1 /* 2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "c1/c1_Compilation.hpp" 26 #include "c1/c1_Defs.hpp" 27 #include "c1/c1_FrameMap.hpp" 28 #include "c1/c1_Instruction.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_LIRGenerator.hpp" 31 #include "c1/c1_ValueStack.hpp" 32 #include "ci/ciArrayKlass.hpp" 33 #include "ci/ciFlatArrayKlass.hpp" 34 #include "ci/ciInlineKlass.hpp" 35 #include "ci/ciInstance.hpp" 36 #include "ci/ciObjArray.hpp" 37 #include "ci/ciObjArrayKlass.hpp" 38 #include "ci/ciUtilities.hpp" 39 #include "compiler/compilerDefinitions.inline.hpp" 40 #include "compiler/compilerOracle.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/c1/barrierSetC1.hpp" 43 #include "oops/klass.inline.hpp" 44 #include "oops/methodCounters.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "runtime/stubRoutines.hpp" 47 #include "runtime/vm_version.hpp" 48 #include "utilities/bitMap.inline.hpp" 49 #include "utilities/macros.hpp" 50 #include "utilities/powerOfTwo.hpp" 51 52 #ifdef ASSERT 53 #define __ gen()->lir(__FILE__, __LINE__)-> 54 #else 55 #define __ gen()->lir()-> 56 #endif 57 58 #ifndef PATCHED_ADDR 59 #define PATCHED_ADDR (max_jint) 60 #endif 61 62 void PhiResolverState::reset() { 63 _virtual_operands.clear(); 64 _other_operands.clear(); 65 _vreg_table.clear(); 66 } 67 68 69 //-------------------------------------------------------------- 70 // PhiResolver 71 72 // Resolves cycles: 73 // 74 // r1 := r2 becomes temp := r1 75 // r2 := r1 r1 := r2 76 // r2 := temp 77 // and orders moves: 78 // 79 // r2 := r3 becomes r1 := r2 80 // r1 := r2 r2 := r3 81 82 PhiResolver::PhiResolver(LIRGenerator* gen) 83 : _gen(gen) 84 , _state(gen->resolver_state()) 85 , _loop(nullptr) 86 , _temp(LIR_OprFact::illegalOpr) 87 { 88 // reinitialize the shared state arrays 89 _state.reset(); 90 } 91 92 93 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 94 assert(src->is_valid(), ""); 95 assert(dest->is_valid(), ""); 96 __ move(src, dest); 97 } 98 99 100 void PhiResolver::move_temp_to(LIR_Opr dest) { 101 assert(_temp->is_valid(), ""); 102 emit_move(_temp, dest); 103 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 104 } 105 106 107 void PhiResolver::move_to_temp(LIR_Opr src) { 108 assert(_temp->is_illegal(), ""); 109 _temp = _gen->new_register(src->type()); 110 emit_move(src, _temp); 111 } 112 113 114 // Traverse assignment graph in depth first order and generate moves in post order 115 // ie. two assignments: b := c, a := b start with node c: 116 // Call graph: move(null, c) -> move(c, b) -> move(b, a) 117 // Generates moves in this order: move b to a and move c to b 118 // ie. cycle a := b, b := a start with node a 119 // Call graph: move(null, a) -> move(a, b) -> move(b, a) 120 // Generates moves in this order: move b to temp, move a to b, move temp to a 121 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 122 if (!dest->visited()) { 123 dest->set_visited(); 124 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 125 move(dest, dest->destination_at(i)); 126 } 127 } else if (!dest->start_node()) { 128 // cylce in graph detected 129 assert(_loop == nullptr, "only one loop valid!"); 130 _loop = dest; 131 move_to_temp(src->operand()); 132 return; 133 } // else dest is a start node 134 135 if (!dest->assigned()) { 136 if (_loop == dest) { 137 move_temp_to(dest->operand()); 138 dest->set_assigned(); 139 } else if (src != nullptr) { 140 emit_move(src->operand(), dest->operand()); 141 dest->set_assigned(); 142 } 143 } 144 } 145 146 147 PhiResolver::~PhiResolver() { 148 int i; 149 // resolve any cycles in moves from and to virtual registers 150 for (i = virtual_operands().length() - 1; i >= 0; i --) { 151 ResolveNode* node = virtual_operands().at(i); 152 if (!node->visited()) { 153 _loop = nullptr; 154 move(nullptr, node); 155 node->set_start_node(); 156 assert(_temp->is_illegal(), "move_temp_to() call missing"); 157 } 158 } 159 160 // generate move for move from non virtual register to abitrary destination 161 for (i = other_operands().length() - 1; i >= 0; i --) { 162 ResolveNode* node = other_operands().at(i); 163 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 164 emit_move(node->operand(), node->destination_at(j)->operand()); 165 } 166 } 167 } 168 169 170 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 171 ResolveNode* node; 172 if (opr->is_virtual()) { 173 int vreg_num = opr->vreg_number(); 174 node = vreg_table().at_grow(vreg_num, nullptr); 175 assert(node == nullptr || node->operand() == opr, ""); 176 if (node == nullptr) { 177 node = new ResolveNode(opr); 178 vreg_table().at_put(vreg_num, node); 179 } 180 // Make sure that all virtual operands show up in the list when 181 // they are used as the source of a move. 182 if (source && !virtual_operands().contains(node)) { 183 virtual_operands().append(node); 184 } 185 } else { 186 assert(source, ""); 187 node = new ResolveNode(opr); 188 other_operands().append(node); 189 } 190 return node; 191 } 192 193 194 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 195 assert(dest->is_virtual(), ""); 196 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 197 assert(src->is_valid(), ""); 198 assert(dest->is_valid(), ""); 199 ResolveNode* source = source_node(src); 200 source->append(destination_node(dest)); 201 } 202 203 204 //-------------------------------------------------------------- 205 // LIRItem 206 207 void LIRItem::set_result(LIR_Opr opr) { 208 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 209 value()->set_operand(opr); 210 211 #ifdef ASSERT 212 if (opr->is_virtual()) { 213 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr); 214 } 215 #endif 216 217 _result = opr; 218 } 219 220 void LIRItem::load_item() { 221 assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code"); 222 223 if (result()->is_illegal()) { 224 // update the items result 225 _result = value()->operand(); 226 } 227 if (!result()->is_register()) { 228 LIR_Opr reg = _gen->new_register(value()->type()); 229 __ move(result(), reg); 230 if (result()->is_constant()) { 231 _result = reg; 232 } else { 233 set_result(reg); 234 } 235 } 236 } 237 238 239 void LIRItem::load_for_store(BasicType type) { 240 if (_gen->can_store_as_constant(value(), type)) { 241 _result = value()->operand(); 242 if (!_result->is_constant()) { 243 _result = LIR_OprFact::value_type(value()->type()); 244 } 245 } else if (type == T_BYTE || type == T_BOOLEAN) { 246 load_byte_item(); 247 } else { 248 load_item(); 249 } 250 } 251 252 void LIRItem::load_item_force(LIR_Opr reg) { 253 LIR_Opr r = result(); 254 if (r != reg) { 255 #if !defined(ARM) && !defined(E500V2) 256 if (r->type() != reg->type()) { 257 // moves between different types need an intervening spill slot 258 r = _gen->force_to_spill(r, reg->type()); 259 } 260 #endif 261 __ move(r, reg); 262 _result = reg; 263 } 264 } 265 266 ciObject* LIRItem::get_jobject_constant() const { 267 ObjectType* oc = type()->as_ObjectType(); 268 if (oc) { 269 return oc->constant_value(); 270 } 271 return nullptr; 272 } 273 274 275 jint LIRItem::get_jint_constant() const { 276 assert(is_constant() && value() != nullptr, ""); 277 assert(type()->as_IntConstant() != nullptr, "type check"); 278 return type()->as_IntConstant()->value(); 279 } 280 281 282 jint LIRItem::get_address_constant() const { 283 assert(is_constant() && value() != nullptr, ""); 284 assert(type()->as_AddressConstant() != nullptr, "type check"); 285 return type()->as_AddressConstant()->value(); 286 } 287 288 289 jfloat LIRItem::get_jfloat_constant() const { 290 assert(is_constant() && value() != nullptr, ""); 291 assert(type()->as_FloatConstant() != nullptr, "type check"); 292 return type()->as_FloatConstant()->value(); 293 } 294 295 296 jdouble LIRItem::get_jdouble_constant() const { 297 assert(is_constant() && value() != nullptr, ""); 298 assert(type()->as_DoubleConstant() != nullptr, "type check"); 299 return type()->as_DoubleConstant()->value(); 300 } 301 302 303 jlong LIRItem::get_jlong_constant() const { 304 assert(is_constant() && value() != nullptr, ""); 305 assert(type()->as_LongConstant() != nullptr, "type check"); 306 return type()->as_LongConstant()->value(); 307 } 308 309 310 311 //-------------------------------------------------------------- 312 313 314 void LIRGenerator::block_do_prolog(BlockBegin* block) { 315 #ifndef PRODUCT 316 if (PrintIRWithLIR) { 317 block->print(); 318 } 319 #endif 320 321 // set up the list of LIR instructions 322 assert(block->lir() == nullptr, "LIR list already computed for this block"); 323 _lir = new LIR_List(compilation(), block); 324 block->set_lir(_lir); 325 326 __ branch_destination(block->label()); 327 328 if (LIRTraceExecution && 329 Compilation::current()->hir()->start()->block_id() != block->block_id() && 330 !block->is_set(BlockBegin::exception_entry_flag)) { 331 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 332 trace_block_entry(block); 333 } 334 } 335 336 337 void LIRGenerator::block_do_epilog(BlockBegin* block) { 338 #ifndef PRODUCT 339 if (PrintIRWithLIR) { 340 tty->cr(); 341 } 342 #endif 343 344 // LIR_Opr for unpinned constants shouldn't be referenced by other 345 // blocks so clear them out after processing the block. 346 for (int i = 0; i < _unpinned_constants.length(); i++) { 347 _unpinned_constants.at(i)->clear_operand(); 348 } 349 _unpinned_constants.trunc_to(0); 350 351 // clear our any registers for other local constants 352 _constants.trunc_to(0); 353 _reg_for_constants.trunc_to(0); 354 } 355 356 357 void LIRGenerator::block_do(BlockBegin* block) { 358 CHECK_BAILOUT(); 359 360 block_do_prolog(block); 361 set_block(block); 362 363 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) { 364 if (instr->is_pinned()) do_root(instr); 365 } 366 367 set_block(nullptr); 368 block_do_epilog(block); 369 } 370 371 372 //-------------------------LIRGenerator----------------------------- 373 374 // This is where the tree-walk starts; instr must be root; 375 void LIRGenerator::do_root(Value instr) { 376 CHECK_BAILOUT(); 377 378 InstructionMark im(compilation(), instr); 379 380 assert(instr->is_pinned(), "use only with roots"); 381 assert(instr->subst() == instr, "shouldn't have missed substitution"); 382 383 instr->visit(this); 384 385 assert(!instr->has_uses() || instr->operand()->is_valid() || 386 instr->as_Constant() != nullptr || bailed_out(), "invalid item set"); 387 } 388 389 390 // This is called for each node in tree; the walk stops if a root is reached 391 void LIRGenerator::walk(Value instr) { 392 InstructionMark im(compilation(), instr); 393 //stop walk when encounter a root 394 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) { 395 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited"); 396 } else { 397 assert(instr->subst() == instr, "shouldn't have missed substitution"); 398 instr->visit(this); 399 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use"); 400 } 401 } 402 403 404 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 405 assert(state != nullptr, "state must be defined"); 406 407 #ifndef PRODUCT 408 state->verify(); 409 #endif 410 411 ValueStack* s = state; 412 for_each_state(s) { 413 if (s->kind() == ValueStack::EmptyExceptionState || 414 s->kind() == ValueStack::CallerEmptyExceptionState) 415 { 416 #ifdef ASSERT 417 int index; 418 Value value; 419 for_each_stack_value(s, index, value) { 420 fatal("state must be empty"); 421 } 422 for_each_local_value(s, index, value) { 423 fatal("state must be empty"); 424 } 425 #endif 426 assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty"); 427 continue; 428 } 429 430 int index; 431 Value value; 432 for_each_stack_value(s, index, value) { 433 assert(value->subst() == value, "missed substitution"); 434 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 435 walk(value); 436 assert(value->operand()->is_valid(), "must be evaluated now"); 437 } 438 } 439 440 int bci = s->bci(); 441 IRScope* scope = s->scope(); 442 ciMethod* method = scope->method(); 443 444 MethodLivenessResult liveness = method->liveness_at_bci(bci); 445 if (bci == SynchronizationEntryBCI) { 446 if (x->as_ExceptionObject() || x->as_Throw()) { 447 // all locals are dead on exit from the synthetic unlocker 448 liveness.clear(); 449 } else { 450 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 451 } 452 } 453 if (!liveness.is_valid()) { 454 // Degenerate or breakpointed method. 455 bailout("Degenerate or breakpointed method"); 456 } else { 457 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 458 for_each_local_value(s, index, value) { 459 assert(value->subst() == value, "missed substitution"); 460 if (liveness.at(index) && !value->type()->is_illegal()) { 461 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 462 walk(value); 463 assert(value->operand()->is_valid(), "must be evaluated now"); 464 } 465 } else { 466 // null out this local so that linear scan can assume that all non-null values are live. 467 s->invalidate_local(index); 468 } 469 } 470 } 471 } 472 473 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 474 } 475 476 477 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 478 return state_for(x, x->exception_state()); 479 } 480 481 482 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 483 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 484 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 485 * the class. */ 486 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 487 assert(info != nullptr, "info must be set if class is not loaded"); 488 __ klass2reg_patch(nullptr, r, info); 489 } else { 490 // no patching needed 491 __ metadata2reg(obj->constant_encoding(), r); 492 } 493 } 494 495 496 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 497 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 498 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 499 if (index->is_constant()) { 500 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 501 index->as_jint(), null_check_info); 502 __ branch(lir_cond_belowEqual, stub); // forward branch 503 } else { 504 cmp_reg_mem(lir_cond_aboveEqual, index, array, 505 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 506 __ branch(lir_cond_aboveEqual, stub); // forward branch 507 } 508 } 509 510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 511 LIR_Opr result_op = result; 512 LIR_Opr left_op = left; 513 LIR_Opr right_op = right; 514 515 if (two_operand_lir_form && left_op != result_op) { 516 assert(right_op != result_op, "malformed"); 517 __ move(left_op, result_op); 518 left_op = result_op; 519 } 520 521 switch(code) { 522 case Bytecodes::_dadd: 523 case Bytecodes::_fadd: 524 case Bytecodes::_ladd: 525 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 526 case Bytecodes::_fmul: 527 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 528 529 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 530 531 case Bytecodes::_imul: 532 { 533 bool did_strength_reduce = false; 534 535 if (right->is_constant()) { 536 jint c = right->as_jint(); 537 if (c > 0 && is_power_of_2(c)) { 538 // do not need tmp here 539 __ shift_left(left_op, exact_log2(c), result_op); 540 did_strength_reduce = true; 541 } else { 542 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 543 } 544 } 545 // we couldn't strength reduce so just emit the multiply 546 if (!did_strength_reduce) { 547 __ mul(left_op, right_op, result_op); 548 } 549 } 550 break; 551 552 case Bytecodes::_dsub: 553 case Bytecodes::_fsub: 554 case Bytecodes::_lsub: 555 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 556 557 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 558 // ldiv and lrem are implemented with a direct runtime call 559 560 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 561 562 case Bytecodes::_drem: 563 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 564 565 default: ShouldNotReachHere(); 566 } 567 } 568 569 570 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 571 arithmetic_op(code, result, left, right, tmp); 572 } 573 574 575 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 576 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 577 } 578 579 580 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 581 arithmetic_op(code, result, left, right, tmp); 582 } 583 584 585 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 586 587 if (two_operand_lir_form && value != result_op 588 // Only 32bit right shifts require two operand form on S390. 589 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 590 assert(count != result_op, "malformed"); 591 __ move(value, result_op); 592 value = result_op; 593 } 594 595 assert(count->is_constant() || count->is_register(), "must be"); 596 switch(code) { 597 case Bytecodes::_ishl: 598 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 599 case Bytecodes::_ishr: 600 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 601 case Bytecodes::_iushr: 602 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 603 default: ShouldNotReachHere(); 604 } 605 } 606 607 608 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 609 if (two_operand_lir_form && left_op != result_op) { 610 assert(right_op != result_op, "malformed"); 611 __ move(left_op, result_op); 612 left_op = result_op; 613 } 614 615 switch(code) { 616 case Bytecodes::_iand: 617 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 618 619 case Bytecodes::_ior: 620 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 621 622 case Bytecodes::_ixor: 623 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 624 625 default: ShouldNotReachHere(); 626 } 627 } 628 629 630 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, 631 CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_ie_stub) { 632 if (!GenerateSynchronizationCode) return; 633 // for slow path, use debug info for state after successful locking 634 CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_ie_stub, scratch); 635 __ load_stack_address_monitor(monitor_no, lock); 636 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 637 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_ie_stub); 638 } 639 640 641 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 642 if (!GenerateSynchronizationCode) return; 643 // setup registers 644 LIR_Opr hdr = lock; 645 lock = new_hdr; 646 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no); 647 __ load_stack_address_monitor(monitor_no, lock); 648 __ unlock_object(hdr, object, lock, scratch, slow_path); 649 } 650 651 #ifndef PRODUCT 652 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 653 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 654 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 655 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 656 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 657 } 658 } 659 #endif 660 661 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 662 if (allow_inline) { 663 assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved"); 664 __ metadata2reg(klass->constant_encoding(), klass_reg); 665 } else { 666 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 667 } 668 // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass 669 if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype()) 670 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 671 672 C1StubId stub_id = klass->is_initialized() ? C1StubId::fast_new_instance_id : C1StubId::fast_new_instance_init_check_id; 673 674 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 675 676 assert(klass->is_loaded(), "must be loaded"); 677 // allocate space for instance 678 assert(klass->size_helper() > 0, "illegal instance size"); 679 const int instance_size = align_object_size(klass->size_helper()); 680 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 681 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 682 } else { 683 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, C1StubId::new_instance_id); 684 __ jump(slow_path); 685 __ branch_destination(slow_path->continuation()); 686 } 687 } 688 689 690 static bool is_constant_zero(Instruction* inst) { 691 IntConstant* c = inst->type()->as_IntConstant(); 692 if (c) { 693 return (c->value() == 0); 694 } 695 return false; 696 } 697 698 699 static bool positive_constant(Instruction* inst) { 700 IntConstant* c = inst->type()->as_IntConstant(); 701 if (c) { 702 return (c->value() >= 0); 703 } 704 return false; 705 } 706 707 708 static ciArrayKlass* as_array_klass(ciType* type) { 709 if (type != nullptr && type->is_array_klass() && type->is_loaded()) { 710 return (ciArrayKlass*)type; 711 } else { 712 return nullptr; 713 } 714 } 715 716 static ciType* phi_declared_type(Phi* phi) { 717 ciType* t = phi->operand_at(0)->declared_type(); 718 if (t == nullptr) { 719 return nullptr; 720 } 721 for(int i = 1; i < phi->operand_count(); i++) { 722 if (t != phi->operand_at(i)->declared_type()) { 723 return nullptr; 724 } 725 } 726 return t; 727 } 728 729 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 730 Instruction* src = x->argument_at(0); 731 Instruction* src_pos = x->argument_at(1); 732 Instruction* dst = x->argument_at(2); 733 Instruction* dst_pos = x->argument_at(3); 734 Instruction* length = x->argument_at(4); 735 736 // first try to identify the likely type of the arrays involved 737 ciArrayKlass* expected_type = nullptr; 738 bool is_exact = false, src_objarray = false, dst_objarray = false; 739 { 740 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 741 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 742 Phi* phi; 743 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) { 744 src_declared_type = as_array_klass(phi_declared_type(phi)); 745 } 746 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 747 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 748 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) { 749 dst_declared_type = as_array_klass(phi_declared_type(phi)); 750 } 751 752 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) { 753 // the types exactly match so the type is fully known 754 is_exact = true; 755 expected_type = src_exact_type; 756 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) { 757 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 758 ciArrayKlass* src_type = nullptr; 759 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) { 760 src_type = (ciArrayKlass*) src_exact_type; 761 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) { 762 src_type = (ciArrayKlass*) src_declared_type; 763 } 764 if (src_type != nullptr) { 765 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 766 is_exact = true; 767 expected_type = dst_type; 768 } 769 } 770 } 771 // at least pass along a good guess 772 if (expected_type == nullptr) expected_type = dst_exact_type; 773 if (expected_type == nullptr) expected_type = src_declared_type; 774 if (expected_type == nullptr) expected_type = dst_declared_type; 775 776 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 777 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 778 } 779 780 // if a probable array type has been identified, figure out if any 781 // of the required checks for a fast case can be elided. 782 int flags = LIR_OpArrayCopy::all_flags; 783 784 if (!src->is_loaded_flat_array() && !dst->is_loaded_flat_array()) { 785 flags &= ~LIR_OpArrayCopy::always_slow_path; 786 } 787 if (!src->maybe_flat_array()) { 788 flags &= ~LIR_OpArrayCopy::src_inlinetype_check; 789 } 790 if (!dst->maybe_flat_array() && !dst->maybe_null_free_array()) { 791 flags &= ~LIR_OpArrayCopy::dst_inlinetype_check; 792 } 793 794 if (!src_objarray) 795 flags &= ~LIR_OpArrayCopy::src_objarray; 796 if (!dst_objarray) 797 flags &= ~LIR_OpArrayCopy::dst_objarray; 798 799 if (!x->arg_needs_null_check(0)) 800 flags &= ~LIR_OpArrayCopy::src_null_check; 801 if (!x->arg_needs_null_check(2)) 802 flags &= ~LIR_OpArrayCopy::dst_null_check; 803 804 805 if (expected_type != nullptr) { 806 Value length_limit = nullptr; 807 808 IfOp* ifop = length->as_IfOp(); 809 if (ifop != nullptr) { 810 // look for expressions like min(v, a.length) which ends up as 811 // x > y ? y : x or x >= y ? y : x 812 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 813 ifop->x() == ifop->fval() && 814 ifop->y() == ifop->tval()) { 815 length_limit = ifop->y(); 816 } 817 } 818 819 // try to skip null checks and range checks 820 NewArray* src_array = src->as_NewArray(); 821 if (src_array != nullptr) { 822 flags &= ~LIR_OpArrayCopy::src_null_check; 823 if (length_limit != nullptr && 824 src_array->length() == length_limit && 825 is_constant_zero(src_pos)) { 826 flags &= ~LIR_OpArrayCopy::src_range_check; 827 } 828 } 829 830 NewArray* dst_array = dst->as_NewArray(); 831 if (dst_array != nullptr) { 832 flags &= ~LIR_OpArrayCopy::dst_null_check; 833 if (length_limit != nullptr && 834 dst_array->length() == length_limit && 835 is_constant_zero(dst_pos)) { 836 flags &= ~LIR_OpArrayCopy::dst_range_check; 837 } 838 } 839 840 // check from incoming constant values 841 if (positive_constant(src_pos)) 842 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 843 if (positive_constant(dst_pos)) 844 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 845 if (positive_constant(length)) 846 flags &= ~LIR_OpArrayCopy::length_positive_check; 847 848 // see if the range check can be elided, which might also imply 849 // that src or dst is non-null. 850 ArrayLength* al = length->as_ArrayLength(); 851 if (al != nullptr) { 852 if (al->array() == src) { 853 // it's the length of the source array 854 flags &= ~LIR_OpArrayCopy::length_positive_check; 855 flags &= ~LIR_OpArrayCopy::src_null_check; 856 if (is_constant_zero(src_pos)) 857 flags &= ~LIR_OpArrayCopy::src_range_check; 858 } 859 if (al->array() == dst) { 860 // it's the length of the destination array 861 flags &= ~LIR_OpArrayCopy::length_positive_check; 862 flags &= ~LIR_OpArrayCopy::dst_null_check; 863 if (is_constant_zero(dst_pos)) 864 flags &= ~LIR_OpArrayCopy::dst_range_check; 865 } 866 } 867 if (is_exact) { 868 flags &= ~LIR_OpArrayCopy::type_check; 869 } 870 } 871 872 IntConstant* src_int = src_pos->type()->as_IntConstant(); 873 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 874 if (src_int && dst_int) { 875 int s_offs = src_int->value(); 876 int d_offs = dst_int->value(); 877 if (src_int->value() >= dst_int->value()) { 878 flags &= ~LIR_OpArrayCopy::overlapping; 879 } 880 if (expected_type != nullptr) { 881 BasicType t = expected_type->element_type()->basic_type(); 882 int element_size = type2aelembytes(t); 883 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) && 884 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) { 885 flags &= ~LIR_OpArrayCopy::unaligned; 886 } 887 } 888 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 889 // src and dest positions are the same, or dst is zero so assume 890 // nonoverlapping copy. 891 flags &= ~LIR_OpArrayCopy::overlapping; 892 } 893 894 if (src == dst) { 895 // moving within a single array so no type checks are needed 896 if (flags & LIR_OpArrayCopy::type_check) { 897 flags &= ~LIR_OpArrayCopy::type_check; 898 } 899 } 900 *flagsp = flags; 901 902 // TODO 8366668 903 if (expected_type != nullptr && expected_type->is_obj_array_klass()) { 904 expected_type = ciArrayKlass::make(expected_type->as_array_klass()->element_klass(), false, true, true); 905 } 906 907 *expected_typep = (ciArrayKlass*)expected_type; 908 } 909 910 911 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 912 assert(type2size[t] == type2size[value->type()], 913 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 914 if (!value->is_register()) { 915 // force into a register 916 LIR_Opr r = new_register(value->type()); 917 __ move(value, r); 918 value = r; 919 } 920 921 // create a spill location 922 LIR_Opr tmp = new_register(t); 923 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 924 925 // move from register to spill 926 __ move(value, tmp); 927 return tmp; 928 } 929 930 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 931 if (if_instr->should_profile()) { 932 ciMethod* method = if_instr->profiled_method(); 933 assert(method != nullptr, "method should be set if branch is profiled"); 934 ciMethodData* md = method->method_data_or_null(); 935 assert(md != nullptr, "Sanity"); 936 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 937 assert(data != nullptr, "must have profiling data"); 938 assert(data->is_BranchData(), "need BranchData for two-way branches"); 939 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 940 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 941 if (if_instr->is_swapped()) { 942 int t = taken_count_offset; 943 taken_count_offset = not_taken_count_offset; 944 not_taken_count_offset = t; 945 } 946 947 LIR_Opr md_reg = new_register(T_METADATA); 948 __ metadata2reg(md->constant_encoding(), md_reg); 949 950 LIR_Opr data_offset_reg = new_pointer_register(); 951 __ cmove(lir_cond(cond), 952 LIR_OprFact::intptrConst(taken_count_offset), 953 LIR_OprFact::intptrConst(not_taken_count_offset), 954 data_offset_reg, as_BasicType(if_instr->x()->type())); 955 956 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 957 LIR_Opr data_reg = new_pointer_register(); 958 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 959 __ move(data_addr, data_reg); 960 // Use leal instead of add to avoid destroying condition codes on x86 961 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 962 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 963 __ move(data_reg, data_addr); 964 } 965 } 966 967 // Phi technique: 968 // This is about passing live values from one basic block to the other. 969 // In code generated with Java it is rather rare that more than one 970 // value is on the stack from one basic block to the other. 971 // We optimize our technique for efficient passing of one value 972 // (of type long, int, double..) but it can be extended. 973 // When entering or leaving a basic block, all registers and all spill 974 // slots are release and empty. We use the released registers 975 // and spill slots to pass the live values from one block 976 // to the other. The topmost value, i.e., the value on TOS of expression 977 // stack is passed in registers. All other values are stored in spilling 978 // area. Every Phi has an index which designates its spill slot 979 // At exit of a basic block, we fill the register(s) and spill slots. 980 // At entry of a basic block, the block_prolog sets up the content of phi nodes 981 // and locks necessary registers and spilling slots. 982 983 984 // move current value to referenced phi function 985 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 986 Phi* phi = sux_val->as_Phi(); 987 // cur_val can be null without phi being null in conjunction with inlining 988 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) { 989 if (phi->is_local()) { 990 for (int i = 0; i < phi->operand_count(); i++) { 991 Value op = phi->operand_at(i); 992 if (op != nullptr && op->type()->is_illegal()) { 993 bailout("illegal phi operand"); 994 } 995 } 996 } 997 Phi* cur_phi = cur_val->as_Phi(); 998 if (cur_phi != nullptr && cur_phi->is_illegal()) { 999 // Phi and local would need to get invalidated 1000 // (which is unexpected for Linear Scan). 1001 // But this case is very rare so we simply bail out. 1002 bailout("propagation of illegal phi"); 1003 return; 1004 } 1005 LIR_Opr operand = cur_val->operand(); 1006 if (operand->is_illegal()) { 1007 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr, 1008 "these can be produced lazily"); 1009 operand = operand_for_instruction(cur_val); 1010 } 1011 resolver->move(operand, operand_for_instruction(phi)); 1012 } 1013 } 1014 1015 1016 // Moves all stack values into their PHI position 1017 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 1018 BlockBegin* bb = block(); 1019 if (bb->number_of_sux() == 1) { 1020 BlockBegin* sux = bb->sux_at(0); 1021 assert(sux->number_of_preds() > 0, "invalid CFG"); 1022 1023 // a block with only one predecessor never has phi functions 1024 if (sux->number_of_preds() > 1) { 1025 PhiResolver resolver(this); 1026 1027 ValueStack* sux_state = sux->state(); 1028 Value sux_value; 1029 int index; 1030 1031 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1032 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1033 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1034 1035 for_each_stack_value(sux_state, index, sux_value) { 1036 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1037 } 1038 1039 for_each_local_value(sux_state, index, sux_value) { 1040 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1041 } 1042 1043 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1044 } 1045 } 1046 } 1047 1048 1049 LIR_Opr LIRGenerator::new_register(BasicType type) { 1050 int vreg_num = _virtual_register_number; 1051 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1052 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1053 if (vreg_num + 20 >= LIR_Opr::vreg_max) { 1054 bailout("out of virtual registers in LIR generator"); 1055 if (vreg_num + 2 >= LIR_Opr::vreg_max) { 1056 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1057 _virtual_register_number = LIR_Opr::vreg_base; 1058 vreg_num = LIR_Opr::vreg_base; 1059 } 1060 } 1061 _virtual_register_number += 1; 1062 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1063 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1064 return vreg; 1065 } 1066 1067 1068 // Try to lock using register in hint 1069 LIR_Opr LIRGenerator::rlock(Value instr) { 1070 return new_register(instr->type()); 1071 } 1072 1073 1074 // does an rlock and sets result 1075 LIR_Opr LIRGenerator::rlock_result(Value x) { 1076 LIR_Opr reg = rlock(x); 1077 set_result(x, reg); 1078 return reg; 1079 } 1080 1081 1082 // does an rlock and sets result 1083 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1084 LIR_Opr reg; 1085 switch (type) { 1086 case T_BYTE: 1087 case T_BOOLEAN: 1088 reg = rlock_byte(type); 1089 break; 1090 default: 1091 reg = rlock(x); 1092 break; 1093 } 1094 1095 set_result(x, reg); 1096 return reg; 1097 } 1098 1099 1100 //--------------------------------------------------------------------- 1101 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1102 ObjectType* oc = value->type()->as_ObjectType(); 1103 if (oc) { 1104 return oc->constant_value(); 1105 } 1106 return nullptr; 1107 } 1108 1109 1110 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1111 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1112 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1113 1114 // no moves are created for phi functions at the begin of exception 1115 // handlers, so assign operands manually here 1116 for_each_phi_fun(block(), phi, 1117 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1118 1119 LIR_Opr thread_reg = getThreadPointer(); 1120 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1121 exceptionOopOpr()); 1122 __ move_wide(LIR_OprFact::oopConst(nullptr), 1123 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1124 __ move_wide(LIR_OprFact::oopConst(nullptr), 1125 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1126 1127 LIR_Opr result = new_register(T_OBJECT); 1128 __ move(exceptionOopOpr(), result); 1129 set_result(x, result); 1130 } 1131 1132 1133 //---------------------------------------------------------------------- 1134 //---------------------------------------------------------------------- 1135 //---------------------------------------------------------------------- 1136 //---------------------------------------------------------------------- 1137 // visitor functions 1138 //---------------------------------------------------------------------- 1139 //---------------------------------------------------------------------- 1140 //---------------------------------------------------------------------- 1141 //---------------------------------------------------------------------- 1142 1143 void LIRGenerator::do_Phi(Phi* x) { 1144 // phi functions are never visited directly 1145 ShouldNotReachHere(); 1146 } 1147 1148 1149 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1150 void LIRGenerator::do_Constant(Constant* x) { 1151 if (x->state_before() != nullptr) { 1152 // Any constant with a ValueStack requires patching so emit the patch here 1153 LIR_Opr reg = rlock_result(x); 1154 CodeEmitInfo* info = state_for(x, x->state_before()); 1155 __ oop2reg_patch(nullptr, reg, info); 1156 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1157 if (!x->is_pinned()) { 1158 // unpinned constants are handled specially so that they can be 1159 // put into registers when they are used multiple times within a 1160 // block. After the block completes their operand will be 1161 // cleared so that other blocks can't refer to that register. 1162 set_result(x, load_constant(x)); 1163 } else { 1164 LIR_Opr res = x->operand(); 1165 if (!res->is_valid()) { 1166 res = LIR_OprFact::value_type(x->type()); 1167 } 1168 if (res->is_constant()) { 1169 LIR_Opr reg = rlock_result(x); 1170 __ move(res, reg); 1171 } else { 1172 set_result(x, res); 1173 } 1174 } 1175 } else { 1176 set_result(x, LIR_OprFact::value_type(x->type())); 1177 } 1178 } 1179 1180 1181 void LIRGenerator::do_Local(Local* x) { 1182 // operand_for_instruction has the side effect of setting the result 1183 // so there's no need to do it here. 1184 operand_for_instruction(x); 1185 } 1186 1187 1188 void LIRGenerator::do_Return(Return* x) { 1189 if (compilation()->env()->dtrace_method_probes()) { 1190 BasicTypeList signature; 1191 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1192 signature.append(T_METADATA); // Method* 1193 LIR_OprList* args = new LIR_OprList(); 1194 args->append(getThreadPointer()); 1195 LIR_Opr meth = new_register(T_METADATA); 1196 __ metadata2reg(method()->constant_encoding(), meth); 1197 args->append(meth); 1198 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr); 1199 } 1200 1201 if (x->type()->is_void()) { 1202 __ return_op(LIR_OprFact::illegalOpr); 1203 } else { 1204 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1205 LIRItem result(x->result(), this); 1206 1207 result.load_item_force(reg); 1208 __ return_op(result.result()); 1209 } 1210 set_no_result(x); 1211 } 1212 1213 // Example: ref.get() 1214 // Combination of LoadField and g1 pre-write barrier 1215 void LIRGenerator::do_Reference_get0(Intrinsic* x) { 1216 1217 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1218 1219 assert(x->number_of_arguments() == 1, "wrong type"); 1220 1221 LIRItem reference(x->argument_at(0), this); 1222 reference.load_item(); 1223 1224 // need to perform the null check on the reference object 1225 CodeEmitInfo* info = nullptr; 1226 if (x->needs_null_check()) { 1227 info = state_for(x); 1228 } 1229 1230 LIR_Opr result = rlock_result(x, T_OBJECT); 1231 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1232 reference, LIR_OprFact::intConst(referent_offset), result, 1233 nullptr, info); 1234 } 1235 1236 // Example: clazz.isInstance(object) 1237 void LIRGenerator::do_isInstance(Intrinsic* x) { 1238 assert(x->number_of_arguments() == 2, "wrong type"); 1239 1240 LIRItem clazz(x->argument_at(0), this); 1241 LIRItem object(x->argument_at(1), this); 1242 clazz.load_item(); 1243 object.load_item(); 1244 LIR_Opr result = rlock_result(x); 1245 1246 // need to perform null check on clazz 1247 if (x->needs_null_check()) { 1248 CodeEmitInfo* info = state_for(x); 1249 __ null_check(clazz.result(), info); 1250 } 1251 1252 address pd_instanceof_fn = isInstance_entry(); 1253 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1254 pd_instanceof_fn, 1255 x->type(), 1256 nullptr); // null CodeEmitInfo results in a leaf call 1257 __ move(call_result, result); 1258 } 1259 1260 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1261 __ load_klass(obj, klass, null_check_info); 1262 } 1263 1264 // Example: object.getClass () 1265 void LIRGenerator::do_getClass(Intrinsic* x) { 1266 assert(x->number_of_arguments() == 1, "wrong type"); 1267 1268 LIRItem rcvr(x->argument_at(0), this); 1269 rcvr.load_item(); 1270 LIR_Opr temp = new_register(T_ADDRESS); 1271 LIR_Opr result = rlock_result(x); 1272 1273 // need to perform the null check on the rcvr 1274 CodeEmitInfo* info = nullptr; 1275 if (x->needs_null_check()) { 1276 info = state_for(x); 1277 } 1278 1279 LIR_Opr klass = new_register(T_METADATA); 1280 load_klass(rcvr.result(), klass, info); 1281 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1282 // mirror = ((OopHandle)mirror)->resolve(); 1283 access_load(IN_NATIVE, T_OBJECT, 1284 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1285 } 1286 1287 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1288 assert(x->number_of_arguments() == 3, "wrong type"); 1289 LIR_Opr result_reg = rlock_result(x); 1290 1291 LIRItem value(x->argument_at(2), this); 1292 value.load_item(); 1293 1294 LIR_Opr klass = new_register(T_METADATA); 1295 load_klass(value.result(), klass, nullptr); 1296 LIR_Opr layout = new_register(T_INT); 1297 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1298 1299 LabelObj* L_done = new LabelObj(); 1300 LabelObj* L_array = new LabelObj(); 1301 1302 __ cmp(lir_cond_lessEqual, layout, 0); 1303 __ branch(lir_cond_lessEqual, L_array->label()); 1304 1305 // Instance case: the layout helper gives us instance size almost directly, 1306 // but we need to mask out the _lh_instance_slow_path_bit. 1307 1308 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1309 1310 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT); 1311 __ logical_and(layout, mask, layout); 1312 __ convert(Bytecodes::_i2l, layout, result_reg); 1313 1314 __ branch(lir_cond_always, L_done->label()); 1315 1316 // Array case: size is round(header + element_size*arraylength). 1317 // Since arraylength is different for every array instance, we have to 1318 // compute the whole thing at runtime. 1319 1320 __ branch_destination(L_array->label()); 1321 1322 int round_mask = MinObjAlignmentInBytes - 1; 1323 1324 // Figure out header sizes first. 1325 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT); 1326 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT); 1327 1328 LIR_Opr header_size = new_register(T_INT); 1329 __ move(layout, header_size); 1330 LIR_Opr tmp = new_register(T_INT); 1331 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1332 __ logical_and(header_size, hsm, header_size); 1333 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1334 1335 // Figure out the array length in bytes 1336 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1337 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT); 1338 __ logical_and(layout, l2esm, layout); 1339 1340 LIR_Opr length_int = new_register(T_INT); 1341 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1342 1343 #ifdef _LP64 1344 LIR_Opr length = new_register(T_LONG); 1345 __ convert(Bytecodes::_i2l, length_int, length); 1346 #endif 1347 1348 // Shift-left awkwardness. Normally it is just: 1349 // __ shift_left(length, layout, length); 1350 // But C1 cannot perform shift_left with non-constant count, so we end up 1351 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1352 // longs, so we have to act on ints. 1353 LabelObj* L_shift_loop = new LabelObj(); 1354 LabelObj* L_shift_exit = new LabelObj(); 1355 1356 __ branch_destination(L_shift_loop->label()); 1357 __ cmp(lir_cond_equal, layout, 0); 1358 __ branch(lir_cond_equal, L_shift_exit->label()); 1359 1360 #ifdef _LP64 1361 __ shift_left(length, 1, length); 1362 #else 1363 __ shift_left(length_int, 1, length_int); 1364 #endif 1365 1366 __ sub(layout, LIR_OprFact::intConst(1), layout); 1367 1368 __ branch(lir_cond_always, L_shift_loop->label()); 1369 __ branch_destination(L_shift_exit->label()); 1370 1371 // Mix all up, round, and push to the result. 1372 #ifdef _LP64 1373 LIR_Opr header_size_long = new_register(T_LONG); 1374 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1375 __ add(length, header_size_long, length); 1376 if (round_mask != 0) { 1377 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG); 1378 __ logical_and(length, round_mask_opr, length); 1379 } 1380 __ move(length, result_reg); 1381 #else 1382 __ add(length_int, header_size, length_int); 1383 if (round_mask != 0) { 1384 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT); 1385 __ logical_and(length_int, round_mask_opr, length_int); 1386 } 1387 __ convert(Bytecodes::_i2l, length_int, result_reg); 1388 #endif 1389 1390 __ branch_destination(L_done->label()); 1391 } 1392 1393 void LIRGenerator::do_scopedValueCache(Intrinsic* x) { 1394 do_JavaThreadField(x, JavaThread::scopedValueCache_offset()); 1395 } 1396 1397 // Example: Thread.currentCarrierThread() 1398 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) { 1399 do_JavaThreadField(x, JavaThread::threadObj_offset()); 1400 } 1401 1402 void LIRGenerator::do_vthread(Intrinsic* x) { 1403 do_JavaThreadField(x, JavaThread::vthread_offset()); 1404 } 1405 1406 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) { 1407 assert(x->number_of_arguments() == 0, "wrong type"); 1408 LIR_Opr temp = new_register(T_ADDRESS); 1409 LIR_Opr reg = rlock_result(x); 1410 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp); 1411 access_load(IN_NATIVE, T_OBJECT, 1412 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1413 } 1414 1415 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1416 assert(x->number_of_arguments() == 1, "wrong type"); 1417 LIRItem receiver(x->argument_at(0), this); 1418 1419 receiver.load_item(); 1420 BasicTypeList signature; 1421 signature.append(T_OBJECT); // receiver 1422 LIR_OprList* args = new LIR_OprList(); 1423 args->append(receiver.result()); 1424 CodeEmitInfo* info = state_for(x, x->state()); 1425 call_runtime(&signature, args, 1426 CAST_FROM_FN_PTR(address, Runtime1::entry_for(C1StubId::register_finalizer_id)), 1427 voidType, info); 1428 1429 set_no_result(x); 1430 } 1431 1432 1433 //------------------------local access-------------------------------------- 1434 1435 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1436 if (x->operand()->is_illegal()) { 1437 Constant* c = x->as_Constant(); 1438 if (c != nullptr) { 1439 x->set_operand(LIR_OprFact::value_type(c->type())); 1440 } else { 1441 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local"); 1442 // allocate a virtual register for this local or phi 1443 x->set_operand(rlock(x)); 1444 #ifdef ASSERT 1445 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr); 1446 #endif 1447 } 1448 } 1449 return x->operand(); 1450 } 1451 1452 #ifdef ASSERT 1453 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1454 if (reg_num < _instruction_for_operand.length()) { 1455 return _instruction_for_operand.at(reg_num); 1456 } 1457 return nullptr; 1458 } 1459 #endif 1460 1461 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1462 if (_vreg_flags.size_in_bits() == 0) { 1463 BitMap2D temp(100, num_vreg_flags); 1464 _vreg_flags = temp; 1465 } 1466 _vreg_flags.at_put_grow(vreg_num, f, true); 1467 } 1468 1469 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1470 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1471 return false; 1472 } 1473 return _vreg_flags.at(vreg_num, f); 1474 } 1475 1476 1477 // Block local constant handling. This code is useful for keeping 1478 // unpinned constants and constants which aren't exposed in the IR in 1479 // registers. Unpinned Constant instructions have their operands 1480 // cleared when the block is finished so that other blocks can't end 1481 // up referring to their registers. 1482 1483 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1484 assert(!x->is_pinned(), "only for unpinned constants"); 1485 _unpinned_constants.append(x); 1486 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1487 } 1488 1489 1490 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1491 BasicType t = c->type(); 1492 for (int i = 0; i < _constants.length() && !in_conditional_code(); i++) { 1493 LIR_Const* other = _constants.at(i); 1494 if (t == other->type()) { 1495 switch (t) { 1496 case T_INT: 1497 case T_FLOAT: 1498 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1499 break; 1500 case T_LONG: 1501 case T_DOUBLE: 1502 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1503 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1504 break; 1505 case T_OBJECT: 1506 if (c->as_jobject() != other->as_jobject()) continue; 1507 break; 1508 default: 1509 break; 1510 } 1511 return _reg_for_constants.at(i); 1512 } 1513 } 1514 1515 LIR_Opr result = new_register(t); 1516 __ move((LIR_Opr)c, result); 1517 if (!in_conditional_code()) { 1518 _constants.append(c); 1519 _reg_for_constants.append(result); 1520 } 1521 return result; 1522 } 1523 1524 void LIRGenerator::set_in_conditional_code(bool v) { 1525 assert(v != _in_conditional_code, "must change state"); 1526 _in_conditional_code = v; 1527 } 1528 1529 1530 //------------------------field access-------------------------------------- 1531 1532 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1533 assert(x->number_of_arguments() == 4, "wrong type"); 1534 LIRItem obj (x->argument_at(0), this); // object 1535 LIRItem offset(x->argument_at(1), this); // offset of field 1536 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1537 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1538 assert(obj.type()->tag() == objectTag, "invalid type"); 1539 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1540 assert(val.type()->tag() == type->tag(), "invalid type"); 1541 1542 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1543 obj, offset, cmp, val); 1544 set_result(x, result); 1545 } 1546 1547 // Returns a int/long value with the null marker bit set 1548 static LIR_Opr null_marker_mask(BasicType bt, ciField* field) { 1549 assert(field->null_marker_offset() != -1, "field does not have null marker"); 1550 int nm_offset = field->null_marker_offset() - field->offset_in_bytes(); 1551 jlong null_marker = 1ULL << (nm_offset << LogBitsPerByte); 1552 return (bt == T_LONG) ? LIR_OprFact::longConst(null_marker) : LIR_OprFact::intConst(null_marker); 1553 } 1554 1555 // Comment copied form templateTable_i486.cpp 1556 // ---------------------------------------------------------------------------- 1557 // Volatile variables demand their effects be made known to all CPU's in 1558 // order. Store buffers on most chips allow reads & writes to reorder; the 1559 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1560 // memory barrier (i.e., it's not sufficient that the interpreter does not 1561 // reorder volatile references, the hardware also must not reorder them). 1562 // 1563 // According to the new Java Memory Model (JMM): 1564 // (1) All volatiles are serialized wrt to each other. 1565 // ALSO reads & writes act as acquire & release, so: 1566 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1567 // the read float up to before the read. It's OK for non-volatile memory refs 1568 // that happen before the volatile read to float down below it. 1569 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1570 // that happen BEFORE the write float down to after the write. It's OK for 1571 // non-volatile memory refs that happen after the volatile write to float up 1572 // before it. 1573 // 1574 // We only put in barriers around volatile refs (they are expensive), not 1575 // _between_ memory refs (that would require us to track the flavor of the 1576 // previous memory refs). Requirements (2) and (3) require some barriers 1577 // before volatile stores and after volatile loads. These nearly cover 1578 // requirement (1) but miss the volatile-store-volatile-load case. This final 1579 // case is placed after volatile-stores although it could just as well go 1580 // before volatile-loads. 1581 1582 1583 void LIRGenerator::do_StoreField(StoreField* x) { 1584 ciField* field = x->field(); 1585 bool needs_patching = x->needs_patching(); 1586 bool is_volatile = field->is_volatile(); 1587 BasicType field_type = x->field_type(); 1588 1589 CodeEmitInfo* info = nullptr; 1590 if (needs_patching) { 1591 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1592 info = state_for(x, x->state_before()); 1593 } else if (x->needs_null_check()) { 1594 NullCheck* nc = x->explicit_null_check(); 1595 if (nc == nullptr) { 1596 info = state_for(x); 1597 } else { 1598 info = state_for(nc); 1599 } 1600 } 1601 1602 LIRItem object(x->obj(), this); 1603 LIRItem value(x->value(), this); 1604 1605 object.load_item(); 1606 1607 if (field->is_flat()) { 1608 value.load_item(); 1609 } else { 1610 if (is_volatile || needs_patching) { 1611 // load item if field is volatile (fewer special cases for volatiles) 1612 // load item if field not initialized 1613 // load item if field not constant 1614 // because of code patching we cannot inline constants 1615 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1616 value.load_byte_item(); 1617 } else { 1618 value.load_item(); 1619 } 1620 } else { 1621 value.load_for_store(field_type); 1622 } 1623 } 1624 1625 set_no_result(x); 1626 1627 #ifndef PRODUCT 1628 if (PrintNotLoaded && needs_patching) { 1629 tty->print_cr(" ###class not loaded at store_%s bci %d", 1630 x->is_static() ? "static" : "field", x->printable_bci()); 1631 } 1632 #endif 1633 1634 if (x->needs_null_check() && 1635 (needs_patching || 1636 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1637 // Emit an explicit null check because the offset is too large. 1638 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1639 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1640 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1641 } 1642 1643 DecoratorSet decorators = IN_HEAP; 1644 if (is_volatile) { 1645 decorators |= MO_SEQ_CST; 1646 } 1647 if (needs_patching) { 1648 decorators |= C1_NEEDS_PATCHING; 1649 } 1650 1651 if (field->is_flat()) { 1652 ciInlineKlass* vk = field->type()->as_inline_klass(); 1653 1654 #ifdef ASSERT 1655 bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1; 1656 bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic); 1657 assert(needs_atomic_access, "No atomic access required"); 1658 // ZGC does not support compressed oops, so only one oop can be in the payload which is written by a "normal" oop store. 1659 assert(!vk->contains_oops() || !UseZGC, "ZGC does not support embedded oops in flat fields"); 1660 #endif 1661 1662 // Zero the payload 1663 BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free()); 1664 LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT); 1665 LIR_Opr zero = (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0); 1666 __ move(zero, payload); 1667 1668 bool is_constant_null = value.is_constant() && value.value()->is_null_obj(); 1669 if (!is_constant_null) { 1670 LabelObj* L_isNull = new LabelObj(); 1671 bool needs_null_check = !value.is_constant() || value.value()->is_null_obj(); 1672 if (needs_null_check) { 1673 __ cmp(lir_cond_equal, value.result(), LIR_OprFact::oopConst(nullptr)); 1674 __ branch(lir_cond_equal, L_isNull->label()); 1675 } 1676 // Load payload (if not empty) and set null marker (if not null-free) 1677 if (!vk->is_empty()) { 1678 access_load_at(decorators, bt, value, LIR_OprFact::intConst(vk->payload_offset()), payload); 1679 } 1680 if (!field->is_null_free()) { 1681 __ logical_or(payload, null_marker_mask(bt, field), payload); 1682 } 1683 if (needs_null_check) { 1684 __ branch_destination(L_isNull->label()); 1685 } 1686 } 1687 access_store_at(decorators, bt, object, LIR_OprFact::intConst(x->offset()), payload, 1688 // Make sure to emit an implicit null check and pass the information 1689 // that this is a flat store that might require gc barriers for oop fields. 1690 info != nullptr ? new CodeEmitInfo(info) : nullptr, info, vk); 1691 return; 1692 } 1693 1694 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1695 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info); 1696 } 1697 1698 // FIXME -- I can't find any other way to pass an address to access_load_at(). 1699 class TempResolvedAddress: public Instruction { 1700 public: 1701 TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) { 1702 set_operand(addr); 1703 } 1704 virtual void input_values_do(ValueVisitor*) {} 1705 virtual void visit(InstructionVisitor* v) {} 1706 virtual const char* name() const { return "TempResolvedAddress"; } 1707 }; 1708 1709 LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) { 1710 ciType* array_type = array.value()->declared_type(); 1711 ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass(); 1712 assert(flat_array_klass->is_loaded(), "must be"); 1713 1714 int array_header_size = flat_array_klass->array_header_in_bytes(); 1715 int shift = flat_array_klass->log2_element_size(); 1716 1717 #ifndef _LP64 1718 LIR_Opr index_op = new_register(T_INT); 1719 // FIXME -- on 32-bit, the shift below can overflow, so we need to check that 1720 // the top (shift+1) bits of index_op must be zero, or 1721 // else throw ArrayIndexOutOfBoundsException 1722 if (index.result()->is_constant()) { 1723 jint const_index = index.result()->as_jint(); 1724 __ move(LIR_OprFact::intConst(const_index << shift), index_op); 1725 } else { 1726 __ shift_left(index_op, shift, index.result()); 1727 } 1728 #else 1729 LIR_Opr index_op = new_register(T_LONG); 1730 if (index.result()->is_constant()) { 1731 jint const_index = index.result()->as_jint(); 1732 __ move(LIR_OprFact::longConst(const_index << shift), index_op); 1733 } else { 1734 __ convert(Bytecodes::_i2l, index.result(), index_op); 1735 // Need to shift manually, as LIR_Address can scale only up to 3. 1736 __ shift_left(index_op, shift, index_op); 1737 } 1738 #endif 1739 1740 LIR_Opr elm_op = new_pointer_register(); 1741 LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS); 1742 __ leal(LIR_OprFact::address(elm_address), elm_op); 1743 return elm_op; 1744 } 1745 1746 void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, int sub_offset) { 1747 assert(field != nullptr, "Need a subelement type specified"); 1748 1749 // Find the starting address of the source (inside the array) 1750 LIR_Opr elm_op = get_and_load_element_address(array, index); 1751 1752 BasicType subelt_type = field->type()->basic_type(); 1753 TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op); 1754 LIRItem elm_item(elm_resolved_addr, this); 1755 1756 DecoratorSet decorators = IN_HEAP; 1757 access_load_at(decorators, subelt_type, 1758 elm_item, LIR_OprFact::intConst(sub_offset), result, 1759 nullptr, nullptr); 1760 } 1761 1762 void LIRGenerator::access_flat_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item, 1763 ciField* field, int sub_offset) { 1764 assert(sub_offset == 0 || field != nullptr, "Sanity check"); 1765 1766 // Find the starting address of the source (inside the array) 1767 LIR_Opr elm_op = get_and_load_element_address(array, index); 1768 1769 ciInlineKlass* elem_klass = nullptr; 1770 if (field != nullptr) { 1771 elem_klass = field->type()->as_inline_klass(); 1772 } else { 1773 elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass(); 1774 } 1775 for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) { 1776 ciField* inner_field = elem_klass->nonstatic_field_at(i); 1777 assert(!inner_field->is_flat(), "flat fields must have been expanded"); 1778 int obj_offset = inner_field->offset_in_bytes(); 1779 int elm_offset = obj_offset - elem_klass->payload_offset() + sub_offset; // object header is not stored in array. 1780 BasicType field_type = inner_field->type()->basic_type(); 1781 1782 // Types which are smaller than int are still passed in an int register. 1783 BasicType reg_type = field_type; 1784 switch (reg_type) { 1785 case T_BYTE: 1786 case T_BOOLEAN: 1787 case T_SHORT: 1788 case T_CHAR: 1789 reg_type = T_INT; 1790 break; 1791 default: 1792 break; 1793 } 1794 1795 LIR_Opr temp = new_register(reg_type); 1796 TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op); 1797 LIRItem elm_item(elm_resolved_addr, this); 1798 1799 DecoratorSet decorators = IN_HEAP; 1800 if (is_load) { 1801 access_load_at(decorators, field_type, 1802 elm_item, LIR_OprFact::intConst(elm_offset), temp, 1803 nullptr, nullptr); 1804 access_store_at(decorators, field_type, 1805 obj_item, LIR_OprFact::intConst(obj_offset), temp, 1806 nullptr, nullptr); 1807 } else { 1808 access_load_at(decorators, field_type, 1809 obj_item, LIR_OprFact::intConst(obj_offset), temp, 1810 nullptr, nullptr); 1811 access_store_at(decorators, field_type, 1812 elm_item, LIR_OprFact::intConst(elm_offset), temp, 1813 nullptr, nullptr); 1814 } 1815 } 1816 } 1817 1818 void LIRGenerator::check_flat_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) { 1819 LIR_Opr tmp = new_register(T_METADATA); 1820 __ check_flat_array(array, value, tmp, slow_path); 1821 } 1822 1823 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) { 1824 LabelObj* L_end = new LabelObj(); 1825 LIR_Opr tmp = new_register(T_METADATA); 1826 __ check_null_free_array(array.result(), tmp); 1827 __ branch(lir_cond_equal, L_end->label()); 1828 __ null_check(value.result(), info); 1829 __ branch_destination(L_end->label()); 1830 } 1831 1832 bool LIRGenerator::needs_flat_array_store_check(StoreIndexed* x) { 1833 if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) { 1834 ciType* type = x->value()->declared_type(); 1835 if (type != nullptr && type->is_klass()) { 1836 ciKlass* klass = type->as_klass(); 1837 if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->maybe_flat_in_array())) { 1838 // This is known to be a non-flat object. If the array is a flat array, 1839 // it will be caught by the code generated by array_store_check(). 1840 return false; 1841 } 1842 } 1843 // We're not 100% sure, so let's do the flat_array_store_check. 1844 return true; 1845 } 1846 return false; 1847 } 1848 1849 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) { 1850 return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array(); 1851 } 1852 1853 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1854 assert(x->is_pinned(),""); 1855 assert(x->elt_type() != T_ARRAY, "never used"); 1856 bool is_loaded_flat_array = x->array()->is_loaded_flat_array(); 1857 bool needs_range_check = x->compute_needs_range_check(); 1858 bool use_length = x->length() != nullptr; 1859 bool obj_store = is_reference_type(x->elt_type()); 1860 bool needs_store_check = obj_store && !(is_loaded_flat_array && x->is_exact_flat_array_store()) && 1861 (x->value()->as_Constant() == nullptr || 1862 !get_jobject_constant(x->value())->is_null_object()); 1863 1864 LIRItem array(x->array(), this); 1865 LIRItem index(x->index(), this); 1866 LIRItem value(x->value(), this); 1867 LIRItem length(this); 1868 1869 array.load_item(); 1870 index.load_nonconstant(); 1871 1872 if (use_length && needs_range_check) { 1873 length.set_instruction(x->length()); 1874 length.load_item(); 1875 } 1876 1877 if (needs_store_check || x->check_boolean() 1878 || is_loaded_flat_array || needs_flat_array_store_check(x) || needs_null_free_array_store_check(x)) { 1879 value.load_item(); 1880 } else { 1881 value.load_for_store(x->elt_type()); 1882 } 1883 1884 set_no_result(x); 1885 1886 // the CodeEmitInfo must be duplicated for each different 1887 // LIR-instruction because spilling can occur anywhere between two 1888 // instructions and so the debug information must be different 1889 CodeEmitInfo* range_check_info = state_for(x); 1890 CodeEmitInfo* null_check_info = nullptr; 1891 if (x->needs_null_check()) { 1892 null_check_info = new CodeEmitInfo(range_check_info); 1893 } 1894 1895 if (needs_range_check) { 1896 if (use_length) { 1897 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1898 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1899 } else { 1900 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1901 // range_check also does the null check 1902 null_check_info = nullptr; 1903 } 1904 } 1905 1906 if (x->should_profile()) { 1907 if (is_loaded_flat_array) { 1908 // No need to profile a store to a flat array of known type. This can happen if 1909 // the type only became known after optimizations (for example, after the PhiSimplifier). 1910 x->set_should_profile(false); 1911 } else { 1912 int bci = x->profiled_bci(); 1913 ciMethodData* md = x->profiled_method()->method_data(); 1914 assert(md != nullptr, "Sanity"); 1915 ciProfileData* data = md->bci_to_data(bci); 1916 assert(data != nullptr && data->is_ArrayStoreData(), "incorrect profiling entry"); 1917 ciArrayStoreData* store_data = (ciArrayStoreData*)data; 1918 profile_array_type(x, md, store_data); 1919 assert(store_data->is_ArrayStoreData(), "incorrect profiling entry"); 1920 if (x->array()->maybe_null_free_array()) { 1921 profile_null_free_array(array, md, store_data); 1922 } 1923 } 1924 } 1925 1926 if (GenerateArrayStoreCheck && needs_store_check) { 1927 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1928 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1929 } 1930 1931 if (is_loaded_flat_array) { 1932 // TODO 8350865 This is currently dead code 1933 if (!x->value()->is_null_free()) { 1934 __ null_check(value.result(), new CodeEmitInfo(range_check_info)); 1935 } 1936 // If array element is an empty inline type, no need to copy anything 1937 if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) { 1938 access_flat_array(false, array, index, value); 1939 } 1940 } else { 1941 StoreFlattenedArrayStub* slow_path = nullptr; 1942 1943 if (needs_flat_array_store_check(x)) { 1944 // Check if we indeed have a flat array 1945 index.load_item(); 1946 slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before())); 1947 check_flat_array(array.result(), value.result(), slow_path); 1948 set_in_conditional_code(true); 1949 } else if (needs_null_free_array_store_check(x)) { 1950 CodeEmitInfo* info = new CodeEmitInfo(range_check_info); 1951 check_null_free_array(array, value, info); 1952 } 1953 1954 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1955 if (x->check_boolean()) { 1956 decorators |= C1_MASK_BOOLEAN; 1957 } 1958 1959 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), nullptr, null_check_info); 1960 if (slow_path != nullptr) { 1961 __ branch_destination(slow_path->continuation()); 1962 set_in_conditional_code(false); 1963 } 1964 } 1965 } 1966 1967 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1968 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1969 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1970 decorators |= ACCESS_READ; 1971 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1972 if (access.is_raw()) { 1973 _barrier_set->BarrierSetC1::load_at(access, result); 1974 } else { 1975 _barrier_set->load_at(access, result); 1976 } 1977 } 1978 1979 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1980 LIR_Opr addr, LIR_Opr result) { 1981 decorators |= ACCESS_READ; 1982 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1983 access.set_resolved_addr(addr); 1984 if (access.is_raw()) { 1985 _barrier_set->BarrierSetC1::load(access, result); 1986 } else { 1987 _barrier_set->load(access, result); 1988 } 1989 } 1990 1991 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1992 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1993 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info, 1994 ciInlineKlass* vk) { 1995 decorators |= ACCESS_WRITE; 1996 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info, vk); 1997 if (access.is_raw()) { 1998 _barrier_set->BarrierSetC1::store_at(access, value); 1999 } else { 2000 _barrier_set->store_at(access, value); 2001 } 2002 } 2003 2004 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 2005 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 2006 decorators |= ACCESS_READ; 2007 decorators |= ACCESS_WRITE; 2008 // Atomic operations are SEQ_CST by default 2009 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 2010 LIRAccess access(this, decorators, base, offset, type); 2011 if (access.is_raw()) { 2012 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 2013 } else { 2014 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 2015 } 2016 } 2017 2018 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 2019 LIRItem& base, LIRItem& offset, LIRItem& value) { 2020 decorators |= ACCESS_READ; 2021 decorators |= ACCESS_WRITE; 2022 // Atomic operations are SEQ_CST by default 2023 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 2024 LIRAccess access(this, decorators, base, offset, type); 2025 if (access.is_raw()) { 2026 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 2027 } else { 2028 return _barrier_set->atomic_xchg_at(access, value); 2029 } 2030 } 2031 2032 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 2033 LIRItem& base, LIRItem& offset, LIRItem& value) { 2034 decorators |= ACCESS_READ; 2035 decorators |= ACCESS_WRITE; 2036 // Atomic operations are SEQ_CST by default 2037 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 2038 LIRAccess access(this, decorators, base, offset, type); 2039 if (access.is_raw()) { 2040 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 2041 } else { 2042 return _barrier_set->atomic_add_at(access, value); 2043 } 2044 } 2045 2046 void LIRGenerator::do_LoadField(LoadField* x) { 2047 ciField* field = x->field(); 2048 bool needs_patching = x->needs_patching(); 2049 bool is_volatile = field->is_volatile(); 2050 BasicType field_type = x->field_type(); 2051 2052 CodeEmitInfo* info = nullptr; 2053 if (needs_patching) { 2054 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 2055 info = state_for(x, x->state_before()); 2056 } else if (x->needs_null_check()) { 2057 NullCheck* nc = x->explicit_null_check(); 2058 if (nc == nullptr) { 2059 info = state_for(x); 2060 } else { 2061 info = state_for(nc); 2062 } 2063 } 2064 2065 LIRItem object(x->obj(), this); 2066 2067 object.load_item(); 2068 2069 #ifndef PRODUCT 2070 if (PrintNotLoaded && needs_patching) { 2071 tty->print_cr(" ###class not loaded at load_%s bci %d", 2072 x->is_static() ? "static" : "field", x->printable_bci()); 2073 } 2074 #endif 2075 2076 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 2077 if (x->needs_null_check() && 2078 (needs_patching || 2079 MacroAssembler::needs_explicit_null_check(x->offset()) || 2080 stress_deopt)) { 2081 LIR_Opr obj = object.result(); 2082 if (stress_deopt) { 2083 obj = new_register(T_OBJECT); 2084 __ move(LIR_OprFact::oopConst(nullptr), obj); 2085 } 2086 // Emit an explicit null check because the offset is too large. 2087 // If the class is not loaded and the object is null, we need to deoptimize to throw a 2088 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 2089 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 2090 } 2091 2092 DecoratorSet decorators = IN_HEAP; 2093 if (is_volatile) { 2094 decorators |= MO_SEQ_CST; 2095 } 2096 if (needs_patching) { 2097 decorators |= C1_NEEDS_PATCHING; 2098 } 2099 2100 if (field->is_flat()) { 2101 ciInlineKlass* vk = field->type()->as_inline_klass(); 2102 #ifdef ASSERT 2103 bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1; 2104 bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic); 2105 assert(needs_atomic_access, "No atomic access required"); 2106 assert(x->state_before() != nullptr, "Needs state before"); 2107 #endif 2108 2109 // Allocate buffer (we can't easily do this conditionally on the null check below 2110 // because branches added in the LIR are opaque to the register allocator). 2111 NewInstance* buffer = new NewInstance(vk, x->state_before(), false, true); 2112 do_NewInstance(buffer); 2113 LIRItem dest(buffer, this); 2114 2115 // Copy the payload to the buffer 2116 BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free()); 2117 LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT); 2118 access_load_at(decorators, bt, object, LIR_OprFact::intConst(field->offset_in_bytes()), payload, 2119 // Make sure to emit an implicit null check 2120 info ? new CodeEmitInfo(info) : nullptr, info); 2121 access_store_at(decorators, bt, dest, LIR_OprFact::intConst(vk->payload_offset()), payload); 2122 2123 if (field->is_null_free()) { 2124 set_result(x, buffer->operand()); 2125 } else { 2126 // Check the null marker and set result to null if it's not set 2127 __ logical_and(payload, null_marker_mask(bt, field), payload); 2128 __ cmp(lir_cond_equal, payload, (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0)); 2129 __ cmove(lir_cond_equal, LIR_OprFact::oopConst(nullptr), buffer->operand(), rlock_result(x), T_OBJECT); 2130 } 2131 2132 // Ensure the copy is visible before any subsequent store that publishes the buffer. 2133 __ membar_storestore(); 2134 return; 2135 } 2136 2137 LIR_Opr result = rlock_result(x, field_type); 2138 access_load_at(decorators, field_type, 2139 object, LIR_OprFact::intConst(x->offset()), result, 2140 info ? new CodeEmitInfo(info) : nullptr, info); 2141 } 2142 2143 // int/long jdk.internal.util.Preconditions.checkIndex 2144 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) { 2145 assert(x->number_of_arguments() == 3, "wrong type"); 2146 LIRItem index(x->argument_at(0), this); 2147 LIRItem length(x->argument_at(1), this); 2148 LIRItem oobef(x->argument_at(2), this); 2149 2150 index.load_item(); 2151 length.load_item(); 2152 oobef.load_item(); 2153 2154 LIR_Opr result = rlock_result(x); 2155 // x->state() is created from copy_state_for_exception, it does not contains arguments 2156 // we should prepare them before entering into interpreter mode due to deoptimization. 2157 ValueStack* state = x->state(); 2158 for (int i = 0; i < x->number_of_arguments(); i++) { 2159 Value arg = x->argument_at(i); 2160 state->push(arg->type(), arg); 2161 } 2162 CodeEmitInfo* info = state_for(x, state); 2163 2164 LIR_Opr len = length.result(); 2165 LIR_Opr zero; 2166 if (type == T_INT) { 2167 zero = LIR_OprFact::intConst(0); 2168 if (length.result()->is_constant()){ 2169 len = LIR_OprFact::intConst(length.result()->as_jint()); 2170 } 2171 } else { 2172 assert(type == T_LONG, "sanity check"); 2173 zero = LIR_OprFact::longConst(0); 2174 if (length.result()->is_constant()){ 2175 len = LIR_OprFact::longConst(length.result()->as_jlong()); 2176 } 2177 } 2178 // C1 can not handle the case that comparing index with constant value while condition 2179 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op. 2180 LIR_Opr zero_reg = new_register(type); 2181 __ move(zero, zero_reg); 2182 #if defined(X86) && !defined(_LP64) 2183 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 2184 LIR_Opr index_copy = new_register(index.type()); 2185 // index >= 0 2186 __ move(index.result(), index_copy); 2187 __ cmp(lir_cond_less, index_copy, zero_reg); 2188 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2189 Deoptimization::Action_make_not_entrant)); 2190 // index < length 2191 __ move(index.result(), index_copy); 2192 __ cmp(lir_cond_greaterEqual, index_copy, len); 2193 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2194 Deoptimization::Action_make_not_entrant)); 2195 #else 2196 // index >= 0 2197 __ cmp(lir_cond_less, index.result(), zero_reg); 2198 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2199 Deoptimization::Action_make_not_entrant)); 2200 // index < length 2201 __ cmp(lir_cond_greaterEqual, index.result(), len); 2202 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2203 Deoptimization::Action_make_not_entrant)); 2204 #endif 2205 __ move(index.result(), result); 2206 } 2207 2208 //------------------------array access-------------------------------------- 2209 2210 2211 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 2212 LIRItem array(x->array(), this); 2213 array.load_item(); 2214 LIR_Opr reg = rlock_result(x); 2215 2216 CodeEmitInfo* info = nullptr; 2217 if (x->needs_null_check()) { 2218 NullCheck* nc = x->explicit_null_check(); 2219 if (nc == nullptr) { 2220 info = state_for(x); 2221 } else { 2222 info = state_for(nc); 2223 } 2224 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 2225 LIR_Opr obj = new_register(T_OBJECT); 2226 __ move(LIR_OprFact::oopConst(nullptr), obj); 2227 __ null_check(obj, new CodeEmitInfo(info)); 2228 } 2229 } 2230 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 2231 } 2232 2233 2234 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 2235 bool use_length = x->length() != nullptr; 2236 LIRItem array(x->array(), this); 2237 LIRItem index(x->index(), this); 2238 LIRItem length(this); 2239 bool needs_range_check = x->compute_needs_range_check(); 2240 2241 if (use_length && needs_range_check) { 2242 length.set_instruction(x->length()); 2243 length.load_item(); 2244 } 2245 2246 array.load_item(); 2247 if (index.is_constant() && can_inline_as_constant(x->index())) { 2248 // let it be a constant 2249 index.dont_load_item(); 2250 } else { 2251 index.load_item(); 2252 } 2253 2254 CodeEmitInfo* range_check_info = state_for(x); 2255 CodeEmitInfo* null_check_info = nullptr; 2256 if (x->needs_null_check()) { 2257 NullCheck* nc = x->explicit_null_check(); 2258 if (nc != nullptr) { 2259 null_check_info = state_for(nc); 2260 } else { 2261 null_check_info = range_check_info; 2262 } 2263 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 2264 LIR_Opr obj = new_register(T_OBJECT); 2265 __ move(LIR_OprFact::oopConst(nullptr), obj); 2266 __ null_check(obj, new CodeEmitInfo(null_check_info)); 2267 } 2268 } 2269 2270 if (needs_range_check) { 2271 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 2272 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 2273 } else if (use_length) { 2274 // TODO: use a (modified) version of array_range_check that does not require a 2275 // constant length to be loaded to a register 2276 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 2277 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 2278 } else { 2279 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 2280 // The range check performs the null check, so clear it out for the load 2281 null_check_info = nullptr; 2282 } 2283 } 2284 2285 ciMethodData* md = nullptr; 2286 ciArrayLoadData* load_data = nullptr; 2287 if (x->should_profile()) { 2288 if (x->array()->is_loaded_flat_array()) { 2289 // No need to profile a load from a flat array of known type. This can happen if 2290 // the type only became known after optimizations (for example, after the PhiSimplifier). 2291 x->set_should_profile(false); 2292 } else { 2293 int bci = x->profiled_bci(); 2294 md = x->profiled_method()->method_data(); 2295 assert(md != nullptr, "Sanity"); 2296 ciProfileData* data = md->bci_to_data(bci); 2297 assert(data != nullptr && data->is_ArrayLoadData(), "incorrect profiling entry"); 2298 load_data = (ciArrayLoadData*)data; 2299 profile_array_type(x, md, load_data); 2300 } 2301 } 2302 2303 Value element; 2304 if (x->vt() != nullptr) { 2305 assert(x->array()->is_loaded_flat_array(), "must be"); 2306 // Find the destination address (of the NewInlineTypeInstance). 2307 LIRItem obj_item(x->vt(), this); 2308 2309 access_flat_array(true, array, index, obj_item, 2310 x->delayed() == nullptr ? 0 : x->delayed()->field(), 2311 x->delayed() == nullptr ? 0 : x->delayed()->offset()); 2312 set_no_result(x); 2313 } else if (x->delayed() != nullptr) { 2314 assert(x->array()->is_loaded_flat_array(), "must be"); 2315 LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type()); 2316 access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset()); 2317 } else { 2318 LIR_Opr result = rlock_result(x, x->elt_type()); 2319 LoadFlattenedArrayStub* slow_path = nullptr; 2320 2321 if (x->should_profile() && x->array()->maybe_null_free_array()) { 2322 profile_null_free_array(array, md, load_data); 2323 } 2324 2325 if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) { 2326 assert(x->delayed() == nullptr, "Delayed LoadIndexed only apply to loaded_flat_arrays"); 2327 index.load_item(); 2328 // if we are loading from a flat array, load it using a runtime call 2329 slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before())); 2330 check_flat_array(array.result(), LIR_OprFact::illegalOpr, slow_path); 2331 set_in_conditional_code(true); 2332 } 2333 2334 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 2335 access_load_at(decorators, x->elt_type(), 2336 array, index.result(), result, 2337 nullptr, null_check_info); 2338 2339 if (slow_path != nullptr) { 2340 __ branch_destination(slow_path->continuation()); 2341 set_in_conditional_code(false); 2342 } 2343 2344 element = x; 2345 } 2346 2347 if (x->should_profile()) { 2348 profile_element_type(element, md, load_data); 2349 } 2350 } 2351 2352 2353 void LIRGenerator::do_NullCheck(NullCheck* x) { 2354 if (x->can_trap()) { 2355 LIRItem value(x->obj(), this); 2356 value.load_item(); 2357 CodeEmitInfo* info = state_for(x); 2358 __ null_check(value.result(), info); 2359 } 2360 } 2361 2362 2363 void LIRGenerator::do_TypeCast(TypeCast* x) { 2364 LIRItem value(x->obj(), this); 2365 value.load_item(); 2366 // the result is the same as from the node we are casting 2367 set_result(x, value.result()); 2368 } 2369 2370 2371 void LIRGenerator::do_Throw(Throw* x) { 2372 LIRItem exception(x->exception(), this); 2373 exception.load_item(); 2374 set_no_result(x); 2375 LIR_Opr exception_opr = exception.result(); 2376 CodeEmitInfo* info = state_for(x, x->state()); 2377 2378 #ifndef PRODUCT 2379 if (PrintC1Statistics) { 2380 increment_counter(Runtime1::throw_count_address(), T_INT); 2381 } 2382 #endif 2383 2384 // check if the instruction has an xhandler in any of the nested scopes 2385 bool unwind = false; 2386 if (info->exception_handlers()->length() == 0) { 2387 // this throw is not inside an xhandler 2388 unwind = true; 2389 } else { 2390 // get some idea of the throw type 2391 bool type_is_exact = true; 2392 ciType* throw_type = x->exception()->exact_type(); 2393 if (throw_type == nullptr) { 2394 type_is_exact = false; 2395 throw_type = x->exception()->declared_type(); 2396 } 2397 if (throw_type != nullptr && throw_type->is_instance_klass()) { 2398 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2399 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2400 } 2401 } 2402 2403 // do null check before moving exception oop into fixed register 2404 // to avoid a fixed interval with an oop during the null check. 2405 // Use a copy of the CodeEmitInfo because debug information is 2406 // different for null_check and throw. 2407 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) { 2408 // if the exception object wasn't created using new then it might be null. 2409 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2410 } 2411 2412 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2413 // we need to go through the exception lookup path to get JVMTI 2414 // notification done 2415 unwind = false; 2416 } 2417 2418 // move exception oop into fixed register 2419 __ move(exception_opr, exceptionOopOpr()); 2420 2421 if (unwind) { 2422 __ unwind_exception(exceptionOopOpr()); 2423 } else { 2424 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2425 } 2426 } 2427 2428 2429 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) { 2430 BasicType type = x->basic_type(); 2431 LIRItem src(x->object(), this); 2432 LIRItem off(x->offset(), this); 2433 2434 off.load_item(); 2435 src.load_item(); 2436 2437 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2438 2439 if (x->is_volatile()) { 2440 decorators |= MO_SEQ_CST; 2441 } 2442 if (type == T_BOOLEAN) { 2443 decorators |= C1_MASK_BOOLEAN; 2444 } 2445 if (is_reference_type(type)) { 2446 decorators |= ON_UNKNOWN_OOP_REF; 2447 } 2448 2449 LIR_Opr result = rlock_result(x, type); 2450 if (!x->is_raw()) { 2451 access_load_at(decorators, type, src, off.result(), result); 2452 } else { 2453 // Currently it is only used in GraphBuilder::setup_osr_entry_block. 2454 // It reads the value from [src + offset] directly. 2455 #ifdef _LP64 2456 LIR_Opr offset = new_register(T_LONG); 2457 __ convert(Bytecodes::_i2l, off.result(), offset); 2458 #else 2459 LIR_Opr offset = off.result(); 2460 #endif 2461 LIR_Address* addr = new LIR_Address(src.result(), offset, type); 2462 if (is_reference_type(type)) { 2463 __ move_wide(addr, result); 2464 } else { 2465 __ move(addr, result); 2466 } 2467 } 2468 } 2469 2470 2471 void LIRGenerator::do_UnsafePut(UnsafePut* x) { 2472 BasicType type = x->basic_type(); 2473 LIRItem src(x->object(), this); 2474 LIRItem off(x->offset(), this); 2475 LIRItem data(x->value(), this); 2476 2477 src.load_item(); 2478 if (type == T_BOOLEAN || type == T_BYTE) { 2479 data.load_byte_item(); 2480 } else { 2481 data.load_item(); 2482 } 2483 off.load_item(); 2484 2485 set_no_result(x); 2486 2487 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2488 if (is_reference_type(type)) { 2489 decorators |= ON_UNKNOWN_OOP_REF; 2490 } 2491 if (x->is_volatile()) { 2492 decorators |= MO_SEQ_CST; 2493 } 2494 access_store_at(decorators, type, src, off.result(), data.result()); 2495 } 2496 2497 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) { 2498 BasicType type = x->basic_type(); 2499 LIRItem src(x->object(), this); 2500 LIRItem off(x->offset(), this); 2501 LIRItem value(x->value(), this); 2502 2503 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2504 2505 if (is_reference_type(type)) { 2506 decorators |= ON_UNKNOWN_OOP_REF; 2507 } 2508 2509 LIR_Opr result; 2510 if (x->is_add()) { 2511 result = access_atomic_add_at(decorators, type, src, off, value); 2512 } else { 2513 result = access_atomic_xchg_at(decorators, type, src, off, value); 2514 } 2515 set_result(x, result); 2516 } 2517 2518 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2519 int lng = x->length(); 2520 2521 for (int i = 0; i < lng; i++) { 2522 C1SwitchRange* one_range = x->at(i); 2523 int low_key = one_range->low_key(); 2524 int high_key = one_range->high_key(); 2525 BlockBegin* dest = one_range->sux(); 2526 if (low_key == high_key) { 2527 __ cmp(lir_cond_equal, value, low_key); 2528 __ branch(lir_cond_equal, dest); 2529 } else if (high_key - low_key == 1) { 2530 __ cmp(lir_cond_equal, value, low_key); 2531 __ branch(lir_cond_equal, dest); 2532 __ cmp(lir_cond_equal, value, high_key); 2533 __ branch(lir_cond_equal, dest); 2534 } else { 2535 LabelObj* L = new LabelObj(); 2536 __ cmp(lir_cond_less, value, low_key); 2537 __ branch(lir_cond_less, L->label()); 2538 __ cmp(lir_cond_lessEqual, value, high_key); 2539 __ branch(lir_cond_lessEqual, dest); 2540 __ branch_destination(L->label()); 2541 } 2542 } 2543 __ jump(default_sux); 2544 } 2545 2546 2547 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2548 SwitchRangeList* res = new SwitchRangeList(); 2549 int len = x->length(); 2550 if (len > 0) { 2551 BlockBegin* sux = x->sux_at(0); 2552 int low = x->lo_key(); 2553 BlockBegin* default_sux = x->default_sux(); 2554 C1SwitchRange* range = new C1SwitchRange(low, sux); 2555 for (int i = 0; i < len; i++) { 2556 int key = low + i; 2557 BlockBegin* new_sux = x->sux_at(i); 2558 if (sux == new_sux) { 2559 // still in same range 2560 range->set_high_key(key); 2561 } else { 2562 // skip tests which explicitly dispatch to the default 2563 if (sux != default_sux) { 2564 res->append(range); 2565 } 2566 range = new C1SwitchRange(key, new_sux); 2567 } 2568 sux = new_sux; 2569 } 2570 if (res->length() == 0 || res->last() != range) res->append(range); 2571 } 2572 return res; 2573 } 2574 2575 2576 // we expect the keys to be sorted by increasing value 2577 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2578 SwitchRangeList* res = new SwitchRangeList(); 2579 int len = x->length(); 2580 if (len > 0) { 2581 BlockBegin* default_sux = x->default_sux(); 2582 int key = x->key_at(0); 2583 BlockBegin* sux = x->sux_at(0); 2584 C1SwitchRange* range = new C1SwitchRange(key, sux); 2585 for (int i = 1; i < len; i++) { 2586 int new_key = x->key_at(i); 2587 BlockBegin* new_sux = x->sux_at(i); 2588 if (key+1 == new_key && sux == new_sux) { 2589 // still in same range 2590 range->set_high_key(new_key); 2591 } else { 2592 // skip tests which explicitly dispatch to the default 2593 if (range->sux() != default_sux) { 2594 res->append(range); 2595 } 2596 range = new C1SwitchRange(new_key, new_sux); 2597 } 2598 key = new_key; 2599 sux = new_sux; 2600 } 2601 if (res->length() == 0 || res->last() != range) res->append(range); 2602 } 2603 return res; 2604 } 2605 2606 2607 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2608 LIRItem tag(x->tag(), this); 2609 tag.load_item(); 2610 set_no_result(x); 2611 2612 if (x->is_safepoint()) { 2613 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2614 } 2615 2616 // move values into phi locations 2617 move_to_phi(x->state()); 2618 2619 int lo_key = x->lo_key(); 2620 int len = x->length(); 2621 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2622 LIR_Opr value = tag.result(); 2623 2624 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2625 ciMethod* method = x->state()->scope()->method(); 2626 ciMethodData* md = method->method_data_or_null(); 2627 assert(md != nullptr, "Sanity"); 2628 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2629 assert(data != nullptr, "must have profiling data"); 2630 assert(data->is_MultiBranchData(), "bad profile data?"); 2631 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2632 LIR_Opr md_reg = new_register(T_METADATA); 2633 __ metadata2reg(md->constant_encoding(), md_reg); 2634 LIR_Opr data_offset_reg = new_pointer_register(); 2635 LIR_Opr tmp_reg = new_pointer_register(); 2636 2637 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2638 for (int i = 0; i < len; i++) { 2639 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2640 __ cmp(lir_cond_equal, value, i + lo_key); 2641 __ move(data_offset_reg, tmp_reg); 2642 __ cmove(lir_cond_equal, 2643 LIR_OprFact::intptrConst(count_offset), 2644 tmp_reg, 2645 data_offset_reg, T_INT); 2646 } 2647 2648 LIR_Opr data_reg = new_pointer_register(); 2649 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2650 __ move(data_addr, data_reg); 2651 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2652 __ move(data_reg, data_addr); 2653 } 2654 2655 if (UseTableRanges) { 2656 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2657 } else { 2658 for (int i = 0; i < len; i++) { 2659 __ cmp(lir_cond_equal, value, i + lo_key); 2660 __ branch(lir_cond_equal, x->sux_at(i)); 2661 } 2662 __ jump(x->default_sux()); 2663 } 2664 } 2665 2666 2667 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2668 LIRItem tag(x->tag(), this); 2669 tag.load_item(); 2670 set_no_result(x); 2671 2672 if (x->is_safepoint()) { 2673 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2674 } 2675 2676 // move values into phi locations 2677 move_to_phi(x->state()); 2678 2679 LIR_Opr value = tag.result(); 2680 int len = x->length(); 2681 2682 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2683 ciMethod* method = x->state()->scope()->method(); 2684 ciMethodData* md = method->method_data_or_null(); 2685 assert(md != nullptr, "Sanity"); 2686 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2687 assert(data != nullptr, "must have profiling data"); 2688 assert(data->is_MultiBranchData(), "bad profile data?"); 2689 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2690 LIR_Opr md_reg = new_register(T_METADATA); 2691 __ metadata2reg(md->constant_encoding(), md_reg); 2692 LIR_Opr data_offset_reg = new_pointer_register(); 2693 LIR_Opr tmp_reg = new_pointer_register(); 2694 2695 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2696 for (int i = 0; i < len; i++) { 2697 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2698 __ cmp(lir_cond_equal, value, x->key_at(i)); 2699 __ move(data_offset_reg, tmp_reg); 2700 __ cmove(lir_cond_equal, 2701 LIR_OprFact::intptrConst(count_offset), 2702 tmp_reg, 2703 data_offset_reg, T_INT); 2704 } 2705 2706 LIR_Opr data_reg = new_pointer_register(); 2707 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2708 __ move(data_addr, data_reg); 2709 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2710 __ move(data_reg, data_addr); 2711 } 2712 2713 if (UseTableRanges) { 2714 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2715 } else { 2716 int len = x->length(); 2717 for (int i = 0; i < len; i++) { 2718 __ cmp(lir_cond_equal, value, x->key_at(i)); 2719 __ branch(lir_cond_equal, x->sux_at(i)); 2720 } 2721 __ jump(x->default_sux()); 2722 } 2723 } 2724 2725 2726 void LIRGenerator::do_Goto(Goto* x) { 2727 set_no_result(x); 2728 2729 if (block()->next()->as_OsrEntry()) { 2730 // need to free up storage used for OSR entry point 2731 LIR_Opr osrBuffer = block()->next()->operand(); 2732 BasicTypeList signature; 2733 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2734 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2735 __ move(osrBuffer, cc->args()->at(0)); 2736 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2737 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2738 } 2739 2740 if (x->is_safepoint()) { 2741 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2742 2743 // increment backedge counter if needed 2744 CodeEmitInfo* info = state_for(x, state); 2745 increment_backedge_counter(info, x->profiled_bci()); 2746 CodeEmitInfo* safepoint_info = state_for(x, state); 2747 __ safepoint(safepoint_poll_register(), safepoint_info); 2748 } 2749 2750 // Gotos can be folded Ifs, handle this case. 2751 if (x->should_profile()) { 2752 ciMethod* method = x->profiled_method(); 2753 assert(method != nullptr, "method should be set if branch is profiled"); 2754 ciMethodData* md = method->method_data_or_null(); 2755 assert(md != nullptr, "Sanity"); 2756 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2757 assert(data != nullptr, "must have profiling data"); 2758 int offset; 2759 if (x->direction() == Goto::taken) { 2760 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2761 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2762 } else if (x->direction() == Goto::not_taken) { 2763 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2764 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2765 } else { 2766 assert(data->is_JumpData(), "need JumpData for branches"); 2767 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2768 } 2769 LIR_Opr md_reg = new_register(T_METADATA); 2770 __ metadata2reg(md->constant_encoding(), md_reg); 2771 2772 increment_counter(new LIR_Address(md_reg, offset, 2773 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2774 } 2775 2776 // emit phi-instruction move after safepoint since this simplifies 2777 // describing the state as the safepoint. 2778 move_to_phi(x->state()); 2779 2780 __ jump(x->default_sux()); 2781 } 2782 2783 /** 2784 * Emit profiling code if needed for arguments, parameters, return value types 2785 * 2786 * @param md MDO the code will update at runtime 2787 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2788 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2789 * @param profiled_k current profile 2790 * @param obj IR node for the object to be profiled 2791 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2792 * Set once we find an update to make and use for next ones. 2793 * @param not_null true if we know obj cannot be null 2794 * @param signature_at_call_k signature at call for obj 2795 * @param callee_signature_k signature of callee for obj 2796 * at call and callee signatures differ at method handle call 2797 * @return the only klass we know will ever be seen at this profile point 2798 */ 2799 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2800 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2801 ciKlass* callee_signature_k) { 2802 ciKlass* result = nullptr; 2803 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2804 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2805 // known not to be null or null bit already set and already set to 2806 // unknown: nothing we can do to improve profiling 2807 if (!do_null && !do_update) { 2808 return result; 2809 } 2810 2811 ciKlass* exact_klass = nullptr; 2812 Compilation* comp = Compilation::current(); 2813 if (do_update) { 2814 // try to find exact type, using CHA if possible, so that loading 2815 // the klass from the object can be avoided 2816 ciType* type = obj->exact_type(); 2817 if (type == nullptr) { 2818 type = obj->declared_type(); 2819 type = comp->cha_exact_type(type); 2820 } 2821 assert(type == nullptr || type->is_klass(), "type should be class"); 2822 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr; 2823 2824 // TODO 8366668 2825 if (exact_klass != nullptr && exact_klass->is_obj_array_klass()) { 2826 if (exact_klass->as_obj_array_klass()->element_klass()->is_inlinetype()) { 2827 // Could be flat, null free etc. 2828 exact_klass = nullptr; 2829 } else { 2830 exact_klass = ciObjArrayKlass::make(exact_klass->as_array_klass()->element_klass(), true); 2831 } 2832 } 2833 2834 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2835 } 2836 2837 if (!do_null && !do_update) { 2838 return result; 2839 } 2840 2841 ciKlass* exact_signature_k = nullptr; 2842 if (do_update && signature_at_call_k != nullptr) { 2843 // Is the type from the signature exact (the only one possible)? 2844 exact_signature_k = signature_at_call_k->exact_klass(); 2845 if (exact_signature_k == nullptr) { 2846 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2847 } else { 2848 result = exact_signature_k; 2849 // Known statically. No need to emit any code: prevent 2850 // LIR_Assembler::emit_profile_type() from emitting useless code 2851 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2852 } 2853 // exact_klass and exact_signature_k can be both non null but 2854 // different if exact_klass is loaded after the ciObject for 2855 // exact_signature_k is created. 2856 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) { 2857 // sometimes the type of the signature is better than the best type 2858 // the compiler has 2859 exact_klass = exact_signature_k; 2860 } 2861 if (callee_signature_k != nullptr && 2862 callee_signature_k != signature_at_call_k) { 2863 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2864 if (improved_klass == nullptr) { 2865 improved_klass = comp->cha_exact_type(callee_signature_k); 2866 } 2867 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) { 2868 exact_klass = exact_signature_k; 2869 } 2870 } 2871 2872 // TODO 8366668 2873 if (exact_klass != nullptr && exact_klass->is_obj_array_klass()) { 2874 if (exact_klass->as_obj_array_klass()->element_klass()->is_inlinetype()) { 2875 // Could be flat, null free etc. 2876 exact_klass = nullptr; 2877 } else { 2878 exact_klass = ciObjArrayKlass::make(exact_klass->as_array_klass()->element_klass(), true); 2879 } 2880 } 2881 2882 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2883 } 2884 2885 if (!do_null && !do_update) { 2886 return result; 2887 } 2888 2889 if (mdp == LIR_OprFact::illegalOpr) { 2890 mdp = new_register(T_METADATA); 2891 __ metadata2reg(md->constant_encoding(), mdp); 2892 if (md_base_offset != 0) { 2893 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2894 mdp = new_pointer_register(); 2895 __ leal(LIR_OprFact::address(base_type_address), mdp); 2896 } 2897 } 2898 LIRItem value(obj, this); 2899 value.load_item(); 2900 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2901 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr); 2902 return result; 2903 } 2904 2905 // profile parameters on entry to the root of the compilation 2906 void LIRGenerator::profile_parameters(Base* x) { 2907 if (compilation()->profile_parameters()) { 2908 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2909 ciMethodData* md = scope()->method()->method_data_or_null(); 2910 assert(md != nullptr, "Sanity"); 2911 2912 if (md->parameters_type_data() != nullptr) { 2913 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2914 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2915 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2916 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2917 LIR_Opr src = args->at(i); 2918 assert(!src->is_illegal(), "check"); 2919 BasicType t = src->type(); 2920 if (is_reference_type(t)) { 2921 intptr_t profiled_k = parameters->type(j); 2922 Local* local = x->state()->local_at(java_index)->as_Local(); 2923 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2924 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2925 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr); 2926 // If the profile is known statically set it once for all and do not emit any code 2927 if (exact != nullptr) { 2928 md->set_parameter_type(j, exact); 2929 } 2930 j++; 2931 } 2932 java_index += type2size[t]; 2933 } 2934 } 2935 } 2936 } 2937 2938 void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) { 2939 assert(md != nullptr && data != nullptr, "should have been initialized"); 2940 LIR_Opr mdp = new_register(T_METADATA); 2941 __ metadata2reg(md->constant_encoding(), mdp); 2942 LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE); 2943 LIR_Opr flags = new_register(T_INT); 2944 __ move(addr, flags); 2945 if (condition != lir_cond_always) { 2946 LIR_Opr update = new_register(T_INT); 2947 __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT); 2948 } else { 2949 __ logical_or(flags, LIR_OprFact::intConst(flag), flags); 2950 } 2951 __ store(flags, addr); 2952 } 2953 2954 template <class ArrayData> void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ArrayData* load_store) { 2955 assert(compilation()->profile_array_accesses(), "array access profiling is disabled"); 2956 LabelObj* L_end = new LabelObj(); 2957 LIR_Opr tmp = new_register(T_METADATA); 2958 __ check_null_free_array(array.result(), tmp); 2959 2960 profile_flags(md, load_store, ArrayStoreData::null_free_array_byte_constant(), lir_cond_equal); 2961 } 2962 2963 template <class ArrayData> void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ArrayData*& load_store) { 2964 assert(compilation()->profile_array_accesses(), "array access profiling is disabled"); 2965 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2966 profile_type(md, md->byte_offset_of_slot(load_store, ArrayData::array_offset()), 0, 2967 load_store->array()->type(), x->array(), mdp, true, nullptr, nullptr); 2968 } 2969 2970 void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadData* load_data) { 2971 assert(compilation()->profile_array_accesses(), "array access profiling is disabled"); 2972 assert(md != nullptr && load_data != nullptr, "should have been initialized"); 2973 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2974 profile_type(md, md->byte_offset_of_slot(load_data, ArrayLoadData::element_offset()), 0, 2975 load_data->element()->type(), element, mdp, false, nullptr, nullptr); 2976 } 2977 2978 void LIRGenerator::do_Base(Base* x) { 2979 __ std_entry(LIR_OprFact::illegalOpr); 2980 // Emit moves from physical registers / stack slots to virtual registers 2981 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2982 IRScope* irScope = compilation()->hir()->top_scope(); 2983 int java_index = 0; 2984 for (int i = 0; i < args->length(); i++) { 2985 LIR_Opr src = args->at(i); 2986 assert(!src->is_illegal(), "check"); 2987 BasicType t = src->type(); 2988 2989 // Types which are smaller than int are passed as int, so 2990 // correct the type which passed. 2991 switch (t) { 2992 case T_BYTE: 2993 case T_BOOLEAN: 2994 case T_SHORT: 2995 case T_CHAR: 2996 t = T_INT; 2997 break; 2998 default: 2999 break; 3000 } 3001 3002 LIR_Opr dest = new_register(t); 3003 __ move(src, dest); 3004 3005 // Assign new location to Local instruction for this local 3006 Local* local = x->state()->local_at(java_index)->as_Local(); 3007 assert(local != nullptr, "Locals for incoming arguments must have been created"); 3008 #ifndef __SOFTFP__ 3009 // The java calling convention passes double as long and float as int. 3010 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 3011 #endif // __SOFTFP__ 3012 local->set_operand(dest); 3013 #ifdef ASSERT 3014 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr); 3015 #endif 3016 java_index += type2size[t]; 3017 } 3018 3019 if (compilation()->env()->dtrace_method_probes()) { 3020 BasicTypeList signature; 3021 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3022 signature.append(T_METADATA); // Method* 3023 LIR_OprList* args = new LIR_OprList(); 3024 args->append(getThreadPointer()); 3025 LIR_Opr meth = new_register(T_METADATA); 3026 __ metadata2reg(method()->constant_encoding(), meth); 3027 args->append(meth); 3028 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr); 3029 } 3030 3031 if (method()->is_synchronized()) { 3032 LIR_Opr obj; 3033 if (method()->is_static()) { 3034 obj = new_register(T_OBJECT); 3035 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 3036 } else { 3037 Local* receiver = x->state()->local_at(0)->as_Local(); 3038 assert(receiver != nullptr, "must already exist"); 3039 obj = receiver->operand(); 3040 } 3041 assert(obj->is_valid(), "must be valid"); 3042 3043 if (method()->is_synchronized() && GenerateSynchronizationCode) { 3044 LIR_Opr lock = syncLockOpr(); 3045 __ load_stack_address_monitor(0, lock); 3046 3047 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException)); 3048 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 3049 3050 // receiver is guaranteed non-null so don't need CodeEmitInfo 3051 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr); 3052 } 3053 } 3054 // increment invocation counters if needed 3055 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 3056 profile_parameters(x); 3057 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false); 3058 increment_invocation_counter(info); 3059 } 3060 if (method()->has_scalarized_args()) { 3061 // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments 3062 // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state. 3063 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), nullptr, false); 3064 CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none); 3065 __ append(new LIR_Op0(lir_check_orig_pc)); 3066 __ branch(lir_cond_notEqual, deopt_stub); 3067 } 3068 3069 // all blocks with a successor must end with an unconditional jump 3070 // to the successor even if they are consecutive 3071 __ jump(x->default_sux()); 3072 } 3073 3074 3075 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 3076 // construct our frame and model the production of incoming pointer 3077 // to the OSR buffer. 3078 __ osr_entry(LIR_Assembler::osrBufferPointer()); 3079 LIR_Opr result = rlock_result(x); 3080 __ move(LIR_Assembler::osrBufferPointer(), result); 3081 } 3082 3083 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) { 3084 if (loc->is_register()) { 3085 param->load_item_force(loc); 3086 } else { 3087 LIR_Address* addr = loc->as_address_ptr(); 3088 param->load_for_store(addr->type()); 3089 if (addr->type() == T_OBJECT) { 3090 __ move_wide(param->result(), addr); 3091 } else { 3092 __ move(param->result(), addr); 3093 } 3094 } 3095 } 3096 3097 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 3098 assert(args->length() == arg_list->length(), 3099 "args=%d, arg_list=%d", args->length(), arg_list->length()); 3100 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 3101 LIRItem* param = args->at(i); 3102 LIR_Opr loc = arg_list->at(i); 3103 invoke_load_one_argument(param, loc); 3104 } 3105 3106 if (x->has_receiver()) { 3107 LIRItem* receiver = args->at(0); 3108 LIR_Opr loc = arg_list->at(0); 3109 if (loc->is_register()) { 3110 receiver->load_item_force(loc); 3111 } else { 3112 assert(loc->is_address(), "just checking"); 3113 receiver->load_for_store(T_OBJECT); 3114 __ move_wide(receiver->result(), loc->as_address_ptr()); 3115 } 3116 } 3117 } 3118 3119 3120 // Visits all arguments, returns appropriate items without loading them 3121 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 3122 LIRItemList* argument_items = new LIRItemList(); 3123 if (x->has_receiver()) { 3124 LIRItem* receiver = new LIRItem(x->receiver(), this); 3125 argument_items->append(receiver); 3126 } 3127 for (int i = 0; i < x->number_of_arguments(); i++) { 3128 LIRItem* param = new LIRItem(x->argument_at(i), this); 3129 argument_items->append(param); 3130 } 3131 return argument_items; 3132 } 3133 3134 3135 // The invoke with receiver has following phases: 3136 // a) traverse and load/lock receiver; 3137 // b) traverse all arguments -> item-array (invoke_visit_argument) 3138 // c) push receiver on stack 3139 // d) load each of the items and push on stack 3140 // e) unlock receiver 3141 // f) move receiver into receiver-register %o0 3142 // g) lock result registers and emit call operation 3143 // 3144 // Before issuing a call, we must spill-save all values on stack 3145 // that are in caller-save register. "spill-save" moves those registers 3146 // either in a free callee-save register or spills them if no free 3147 // callee save register is available. 3148 // 3149 // The problem is where to invoke spill-save. 3150 // - if invoked between e) and f), we may lock callee save 3151 // register in "spill-save" that destroys the receiver register 3152 // before f) is executed 3153 // - if we rearrange f) to be earlier (by loading %o0) it 3154 // may destroy a value on the stack that is currently in %o0 3155 // and is waiting to be spilled 3156 // - if we keep the receiver locked while doing spill-save, 3157 // we cannot spill it as it is spill-locked 3158 // 3159 void LIRGenerator::do_Invoke(Invoke* x) { 3160 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 3161 3162 LIR_OprList* arg_list = cc->args(); 3163 LIRItemList* args = invoke_visit_arguments(x); 3164 LIR_Opr receiver = LIR_OprFact::illegalOpr; 3165 3166 // setup result register 3167 LIR_Opr result_register = LIR_OprFact::illegalOpr; 3168 if (x->type() != voidType) { 3169 result_register = result_register_for(x->type()); 3170 } 3171 3172 CodeEmitInfo* info = state_for(x, x->state()); 3173 3174 invoke_load_arguments(x, args, arg_list); 3175 3176 if (x->has_receiver()) { 3177 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 3178 receiver = args->at(0)->result(); 3179 } 3180 3181 // emit invoke code 3182 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 3183 3184 // JSR 292 3185 // Preserve the SP over MethodHandle call sites, if needed. 3186 ciMethod* target = x->target(); 3187 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 3188 target->is_method_handle_intrinsic() || 3189 target->is_compiled_lambda_form()); 3190 if (is_method_handle_invoke) { 3191 info->set_is_method_handle_invoke(true); 3192 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 3193 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 3194 } 3195 } 3196 3197 switch (x->code()) { 3198 case Bytecodes::_invokestatic: 3199 __ call_static(target, result_register, 3200 SharedRuntime::get_resolve_static_call_stub(), 3201 arg_list, info); 3202 break; 3203 case Bytecodes::_invokespecial: 3204 case Bytecodes::_invokevirtual: 3205 case Bytecodes::_invokeinterface: 3206 // for loaded and final (method or class) target we still produce an inline cache, 3207 // in order to be able to call mixed mode 3208 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 3209 __ call_opt_virtual(target, receiver, result_register, 3210 SharedRuntime::get_resolve_opt_virtual_call_stub(), 3211 arg_list, info); 3212 } else { 3213 __ call_icvirtual(target, receiver, result_register, 3214 SharedRuntime::get_resolve_virtual_call_stub(), 3215 arg_list, info); 3216 } 3217 break; 3218 case Bytecodes::_invokedynamic: { 3219 __ call_dynamic(target, receiver, result_register, 3220 SharedRuntime::get_resolve_static_call_stub(), 3221 arg_list, info); 3222 break; 3223 } 3224 default: 3225 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 3226 break; 3227 } 3228 3229 // JSR 292 3230 // Restore the SP after MethodHandle call sites, if needed. 3231 if (is_method_handle_invoke 3232 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 3233 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 3234 } 3235 3236 if (result_register->is_valid()) { 3237 LIR_Opr result = rlock_result(x); 3238 __ move(result_register, result); 3239 } 3240 } 3241 3242 3243 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 3244 assert(x->number_of_arguments() == 1, "wrong type"); 3245 LIRItem value (x->argument_at(0), this); 3246 LIR_Opr reg = rlock_result(x); 3247 value.load_item(); 3248 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 3249 __ move(tmp, reg); 3250 } 3251 3252 3253 3254 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 3255 void LIRGenerator::do_IfOp(IfOp* x) { 3256 #ifdef ASSERT 3257 { 3258 ValueTag xtag = x->x()->type()->tag(); 3259 ValueTag ttag = x->tval()->type()->tag(); 3260 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 3261 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 3262 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 3263 } 3264 #endif 3265 3266 LIRItem left(x->x(), this); 3267 LIRItem right(x->y(), this); 3268 left.load_item(); 3269 if (can_inline_as_constant(right.value()) && !x->substitutability_check()) { 3270 right.dont_load_item(); 3271 } else { 3272 // substitutability_check() needs to use right as a base register. 3273 right.load_item(); 3274 } 3275 3276 LIRItem t_val(x->tval(), this); 3277 LIRItem f_val(x->fval(), this); 3278 t_val.dont_load_item(); 3279 f_val.dont_load_item(); 3280 3281 if (x->substitutability_check()) { 3282 substitutability_check(x, left, right, t_val, f_val); 3283 } else { 3284 LIR_Opr reg = rlock_result(x); 3285 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 3286 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 3287 } 3288 } 3289 3290 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) { 3291 assert(x->cond() == If::eql || x->cond() == If::neq, "must be"); 3292 bool is_acmpeq = (x->cond() == If::eql); 3293 LIR_Opr equal_result = is_acmpeq ? t_val.result() : f_val.result(); 3294 LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result(); 3295 LIR_Opr result = rlock_result(x); 3296 CodeEmitInfo* info = state_for(x, x->state_before()); 3297 3298 substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info); 3299 } 3300 3301 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) { 3302 LIR_Opr equal_result = LIR_OprFact::intConst(1); 3303 LIR_Opr not_equal_result = LIR_OprFact::intConst(0); 3304 LIR_Opr result = new_register(T_INT); 3305 CodeEmitInfo* info = state_for(x, x->state_before()); 3306 3307 substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info); 3308 3309 assert(x->cond() == If::eql || x->cond() == If::neq, "must be"); 3310 __ cmp(lir_cond(x->cond()), result, equal_result); 3311 } 3312 3313 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right, 3314 LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result, 3315 CodeEmitInfo* info) { 3316 LIR_Opr tmp1 = LIR_OprFact::illegalOpr; 3317 LIR_Opr tmp2 = LIR_OprFact::illegalOpr; 3318 LIR_Opr left_klass_op = LIR_OprFact::illegalOpr; 3319 LIR_Opr right_klass_op = LIR_OprFact::illegalOpr; 3320 3321 ciKlass* left_klass = left_val ->as_loaded_klass_or_null(); 3322 ciKlass* right_klass = right_val->as_loaded_klass_or_null(); 3323 3324 if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node. 3325 !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) { 3326 init_temps_for_substitutability_check(tmp1, tmp2); 3327 } 3328 3329 if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) { 3330 // No need to load klass -- the operands are statically known to be the same inline klass. 3331 } else { 3332 BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA; 3333 left_klass_op = new_register(t_klass); 3334 right_klass_op = new_register(t_klass); 3335 } 3336 3337 CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info); 3338 __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result, 3339 tmp1, tmp2, 3340 left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path); 3341 } 3342 3343 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 3344 assert(x->number_of_arguments() == 0, "wrong type"); 3345 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 3346 BasicTypeList signature; 3347 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 3348 LIR_Opr reg = result_register_for(x->type()); 3349 __ call_runtime_leaf(routine, getThreadTemp(), 3350 reg, new LIR_OprList()); 3351 LIR_Opr result = rlock_result(x); 3352 __ move(reg, result); 3353 } 3354 3355 3356 3357 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 3358 switch (x->id()) { 3359 case vmIntrinsics::_intBitsToFloat : 3360 case vmIntrinsics::_doubleToRawLongBits : 3361 case vmIntrinsics::_longBitsToDouble : 3362 case vmIntrinsics::_floatToRawIntBits : { 3363 do_FPIntrinsics(x); 3364 break; 3365 } 3366 3367 #ifdef JFR_HAVE_INTRINSICS 3368 case vmIntrinsics::_counterTime: 3369 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x); 3370 break; 3371 #endif 3372 3373 case vmIntrinsics::_currentTimeMillis: 3374 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 3375 break; 3376 3377 case vmIntrinsics::_nanoTime: 3378 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 3379 break; 3380 3381 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 3382 case vmIntrinsics::_isInstance: do_isInstance(x); break; 3383 case vmIntrinsics::_getClass: do_getClass(x); break; 3384 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 3385 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break; 3386 case vmIntrinsics::_currentThread: do_vthread(x); break; 3387 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break; 3388 3389 case vmIntrinsics::_dlog: // fall through 3390 case vmIntrinsics::_dlog10: // fall through 3391 case vmIntrinsics::_dabs: // fall through 3392 case vmIntrinsics::_dsqrt: // fall through 3393 case vmIntrinsics::_dsqrt_strict: // fall through 3394 case vmIntrinsics::_dtan: // fall through 3395 case vmIntrinsics::_dtanh: // fall through 3396 case vmIntrinsics::_dsin : // fall through 3397 case vmIntrinsics::_dcos : // fall through 3398 case vmIntrinsics::_dcbrt : // fall through 3399 case vmIntrinsics::_dexp : // fall through 3400 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 3401 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 3402 3403 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 3404 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 3405 3406 // Use java.lang.Math intrinsics code since it works for these intrinsics too. 3407 case vmIntrinsics::_floatToFloat16: // fall through 3408 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break; 3409 3410 case vmIntrinsics::_Preconditions_checkIndex: 3411 do_PreconditionsCheckIndex(x, T_INT); 3412 break; 3413 case vmIntrinsics::_Preconditions_checkLongIndex: 3414 do_PreconditionsCheckIndex(x, T_LONG); 3415 break; 3416 3417 case vmIntrinsics::_compareAndSetReference: 3418 do_CompareAndSwap(x, objectType); 3419 break; 3420 case vmIntrinsics::_compareAndSetInt: 3421 do_CompareAndSwap(x, intType); 3422 break; 3423 case vmIntrinsics::_compareAndSetLong: 3424 do_CompareAndSwap(x, longType); 3425 break; 3426 3427 case vmIntrinsics::_loadFence : 3428 __ membar_acquire(); 3429 break; 3430 case vmIntrinsics::_storeFence: 3431 __ membar_release(); 3432 break; 3433 case vmIntrinsics::_storeStoreFence: 3434 __ membar_storestore(); 3435 break; 3436 case vmIntrinsics::_fullFence : 3437 __ membar(); 3438 break; 3439 case vmIntrinsics::_onSpinWait: 3440 __ on_spin_wait(); 3441 break; 3442 case vmIntrinsics::_Reference_get0: 3443 do_Reference_get0(x); 3444 break; 3445 3446 case vmIntrinsics::_updateCRC32: 3447 case vmIntrinsics::_updateBytesCRC32: 3448 case vmIntrinsics::_updateByteBufferCRC32: 3449 do_update_CRC32(x); 3450 break; 3451 3452 case vmIntrinsics::_updateBytesCRC32C: 3453 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3454 do_update_CRC32C(x); 3455 break; 3456 3457 case vmIntrinsics::_vectorizedMismatch: 3458 do_vectorizedMismatch(x); 3459 break; 3460 3461 case vmIntrinsics::_blackhole: 3462 do_blackhole(x); 3463 break; 3464 3465 default: ShouldNotReachHere(); break; 3466 } 3467 } 3468 3469 void LIRGenerator::profile_arguments(ProfileCall* x) { 3470 if (compilation()->profile_arguments()) { 3471 int bci = x->bci_of_invoke(); 3472 ciMethodData* md = x->method()->method_data_or_null(); 3473 assert(md != nullptr, "Sanity"); 3474 ciProfileData* data = md->bci_to_data(bci); 3475 if (data != nullptr) { 3476 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3477 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3478 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3479 int base_offset = md->byte_offset_of_slot(data, extra); 3480 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3481 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3482 3483 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3484 int start = 0; 3485 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3486 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3487 // first argument is not profiled at call (method handle invoke) 3488 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3489 start = 1; 3490 } 3491 ciSignature* callee_signature = x->callee()->signature(); 3492 // method handle call to virtual method 3493 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3494 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr); 3495 3496 bool ignored_will_link; 3497 ciSignature* signature_at_call = nullptr; 3498 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3499 ciSignatureStream signature_at_call_stream(signature_at_call); 3500 3501 // if called through method handle invoke, some arguments may have been popped 3502 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3503 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3504 ciKlass* exact = profile_type(md, base_offset, off, 3505 args->type(i), x->profiled_arg_at(i+start), mdp, 3506 !x->arg_needs_null_check(i+start), 3507 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3508 if (exact != nullptr) { 3509 md->set_argument_type(bci, i, exact); 3510 } 3511 } 3512 } else { 3513 #ifdef ASSERT 3514 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3515 int n = x->nb_profiled_args(); 3516 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3517 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3518 "only at JSR292 bytecodes"); 3519 #endif 3520 } 3521 } 3522 } 3523 } 3524 3525 // profile parameters on entry to an inlined method 3526 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3527 if (compilation()->profile_parameters() && x->inlined()) { 3528 ciMethodData* md = x->callee()->method_data_or_null(); 3529 if (md != nullptr) { 3530 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3531 if (parameters_type_data != nullptr) { 3532 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3533 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3534 bool has_receiver = !x->callee()->is_static(); 3535 ciSignature* sig = x->callee()->signature(); 3536 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr); 3537 int i = 0; // to iterate on the Instructions 3538 Value arg = x->recv(); 3539 bool not_null = false; 3540 int bci = x->bci_of_invoke(); 3541 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3542 // The first parameter is the receiver so that's what we start 3543 // with if it exists. One exception is method handle call to 3544 // virtual method: the receiver is in the args list 3545 if (arg == nullptr || !Bytecodes::has_receiver(bc)) { 3546 i = 1; 3547 arg = x->profiled_arg_at(0); 3548 not_null = !x->arg_needs_null_check(0); 3549 } 3550 int k = 0; // to iterate on the profile data 3551 for (;;) { 3552 intptr_t profiled_k = parameters->type(k); 3553 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3554 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3555 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr); 3556 // If the profile is known statically set it once for all and do not emit any code 3557 if (exact != nullptr) { 3558 md->set_parameter_type(k, exact); 3559 } 3560 k++; 3561 if (k >= parameters_type_data->number_of_parameters()) { 3562 #ifdef ASSERT 3563 int extra = 0; 3564 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3565 x->nb_profiled_args() >= TypeProfileParmsLimit && 3566 x->recv() != nullptr && Bytecodes::has_receiver(bc)) { 3567 extra += 1; 3568 } 3569 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3570 #endif 3571 break; 3572 } 3573 arg = x->profiled_arg_at(i); 3574 not_null = !x->arg_needs_null_check(i); 3575 i++; 3576 } 3577 } 3578 } 3579 } 3580 } 3581 3582 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3583 // Need recv in a temporary register so it interferes with the other temporaries 3584 LIR_Opr recv = LIR_OprFact::illegalOpr; 3585 LIR_Opr mdo = new_register(T_METADATA); 3586 // tmp is used to hold the counters on SPARC 3587 LIR_Opr tmp = new_pointer_register(); 3588 3589 if (x->nb_profiled_args() > 0) { 3590 profile_arguments(x); 3591 } 3592 3593 // profile parameters on inlined method entry including receiver 3594 if (x->recv() != nullptr || x->nb_profiled_args() > 0) { 3595 profile_parameters_at_call(x); 3596 } 3597 3598 if (x->recv() != nullptr) { 3599 LIRItem value(x->recv(), this); 3600 value.load_item(); 3601 recv = new_register(T_OBJECT); 3602 __ move(value.result(), recv); 3603 } 3604 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3605 } 3606 3607 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3608 int bci = x->bci_of_invoke(); 3609 ciMethodData* md = x->method()->method_data_or_null(); 3610 assert(md != nullptr, "Sanity"); 3611 ciProfileData* data = md->bci_to_data(bci); 3612 if (data != nullptr) { 3613 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3614 ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3615 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3616 3617 bool ignored_will_link; 3618 ciSignature* signature_at_call = nullptr; 3619 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3620 3621 // The offset within the MDO of the entry to update may be too large 3622 // to be used in load/store instructions on some platforms. So have 3623 // profile_type() compute the address of the profile in a register. 3624 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3625 ret->type(), x->ret(), mdp, 3626 !x->needs_null_check(), 3627 signature_at_call->return_type()->as_klass(), 3628 x->callee()->signature()->return_type()->as_klass()); 3629 if (exact != nullptr) { 3630 md->set_return_type(bci, exact); 3631 } 3632 } 3633 } 3634 3635 bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) { 3636 ciKlass* klass = value->as_loaded_klass_or_null(); 3637 if (klass != nullptr) { 3638 if (klass->is_inlinetype()) { 3639 profile_flags(md, data, flag, lir_cond_always); 3640 } else if (klass->can_be_inline_klass()) { 3641 return false; 3642 } 3643 } else { 3644 return false; 3645 } 3646 return true; 3647 } 3648 3649 3650 void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) { 3651 ciMethod* method = x->method(); 3652 assert(method != nullptr, "method should be set if branch is profiled"); 3653 ciMethodData* md = method->method_data_or_null(); 3654 assert(md != nullptr, "Sanity"); 3655 ciProfileData* data = md->bci_to_data(x->bci()); 3656 assert(data != nullptr, "must have profiling data"); 3657 assert(data->is_ACmpData(), "need BranchData for two-way branches"); 3658 ciACmpData* acmp = (ciACmpData*)data; 3659 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3660 profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0, 3661 acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), nullptr, nullptr); 3662 int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset()); 3663 if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) { 3664 LIR_Opr mdp = new_register(T_METADATA); 3665 __ metadata2reg(md->constant_encoding(), mdp); 3666 LIRItem value(x->left(), this); 3667 value.load_item(); 3668 __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null()); 3669 } 3670 profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 3671 in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()), 3672 acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), nullptr, nullptr); 3673 if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) { 3674 LIR_Opr mdp = new_register(T_METADATA); 3675 __ metadata2reg(md->constant_encoding(), mdp); 3676 LIRItem value(x->right(), this); 3677 value.load_item(); 3678 __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null()); 3679 } 3680 } 3681 3682 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3683 // We can safely ignore accessors here, since c2 will inline them anyway, 3684 // accessors are also always mature. 3685 if (!x->inlinee()->is_accessor()) { 3686 CodeEmitInfo* info = state_for(x, x->state(), true); 3687 // Notify the runtime very infrequently only to take care of counter overflows 3688 int freq_log = Tier23InlineeNotifyFreqLog; 3689 double scale; 3690 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3691 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3692 } 3693 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3694 } 3695 } 3696 3697 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3698 if (compilation()->is_profiling()) { 3699 #if defined(X86) && !defined(_LP64) 3700 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3701 LIR_Opr left_copy = new_register(left->type()); 3702 __ move(left, left_copy); 3703 __ cmp(cond, left_copy, right); 3704 #else 3705 __ cmp(cond, left, right); 3706 #endif 3707 LIR_Opr step = new_register(T_INT); 3708 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3709 LIR_Opr zero = LIR_OprFact::intConst(0); 3710 __ cmove(cond, 3711 (left_bci < bci) ? plus_one : zero, 3712 (right_bci < bci) ? plus_one : zero, 3713 step, left->type()); 3714 increment_backedge_counter(info, step, bci); 3715 } 3716 } 3717 3718 3719 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3720 int freq_log = 0; 3721 int level = compilation()->env()->comp_level(); 3722 if (level == CompLevel_limited_profile) { 3723 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3724 } else if (level == CompLevel_full_profile) { 3725 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3726 } else { 3727 ShouldNotReachHere(); 3728 } 3729 // Increment the appropriate invocation/backedge counter and notify the runtime. 3730 double scale; 3731 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3732 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3733 } 3734 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3735 } 3736 3737 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3738 ciMethod *method, LIR_Opr step, int frequency, 3739 int bci, bool backedge, bool notify) { 3740 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3741 int level = _compilation->env()->comp_level(); 3742 assert(level > CompLevel_simple, "Shouldn't be here"); 3743 3744 int offset = -1; 3745 LIR_Opr counter_holder; 3746 if (level == CompLevel_limited_profile) { 3747 MethodCounters* counters_adr = method->ensure_method_counters(); 3748 if (counters_adr == nullptr) { 3749 bailout("method counters allocation failed"); 3750 return; 3751 } 3752 counter_holder = new_pointer_register(); 3753 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3754 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3755 MethodCounters::invocation_counter_offset()); 3756 } else if (level == CompLevel_full_profile) { 3757 counter_holder = new_register(T_METADATA); 3758 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3759 MethodData::invocation_counter_offset()); 3760 ciMethodData* md = method->method_data_or_null(); 3761 assert(md != nullptr, "Sanity"); 3762 __ metadata2reg(md->constant_encoding(), counter_holder); 3763 } else { 3764 ShouldNotReachHere(); 3765 } 3766 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3767 LIR_Opr result = new_register(T_INT); 3768 __ load(counter, result); 3769 __ add(result, step, result); 3770 __ store(result, counter); 3771 if (notify && (!backedge || UseOnStackReplacement)) { 3772 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3773 // The bci for info can point to cmp for if's we want the if bci 3774 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3775 int freq = frequency << InvocationCounter::count_shift; 3776 if (freq == 0) { 3777 if (!step->is_constant()) { 3778 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3779 __ branch(lir_cond_notEqual, overflow); 3780 } else { 3781 __ branch(lir_cond_always, overflow); 3782 } 3783 } else { 3784 LIR_Opr mask = load_immediate(freq, T_INT); 3785 if (!step->is_constant()) { 3786 // If step is 0, make sure the overflow check below always fails 3787 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3788 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3789 } 3790 __ logical_and(result, mask, result); 3791 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3792 __ branch(lir_cond_equal, overflow); 3793 } 3794 __ branch_destination(overflow->continuation()); 3795 } 3796 } 3797 3798 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3799 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3800 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3801 3802 if (x->pass_thread()) { 3803 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3804 args->append(getThreadPointer()); 3805 } 3806 3807 for (int i = 0; i < x->number_of_arguments(); i++) { 3808 Value a = x->argument_at(i); 3809 LIRItem* item = new LIRItem(a, this); 3810 item->load_item(); 3811 args->append(item->result()); 3812 signature->append(as_BasicType(a->type())); 3813 } 3814 3815 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr); 3816 if (x->type() == voidType) { 3817 set_no_result(x); 3818 } else { 3819 __ move(result, rlock_result(x)); 3820 } 3821 } 3822 3823 #ifdef ASSERT 3824 void LIRGenerator::do_Assert(Assert *x) { 3825 ValueTag tag = x->x()->type()->tag(); 3826 If::Condition cond = x->cond(); 3827 3828 LIRItem xitem(x->x(), this); 3829 LIRItem yitem(x->y(), this); 3830 LIRItem* xin = &xitem; 3831 LIRItem* yin = &yitem; 3832 3833 assert(tag == intTag, "Only integer assertions are valid!"); 3834 3835 xin->load_item(); 3836 yin->dont_load_item(); 3837 3838 set_no_result(x); 3839 3840 LIR_Opr left = xin->result(); 3841 LIR_Opr right = yin->result(); 3842 3843 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3844 } 3845 #endif 3846 3847 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3848 3849 3850 Instruction *a = x->x(); 3851 Instruction *b = x->y(); 3852 if (!a || StressRangeCheckElimination) { 3853 assert(!b || StressRangeCheckElimination, "B must also be null"); 3854 3855 CodeEmitInfo *info = state_for(x, x->state()); 3856 CodeStub* stub = new PredicateFailedStub(info); 3857 3858 __ jump(stub); 3859 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3860 int a_int = a->type()->as_IntConstant()->value(); 3861 int b_int = b->type()->as_IntConstant()->value(); 3862 3863 bool ok = false; 3864 3865 switch(x->cond()) { 3866 case Instruction::eql: ok = (a_int == b_int); break; 3867 case Instruction::neq: ok = (a_int != b_int); break; 3868 case Instruction::lss: ok = (a_int < b_int); break; 3869 case Instruction::leq: ok = (a_int <= b_int); break; 3870 case Instruction::gtr: ok = (a_int > b_int); break; 3871 case Instruction::geq: ok = (a_int >= b_int); break; 3872 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3873 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3874 default: ShouldNotReachHere(); 3875 } 3876 3877 if (ok) { 3878 3879 CodeEmitInfo *info = state_for(x, x->state()); 3880 CodeStub* stub = new PredicateFailedStub(info); 3881 3882 __ jump(stub); 3883 } 3884 } else { 3885 3886 ValueTag tag = x->x()->type()->tag(); 3887 If::Condition cond = x->cond(); 3888 LIRItem xitem(x->x(), this); 3889 LIRItem yitem(x->y(), this); 3890 LIRItem* xin = &xitem; 3891 LIRItem* yin = &yitem; 3892 3893 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3894 3895 xin->load_item(); 3896 yin->dont_load_item(); 3897 set_no_result(x); 3898 3899 LIR_Opr left = xin->result(); 3900 LIR_Opr right = yin->result(); 3901 3902 CodeEmitInfo *info = state_for(x, x->state()); 3903 CodeStub* stub = new PredicateFailedStub(info); 3904 3905 __ cmp(lir_cond(cond), left, right); 3906 __ branch(lir_cond(cond), stub); 3907 } 3908 } 3909 3910 void LIRGenerator::do_blackhole(Intrinsic *x) { 3911 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3912 for (int c = 0; c < x->number_of_arguments(); c++) { 3913 // Load the argument 3914 LIRItem vitem(x->argument_at(c), this); 3915 vitem.load_item(); 3916 // ...and leave it unused. 3917 } 3918 } 3919 3920 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3921 LIRItemList args(1); 3922 LIRItem value(arg1, this); 3923 args.append(&value); 3924 BasicTypeList signature; 3925 signature.append(as_BasicType(arg1->type())); 3926 3927 return call_runtime(&signature, &args, entry, result_type, info); 3928 } 3929 3930 3931 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3932 LIRItemList args(2); 3933 LIRItem value1(arg1, this); 3934 LIRItem value2(arg2, this); 3935 args.append(&value1); 3936 args.append(&value2); 3937 BasicTypeList signature; 3938 signature.append(as_BasicType(arg1->type())); 3939 signature.append(as_BasicType(arg2->type())); 3940 3941 return call_runtime(&signature, &args, entry, result_type, info); 3942 } 3943 3944 3945 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3946 address entry, ValueType* result_type, CodeEmitInfo* info) { 3947 // get a result register 3948 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3949 LIR_Opr result = LIR_OprFact::illegalOpr; 3950 if (result_type->tag() != voidTag) { 3951 result = new_register(result_type); 3952 phys_reg = result_register_for(result_type); 3953 } 3954 3955 // move the arguments into the correct location 3956 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3957 assert(cc->length() == args->length(), "argument mismatch"); 3958 for (int i = 0; i < args->length(); i++) { 3959 LIR_Opr arg = args->at(i); 3960 LIR_Opr loc = cc->at(i); 3961 if (loc->is_register()) { 3962 __ move(arg, loc); 3963 } else { 3964 LIR_Address* addr = loc->as_address_ptr(); 3965 // if (!can_store_as_constant(arg)) { 3966 // LIR_Opr tmp = new_register(arg->type()); 3967 // __ move(arg, tmp); 3968 // arg = tmp; 3969 // } 3970 __ move(arg, addr); 3971 } 3972 } 3973 3974 if (info) { 3975 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3976 } else { 3977 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3978 } 3979 if (result->is_valid()) { 3980 __ move(phys_reg, result); 3981 } 3982 return result; 3983 } 3984 3985 3986 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3987 address entry, ValueType* result_type, CodeEmitInfo* info) { 3988 // get a result register 3989 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3990 LIR_Opr result = LIR_OprFact::illegalOpr; 3991 if (result_type->tag() != voidTag) { 3992 result = new_register(result_type); 3993 phys_reg = result_register_for(result_type); 3994 } 3995 3996 // move the arguments into the correct location 3997 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3998 3999 assert(cc->length() == args->length(), "argument mismatch"); 4000 for (int i = 0; i < args->length(); i++) { 4001 LIRItem* arg = args->at(i); 4002 LIR_Opr loc = cc->at(i); 4003 if (loc->is_register()) { 4004 arg->load_item_force(loc); 4005 } else { 4006 LIR_Address* addr = loc->as_address_ptr(); 4007 arg->load_for_store(addr->type()); 4008 __ move(arg->result(), addr); 4009 } 4010 } 4011 4012 if (info) { 4013 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 4014 } else { 4015 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 4016 } 4017 if (result->is_valid()) { 4018 __ move(phys_reg, result); 4019 } 4020 return result; 4021 } 4022 4023 void LIRGenerator::do_MemBar(MemBar* x) { 4024 LIR_Code code = x->code(); 4025 switch(code) { 4026 case lir_membar_acquire : __ membar_acquire(); break; 4027 case lir_membar_release : __ membar_release(); break; 4028 case lir_membar : __ membar(); break; 4029 case lir_membar_loadload : __ membar_loadload(); break; 4030 case lir_membar_storestore: __ membar_storestore(); break; 4031 case lir_membar_loadstore : __ membar_loadstore(); break; 4032 case lir_membar_storeload : __ membar_storeload(); break; 4033 default : ShouldNotReachHere(); break; 4034 } 4035 } 4036 4037 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 4038 LIR_Opr value_fixed = rlock_byte(T_BYTE); 4039 if (two_operand_lir_form) { 4040 __ move(value, value_fixed); 4041 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 4042 } else { 4043 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 4044 } 4045 LIR_Opr klass = new_register(T_METADATA); 4046 load_klass(array, klass, null_check_info); 4047 null_check_info = nullptr; 4048 LIR_Opr layout = new_register(T_INT); 4049 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 4050 int diffbit = Klass::layout_helper_boolean_diffbit(); 4051 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 4052 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 4053 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 4054 value = value_fixed; 4055 return value; 4056 }