1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "c1/c1_Compilation.hpp"
  26 #include "c1/c1_Defs.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciFlatArrayKlass.hpp"
  34 #include "ci/ciInlineKlass.hpp"
  35 #include "ci/ciInstance.hpp"
  36 #include "ci/ciObjArray.hpp"
  37 #include "ci/ciObjArrayKlass.hpp"
  38 #include "ci/ciUtilities.hpp"
  39 #include "compiler/compilerDefinitions.inline.hpp"
  40 #include "compiler/compilerOracle.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/c1/barrierSetC1.hpp"
  43 #include "oops/klass.inline.hpp"
  44 #include "oops/methodCounters.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/vm_version.hpp"
  48 #include "utilities/bitMap.inline.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 
  52 #ifdef ASSERT
  53 #define __ gen()->lir(__FILE__, __LINE__)->
  54 #else
  55 #define __ gen()->lir()->
  56 #endif
  57 
  58 #ifndef PATCHED_ADDR
  59 #define PATCHED_ADDR  (max_jint)
  60 #endif
  61 
  62 void PhiResolverState::reset() {
  63   _virtual_operands.clear();
  64   _other_operands.clear();
  65   _vreg_table.clear();
  66 }
  67 
  68 
  69 //--------------------------------------------------------------
  70 // PhiResolver
  71 
  72 // Resolves cycles:
  73 //
  74 //  r1 := r2  becomes  temp := r1
  75 //  r2 := r1           r1 := r2
  76 //                     r2 := temp
  77 // and orders moves:
  78 //
  79 //  r2 := r3  becomes  r1 := r2
  80 //  r1 := r2           r2 := r3
  81 
  82 PhiResolver::PhiResolver(LIRGenerator* gen)
  83  : _gen(gen)
  84  , _state(gen->resolver_state())
  85  , _loop(nullptr)
  86  , _temp(LIR_OprFact::illegalOpr)
  87 {
  88   // reinitialize the shared state arrays
  89   _state.reset();
  90 }
  91 
  92 
  93 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  94   assert(src->is_valid(), "");
  95   assert(dest->is_valid(), "");
  96   __ move(src, dest);
  97 }
  98 
  99 
 100 void PhiResolver::move_temp_to(LIR_Opr dest) {
 101   assert(_temp->is_valid(), "");
 102   emit_move(_temp, dest);
 103   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 104 }
 105 
 106 
 107 void PhiResolver::move_to_temp(LIR_Opr src) {
 108   assert(_temp->is_illegal(), "");
 109   _temp = _gen->new_register(src->type());
 110   emit_move(src, _temp);
 111 }
 112 
 113 
 114 // Traverse assignment graph in depth first order and generate moves in post order
 115 // ie. two assignments: b := c, a := b start with node c:
 116 // Call graph: move(null, c) -> move(c, b) -> move(b, a)
 117 // Generates moves in this order: move b to a and move c to b
 118 // ie. cycle a := b, b := a start with node a
 119 // Call graph: move(null, a) -> move(a, b) -> move(b, a)
 120 // Generates moves in this order: move b to temp, move a to b, move temp to a
 121 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 122   if (!dest->visited()) {
 123     dest->set_visited();
 124     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 125       move(dest, dest->destination_at(i));
 126     }
 127   } else if (!dest->start_node()) {
 128     // cylce in graph detected
 129     assert(_loop == nullptr, "only one loop valid!");
 130     _loop = dest;
 131     move_to_temp(src->operand());
 132     return;
 133   } // else dest is a start node
 134 
 135   if (!dest->assigned()) {
 136     if (_loop == dest) {
 137       move_temp_to(dest->operand());
 138       dest->set_assigned();
 139     } else if (src != nullptr) {
 140       emit_move(src->operand(), dest->operand());
 141       dest->set_assigned();
 142     }
 143   }
 144 }
 145 
 146 
 147 PhiResolver::~PhiResolver() {
 148   int i;
 149   // resolve any cycles in moves from and to virtual registers
 150   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 151     ResolveNode* node = virtual_operands().at(i);
 152     if (!node->visited()) {
 153       _loop = nullptr;
 154       move(nullptr, node);
 155       node->set_start_node();
 156       assert(_temp->is_illegal(), "move_temp_to() call missing");
 157     }
 158   }
 159 
 160   // generate move for move from non virtual register to abitrary destination
 161   for (i = other_operands().length() - 1; i >= 0; i --) {
 162     ResolveNode* node = other_operands().at(i);
 163     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 164       emit_move(node->operand(), node->destination_at(j)->operand());
 165     }
 166   }
 167 }
 168 
 169 
 170 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 171   ResolveNode* node;
 172   if (opr->is_virtual()) {
 173     int vreg_num = opr->vreg_number();
 174     node = vreg_table().at_grow(vreg_num, nullptr);
 175     assert(node == nullptr || node->operand() == opr, "");
 176     if (node == nullptr) {
 177       node = new ResolveNode(opr);
 178       vreg_table().at_put(vreg_num, node);
 179     }
 180     // Make sure that all virtual operands show up in the list when
 181     // they are used as the source of a move.
 182     if (source && !virtual_operands().contains(node)) {
 183       virtual_operands().append(node);
 184     }
 185   } else {
 186     assert(source, "");
 187     node = new ResolveNode(opr);
 188     other_operands().append(node);
 189   }
 190   return node;
 191 }
 192 
 193 
 194 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 195   assert(dest->is_virtual(), "");
 196   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 197   assert(src->is_valid(), "");
 198   assert(dest->is_valid(), "");
 199   ResolveNode* source = source_node(src);
 200   source->append(destination_node(dest));
 201 }
 202 
 203 
 204 //--------------------------------------------------------------
 205 // LIRItem
 206 
 207 void LIRItem::set_result(LIR_Opr opr) {
 208   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 209   value()->set_operand(opr);
 210 
 211 #ifdef ASSERT
 212   if (opr->is_virtual()) {
 213     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 214   }
 215 #endif
 216 
 217   _result = opr;
 218 }
 219 
 220 void LIRItem::load_item() {
 221   assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code");
 222 
 223   if (result()->is_illegal()) {
 224     // update the items result
 225     _result = value()->operand();
 226   }
 227   if (!result()->is_register()) {
 228     LIR_Opr reg = _gen->new_register(value()->type());
 229     __ move(result(), reg);
 230     if (result()->is_constant()) {
 231       _result = reg;
 232     } else {
 233       set_result(reg);
 234     }
 235   }
 236 }
 237 
 238 
 239 void LIRItem::load_for_store(BasicType type) {
 240   if (_gen->can_store_as_constant(value(), type)) {
 241     _result = value()->operand();
 242     if (!_result->is_constant()) {
 243       _result = LIR_OprFact::value_type(value()->type());
 244     }
 245   } else if (type == T_BYTE || type == T_BOOLEAN) {
 246     load_byte_item();
 247   } else {
 248     load_item();
 249   }
 250 }
 251 
 252 void LIRItem::load_item_force(LIR_Opr reg) {
 253   LIR_Opr r = result();
 254   if (r != reg) {
 255 #if !defined(ARM) && !defined(E500V2)
 256     if (r->type() != reg->type()) {
 257       // moves between different types need an intervening spill slot
 258       r = _gen->force_to_spill(r, reg->type());
 259     }
 260 #endif
 261     __ move(r, reg);
 262     _result = reg;
 263   }
 264 }
 265 
 266 ciObject* LIRItem::get_jobject_constant() const {
 267   ObjectType* oc = type()->as_ObjectType();
 268   if (oc) {
 269     return oc->constant_value();
 270   }
 271   return nullptr;
 272 }
 273 
 274 
 275 jint LIRItem::get_jint_constant() const {
 276   assert(is_constant() && value() != nullptr, "");
 277   assert(type()->as_IntConstant() != nullptr, "type check");
 278   return type()->as_IntConstant()->value();
 279 }
 280 
 281 
 282 jint LIRItem::get_address_constant() const {
 283   assert(is_constant() && value() != nullptr, "");
 284   assert(type()->as_AddressConstant() != nullptr, "type check");
 285   return type()->as_AddressConstant()->value();
 286 }
 287 
 288 
 289 jfloat LIRItem::get_jfloat_constant() const {
 290   assert(is_constant() && value() != nullptr, "");
 291   assert(type()->as_FloatConstant() != nullptr, "type check");
 292   return type()->as_FloatConstant()->value();
 293 }
 294 
 295 
 296 jdouble LIRItem::get_jdouble_constant() const {
 297   assert(is_constant() && value() != nullptr, "");
 298   assert(type()->as_DoubleConstant() != nullptr, "type check");
 299   return type()->as_DoubleConstant()->value();
 300 }
 301 
 302 
 303 jlong LIRItem::get_jlong_constant() const {
 304   assert(is_constant() && value() != nullptr, "");
 305   assert(type()->as_LongConstant() != nullptr, "type check");
 306   return type()->as_LongConstant()->value();
 307 }
 308 
 309 
 310 
 311 //--------------------------------------------------------------
 312 
 313 
 314 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 315 #ifndef PRODUCT
 316   if (PrintIRWithLIR) {
 317     block->print();
 318   }
 319 #endif
 320 
 321   // set up the list of LIR instructions
 322   assert(block->lir() == nullptr, "LIR list already computed for this block");
 323   _lir = new LIR_List(compilation(), block);
 324   block->set_lir(_lir);
 325 
 326   __ branch_destination(block->label());
 327 
 328   if (LIRTraceExecution &&
 329       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 330       !block->is_set(BlockBegin::exception_entry_flag)) {
 331     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 332     trace_block_entry(block);
 333   }
 334 }
 335 
 336 
 337 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 338 #ifndef PRODUCT
 339   if (PrintIRWithLIR) {
 340     tty->cr();
 341   }
 342 #endif
 343 
 344   // LIR_Opr for unpinned constants shouldn't be referenced by other
 345   // blocks so clear them out after processing the block.
 346   for (int i = 0; i < _unpinned_constants.length(); i++) {
 347     _unpinned_constants.at(i)->clear_operand();
 348   }
 349   _unpinned_constants.trunc_to(0);
 350 
 351   // clear our any registers for other local constants
 352   _constants.trunc_to(0);
 353   _reg_for_constants.trunc_to(0);
 354 }
 355 
 356 
 357 void LIRGenerator::block_do(BlockBegin* block) {
 358   CHECK_BAILOUT();
 359 
 360   block_do_prolog(block);
 361   set_block(block);
 362 
 363   for (Instruction* instr = block; instr != nullptr; instr = instr->next()) {
 364     if (instr->is_pinned()) do_root(instr);
 365   }
 366 
 367   set_block(nullptr);
 368   block_do_epilog(block);
 369 }
 370 
 371 
 372 //-------------------------LIRGenerator-----------------------------
 373 
 374 // This is where the tree-walk starts; instr must be root;
 375 void LIRGenerator::do_root(Value instr) {
 376   CHECK_BAILOUT();
 377 
 378   InstructionMark im(compilation(), instr);
 379 
 380   assert(instr->is_pinned(), "use only with roots");
 381   assert(instr->subst() == instr, "shouldn't have missed substitution");
 382 
 383   instr->visit(this);
 384 
 385   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 386          instr->as_Constant() != nullptr || bailed_out(), "invalid item set");
 387 }
 388 
 389 
 390 // This is called for each node in tree; the walk stops if a root is reached
 391 void LIRGenerator::walk(Value instr) {
 392   InstructionMark im(compilation(), instr);
 393   //stop walk when encounter a root
 394   if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) {
 395     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited");
 396   } else {
 397     assert(instr->subst() == instr, "shouldn't have missed substitution");
 398     instr->visit(this);
 399     // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use");
 400   }
 401 }
 402 
 403 
 404 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 405   assert(state != nullptr, "state must be defined");
 406 
 407 #ifndef PRODUCT
 408   state->verify();
 409 #endif
 410 
 411   ValueStack* s = state;
 412   for_each_state(s) {
 413     if (s->kind() == ValueStack::EmptyExceptionState ||
 414         s->kind() == ValueStack::CallerEmptyExceptionState)
 415     {
 416 #ifdef ASSERT
 417       int index;
 418       Value value;
 419       for_each_stack_value(s, index, value) {
 420         fatal("state must be empty");
 421       }
 422       for_each_local_value(s, index, value) {
 423         fatal("state must be empty");
 424       }
 425 #endif
 426       assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty");
 427       continue;
 428     }
 429 
 430     int index;
 431     Value value;
 432     for_each_stack_value(s, index, value) {
 433       assert(value->subst() == value, "missed substitution");
 434       if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
 435         walk(value);
 436         assert(value->operand()->is_valid(), "must be evaluated now");
 437       }
 438     }
 439 
 440     int bci = s->bci();
 441     IRScope* scope = s->scope();
 442     ciMethod* method = scope->method();
 443 
 444     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 445     if (bci == SynchronizationEntryBCI) {
 446       if (x->as_ExceptionObject() || x->as_Throw()) {
 447         // all locals are dead on exit from the synthetic unlocker
 448         liveness.clear();
 449       } else {
 450         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 451       }
 452     }
 453     if (!liveness.is_valid()) {
 454       // Degenerate or breakpointed method.
 455       bailout("Degenerate or breakpointed method");
 456     } else {
 457       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 458       for_each_local_value(s, index, value) {
 459         assert(value->subst() == value, "missed substitution");
 460         if (liveness.at(index) && !value->type()->is_illegal()) {
 461           if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
 462             walk(value);
 463             assert(value->operand()->is_valid(), "must be evaluated now");
 464           }
 465         } else {
 466           // null out this local so that linear scan can assume that all non-null values are live.
 467           s->invalidate_local(index);
 468         }
 469       }
 470     }
 471   }
 472 
 473   return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 474 }
 475 
 476 
 477 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 478   return state_for(x, x->exception_state());
 479 }
 480 
 481 
 482 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 483   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
 484    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 485    * the class. */
 486   if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
 487     assert(info != nullptr, "info must be set if class is not loaded");
 488     __ klass2reg_patch(nullptr, r, info);
 489   } else {
 490     // no patching needed
 491     __ metadata2reg(obj->constant_encoding(), r);
 492   }
 493 }
 494 
 495 
 496 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 497                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 498   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 499   if (index->is_constant()) {
 500     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 501                 index->as_jint(), null_check_info);
 502     __ branch(lir_cond_belowEqual, stub); // forward branch
 503   } else {
 504     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 505                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 506     __ branch(lir_cond_aboveEqual, stub); // forward branch
 507   }
 508 }
 509 
 510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
 511   LIR_Opr result_op = result;
 512   LIR_Opr left_op   = left;
 513   LIR_Opr right_op  = right;
 514 
 515   if (two_operand_lir_form && left_op != result_op) {
 516     assert(right_op != result_op, "malformed");
 517     __ move(left_op, result_op);
 518     left_op = result_op;
 519   }
 520 
 521   switch(code) {
 522     case Bytecodes::_dadd:
 523     case Bytecodes::_fadd:
 524     case Bytecodes::_ladd:
 525     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 526     case Bytecodes::_fmul:
 527     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 528 
 529     case Bytecodes::_dmul:  __ mul(left_op, right_op, result_op, tmp_op); break;
 530 
 531     case Bytecodes::_imul:
 532       {
 533         bool did_strength_reduce = false;
 534 
 535         if (right->is_constant()) {
 536           jint c = right->as_jint();
 537           if (c > 0 && is_power_of_2(c)) {
 538             // do not need tmp here
 539             __ shift_left(left_op, exact_log2(c), result_op);
 540             did_strength_reduce = true;
 541           } else {
 542             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 543           }
 544         }
 545         // we couldn't strength reduce so just emit the multiply
 546         if (!did_strength_reduce) {
 547           __ mul(left_op, right_op, result_op);
 548         }
 549       }
 550       break;
 551 
 552     case Bytecodes::_dsub:
 553     case Bytecodes::_fsub:
 554     case Bytecodes::_lsub:
 555     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 556 
 557     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 558     // ldiv and lrem are implemented with a direct runtime call
 559 
 560     case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
 561 
 562     case Bytecodes::_drem:
 563     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 564 
 565     default: ShouldNotReachHere();
 566   }
 567 }
 568 
 569 
 570 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 571   arithmetic_op(code, result, left, right, tmp);
 572 }
 573 
 574 
 575 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 576   arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
 577 }
 578 
 579 
 580 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 581   arithmetic_op(code, result, left, right, tmp);
 582 }
 583 
 584 
 585 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 586 
 587   if (two_operand_lir_form && value != result_op
 588       // Only 32bit right shifts require two operand form on S390.
 589       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 590     assert(count != result_op, "malformed");
 591     __ move(value, result_op);
 592     value = result_op;
 593   }
 594 
 595   assert(count->is_constant() || count->is_register(), "must be");
 596   switch(code) {
 597   case Bytecodes::_ishl:
 598   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 599   case Bytecodes::_ishr:
 600   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 601   case Bytecodes::_iushr:
 602   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 603   default: ShouldNotReachHere();
 604   }
 605 }
 606 
 607 
 608 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 609   if (two_operand_lir_form && left_op != result_op) {
 610     assert(right_op != result_op, "malformed");
 611     __ move(left_op, result_op);
 612     left_op = result_op;
 613   }
 614 
 615   switch(code) {
 616     case Bytecodes::_iand:
 617     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 618 
 619     case Bytecodes::_ior:
 620     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 621 
 622     case Bytecodes::_ixor:
 623     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 624 
 625     default: ShouldNotReachHere();
 626   }
 627 }
 628 
 629 
 630 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
 631                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_ie_stub) {
 632   if (!GenerateSynchronizationCode) return;
 633   // for slow path, use debug info for state after successful locking
 634   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_ie_stub, scratch);
 635   __ load_stack_address_monitor(monitor_no, lock);
 636   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 637   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_ie_stub);
 638 }
 639 
 640 
 641 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 642   if (!GenerateSynchronizationCode) return;
 643   // setup registers
 644   LIR_Opr hdr = lock;
 645   lock = new_hdr;
 646   CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
 647   __ load_stack_address_monitor(monitor_no, lock);
 648   __ unlock_object(hdr, object, lock, scratch, slow_path);
 649 }
 650 
 651 #ifndef PRODUCT
 652 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 653   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 654     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 655   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 656     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 657   }
 658 }
 659 #endif
 660 
 661 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 662   if (allow_inline) {
 663     assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved");
 664     __ metadata2reg(klass->constant_encoding(), klass_reg);
 665   } else {
 666     klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 667   }
 668   // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass
 669   if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype())
 670       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 671 
 672     C1StubId stub_id = klass->is_initialized() ? C1StubId::fast_new_instance_id : C1StubId::fast_new_instance_init_check_id;
 673 
 674     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 675 
 676     assert(klass->is_loaded(), "must be loaded");
 677     // allocate space for instance
 678     assert(klass->size_helper() > 0, "illegal instance size");
 679     const int instance_size = align_object_size(klass->size_helper());
 680     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 681                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 682   } else {
 683     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, C1StubId::new_instance_id);
 684     __ jump(slow_path);
 685     __ branch_destination(slow_path->continuation());
 686   }
 687 }
 688 
 689 
 690 static bool is_constant_zero(Instruction* inst) {
 691   IntConstant* c = inst->type()->as_IntConstant();
 692   if (c) {
 693     return (c->value() == 0);
 694   }
 695   return false;
 696 }
 697 
 698 
 699 static bool positive_constant(Instruction* inst) {
 700   IntConstant* c = inst->type()->as_IntConstant();
 701   if (c) {
 702     return (c->value() >= 0);
 703   }
 704   return false;
 705 }
 706 
 707 
 708 static ciArrayKlass* as_array_klass(ciType* type) {
 709   if (type != nullptr && type->is_array_klass() && type->is_loaded()) {
 710     return (ciArrayKlass*)type;
 711   } else {
 712     return nullptr;
 713   }
 714 }
 715 
 716 static ciType* phi_declared_type(Phi* phi) {
 717   ciType* t = phi->operand_at(0)->declared_type();
 718   if (t == nullptr) {
 719     return nullptr;
 720   }
 721   for(int i = 1; i < phi->operand_count(); i++) {
 722     if (t != phi->operand_at(i)->declared_type()) {
 723       return nullptr;
 724     }
 725   }
 726   return t;
 727 }
 728 
 729 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 730   Instruction* src     = x->argument_at(0);
 731   Instruction* src_pos = x->argument_at(1);
 732   Instruction* dst     = x->argument_at(2);
 733   Instruction* dst_pos = x->argument_at(3);
 734   Instruction* length  = x->argument_at(4);
 735 
 736   // first try to identify the likely type of the arrays involved
 737   ciArrayKlass* expected_type = nullptr;
 738   bool is_exact = false, src_objarray = false, dst_objarray = false;
 739   {
 740     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 741     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 742     Phi* phi;
 743     if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) {
 744       src_declared_type = as_array_klass(phi_declared_type(phi));
 745     }
 746     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 747     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 748     if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) {
 749       dst_declared_type = as_array_klass(phi_declared_type(phi));
 750     }
 751 
 752     if (src_exact_type != nullptr && src_exact_type == dst_exact_type) {
 753       // the types exactly match so the type is fully known
 754       is_exact = true;
 755       expected_type = src_exact_type;
 756     } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
 757       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 758       ciArrayKlass* src_type = nullptr;
 759       if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
 760         src_type = (ciArrayKlass*) src_exact_type;
 761       } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
 762         src_type = (ciArrayKlass*) src_declared_type;
 763       }
 764       if (src_type != nullptr) {
 765         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 766           is_exact = true;
 767           expected_type = dst_type;
 768         }
 769       }
 770     }
 771     // at least pass along a good guess
 772     if (expected_type == nullptr) expected_type = dst_exact_type;
 773     if (expected_type == nullptr) expected_type = src_declared_type;
 774     if (expected_type == nullptr) expected_type = dst_declared_type;
 775 
 776     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 777     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 778   }
 779 
 780   // if a probable array type has been identified, figure out if any
 781   // of the required checks for a fast case can be elided.
 782   int flags = LIR_OpArrayCopy::all_flags;
 783 
 784   if (!src->is_loaded_flat_array() && !dst->is_loaded_flat_array()) {
 785     flags &= ~LIR_OpArrayCopy::always_slow_path;
 786   }
 787   if (!src->maybe_flat_array()) {
 788     flags &= ~LIR_OpArrayCopy::src_inlinetype_check;
 789   }
 790   if (!dst->maybe_flat_array() && !dst->maybe_null_free_array()) {
 791     flags &= ~LIR_OpArrayCopy::dst_inlinetype_check;
 792   }
 793 
 794   if (!src_objarray)
 795     flags &= ~LIR_OpArrayCopy::src_objarray;
 796   if (!dst_objarray)
 797     flags &= ~LIR_OpArrayCopy::dst_objarray;
 798 
 799   if (!x->arg_needs_null_check(0))
 800     flags &= ~LIR_OpArrayCopy::src_null_check;
 801   if (!x->arg_needs_null_check(2))
 802     flags &= ~LIR_OpArrayCopy::dst_null_check;
 803 
 804 
 805   if (expected_type != nullptr) {
 806     Value length_limit = nullptr;
 807 
 808     IfOp* ifop = length->as_IfOp();
 809     if (ifop != nullptr) {
 810       // look for expressions like min(v, a.length) which ends up as
 811       //   x > y ? y : x  or  x >= y ? y : x
 812       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 813           ifop->x() == ifop->fval() &&
 814           ifop->y() == ifop->tval()) {
 815         length_limit = ifop->y();
 816       }
 817     }
 818 
 819     // try to skip null checks and range checks
 820     NewArray* src_array = src->as_NewArray();
 821     if (src_array != nullptr) {
 822       flags &= ~LIR_OpArrayCopy::src_null_check;
 823       if (length_limit != nullptr &&
 824           src_array->length() == length_limit &&
 825           is_constant_zero(src_pos)) {
 826         flags &= ~LIR_OpArrayCopy::src_range_check;
 827       }
 828     }
 829 
 830     NewArray* dst_array = dst->as_NewArray();
 831     if (dst_array != nullptr) {
 832       flags &= ~LIR_OpArrayCopy::dst_null_check;
 833       if (length_limit != nullptr &&
 834           dst_array->length() == length_limit &&
 835           is_constant_zero(dst_pos)) {
 836         flags &= ~LIR_OpArrayCopy::dst_range_check;
 837       }
 838     }
 839 
 840     // check from incoming constant values
 841     if (positive_constant(src_pos))
 842       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 843     if (positive_constant(dst_pos))
 844       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 845     if (positive_constant(length))
 846       flags &= ~LIR_OpArrayCopy::length_positive_check;
 847 
 848     // see if the range check can be elided, which might also imply
 849     // that src or dst is non-null.
 850     ArrayLength* al = length->as_ArrayLength();
 851     if (al != nullptr) {
 852       if (al->array() == src) {
 853         // it's the length of the source array
 854         flags &= ~LIR_OpArrayCopy::length_positive_check;
 855         flags &= ~LIR_OpArrayCopy::src_null_check;
 856         if (is_constant_zero(src_pos))
 857           flags &= ~LIR_OpArrayCopy::src_range_check;
 858       }
 859       if (al->array() == dst) {
 860         // it's the length of the destination array
 861         flags &= ~LIR_OpArrayCopy::length_positive_check;
 862         flags &= ~LIR_OpArrayCopy::dst_null_check;
 863         if (is_constant_zero(dst_pos))
 864           flags &= ~LIR_OpArrayCopy::dst_range_check;
 865       }
 866     }
 867     if (is_exact) {
 868       flags &= ~LIR_OpArrayCopy::type_check;
 869     }
 870   }
 871 
 872   IntConstant* src_int = src_pos->type()->as_IntConstant();
 873   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 874   if (src_int && dst_int) {
 875     int s_offs = src_int->value();
 876     int d_offs = dst_int->value();
 877     if (src_int->value() >= dst_int->value()) {
 878       flags &= ~LIR_OpArrayCopy::overlapping;
 879     }
 880     if (expected_type != nullptr) {
 881       BasicType t = expected_type->element_type()->basic_type();
 882       int element_size = type2aelembytes(t);
 883       if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
 884           ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
 885         flags &= ~LIR_OpArrayCopy::unaligned;
 886       }
 887     }
 888   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 889     // src and dest positions are the same, or dst is zero so assume
 890     // nonoverlapping copy.
 891     flags &= ~LIR_OpArrayCopy::overlapping;
 892   }
 893 
 894   if (src == dst) {
 895     // moving within a single array so no type checks are needed
 896     if (flags & LIR_OpArrayCopy::type_check) {
 897       flags &= ~LIR_OpArrayCopy::type_check;
 898     }
 899   }
 900   *flagsp = flags;
 901 
 902   // TODO 8366668
 903   if (expected_type != nullptr && expected_type->is_obj_array_klass()) {
 904     expected_type = ciArrayKlass::make(expected_type->as_array_klass()->element_klass(), false, true, true);
 905   }
 906 
 907   *expected_typep = (ciArrayKlass*)expected_type;
 908 }
 909 
 910 
 911 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 912   assert(type2size[t] == type2size[value->type()],
 913          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 914   if (!value->is_register()) {
 915     // force into a register
 916     LIR_Opr r = new_register(value->type());
 917     __ move(value, r);
 918     value = r;
 919   }
 920 
 921   // create a spill location
 922   LIR_Opr tmp = new_register(t);
 923   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 924 
 925   // move from register to spill
 926   __ move(value, tmp);
 927   return tmp;
 928 }
 929 
 930 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 931   if (if_instr->should_profile()) {
 932     ciMethod* method = if_instr->profiled_method();
 933     assert(method != nullptr, "method should be set if branch is profiled");
 934     ciMethodData* md = method->method_data_or_null();
 935     assert(md != nullptr, "Sanity");
 936     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 937     assert(data != nullptr, "must have profiling data");
 938     assert(data->is_BranchData(), "need BranchData for two-way branches");
 939     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 940     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 941     if (if_instr->is_swapped()) {
 942       int t = taken_count_offset;
 943       taken_count_offset = not_taken_count_offset;
 944       not_taken_count_offset = t;
 945     }
 946 
 947     LIR_Opr md_reg = new_register(T_METADATA);
 948     __ metadata2reg(md->constant_encoding(), md_reg);
 949 
 950     LIR_Opr data_offset_reg = new_pointer_register();
 951     __ cmove(lir_cond(cond),
 952              LIR_OprFact::intptrConst(taken_count_offset),
 953              LIR_OprFact::intptrConst(not_taken_count_offset),
 954              data_offset_reg, as_BasicType(if_instr->x()->type()));
 955 
 956     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 957     LIR_Opr data_reg = new_pointer_register();
 958     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 959     __ move(data_addr, data_reg);
 960     // Use leal instead of add to avoid destroying condition codes on x86
 961     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 962     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 963     __ move(data_reg, data_addr);
 964   }
 965 }
 966 
 967 // Phi technique:
 968 // This is about passing live values from one basic block to the other.
 969 // In code generated with Java it is rather rare that more than one
 970 // value is on the stack from one basic block to the other.
 971 // We optimize our technique for efficient passing of one value
 972 // (of type long, int, double..) but it can be extended.
 973 // When entering or leaving a basic block, all registers and all spill
 974 // slots are release and empty. We use the released registers
 975 // and spill slots to pass the live values from one block
 976 // to the other. The topmost value, i.e., the value on TOS of expression
 977 // stack is passed in registers. All other values are stored in spilling
 978 // area. Every Phi has an index which designates its spill slot
 979 // At exit of a basic block, we fill the register(s) and spill slots.
 980 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 981 // and locks necessary registers and spilling slots.
 982 
 983 
 984 // move current value to referenced phi function
 985 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 986   Phi* phi = sux_val->as_Phi();
 987   // cur_val can be null without phi being null in conjunction with inlining
 988   if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) {
 989     if (phi->is_local()) {
 990       for (int i = 0; i < phi->operand_count(); i++) {
 991         Value op = phi->operand_at(i);
 992         if (op != nullptr && op->type()->is_illegal()) {
 993           bailout("illegal phi operand");
 994         }
 995       }
 996     }
 997     Phi* cur_phi = cur_val->as_Phi();
 998     if (cur_phi != nullptr && cur_phi->is_illegal()) {
 999       // Phi and local would need to get invalidated
1000       // (which is unexpected for Linear Scan).
1001       // But this case is very rare so we simply bail out.
1002       bailout("propagation of illegal phi");
1003       return;
1004     }
1005     LIR_Opr operand = cur_val->operand();
1006     if (operand->is_illegal()) {
1007       assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr,
1008              "these can be produced lazily");
1009       operand = operand_for_instruction(cur_val);
1010     }
1011     resolver->move(operand, operand_for_instruction(phi));
1012   }
1013 }
1014 
1015 
1016 // Moves all stack values into their PHI position
1017 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1018   BlockBegin* bb = block();
1019   if (bb->number_of_sux() == 1) {
1020     BlockBegin* sux = bb->sux_at(0);
1021     assert(sux->number_of_preds() > 0, "invalid CFG");
1022 
1023     // a block with only one predecessor never has phi functions
1024     if (sux->number_of_preds() > 1) {
1025       PhiResolver resolver(this);
1026 
1027       ValueStack* sux_state = sux->state();
1028       Value sux_value;
1029       int index;
1030 
1031       assert(cur_state->scope() == sux_state->scope(), "not matching");
1032       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1033       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1034 
1035       for_each_stack_value(sux_state, index, sux_value) {
1036         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1037       }
1038 
1039       for_each_local_value(sux_state, index, sux_value) {
1040         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1041       }
1042 
1043       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1044     }
1045   }
1046 }
1047 
1048 
1049 LIR_Opr LIRGenerator::new_register(BasicType type) {
1050   int vreg_num = _virtual_register_number;
1051   // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1052   // a few extra registers before we really run out which helps to avoid to trip over assertions.
1053   if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1054     bailout("out of virtual registers in LIR generator");
1055     if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1056       // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1057       _virtual_register_number = LIR_Opr::vreg_base;
1058       vreg_num = LIR_Opr::vreg_base;
1059     }
1060   }
1061   _virtual_register_number += 1;
1062   LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1063   assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1064   return vreg;
1065 }
1066 
1067 
1068 // Try to lock using register in hint
1069 LIR_Opr LIRGenerator::rlock(Value instr) {
1070   return new_register(instr->type());
1071 }
1072 
1073 
1074 // does an rlock and sets result
1075 LIR_Opr LIRGenerator::rlock_result(Value x) {
1076   LIR_Opr reg = rlock(x);
1077   set_result(x, reg);
1078   return reg;
1079 }
1080 
1081 
1082 // does an rlock and sets result
1083 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1084   LIR_Opr reg;
1085   switch (type) {
1086   case T_BYTE:
1087   case T_BOOLEAN:
1088     reg = rlock_byte(type);
1089     break;
1090   default:
1091     reg = rlock(x);
1092     break;
1093   }
1094 
1095   set_result(x, reg);
1096   return reg;
1097 }
1098 
1099 
1100 //---------------------------------------------------------------------
1101 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1102   ObjectType* oc = value->type()->as_ObjectType();
1103   if (oc) {
1104     return oc->constant_value();
1105   }
1106   return nullptr;
1107 }
1108 
1109 
1110 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1111   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1112   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1113 
1114   // no moves are created for phi functions at the begin of exception
1115   // handlers, so assign operands manually here
1116   for_each_phi_fun(block(), phi,
1117                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1118 
1119   LIR_Opr thread_reg = getThreadPointer();
1120   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1121                exceptionOopOpr());
1122   __ move_wide(LIR_OprFact::oopConst(nullptr),
1123                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1124   __ move_wide(LIR_OprFact::oopConst(nullptr),
1125                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1126 
1127   LIR_Opr result = new_register(T_OBJECT);
1128   __ move(exceptionOopOpr(), result);
1129   set_result(x, result);
1130 }
1131 
1132 
1133 //----------------------------------------------------------------------
1134 //----------------------------------------------------------------------
1135 //----------------------------------------------------------------------
1136 //----------------------------------------------------------------------
1137 //                        visitor functions
1138 //----------------------------------------------------------------------
1139 //----------------------------------------------------------------------
1140 //----------------------------------------------------------------------
1141 //----------------------------------------------------------------------
1142 
1143 void LIRGenerator::do_Phi(Phi* x) {
1144   // phi functions are never visited directly
1145   ShouldNotReachHere();
1146 }
1147 
1148 
1149 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1150 void LIRGenerator::do_Constant(Constant* x) {
1151   if (x->state_before() != nullptr) {
1152     // Any constant with a ValueStack requires patching so emit the patch here
1153     LIR_Opr reg = rlock_result(x);
1154     CodeEmitInfo* info = state_for(x, x->state_before());
1155     __ oop2reg_patch(nullptr, reg, info);
1156   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1157     if (!x->is_pinned()) {
1158       // unpinned constants are handled specially so that they can be
1159       // put into registers when they are used multiple times within a
1160       // block.  After the block completes their operand will be
1161       // cleared so that other blocks can't refer to that register.
1162       set_result(x, load_constant(x));
1163     } else {
1164       LIR_Opr res = x->operand();
1165       if (!res->is_valid()) {
1166         res = LIR_OprFact::value_type(x->type());
1167       }
1168       if (res->is_constant()) {
1169         LIR_Opr reg = rlock_result(x);
1170         __ move(res, reg);
1171       } else {
1172         set_result(x, res);
1173       }
1174     }
1175   } else {
1176     set_result(x, LIR_OprFact::value_type(x->type()));
1177   }
1178 }
1179 
1180 
1181 void LIRGenerator::do_Local(Local* x) {
1182   // operand_for_instruction has the side effect of setting the result
1183   // so there's no need to do it here.
1184   operand_for_instruction(x);
1185 }
1186 
1187 
1188 void LIRGenerator::do_Return(Return* x) {
1189   if (compilation()->env()->dtrace_method_probes()) {
1190     BasicTypeList signature;
1191     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1192     signature.append(T_METADATA); // Method*
1193     LIR_OprList* args = new LIR_OprList();
1194     args->append(getThreadPointer());
1195     LIR_Opr meth = new_register(T_METADATA);
1196     __ metadata2reg(method()->constant_encoding(), meth);
1197     args->append(meth);
1198     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr);
1199   }
1200 
1201   if (x->type()->is_void()) {
1202     __ return_op(LIR_OprFact::illegalOpr);
1203   } else {
1204     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1205     LIRItem result(x->result(), this);
1206 
1207     result.load_item_force(reg);
1208     __ return_op(result.result());
1209   }
1210   set_no_result(x);
1211 }
1212 
1213 // Example: ref.get()
1214 // Combination of LoadField and g1 pre-write barrier
1215 void LIRGenerator::do_Reference_get0(Intrinsic* x) {
1216 
1217   const int referent_offset = java_lang_ref_Reference::referent_offset();
1218 
1219   assert(x->number_of_arguments() == 1, "wrong type");
1220 
1221   LIRItem reference(x->argument_at(0), this);
1222   reference.load_item();
1223 
1224   // need to perform the null check on the reference object
1225   CodeEmitInfo* info = nullptr;
1226   if (x->needs_null_check()) {
1227     info = state_for(x);
1228   }
1229 
1230   LIR_Opr result = rlock_result(x, T_OBJECT);
1231   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1232                  reference, LIR_OprFact::intConst(referent_offset), result,
1233                  nullptr, info);
1234 }
1235 
1236 // Example: clazz.isInstance(object)
1237 void LIRGenerator::do_isInstance(Intrinsic* x) {
1238   assert(x->number_of_arguments() == 2, "wrong type");
1239 
1240   LIRItem clazz(x->argument_at(0), this);
1241   LIRItem object(x->argument_at(1), this);
1242   clazz.load_item();
1243   object.load_item();
1244   LIR_Opr result = rlock_result(x);
1245 
1246   // need to perform null check on clazz
1247   if (x->needs_null_check()) {
1248     CodeEmitInfo* info = state_for(x);
1249     __ null_check(clazz.result(), info);
1250   }
1251 
1252   address pd_instanceof_fn = isInstance_entry();
1253   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1254                                      pd_instanceof_fn,
1255                                      x->type(),
1256                                      nullptr); // null CodeEmitInfo results in a leaf call
1257   __ move(call_result, result);
1258 }
1259 
1260 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1261   __ load_klass(obj, klass, null_check_info);
1262 }
1263 
1264 // Example: object.getClass ()
1265 void LIRGenerator::do_getClass(Intrinsic* x) {
1266   assert(x->number_of_arguments() == 1, "wrong type");
1267 
1268   LIRItem rcvr(x->argument_at(0), this);
1269   rcvr.load_item();
1270   LIR_Opr temp = new_register(T_ADDRESS);
1271   LIR_Opr result = rlock_result(x);
1272 
1273   // need to perform the null check on the rcvr
1274   CodeEmitInfo* info = nullptr;
1275   if (x->needs_null_check()) {
1276     info = state_for(x);
1277   }
1278 
1279   LIR_Opr klass = new_register(T_METADATA);
1280   load_klass(rcvr.result(), klass, info);
1281   __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1282   // mirror = ((OopHandle)mirror)->resolve();
1283   access_load(IN_NATIVE, T_OBJECT,
1284               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1285 }
1286 
1287 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1288   assert(x->number_of_arguments() == 3, "wrong type");
1289   LIR_Opr result_reg = rlock_result(x);
1290 
1291   LIRItem value(x->argument_at(2), this);
1292   value.load_item();
1293 
1294   LIR_Opr klass = new_register(T_METADATA);
1295   load_klass(value.result(), klass, nullptr);
1296   LIR_Opr layout = new_register(T_INT);
1297   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1298 
1299   LabelObj* L_done = new LabelObj();
1300   LabelObj* L_array = new LabelObj();
1301 
1302   __ cmp(lir_cond_lessEqual, layout, 0);
1303   __ branch(lir_cond_lessEqual, L_array->label());
1304 
1305   // Instance case: the layout helper gives us instance size almost directly,
1306   // but we need to mask out the _lh_instance_slow_path_bit.
1307 
1308   assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1309 
1310   LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT);
1311   __ logical_and(layout, mask, layout);
1312   __ convert(Bytecodes::_i2l, layout, result_reg);
1313 
1314   __ branch(lir_cond_always, L_done->label());
1315 
1316   // Array case: size is round(header + element_size*arraylength).
1317   // Since arraylength is different for every array instance, we have to
1318   // compute the whole thing at runtime.
1319 
1320   __ branch_destination(L_array->label());
1321 
1322   int round_mask = MinObjAlignmentInBytes - 1;
1323 
1324   // Figure out header sizes first.
1325   LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT);
1326   LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT);
1327 
1328   LIR_Opr header_size = new_register(T_INT);
1329   __ move(layout, header_size);
1330   LIR_Opr tmp = new_register(T_INT);
1331   __ unsigned_shift_right(header_size, hss, header_size, tmp);
1332   __ logical_and(header_size, hsm, header_size);
1333   __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1334 
1335   // Figure out the array length in bytes
1336   assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1337   LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT);
1338   __ logical_and(layout, l2esm, layout);
1339 
1340   LIR_Opr length_int = new_register(T_INT);
1341   __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1342 
1343 #ifdef _LP64
1344   LIR_Opr length = new_register(T_LONG);
1345   __ convert(Bytecodes::_i2l, length_int, length);
1346 #endif
1347 
1348   // Shift-left awkwardness. Normally it is just:
1349   //   __ shift_left(length, layout, length);
1350   // But C1 cannot perform shift_left with non-constant count, so we end up
1351   // doing the per-bit loop dance here. x86_32 also does not know how to shift
1352   // longs, so we have to act on ints.
1353   LabelObj* L_shift_loop = new LabelObj();
1354   LabelObj* L_shift_exit = new LabelObj();
1355 
1356   __ branch_destination(L_shift_loop->label());
1357   __ cmp(lir_cond_equal, layout, 0);
1358   __ branch(lir_cond_equal, L_shift_exit->label());
1359 
1360 #ifdef _LP64
1361   __ shift_left(length, 1, length);
1362 #else
1363   __ shift_left(length_int, 1, length_int);
1364 #endif
1365 
1366   __ sub(layout, LIR_OprFact::intConst(1), layout);
1367 
1368   __ branch(lir_cond_always, L_shift_loop->label());
1369   __ branch_destination(L_shift_exit->label());
1370 
1371   // Mix all up, round, and push to the result.
1372 #ifdef _LP64
1373   LIR_Opr header_size_long = new_register(T_LONG);
1374   __ convert(Bytecodes::_i2l, header_size, header_size_long);
1375   __ add(length, header_size_long, length);
1376   if (round_mask != 0) {
1377     LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG);
1378     __ logical_and(length, round_mask_opr, length);
1379   }
1380   __ move(length, result_reg);
1381 #else
1382   __ add(length_int, header_size, length_int);
1383   if (round_mask != 0) {
1384     LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT);
1385     __ logical_and(length_int, round_mask_opr, length_int);
1386   }
1387   __ convert(Bytecodes::_i2l, length_int, result_reg);
1388 #endif
1389 
1390   __ branch_destination(L_done->label());
1391 }
1392 
1393 void LIRGenerator::do_scopedValueCache(Intrinsic* x) {
1394   do_JavaThreadField(x, JavaThread::scopedValueCache_offset());
1395 }
1396 
1397 // Example: Thread.currentCarrierThread()
1398 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) {
1399   do_JavaThreadField(x, JavaThread::threadObj_offset());
1400 }
1401 
1402 void LIRGenerator::do_vthread(Intrinsic* x) {
1403   do_JavaThreadField(x, JavaThread::vthread_offset());
1404 }
1405 
1406 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) {
1407   assert(x->number_of_arguments() == 0, "wrong type");
1408   LIR_Opr temp = new_register(T_ADDRESS);
1409   LIR_Opr reg = rlock_result(x);
1410   __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp);
1411   access_load(IN_NATIVE, T_OBJECT,
1412               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1413 }
1414 
1415 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1416   assert(x->number_of_arguments() == 1, "wrong type");
1417   LIRItem receiver(x->argument_at(0), this);
1418 
1419   receiver.load_item();
1420   BasicTypeList signature;
1421   signature.append(T_OBJECT); // receiver
1422   LIR_OprList* args = new LIR_OprList();
1423   args->append(receiver.result());
1424   CodeEmitInfo* info = state_for(x, x->state());
1425   call_runtime(&signature, args,
1426                CAST_FROM_FN_PTR(address, Runtime1::entry_for(C1StubId::register_finalizer_id)),
1427                voidType, info);
1428 
1429   set_no_result(x);
1430 }
1431 
1432 
1433 //------------------------local access--------------------------------------
1434 
1435 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1436   if (x->operand()->is_illegal()) {
1437     Constant* c = x->as_Constant();
1438     if (c != nullptr) {
1439       x->set_operand(LIR_OprFact::value_type(c->type()));
1440     } else {
1441       assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local");
1442       // allocate a virtual register for this local or phi
1443       x->set_operand(rlock(x));
1444 #ifdef ASSERT
1445       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr);
1446 #endif
1447     }
1448   }
1449   return x->operand();
1450 }
1451 
1452 #ifdef ASSERT
1453 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1454   if (reg_num < _instruction_for_operand.length()) {
1455     return _instruction_for_operand.at(reg_num);
1456   }
1457   return nullptr;
1458 }
1459 #endif
1460 
1461 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1462   if (_vreg_flags.size_in_bits() == 0) {
1463     BitMap2D temp(100, num_vreg_flags);
1464     _vreg_flags = temp;
1465   }
1466   _vreg_flags.at_put_grow(vreg_num, f, true);
1467 }
1468 
1469 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1470   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1471     return false;
1472   }
1473   return _vreg_flags.at(vreg_num, f);
1474 }
1475 
1476 
1477 // Block local constant handling.  This code is useful for keeping
1478 // unpinned constants and constants which aren't exposed in the IR in
1479 // registers.  Unpinned Constant instructions have their operands
1480 // cleared when the block is finished so that other blocks can't end
1481 // up referring to their registers.
1482 
1483 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1484   assert(!x->is_pinned(), "only for unpinned constants");
1485   _unpinned_constants.append(x);
1486   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1487 }
1488 
1489 
1490 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1491   BasicType t = c->type();
1492   for (int i = 0; i < _constants.length() && !in_conditional_code(); i++) {
1493     LIR_Const* other = _constants.at(i);
1494     if (t == other->type()) {
1495       switch (t) {
1496       case T_INT:
1497       case T_FLOAT:
1498         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1499         break;
1500       case T_LONG:
1501       case T_DOUBLE:
1502         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1503         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1504         break;
1505       case T_OBJECT:
1506         if (c->as_jobject() != other->as_jobject()) continue;
1507         break;
1508       default:
1509         break;
1510       }
1511       return _reg_for_constants.at(i);
1512     }
1513   }
1514 
1515   LIR_Opr result = new_register(t);
1516   __ move((LIR_Opr)c, result);
1517   if (!in_conditional_code()) {
1518     _constants.append(c);
1519     _reg_for_constants.append(result);
1520   }
1521   return result;
1522 }
1523 
1524 void LIRGenerator::set_in_conditional_code(bool v) {
1525   assert(v != _in_conditional_code, "must change state");
1526   _in_conditional_code = v;
1527 }
1528 
1529 
1530 //------------------------field access--------------------------------------
1531 
1532 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1533   assert(x->number_of_arguments() == 4, "wrong type");
1534   LIRItem obj   (x->argument_at(0), this);  // object
1535   LIRItem offset(x->argument_at(1), this);  // offset of field
1536   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1537   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1538   assert(obj.type()->tag() == objectTag, "invalid type");
1539   assert(cmp.type()->tag() == type->tag(), "invalid type");
1540   assert(val.type()->tag() == type->tag(), "invalid type");
1541 
1542   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1543                                             obj, offset, cmp, val);
1544   set_result(x, result);
1545 }
1546 
1547 // Returns a int/long value with the null marker bit set
1548 static LIR_Opr null_marker_mask(BasicType bt, ciField* field) {
1549   assert(field->null_marker_offset() != -1, "field does not have null marker");
1550   int nm_offset = field->null_marker_offset() - field->offset_in_bytes();
1551   jlong null_marker = 1ULL << (nm_offset << LogBitsPerByte);
1552   return (bt == T_LONG) ? LIR_OprFact::longConst(null_marker) : LIR_OprFact::intConst(null_marker);
1553 }
1554 
1555 // Comment copied form templateTable_i486.cpp
1556 // ----------------------------------------------------------------------------
1557 // Volatile variables demand their effects be made known to all CPU's in
1558 // order.  Store buffers on most chips allow reads & writes to reorder; the
1559 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1560 // memory barrier (i.e., it's not sufficient that the interpreter does not
1561 // reorder volatile references, the hardware also must not reorder them).
1562 //
1563 // According to the new Java Memory Model (JMM):
1564 // (1) All volatiles are serialized wrt to each other.
1565 // ALSO reads & writes act as acquire & release, so:
1566 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1567 // the read float up to before the read.  It's OK for non-volatile memory refs
1568 // that happen before the volatile read to float down below it.
1569 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1570 // that happen BEFORE the write float down to after the write.  It's OK for
1571 // non-volatile memory refs that happen after the volatile write to float up
1572 // before it.
1573 //
1574 // We only put in barriers around volatile refs (they are expensive), not
1575 // _between_ memory refs (that would require us to track the flavor of the
1576 // previous memory refs).  Requirements (2) and (3) require some barriers
1577 // before volatile stores and after volatile loads.  These nearly cover
1578 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1579 // case is placed after volatile-stores although it could just as well go
1580 // before volatile-loads.
1581 
1582 
1583 void LIRGenerator::do_StoreField(StoreField* x) {
1584   ciField* field = x->field();
1585   bool needs_patching = x->needs_patching();
1586   bool is_volatile = field->is_volatile();
1587   BasicType field_type = x->field_type();
1588 
1589   CodeEmitInfo* info = nullptr;
1590   if (needs_patching) {
1591     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1592     info = state_for(x, x->state_before());
1593   } else if (x->needs_null_check()) {
1594     NullCheck* nc = x->explicit_null_check();
1595     if (nc == nullptr) {
1596       info = state_for(x);
1597     } else {
1598       info = state_for(nc);
1599     }
1600   }
1601 
1602   LIRItem object(x->obj(), this);
1603   LIRItem value(x->value(),  this);
1604 
1605   object.load_item();
1606 
1607   if (field->is_flat()) {
1608     value.load_item();
1609   } else {
1610     if (is_volatile || needs_patching) {
1611       // load item if field is volatile (fewer special cases for volatiles)
1612       // load item if field not initialized
1613       // load item if field not constant
1614       // because of code patching we cannot inline constants
1615       if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1616         value.load_byte_item();
1617       } else  {
1618         value.load_item();
1619       }
1620     } else {
1621       value.load_for_store(field_type);
1622     }
1623   }
1624 
1625   set_no_result(x);
1626 
1627 #ifndef PRODUCT
1628   if (PrintNotLoaded && needs_patching) {
1629     tty->print_cr("   ###class not loaded at store_%s bci %d",
1630                   x->is_static() ?  "static" : "field", x->printable_bci());
1631   }
1632 #endif
1633 
1634   if (x->needs_null_check() &&
1635       (needs_patching ||
1636        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1637     // Emit an explicit null check because the offset is too large.
1638     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1639     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1640     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1641   }
1642 
1643   DecoratorSet decorators = IN_HEAP;
1644   if (is_volatile) {
1645     decorators |= MO_SEQ_CST;
1646   }
1647   if (needs_patching) {
1648     decorators |= C1_NEEDS_PATCHING;
1649   }
1650 
1651   if (field->is_flat()) {
1652     ciInlineKlass* vk = field->type()->as_inline_klass();
1653 
1654 #ifdef ASSERT
1655     bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1;
1656     bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
1657     assert(needs_atomic_access, "No atomic access required");
1658     // ZGC does not support compressed oops, so only one oop can be in the payload which is written by a "normal" oop store.
1659     assert(!vk->contains_oops() || !UseZGC, "ZGC does not support embedded oops in flat fields");
1660 #endif
1661 
1662     // Zero the payload
1663     BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free());
1664     LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT);
1665     LIR_Opr zero = (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0);
1666     __ move(zero, payload);
1667 
1668     bool is_constant_null = value.is_constant() && value.value()->is_null_obj();
1669     if (!is_constant_null) {
1670       LabelObj* L_isNull = new LabelObj();
1671       bool needs_null_check = !value.is_constant() || value.value()->is_null_obj();
1672       if (needs_null_check) {
1673         __ cmp(lir_cond_equal, value.result(), LIR_OprFact::oopConst(nullptr));
1674         __ branch(lir_cond_equal, L_isNull->label());
1675       }
1676       // Load payload (if not empty) and set null marker (if not null-free)
1677       if (!vk->is_empty()) {
1678         access_load_at(decorators, bt, value, LIR_OprFact::intConst(vk->payload_offset()), payload);
1679       }
1680       if (!field->is_null_free()) {
1681         __ logical_or(payload, null_marker_mask(bt, field), payload);
1682       }
1683       if (needs_null_check) {
1684         __ branch_destination(L_isNull->label());
1685       }
1686     }
1687     access_store_at(decorators, bt, object, LIR_OprFact::intConst(x->offset()), payload,
1688                     // Make sure to emit an implicit null check and pass the information
1689                     // that this is a flat store that might require gc barriers for oop fields.
1690                     info != nullptr ? new CodeEmitInfo(info) : nullptr, info, vk);
1691     return;
1692   }
1693 
1694   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1695                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1696 }
1697 
1698 // FIXME -- I can't find any other way to pass an address to access_load_at().
1699 class TempResolvedAddress: public Instruction {
1700  public:
1701   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1702     set_operand(addr);
1703   }
1704   virtual void input_values_do(ValueVisitor*) {}
1705   virtual void visit(InstructionVisitor* v)   {}
1706   virtual const char* name() const  { return "TempResolvedAddress"; }
1707 };
1708 
1709 LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) {
1710   ciType* array_type = array.value()->declared_type();
1711   ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass();
1712   assert(flat_array_klass->is_loaded(), "must be");
1713 
1714   int array_header_size = flat_array_klass->array_header_in_bytes();
1715   int shift = flat_array_klass->log2_element_size();
1716 
1717 #ifndef _LP64
1718   LIR_Opr index_op = new_register(T_INT);
1719   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1720   // the top (shift+1) bits of index_op must be zero, or
1721   // else throw ArrayIndexOutOfBoundsException
1722   if (index.result()->is_constant()) {
1723     jint const_index = index.result()->as_jint();
1724     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1725   } else {
1726     __ shift_left(index_op, shift, index.result());
1727   }
1728 #else
1729   LIR_Opr index_op = new_register(T_LONG);
1730   if (index.result()->is_constant()) {
1731     jint const_index = index.result()->as_jint();
1732     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1733   } else {
1734     __ convert(Bytecodes::_i2l, index.result(), index_op);
1735     // Need to shift manually, as LIR_Address can scale only up to 3.
1736     __ shift_left(index_op, shift, index_op);
1737   }
1738 #endif
1739 
1740   LIR_Opr elm_op = new_pointer_register();
1741   LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS);
1742   __ leal(LIR_OprFact::address(elm_address), elm_op);
1743   return elm_op;
1744 }
1745 
1746 void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, int sub_offset) {
1747   assert(field != nullptr, "Need a subelement type specified");
1748 
1749   // Find the starting address of the source (inside the array)
1750   LIR_Opr elm_op = get_and_load_element_address(array, index);
1751 
1752   BasicType subelt_type = field->type()->basic_type();
1753   TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op);
1754   LIRItem elm_item(elm_resolved_addr, this);
1755 
1756   DecoratorSet decorators = IN_HEAP;
1757   access_load_at(decorators, subelt_type,
1758                      elm_item, LIR_OprFact::intConst(sub_offset), result,
1759                      nullptr, nullptr);
1760 }
1761 
1762 void LIRGenerator::access_flat_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item,
1763                                           ciField* field, int sub_offset) {
1764   assert(sub_offset == 0 || field != nullptr, "Sanity check");
1765 
1766   // Find the starting address of the source (inside the array)
1767   LIR_Opr elm_op = get_and_load_element_address(array, index);
1768 
1769   ciInlineKlass* elem_klass = nullptr;
1770   if (field != nullptr) {
1771     elem_klass = field->type()->as_inline_klass();
1772   } else {
1773     elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
1774   }
1775   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1776     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1777     assert(!inner_field->is_flat(), "flat fields must have been expanded");
1778     int obj_offset = inner_field->offset_in_bytes();
1779     int elm_offset = obj_offset - elem_klass->payload_offset() + sub_offset; // object header is not stored in array.
1780     BasicType field_type = inner_field->type()->basic_type();
1781 
1782     // Types which are smaller than int are still passed in an int register.
1783     BasicType reg_type = field_type;
1784     switch (reg_type) {
1785     case T_BYTE:
1786     case T_BOOLEAN:
1787     case T_SHORT:
1788     case T_CHAR:
1789       reg_type = T_INT;
1790       break;
1791     default:
1792       break;
1793     }
1794 
1795     LIR_Opr temp = new_register(reg_type);
1796     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1797     LIRItem elm_item(elm_resolved_addr, this);
1798 
1799     DecoratorSet decorators = IN_HEAP;
1800     if (is_load) {
1801       access_load_at(decorators, field_type,
1802                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1803                      nullptr, nullptr);
1804       access_store_at(decorators, field_type,
1805                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1806                       nullptr, nullptr);
1807     } else {
1808       access_load_at(decorators, field_type,
1809                      obj_item, LIR_OprFact::intConst(obj_offset), temp,
1810                      nullptr, nullptr);
1811       access_store_at(decorators, field_type,
1812                       elm_item, LIR_OprFact::intConst(elm_offset), temp,
1813                       nullptr, nullptr);
1814     }
1815   }
1816 }
1817 
1818 void LIRGenerator::check_flat_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) {
1819   LIR_Opr tmp = new_register(T_METADATA);
1820   __ check_flat_array(array, value, tmp, slow_path);
1821 }
1822 
1823 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) {
1824   LabelObj* L_end = new LabelObj();
1825   LIR_Opr tmp = new_register(T_METADATA);
1826   __ check_null_free_array(array.result(), tmp);
1827   __ branch(lir_cond_equal, L_end->label());
1828   __ null_check(value.result(), info);
1829   __ branch_destination(L_end->label());
1830 }
1831 
1832 bool LIRGenerator::needs_flat_array_store_check(StoreIndexed* x) {
1833   if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
1834     ciType* type = x->value()->declared_type();
1835     if (type != nullptr && type->is_klass()) {
1836       ciKlass* klass = type->as_klass();
1837       if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->maybe_flat_in_array())) {
1838         // This is known to be a non-flat object. If the array is a flat array,
1839         // it will be caught by the code generated by array_store_check().
1840         return false;
1841       }
1842     }
1843     // We're not 100% sure, so let's do the flat_array_store_check.
1844     return true;
1845   }
1846   return false;
1847 }
1848 
1849 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) {
1850   return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array();
1851 }
1852 
1853 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1854   assert(x->is_pinned(),"");
1855   assert(x->elt_type() != T_ARRAY, "never used");
1856   bool is_loaded_flat_array = x->array()->is_loaded_flat_array();
1857   bool needs_range_check = x->compute_needs_range_check();
1858   bool use_length = x->length() != nullptr;
1859   bool obj_store = is_reference_type(x->elt_type());
1860   bool needs_store_check = obj_store && !(is_loaded_flat_array && x->is_exact_flat_array_store()) &&
1861                                         (x->value()->as_Constant() == nullptr ||
1862                                          !get_jobject_constant(x->value())->is_null_object());
1863 
1864   LIRItem array(x->array(), this);
1865   LIRItem index(x->index(), this);
1866   LIRItem value(x->value(), this);
1867   LIRItem length(this);
1868 
1869   array.load_item();
1870   index.load_nonconstant();
1871 
1872   if (use_length && needs_range_check) {
1873     length.set_instruction(x->length());
1874     length.load_item();
1875   }
1876 
1877   if (needs_store_check || x->check_boolean()
1878       || is_loaded_flat_array || needs_flat_array_store_check(x) || needs_null_free_array_store_check(x)) {
1879     value.load_item();
1880   } else {
1881     value.load_for_store(x->elt_type());
1882   }
1883 
1884   set_no_result(x);
1885 
1886   // the CodeEmitInfo must be duplicated for each different
1887   // LIR-instruction because spilling can occur anywhere between two
1888   // instructions and so the debug information must be different
1889   CodeEmitInfo* range_check_info = state_for(x);
1890   CodeEmitInfo* null_check_info = nullptr;
1891   if (x->needs_null_check()) {
1892     null_check_info = new CodeEmitInfo(range_check_info);
1893   }
1894 
1895   if (needs_range_check) {
1896     if (use_length) {
1897       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1898       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1899     } else {
1900       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1901       // range_check also does the null check
1902       null_check_info = nullptr;
1903     }
1904   }
1905 
1906   if (x->should_profile()) {
1907     if (is_loaded_flat_array) {
1908       // No need to profile a store to a flat array of known type. This can happen if
1909       // the type only became known after optimizations (for example, after the PhiSimplifier).
1910       x->set_should_profile(false);
1911     } else {
1912       int bci = x->profiled_bci();
1913       ciMethodData* md = x->profiled_method()->method_data();
1914       assert(md != nullptr, "Sanity");
1915       ciProfileData* data = md->bci_to_data(bci);
1916       assert(data != nullptr && data->is_ArrayStoreData(), "incorrect profiling entry");
1917       ciArrayStoreData* store_data = (ciArrayStoreData*)data;
1918       profile_array_type(x, md, store_data);
1919       assert(store_data->is_ArrayStoreData(), "incorrect profiling entry");
1920       if (x->array()->maybe_null_free_array()) {
1921         profile_null_free_array(array, md, store_data);
1922       }
1923     }
1924   }
1925 
1926   if (GenerateArrayStoreCheck && needs_store_check) {
1927     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1928     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1929   }
1930 
1931   if (is_loaded_flat_array) {
1932     // TODO 8350865 This is currently dead code
1933     if (!x->value()->is_null_free()) {
1934       __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1935     }
1936     // If array element is an empty inline type, no need to copy anything
1937     if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
1938       access_flat_array(false, array, index, value);
1939     }
1940   } else {
1941     StoreFlattenedArrayStub* slow_path = nullptr;
1942 
1943     if (needs_flat_array_store_check(x)) {
1944       // Check if we indeed have a flat array
1945       index.load_item();
1946       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before()));
1947       check_flat_array(array.result(), value.result(), slow_path);
1948       set_in_conditional_code(true);
1949     } else if (needs_null_free_array_store_check(x)) {
1950       CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1951       check_null_free_array(array, value, info);
1952     }
1953 
1954     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1955     if (x->check_boolean()) {
1956       decorators |= C1_MASK_BOOLEAN;
1957     }
1958 
1959     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), nullptr, null_check_info);
1960     if (slow_path != nullptr) {
1961       __ branch_destination(slow_path->continuation());
1962       set_in_conditional_code(false);
1963     }
1964   }
1965 }
1966 
1967 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1968                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1969                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1970   decorators |= ACCESS_READ;
1971   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1972   if (access.is_raw()) {
1973     _barrier_set->BarrierSetC1::load_at(access, result);
1974   } else {
1975     _barrier_set->load_at(access, result);
1976   }
1977 }
1978 
1979 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1980                                LIR_Opr addr, LIR_Opr result) {
1981   decorators |= ACCESS_READ;
1982   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1983   access.set_resolved_addr(addr);
1984   if (access.is_raw()) {
1985     _barrier_set->BarrierSetC1::load(access, result);
1986   } else {
1987     _barrier_set->load(access, result);
1988   }
1989 }
1990 
1991 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1992                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1993                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info,
1994                                    ciInlineKlass* vk) {
1995   decorators |= ACCESS_WRITE;
1996   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info, vk);
1997   if (access.is_raw()) {
1998     _barrier_set->BarrierSetC1::store_at(access, value);
1999   } else {
2000     _barrier_set->store_at(access, value);
2001   }
2002 }
2003 
2004 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
2005                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
2006   decorators |= ACCESS_READ;
2007   decorators |= ACCESS_WRITE;
2008   // Atomic operations are SEQ_CST by default
2009   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2010   LIRAccess access(this, decorators, base, offset, type);
2011   if (access.is_raw()) {
2012     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
2013   } else {
2014     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
2015   }
2016 }
2017 
2018 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
2019                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
2020   decorators |= ACCESS_READ;
2021   decorators |= ACCESS_WRITE;
2022   // Atomic operations are SEQ_CST by default
2023   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2024   LIRAccess access(this, decorators, base, offset, type);
2025   if (access.is_raw()) {
2026     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
2027   } else {
2028     return _barrier_set->atomic_xchg_at(access, value);
2029   }
2030 }
2031 
2032 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
2033                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
2034   decorators |= ACCESS_READ;
2035   decorators |= ACCESS_WRITE;
2036   // Atomic operations are SEQ_CST by default
2037   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2038   LIRAccess access(this, decorators, base, offset, type);
2039   if (access.is_raw()) {
2040     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
2041   } else {
2042     return _barrier_set->atomic_add_at(access, value);
2043   }
2044 }
2045 
2046 void LIRGenerator::do_LoadField(LoadField* x) {
2047   ciField* field = x->field();
2048   bool needs_patching = x->needs_patching();
2049   bool is_volatile = field->is_volatile();
2050   BasicType field_type = x->field_type();
2051 
2052   CodeEmitInfo* info = nullptr;
2053   if (needs_patching) {
2054     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
2055     info = state_for(x, x->state_before());
2056   } else if (x->needs_null_check()) {
2057     NullCheck* nc = x->explicit_null_check();
2058     if (nc == nullptr) {
2059       info = state_for(x);
2060     } else {
2061       info = state_for(nc);
2062     }
2063   }
2064 
2065   LIRItem object(x->obj(), this);
2066 
2067   object.load_item();
2068 
2069 #ifndef PRODUCT
2070   if (PrintNotLoaded && needs_patching) {
2071     tty->print_cr("   ###class not loaded at load_%s bci %d",
2072                   x->is_static() ?  "static" : "field", x->printable_bci());
2073   }
2074 #endif
2075 
2076   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
2077   if (x->needs_null_check() &&
2078       (needs_patching ||
2079        MacroAssembler::needs_explicit_null_check(x->offset()) ||
2080        stress_deopt)) {
2081     LIR_Opr obj = object.result();
2082     if (stress_deopt) {
2083       obj = new_register(T_OBJECT);
2084       __ move(LIR_OprFact::oopConst(nullptr), obj);
2085     }
2086     // Emit an explicit null check because the offset is too large.
2087     // If the class is not loaded and the object is null, we need to deoptimize to throw a
2088     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
2089     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
2090   }
2091 
2092   DecoratorSet decorators = IN_HEAP;
2093   if (is_volatile) {
2094     decorators |= MO_SEQ_CST;
2095   }
2096   if (needs_patching) {
2097     decorators |= C1_NEEDS_PATCHING;
2098   }
2099 
2100   if (field->is_flat()) {
2101     ciInlineKlass* vk = field->type()->as_inline_klass();
2102 #ifdef ASSERT
2103     bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1;
2104     bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
2105     assert(needs_atomic_access, "No atomic access required");
2106     assert(x->state_before() != nullptr, "Needs state before");
2107 #endif
2108 
2109     // Allocate buffer (we can't easily do this conditionally on the null check below
2110     // because branches added in the LIR are opaque to the register allocator).
2111     NewInstance* buffer = new NewInstance(vk, x->state_before(), false, true);
2112     do_NewInstance(buffer);
2113     LIRItem dest(buffer, this);
2114 
2115     // Copy the payload to the buffer
2116     BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free());
2117     LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT);
2118     access_load_at(decorators, bt, object, LIR_OprFact::intConst(field->offset_in_bytes()), payload,
2119                    // Make sure to emit an implicit null check
2120                    info ? new CodeEmitInfo(info) : nullptr, info);
2121     access_store_at(decorators, bt, dest, LIR_OprFact::intConst(vk->payload_offset()), payload);
2122 
2123     if (field->is_null_free()) {
2124       set_result(x, buffer->operand());
2125     } else {
2126       // Check the null marker and set result to null if it's not set
2127       __ logical_and(payload, null_marker_mask(bt, field), payload);
2128       __ cmp(lir_cond_equal, payload, (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0));
2129       __ cmove(lir_cond_equal, LIR_OprFact::oopConst(nullptr), buffer->operand(), rlock_result(x), T_OBJECT);
2130     }
2131 
2132     // Ensure the copy is visible before any subsequent store that publishes the buffer.
2133     __ membar_storestore();
2134     return;
2135   }
2136 
2137   LIR_Opr result = rlock_result(x, field_type);
2138   access_load_at(decorators, field_type,
2139                  object, LIR_OprFact::intConst(x->offset()), result,
2140                  info ? new CodeEmitInfo(info) : nullptr, info);
2141 }
2142 
2143 // int/long jdk.internal.util.Preconditions.checkIndex
2144 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
2145   assert(x->number_of_arguments() == 3, "wrong type");
2146   LIRItem index(x->argument_at(0), this);
2147   LIRItem length(x->argument_at(1), this);
2148   LIRItem oobef(x->argument_at(2), this);
2149 
2150   index.load_item();
2151   length.load_item();
2152   oobef.load_item();
2153 
2154   LIR_Opr result = rlock_result(x);
2155   // x->state() is created from copy_state_for_exception, it does not contains arguments
2156   // we should prepare them before entering into interpreter mode due to deoptimization.
2157   ValueStack* state = x->state();
2158   for (int i = 0; i < x->number_of_arguments(); i++) {
2159     Value arg = x->argument_at(i);
2160     state->push(arg->type(), arg);
2161   }
2162   CodeEmitInfo* info = state_for(x, state);
2163 
2164   LIR_Opr len = length.result();
2165   LIR_Opr zero;
2166   if (type == T_INT) {
2167     zero = LIR_OprFact::intConst(0);
2168     if (length.result()->is_constant()){
2169       len = LIR_OprFact::intConst(length.result()->as_jint());
2170     }
2171   } else {
2172     assert(type == T_LONG, "sanity check");
2173     zero = LIR_OprFact::longConst(0);
2174     if (length.result()->is_constant()){
2175       len = LIR_OprFact::longConst(length.result()->as_jlong());
2176     }
2177   }
2178   // C1 can not handle the case that comparing index with constant value while condition
2179   // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
2180   LIR_Opr zero_reg = new_register(type);
2181   __ move(zero, zero_reg);
2182 #if defined(X86) && !defined(_LP64)
2183   // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
2184   LIR_Opr index_copy = new_register(index.type());
2185   // index >= 0
2186   __ move(index.result(), index_copy);
2187   __ cmp(lir_cond_less, index_copy, zero_reg);
2188   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2189                                                     Deoptimization::Action_make_not_entrant));
2190   // index < length
2191   __ move(index.result(), index_copy);
2192   __ cmp(lir_cond_greaterEqual, index_copy, len);
2193   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2194                                                             Deoptimization::Action_make_not_entrant));
2195 #else
2196   // index >= 0
2197   __ cmp(lir_cond_less, index.result(), zero_reg);
2198   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2199                                                     Deoptimization::Action_make_not_entrant));
2200   // index < length
2201   __ cmp(lir_cond_greaterEqual, index.result(), len);
2202   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2203                                                             Deoptimization::Action_make_not_entrant));
2204 #endif
2205   __ move(index.result(), result);
2206 }
2207 
2208 //------------------------array access--------------------------------------
2209 
2210 
2211 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
2212   LIRItem array(x->array(), this);
2213   array.load_item();
2214   LIR_Opr reg = rlock_result(x);
2215 
2216   CodeEmitInfo* info = nullptr;
2217   if (x->needs_null_check()) {
2218     NullCheck* nc = x->explicit_null_check();
2219     if (nc == nullptr) {
2220       info = state_for(x);
2221     } else {
2222       info = state_for(nc);
2223     }
2224     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
2225       LIR_Opr obj = new_register(T_OBJECT);
2226       __ move(LIR_OprFact::oopConst(nullptr), obj);
2227       __ null_check(obj, new CodeEmitInfo(info));
2228     }
2229   }
2230   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
2231 }
2232 
2233 
2234 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
2235   bool use_length = x->length() != nullptr;
2236   LIRItem array(x->array(), this);
2237   LIRItem index(x->index(), this);
2238   LIRItem length(this);
2239   bool needs_range_check = x->compute_needs_range_check();
2240 
2241   if (use_length && needs_range_check) {
2242     length.set_instruction(x->length());
2243     length.load_item();
2244   }
2245 
2246   array.load_item();
2247   if (index.is_constant() && can_inline_as_constant(x->index())) {
2248     // let it be a constant
2249     index.dont_load_item();
2250   } else {
2251     index.load_item();
2252   }
2253 
2254   CodeEmitInfo* range_check_info = state_for(x);
2255   CodeEmitInfo* null_check_info = nullptr;
2256   if (x->needs_null_check()) {
2257     NullCheck* nc = x->explicit_null_check();
2258     if (nc != nullptr) {
2259       null_check_info = state_for(nc);
2260     } else {
2261       null_check_info = range_check_info;
2262     }
2263     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2264       LIR_Opr obj = new_register(T_OBJECT);
2265       __ move(LIR_OprFact::oopConst(nullptr), obj);
2266       __ null_check(obj, new CodeEmitInfo(null_check_info));
2267     }
2268   }
2269 
2270   if (needs_range_check) {
2271     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2272       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2273     } else if (use_length) {
2274       // TODO: use a (modified) version of array_range_check that does not require a
2275       //       constant length to be loaded to a register
2276       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2277       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2278     } else {
2279       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2280       // The range check performs the null check, so clear it out for the load
2281       null_check_info = nullptr;
2282     }
2283   }
2284 
2285   ciMethodData* md = nullptr;
2286   ciArrayLoadData* load_data = nullptr;
2287   if (x->should_profile()) {
2288     if (x->array()->is_loaded_flat_array()) {
2289       // No need to profile a load from a flat array of known type. This can happen if
2290       // the type only became known after optimizations (for example, after the PhiSimplifier).
2291       x->set_should_profile(false);
2292     } else {
2293       int bci = x->profiled_bci();
2294       md = x->profiled_method()->method_data();
2295       assert(md != nullptr, "Sanity");
2296       ciProfileData* data = md->bci_to_data(bci);
2297       assert(data != nullptr && data->is_ArrayLoadData(), "incorrect profiling entry");
2298       load_data = (ciArrayLoadData*)data;
2299       profile_array_type(x, md, load_data);
2300     }
2301   }
2302 
2303   Value element;
2304   if (x->vt() != nullptr) {
2305     assert(x->array()->is_loaded_flat_array(), "must be");
2306     // Find the destination address (of the NewInlineTypeInstance).
2307     LIRItem obj_item(x->vt(), this);
2308 
2309     access_flat_array(true, array, index, obj_item,
2310                       x->delayed() == nullptr ? 0 : x->delayed()->field(),
2311                       x->delayed() == nullptr ? 0 : x->delayed()->offset());
2312     set_no_result(x);
2313   } else if (x->delayed() != nullptr) {
2314     assert(x->array()->is_loaded_flat_array(), "must be");
2315     LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type());
2316     access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset());
2317   } else {
2318     LIR_Opr result = rlock_result(x, x->elt_type());
2319     LoadFlattenedArrayStub* slow_path = nullptr;
2320 
2321     if (x->should_profile() && x->array()->maybe_null_free_array()) {
2322       profile_null_free_array(array, md, load_data);
2323     }
2324 
2325     if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
2326       assert(x->delayed() == nullptr, "Delayed LoadIndexed only apply to loaded_flat_arrays");
2327       index.load_item();
2328       // if we are loading from a flat array, load it using a runtime call
2329       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before()));
2330       check_flat_array(array.result(), LIR_OprFact::illegalOpr, slow_path);
2331       set_in_conditional_code(true);
2332     }
2333 
2334     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2335     access_load_at(decorators, x->elt_type(),
2336                    array, index.result(), result,
2337                    nullptr, null_check_info);
2338 
2339     if (slow_path != nullptr) {
2340       __ branch_destination(slow_path->continuation());
2341       set_in_conditional_code(false);
2342     }
2343 
2344     element = x;
2345   }
2346 
2347   if (x->should_profile()) {
2348     profile_element_type(element, md, load_data);
2349   }
2350 }
2351 
2352 
2353 void LIRGenerator::do_NullCheck(NullCheck* x) {
2354   if (x->can_trap()) {
2355     LIRItem value(x->obj(), this);
2356     value.load_item();
2357     CodeEmitInfo* info = state_for(x);
2358     __ null_check(value.result(), info);
2359   }
2360 }
2361 
2362 
2363 void LIRGenerator::do_TypeCast(TypeCast* x) {
2364   LIRItem value(x->obj(), this);
2365   value.load_item();
2366   // the result is the same as from the node we are casting
2367   set_result(x, value.result());
2368 }
2369 
2370 
2371 void LIRGenerator::do_Throw(Throw* x) {
2372   LIRItem exception(x->exception(), this);
2373   exception.load_item();
2374   set_no_result(x);
2375   LIR_Opr exception_opr = exception.result();
2376   CodeEmitInfo* info = state_for(x, x->state());
2377 
2378 #ifndef PRODUCT
2379   if (PrintC1Statistics) {
2380     increment_counter(Runtime1::throw_count_address(), T_INT);
2381   }
2382 #endif
2383 
2384   // check if the instruction has an xhandler in any of the nested scopes
2385   bool unwind = false;
2386   if (info->exception_handlers()->length() == 0) {
2387     // this throw is not inside an xhandler
2388     unwind = true;
2389   } else {
2390     // get some idea of the throw type
2391     bool type_is_exact = true;
2392     ciType* throw_type = x->exception()->exact_type();
2393     if (throw_type == nullptr) {
2394       type_is_exact = false;
2395       throw_type = x->exception()->declared_type();
2396     }
2397     if (throw_type != nullptr && throw_type->is_instance_klass()) {
2398       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2399       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2400     }
2401   }
2402 
2403   // do null check before moving exception oop into fixed register
2404   // to avoid a fixed interval with an oop during the null check.
2405   // Use a copy of the CodeEmitInfo because debug information is
2406   // different for null_check and throw.
2407   if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) {
2408     // if the exception object wasn't created using new then it might be null.
2409     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2410   }
2411 
2412   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2413     // we need to go through the exception lookup path to get JVMTI
2414     // notification done
2415     unwind = false;
2416   }
2417 
2418   // move exception oop into fixed register
2419   __ move(exception_opr, exceptionOopOpr());
2420 
2421   if (unwind) {
2422     __ unwind_exception(exceptionOopOpr());
2423   } else {
2424     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2425   }
2426 }
2427 
2428 
2429 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2430   BasicType type = x->basic_type();
2431   LIRItem src(x->object(), this);
2432   LIRItem off(x->offset(), this);
2433 
2434   off.load_item();
2435   src.load_item();
2436 
2437   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2438 
2439   if (x->is_volatile()) {
2440     decorators |= MO_SEQ_CST;
2441   }
2442   if (type == T_BOOLEAN) {
2443     decorators |= C1_MASK_BOOLEAN;
2444   }
2445   if (is_reference_type(type)) {
2446     decorators |= ON_UNKNOWN_OOP_REF;
2447   }
2448 
2449   LIR_Opr result = rlock_result(x, type);
2450   if (!x->is_raw()) {
2451     access_load_at(decorators, type, src, off.result(), result);
2452   } else {
2453     // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2454     // It reads the value from [src + offset] directly.
2455 #ifdef _LP64
2456     LIR_Opr offset = new_register(T_LONG);
2457     __ convert(Bytecodes::_i2l, off.result(), offset);
2458 #else
2459     LIR_Opr offset = off.result();
2460 #endif
2461     LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2462     if (is_reference_type(type)) {
2463       __ move_wide(addr, result);
2464     } else {
2465       __ move(addr, result);
2466     }
2467   }
2468 }
2469 
2470 
2471 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2472   BasicType type = x->basic_type();
2473   LIRItem src(x->object(), this);
2474   LIRItem off(x->offset(), this);
2475   LIRItem data(x->value(), this);
2476 
2477   src.load_item();
2478   if (type == T_BOOLEAN || type == T_BYTE) {
2479     data.load_byte_item();
2480   } else {
2481     data.load_item();
2482   }
2483   off.load_item();
2484 
2485   set_no_result(x);
2486 
2487   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2488   if (is_reference_type(type)) {
2489     decorators |= ON_UNKNOWN_OOP_REF;
2490   }
2491   if (x->is_volatile()) {
2492     decorators |= MO_SEQ_CST;
2493   }
2494   access_store_at(decorators, type, src, off.result(), data.result());
2495 }
2496 
2497 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2498   BasicType type = x->basic_type();
2499   LIRItem src(x->object(), this);
2500   LIRItem off(x->offset(), this);
2501   LIRItem value(x->value(), this);
2502 
2503   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2504 
2505   if (is_reference_type(type)) {
2506     decorators |= ON_UNKNOWN_OOP_REF;
2507   }
2508 
2509   LIR_Opr result;
2510   if (x->is_add()) {
2511     result = access_atomic_add_at(decorators, type, src, off, value);
2512   } else {
2513     result = access_atomic_xchg_at(decorators, type, src, off, value);
2514   }
2515   set_result(x, result);
2516 }
2517 
2518 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2519   int lng = x->length();
2520 
2521   for (int i = 0; i < lng; i++) {
2522     C1SwitchRange* one_range = x->at(i);
2523     int low_key = one_range->low_key();
2524     int high_key = one_range->high_key();
2525     BlockBegin* dest = one_range->sux();
2526     if (low_key == high_key) {
2527       __ cmp(lir_cond_equal, value, low_key);
2528       __ branch(lir_cond_equal, dest);
2529     } else if (high_key - low_key == 1) {
2530       __ cmp(lir_cond_equal, value, low_key);
2531       __ branch(lir_cond_equal, dest);
2532       __ cmp(lir_cond_equal, value, high_key);
2533       __ branch(lir_cond_equal, dest);
2534     } else {
2535       LabelObj* L = new LabelObj();
2536       __ cmp(lir_cond_less, value, low_key);
2537       __ branch(lir_cond_less, L->label());
2538       __ cmp(lir_cond_lessEqual, value, high_key);
2539       __ branch(lir_cond_lessEqual, dest);
2540       __ branch_destination(L->label());
2541     }
2542   }
2543   __ jump(default_sux);
2544 }
2545 
2546 
2547 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2548   SwitchRangeList* res = new SwitchRangeList();
2549   int len = x->length();
2550   if (len > 0) {
2551     BlockBegin* sux = x->sux_at(0);
2552     int low = x->lo_key();
2553     BlockBegin* default_sux = x->default_sux();
2554     C1SwitchRange* range = new C1SwitchRange(low, sux);
2555     for (int i = 0; i < len; i++) {
2556       int key = low + i;
2557       BlockBegin* new_sux = x->sux_at(i);
2558       if (sux == new_sux) {
2559         // still in same range
2560         range->set_high_key(key);
2561       } else {
2562         // skip tests which explicitly dispatch to the default
2563         if (sux != default_sux) {
2564           res->append(range);
2565         }
2566         range = new C1SwitchRange(key, new_sux);
2567       }
2568       sux = new_sux;
2569     }
2570     if (res->length() == 0 || res->last() != range)  res->append(range);
2571   }
2572   return res;
2573 }
2574 
2575 
2576 // we expect the keys to be sorted by increasing value
2577 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2578   SwitchRangeList* res = new SwitchRangeList();
2579   int len = x->length();
2580   if (len > 0) {
2581     BlockBegin* default_sux = x->default_sux();
2582     int key = x->key_at(0);
2583     BlockBegin* sux = x->sux_at(0);
2584     C1SwitchRange* range = new C1SwitchRange(key, sux);
2585     for (int i = 1; i < len; i++) {
2586       int new_key = x->key_at(i);
2587       BlockBegin* new_sux = x->sux_at(i);
2588       if (key+1 == new_key && sux == new_sux) {
2589         // still in same range
2590         range->set_high_key(new_key);
2591       } else {
2592         // skip tests which explicitly dispatch to the default
2593         if (range->sux() != default_sux) {
2594           res->append(range);
2595         }
2596         range = new C1SwitchRange(new_key, new_sux);
2597       }
2598       key = new_key;
2599       sux = new_sux;
2600     }
2601     if (res->length() == 0 || res->last() != range)  res->append(range);
2602   }
2603   return res;
2604 }
2605 
2606 
2607 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2608   LIRItem tag(x->tag(), this);
2609   tag.load_item();
2610   set_no_result(x);
2611 
2612   if (x->is_safepoint()) {
2613     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2614   }
2615 
2616   // move values into phi locations
2617   move_to_phi(x->state());
2618 
2619   int lo_key = x->lo_key();
2620   int len = x->length();
2621   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2622   LIR_Opr value = tag.result();
2623 
2624   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2625     ciMethod* method = x->state()->scope()->method();
2626     ciMethodData* md = method->method_data_or_null();
2627     assert(md != nullptr, "Sanity");
2628     ciProfileData* data = md->bci_to_data(x->state()->bci());
2629     assert(data != nullptr, "must have profiling data");
2630     assert(data->is_MultiBranchData(), "bad profile data?");
2631     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2632     LIR_Opr md_reg = new_register(T_METADATA);
2633     __ metadata2reg(md->constant_encoding(), md_reg);
2634     LIR_Opr data_offset_reg = new_pointer_register();
2635     LIR_Opr tmp_reg = new_pointer_register();
2636 
2637     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2638     for (int i = 0; i < len; i++) {
2639       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2640       __ cmp(lir_cond_equal, value, i + lo_key);
2641       __ move(data_offset_reg, tmp_reg);
2642       __ cmove(lir_cond_equal,
2643                LIR_OprFact::intptrConst(count_offset),
2644                tmp_reg,
2645                data_offset_reg, T_INT);
2646     }
2647 
2648     LIR_Opr data_reg = new_pointer_register();
2649     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2650     __ move(data_addr, data_reg);
2651     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2652     __ move(data_reg, data_addr);
2653   }
2654 
2655   if (UseTableRanges) {
2656     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2657   } else {
2658     for (int i = 0; i < len; i++) {
2659       __ cmp(lir_cond_equal, value, i + lo_key);
2660       __ branch(lir_cond_equal, x->sux_at(i));
2661     }
2662     __ jump(x->default_sux());
2663   }
2664 }
2665 
2666 
2667 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2668   LIRItem tag(x->tag(), this);
2669   tag.load_item();
2670   set_no_result(x);
2671 
2672   if (x->is_safepoint()) {
2673     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2674   }
2675 
2676   // move values into phi locations
2677   move_to_phi(x->state());
2678 
2679   LIR_Opr value = tag.result();
2680   int len = x->length();
2681 
2682   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2683     ciMethod* method = x->state()->scope()->method();
2684     ciMethodData* md = method->method_data_or_null();
2685     assert(md != nullptr, "Sanity");
2686     ciProfileData* data = md->bci_to_data(x->state()->bci());
2687     assert(data != nullptr, "must have profiling data");
2688     assert(data->is_MultiBranchData(), "bad profile data?");
2689     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2690     LIR_Opr md_reg = new_register(T_METADATA);
2691     __ metadata2reg(md->constant_encoding(), md_reg);
2692     LIR_Opr data_offset_reg = new_pointer_register();
2693     LIR_Opr tmp_reg = new_pointer_register();
2694 
2695     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2696     for (int i = 0; i < len; i++) {
2697       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2698       __ cmp(lir_cond_equal, value, x->key_at(i));
2699       __ move(data_offset_reg, tmp_reg);
2700       __ cmove(lir_cond_equal,
2701                LIR_OprFact::intptrConst(count_offset),
2702                tmp_reg,
2703                data_offset_reg, T_INT);
2704     }
2705 
2706     LIR_Opr data_reg = new_pointer_register();
2707     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2708     __ move(data_addr, data_reg);
2709     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2710     __ move(data_reg, data_addr);
2711   }
2712 
2713   if (UseTableRanges) {
2714     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2715   } else {
2716     int len = x->length();
2717     for (int i = 0; i < len; i++) {
2718       __ cmp(lir_cond_equal, value, x->key_at(i));
2719       __ branch(lir_cond_equal, x->sux_at(i));
2720     }
2721     __ jump(x->default_sux());
2722   }
2723 }
2724 
2725 
2726 void LIRGenerator::do_Goto(Goto* x) {
2727   set_no_result(x);
2728 
2729   if (block()->next()->as_OsrEntry()) {
2730     // need to free up storage used for OSR entry point
2731     LIR_Opr osrBuffer = block()->next()->operand();
2732     BasicTypeList signature;
2733     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2734     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2735     __ move(osrBuffer, cc->args()->at(0));
2736     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2737                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2738   }
2739 
2740   if (x->is_safepoint()) {
2741     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2742 
2743     // increment backedge counter if needed
2744     CodeEmitInfo* info = state_for(x, state);
2745     increment_backedge_counter(info, x->profiled_bci());
2746     CodeEmitInfo* safepoint_info = state_for(x, state);
2747     __ safepoint(safepoint_poll_register(), safepoint_info);
2748   }
2749 
2750   // Gotos can be folded Ifs, handle this case.
2751   if (x->should_profile()) {
2752     ciMethod* method = x->profiled_method();
2753     assert(method != nullptr, "method should be set if branch is profiled");
2754     ciMethodData* md = method->method_data_or_null();
2755     assert(md != nullptr, "Sanity");
2756     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2757     assert(data != nullptr, "must have profiling data");
2758     int offset;
2759     if (x->direction() == Goto::taken) {
2760       assert(data->is_BranchData(), "need BranchData for two-way branches");
2761       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2762     } else if (x->direction() == Goto::not_taken) {
2763       assert(data->is_BranchData(), "need BranchData for two-way branches");
2764       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2765     } else {
2766       assert(data->is_JumpData(), "need JumpData for branches");
2767       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2768     }
2769     LIR_Opr md_reg = new_register(T_METADATA);
2770     __ metadata2reg(md->constant_encoding(), md_reg);
2771 
2772     increment_counter(new LIR_Address(md_reg, offset,
2773                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2774   }
2775 
2776   // emit phi-instruction move after safepoint since this simplifies
2777   // describing the state as the safepoint.
2778   move_to_phi(x->state());
2779 
2780   __ jump(x->default_sux());
2781 }
2782 
2783 /**
2784  * Emit profiling code if needed for arguments, parameters, return value types
2785  *
2786  * @param md                    MDO the code will update at runtime
2787  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2788  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2789  * @param profiled_k            current profile
2790  * @param obj                   IR node for the object to be profiled
2791  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2792  *                              Set once we find an update to make and use for next ones.
2793  * @param not_null              true if we know obj cannot be null
2794  * @param signature_at_call_k   signature at call for obj
2795  * @param callee_signature_k    signature of callee for obj
2796  *                              at call and callee signatures differ at method handle call
2797  * @return                      the only klass we know will ever be seen at this profile point
2798  */
2799 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2800                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2801                                     ciKlass* callee_signature_k) {
2802   ciKlass* result = nullptr;
2803   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2804   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2805   // known not to be null or null bit already set and already set to
2806   // unknown: nothing we can do to improve profiling
2807   if (!do_null && !do_update) {
2808     return result;
2809   }
2810 
2811   ciKlass* exact_klass = nullptr;
2812   Compilation* comp = Compilation::current();
2813   if (do_update) {
2814     // try to find exact type, using CHA if possible, so that loading
2815     // the klass from the object can be avoided
2816     ciType* type = obj->exact_type();
2817     if (type == nullptr) {
2818       type = obj->declared_type();
2819       type = comp->cha_exact_type(type);
2820     }
2821     assert(type == nullptr || type->is_klass(), "type should be class");
2822     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2823 
2824     // TODO 8366668
2825     if (exact_klass != nullptr && exact_klass->is_obj_array_klass()) {
2826       if (exact_klass->as_obj_array_klass()->element_klass()->is_inlinetype()) {
2827         // Could be flat, null free etc.
2828         exact_klass = nullptr;
2829       } else {
2830         exact_klass = ciObjArrayKlass::make(exact_klass->as_array_klass()->element_klass(), true);
2831       }
2832     }
2833 
2834     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2835   }
2836 
2837   if (!do_null && !do_update) {
2838     return result;
2839   }
2840 
2841   ciKlass* exact_signature_k = nullptr;
2842   if (do_update && signature_at_call_k != nullptr) {
2843     // Is the type from the signature exact (the only one possible)?
2844     exact_signature_k = signature_at_call_k->exact_klass();
2845     if (exact_signature_k == nullptr) {
2846       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2847     } else {
2848       result = exact_signature_k;
2849       // Known statically. No need to emit any code: prevent
2850       // LIR_Assembler::emit_profile_type() from emitting useless code
2851       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2852     }
2853     // exact_klass and exact_signature_k can be both non null but
2854     // different if exact_klass is loaded after the ciObject for
2855     // exact_signature_k is created.
2856     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2857       // sometimes the type of the signature is better than the best type
2858       // the compiler has
2859       exact_klass = exact_signature_k;
2860     }
2861     if (callee_signature_k != nullptr &&
2862         callee_signature_k != signature_at_call_k) {
2863       ciKlass* improved_klass = callee_signature_k->exact_klass();
2864       if (improved_klass == nullptr) {
2865         improved_klass = comp->cha_exact_type(callee_signature_k);
2866       }
2867       if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2868         exact_klass = exact_signature_k;
2869       }
2870     }
2871 
2872     // TODO 8366668
2873     if (exact_klass != nullptr && exact_klass->is_obj_array_klass()) {
2874       if (exact_klass->as_obj_array_klass()->element_klass()->is_inlinetype()) {
2875         // Could be flat, null free etc.
2876         exact_klass = nullptr;
2877       } else {
2878         exact_klass = ciObjArrayKlass::make(exact_klass->as_array_klass()->element_klass(), true);
2879       }
2880     }
2881 
2882     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2883   }
2884 
2885   if (!do_null && !do_update) {
2886     return result;
2887   }
2888 
2889   if (mdp == LIR_OprFact::illegalOpr) {
2890     mdp = new_register(T_METADATA);
2891     __ metadata2reg(md->constant_encoding(), mdp);
2892     if (md_base_offset != 0) {
2893       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2894       mdp = new_pointer_register();
2895       __ leal(LIR_OprFact::address(base_type_address), mdp);
2896     }
2897   }
2898   LIRItem value(obj, this);
2899   value.load_item();
2900   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2901                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2902   return result;
2903 }
2904 
2905 // profile parameters on entry to the root of the compilation
2906 void LIRGenerator::profile_parameters(Base* x) {
2907   if (compilation()->profile_parameters()) {
2908     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2909     ciMethodData* md = scope()->method()->method_data_or_null();
2910     assert(md != nullptr, "Sanity");
2911 
2912     if (md->parameters_type_data() != nullptr) {
2913       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2914       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2915       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2916       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2917         LIR_Opr src = args->at(i);
2918         assert(!src->is_illegal(), "check");
2919         BasicType t = src->type();
2920         if (is_reference_type(t)) {
2921           intptr_t profiled_k = parameters->type(j);
2922           Local* local = x->state()->local_at(java_index)->as_Local();
2923           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2924                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2925                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2926           // If the profile is known statically set it once for all and do not emit any code
2927           if (exact != nullptr) {
2928             md->set_parameter_type(j, exact);
2929           }
2930           j++;
2931         }
2932         java_index += type2size[t];
2933       }
2934     }
2935   }
2936 }
2937 
2938 void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) {
2939   assert(md != nullptr && data != nullptr, "should have been initialized");
2940   LIR_Opr mdp = new_register(T_METADATA);
2941   __ metadata2reg(md->constant_encoding(), mdp);
2942   LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE);
2943   LIR_Opr flags = new_register(T_INT);
2944   __ move(addr, flags);
2945   if (condition != lir_cond_always) {
2946     LIR_Opr update = new_register(T_INT);
2947     __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT);
2948   } else {
2949     __ logical_or(flags, LIR_OprFact::intConst(flag), flags);
2950   }
2951   __ store(flags, addr);
2952 }
2953 
2954 template <class ArrayData> void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ArrayData* load_store) {
2955   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2956   LabelObj* L_end = new LabelObj();
2957   LIR_Opr tmp = new_register(T_METADATA);
2958   __ check_null_free_array(array.result(), tmp);
2959 
2960   profile_flags(md, load_store, ArrayStoreData::null_free_array_byte_constant(), lir_cond_equal);
2961 }
2962 
2963 template <class ArrayData> void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ArrayData*& load_store) {
2964   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2965   LIR_Opr mdp = LIR_OprFact::illegalOpr;
2966   profile_type(md, md->byte_offset_of_slot(load_store, ArrayData::array_offset()), 0,
2967                load_store->array()->type(), x->array(), mdp, true, nullptr, nullptr);
2968 }
2969 
2970 void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadData* load_data) {
2971   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2972   assert(md != nullptr && load_data != nullptr, "should have been initialized");
2973   LIR_Opr mdp = LIR_OprFact::illegalOpr;
2974   profile_type(md, md->byte_offset_of_slot(load_data, ArrayLoadData::element_offset()), 0,
2975                load_data->element()->type(), element, mdp, false, nullptr, nullptr);
2976 }
2977 
2978 void LIRGenerator::do_Base(Base* x) {
2979   __ std_entry(LIR_OprFact::illegalOpr);
2980   // Emit moves from physical registers / stack slots to virtual registers
2981   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2982   IRScope* irScope = compilation()->hir()->top_scope();
2983   int java_index = 0;
2984   for (int i = 0; i < args->length(); i++) {
2985     LIR_Opr src = args->at(i);
2986     assert(!src->is_illegal(), "check");
2987     BasicType t = src->type();
2988 
2989     // Types which are smaller than int are passed as int, so
2990     // correct the type which passed.
2991     switch (t) {
2992     case T_BYTE:
2993     case T_BOOLEAN:
2994     case T_SHORT:
2995     case T_CHAR:
2996       t = T_INT;
2997       break;
2998     default:
2999       break;
3000     }
3001 
3002     LIR_Opr dest = new_register(t);
3003     __ move(src, dest);
3004 
3005     // Assign new location to Local instruction for this local
3006     Local* local = x->state()->local_at(java_index)->as_Local();
3007     assert(local != nullptr, "Locals for incoming arguments must have been created");
3008 #ifndef __SOFTFP__
3009     // The java calling convention passes double as long and float as int.
3010     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
3011 #endif // __SOFTFP__
3012     local->set_operand(dest);
3013 #ifdef ASSERT
3014     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
3015 #endif
3016     java_index += type2size[t];
3017   }
3018 
3019   if (compilation()->env()->dtrace_method_probes()) {
3020     BasicTypeList signature;
3021     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3022     signature.append(T_METADATA); // Method*
3023     LIR_OprList* args = new LIR_OprList();
3024     args->append(getThreadPointer());
3025     LIR_Opr meth = new_register(T_METADATA);
3026     __ metadata2reg(method()->constant_encoding(), meth);
3027     args->append(meth);
3028     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
3029   }
3030 
3031   if (method()->is_synchronized()) {
3032     LIR_Opr obj;
3033     if (method()->is_static()) {
3034       obj = new_register(T_OBJECT);
3035       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
3036     } else {
3037       Local* receiver = x->state()->local_at(0)->as_Local();
3038       assert(receiver != nullptr, "must already exist");
3039       obj = receiver->operand();
3040     }
3041     assert(obj->is_valid(), "must be valid");
3042 
3043     if (method()->is_synchronized() && GenerateSynchronizationCode) {
3044       LIR_Opr lock = syncLockOpr();
3045       __ load_stack_address_monitor(0, lock);
3046 
3047       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
3048       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
3049 
3050       // receiver is guaranteed non-null so don't need CodeEmitInfo
3051       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
3052     }
3053   }
3054   // increment invocation counters if needed
3055   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
3056     profile_parameters(x);
3057     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
3058     increment_invocation_counter(info);
3059   }
3060   if (method()->has_scalarized_args()) {
3061     // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments
3062     // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state.
3063     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), nullptr, false);
3064     CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none);
3065     __ append(new LIR_Op0(lir_check_orig_pc));
3066     __ branch(lir_cond_notEqual, deopt_stub);
3067   }
3068 
3069   // all blocks with a successor must end with an unconditional jump
3070   // to the successor even if they are consecutive
3071   __ jump(x->default_sux());
3072 }
3073 
3074 
3075 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
3076   // construct our frame and model the production of incoming pointer
3077   // to the OSR buffer.
3078   __ osr_entry(LIR_Assembler::osrBufferPointer());
3079   LIR_Opr result = rlock_result(x);
3080   __ move(LIR_Assembler::osrBufferPointer(), result);
3081 }
3082 
3083 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) {
3084   if (loc->is_register()) {
3085     param->load_item_force(loc);
3086   } else {
3087     LIR_Address* addr = loc->as_address_ptr();
3088     param->load_for_store(addr->type());
3089     if (addr->type() == T_OBJECT) {
3090       __ move_wide(param->result(), addr);
3091     } else {
3092       __ move(param->result(), addr);
3093     }
3094   }
3095 }
3096 
3097 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3098   assert(args->length() == arg_list->length(),
3099          "args=%d, arg_list=%d", args->length(), arg_list->length());
3100   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3101     LIRItem* param = args->at(i);
3102     LIR_Opr loc = arg_list->at(i);
3103     invoke_load_one_argument(param, loc);
3104   }
3105 
3106   if (x->has_receiver()) {
3107     LIRItem* receiver = args->at(0);
3108     LIR_Opr loc = arg_list->at(0);
3109     if (loc->is_register()) {
3110       receiver->load_item_force(loc);
3111     } else {
3112       assert(loc->is_address(), "just checking");
3113       receiver->load_for_store(T_OBJECT);
3114       __ move_wide(receiver->result(), loc->as_address_ptr());
3115     }
3116   }
3117 }
3118 
3119 
3120 // Visits all arguments, returns appropriate items without loading them
3121 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3122   LIRItemList* argument_items = new LIRItemList();
3123   if (x->has_receiver()) {
3124     LIRItem* receiver = new LIRItem(x->receiver(), this);
3125     argument_items->append(receiver);
3126   }
3127   for (int i = 0; i < x->number_of_arguments(); i++) {
3128     LIRItem* param = new LIRItem(x->argument_at(i), this);
3129     argument_items->append(param);
3130   }
3131   return argument_items;
3132 }
3133 
3134 
3135 // The invoke with receiver has following phases:
3136 //   a) traverse and load/lock receiver;
3137 //   b) traverse all arguments -> item-array (invoke_visit_argument)
3138 //   c) push receiver on stack
3139 //   d) load each of the items and push on stack
3140 //   e) unlock receiver
3141 //   f) move receiver into receiver-register %o0
3142 //   g) lock result registers and emit call operation
3143 //
3144 // Before issuing a call, we must spill-save all values on stack
3145 // that are in caller-save register. "spill-save" moves those registers
3146 // either in a free callee-save register or spills them if no free
3147 // callee save register is available.
3148 //
3149 // The problem is where to invoke spill-save.
3150 // - if invoked between e) and f), we may lock callee save
3151 //   register in "spill-save" that destroys the receiver register
3152 //   before f) is executed
3153 // - if we rearrange f) to be earlier (by loading %o0) it
3154 //   may destroy a value on the stack that is currently in %o0
3155 //   and is waiting to be spilled
3156 // - if we keep the receiver locked while doing spill-save,
3157 //   we cannot spill it as it is spill-locked
3158 //
3159 void LIRGenerator::do_Invoke(Invoke* x) {
3160   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
3161 
3162   LIR_OprList* arg_list = cc->args();
3163   LIRItemList* args = invoke_visit_arguments(x);
3164   LIR_Opr receiver = LIR_OprFact::illegalOpr;
3165 
3166   // setup result register
3167   LIR_Opr result_register = LIR_OprFact::illegalOpr;
3168   if (x->type() != voidType) {
3169     result_register = result_register_for(x->type());
3170   }
3171 
3172   CodeEmitInfo* info = state_for(x, x->state());
3173 
3174   invoke_load_arguments(x, args, arg_list);
3175 
3176   if (x->has_receiver()) {
3177     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3178     receiver = args->at(0)->result();
3179   }
3180 
3181   // emit invoke code
3182   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3183 
3184   // JSR 292
3185   // Preserve the SP over MethodHandle call sites, if needed.
3186   ciMethod* target = x->target();
3187   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3188                                   target->is_method_handle_intrinsic() ||
3189                                   target->is_compiled_lambda_form());
3190   if (is_method_handle_invoke) {
3191     info->set_is_method_handle_invoke(true);
3192     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3193         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3194     }
3195   }
3196 
3197   switch (x->code()) {
3198     case Bytecodes::_invokestatic:
3199       __ call_static(target, result_register,
3200                      SharedRuntime::get_resolve_static_call_stub(),
3201                      arg_list, info);
3202       break;
3203     case Bytecodes::_invokespecial:
3204     case Bytecodes::_invokevirtual:
3205     case Bytecodes::_invokeinterface:
3206       // for loaded and final (method or class) target we still produce an inline cache,
3207       // in order to be able to call mixed mode
3208       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3209         __ call_opt_virtual(target, receiver, result_register,
3210                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3211                             arg_list, info);
3212       } else {
3213         __ call_icvirtual(target, receiver, result_register,
3214                           SharedRuntime::get_resolve_virtual_call_stub(),
3215                           arg_list, info);
3216       }
3217       break;
3218     case Bytecodes::_invokedynamic: {
3219       __ call_dynamic(target, receiver, result_register,
3220                       SharedRuntime::get_resolve_static_call_stub(),
3221                       arg_list, info);
3222       break;
3223     }
3224     default:
3225       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3226       break;
3227   }
3228 
3229   // JSR 292
3230   // Restore the SP after MethodHandle call sites, if needed.
3231   if (is_method_handle_invoke
3232       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3233     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3234   }
3235 
3236   if (result_register->is_valid()) {
3237     LIR_Opr result = rlock_result(x);
3238     __ move(result_register, result);
3239   }
3240 }
3241 
3242 
3243 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3244   assert(x->number_of_arguments() == 1, "wrong type");
3245   LIRItem value       (x->argument_at(0), this);
3246   LIR_Opr reg = rlock_result(x);
3247   value.load_item();
3248   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3249   __ move(tmp, reg);
3250 }
3251 
3252 
3253 
3254 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3255 void LIRGenerator::do_IfOp(IfOp* x) {
3256 #ifdef ASSERT
3257   {
3258     ValueTag xtag = x->x()->type()->tag();
3259     ValueTag ttag = x->tval()->type()->tag();
3260     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3261     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3262     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3263   }
3264 #endif
3265 
3266   LIRItem left(x->x(), this);
3267   LIRItem right(x->y(), this);
3268   left.load_item();
3269   if (can_inline_as_constant(right.value()) && !x->substitutability_check()) {
3270     right.dont_load_item();
3271   } else {
3272     // substitutability_check() needs to use right as a base register.
3273     right.load_item();
3274   }
3275 
3276   LIRItem t_val(x->tval(), this);
3277   LIRItem f_val(x->fval(), this);
3278   t_val.dont_load_item();
3279   f_val.dont_load_item();
3280 
3281   if (x->substitutability_check()) {
3282     substitutability_check(x, left, right, t_val, f_val);
3283   } else {
3284     LIR_Opr reg = rlock_result(x);
3285     __ cmp(lir_cond(x->cond()), left.result(), right.result());
3286     __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3287   }
3288 }
3289 
3290 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) {
3291   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3292   bool is_acmpeq = (x->cond() == If::eql);
3293   LIR_Opr equal_result     = is_acmpeq ? t_val.result() : f_val.result();
3294   LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result();
3295   LIR_Opr result = rlock_result(x);
3296   CodeEmitInfo* info = state_for(x, x->state_before());
3297 
3298   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3299 }
3300 
3301 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) {
3302   LIR_Opr equal_result     = LIR_OprFact::intConst(1);
3303   LIR_Opr not_equal_result = LIR_OprFact::intConst(0);
3304   LIR_Opr result = new_register(T_INT);
3305   CodeEmitInfo* info = state_for(x, x->state_before());
3306 
3307   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3308 
3309   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3310   __ cmp(lir_cond(x->cond()), result, equal_result);
3311 }
3312 
3313 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right,
3314                                                  LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result,
3315                                                  CodeEmitInfo* info) {
3316   LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
3317   LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
3318   LIR_Opr left_klass_op = LIR_OprFact::illegalOpr;
3319   LIR_Opr right_klass_op = LIR_OprFact::illegalOpr;
3320 
3321   ciKlass* left_klass  = left_val ->as_loaded_klass_or_null();
3322   ciKlass* right_klass = right_val->as_loaded_klass_or_null();
3323 
3324   if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node.
3325       !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) {
3326     init_temps_for_substitutability_check(tmp1, tmp2);
3327   }
3328 
3329   if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) {
3330     // No need to load klass -- the operands are statically known to be the same inline klass.
3331   } else {
3332     BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA;
3333     left_klass_op = new_register(t_klass);
3334     right_klass_op = new_register(t_klass);
3335   }
3336 
3337   CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info);
3338   __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result,
3339                             tmp1, tmp2,
3340                             left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path);
3341 }
3342 
3343 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3344   assert(x->number_of_arguments() == 0, "wrong type");
3345   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3346   BasicTypeList signature;
3347   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3348   LIR_Opr reg = result_register_for(x->type());
3349   __ call_runtime_leaf(routine, getThreadTemp(),
3350                        reg, new LIR_OprList());
3351   LIR_Opr result = rlock_result(x);
3352   __ move(reg, result);
3353 }
3354 
3355 
3356 
3357 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3358   switch (x->id()) {
3359   case vmIntrinsics::_intBitsToFloat      :
3360   case vmIntrinsics::_doubleToRawLongBits :
3361   case vmIntrinsics::_longBitsToDouble    :
3362   case vmIntrinsics::_floatToRawIntBits   : {
3363     do_FPIntrinsics(x);
3364     break;
3365   }
3366 
3367 #ifdef JFR_HAVE_INTRINSICS
3368   case vmIntrinsics::_counterTime:
3369     do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x);
3370     break;
3371 #endif
3372 
3373   case vmIntrinsics::_currentTimeMillis:
3374     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3375     break;
3376 
3377   case vmIntrinsics::_nanoTime:
3378     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3379     break;
3380 
3381   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3382   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3383   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3384   case vmIntrinsics::_getObjectSize:  do_getObjectSize(x); break;
3385   case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break;
3386   case vmIntrinsics::_currentThread:  do_vthread(x);       break;
3387   case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break;
3388 
3389   case vmIntrinsics::_dlog:           // fall through
3390   case vmIntrinsics::_dlog10:         // fall through
3391   case vmIntrinsics::_dabs:           // fall through
3392   case vmIntrinsics::_dsqrt:          // fall through
3393   case vmIntrinsics::_dsqrt_strict:   // fall through
3394   case vmIntrinsics::_dtan:           // fall through
3395   case vmIntrinsics::_dtanh:          // fall through
3396   case vmIntrinsics::_dsin :          // fall through
3397   case vmIntrinsics::_dcos :          // fall through
3398   case vmIntrinsics::_dcbrt :         // fall through
3399   case vmIntrinsics::_dexp :          // fall through
3400   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3401   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3402 
3403   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3404   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3405 
3406   // Use java.lang.Math intrinsics code since it works for these intrinsics too.
3407   case vmIntrinsics::_floatToFloat16: // fall through
3408   case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break;
3409 
3410   case vmIntrinsics::_Preconditions_checkIndex:
3411     do_PreconditionsCheckIndex(x, T_INT);
3412     break;
3413   case vmIntrinsics::_Preconditions_checkLongIndex:
3414     do_PreconditionsCheckIndex(x, T_LONG);
3415     break;
3416 
3417   case vmIntrinsics::_compareAndSetReference:
3418     do_CompareAndSwap(x, objectType);
3419     break;
3420   case vmIntrinsics::_compareAndSetInt:
3421     do_CompareAndSwap(x, intType);
3422     break;
3423   case vmIntrinsics::_compareAndSetLong:
3424     do_CompareAndSwap(x, longType);
3425     break;
3426 
3427   case vmIntrinsics::_loadFence :
3428     __ membar_acquire();
3429     break;
3430   case vmIntrinsics::_storeFence:
3431     __ membar_release();
3432     break;
3433   case vmIntrinsics::_storeStoreFence:
3434     __ membar_storestore();
3435     break;
3436   case vmIntrinsics::_fullFence :
3437     __ membar();
3438     break;
3439   case vmIntrinsics::_onSpinWait:
3440     __ on_spin_wait();
3441     break;
3442   case vmIntrinsics::_Reference_get0:
3443     do_Reference_get0(x);
3444     break;
3445 
3446   case vmIntrinsics::_updateCRC32:
3447   case vmIntrinsics::_updateBytesCRC32:
3448   case vmIntrinsics::_updateByteBufferCRC32:
3449     do_update_CRC32(x);
3450     break;
3451 
3452   case vmIntrinsics::_updateBytesCRC32C:
3453   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3454     do_update_CRC32C(x);
3455     break;
3456 
3457   case vmIntrinsics::_vectorizedMismatch:
3458     do_vectorizedMismatch(x);
3459     break;
3460 
3461   case vmIntrinsics::_blackhole:
3462     do_blackhole(x);
3463     break;
3464 
3465   default: ShouldNotReachHere(); break;
3466   }
3467 }
3468 
3469 void LIRGenerator::profile_arguments(ProfileCall* x) {
3470   if (compilation()->profile_arguments()) {
3471     int bci = x->bci_of_invoke();
3472     ciMethodData* md = x->method()->method_data_or_null();
3473     assert(md != nullptr, "Sanity");
3474     ciProfileData* data = md->bci_to_data(bci);
3475     if (data != nullptr) {
3476       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3477           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3478         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3479         int base_offset = md->byte_offset_of_slot(data, extra);
3480         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3481         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3482 
3483         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3484         int start = 0;
3485         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3486         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3487           // first argument is not profiled at call (method handle invoke)
3488           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3489           start = 1;
3490         }
3491         ciSignature* callee_signature = x->callee()->signature();
3492         // method handle call to virtual method
3493         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3494         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr);
3495 
3496         bool ignored_will_link;
3497         ciSignature* signature_at_call = nullptr;
3498         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3499         ciSignatureStream signature_at_call_stream(signature_at_call);
3500 
3501         // if called through method handle invoke, some arguments may have been popped
3502         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3503           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3504           ciKlass* exact = profile_type(md, base_offset, off,
3505               args->type(i), x->profiled_arg_at(i+start), mdp,
3506               !x->arg_needs_null_check(i+start),
3507               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3508           if (exact != nullptr) {
3509             md->set_argument_type(bci, i, exact);
3510           }
3511         }
3512       } else {
3513 #ifdef ASSERT
3514         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3515         int n = x->nb_profiled_args();
3516         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3517             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3518             "only at JSR292 bytecodes");
3519 #endif
3520       }
3521     }
3522   }
3523 }
3524 
3525 // profile parameters on entry to an inlined method
3526 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3527   if (compilation()->profile_parameters() && x->inlined()) {
3528     ciMethodData* md = x->callee()->method_data_or_null();
3529     if (md != nullptr) {
3530       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3531       if (parameters_type_data != nullptr) {
3532         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3533         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3534         bool has_receiver = !x->callee()->is_static();
3535         ciSignature* sig = x->callee()->signature();
3536         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr);
3537         int i = 0; // to iterate on the Instructions
3538         Value arg = x->recv();
3539         bool not_null = false;
3540         int bci = x->bci_of_invoke();
3541         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3542         // The first parameter is the receiver so that's what we start
3543         // with if it exists. One exception is method handle call to
3544         // virtual method: the receiver is in the args list
3545         if (arg == nullptr || !Bytecodes::has_receiver(bc)) {
3546           i = 1;
3547           arg = x->profiled_arg_at(0);
3548           not_null = !x->arg_needs_null_check(0);
3549         }
3550         int k = 0; // to iterate on the profile data
3551         for (;;) {
3552           intptr_t profiled_k = parameters->type(k);
3553           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3554                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3555                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr);
3556           // If the profile is known statically set it once for all and do not emit any code
3557           if (exact != nullptr) {
3558             md->set_parameter_type(k, exact);
3559           }
3560           k++;
3561           if (k >= parameters_type_data->number_of_parameters()) {
3562 #ifdef ASSERT
3563             int extra = 0;
3564             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3565                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3566                 x->recv() != nullptr && Bytecodes::has_receiver(bc)) {
3567               extra += 1;
3568             }
3569             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3570 #endif
3571             break;
3572           }
3573           arg = x->profiled_arg_at(i);
3574           not_null = !x->arg_needs_null_check(i);
3575           i++;
3576         }
3577       }
3578     }
3579   }
3580 }
3581 
3582 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3583   // Need recv in a temporary register so it interferes with the other temporaries
3584   LIR_Opr recv = LIR_OprFact::illegalOpr;
3585   LIR_Opr mdo = new_register(T_METADATA);
3586   // tmp is used to hold the counters on SPARC
3587   LIR_Opr tmp = new_pointer_register();
3588 
3589   if (x->nb_profiled_args() > 0) {
3590     profile_arguments(x);
3591   }
3592 
3593   // profile parameters on inlined method entry including receiver
3594   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3595     profile_parameters_at_call(x);
3596   }
3597 
3598   if (x->recv() != nullptr) {
3599     LIRItem value(x->recv(), this);
3600     value.load_item();
3601     recv = new_register(T_OBJECT);
3602     __ move(value.result(), recv);
3603   }
3604   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3605 }
3606 
3607 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3608   int bci = x->bci_of_invoke();
3609   ciMethodData* md = x->method()->method_data_or_null();
3610   assert(md != nullptr, "Sanity");
3611   ciProfileData* data = md->bci_to_data(bci);
3612   if (data != nullptr) {
3613     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3614     ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3615     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3616 
3617     bool ignored_will_link;
3618     ciSignature* signature_at_call = nullptr;
3619     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3620 
3621     // The offset within the MDO of the entry to update may be too large
3622     // to be used in load/store instructions on some platforms. So have
3623     // profile_type() compute the address of the profile in a register.
3624     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3625         ret->type(), x->ret(), mdp,
3626         !x->needs_null_check(),
3627         signature_at_call->return_type()->as_klass(),
3628         x->callee()->signature()->return_type()->as_klass());
3629     if (exact != nullptr) {
3630       md->set_return_type(bci, exact);
3631     }
3632   }
3633 }
3634 
3635 bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) {
3636   ciKlass* klass = value->as_loaded_klass_or_null();
3637   if (klass != nullptr) {
3638     if (klass->is_inlinetype()) {
3639       profile_flags(md, data, flag, lir_cond_always);
3640     } else if (klass->can_be_inline_klass()) {
3641       return false;
3642     }
3643   } else {
3644     return false;
3645   }
3646   return true;
3647 }
3648 
3649 
3650 void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) {
3651   ciMethod* method = x->method();
3652   assert(method != nullptr, "method should be set if branch is profiled");
3653   ciMethodData* md = method->method_data_or_null();
3654   assert(md != nullptr, "Sanity");
3655   ciProfileData* data = md->bci_to_data(x->bci());
3656   assert(data != nullptr, "must have profiling data");
3657   assert(data->is_ACmpData(), "need BranchData for two-way branches");
3658   ciACmpData* acmp = (ciACmpData*)data;
3659   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3660   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0,
3661                acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), nullptr, nullptr);
3662   int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset());
3663   if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) {
3664     LIR_Opr mdp = new_register(T_METADATA);
3665     __ metadata2reg(md->constant_encoding(), mdp);
3666     LIRItem value(x->left(), this);
3667     value.load_item();
3668     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3669   }
3670   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()),
3671                in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()),
3672                acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), nullptr, nullptr);
3673   if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) {
3674     LIR_Opr mdp = new_register(T_METADATA);
3675     __ metadata2reg(md->constant_encoding(), mdp);
3676     LIRItem value(x->right(), this);
3677     value.load_item();
3678     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3679   }
3680 }
3681 
3682 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3683   // We can safely ignore accessors here, since c2 will inline them anyway,
3684   // accessors are also always mature.
3685   if (!x->inlinee()->is_accessor()) {
3686     CodeEmitInfo* info = state_for(x, x->state(), true);
3687     // Notify the runtime very infrequently only to take care of counter overflows
3688     int freq_log = Tier23InlineeNotifyFreqLog;
3689     double scale;
3690     if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3691       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3692     }
3693     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3694   }
3695 }
3696 
3697 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3698   if (compilation()->is_profiling()) {
3699 #if defined(X86) && !defined(_LP64)
3700     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3701     LIR_Opr left_copy = new_register(left->type());
3702     __ move(left, left_copy);
3703     __ cmp(cond, left_copy, right);
3704 #else
3705     __ cmp(cond, left, right);
3706 #endif
3707     LIR_Opr step = new_register(T_INT);
3708     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3709     LIR_Opr zero = LIR_OprFact::intConst(0);
3710     __ cmove(cond,
3711         (left_bci < bci) ? plus_one : zero,
3712         (right_bci < bci) ? plus_one : zero,
3713         step, left->type());
3714     increment_backedge_counter(info, step, bci);
3715   }
3716 }
3717 
3718 
3719 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3720   int freq_log = 0;
3721   int level = compilation()->env()->comp_level();
3722   if (level == CompLevel_limited_profile) {
3723     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3724   } else if (level == CompLevel_full_profile) {
3725     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3726   } else {
3727     ShouldNotReachHere();
3728   }
3729   // Increment the appropriate invocation/backedge counter and notify the runtime.
3730   double scale;
3731   if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3732     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3733   }
3734   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3735 }
3736 
3737 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3738                                                 ciMethod *method, LIR_Opr step, int frequency,
3739                                                 int bci, bool backedge, bool notify) {
3740   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3741   int level = _compilation->env()->comp_level();
3742   assert(level > CompLevel_simple, "Shouldn't be here");
3743 
3744   int offset = -1;
3745   LIR_Opr counter_holder;
3746   if (level == CompLevel_limited_profile) {
3747     MethodCounters* counters_adr = method->ensure_method_counters();
3748     if (counters_adr == nullptr) {
3749       bailout("method counters allocation failed");
3750       return;
3751     }
3752     counter_holder = new_pointer_register();
3753     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3754     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3755                                  MethodCounters::invocation_counter_offset());
3756   } else if (level == CompLevel_full_profile) {
3757     counter_holder = new_register(T_METADATA);
3758     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3759                                  MethodData::invocation_counter_offset());
3760     ciMethodData* md = method->method_data_or_null();
3761     assert(md != nullptr, "Sanity");
3762     __ metadata2reg(md->constant_encoding(), counter_holder);
3763   } else {
3764     ShouldNotReachHere();
3765   }
3766   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3767   LIR_Opr result = new_register(T_INT);
3768   __ load(counter, result);
3769   __ add(result, step, result);
3770   __ store(result, counter);
3771   if (notify && (!backedge || UseOnStackReplacement)) {
3772     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3773     // The bci for info can point to cmp for if's we want the if bci
3774     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3775     int freq = frequency << InvocationCounter::count_shift;
3776     if (freq == 0) {
3777       if (!step->is_constant()) {
3778         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3779         __ branch(lir_cond_notEqual, overflow);
3780       } else {
3781         __ branch(lir_cond_always, overflow);
3782       }
3783     } else {
3784       LIR_Opr mask = load_immediate(freq, T_INT);
3785       if (!step->is_constant()) {
3786         // If step is 0, make sure the overflow check below always fails
3787         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3788         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3789       }
3790       __ logical_and(result, mask, result);
3791       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3792       __ branch(lir_cond_equal, overflow);
3793     }
3794     __ branch_destination(overflow->continuation());
3795   }
3796 }
3797 
3798 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3799   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3800   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3801 
3802   if (x->pass_thread()) {
3803     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3804     args->append(getThreadPointer());
3805   }
3806 
3807   for (int i = 0; i < x->number_of_arguments(); i++) {
3808     Value a = x->argument_at(i);
3809     LIRItem* item = new LIRItem(a, this);
3810     item->load_item();
3811     args->append(item->result());
3812     signature->append(as_BasicType(a->type()));
3813   }
3814 
3815   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr);
3816   if (x->type() == voidType) {
3817     set_no_result(x);
3818   } else {
3819     __ move(result, rlock_result(x));
3820   }
3821 }
3822 
3823 #ifdef ASSERT
3824 void LIRGenerator::do_Assert(Assert *x) {
3825   ValueTag tag = x->x()->type()->tag();
3826   If::Condition cond = x->cond();
3827 
3828   LIRItem xitem(x->x(), this);
3829   LIRItem yitem(x->y(), this);
3830   LIRItem* xin = &xitem;
3831   LIRItem* yin = &yitem;
3832 
3833   assert(tag == intTag, "Only integer assertions are valid!");
3834 
3835   xin->load_item();
3836   yin->dont_load_item();
3837 
3838   set_no_result(x);
3839 
3840   LIR_Opr left = xin->result();
3841   LIR_Opr right = yin->result();
3842 
3843   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3844 }
3845 #endif
3846 
3847 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3848 
3849 
3850   Instruction *a = x->x();
3851   Instruction *b = x->y();
3852   if (!a || StressRangeCheckElimination) {
3853     assert(!b || StressRangeCheckElimination, "B must also be null");
3854 
3855     CodeEmitInfo *info = state_for(x, x->state());
3856     CodeStub* stub = new PredicateFailedStub(info);
3857 
3858     __ jump(stub);
3859   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3860     int a_int = a->type()->as_IntConstant()->value();
3861     int b_int = b->type()->as_IntConstant()->value();
3862 
3863     bool ok = false;
3864 
3865     switch(x->cond()) {
3866       case Instruction::eql: ok = (a_int == b_int); break;
3867       case Instruction::neq: ok = (a_int != b_int); break;
3868       case Instruction::lss: ok = (a_int < b_int); break;
3869       case Instruction::leq: ok = (a_int <= b_int); break;
3870       case Instruction::gtr: ok = (a_int > b_int); break;
3871       case Instruction::geq: ok = (a_int >= b_int); break;
3872       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3873       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3874       default: ShouldNotReachHere();
3875     }
3876 
3877     if (ok) {
3878 
3879       CodeEmitInfo *info = state_for(x, x->state());
3880       CodeStub* stub = new PredicateFailedStub(info);
3881 
3882       __ jump(stub);
3883     }
3884   } else {
3885 
3886     ValueTag tag = x->x()->type()->tag();
3887     If::Condition cond = x->cond();
3888     LIRItem xitem(x->x(), this);
3889     LIRItem yitem(x->y(), this);
3890     LIRItem* xin = &xitem;
3891     LIRItem* yin = &yitem;
3892 
3893     assert(tag == intTag, "Only integer deoptimizations are valid!");
3894 
3895     xin->load_item();
3896     yin->dont_load_item();
3897     set_no_result(x);
3898 
3899     LIR_Opr left = xin->result();
3900     LIR_Opr right = yin->result();
3901 
3902     CodeEmitInfo *info = state_for(x, x->state());
3903     CodeStub* stub = new PredicateFailedStub(info);
3904 
3905     __ cmp(lir_cond(cond), left, right);
3906     __ branch(lir_cond(cond), stub);
3907   }
3908 }
3909 
3910 void LIRGenerator::do_blackhole(Intrinsic *x) {
3911   assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3912   for (int c = 0; c < x->number_of_arguments(); c++) {
3913     // Load the argument
3914     LIRItem vitem(x->argument_at(c), this);
3915     vitem.load_item();
3916     // ...and leave it unused.
3917   }
3918 }
3919 
3920 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3921   LIRItemList args(1);
3922   LIRItem value(arg1, this);
3923   args.append(&value);
3924   BasicTypeList signature;
3925   signature.append(as_BasicType(arg1->type()));
3926 
3927   return call_runtime(&signature, &args, entry, result_type, info);
3928 }
3929 
3930 
3931 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3932   LIRItemList args(2);
3933   LIRItem value1(arg1, this);
3934   LIRItem value2(arg2, this);
3935   args.append(&value1);
3936   args.append(&value2);
3937   BasicTypeList signature;
3938   signature.append(as_BasicType(arg1->type()));
3939   signature.append(as_BasicType(arg2->type()));
3940 
3941   return call_runtime(&signature, &args, entry, result_type, info);
3942 }
3943 
3944 
3945 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3946                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3947   // get a result register
3948   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3949   LIR_Opr result = LIR_OprFact::illegalOpr;
3950   if (result_type->tag() != voidTag) {
3951     result = new_register(result_type);
3952     phys_reg = result_register_for(result_type);
3953   }
3954 
3955   // move the arguments into the correct location
3956   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3957   assert(cc->length() == args->length(), "argument mismatch");
3958   for (int i = 0; i < args->length(); i++) {
3959     LIR_Opr arg = args->at(i);
3960     LIR_Opr loc = cc->at(i);
3961     if (loc->is_register()) {
3962       __ move(arg, loc);
3963     } else {
3964       LIR_Address* addr = loc->as_address_ptr();
3965 //           if (!can_store_as_constant(arg)) {
3966 //             LIR_Opr tmp = new_register(arg->type());
3967 //             __ move(arg, tmp);
3968 //             arg = tmp;
3969 //           }
3970       __ move(arg, addr);
3971     }
3972   }
3973 
3974   if (info) {
3975     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3976   } else {
3977     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3978   }
3979   if (result->is_valid()) {
3980     __ move(phys_reg, result);
3981   }
3982   return result;
3983 }
3984 
3985 
3986 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3987                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3988   // get a result register
3989   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3990   LIR_Opr result = LIR_OprFact::illegalOpr;
3991   if (result_type->tag() != voidTag) {
3992     result = new_register(result_type);
3993     phys_reg = result_register_for(result_type);
3994   }
3995 
3996   // move the arguments into the correct location
3997   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3998 
3999   assert(cc->length() == args->length(), "argument mismatch");
4000   for (int i = 0; i < args->length(); i++) {
4001     LIRItem* arg = args->at(i);
4002     LIR_Opr loc = cc->at(i);
4003     if (loc->is_register()) {
4004       arg->load_item_force(loc);
4005     } else {
4006       LIR_Address* addr = loc->as_address_ptr();
4007       arg->load_for_store(addr->type());
4008       __ move(arg->result(), addr);
4009     }
4010   }
4011 
4012   if (info) {
4013     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
4014   } else {
4015     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
4016   }
4017   if (result->is_valid()) {
4018     __ move(phys_reg, result);
4019   }
4020   return result;
4021 }
4022 
4023 void LIRGenerator::do_MemBar(MemBar* x) {
4024   LIR_Code code = x->code();
4025   switch(code) {
4026   case lir_membar_acquire   : __ membar_acquire(); break;
4027   case lir_membar_release   : __ membar_release(); break;
4028   case lir_membar           : __ membar(); break;
4029   case lir_membar_loadload  : __ membar_loadload(); break;
4030   case lir_membar_storestore: __ membar_storestore(); break;
4031   case lir_membar_loadstore : __ membar_loadstore(); break;
4032   case lir_membar_storeload : __ membar_storeload(); break;
4033   default                   : ShouldNotReachHere(); break;
4034   }
4035 }
4036 
4037 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
4038   LIR_Opr value_fixed = rlock_byte(T_BYTE);
4039   if (two_operand_lir_form) {
4040     __ move(value, value_fixed);
4041     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
4042   } else {
4043     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
4044   }
4045   LIR_Opr klass = new_register(T_METADATA);
4046   load_klass(array, klass, null_check_info);
4047   null_check_info = nullptr;
4048   LIR_Opr layout = new_register(T_INT);
4049   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
4050   int diffbit = Klass::layout_helper_boolean_diffbit();
4051   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
4052   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
4053   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
4054   value = value_fixed;
4055   return value;
4056 }