded");
488 __ klass2reg_patch(nullptr, r, info);
489 } else {
490 // no patching needed
491 __ metadata2reg(obj->constant_encoding(), r);
492 }
493 }
494
495
496 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
497 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
498 CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
499 if (index->is_constant()) {
500 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
501 index->as_jint(), null_check_info);
502 __ branch(lir_cond_belowEqual, stub); // forward branch
503 } else {
504 cmp_reg_mem(lir_cond_aboveEqual, index, array,
505 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
506 __ branch(lir_cond_aboveEqual, stub); // forward branch
507 }
508 }
509
510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
511 LIR_Opr result_op = result;
512 LIR_Opr left_op = left;
513 LIR_Opr right_op = right;
514
515 if (two_operand_lir_form && left_op != result_op) {
516 assert(right_op != result_op, "malformed");
517 __ move(left_op, result_op);
518 left_op = result_op;
519 }
520
521 switch(code) {
522 case Bytecodes::_dadd:
523 case Bytecodes::_fadd:
524 case Bytecodes::_ladd:
525 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break;
526 case Bytecodes::_fmul:
527 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break;
528
529 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break;
530
531 case Bytecodes::_imul:
532 {
533 bool did_strength_reduce = false;
534
535 if (right->is_constant()) {
536 jint c = right->as_jint();
537 if (c > 0 && is_power_of_2(c)) {
538 // do not need tmp here
539 __ shift_left(left_op, exact_log2(c), result_op);
540 did_strength_reduce = true;
541 } else {
542 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
543 }
544 }
545 // we couldn't strength reduce so just emit the multiply
546 if (!did_strength_reduce) {
547 __ mul(left_op, right_op, result_op);
548 }
549 }
550 break;
551
552 case Bytecodes::_dsub:
553 case Bytecodes::_fsub:
554 case Bytecodes::_lsub:
555 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
556
557 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
558 // ldiv and lrem are implemented with a direct runtime call
559
560 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
561
562 case Bytecodes::_drem:
563 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
564
565 default: ShouldNotReachHere();
566 }
567 }
568
569
570 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
571 arithmetic_op(code, result, left, right, tmp);
572 }
573
574
575 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
576 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
577 }
578
579
580 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
581 arithmetic_op(code, result, left, right, tmp);
582 }
583
584
585 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
586
587 if (two_operand_lir_form && value != result_op
588 // Only 32bit right shifts require two operand form on S390.
589 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
590 assert(count != result_op, "malformed");
591 __ move(value, result_op);
592 value = result_op;
593 }
594
595 assert(count->is_constant() || count->is_register(), "must be");
596 switch(code) {
597 case Bytecodes::_ishl:
598 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
599 case Bytecodes::_ishr:
600 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
601 case Bytecodes::_iushr:
602 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
603 default: ShouldNotReachHere();
604 }
605 }
606
607
608 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
609 if (two_operand_lir_form && left_op != result_op) {
610 assert(right_op != result_op, "malformed");
611 __ move(left_op, result_op);
612 left_op = result_op;
613 }
614
615 switch(code) {
616 case Bytecodes::_iand:
617 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
618
619 case Bytecodes::_ior:
620 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
621
622 case Bytecodes::_ixor:
623 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
624
625 default: ShouldNotReachHere();
626 }
627 }
628
629
630 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
631 CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_ie_stub) {
632 // for slow path, use debug info for state after successful locking
633 CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_ie_stub, scratch);
634 __ load_stack_address_monitor(monitor_no, lock);
635 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
636 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_ie_stub);
637 }
638
639
640 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
641 // setup registers
642 LIR_Opr hdr = lock;
643 lock = new_hdr;
644 CodeStub* slow_path = new MonitorExitStub(lock, monitor_no);
645 __ load_stack_address_monitor(monitor_no, lock);
646 __ unlock_object(hdr, object, lock, scratch, slow_path);
647 }
648
649 #ifndef PRODUCT
650 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
651 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
652 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci());
653 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
654 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci());
655 }
656 }
657 #endif
658
659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
660 if (allow_inline) {
661 assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved");
662 __ metadata2reg(klass->constant_encoding(), klass_reg);
663 } else {
664 klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
665 }
666 // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass
667 if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype())
668 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
669
670 StubId stub_id = klass->is_initialized() ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id;
671
672 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
673
674 assert(klass->is_loaded(), "must be loaded");
675 // allocate space for instance
676 assert(klass->size_helper() > 0, "illegal instance size");
677 const int instance_size = align_object_size(klass->size_helper());
678 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
679 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
680 } else {
681 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id);
682 __ jump(slow_path);
683 __ branch_destination(slow_path->continuation());
684 }
685 }
686
687
688 static bool is_constant_zero(Instruction* inst) {
689 IntConstant* c = inst->type()->as_IntConstant();
690 if (c) {
691 return (c->value() == 0);
692 }
693 return false;
694 }
695
696
697 static bool positive_constant(Instruction* inst) {
698 IntConstant* c = inst->type()->as_IntConstant();
699 if (c) {
700 return (c->value() >= 0);
701 }
702 return false;
703 }
704
705
706 static ciArrayKlass* as_array_klass(ciType* type) {
707 if (type != nullptr && type->is_array_klass() && type->is_loaded()) {
708 return (ciArrayKlass*)type;
709 } else {
710 return nullptr;
711 }
712 }
713
714 static ciType* phi_declared_type(Phi* phi) {
715 ciType* t = phi->operand_at(0)->declared_type();
716 if (t == nullptr) {
717 return nullptr;
718 }
719 for(int i = 1; i < phi->operand_count(); i++) {
720 if (t != phi->operand_at(i)->declared_type()) {
721 return nullptr;
722 }
723 }
724 return t;
725 }
726
727 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
728 Instruction* src = x->argument_at(0);
729 Instruction* src_pos = x->argument_at(1);
730 Instruction* dst = x->argument_at(2);
731 Instruction* dst_pos = x->argument_at(3);
732 Instruction* length = x->argument_at(4);
733
734 // first try to identify the likely type of the arrays involved
735 ciArrayKlass* expected_type = nullptr;
736 bool is_exact = false, src_objarray = false, dst_objarray = false;
737 {
738 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type());
739 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
740 Phi* phi;
741 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) {
742 src_declared_type = as_array_klass(phi_declared_type(phi));
743 }
744 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type());
745 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
746 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) {
747 dst_declared_type = as_array_klass(phi_declared_type(phi));
748 }
749
750 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) {
751 // the types exactly match so the type is fully known
752 is_exact = true;
753 expected_type = src_exact_type;
754 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
755 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
756 ciArrayKlass* src_type = nullptr;
757 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
758 src_type = (ciArrayKlass*) src_exact_type;
759 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
760 src_type = (ciArrayKlass*) src_declared_type;
761 }
762 if (src_type != nullptr) {
763 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
764 is_exact = true;
765 expected_type = dst_type;
766 }
767 }
768 }
769 // at least pass along a good guess
770 if (expected_type == nullptr) expected_type = dst_exact_type;
771 if (expected_type == nullptr) expected_type = src_declared_type;
772 if (expected_type == nullptr) expected_type = dst_declared_type;
773
774 if (expected_type != nullptr && expected_type->is_obj_array_klass()) {
775 // For a direct pointer comparison, we need the refined array klass pointer
776 expected_type = ciObjArrayKlass::make(expected_type->as_array_klass()->element_klass());
777 }
778
779 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
780 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
781 }
782
783 // if a probable array type has been identified, figure out if any
784 // of the required checks for a fast case can be elided.
785 int flags = LIR_OpArrayCopy::all_flags;
786
787 if (!src->is_loaded_flat_array() && !dst->is_loaded_flat_array()) {
788 flags &= ~LIR_OpArrayCopy::always_slow_path;
789 }
790 if (!src->maybe_flat_array()) {
791 flags &= ~LIR_OpArrayCopy::src_inlinetype_check;
792 }
793 if (!dst->maybe_flat_array() && !dst->maybe_null_free_array()) {
794 flags &= ~LIR_OpArrayCopy::dst_inlinetype_check;
795 }
796
797 if (!src_objarray)
798 flags &= ~LIR_OpArrayCopy::src_objarray;
799 if (!dst_objarray)
800 flags &= ~LIR_OpArrayCopy::dst_objarray;
801
802 if (!x->arg_needs_null_check(0))
803 flags &= ~LIR_OpArrayCopy::src_null_check;
804 if (!x->arg_needs_null_check(2))
805 flags &= ~LIR_OpArrayCopy::dst_null_check;
806
807
808 if (expected_type != nullptr) {
809 Value length_limit = nullptr;
810
811 IfOp* ifop = length->as_IfOp();
812 if (ifop != nullptr) {
813 // look for expressions like min(v, a.length) which ends up as
814 // x > y ? y : x or x >= y ? y : x
815 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
816 ifop->x() == ifop->fval() &&
817 ifop->y() == ifop->tval()) {
818 length_limit = ifop->y();
819 }
820 }
821
822 // try to skip null checks and range checks
823 NewArray* src_array = src->as_NewArray();
824 if (src_array != nullptr) {
825 flags &= ~LIR_OpArrayCopy::src_null_check;
826 if (length_limit != nullptr &&
827 src_array->length() == length_limit &&
828 is_constant_zero(src_pos)) {
829 flags &= ~LIR_OpArrayCopy::src_range_check;
830 }
831 }
832
833 NewArray* dst_array = dst->as_NewArray();
834 if (dst_array != nullptr) {
835 flags &= ~LIR_OpArrayCopy::dst_null_check;
836 if (length_limit != nullptr &&
837 dst_array->length() == length_limit &&
838 is_constant_zero(dst_pos)) {
839 flags &= ~LIR_OpArrayCopy::dst_range_check;
840 }
841 }
842
843 // check from incoming constant values
844 if (positive_constant(src_pos))
845 flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
846 if (positive_constant(dst_pos))
847 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
848 if (positive_constant(length))
849 flags &= ~LIR_OpArrayCopy::length_positive_check;
850
851 // see if the range check can be elided, which might also imply
852 // that src or dst is non-null.
853 ArrayLength* al = length->as_ArrayLength();
854 if (al != nullptr) {
855 if (al->array() == src) {
856 // it's the length of the source array
857 flags &= ~LIR_OpArrayCopy::length_positive_check;
858 flags &= ~LIR_OpArrayCopy::src_null_check;
859 if (is_constant_zero(src_pos))
860 flags &= ~LIR_OpArrayCopy::src_range_check;
861 }
862 if (al->array() == dst) {
863 // it's the length of the destination array
864 flags &= ~LIR_OpArrayCopy::length_positive_check;
865 flags &= ~LIR_OpArrayCopy::dst_null_check;
866 if (is_constant_zero(dst_pos))
867 flags &= ~LIR_OpArrayCopy::dst_range_check;
868 }
869 }
870 if (is_exact) {
871 flags &= ~LIR_OpArrayCopy::type_check;
872 }
873 }
874
875 IntConstant* src_int = src_pos->type()->as_IntConstant();
876 IntConstant* dst_int = dst_pos->type()->as_IntConstant();
877 if (src_int && dst_int) {
878 int s_offs = src_int->value();
879 int d_offs = dst_int->value();
880 if (src_int->value() >= dst_int->value()) {
881 flags &= ~LIR_OpArrayCopy::overlapping;
882 }
883 if (expected_type != nullptr) {
884 BasicType t = expected_type->element_type()->basic_type();
885 int element_size = type2aelembytes(t);
886 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
887 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
888 flags &= ~LIR_OpArrayCopy::unaligned;
889 }
890 }
891 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
892 // src and dest positions are the same, or dst is zero so assume
893 // nonoverlapping copy.
894 flags &= ~LIR_OpArrayCopy::overlapping;
895 }
896
897 if (src == dst) {
898 // moving within a single array so no type checks are needed
899 if (flags & LIR_OpArrayCopy::type_check) {
900 flags &= ~LIR_OpArrayCopy::type_check;
901 }
902 }
903 *flagsp = flags;
904 *expected_typep = (ciArrayKlass*)expected_type;
905 }
906
907
908 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
909 assert(type2size[t] == type2size[value->type()],
910 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
911 if (!value->is_register()) {
912 // force into a register
913 LIR_Opr r = new_register(value->type());
914 __ move(value, r);
915 value = r;
916 }
917
918 // create a spill location
919 LIR_Opr tmp = new_register(t);
920 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
921
922 // move from register to spill
923 __ move(value, tmp);
924 return tmp;
925 }
926
927 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
928 if (if_instr->should_profile()) {
929 ciMethod* method = if_instr->profiled_method();
930 assert(method != nullptr, "method should be set if branch is profiled");
931 ciMethodData* md = method->method_data_or_null();
932 assert(md != nullptr, "Sanity");
933 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
934 assert(data != nullptr, "must have profiling data");
935 assert(data->is_BranchData(), "need BranchData for two-way branches");
936 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
937 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
938 if (if_instr->is_swapped()) {
939 int t = taken_count_offset;
940 taken_count_offset = not_taken_count_offset;
941 not_taken_count_offset = t;
942 }
943
944 LIR_Opr md_reg = new_register(T_METADATA);
945 __ metadata2reg(md->constant_encoding(), md_reg);
946
947 LIR_Opr data_offset_reg = new_pointer_register();
948 __ cmove(lir_cond(cond),
949 LIR_OprFact::intptrConst(taken_count_offset),
950 LIR_OprFact::intptrConst(not_taken_count_offset),
951 data_offset_reg, as_BasicType(if_instr->x()->type()));
952
953 // MDO cells are intptr_t, so the data_reg width is arch-dependent.
954 LIR_Opr data_reg = new_pointer_register();
955 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
956 __ move(data_addr, data_reg);
957 // Use leal instead of add to avoid destroying condition codes on x86
958 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
959 __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
960 __ move(data_reg, data_addr);
961 }
962 }
963
964 // Phi technique:
965 // This is about passing live values from one basic block to the other.
966 // In code generated with Java it is rather rare that more than one
967 // value is on the stack from one basic block to the other.
968 // We optimize our technique for efficient passing of one value
969 // (of type long, int, double..) but it can be extended.
970 // When entering or leaving a basic block, all registers and all spill
971 // slots are release and empty. We use the released registers
972 // and spill slots to pass the live values from one block
973 // to the other. The topmost value, i.e., the value on TOS of expression
974 // stack is passed in registers. All other values are stored in spilling
975 // area. Every Phi has an index which designates its spill slot
976 // At exit of a basic block, we fill the register(s) and spill slots.
977 // At entry of a basic block, the block_prolog sets up the content of phi nodes
978 // and locks necessary registers and spilling slots.
979
980
981 // move current value to referenced phi function
982 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
983 Phi* phi = sux_val->as_Phi();
984 // cur_val can be null without phi being null in conjunction with inlining
985 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) {
986 if (phi->is_local()) {
987 for (int i = 0; i < phi->operand_count(); i++) {
988 Value op = phi->operand_at(i);
989 if (op != nullptr && op->type()->is_illegal()) {
990 bailout("illegal phi operand");
991 }
992 }
993 }
994 Phi* cur_phi = cur_val->as_Phi();
995 if (cur_phi != nullptr && cur_phi->is_illegal()) {
996 // Phi and local would need to get invalidated
997 // (which is unexpected for Linear Scan).
998 // But this case is very rare so we simply bail out.
999 bailout("propagation of illegal phi");
1000 return;
1001 }
1002 LIR_Opr operand = cur_val->operand();
1003 if (operand->is_illegal()) {
1004 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr,
1005 "these can be produced lazily");
1006 operand = operand_for_instruction(cur_val);
1007 }
1008 resolver->move(operand, operand_for_instruction(phi));
1009 }
1010 }
1011
1012
1013 // Moves all stack values into their PHI position
1014 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1015 BlockBegin* bb = block();
1016 if (bb->number_of_sux() == 1) {
1017 BlockBegin* sux = bb->sux_at(0);
1018 assert(sux->number_of_preds() > 0, "invalid CFG");
1019
1020 // a block with only one predecessor never has phi functions
1021 if (sux->number_of_preds() > 1) {
1022 PhiResolver resolver(this);
1023
1024 ValueStack* sux_state = sux->state();
1025 Value sux_value;
1026 int index;
1027
1028 assert(cur_state->scope() == sux_state->scope(), "not matching");
1029 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1030 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1031
1032 for_each_stack_value(sux_state, index, sux_value) {
1033 move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1034 }
1035
1036 for_each_local_value(sux_state, index, sux_value) {
1037 move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1038 }
1039
1040 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1041 }
1042 }
1043 }
1044
1045
1046 LIR_Opr LIRGenerator::new_register(BasicType type) {
1047 int vreg_num = _virtual_register_number;
1048 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1049 // a few extra registers before we really run out which helps to avoid to trip over assertions.
1050 if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1051 bailout("out of virtual registers in LIR generator");
1052 if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1053 // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1054 _virtual_register_number = LIR_Opr::vreg_base;
1055 vreg_num = LIR_Opr::vreg_base;
1056 }
1057 }
1058 _virtual_register_number += 1;
1059 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1060 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1061 return vreg;
1062 }
1063
1064
1065 // Try to lock using register in hint
1066 LIR_Opr LIRGenerator::rlock(Value instr) {
1067 return new_register(instr->type());
1068 }
1069
1070
1071 // does an rlock and sets result
1072 LIR_Opr LIRGenerator::rlock_result(Value x) {
1073 LIR_Opr reg = rlock(x);
1074 set_result(x, reg);
1075 return reg;
1076 }
1077
1078
1079 // does an rlock and sets result
1080 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1081 LIR_Opr reg;
1082 switch (type) {
1083 case T_BYTE:
1084 case T_BOOLEAN:
1085 reg = rlock_byte(type);
1086 break;
1087 default:
1088 reg = rlock(x);
1089 break;
1090 }
1091
1092 set_result(x, reg);
1093 return reg;
1094 }
1095
1096
1097 //---------------------------------------------------------------------
1098 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1099 ObjectType* oc = value->type()->as_ObjectType();
1100 if (oc) {
1101 return oc->constant_value();
1102 }
1103 return nullptr;
1104 }
1105
1106
1107 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1108 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1109 assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1110
1111 // no moves are created for phi functions at the begin of exception
1112 // handlers, so assign operands manually here
1113 for_each_phi_fun(block(), phi,
1114 if (!phi->is_illegal()) { operand_for_instruction(phi); });
1115
1116 LIR_Opr thread_reg = getThreadPointer();
1117 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1118 exceptionOopOpr());
1119 __ move_wide(LIR_OprFact::oopConst(nullptr),
1120 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1121 __ move_wide(LIR_OprFact::oopConst(nullptr),
1122 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1123
1124 LIR_Opr result = new_register(T_OBJECT);
1125 __ move(exceptionOopOpr(), result);
1126 set_result(x, result);
1127 }
1128
1129
1130 //----------------------------------------------------------------------
1131 //----------------------------------------------------------------------
1132 //----------------------------------------------------------------------
1133 //----------------------------------------------------------------------
1134 // visitor functions
1135 //----------------------------------------------------------------------
1136 //----------------------------------------------------------------------
1137 //----------------------------------------------------------------------
1138 //----------------------------------------------------------------------
1139
1140 void LIRGenerator::do_Phi(Phi* x) {
1141 // phi functions are never visited directly
1142 ShouldNotReachHere();
1143 }
1144
1145
1146 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1147 void LIRGenerator::do_Constant(Constant* x) {
1148 if (x->state_before() != nullptr) {
1149 // Any constant with a ValueStack requires patching so emit the patch here
1150 LIR_Opr reg = rlock_result(x);
1151 CodeEmitInfo* info = state_for(x, x->state_before());
1152 __ oop2reg_patch(nullptr, reg, info);
1153 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1154 if (!x->is_pinned()) {
1155 // unpinned constants are handled specially so that they can be
1156 // put into registers when they are used multiple times within a
1157 // block. After the block completes their operand will be
1158 // cleared so that other blocks can't refer to that register.
1159 set_result(x, load_constant(x));
1160 } else {
1161 LIR_Opr res = x->operand();
1162 if (!res->is_valid()) {
1163 res = LIR_OprFact::value_type(x->type());
1164 }
1165 if (res->is_constant()) {
1166 LIR_Opr reg = rlock_result(x);
1167 __ move(res, reg);
1168 } else {
1169 set_result(x, res);
1170 }
1171 }
1172 } else {
1173 set_result(x, LIR_OprFact::value_type(x->type()));
1174 }
1175 }
1176
1177
1178 void LIRGenerator::do_Local(Local* x) {
1179 // operand_for_instruction has the side effect of setting the result
1180 // so there's no need to do it here.
1181 operand_for_instruction(x);
1182 }
1183
1184
1185 void LIRGenerator::do_Return(Return* x) {
1186 if (compilation()->env()->dtrace_method_probes()) {
1187 BasicTypeList signature;
1188 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
1189 signature.append(T_METADATA); // Method*
1190 LIR_OprList* args = new LIR_OprList();
1191 args->append(getThreadPointer());
1192 LIR_Opr meth = new_register(T_METADATA);
1193 __ metadata2reg(method()->constant_encoding(), meth);
1194 args->append(meth);
1195 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr);
1196 }
1197
1198 if (x->type()->is_void()) {
1199 __ return_op(LIR_OprFact::illegalOpr);
1200 } else {
1201 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1202 LIRItem result(x->result(), this);
1203
1204 result.load_item_force(reg);
1205 __ return_op(result.result());
1206 }
1207 set_no_result(x);
1208 }
1209
1210 // Example: ref.get()
1211 // Combination of LoadField and g1 pre-write barrier
1212 void LIRGenerator::do_Reference_get0(Intrinsic* x) {
1213
1214 const int referent_offset = java_lang_ref_Reference::referent_offset();
1215
1216 assert(x->number_of_arguments() == 1, "wrong type");
1217
1218 LIRItem reference(x->argument_at(0), this);
1219 reference.load_item();
1220
1221 // need to perform the null check on the reference object
1222 CodeEmitInfo* info = nullptr;
1223 if (x->needs_null_check()) {
1224 info = state_for(x);
1225 }
1226
1227 LIR_Opr result = rlock_result(x, T_OBJECT);
1228 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1229 reference, LIR_OprFact::intConst(referent_offset), result,
1230 nullptr, info);
1231 }
1232
1233 // Example: clazz.isInstance(object)
1234 void LIRGenerator::do_isInstance(Intrinsic* x) {
1235 assert(x->number_of_arguments() == 2, "wrong type");
1236
1237 LIRItem clazz(x->argument_at(0), this);
1238 LIRItem object(x->argument_at(1), this);
1239 clazz.load_item();
1240 object.load_item();
1241 LIR_Opr result = rlock_result(x);
1242
1243 // need to perform null check on clazz
1244 if (x->needs_null_check()) {
1245 CodeEmitInfo* info = state_for(x);
1246 __ null_check(clazz.result(), info);
1247 }
1248
1249 address pd_instanceof_fn = isInstance_entry();
1250 LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1251 pd_instanceof_fn,
1252 x->type(),
1253 nullptr); // null CodeEmitInfo results in a leaf call
1254 __ move(call_result, result);
1255 }
1256
1257 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1258 __ load_klass(obj, klass, null_check_info);
1259 }
1260
1261 // Example: object.getClass ()
1262 void LIRGenerator::do_getClass(Intrinsic* x) {
1263 assert(x->number_of_arguments() == 1, "wrong type");
1264
1265 LIRItem rcvr(x->argument_at(0), this);
1266 rcvr.load_item();
1267 LIR_Opr temp = new_register(T_ADDRESS);
1268 LIR_Opr result = rlock_result(x);
1269
1270 // need to perform the null check on the rcvr
1271 CodeEmitInfo* info = nullptr;
1272 if (x->needs_null_check()) {
1273 info = state_for(x);
1274 }
1275
1276 LIR_Opr klass = new_register(T_METADATA);
1277 load_klass(rcvr.result(), klass, info);
1278 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1279 // mirror = ((OopHandle)mirror)->resolve();
1280 access_load(IN_NATIVE, T_OBJECT,
1281 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1282 }
1283
1284 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1285 assert(x->number_of_arguments() == 3, "wrong type");
1286 LIR_Opr result_reg = rlock_result(x);
1287
1288 LIRItem value(x->argument_at(2), this);
1289 value.load_item();
1290
1291 LIR_Opr klass = new_register(T_METADATA);
1292 load_klass(value.result(), klass, nullptr);
1293 LIR_Opr layout = new_register(T_INT);
1294 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1295
1296 LabelObj* L_done = new LabelObj();
1297 LabelObj* L_array = new LabelObj();
1298
1299 __ cmp(lir_cond_lessEqual, layout, 0);
1300 __ branch(lir_cond_lessEqual, L_array->label());
1301
1302 // Instance case: the layout helper gives us instance size almost directly,
1303 // but we need to mask out the _lh_instance_slow_path_bit.
1304
1305 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1306
1307 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT);
1308 __ logical_and(layout, mask, layout);
1309 __ convert(Bytecodes::_i2l, layout, result_reg);
1310
1311 __ branch(lir_cond_always, L_done->label());
1312
1313 // Array case: size is round(header + element_size*arraylength).
1314 // Since arraylength is different for every array instance, we have to
1315 // compute the whole thing at runtime.
1316
1317 __ branch_destination(L_array->label());
1318
1319 int round_mask = MinObjAlignmentInBytes - 1;
1320
1321 // Figure out header sizes first.
1322 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT);
1323 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT);
1324
1325 LIR_Opr header_size = new_register(T_INT);
1326 __ move(layout, header_size);
1327 LIR_Opr tmp = new_register(T_INT);
1328 __ unsigned_shift_right(header_size, hss, header_size, tmp);
1329 __ logical_and(header_size, hsm, header_size);
1330 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1331
1332 // Figure out the array length in bytes
1333 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1334 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT);
1335 __ logical_and(layout, l2esm, layout);
1336
1337 LIR_Opr length_int = new_register(T_INT);
1338 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1339
1340 #ifdef _LP64
1341 LIR_Opr length = new_register(T_LONG);
1342 __ convert(Bytecodes::_i2l, length_int, length);
1343 #endif
1344
1345 // Shift-left awkwardness. Normally it is just:
1346 // __ shift_left(length, layout, length);
1347 // But C1 cannot perform shift_left with non-constant count, so we end up
1348 // doing the per-bit loop dance here. x86_32 also does not know how to shift
1349 // longs, so we have to act on ints.
1350 LabelObj* L_shift_loop = new LabelObj();
1351 LabelObj* L_shift_exit = new LabelObj();
1352
1353 __ branch_destination(L_shift_loop->label());
1354 __ cmp(lir_cond_equal, layout, 0);
1355 __ branch(lir_cond_equal, L_shift_exit->label());
1356
1357 #ifdef _LP64
1358 __ shift_left(length, 1, length);
1359 #else
1360 __ shift_left(length_int, 1, length_int);
1361 #endif
1362
1363 __ sub(layout, LIR_OprFact::intConst(1), layout);
1364
1365 __ branch(lir_cond_always, L_shift_loop->label());
1366 __ branch_destination(L_shift_exit->label());
1367
1368 // Mix all up, round, and push to the result.
1369 #ifdef _LP64
1370 LIR_Opr header_size_long = new_register(T_LONG);
1371 __ convert(Bytecodes::_i2l, header_size, header_size_long);
1372 __ add(length, header_size_long, length);
1373 if (round_mask != 0) {
1374 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG);
1375 __ logical_and(length, round_mask_opr, length);
1376 }
1377 __ move(length, result_reg);
1378 #else
1379 __ add(length_int, header_size, length_int);
1380 if (round_mask != 0) {
1381 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT);
1382 __ logical_and(length_int, round_mask_opr, length_int);
1383 }
1384 __ convert(Bytecodes::_i2l, length_int, result_reg);
1385 #endif
1386
1387 __ branch_destination(L_done->label());
1388 }
1389
1390 void LIRGenerator::do_scopedValueCache(Intrinsic* x) {
1391 do_JavaThreadField(x, JavaThread::scopedValueCache_offset());
1392 }
1393
1394 // Example: Thread.currentCarrierThread()
1395 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) {
1396 do_JavaThreadField(x, JavaThread::threadObj_offset());
1397 }
1398
1399 void LIRGenerator::do_vthread(Intrinsic* x) {
1400 do_JavaThreadField(x, JavaThread::vthread_offset());
1401 }
1402
1403 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) {
1404 assert(x->number_of_arguments() == 0, "wrong type");
1405 LIR_Opr temp = new_register(T_ADDRESS);
1406 LIR_Opr reg = rlock_result(x);
1407 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp);
1408 access_load(IN_NATIVE, T_OBJECT,
1409 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1410 }
1411
1412 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1413 assert(x->number_of_arguments() == 1, "wrong type");
1414 LIRItem receiver(x->argument_at(0), this);
1415
1416 receiver.load_item();
1417 BasicTypeList signature;
1418 signature.append(T_OBJECT); // receiver
1419 LIR_OprList* args = new LIR_OprList();
1420 args->append(receiver.result());
1421 CodeEmitInfo* info = state_for(x, x->state());
1422 call_runtime(&signature, args,
1423 CAST_FROM_FN_PTR(address, Runtime1::entry_for(StubId::c1_register_finalizer_id)),
1424 voidType, info);
1425
1426 set_no_result(x);
1427 }
1428
1429
1430 //------------------------local access--------------------------------------
1431
1432 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1433 if (x->operand()->is_illegal()) {
1434 Constant* c = x->as_Constant();
1435 if (c != nullptr) {
1436 x->set_operand(LIR_OprFact::value_type(c->type()));
1437 } else {
1438 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local");
1439 // allocate a virtual register for this local or phi
1440 x->set_operand(rlock(x));
1441 #ifdef ASSERT
1442 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr);
1443 #endif
1444 }
1445 }
1446 return x->operand();
1447 }
1448
1449 #ifdef ASSERT
1450 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1451 if (reg_num < _instruction_for_operand.length()) {
1452 return _instruction_for_operand.at(reg_num);
1453 }
1454 return nullptr;
1455 }
1456 #endif
1457
1458 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1459 if (_vreg_flags.size_in_bits() == 0) {
1460 BitMap2D temp(100, num_vreg_flags);
1461 _vreg_flags = temp;
1462 }
1463 _vreg_flags.at_put_grow(vreg_num, f, true);
1464 }
1465
1466 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1467 if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1468 return false;
1469 }
1470 return _vreg_flags.at(vreg_num, f);
1471 }
1472
1473
1474 // Block local constant handling. This code is useful for keeping
1475 // unpinned constants and constants which aren't exposed in the IR in
1476 // registers. Unpinned Constant instructions have their operands
1477 // cleared when the block is finished so that other blocks can't end
1478 // up referring to their registers.
1479
1480 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1481 assert(!x->is_pinned(), "only for unpinned constants");
1482 _unpinned_constants.append(x);
1483 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1484 }
1485
1486
1487 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1488 BasicType t = c->type();
1489 for (int i = 0; i < _constants.length() && !in_conditional_code(); i++) {
1490 LIR_Const* other = _constants.at(i);
1491 if (t == other->type()) {
1492 switch (t) {
1493 case T_INT:
1494 case T_FLOAT:
1495 if (c->as_jint_bits() != other->as_jint_bits()) continue;
1496 break;
1497 case T_LONG:
1498 case T_DOUBLE:
1499 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1500 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1501 break;
1502 case T_OBJECT:
1503 if (c->as_jobject() != other->as_jobject()) continue;
1504 break;
1505 default:
1506 break;
1507 }
1508 return _reg_for_constants.at(i);
1509 }
1510 }
1511
1512 LIR_Opr result = new_register(t);
1513 __ move((LIR_Opr)c, result);
1514 if (!in_conditional_code()) {
1515 _constants.append(c);
1516 _reg_for_constants.append(result);
1517 }
1518 return result;
1519 }
1520
1521 void LIRGenerator::set_in_conditional_code(bool v) {
1522 assert(v != _in_conditional_code, "must change state");
1523 _in_conditional_code = v;
1524 }
1525
1526
1527 //------------------------field access--------------------------------------
1528
1529 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1530 assert(x->number_of_arguments() == 4, "wrong type");
1531 LIRItem obj (x->argument_at(0), this); // object
1532 LIRItem offset(x->argument_at(1), this); // offset of field
1533 LIRItem cmp (x->argument_at(2), this); // value to compare with field
1534 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
1535 assert(obj.type()->tag() == objectTag, "invalid type");
1536 assert(cmp.type()->tag() == type->tag(), "invalid type");
1537 assert(val.type()->tag() == type->tag(), "invalid type");
1538
1539 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1540 obj, offset, cmp, val);
1541 set_result(x, result);
1542 }
1543
1544 // Returns a int/long value with the null marker bit set
1545 static LIR_Opr null_marker_mask(BasicType bt, ciField* field) {
1546 assert(field->null_marker_offset() != -1, "field does not have null marker");
1547 int nm_offset = field->null_marker_offset() - field->offset_in_bytes();
1548 jlong null_marker = 1ULL << (nm_offset << LogBitsPerByte);
1549 return (bt == T_LONG) ? LIR_OprFact::longConst(null_marker) : LIR_OprFact::intConst(null_marker);
1550 }
1551
1552 // Comment copied form templateTable_i486.cpp
1553 // ----------------------------------------------------------------------------
1554 // Volatile variables demand their effects be made known to all CPU's in
1555 // order. Store buffers on most chips allow reads & writes to reorder; the
1556 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1557 // memory barrier (i.e., it's not sufficient that the interpreter does not
1558 // reorder volatile references, the hardware also must not reorder them).
1559 //
1560 // According to the new Java Memory Model (JMM):
1561 // (1) All volatiles are serialized wrt to each other.
1562 // ALSO reads & writes act as acquire & release, so:
1563 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1564 // the read float up to before the read. It's OK for non-volatile memory refs
1565 // that happen before the volatile read to float down below it.
1566 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1567 // that happen BEFORE the write float down to after the write. It's OK for
1568 // non-volatile memory refs that happen after the volatile write to float up
1569 // before it.
1570 //
1571 // We only put in barriers around volatile refs (they are expensive), not
1572 // _between_ memory refs (that would require us to track the flavor of the
1573 // previous memory refs). Requirements (2) and (3) require some barriers
1574 // before volatile stores and after volatile loads. These nearly cover
1575 // requirement (1) but miss the volatile-store-volatile-load case. This final
1576 // case is placed after volatile-stores although it could just as well go
1577 // before volatile-loads.
1578
1579
1580 void LIRGenerator::do_StoreField(StoreField* x) {
1581 ciField* field = x->field();
1582 bool needs_patching = x->needs_patching();
1583 bool is_volatile = field->is_volatile();
1584 BasicType field_type = x->field_type();
1585
1586 CodeEmitInfo* info = nullptr;
1587 if (needs_patching) {
1588 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1589 info = state_for(x, x->state_before());
1590 } else if (x->needs_null_check()) {
1591 NullCheck* nc = x->explicit_null_check();
1592 if (nc == nullptr) {
1593 info = state_for(x);
1594 } else {
1595 info = state_for(nc);
1596 }
1597 }
1598
1599 LIRItem object(x->obj(), this);
1600 LIRItem value(x->value(), this);
1601
1602 object.load_item();
1603
1604 if (field->is_flat()) {
1605 value.load_item();
1606 } else {
1607 if (is_volatile || needs_patching) {
1608 // load item if field is volatile (fewer special cases for volatiles)
1609 // load item if field not initialized
1610 // load item if field not constant
1611 // because of code patching we cannot inline constants
1612 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1613 value.load_byte_item();
1614 } else {
1615 value.load_item();
1616 }
1617 } else {
1618 value.load_for_store(field_type);
1619 }
1620 }
1621
1622 set_no_result(x);
1623
1624 #ifndef PRODUCT
1625 if (PrintNotLoaded && needs_patching) {
1626 tty->print_cr(" ###class not loaded at store_%s bci %d",
1627 x->is_static() ? "static" : "field", x->printable_bci());
1628 }
1629 #endif
1630
1631 if (x->needs_null_check() &&
1632 (needs_patching ||
1633 MacroAssembler::needs_explicit_null_check(x->offset()))) {
1634 // Emit an explicit null check because the offset is too large.
1635 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1636 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1637 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1638 }
1639
1640 DecoratorSet decorators = IN_HEAP;
1641 if (is_volatile) {
1642 decorators |= MO_SEQ_CST;
1643 }
1644 if (needs_patching) {
1645 decorators |= C1_NEEDS_PATCHING;
1646 }
1647
1648 if (field->is_flat()) {
1649 ciInlineKlass* vk = field->type()->as_inline_klass();
1650
1651 #ifdef ASSERT
1652 bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1;
1653 bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
1654 assert(needs_atomic_access, "No atomic access required");
1655 // ZGC does not support compressed oops, so only one oop can be in the payload which is written by a "normal" oop store.
1656 assert(!vk->contains_oops() || !UseZGC, "ZGC does not support embedded oops in flat fields");
1657 #endif
1658
1659 // Zero the payload
1660 BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free());
1661 LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT);
1662 LIR_Opr zero = (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0);
1663 __ move(zero, payload);
1664
1665 bool is_constant_null = value.is_constant() && value.value()->is_null_obj();
1666 if (!is_constant_null) {
1667 LabelObj* L_isNull = new LabelObj();
1668 bool needs_null_check = !value.is_constant() || value.value()->is_null_obj();
1669 if (needs_null_check) {
1670 __ cmp(lir_cond_equal, value.result(), LIR_OprFact::oopConst(nullptr));
1671 __ branch(lir_cond_equal, L_isNull->label());
1672 }
1673 // Load payload (if not empty) and set null marker (if not null-free)
1674 if (!vk->is_empty()) {
1675 access_load_at(decorators, bt, value, LIR_OprFact::intConst(vk->payload_offset()), payload);
1676 }
1677 if (!field->is_null_free()) {
1678 __ logical_or(payload, null_marker_mask(bt, field), payload);
1679 }
1680 if (needs_null_check) {
1681 __ branch_destination(L_isNull->label());
1682 }
1683 }
1684 access_store_at(decorators, bt, object, LIR_OprFact::intConst(x->offset()), payload,
1685 // Make sure to emit an implicit null check and pass the information
1686 // that this is a flat store that might require gc barriers for oop fields.
1687 info != nullptr ? new CodeEmitInfo(info) : nullptr, info, vk);
1688 return;
1689 }
1690
1691 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1692 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1693 }
1694
1695 // FIXME -- I can't find any other way to pass an address to access_load_at().
1696 class TempResolvedAddress: public Instruction {
1697 public:
1698 TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1699 set_operand(addr);
1700 }
1701 virtual void input_values_do(ValueVisitor*) {}
1702 virtual void visit(InstructionVisitor* v) {}
1703 virtual const char* name() const { return "TempResolvedAddress"; }
1704 };
1705
1706 LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) {
1707 ciType* array_type = array.value()->declared_type();
1708 ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass();
1709 assert(flat_array_klass->is_loaded(), "must be");
1710
1711 int array_header_size = flat_array_klass->array_header_in_bytes();
1712 int shift = flat_array_klass->log2_element_size();
1713
1714 #ifndef _LP64
1715 LIR_Opr index_op = new_register(T_INT);
1716 // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1717 // the top (shift+1) bits of index_op must be zero, or
1718 // else throw ArrayIndexOutOfBoundsException
1719 if (index.result()->is_constant()) {
1720 jint const_index = index.result()->as_jint();
1721 __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1722 } else {
1723 __ shift_left(index_op, shift, index.result());
1724 }
1725 #else
1726 LIR_Opr index_op = new_register(T_LONG);
1727 if (index.result()->is_constant()) {
1728 jint const_index = index.result()->as_jint();
1729 __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1730 } else {
1731 __ convert(Bytecodes::_i2l, index.result(), index_op);
1732 // Need to shift manually, as LIR_Address can scale only up to 3.
1733 __ shift_left(index_op, shift, index_op);
1734 }
1735 #endif
1736
1737 LIR_Opr elm_op = new_pointer_register();
1738 LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS);
1739 __ leal(LIR_OprFact::address(elm_address), elm_op);
1740 return elm_op;
1741 }
1742
1743 void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, int sub_offset) {
1744 assert(field != nullptr, "Need a subelement type specified");
1745
1746 // Find the starting address of the source (inside the array)
1747 LIR_Opr elm_op = get_and_load_element_address(array, index);
1748
1749 BasicType subelt_type = field->type()->basic_type();
1750 TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op);
1751 LIRItem elm_item(elm_resolved_addr, this);
1752
1753 DecoratorSet decorators = IN_HEAP;
1754 access_load_at(decorators, subelt_type,
1755 elm_item, LIR_OprFact::intConst(sub_offset), result,
1756 nullptr, nullptr);
1757 }
1758
1759 void LIRGenerator::access_flat_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item,
1760 ciField* field, int sub_offset) {
1761 assert(sub_offset == 0 || field != nullptr, "Sanity check");
1762
1763 // Find the starting address of the source (inside the array)
1764 LIR_Opr elm_op = get_and_load_element_address(array, index);
1765
1766 ciInlineKlass* elem_klass = nullptr;
1767 if (field != nullptr) {
1768 elem_klass = field->type()->as_inline_klass();
1769 } else {
1770 elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
1771 }
1772 for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1773 ciField* inner_field = elem_klass->nonstatic_field_at(i);
1774 assert(!inner_field->is_flat(), "flat fields must have been expanded");
1775 int obj_offset = inner_field->offset_in_bytes();
1776 int elm_offset = obj_offset - elem_klass->payload_offset() + sub_offset; // object header is not stored in array.
1777 BasicType field_type = inner_field->type()->basic_type();
1778
1779 // Types which are smaller than int are still passed in an int register.
1780 BasicType reg_type = field_type;
1781 switch (reg_type) {
1782 case T_BYTE:
1783 case T_BOOLEAN:
1784 case T_SHORT:
1785 case T_CHAR:
1786 reg_type = T_INT;
1787 break;
1788 default:
1789 break;
1790 }
1791
1792 LIR_Opr temp = new_register(reg_type);
1793 TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1794 LIRItem elm_item(elm_resolved_addr, this);
1795
1796 DecoratorSet decorators = IN_HEAP;
1797 if (is_load) {
1798 access_load_at(decorators, field_type,
1799 elm_item, LIR_OprFact::intConst(elm_offset), temp,
1800 nullptr, nullptr);
1801 access_store_at(decorators, field_type,
1802 obj_item, LIR_OprFact::intConst(obj_offset), temp,
1803 nullptr, nullptr);
1804 } else {
1805 access_load_at(decorators, field_type,
1806 obj_item, LIR_OprFact::intConst(obj_offset), temp,
1807 nullptr, nullptr);
1808 access_store_at(decorators, field_type,
1809 elm_item, LIR_OprFact::intConst(elm_offset), temp,
1810 nullptr, nullptr);
1811 }
1812 }
1813 }
1814
1815 void LIRGenerator::check_flat_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) {
1816 LIR_Opr tmp = new_register(T_METADATA);
1817 __ check_flat_array(array, value, tmp, slow_path);
1818 }
1819
1820 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) {
1821 LabelObj* L_end = new LabelObj();
1822 LIR_Opr tmp = new_register(T_METADATA);
1823 __ check_null_free_array(array.result(), tmp);
1824 __ branch(lir_cond_equal, L_end->label());
1825 __ null_check(value.result(), info);
1826 __ branch_destination(L_end->label());
1827 }
1828
1829 bool LIRGenerator::needs_flat_array_store_check(StoreIndexed* x) {
1830 if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
1831 ciType* type = x->value()->declared_type();
1832 if (type != nullptr && type->is_klass()) {
1833 ciKlass* klass = type->as_klass();
1834 if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->maybe_flat_in_array())) {
1835 // This is known to be a non-flat object. If the array is a flat array,
1836 // it will be caught by the code generated by array_store_check().
1837 return false;
1838 }
1839 }
1840 // We're not 100% sure, so let's do the flat_array_store_check.
1841 return true;
1842 }
1843 return false;
1844 }
1845
1846 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) {
1847 return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array();
1848 }
1849
1850 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1851 assert(x->is_pinned(),"");
1852 assert(x->elt_type() != T_ARRAY, "never used");
1853 bool is_loaded_flat_array = x->array()->is_loaded_flat_array();
1854 bool needs_range_check = x->compute_needs_range_check();
1855 bool use_length = x->length() != nullptr;
1856 bool obj_store = is_reference_type(x->elt_type());
1857 bool needs_store_check = obj_store && !(is_loaded_flat_array && x->is_exact_flat_array_store()) &&
1858 (x->value()->as_Constant() == nullptr ||
1859 !get_jobject_constant(x->value())->is_null_object());
1860
1861 LIRItem array(x->array(), this);
1862 LIRItem index(x->index(), this);
1863 LIRItem value(x->value(), this);
1864 LIRItem length(this);
1865
1866 array.load_item();
1867 index.load_nonconstant();
1868
1869 if (use_length && needs_range_check) {
1870 length.set_instruction(x->length());
1871 length.load_item();
1872 }
1873
1874 if (needs_store_check || x->check_boolean()
1875 || is_loaded_flat_array || needs_flat_array_store_check(x) || needs_null_free_array_store_check(x)) {
1876 value.load_item();
1877 } else {
1878 value.load_for_store(x->elt_type());
1879 }
1880
1881 set_no_result(x);
1882
1883 // the CodeEmitInfo must be duplicated for each different
1884 // LIR-instruction because spilling can occur anywhere between two
1885 // instructions and so the debug information must be different
1886 CodeEmitInfo* range_check_info = state_for(x);
1887 CodeEmitInfo* null_check_info = nullptr;
1888 if (x->needs_null_check()) {
1889 null_check_info = new CodeEmitInfo(range_check_info);
1890 }
1891
1892 if (needs_range_check) {
1893 if (use_length) {
1894 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1895 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1896 } else {
1897 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1898 // range_check also does the null check
1899 null_check_info = nullptr;
1900 }
1901 }
1902
1903 if (GenerateArrayStoreCheck && needs_store_check) {
1904 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1905 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1906 }
1907
1908 if (x->should_profile()) {
1909 if (is_loaded_flat_array) {
1910 // No need to profile a store to a flat array of known type. This can happen if
1911 // the type only became known after optimizations (for example, after the PhiSimplifier).
1912 x->set_should_profile(false);
1913 } else {
1914 int bci = x->profiled_bci();
1915 ciMethodData* md = x->profiled_method()->method_data();
1916 assert(md != nullptr, "Sanity");
1917 ciProfileData* data = md->bci_to_data(bci);
1918 assert(data != nullptr && data->is_ArrayStoreData(), "incorrect profiling entry");
1919 ciArrayStoreData* store_data = (ciArrayStoreData*)data;
1920 profile_array_type(x, md, store_data);
1921 assert(store_data->is_ArrayStoreData(), "incorrect profiling entry");
1922 if (x->array()->maybe_null_free_array()) {
1923 profile_null_free_array(array, md, data);
1924 }
1925 }
1926 }
1927
1928 if (is_loaded_flat_array) {
1929 // TODO 8350865 This is currently dead code
1930 if (!x->value()->is_null_free()) {
1931 __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1932 }
1933 // If array element is an empty inline type, no need to copy anything
1934 if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
1935 access_flat_array(false, array, index, value);
1936 }
1937 } else {
1938 StoreFlattenedArrayStub* slow_path = nullptr;
1939
1940 if (needs_flat_array_store_check(x)) {
1941 // Check if we indeed have a flat array
1942 index.load_item();
1943 slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before()));
1944 check_flat_array(array.result(), value.result(), slow_path);
1945 set_in_conditional_code(true);
1946 } else if (needs_null_free_array_store_check(x)) {
1947 CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1948 check_null_free_array(array, value, info);
1949 }
1950
1951 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1952 if (x->check_boolean()) {
1953 decorators |= C1_MASK_BOOLEAN;
1954 }
1955
1956 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), nullptr, null_check_info);
1957 if (slow_path != nullptr) {
1958 __ branch_destination(slow_path->continuation());
1959 set_in_conditional_code(false);
1960 }
1961 }
1962 }
1963
1964 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1965 LIRItem& base, LIR_Opr offset, LIR_Opr result,
1966 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1967 decorators |= ACCESS_READ;
1968 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1969 if (access.is_raw()) {
1970 _barrier_set->BarrierSetC1::load_at(access, result);
1971 } else {
1972 _barrier_set->load_at(access, result);
1973 }
1974 }
1975
1976 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1977 LIR_Opr addr, LIR_Opr result) {
1978 decorators |= ACCESS_READ;
1979 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1980 access.set_resolved_addr(addr);
1981 if (access.is_raw()) {
1982 _barrier_set->BarrierSetC1::load(access, result);
1983 } else {
1984 _barrier_set->load(access, result);
1985 }
1986 }
1987
1988 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1989 LIRItem& base, LIR_Opr offset, LIR_Opr value,
1990 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info,
1991 ciInlineKlass* vk) {
1992 decorators |= ACCESS_WRITE;
1993 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info, vk);
1994 if (access.is_raw()) {
1995 _barrier_set->BarrierSetC1::store_at(access, value);
1996 } else {
1997 _barrier_set->store_at(access, value);
1998 }
1999 }
2000
2001 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
2002 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
2003 decorators |= ACCESS_READ;
2004 decorators |= ACCESS_WRITE;
2005 // Atomic operations are SEQ_CST by default
2006 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2007 LIRAccess access(this, decorators, base, offset, type);
2008 if (access.is_raw()) {
2009 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
2010 } else {
2011 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
2012 }
2013 }
2014
2015 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
2016 LIRItem& base, LIRItem& offset, LIRItem& value) {
2017 decorators |= ACCESS_READ;
2018 decorators |= ACCESS_WRITE;
2019 // Atomic operations are SEQ_CST by default
2020 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2021 LIRAccess access(this, decorators, base, offset, type);
2022 if (access.is_raw()) {
2023 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
2024 } else {
2025 return _barrier_set->atomic_xchg_at(access, value);
2026 }
2027 }
2028
2029 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
2030 LIRItem& base, LIRItem& offset, LIRItem& value) {
2031 decorators |= ACCESS_READ;
2032 decorators |= ACCESS_WRITE;
2033 // Atomic operations are SEQ_CST by default
2034 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2035 LIRAccess access(this, decorators, base, offset, type);
2036 if (access.is_raw()) {
2037 return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
2038 } else {
2039 return _barrier_set->atomic_add_at(access, value);
2040 }
2041 }
2042
2043 void LIRGenerator::do_LoadField(LoadField* x) {
2044 ciField* field = x->field();
2045 bool needs_patching = x->needs_patching();
2046 bool is_volatile = field->is_volatile();
2047 BasicType field_type = x->field_type();
2048
2049 CodeEmitInfo* info = nullptr;
2050 if (needs_patching) {
2051 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
2052 info = state_for(x, x->state_before());
2053 } else if (x->needs_null_check()) {
2054 NullCheck* nc = x->explicit_null_check();
2055 if (nc == nullptr) {
2056 info = state_for(x);
2057 } else {
2058 info = state_for(nc);
2059 }
2060 }
2061
2062 LIRItem object(x->obj(), this);
2063
2064 object.load_item();
2065
2066 #ifndef PRODUCT
2067 if (PrintNotLoaded && needs_patching) {
2068 tty->print_cr(" ###class not loaded at load_%s bci %d",
2069 x->is_static() ? "static" : "field", x->printable_bci());
2070 }
2071 #endif
2072
2073 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
2074 if (x->needs_null_check() &&
2075 (needs_patching ||
2076 MacroAssembler::needs_explicit_null_check(x->offset()) ||
2077 stress_deopt)) {
2078 LIR_Opr obj = object.result();
2079 if (stress_deopt) {
2080 obj = new_register(T_OBJECT);
2081 __ move(LIR_OprFact::oopConst(nullptr), obj);
2082 }
2083 // Emit an explicit null check because the offset is too large.
2084 // If the class is not loaded and the object is null, we need to deoptimize to throw a
2085 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
2086 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
2087 }
2088
2089 DecoratorSet decorators = IN_HEAP;
2090 if (is_volatile) {
2091 decorators |= MO_SEQ_CST;
2092 }
2093 if (needs_patching) {
2094 decorators |= C1_NEEDS_PATCHING;
2095 }
2096
2097 if (field->is_flat()) {
2098 ciInlineKlass* vk = field->type()->as_inline_klass();
2099 #ifdef ASSERT
2100 bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1;
2101 bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
2102 assert(needs_atomic_access, "No atomic access required");
2103 assert(x->state_before() != nullptr, "Needs state before");
2104 #endif
2105
2106 // Allocate buffer (we can't easily do this conditionally on the null check below
2107 // because branches added in the LIR are opaque to the register allocator).
2108 NewInstance* buffer = new NewInstance(vk, x->state_before(), false, true);
2109 do_NewInstance(buffer);
2110 LIRItem dest(buffer, this);
2111
2112 // Copy the payload to the buffer
2113 BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free());
2114 LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT);
2115 access_load_at(decorators, bt, object, LIR_OprFact::intConst(field->offset_in_bytes()), payload,
2116 // Make sure to emit an implicit null check
2117 info ? new CodeEmitInfo(info) : nullptr, info);
2118 access_store_at(decorators, bt, dest, LIR_OprFact::intConst(vk->payload_offset()), payload);
2119
2120 if (field->is_null_free()) {
2121 set_result(x, buffer->operand());
2122 } else {
2123 // Check the null marker and set result to null if it's not set
2124 __ logical_and(payload, null_marker_mask(bt, field), payload);
2125 __ cmp(lir_cond_equal, payload, (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0));
2126 __ cmove(lir_cond_equal, LIR_OprFact::oopConst(nullptr), buffer->operand(), rlock_result(x), T_OBJECT);
2127 }
2128
2129 // Ensure the copy is visible before any subsequent store that publishes the buffer.
2130 __ membar_storestore();
2131 return;
2132 }
2133
2134 LIR_Opr result = rlock_result(x, field_type);
2135 access_load_at(decorators, field_type,
2136 object, LIR_OprFact::intConst(x->offset()), result,
2137 info ? new CodeEmitInfo(info) : nullptr, info);
2138 }
2139
2140 // int/long jdk.internal.util.Preconditions.checkIndex
2141 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
2142 assert(x->number_of_arguments() == 3, "wrong type");
2143 LIRItem index(x->argument_at(0), this);
2144 LIRItem length(x->argument_at(1), this);
2145 LIRItem oobef(x->argument_at(2), this);
2146
2147 index.load_item();
2148 length.load_item();
2149 oobef.load_item();
2150
2151 LIR_Opr result = rlock_result(x);
2152 // x->state() is created from copy_state_for_exception, it does not contains arguments
2153 // we should prepare them before entering into interpreter mode due to deoptimization.
2154 ValueStack* state = x->state();
2155 for (int i = 0; i < x->number_of_arguments(); i++) {
2156 Value arg = x->argument_at(i);
2157 state->push(arg->type(), arg);
2158 }
2159 CodeEmitInfo* info = state_for(x, state);
2160
2161 LIR_Opr len = length.result();
2162 LIR_Opr zero;
2163 if (type == T_INT) {
2164 zero = LIR_OprFact::intConst(0);
2165 if (length.result()->is_constant()){
2166 len = LIR_OprFact::intConst(length.result()->as_jint());
2167 }
2168 } else {
2169 assert(type == T_LONG, "sanity check");
2170 zero = LIR_OprFact::longConst(0);
2171 if (length.result()->is_constant()){
2172 len = LIR_OprFact::longConst(length.result()->as_jlong());
2173 }
2174 }
2175 // C1 can not handle the case that comparing index with constant value while condition
2176 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
2177 LIR_Opr zero_reg = new_register(type);
2178 __ move(zero, zero_reg);
2179 #if defined(X86) && !defined(_LP64)
2180 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
2181 LIR_Opr index_copy = new_register(index.type());
2182 // index >= 0
2183 __ move(index.result(), index_copy);
2184 __ cmp(lir_cond_less, index_copy, zero_reg);
2185 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2186 Deoptimization::Action_make_not_entrant));
2187 // index < length
2188 __ move(index.result(), index_copy);
2189 __ cmp(lir_cond_greaterEqual, index_copy, len);
2190 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2191 Deoptimization::Action_make_not_entrant));
2192 #else
2193 // index >= 0
2194 __ cmp(lir_cond_less, index.result(), zero_reg);
2195 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2196 Deoptimization::Action_make_not_entrant));
2197 // index < length
2198 __ cmp(lir_cond_greaterEqual, index.result(), len);
2199 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2200 Deoptimization::Action_make_not_entrant));
2201 #endif
2202 __ move(index.result(), result);
2203 }
2204
2205 //------------------------array access--------------------------------------
2206
2207
2208 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
2209 LIRItem array(x->array(), this);
2210 array.load_item();
2211 LIR_Opr reg = rlock_result(x);
2212
2213 CodeEmitInfo* info = nullptr;
2214 if (x->needs_null_check()) {
2215 NullCheck* nc = x->explicit_null_check();
2216 if (nc == nullptr) {
2217 info = state_for(x);
2218 } else {
2219 info = state_for(nc);
2220 }
2221 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
2222 LIR_Opr obj = new_register(T_OBJECT);
2223 __ move(LIR_OprFact::oopConst(nullptr), obj);
2224 __ null_check(obj, new CodeEmitInfo(info));
2225 }
2226 }
2227 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
2228 }
2229
2230
2231 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
2232 bool use_length = x->length() != nullptr;
2233 LIRItem array(x->array(), this);
2234 LIRItem index(x->index(), this);
2235 LIRItem length(this);
2236 bool needs_range_check = x->compute_needs_range_check();
2237
2238 if (use_length && needs_range_check) {
2239 length.set_instruction(x->length());
2240 length.load_item();
2241 }
2242
2243 array.load_item();
2244 if (index.is_constant() && can_inline_as_constant(x->index())) {
2245 // let it be a constant
2246 index.dont_load_item();
2247 } else {
2248 index.load_item();
2249 }
2250
2251 CodeEmitInfo* range_check_info = state_for(x);
2252 CodeEmitInfo* null_check_info = nullptr;
2253 if (x->needs_null_check()) {
2254 NullCheck* nc = x->explicit_null_check();
2255 if (nc != nullptr) {
2256 null_check_info = state_for(nc);
2257 } else {
2258 null_check_info = range_check_info;
2259 }
2260 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2261 LIR_Opr obj = new_register(T_OBJECT);
2262 __ move(LIR_OprFact::oopConst(nullptr), obj);
2263 __ null_check(obj, new CodeEmitInfo(null_check_info));
2264 }
2265 }
2266
2267 if (needs_range_check) {
2268 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2269 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2270 } else if (use_length) {
2271 // TODO: use a (modified) version of array_range_check that does not require a
2272 // constant length to be loaded to a register
2273 __ cmp(lir_cond_belowEqual, length.result(), index.result());
2274 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2275 } else {
2276 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2277 // The range check performs the null check, so clear it out for the load
2278 null_check_info = nullptr;
2279 }
2280 }
2281
2282 ciMethodData* md = nullptr;
2283 ciProfileData* data = nullptr;
2284 if (x->should_profile()) {
2285 if (x->array()->is_loaded_flat_array()) {
2286 // No need to profile a load from a flat array of known type. This can happen if
2287 // the type only became known after optimizations (for example, after the PhiSimplifier).
2288 x->set_should_profile(false);
2289 } else {
2290 int bci = x->profiled_bci();
2291 md = x->profiled_method()->method_data();
2292 assert(md != nullptr, "Sanity");
2293 data = md->bci_to_data(bci);
2294 assert(data != nullptr && data->is_ArrayLoadData(), "incorrect profiling entry");
2295 ciArrayLoadData* load_data = (ciArrayLoadData*)data;
2296 profile_array_type(x, md, load_data);
2297 }
2298 }
2299
2300 Value element;
2301 if (x->vt() != nullptr) {
2302 assert(x->array()->is_loaded_flat_array(), "must be");
2303 // Find the destination address (of the NewInlineTypeInstance).
2304 LIRItem obj_item(x->vt(), this);
2305
2306 access_flat_array(true, array, index, obj_item,
2307 x->delayed() == nullptr ? 0 : x->delayed()->field(),
2308 x->delayed() == nullptr ? 0 : x->delayed()->offset());
2309 set_no_result(x);
2310 } else if (x->delayed() != nullptr) {
2311 assert(x->array()->is_loaded_flat_array(), "must be");
2312 LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type());
2313 access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset());
2314 } else {
2315 LIR_Opr result = rlock_result(x, x->elt_type());
2316 LoadFlattenedArrayStub* slow_path = nullptr;
2317
2318 if (x->should_profile() && x->array()->maybe_null_free_array()) {
2319 profile_null_free_array(array, md, data);
2320 }
2321
2322 if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
2323 assert(x->delayed() == nullptr, "Delayed LoadIndexed only apply to loaded_flat_arrays");
2324 index.load_item();
2325 // if we are loading from a flat array, load it using a runtime call
2326 slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before()));
2327 check_flat_array(array.result(), LIR_OprFact::illegalOpr, slow_path);
2328 set_in_conditional_code(true);
2329 }
2330
2331 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2332 access_load_at(decorators, x->elt_type(),
2333 array, index.result(), result,
2334 nullptr, null_check_info);
2335
2336 if (slow_path != nullptr) {
2337 __ branch_destination(slow_path->continuation());
2338 set_in_conditional_code(false);
2339 }
2340
2341 element = x;
2342 }
2343
2344 if (x->should_profile()) {
2345 profile_element_type(element, md, (ciArrayLoadData*)data);
2346 }
2347 }
2348
2349
2350 void LIRGenerator::do_NullCheck(NullCheck* x) {
2351 if (x->can_trap()) {
2352 LIRItem value(x->obj(), this);
2353 value.load_item();
2354 CodeEmitInfo* info = state_for(x);
2355 __ null_check(value.result(), info);
2356 }
2357 }
2358
2359
2360 void LIRGenerator::do_TypeCast(TypeCast* x) {
2361 LIRItem value(x->obj(), this);
2362 value.load_item();
2363 // the result is the same as from the node we are casting
2364 set_result(x, value.result());
2365 }
2366
2367
2368 void LIRGenerator::do_Throw(Throw* x) {
2369 LIRItem exception(x->exception(), this);
2370 exception.load_item();
2371 set_no_result(x);
2372 LIR_Opr exception_opr = exception.result();
2373 CodeEmitInfo* info = state_for(x, x->state());
2374
2375 #ifndef PRODUCT
2376 if (PrintC1Statistics) {
2377 increment_counter(Runtime1::throw_count_address(), T_INT);
2378 }
2379 #endif
2380
2381 // check if the instruction has an xhandler in any of the nested scopes
2382 bool unwind = false;
2383 if (info->exception_handlers()->length() == 0) {
2384 // this throw is not inside an xhandler
2385 unwind = true;
2386 } else {
2387 // get some idea of the throw type
2388 bool type_is_exact = true;
2389 ciType* throw_type = x->exception()->exact_type();
2390 if (throw_type == nullptr) {
2391 type_is_exact = false;
2392 throw_type = x->exception()->declared_type();
2393 }
2394 if (throw_type != nullptr && throw_type->is_instance_klass()) {
2395 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2396 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2397 }
2398 }
2399
2400 // do null check before moving exception oop into fixed register
2401 // to avoid a fixed interval with an oop during the null check.
2402 // Use a copy of the CodeEmitInfo because debug information is
2403 // different for null_check and throw.
2404 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) {
2405 // if the exception object wasn't created using new then it might be null.
2406 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2407 }
2408
2409 if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2410 // we need to go through the exception lookup path to get JVMTI
2411 // notification done
2412 unwind = false;
2413 }
2414
2415 // move exception oop into fixed register
2416 __ move(exception_opr, exceptionOopOpr());
2417
2418 if (unwind) {
2419 __ unwind_exception(exceptionOopOpr());
2420 } else {
2421 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2422 }
2423 }
2424
2425
2426 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2427 BasicType type = x->basic_type();
2428 LIRItem src(x->object(), this);
2429 LIRItem off(x->offset(), this);
2430
2431 off.load_item();
2432 src.load_item();
2433
2434 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2435
2436 if (x->is_volatile()) {
2437 decorators |= MO_SEQ_CST;
2438 }
2439 if (type == T_BOOLEAN) {
2440 decorators |= C1_MASK_BOOLEAN;
2441 }
2442 if (is_reference_type(type)) {
2443 decorators |= ON_UNKNOWN_OOP_REF;
2444 }
2445
2446 LIR_Opr result = rlock_result(x, type);
2447 if (!x->is_raw()) {
2448 access_load_at(decorators, type, src, off.result(), result);
2449 } else {
2450 // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2451 // It reads the value from [src + offset] directly.
2452 #ifdef _LP64
2453 LIR_Opr offset = new_register(T_LONG);
2454 __ convert(Bytecodes::_i2l, off.result(), offset);
2455 #else
2456 LIR_Opr offset = off.result();
2457 #endif
2458 LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2459 if (is_reference_type(type)) {
2460 __ move_wide(addr, result);
2461 } else {
2462 __ move(addr, result);
2463 }
2464 }
2465 }
2466
2467
2468 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2469 BasicType type = x->basic_type();
2470 LIRItem src(x->object(), this);
2471 LIRItem off(x->offset(), this);
2472 LIRItem data(x->value(), this);
2473
2474 src.load_item();
2475 if (type == T_BOOLEAN || type == T_BYTE) {
2476 data.load_byte_item();
2477 } else {
2478 data.load_item();
2479 }
2480 off.load_item();
2481
2482 set_no_result(x);
2483
2484 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2485 if (is_reference_type(type)) {
2486 decorators |= ON_UNKNOWN_OOP_REF;
2487 }
2488 if (x->is_volatile()) {
2489 decorators |= MO_SEQ_CST;
2490 }
2491 access_store_at(decorators, type, src, off.result(), data.result());
2492 }
2493
2494 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2495 BasicType type = x->basic_type();
2496 LIRItem src(x->object(), this);
2497 LIRItem off(x->offset(), this);
2498 LIRItem value(x->value(), this);
2499
2500 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2501
2502 if (is_reference_type(type)) {
2503 decorators |= ON_UNKNOWN_OOP_REF;
2504 }
2505
2506 LIR_Opr result;
2507 if (x->is_add()) {
2508 result = access_atomic_add_at(decorators, type, src, off, value);
2509 } else {
2510 result = access_atomic_xchg_at(decorators, type, src, off, value);
2511 }
2512 set_result(x, result);
2513 }
2514
2515 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2516 int lng = x->length();
2517
2518 for (int i = 0; i < lng; i++) {
2519 C1SwitchRange* one_range = x->at(i);
2520 int low_key = one_range->low_key();
2521 int high_key = one_range->high_key();
2522 BlockBegin* dest = one_range->sux();
2523 if (low_key == high_key) {
2524 __ cmp(lir_cond_equal, value, low_key);
2525 __ branch(lir_cond_equal, dest);
2526 } else if (high_key - low_key == 1) {
2527 __ cmp(lir_cond_equal, value, low_key);
2528 __ branch(lir_cond_equal, dest);
2529 __ cmp(lir_cond_equal, value, high_key);
2530 __ branch(lir_cond_equal, dest);
2531 } else {
2532 LabelObj* L = new LabelObj();
2533 __ cmp(lir_cond_less, value, low_key);
2534 __ branch(lir_cond_less, L->label());
2535 __ cmp(lir_cond_lessEqual, value, high_key);
2536 __ branch(lir_cond_lessEqual, dest);
2537 __ branch_destination(L->label());
2538 }
2539 }
2540 __ jump(default_sux);
2541 }
2542
2543
2544 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2545 SwitchRangeList* res = new SwitchRangeList();
2546 int len = x->length();
2547 if (len > 0) {
2548 BlockBegin* sux = x->sux_at(0);
2549 int low = x->lo_key();
2550 BlockBegin* default_sux = x->default_sux();
2551 C1SwitchRange* range = new C1SwitchRange(low, sux);
2552 for (int i = 0; i < len; i++) {
2553 int key = low + i;
2554 BlockBegin* new_sux = x->sux_at(i);
2555 if (sux == new_sux) {
2556 // still in same range
2557 range->set_high_key(key);
2558 } else {
2559 // skip tests which explicitly dispatch to the default
2560 if (sux != default_sux) {
2561 res->append(range);
2562 }
2563 range = new C1SwitchRange(key, new_sux);
2564 }
2565 sux = new_sux;
2566 }
2567 if (res->length() == 0 || res->last() != range) res->append(range);
2568 }
2569 return res;
2570 }
2571
2572
2573 // we expect the keys to be sorted by increasing value
2574 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2575 SwitchRangeList* res = new SwitchRangeList();
2576 int len = x->length();
2577 if (len > 0) {
2578 BlockBegin* default_sux = x->default_sux();
2579 int key = x->key_at(0);
2580 BlockBegin* sux = x->sux_at(0);
2581 C1SwitchRange* range = new C1SwitchRange(key, sux);
2582 for (int i = 1; i < len; i++) {
2583 int new_key = x->key_at(i);
2584 BlockBegin* new_sux = x->sux_at(i);
2585 if (key+1 == new_key && sux == new_sux) {
2586 // still in same range
2587 range->set_high_key(new_key);
2588 } else {
2589 // skip tests which explicitly dispatch to the default
2590 if (range->sux() != default_sux) {
2591 res->append(range);
2592 }
2593 range = new C1SwitchRange(new_key, new_sux);
2594 }
2595 key = new_key;
2596 sux = new_sux;
2597 }
2598 if (res->length() == 0 || res->last() != range) res->append(range);
2599 }
2600 return res;
2601 }
2602
2603
2604 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2605 LIRItem tag(x->tag(), this);
2606 tag.load_item();
2607 set_no_result(x);
2608
2609 if (x->is_safepoint()) {
2610 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2611 }
2612
2613 // move values into phi locations
2614 move_to_phi(x->state());
2615
2616 int lo_key = x->lo_key();
2617 int len = x->length();
2618 assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2619 LIR_Opr value = tag.result();
2620
2621 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2622 ciMethod* method = x->state()->scope()->method();
2623 ciMethodData* md = method->method_data_or_null();
2624 assert(md != nullptr, "Sanity");
2625 ciProfileData* data = md->bci_to_data(x->state()->bci());
2626 assert(data != nullptr, "must have profiling data");
2627 assert(data->is_MultiBranchData(), "bad profile data?");
2628 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2629 LIR_Opr md_reg = new_register(T_METADATA);
2630 __ metadata2reg(md->constant_encoding(), md_reg);
2631 LIR_Opr data_offset_reg = new_pointer_register();
2632 LIR_Opr tmp_reg = new_pointer_register();
2633
2634 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2635 for (int i = 0; i < len; i++) {
2636 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2637 __ cmp(lir_cond_equal, value, i + lo_key);
2638 __ move(data_offset_reg, tmp_reg);
2639 __ cmove(lir_cond_equal,
2640 LIR_OprFact::intptrConst(count_offset),
2641 tmp_reg,
2642 data_offset_reg, T_INT);
2643 }
2644
2645 LIR_Opr data_reg = new_pointer_register();
2646 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2647 __ move(data_addr, data_reg);
2648 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2649 __ move(data_reg, data_addr);
2650 }
2651
2652 if (UseTableRanges) {
2653 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2654 } else {
2655 for (int i = 0; i < len; i++) {
2656 __ cmp(lir_cond_equal, value, i + lo_key);
2657 __ branch(lir_cond_equal, x->sux_at(i));
2658 }
2659 __ jump(x->default_sux());
2660 }
2661 }
2662
2663
2664 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2665 LIRItem tag(x->tag(), this);
2666 tag.load_item();
2667 set_no_result(x);
2668
2669 if (x->is_safepoint()) {
2670 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2671 }
2672
2673 // move values into phi locations
2674 move_to_phi(x->state());
2675
2676 LIR_Opr value = tag.result();
2677 int len = x->length();
2678
2679 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2680 ciMethod* method = x->state()->scope()->method();
2681 ciMethodData* md = method->method_data_or_null();
2682 assert(md != nullptr, "Sanity");
2683 ciProfileData* data = md->bci_to_data(x->state()->bci());
2684 assert(data != nullptr, "must have profiling data");
2685 assert(data->is_MultiBranchData(), "bad profile data?");
2686 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2687 LIR_Opr md_reg = new_register(T_METADATA);
2688 __ metadata2reg(md->constant_encoding(), md_reg);
2689 LIR_Opr data_offset_reg = new_pointer_register();
2690 LIR_Opr tmp_reg = new_pointer_register();
2691
2692 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2693 for (int i = 0; i < len; i++) {
2694 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2695 __ cmp(lir_cond_equal, value, x->key_at(i));
2696 __ move(data_offset_reg, tmp_reg);
2697 __ cmove(lir_cond_equal,
2698 LIR_OprFact::intptrConst(count_offset),
2699 tmp_reg,
2700 data_offset_reg, T_INT);
2701 }
2702
2703 LIR_Opr data_reg = new_pointer_register();
2704 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2705 __ move(data_addr, data_reg);
2706 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2707 __ move(data_reg, data_addr);
2708 }
2709
2710 if (UseTableRanges) {
2711 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2712 } else {
2713 int len = x->length();
2714 for (int i = 0; i < len; i++) {
2715 __ cmp(lir_cond_equal, value, x->key_at(i));
2716 __ branch(lir_cond_equal, x->sux_at(i));
2717 }
2718 __ jump(x->default_sux());
2719 }
2720 }
2721
2722
2723 void LIRGenerator::do_Goto(Goto* x) {
2724 set_no_result(x);
2725
2726 if (block()->next()->as_OsrEntry()) {
2727 // need to free up storage used for OSR entry point
2728 LIR_Opr osrBuffer = block()->next()->operand();
2729 BasicTypeList signature;
2730 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2731 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2732 __ move(osrBuffer, cc->args()->at(0));
2733 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2734 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2735 }
2736
2737 if (x->is_safepoint()) {
2738 ValueStack* state = x->state_before() ? x->state_before() : x->state();
2739
2740 // increment backedge counter if needed
2741 CodeEmitInfo* info = state_for(x, state);
2742 increment_backedge_counter(info, x->profiled_bci());
2743 CodeEmitInfo* safepoint_info = state_for(x, state);
2744 __ safepoint(safepoint_poll_register(), safepoint_info);
2745 }
2746
2747 // Gotos can be folded Ifs, handle this case.
2748 if (x->should_profile()) {
2749 ciMethod* method = x->profiled_method();
2750 assert(method != nullptr, "method should be set if branch is profiled");
2751 ciMethodData* md = method->method_data_or_null();
2752 assert(md != nullptr, "Sanity");
2753 ciProfileData* data = md->bci_to_data(x->profiled_bci());
2754 assert(data != nullptr, "must have profiling data");
2755 int offset;
2756 if (x->direction() == Goto::taken) {
2757 assert(data->is_BranchData(), "need BranchData for two-way branches");
2758 offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2759 } else if (x->direction() == Goto::not_taken) {
2760 assert(data->is_BranchData(), "need BranchData for two-way branches");
2761 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2762 } else {
2763 assert(data->is_JumpData(), "need JumpData for branches");
2764 offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2765 }
2766 LIR_Opr md_reg = new_register(T_METADATA);
2767 __ metadata2reg(md->constant_encoding(), md_reg);
2768
2769 increment_counter(new LIR_Address(md_reg, offset,
2770 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2771 }
2772
2773 // emit phi-instruction move after safepoint since this simplifies
2774 // describing the state as the safepoint.
2775 move_to_phi(x->state());
2776
2777 __ jump(x->default_sux());
2778 }
2779
2780 /**
2781 * Emit profiling code if needed for arguments, parameters, return value types
2782 *
2783 * @param md MDO the code will update at runtime
2784 * @param md_base_offset common offset in the MDO for this profile and subsequent ones
2785 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile
2786 * @param profiled_k current profile
2787 * @param obj IR node for the object to be profiled
2788 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset).
2789 * Set once we find an update to make and use for next ones.
2790 * @param not_null true if we know obj cannot be null
2791 * @param signature_at_call_k signature at call for obj
2792 * @param callee_signature_k signature of callee for obj
2793 * at call and callee signatures differ at method handle call
2794 * @return the only klass we know will ever be seen at this profile point
2795 */
2796 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2797 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2798 ciKlass* callee_signature_k) {
2799 ciKlass* result = nullptr;
2800 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2801 bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2802 // known not to be null or null bit already set and already set to
2803 // unknown: nothing we can do to improve profiling
2804 if (!do_null && !do_update) {
2805 return result;
2806 }
2807
2808 ciKlass* exact_klass = nullptr;
2809 Compilation* comp = Compilation::current();
2810 if (do_update) {
2811 // try to find exact type, using CHA if possible, so that loading
2812 // the klass from the object can be avoided
2813 ciType* type = obj->exact_type();
2814 if (type == nullptr) {
2815 type = obj->declared_type();
2816 type = comp->cha_exact_type(type);
2817 }
2818 assert(type == nullptr || type->is_klass(), "type should be class");
2819 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2820
2821 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2822 }
2823
2824 if (!do_null && !do_update) {
2825 return result;
2826 }
2827
2828 ciKlass* exact_signature_k = nullptr;
2829 if (do_update && signature_at_call_k != nullptr) {
2830 // Is the type from the signature exact (the only one possible)?
2831 exact_signature_k = signature_at_call_k->exact_klass();
2832 if (exact_signature_k == nullptr) {
2833 exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2834 } else {
2835 result = exact_signature_k;
2836 // Known statically. No need to emit any code: prevent
2837 // LIR_Assembler::emit_profile_type() from emitting useless code
2838 profiled_k = ciTypeEntries::with_status(result, profiled_k);
2839 }
2840 // exact_klass and exact_signature_k can be both non null but
2841 // different if exact_klass is loaded after the ciObject for
2842 // exact_signature_k is created.
2843 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2844 // sometimes the type of the signature is better than the best type
2845 // the compiler has
2846 exact_klass = exact_signature_k;
2847 }
2848 if (callee_signature_k != nullptr &&
2849 callee_signature_k != signature_at_call_k) {
2850 ciKlass* improved_klass = callee_signature_k->exact_klass();
2851 if (improved_klass == nullptr) {
2852 improved_klass = comp->cha_exact_type(callee_signature_k);
2853 }
2854 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2855 exact_klass = exact_signature_k;
2856 }
2857 }
2858 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2859 }
2860
2861 if (exact_klass != nullptr && exact_klass->is_obj_array_klass()) {
2862 if (exact_klass->can_be_inline_array_klass()) {
2863 // Inline type arrays can have additional properties, we need to load the klass
2864 // TODO 8350865 Can we do better here and track the properties?
2865 exact_klass = nullptr;
2866 do_update = true;
2867 } else {
2868 // For a direct pointer comparison, we need the refined array klass pointer
2869 exact_klass = ciObjArrayKlass::make(exact_klass->as_array_klass()->element_klass());
2870 do_update = ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2871 }
2872 }
2873 if (!do_null && !do_update) {
2874 return result;
2875 }
2876
2877 if (mdp == LIR_OprFact::illegalOpr) {
2878 mdp = new_register(T_METADATA);
2879 __ metadata2reg(md->constant_encoding(), mdp);
2880 if (md_base_offset != 0) {
2881 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2882 mdp = new_pointer_register();
2883 __ leal(LIR_OprFact::address(base_type_address), mdp);
2884 }
2885 }
2886 LIRItem value(obj, this);
2887 value.load_item();
2888 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2889 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2890 return result;
2891 }
2892
2893 // profile parameters on entry to the root of the compilation
2894 void LIRGenerator::profile_parameters(Base* x) {
2895 if (compilation()->profile_parameters()) {
2896 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2897 ciMethodData* md = scope()->method()->method_data_or_null();
2898 assert(md != nullptr, "Sanity");
2899
2900 if (md->parameters_type_data() != nullptr) {
2901 ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2902 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
2903 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2904 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2905 LIR_Opr src = args->at(i);
2906 assert(!src->is_illegal(), "check");
2907 BasicType t = src->type();
2908 if (is_reference_type(t)) {
2909 intptr_t profiled_k = parameters->type(j);
2910 Local* local = x->state()->local_at(java_index)->as_Local();
2911 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2912 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2913 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2914 // If the profile is known statically set it once for all and do not emit any code
2915 if (exact != nullptr) {
2916 md->set_parameter_type(j, exact);
2917 }
2918 j++;
2919 }
2920 java_index += type2size[t];
2921 }
2922 }
2923 }
2924 }
2925
2926 void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) {
2927 assert(md != nullptr && data != nullptr, "should have been initialized");
2928 LIR_Opr mdp = new_register(T_METADATA);
2929 __ metadata2reg(md->constant_encoding(), mdp);
2930 LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE);
2931 LIR_Opr flags = new_register(T_INT);
2932 __ move(addr, flags);
2933 LIR_Opr update;
2934 if (condition != lir_cond_always) {
2935 update = new_register(T_INT);
2936 __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT);
2937 } else {
2938 update = LIR_OprFact::intConst(flag);
2939 }
2940 __ logical_or(flags, update, flags);
2941 __ store(flags, addr);
2942 }
2943
2944 void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ciProfileData* data) {
2945 assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2946 LabelObj* L_end = new LabelObj();
2947 LIR_Opr tmp = new_register(T_METADATA);
2948 __ check_null_free_array(array.result(), tmp);
2949
2950 profile_flags(md, data, ArrayStoreData::null_free_array_byte_constant(), lir_cond_equal);
2951 }
2952
2953 template <class ArrayData> void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ArrayData*& load_store) {
2954 assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2955 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2956 profile_type(md, md->byte_offset_of_slot(load_store, ArrayData::array_offset()), 0,
2957 load_store->array()->type(), x->array(), mdp, true, nullptr, nullptr);
2958 }
2959
2960 void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadData* load_data) {
2961 assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2962 assert(md != nullptr && load_data != nullptr, "should have been initialized");
2963 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2964 profile_type(md, md->byte_offset_of_slot(load_data, ArrayLoadData::element_offset()), 0,
2965 load_data->element()->type(), element, mdp, false, nullptr, nullptr);
2966 }
2967
2968 void LIRGenerator::do_Base(Base* x) {
2969 __ std_entry(LIR_OprFact::illegalOpr);
2970 // Emit moves from physical registers / stack slots to virtual registers
2971 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2972 IRScope* irScope = compilation()->hir()->top_scope();
2973 int java_index = 0;
2974 for (int i = 0; i < args->length(); i++) {
2975 LIR_Opr src = args->at(i);
2976 assert(!src->is_illegal(), "check");
2977 BasicType t = src->type();
2978
2979 // Types which are smaller than int are passed as int, so
2980 // correct the type which passed.
2981 switch (t) {
2982 case T_BYTE:
2983 case T_BOOLEAN:
2984 case T_SHORT:
2985 case T_CHAR:
2986 t = T_INT;
2987 break;
2988 default:
2989 break;
2990 }
2991
2992 LIR_Opr dest = new_register(t);
2993 __ move(src, dest);
2994
2995 // Assign new location to Local instruction for this local
2996 Local* local = x->state()->local_at(java_index)->as_Local();
2997 assert(local != nullptr, "Locals for incoming arguments must have been created");
2998 #ifndef __SOFTFP__
2999 // The java calling convention passes double as long and float as int.
3000 assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
3001 #endif // __SOFTFP__
3002 local->set_operand(dest);
3003 #ifdef ASSERT
3004 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
3005 #endif
3006 java_index += type2size[t];
3007 }
3008
3009 // Check if we need a membar at the beginning of the java.lang.Object
3010 // constructor to satisfy the memory model for strict fields.
3011 if (EnableValhalla && method()->intrinsic_id() == vmIntrinsics::_Object_init) {
3012 __ membar_storestore();
3013 }
3014
3015 if (compilation()->env()->dtrace_method_probes()) {
3016 BasicTypeList signature;
3017 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
3018 signature.append(T_METADATA); // Method*
3019 LIR_OprList* args = new LIR_OprList();
3020 args->append(getThreadPointer());
3021 LIR_Opr meth = new_register(T_METADATA);
3022 __ metadata2reg(method()->constant_encoding(), meth);
3023 args->append(meth);
3024 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
3025 }
3026
3027 if (method()->is_synchronized()) {
3028 LIR_Opr obj;
3029 if (method()->is_static()) {
3030 obj = new_register(T_OBJECT);
3031 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
3032 } else {
3033 Local* receiver = x->state()->local_at(0)->as_Local();
3034 assert(receiver != nullptr, "must already exist");
3035 obj = receiver->operand();
3036 }
3037 assert(obj->is_valid(), "must be valid");
3038
3039 if (method()->is_synchronized()) {
3040 LIR_Opr lock = syncLockOpr();
3041 __ load_stack_address_monitor(0, lock);
3042
3043 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
3044 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
3045
3046 // receiver is guaranteed non-null so don't need CodeEmitInfo
3047 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
3048 }
3049 }
3050 // increment invocation counters if needed
3051 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
3052 profile_parameters(x);
3053 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
3054 increment_invocation_counter(info);
3055 }
3056 if (method()->has_scalarized_args()) {
3057 // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments
3058 // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state.
3059 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), nullptr, false);
3060 CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none);
3061 __ append(new LIR_Op0(lir_check_orig_pc));
3062 __ branch(lir_cond_notEqual, deopt_stub);
3063 }
3064
3065 // all blocks with a successor must end with an unconditional jump
3066 // to the successor even if they are consecutive
3067 __ jump(x->default_sux());
3068 }
3069
3070
3071 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
3072 // construct our frame and model the production of incoming pointer
3073 // to the OSR buffer.
3074 __ osr_entry(LIR_Assembler::osrBufferPointer());
3075 LIR_Opr result = rlock_result(x);
3076 __ move(LIR_Assembler::osrBufferPointer(), result);
3077 }
3078
3079 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) {
3080 if (loc->is_register()) {
3081 param->load_item_force(loc);
3082 } else {
3083 LIR_Address* addr = loc->as_address_ptr();
3084 param->load_for_store(addr->type());
3085 if (addr->type() == T_OBJECT) {
3086 __ move_wide(param->result(), addr);
3087 } else {
3088 __ move(param->result(), addr);
3089 }
3090 }
3091 }
3092
3093 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3094 assert(args->length() == arg_list->length(),
3095 "args=%d, arg_list=%d", args->length(), arg_list->length());
3096 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3097 LIRItem* param = args->at(i);
3098 LIR_Opr loc = arg_list->at(i);
3099 invoke_load_one_argument(param, loc);
3100 }
3101
3102 if (x->has_receiver()) {
3103 LIRItem* receiver = args->at(0);
3104 LIR_Opr loc = arg_list->at(0);
3105 if (loc->is_register()) {
3106 receiver->load_item_force(loc);
3107 } else {
3108 assert(loc->is_address(), "just checking");
3109 receiver->load_for_store(T_OBJECT);
3110 __ move_wide(receiver->result(), loc->as_address_ptr());
3111 }
3112 }
3113 }
3114
3115
3116 // Visits all arguments, returns appropriate items without loading them
3117 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3118 LIRItemList* argument_items = new LIRItemList();
3119 if (x->has_receiver()) {
3120 LIRItem* receiver = new LIRItem(x->receiver(), this);
3121 argument_items->append(receiver);
3122 }
3123 for (int i = 0; i < x->number_of_arguments(); i++) {
3124 LIRItem* param = new LIRItem(x->argument_at(i), this);
3125 argument_items->append(param);
3126 }
3127 return argument_items;
3128 }
3129
3130
3131 // The invoke with receiver has following phases:
3132 // a) traverse and load/lock receiver;
3133 // b) traverse all arguments -> item-array (invoke_visit_argument)
3134 // c) push receiver on stack
3135 // d) load each of the items and push on stack
3136 // e) unlock receiver
3137 // f) move receiver into receiver-register %o0
3138 // g) lock result registers and emit call operation
3139 //
3140 // Before issuing a call, we must spill-save all values on stack
3141 // that are in caller-save register. "spill-save" moves those registers
3142 // either in a free callee-save register or spills them if no free
3143 // callee save register is available.
3144 //
3145 // The problem is where to invoke spill-save.
3146 // - if invoked between e) and f), we may lock callee save
3147 // register in "spill-save" that destroys the receiver register
3148 // before f) is executed
3149 // - if we rearrange f) to be earlier (by loading %o0) it
3150 // may destroy a value on the stack that is currently in %o0
3151 // and is waiting to be spilled
3152 // - if we keep the receiver locked while doing spill-save,
3153 // we cannot spill it as it is spill-locked
3154 //
3155 void LIRGenerator::do_Invoke(Invoke* x) {
3156 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
3157
3158 LIR_OprList* arg_list = cc->args();
3159 LIRItemList* args = invoke_visit_arguments(x);
3160 LIR_Opr receiver = LIR_OprFact::illegalOpr;
3161
3162 // setup result register
3163 LIR_Opr result_register = LIR_OprFact::illegalOpr;
3164 if (x->type() != voidType) {
3165 result_register = result_register_for(x->type());
3166 }
3167
3168 CodeEmitInfo* info = state_for(x, x->state());
3169
3170 invoke_load_arguments(x, args, arg_list);
3171
3172 if (x->has_receiver()) {
3173 args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3174 receiver = args->at(0)->result();
3175 }
3176
3177 // emit invoke code
3178 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3179
3180 // JSR 292
3181 // Preserve the SP over MethodHandle call sites, if needed.
3182 ciMethod* target = x->target();
3183 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3184 target->is_method_handle_intrinsic() ||
3185 target->is_compiled_lambda_form());
3186 if (is_method_handle_invoke) {
3187 info->set_is_method_handle_invoke(true);
3188 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3189 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3190 }
3191 }
3192
3193 switch (x->code()) {
3194 case Bytecodes::_invokestatic:
3195 __ call_static(target, result_register,
3196 SharedRuntime::get_resolve_static_call_stub(),
3197 arg_list, info);
3198 break;
3199 case Bytecodes::_invokespecial:
3200 case Bytecodes::_invokevirtual:
3201 case Bytecodes::_invokeinterface:
3202 // for loaded and final (method or class) target we still produce an inline cache,
3203 // in order to be able to call mixed mode
3204 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3205 __ call_opt_virtual(target, receiver, result_register,
3206 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3207 arg_list, info);
3208 } else {
3209 __ call_icvirtual(target, receiver, result_register,
3210 SharedRuntime::get_resolve_virtual_call_stub(),
3211 arg_list, info);
3212 }
3213 break;
3214 case Bytecodes::_invokedynamic: {
3215 __ call_dynamic(target, receiver, result_register,
3216 SharedRuntime::get_resolve_static_call_stub(),
3217 arg_list, info);
3218 break;
3219 }
3220 default:
3221 fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3222 break;
3223 }
3224
3225 // JSR 292
3226 // Restore the SP after MethodHandle call sites, if needed.
3227 if (is_method_handle_invoke
3228 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3229 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3230 }
3231
3232 if (result_register->is_valid()) {
3233 LIR_Opr result = rlock_result(x);
3234 __ move(result_register, result);
3235 }
3236 }
3237
3238
3239 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3240 assert(x->number_of_arguments() == 1, "wrong type");
3241 LIRItem value (x->argument_at(0), this);
3242 LIR_Opr reg = rlock_result(x);
3243 value.load_item();
3244 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3245 __ move(tmp, reg);
3246 }
3247
3248
3249
3250 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3251 void LIRGenerator::do_IfOp(IfOp* x) {
3252 #ifdef ASSERT
3253 {
3254 ValueTag xtag = x->x()->type()->tag();
3255 ValueTag ttag = x->tval()->type()->tag();
3256 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3257 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3258 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3259 }
3260 #endif
3261
3262 LIRItem left(x->x(), this);
3263 LIRItem right(x->y(), this);
3264 left.load_item();
3265 if (can_inline_as_constant(right.value()) && !x->substitutability_check()) {
3266 right.dont_load_item();
3267 } else {
3268 // substitutability_check() needs to use right as a base register.
3269 right.load_item();
3270 }
3271
3272 LIRItem t_val(x->tval(), this);
3273 LIRItem f_val(x->fval(), this);
3274 t_val.dont_load_item();
3275 f_val.dont_load_item();
3276
3277 if (x->substitutability_check()) {
3278 substitutability_check(x, left, right, t_val, f_val);
3279 } else {
3280 LIR_Opr reg = rlock_result(x);
3281 __ cmp(lir_cond(x->cond()), left.result(), right.result());
3282 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3283 }
3284 }
3285
3286 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) {
3287 assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3288 bool is_acmpeq = (x->cond() == If::eql);
3289 LIR_Opr equal_result = is_acmpeq ? t_val.result() : f_val.result();
3290 LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result();
3291 LIR_Opr result = rlock_result(x);
3292 CodeEmitInfo* info = state_for(x, x->state_before());
3293
3294 substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3295 }
3296
3297 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) {
3298 LIR_Opr equal_result = LIR_OprFact::intConst(1);
3299 LIR_Opr not_equal_result = LIR_OprFact::intConst(0);
3300 LIR_Opr result = new_register(T_INT);
3301 CodeEmitInfo* info = state_for(x, x->state_before());
3302
3303 substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3304
3305 assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3306 __ cmp(lir_cond(x->cond()), result, equal_result);
3307 }
3308
3309 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right,
3310 LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result,
3311 CodeEmitInfo* info) {
3312 LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
3313 LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
3314 LIR_Opr left_klass_op = LIR_OprFact::illegalOpr;
3315 LIR_Opr right_klass_op = LIR_OprFact::illegalOpr;
3316
3317 ciKlass* left_klass = left_val ->as_loaded_klass_or_null();
3318 ciKlass* right_klass = right_val->as_loaded_klass_or_null();
3319
3320 if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node.
3321 !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) {
3322 init_temps_for_substitutability_check(tmp1, tmp2);
3323 }
3324
3325 if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) {
3326 // No need to load klass -- the operands are statically known to be the same inline klass.
3327 } else {
3328 BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA;
3329 left_klass_op = new_register(t_klass);
3330 right_klass_op = new_register(t_klass);
3331 }
3332
3333 CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info);
3334 __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result,
3335 tmp1, tmp2,
3336 left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path);
3337 }
3338
3339 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3340 assert(x->number_of_arguments() == 0, "wrong type");
3341 // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3342 BasicTypeList signature;
3343 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3344 LIR_Opr reg = result_register_for(x->type());
3345 __ call_runtime_leaf(routine, getThreadTemp(),
3346 reg, new LIR_OprList());
3347 LIR_Opr result = rlock_result(x);
3348 __ move(reg, result);
3349 }
3350
3351
3352
3353 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3354 switch (x->id()) {
3355 case vmIntrinsics::_intBitsToFloat :
3356 case vmIntrinsics::_doubleToRawLongBits :
3357 case vmIntrinsics::_longBitsToDouble :
3358 case vmIntrinsics::_floatToRawIntBits : {
3359 do_FPIntrinsics(x);
3360 break;
3361 }
3362
3363 #ifdef JFR_HAVE_INTRINSICS
3364 case vmIntrinsics::_counterTime:
3365 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x);
3366 break;
3367 #endif
3368
3369 case vmIntrinsics::_currentTimeMillis:
3370 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3371 break;
3372
3373 case vmIntrinsics::_nanoTime:
3374 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3375 break;
3376
3377 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break;
3378 case vmIntrinsics::_isInstance: do_isInstance(x); break;
3379 case vmIntrinsics::_getClass: do_getClass(x); break;
3380 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break;
3381 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break;
3382 case vmIntrinsics::_currentThread: do_vthread(x); break;
3383 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break;
3384
3385 case vmIntrinsics::_dlog: // fall through
3386 case vmIntrinsics::_dlog10: // fall through
3387 case vmIntrinsics::_dabs: // fall through
3388 case vmIntrinsics::_dsqrt: // fall through
3389 case vmIntrinsics::_dsqrt_strict: // fall through
3390 case vmIntrinsics::_dtan: // fall through
3391 case vmIntrinsics::_dsinh: // fall through
3392 case vmIntrinsics::_dtanh: // fall through
3393 case vmIntrinsics::_dsin : // fall through
3394 case vmIntrinsics::_dcos : // fall through
3395 case vmIntrinsics::_dcbrt : // fall through
3396 case vmIntrinsics::_dexp : // fall through
3397 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break;
3398 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break;
3399
3400 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break;
3401 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break;
3402
3403 // Use java.lang.Math intrinsics code since it works for these intrinsics too.
3404 case vmIntrinsics::_floatToFloat16: // fall through
3405 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break;
3406
3407 case vmIntrinsics::_Preconditions_checkIndex:
3408 do_PreconditionsCheckIndex(x, T_INT);
3409 break;
3410 case vmIntrinsics::_Preconditions_checkLongIndex:
3411 do_PreconditionsCheckIndex(x, T_LONG);
3412 break;
3413
3414 case vmIntrinsics::_compareAndSetReference:
3415 do_CompareAndSwap(x, objectType);
3416 break;
3417 case vmIntrinsics::_compareAndSetInt:
3418 do_CompareAndSwap(x, intType);
3419 break;
3420 case vmIntrinsics::_compareAndSetLong:
3421 do_CompareAndSwap(x, longType);
3422 break;
3423
3424 case vmIntrinsics::_loadFence :
3425 __ membar_acquire();
3426 break;
3427 case vmIntrinsics::_storeFence:
3428 __ membar_release();
3429 break;
3430 case vmIntrinsics::_storeStoreFence:
3431 __ membar_storestore();
3432 break;
3433 case vmIntrinsics::_fullFence :
3434 __ membar();
3435 break;
3436 case vmIntrinsics::_onSpinWait:
3437 __ on_spin_wait();
3438 break;
3439 case vmIntrinsics::_Reference_get0:
3440 do_Reference_get0(x);
3441 break;
3442
3443 case vmIntrinsics::_updateCRC32:
3444 case vmIntrinsics::_updateBytesCRC32:
3445 case vmIntrinsics::_updateByteBufferCRC32:
3446 do_update_CRC32(x);
3447 break;
3448
3449 case vmIntrinsics::_updateBytesCRC32C:
3450 case vmIntrinsics::_updateDirectByteBufferCRC32C:
3451 do_update_CRC32C(x);
3452 break;
3453
3454 case vmIntrinsics::_vectorizedMismatch:
3455 do_vectorizedMismatch(x);
3456 break;
3457
3458 case vmIntrinsics::_blackhole:
3459 do_blackhole(x);
3460 break;
3461
3462 default: ShouldNotReachHere(); break;
3463 }
3464 }
3465
3466 void LIRGenerator::profile_arguments(ProfileCall* x) {
3467 if (compilation()->profile_arguments()) {
3468 int bci = x->bci_of_invoke();
3469 ciMethodData* md = x->method()->method_data_or_null();
3470 assert(md != nullptr, "Sanity");
3471 ciProfileData* data = md->bci_to_data(bci);
3472 if (data != nullptr) {
3473 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3474 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3475 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3476 int base_offset = md->byte_offset_of_slot(data, extra);
3477 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3478 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3479
3480 Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3481 int start = 0;
3482 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3483 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3484 // first argument is not profiled at call (method handle invoke)
3485 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3486 start = 1;
3487 }
3488 ciSignature* callee_signature = x->callee()->signature();
3489 // method handle call to virtual method
3490 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3491 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr);
3492
3493 bool ignored_will_link;
3494 ciSignature* signature_at_call = nullptr;
3495 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3496 ciSignatureStream signature_at_call_stream(signature_at_call);
3497
3498 // if called through method handle invoke, some arguments may have been popped
3499 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3500 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3501 ciKlass* exact = profile_type(md, base_offset, off,
3502 args->type(i), x->profiled_arg_at(i+start), mdp,
3503 !x->arg_needs_null_check(i+start),
3504 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3505 if (exact != nullptr) {
3506 md->set_argument_type(bci, i, exact);
3507 }
3508 }
3509 } else {
3510 #ifdef ASSERT
3511 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3512 int n = x->nb_profiled_args();
3513 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3514 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3515 "only at JSR292 bytecodes");
3516 #endif
3517 }
3518 }
3519 }
3520 }
3521
3522 // profile parameters on entry to an inlined method
3523 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3524 if (compilation()->profile_parameters() && x->inlined()) {
3525 ciMethodData* md = x->callee()->method_data_or_null();
3526 if (md != nullptr) {
3527 ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3528 if (parameters_type_data != nullptr) {
3529 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
3530 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3531 bool has_receiver = !x->callee()->is_static();
3532 ciSignature* sig = x->callee()->signature();
3533 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr);
3534 int i = 0; // to iterate on the Instructions
3535 Value arg = x->recv();
3536 bool not_null = false;
3537 int bci = x->bci_of_invoke();
3538 Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3539 // The first parameter is the receiver so that's what we start
3540 // with if it exists. One exception is method handle call to
3541 // virtual method: the receiver is in the args list
3542 if (arg == nullptr || !Bytecodes::has_receiver(bc)) {
3543 i = 1;
3544 arg = x->profiled_arg_at(0);
3545 not_null = !x->arg_needs_null_check(0);
3546 }
3547 int k = 0; // to iterate on the profile data
3548 for (;;) {
3549 intptr_t profiled_k = parameters->type(k);
3550 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3551 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3552 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr);
3553 // If the profile is known statically set it once for all and do not emit any code
3554 if (exact != nullptr) {
3555 md->set_parameter_type(k, exact);
3556 }
3557 k++;
3558 if (k >= parameters_type_data->number_of_parameters()) {
3559 #ifdef ASSERT
3560 int extra = 0;
3561 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3562 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3563 x->recv() != nullptr && Bytecodes::has_receiver(bc)) {
3564 extra += 1;
3565 }
3566 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3567 #endif
3568 break;
3569 }
3570 arg = x->profiled_arg_at(i);
3571 not_null = !x->arg_needs_null_check(i);
3572 i++;
3573 }
3574 }
3575 }
3576 }
3577 }
3578
3579 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3580 // Need recv in a temporary register so it interferes with the other temporaries
3581 LIR_Opr recv = LIR_OprFact::illegalOpr;
3582 LIR_Opr mdo = new_register(T_METADATA);
3583 // tmp is used to hold the counters on SPARC
3584 LIR_Opr tmp = new_pointer_register();
3585
3586 if (x->nb_profiled_args() > 0) {
3587 profile_arguments(x);
3588 }
3589
3590 // profile parameters on inlined method entry including receiver
3591 if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3592 profile_parameters_at_call(x);
3593 }
3594
3595 if (x->recv() != nullptr) {
3596 LIRItem value(x->recv(), this);
3597 value.load_item();
3598 recv = new_register(T_OBJECT);
3599 __ move(value.result(), recv);
3600 }
3601 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3602 }
3603
3604 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3605 int bci = x->bci_of_invoke();
3606 ciMethodData* md = x->method()->method_data_or_null();
3607 assert(md != nullptr, "Sanity");
3608 ciProfileData* data = md->bci_to_data(bci);
3609 if (data != nullptr) {
3610 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3611 ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3612 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3613
3614 bool ignored_will_link;
3615 ciSignature* signature_at_call = nullptr;
3616 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3617
3618 // The offset within the MDO of the entry to update may be too large
3619 // to be used in load/store instructions on some platforms. So have
3620 // profile_type() compute the address of the profile in a register.
3621 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3622 ret->type(), x->ret(), mdp,
3623 !x->needs_null_check(),
3624 signature_at_call->return_type()->as_klass(),
3625 x->callee()->signature()->return_type()->as_klass());
3626 if (exact != nullptr) {
3627 md->set_return_type(bci, exact);
3628 }
3629 }
3630 }
3631
3632 bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) {
3633 ciKlass* klass = value->as_loaded_klass_or_null();
3634 if (klass != nullptr) {
3635 if (klass->is_inlinetype()) {
3636 profile_flags(md, data, flag, lir_cond_always);
3637 } else if (klass->can_be_inline_klass()) {
3638 return false;
3639 }
3640 } else {
3641 return false;
3642 }
3643 return true;
3644 }
3645
3646
3647 void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) {
3648 ciMethod* method = x->method();
3649 assert(method != nullptr, "method should be set if branch is profiled");
3650 ciMethodData* md = method->method_data_or_null();
3651 assert(md != nullptr, "Sanity");
3652 ciProfileData* data = md->bci_to_data(x->bci());
3653 assert(data != nullptr, "must have profiling data");
3654 assert(data->is_ACmpData(), "need BranchData for two-way branches");
3655 ciACmpData* acmp = (ciACmpData*)data;
3656 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3657 profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0,
3658 acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), nullptr, nullptr);
3659 int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset());
3660 if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) {
3661 LIR_Opr mdp = new_register(T_METADATA);
3662 __ metadata2reg(md->constant_encoding(), mdp);
3663 LIRItem value(x->left(), this);
3664 value.load_item();
3665 __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3666 }
3667 profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()),
3668 in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()),
3669 acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), nullptr, nullptr);
3670 if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) {
3671 LIR_Opr mdp = new_register(T_METADATA);
3672 __ metadata2reg(md->constant_encoding(), mdp);
3673 LIRItem value(x->right(), this);
3674 value.load_item();
3675 __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3676 }
3677 }
3678
3679 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3680 // We can safely ignore accessors here, since c2 will inline them anyway,
3681 // accessors are also always mature.
3682 if (!x->inlinee()->is_accessor()) {
3683 CodeEmitInfo* info = state_for(x, x->state(), true);
3684 // Notify the runtime very infrequently only to take care of counter overflows
3685 int freq_log = Tier23InlineeNotifyFreqLog;
3686 double scale;
3687 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3688 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3689 }
3690 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3691 }
3692 }
3693
3694 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3695 if (compilation()->is_profiling()) {
3696 #if defined(X86) && !defined(_LP64)
3697 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3698 LIR_Opr left_copy = new_register(left->type());
3699 __ move(left, left_copy);
3700 __ cmp(cond, left_copy, right);
3701 #else
3702 __ cmp(cond, left, right);
3703 #endif
3704 LIR_Opr step = new_register(T_INT);
3705 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3706 LIR_Opr zero = LIR_OprFact::intConst(0);
3707 __ cmove(cond,
3708 (left_bci < bci) ? plus_one : zero,
3709 (right_bci < bci) ? plus_one : zero,
3710 step, left->type());
3711 increment_backedge_counter(info, step, bci);
3712 }
3713 }
3714
3715
3716 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3717 int freq_log = 0;
3718 int level = compilation()->env()->comp_level();
3719 if (level == CompLevel_limited_profile) {
3720 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3721 } else if (level == CompLevel_full_profile) {
3722 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3723 } else {
3724 ShouldNotReachHere();
3725 }
3726 // Increment the appropriate invocation/backedge counter and notify the runtime.
3727 double scale;
3728 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3729 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3730 }
3731 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3732 }
3733
3734 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3735 ciMethod *method, LIR_Opr step, int frequency,
3736 int bci, bool backedge, bool notify) {
3737 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3738 int level = _compilation->env()->comp_level();
3739 assert(level > CompLevel_simple, "Shouldn't be here");
3740
3741 int offset = -1;
3742 LIR_Opr counter_holder;
3743 if (level == CompLevel_limited_profile) {
3744 MethodCounters* counters_adr = method->ensure_method_counters();
3745 if (counters_adr == nullptr) {
3746 bailout("method counters allocation failed");
3747 return;
3748 }
3749 counter_holder = new_pointer_register();
3750 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3751 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3752 MethodCounters::invocation_counter_offset());
3753 } else if (level == CompLevel_full_profile) {
3754 counter_holder = new_register(T_METADATA);
3755 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3756 MethodData::invocation_counter_offset());
3757 ciMethodData* md = method->method_data_or_null();
3758 assert(md != nullptr, "Sanity");
3759 __ metadata2reg(md->constant_encoding(), counter_holder);
3760 } else {
3761 ShouldNotReachHere();
3762 }
3763 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3764 LIR_Opr result = new_register(T_INT);
3765 __ load(counter, result);
3766 __ add(result, step, result);
3767 __ store(result, counter);
3768 if (notify && (!backedge || UseOnStackReplacement)) {
3769 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3770 // The bci for info can point to cmp for if's we want the if bci
3771 CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3772 int freq = frequency << InvocationCounter::count_shift;
3773 if (freq == 0) {
3774 if (!step->is_constant()) {
3775 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3776 __ branch(lir_cond_notEqual, overflow);
3777 } else {
3778 __ branch(lir_cond_always, overflow);
3779 }
3780 } else {
3781 LIR_Opr mask = load_immediate(freq, T_INT);
3782 if (!step->is_constant()) {
3783 // If step is 0, make sure the overflow check below always fails
3784 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3785 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3786 }
3787 __ logical_and(result, mask, result);
3788 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3789 __ branch(lir_cond_equal, overflow);
3790 }
3791 __ branch_destination(overflow->continuation());
3792 }
3793 }
3794
3795 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3796 LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3797 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3798
3799 if (x->pass_thread()) {
3800 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
3801 args->append(getThreadPointer());
3802 }
3803
3804 for (int i = 0; i < x->number_of_arguments(); i++) {
3805 Value a = x->argument_at(i);
3806 LIRItem* item = new LIRItem(a, this);
3807 item->load_item();
3808 args->append(item->result());
3809 signature->append(as_BasicType(a->type()));
3810 }
3811
3812 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr);
3813 if (x->type() == voidType) {
3814 set_no_result(x);
3815 } else {
3816 __ move(result, rlock_result(x));
3817 }
3818 }
3819
3820 #ifdef ASSERT
3821 void LIRGenerator::do_Assert(Assert *x) {
3822 ValueTag tag = x->x()->type()->tag();
3823 If::Condition cond = x->cond();
3824
3825 LIRItem xitem(x->x(), this);
3826 LIRItem yitem(x->y(), this);
3827 LIRItem* xin = &xitem;
3828 LIRItem* yin = &yitem;
3829
3830 assert(tag == intTag, "Only integer assertions are valid!");
3831
3832 xin->load_item();
3833 yin->dont_load_item();
3834
3835 set_no_result(x);
3836
3837 LIR_Opr left = xin->result();
3838 LIR_Opr right = yin->result();
3839
3840 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3841 }
3842 #endif
3843
3844 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3845
3846
3847 Instruction *a = x->x();
3848 Instruction *b = x->y();
3849 if (!a || StressRangeCheckElimination) {
3850 assert(!b || StressRangeCheckElimination, "B must also be null");
3851
3852 CodeEmitInfo *info = state_for(x, x->state());
3853 CodeStub* stub = new PredicateFailedStub(info);
3854
3855 __ jump(stub);
3856 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3857 int a_int = a->type()->as_IntConstant()->value();
3858 int b_int = b->type()->as_IntConstant()->value();
3859
3860 bool ok = false;
3861
3862 switch(x->cond()) {
3863 case Instruction::eql: ok = (a_int == b_int); break;
3864 case Instruction::neq: ok = (a_int != b_int); break;
3865 case Instruction::lss: ok = (a_int < b_int); break;
3866 case Instruction::leq: ok = (a_int <= b_int); break;
3867 case Instruction::gtr: ok = (a_int > b_int); break;
3868 case Instruction::geq: ok = (a_int >= b_int); break;
3869 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3870 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3871 default: ShouldNotReachHere();
3872 }
3873
3874 if (ok) {
3875
3876 CodeEmitInfo *info = state_for(x, x->state());
3877 CodeStub* stub = new PredicateFailedStub(info);
3878
3879 __ jump(stub);
3880 }
3881 } else {
3882
3883 ValueTag tag = x->x()->type()->tag();
3884 If::Condition cond = x->cond();
3885 LIRItem xitem(x->x(), this);
3886 LIRItem yitem(x->y(), this);
3887 LIRItem* xin = &xitem;
3888 LIRItem* yin = &yitem;
3889
3890 assert(tag == intTag, "Only integer deoptimizations are valid!");
3891
3892 xin->load_item();
3893 yin->dont_load_item();
3894 set_no_result(x);
3895
3896 LIR_Opr left = xin->result();
3897 LIR_Opr right = yin->result();
3898
3899 CodeEmitInfo *info = state_for(x, x->state());
3900 CodeStub* stub = new PredicateFailedStub(info);
3901
3902 __ cmp(lir_cond(cond), left, right);
3903 __ branch(lir_cond(cond), stub);
3904 }
3905 }
3906
3907 void LIRGenerator::do_blackhole(Intrinsic *x) {
3908 assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3909 for (int c = 0; c < x->number_of_arguments(); c++) {
3910 // Load the argument
3911 LIRItem vitem(x->argument_at(c), this);
3912 vitem.load_item();
3913 // ...and leave it unused.
3914 }
3915 }
3916
3917 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3918 LIRItemList args(1);
3919 LIRItem value(arg1, this);
3920 args.append(&value);
3921 BasicTypeList signature;
3922 signature.append(as_BasicType(arg1->type()));
3923
3924 return call_runtime(&signature, &args, entry, result_type, info);
3925 }
3926
3927
3928 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3929 LIRItemList args(2);
3930 LIRItem value1(arg1, this);
3931 LIRItem value2(arg2, this);
3932 args.append(&value1);
3933 args.append(&value2);
3934 BasicTypeList signature;
3935 signature.append(as_BasicType(arg1->type()));
3936 signature.append(as_BasicType(arg2->type()));
3937
3938 return call_runtime(&signature, &args, entry, result_type, info);
3939 }
3940
3941
3942 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3943 address entry, ValueType* result_type, CodeEmitInfo* info) {
3944 // get a result register
3945 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3946 LIR_Opr result = LIR_OprFact::illegalOpr;
3947 if (result_type->tag() != voidTag) {
3948 result = new_register(result_type);
3949 phys_reg = result_register_for(result_type);
3950 }
3951
3952 // move the arguments into the correct location
3953 CallingConvention* cc = frame_map()->c_calling_convention(signature);
3954 assert(cc->length() == args->length(), "argument mismatch");
3955 for (int i = 0; i < args->length(); i++) {
3956 LIR_Opr arg = args->at(i);
3957 LIR_Opr loc = cc->at(i);
3958 if (loc->is_register()) {
3959 __ move(arg, loc);
3960 } else {
3961 LIR_Address* addr = loc->as_address_ptr();
3962 // if (!can_store_as_constant(arg)) {
3963 // LIR_Opr tmp = new_register(arg->type());
3964 // __ move(arg, tmp);
3965 // arg = tmp;
3966 // }
3967 __ move(arg, addr);
3968 }
3969 }
3970
3971 if (info) {
3972 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3973 } else {
3974 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3975 }
3976 if (result->is_valid()) {
3977 __ move(phys_reg, result);
3978 }
3979 return result;
3980 }
3981
3982
3983 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3984 address entry, ValueType* result_type, CodeEmitInfo* info) {
3985 // get a result register
3986 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3987 LIR_Opr result = LIR_OprFact::illegalOpr;
3988 if (result_type->tag() != voidTag) {
3989 result = new_register(result_type);
3990 phys_reg = result_register_for(result_type);
3991 }
3992
3993 // move the arguments into the correct location
3994 CallingConvention* cc = frame_map()->c_calling_convention(signature);
3995
3996 assert(cc->length() == args->length(), "argument mismatch");
3997 for (int i = 0; i < args->length(); i++) {
3998 LIRItem* arg = args->at(i);
3999 LIR_Opr loc = cc->at(i);
4000 if (loc->is_register()) {
4001 arg->load_item_force(loc);
4002 } else {
4003 LIR_Address* addr = loc->as_address_ptr();
4004 arg->load_for_store(addr->type());
4005 __ move(arg->result(), addr);
4006 }
4007 }
4008
4009 if (info) {
4010 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
4011 } else {
4012 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
4013 }
4014 if (result->is_valid()) {
4015 __ move(phys_reg, result);
4016 }
4017 return result;
4018 }
4019
4020 void LIRGenerator::do_MemBar(MemBar* x) {
4021 LIR_Code code = x->code();
4022 switch(code) {
4023 case lir_membar_acquire : __ membar_acquire(); break;
4024 case lir_membar_release : __ membar_release(); break;
4025 case lir_membar : __ membar(); break;
4026 case lir_membar_loadload : __ membar_loadload(); break;
4027 case lir_membar_storestore: __ membar_storestore(); break;
4028 case lir_membar_loadstore : __ membar_loadstore(); break;
4029 case lir_membar_storeload : __ membar_storeload(); break;
4030 default : ShouldNotReachHere(); break;
4031 }
4032 }
4033
4034 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
4035 LIR_Opr value_fixed = rlock_byte(T_BYTE);
4036 if (two_operand_lir_form) {
4037 __ move(value, value_fixed);
4038 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
4039 } else {
4040 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
4041 }
4042 LIR_Opr klass = new_register(T_METADATA);
4043 load_klass(array, klass, null_check_info);
4044 null_check_info = nullptr;
4045 LIR_Opr layout = new_register(T_INT);
4046 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
4047 int diffbit = Klass::layout_helper_boolean_diffbit();
4048 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
4049 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
4050 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
4051 value = value_fixed;
4052 return value;
4053 }