1 /* 2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "c1/c1_Compilation.hpp" 26 #include "c1/c1_Defs.hpp" 27 #include "c1/c1_FrameMap.hpp" 28 #include "c1/c1_Instruction.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_LIRGenerator.hpp" 31 #include "c1/c1_ValueStack.hpp" 32 #include "ci/ciArrayKlass.hpp" 33 #include "ci/ciFlatArrayKlass.hpp" 34 #include "ci/ciInlineKlass.hpp" 35 #include "ci/ciInstance.hpp" 36 #include "ci/ciObjArray.hpp" 37 #include "ci/ciObjArrayKlass.hpp" 38 #include "ci/ciUtilities.hpp" 39 #include "compiler/compilerDefinitions.inline.hpp" 40 #include "compiler/compilerOracle.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/c1/barrierSetC1.hpp" 43 #include "oops/klass.inline.hpp" 44 #include "oops/methodCounters.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "runtime/stubRoutines.hpp" 47 #include "runtime/vm_version.hpp" 48 #include "utilities/bitMap.inline.hpp" 49 #include "utilities/macros.hpp" 50 #include "utilities/powerOfTwo.hpp" 51 52 #ifdef ASSERT 53 #define __ gen()->lir(__FILE__, __LINE__)-> 54 #else 55 #define __ gen()->lir()-> 56 #endif 57 58 #ifndef PATCHED_ADDR 59 #define PATCHED_ADDR (max_jint) 60 #endif 61 62 void PhiResolverState::reset() { 63 _virtual_operands.clear(); 64 _other_operands.clear(); 65 _vreg_table.clear(); 66 } 67 68 69 //-------------------------------------------------------------- 70 // PhiResolver 71 72 // Resolves cycles: 73 // 74 // r1 := r2 becomes temp := r1 75 // r2 := r1 r1 := r2 76 // r2 := temp 77 // and orders moves: 78 // 79 // r2 := r3 becomes r1 := r2 80 // r1 := r2 r2 := r3 81 82 PhiResolver::PhiResolver(LIRGenerator* gen) 83 : _gen(gen) 84 , _state(gen->resolver_state()) 85 , _loop(nullptr) 86 , _temp(LIR_OprFact::illegalOpr) 87 { 88 // reinitialize the shared state arrays 89 _state.reset(); 90 } 91 92 93 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 94 assert(src->is_valid(), ""); 95 assert(dest->is_valid(), ""); 96 __ move(src, dest); 97 } 98 99 100 void PhiResolver::move_temp_to(LIR_Opr dest) { 101 assert(_temp->is_valid(), ""); 102 emit_move(_temp, dest); 103 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 104 } 105 106 107 void PhiResolver::move_to_temp(LIR_Opr src) { 108 assert(_temp->is_illegal(), ""); 109 _temp = _gen->new_register(src->type()); 110 emit_move(src, _temp); 111 } 112 113 114 // Traverse assignment graph in depth first order and generate moves in post order 115 // ie. two assignments: b := c, a := b start with node c: 116 // Call graph: move(null, c) -> move(c, b) -> move(b, a) 117 // Generates moves in this order: move b to a and move c to b 118 // ie. cycle a := b, b := a start with node a 119 // Call graph: move(null, a) -> move(a, b) -> move(b, a) 120 // Generates moves in this order: move b to temp, move a to b, move temp to a 121 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 122 if (!dest->visited()) { 123 dest->set_visited(); 124 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 125 move(dest, dest->destination_at(i)); 126 } 127 } else if (!dest->start_node()) { 128 // cylce in graph detected 129 assert(_loop == nullptr, "only one loop valid!"); 130 _loop = dest; 131 move_to_temp(src->operand()); 132 return; 133 } // else dest is a start node 134 135 if (!dest->assigned()) { 136 if (_loop == dest) { 137 move_temp_to(dest->operand()); 138 dest->set_assigned(); 139 } else if (src != nullptr) { 140 emit_move(src->operand(), dest->operand()); 141 dest->set_assigned(); 142 } 143 } 144 } 145 146 147 PhiResolver::~PhiResolver() { 148 int i; 149 // resolve any cycles in moves from and to virtual registers 150 for (i = virtual_operands().length() - 1; i >= 0; i --) { 151 ResolveNode* node = virtual_operands().at(i); 152 if (!node->visited()) { 153 _loop = nullptr; 154 move(nullptr, node); 155 node->set_start_node(); 156 assert(_temp->is_illegal(), "move_temp_to() call missing"); 157 } 158 } 159 160 // generate move for move from non virtual register to abitrary destination 161 for (i = other_operands().length() - 1; i >= 0; i --) { 162 ResolveNode* node = other_operands().at(i); 163 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 164 emit_move(node->operand(), node->destination_at(j)->operand()); 165 } 166 } 167 } 168 169 170 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 171 ResolveNode* node; 172 if (opr->is_virtual()) { 173 int vreg_num = opr->vreg_number(); 174 node = vreg_table().at_grow(vreg_num, nullptr); 175 assert(node == nullptr || node->operand() == opr, ""); 176 if (node == nullptr) { 177 node = new ResolveNode(opr); 178 vreg_table().at_put(vreg_num, node); 179 } 180 // Make sure that all virtual operands show up in the list when 181 // they are used as the source of a move. 182 if (source && !virtual_operands().contains(node)) { 183 virtual_operands().append(node); 184 } 185 } else { 186 assert(source, ""); 187 node = new ResolveNode(opr); 188 other_operands().append(node); 189 } 190 return node; 191 } 192 193 194 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 195 assert(dest->is_virtual(), ""); 196 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 197 assert(src->is_valid(), ""); 198 assert(dest->is_valid(), ""); 199 ResolveNode* source = source_node(src); 200 source->append(destination_node(dest)); 201 } 202 203 204 //-------------------------------------------------------------- 205 // LIRItem 206 207 void LIRItem::set_result(LIR_Opr opr) { 208 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 209 value()->set_operand(opr); 210 211 #ifdef ASSERT 212 if (opr->is_virtual()) { 213 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr); 214 } 215 #endif 216 217 _result = opr; 218 } 219 220 void LIRItem::load_item() { 221 assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code"); 222 223 if (result()->is_illegal()) { 224 // update the items result 225 _result = value()->operand(); 226 } 227 if (!result()->is_register()) { 228 LIR_Opr reg = _gen->new_register(value()->type()); 229 __ move(result(), reg); 230 if (result()->is_constant()) { 231 _result = reg; 232 } else { 233 set_result(reg); 234 } 235 } 236 } 237 238 239 void LIRItem::load_for_store(BasicType type) { 240 if (_gen->can_store_as_constant(value(), type)) { 241 _result = value()->operand(); 242 if (!_result->is_constant()) { 243 _result = LIR_OprFact::value_type(value()->type()); 244 } 245 } else if (type == T_BYTE || type == T_BOOLEAN) { 246 load_byte_item(); 247 } else { 248 load_item(); 249 } 250 } 251 252 void LIRItem::load_item_force(LIR_Opr reg) { 253 LIR_Opr r = result(); 254 if (r != reg) { 255 #if !defined(ARM) && !defined(E500V2) 256 if (r->type() != reg->type()) { 257 // moves between different types need an intervening spill slot 258 r = _gen->force_to_spill(r, reg->type()); 259 } 260 #endif 261 __ move(r, reg); 262 _result = reg; 263 } 264 } 265 266 ciObject* LIRItem::get_jobject_constant() const { 267 ObjectType* oc = type()->as_ObjectType(); 268 if (oc) { 269 return oc->constant_value(); 270 } 271 return nullptr; 272 } 273 274 275 jint LIRItem::get_jint_constant() const { 276 assert(is_constant() && value() != nullptr, ""); 277 assert(type()->as_IntConstant() != nullptr, "type check"); 278 return type()->as_IntConstant()->value(); 279 } 280 281 282 jint LIRItem::get_address_constant() const { 283 assert(is_constant() && value() != nullptr, ""); 284 assert(type()->as_AddressConstant() != nullptr, "type check"); 285 return type()->as_AddressConstant()->value(); 286 } 287 288 289 jfloat LIRItem::get_jfloat_constant() const { 290 assert(is_constant() && value() != nullptr, ""); 291 assert(type()->as_FloatConstant() != nullptr, "type check"); 292 return type()->as_FloatConstant()->value(); 293 } 294 295 296 jdouble LIRItem::get_jdouble_constant() const { 297 assert(is_constant() && value() != nullptr, ""); 298 assert(type()->as_DoubleConstant() != nullptr, "type check"); 299 return type()->as_DoubleConstant()->value(); 300 } 301 302 303 jlong LIRItem::get_jlong_constant() const { 304 assert(is_constant() && value() != nullptr, ""); 305 assert(type()->as_LongConstant() != nullptr, "type check"); 306 return type()->as_LongConstant()->value(); 307 } 308 309 310 311 //-------------------------------------------------------------- 312 313 314 void LIRGenerator::block_do_prolog(BlockBegin* block) { 315 #ifndef PRODUCT 316 if (PrintIRWithLIR) { 317 block->print(); 318 } 319 #endif 320 321 // set up the list of LIR instructions 322 assert(block->lir() == nullptr, "LIR list already computed for this block"); 323 _lir = new LIR_List(compilation(), block); 324 block->set_lir(_lir); 325 326 __ branch_destination(block->label()); 327 328 if (LIRTraceExecution && 329 Compilation::current()->hir()->start()->block_id() != block->block_id() && 330 !block->is_set(BlockBegin::exception_entry_flag)) { 331 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 332 trace_block_entry(block); 333 } 334 } 335 336 337 void LIRGenerator::block_do_epilog(BlockBegin* block) { 338 #ifndef PRODUCT 339 if (PrintIRWithLIR) { 340 tty->cr(); 341 } 342 #endif 343 344 // LIR_Opr for unpinned constants shouldn't be referenced by other 345 // blocks so clear them out after processing the block. 346 for (int i = 0; i < _unpinned_constants.length(); i++) { 347 _unpinned_constants.at(i)->clear_operand(); 348 } 349 _unpinned_constants.trunc_to(0); 350 351 // clear our any registers for other local constants 352 _constants.trunc_to(0); 353 _reg_for_constants.trunc_to(0); 354 } 355 356 357 void LIRGenerator::block_do(BlockBegin* block) { 358 CHECK_BAILOUT(); 359 360 block_do_prolog(block); 361 set_block(block); 362 363 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) { 364 if (instr->is_pinned()) do_root(instr); 365 } 366 367 set_block(nullptr); 368 block_do_epilog(block); 369 } 370 371 372 //-------------------------LIRGenerator----------------------------- 373 374 // This is where the tree-walk starts; instr must be root; 375 void LIRGenerator::do_root(Value instr) { 376 CHECK_BAILOUT(); 377 378 InstructionMark im(compilation(), instr); 379 380 assert(instr->is_pinned(), "use only with roots"); 381 assert(instr->subst() == instr, "shouldn't have missed substitution"); 382 383 instr->visit(this); 384 385 assert(!instr->has_uses() || instr->operand()->is_valid() || 386 instr->as_Constant() != nullptr || bailed_out(), "invalid item set"); 387 } 388 389 390 // This is called for each node in tree; the walk stops if a root is reached 391 void LIRGenerator::walk(Value instr) { 392 InstructionMark im(compilation(), instr); 393 //stop walk when encounter a root 394 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) { 395 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited"); 396 } else { 397 assert(instr->subst() == instr, "shouldn't have missed substitution"); 398 instr->visit(this); 399 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use"); 400 } 401 } 402 403 404 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 405 assert(state != nullptr, "state must be defined"); 406 407 #ifndef PRODUCT 408 state->verify(); 409 #endif 410 411 ValueStack* s = state; 412 for_each_state(s) { 413 if (s->kind() == ValueStack::EmptyExceptionState || 414 s->kind() == ValueStack::CallerEmptyExceptionState) 415 { 416 #ifdef ASSERT 417 int index; 418 Value value; 419 for_each_stack_value(s, index, value) { 420 fatal("state must be empty"); 421 } 422 for_each_local_value(s, index, value) { 423 fatal("state must be empty"); 424 } 425 #endif 426 assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty"); 427 continue; 428 } 429 430 int index; 431 Value value; 432 for_each_stack_value(s, index, value) { 433 assert(value->subst() == value, "missed substitution"); 434 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 435 walk(value); 436 assert(value->operand()->is_valid(), "must be evaluated now"); 437 } 438 } 439 440 int bci = s->bci(); 441 IRScope* scope = s->scope(); 442 ciMethod* method = scope->method(); 443 444 MethodLivenessResult liveness = method->liveness_at_bci(bci); 445 if (bci == SynchronizationEntryBCI) { 446 if (x->as_ExceptionObject() || x->as_Throw()) { 447 // all locals are dead on exit from the synthetic unlocker 448 liveness.clear(); 449 } else { 450 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 451 } 452 } 453 if (!liveness.is_valid()) { 454 // Degenerate or breakpointed method. 455 bailout("Degenerate or breakpointed method"); 456 } else { 457 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 458 for_each_local_value(s, index, value) { 459 assert(value->subst() == value, "missed substitution"); 460 if (liveness.at(index) && !value->type()->is_illegal()) { 461 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 462 walk(value); 463 assert(value->operand()->is_valid(), "must be evaluated now"); 464 } 465 } else { 466 // null out this local so that linear scan can assume that all non-null values are live. 467 s->invalidate_local(index); 468 } 469 } 470 } 471 } 472 473 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 474 } 475 476 477 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 478 return state_for(x, x->exception_state()); 479 } 480 481 482 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 483 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 484 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 485 * the class. */ 486 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 487 assert(info != nullptr, "info must be set if class is not loaded"); 488 __ klass2reg_patch(nullptr, r, info); 489 } else { 490 // no patching needed 491 __ metadata2reg(obj->constant_encoding(), r); 492 } 493 } 494 495 496 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 497 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 498 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 499 if (index->is_constant()) { 500 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 501 index->as_jint(), null_check_info); 502 __ branch(lir_cond_belowEqual, stub); // forward branch 503 } else { 504 cmp_reg_mem(lir_cond_aboveEqual, index, array, 505 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 506 __ branch(lir_cond_aboveEqual, stub); // forward branch 507 } 508 } 509 510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 511 LIR_Opr result_op = result; 512 LIR_Opr left_op = left; 513 LIR_Opr right_op = right; 514 515 if (two_operand_lir_form && left_op != result_op) { 516 assert(right_op != result_op, "malformed"); 517 __ move(left_op, result_op); 518 left_op = result_op; 519 } 520 521 switch(code) { 522 case Bytecodes::_dadd: 523 case Bytecodes::_fadd: 524 case Bytecodes::_ladd: 525 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 526 case Bytecodes::_fmul: 527 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 528 529 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 530 531 case Bytecodes::_imul: 532 { 533 bool did_strength_reduce = false; 534 535 if (right->is_constant()) { 536 jint c = right->as_jint(); 537 if (c > 0 && is_power_of_2(c)) { 538 // do not need tmp here 539 __ shift_left(left_op, exact_log2(c), result_op); 540 did_strength_reduce = true; 541 } else { 542 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 543 } 544 } 545 // we couldn't strength reduce so just emit the multiply 546 if (!did_strength_reduce) { 547 __ mul(left_op, right_op, result_op); 548 } 549 } 550 break; 551 552 case Bytecodes::_dsub: 553 case Bytecodes::_fsub: 554 case Bytecodes::_lsub: 555 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 556 557 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 558 // ldiv and lrem are implemented with a direct runtime call 559 560 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 561 562 case Bytecodes::_drem: 563 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 564 565 default: ShouldNotReachHere(); 566 } 567 } 568 569 570 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 571 arithmetic_op(code, result, left, right, tmp); 572 } 573 574 575 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 576 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 577 } 578 579 580 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 581 arithmetic_op(code, result, left, right, tmp); 582 } 583 584 585 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 586 587 if (two_operand_lir_form && value != result_op 588 // Only 32bit right shifts require two operand form on S390. 589 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 590 assert(count != result_op, "malformed"); 591 __ move(value, result_op); 592 value = result_op; 593 } 594 595 assert(count->is_constant() || count->is_register(), "must be"); 596 switch(code) { 597 case Bytecodes::_ishl: 598 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 599 case Bytecodes::_ishr: 600 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 601 case Bytecodes::_iushr: 602 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 603 default: ShouldNotReachHere(); 604 } 605 } 606 607 608 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 609 if (two_operand_lir_form && left_op != result_op) { 610 assert(right_op != result_op, "malformed"); 611 __ move(left_op, result_op); 612 left_op = result_op; 613 } 614 615 switch(code) { 616 case Bytecodes::_iand: 617 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 618 619 case Bytecodes::_ior: 620 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 621 622 case Bytecodes::_ixor: 623 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 624 625 default: ShouldNotReachHere(); 626 } 627 } 628 629 630 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, 631 CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_ie_stub) { 632 // for slow path, use debug info for state after successful locking 633 CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_ie_stub, scratch); 634 __ load_stack_address_monitor(monitor_no, lock); 635 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 636 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_ie_stub); 637 } 638 639 640 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 641 // setup registers 642 LIR_Opr hdr = lock; 643 lock = new_hdr; 644 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no); 645 __ load_stack_address_monitor(monitor_no, lock); 646 __ unlock_object(hdr, object, lock, scratch, slow_path); 647 } 648 649 #ifndef PRODUCT 650 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 651 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 652 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 653 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 654 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 655 } 656 } 657 #endif 658 659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 660 if (allow_inline) { 661 assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved"); 662 __ metadata2reg(klass->constant_encoding(), klass_reg); 663 } else { 664 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 665 } 666 // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass 667 if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype()) 668 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 669 670 StubId stub_id = klass->is_initialized() ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id; 671 672 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 673 674 assert(klass->is_loaded(), "must be loaded"); 675 // allocate space for instance 676 assert(klass->size_helper() > 0, "illegal instance size"); 677 const int instance_size = align_object_size(klass->size_helper()); 678 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 679 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 680 } else { 681 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id); 682 __ jump(slow_path); 683 __ branch_destination(slow_path->continuation()); 684 } 685 } 686 687 688 static bool is_constant_zero(Instruction* inst) { 689 IntConstant* c = inst->type()->as_IntConstant(); 690 if (c) { 691 return (c->value() == 0); 692 } 693 return false; 694 } 695 696 697 static bool positive_constant(Instruction* inst) { 698 IntConstant* c = inst->type()->as_IntConstant(); 699 if (c) { 700 return (c->value() >= 0); 701 } 702 return false; 703 } 704 705 706 static ciArrayKlass* as_array_klass(ciType* type) { 707 if (type != nullptr && type->is_array_klass() && type->is_loaded()) { 708 return (ciArrayKlass*)type; 709 } else { 710 return nullptr; 711 } 712 } 713 714 static ciType* phi_declared_type(Phi* phi) { 715 ciType* t = phi->operand_at(0)->declared_type(); 716 if (t == nullptr) { 717 return nullptr; 718 } 719 for(int i = 1; i < phi->operand_count(); i++) { 720 if (t != phi->operand_at(i)->declared_type()) { 721 return nullptr; 722 } 723 } 724 return t; 725 } 726 727 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 728 Instruction* src = x->argument_at(0); 729 Instruction* src_pos = x->argument_at(1); 730 Instruction* dst = x->argument_at(2); 731 Instruction* dst_pos = x->argument_at(3); 732 Instruction* length = x->argument_at(4); 733 734 // first try to identify the likely type of the arrays involved 735 ciArrayKlass* expected_type = nullptr; 736 bool is_exact = false, src_objarray = false, dst_objarray = false; 737 { 738 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 739 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 740 Phi* phi; 741 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) { 742 src_declared_type = as_array_klass(phi_declared_type(phi)); 743 } 744 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 745 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 746 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) { 747 dst_declared_type = as_array_klass(phi_declared_type(phi)); 748 } 749 750 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) { 751 // the types exactly match so the type is fully known 752 is_exact = true; 753 expected_type = src_exact_type; 754 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) { 755 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 756 ciArrayKlass* src_type = nullptr; 757 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) { 758 src_type = (ciArrayKlass*) src_exact_type; 759 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) { 760 src_type = (ciArrayKlass*) src_declared_type; 761 } 762 if (src_type != nullptr) { 763 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 764 is_exact = true; 765 expected_type = dst_type; 766 } 767 } 768 } 769 // at least pass along a good guess 770 if (expected_type == nullptr) expected_type = dst_exact_type; 771 if (expected_type == nullptr) expected_type = src_declared_type; 772 if (expected_type == nullptr) expected_type = dst_declared_type; 773 774 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 775 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 776 } 777 778 // if a probable array type has been identified, figure out if any 779 // of the required checks for a fast case can be elided. 780 int flags = LIR_OpArrayCopy::all_flags; 781 782 if (!src->is_loaded_flat_array() && !dst->is_loaded_flat_array()) { 783 flags &= ~LIR_OpArrayCopy::always_slow_path; 784 } 785 if (!src->maybe_flat_array()) { 786 flags &= ~LIR_OpArrayCopy::src_inlinetype_check; 787 } 788 if (!dst->maybe_flat_array() && !dst->maybe_null_free_array()) { 789 flags &= ~LIR_OpArrayCopy::dst_inlinetype_check; 790 } 791 792 if (!src_objarray) 793 flags &= ~LIR_OpArrayCopy::src_objarray; 794 if (!dst_objarray) 795 flags &= ~LIR_OpArrayCopy::dst_objarray; 796 797 if (!x->arg_needs_null_check(0)) 798 flags &= ~LIR_OpArrayCopy::src_null_check; 799 if (!x->arg_needs_null_check(2)) 800 flags &= ~LIR_OpArrayCopy::dst_null_check; 801 802 803 if (expected_type != nullptr) { 804 Value length_limit = nullptr; 805 806 IfOp* ifop = length->as_IfOp(); 807 if (ifop != nullptr) { 808 // look for expressions like min(v, a.length) which ends up as 809 // x > y ? y : x or x >= y ? y : x 810 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 811 ifop->x() == ifop->fval() && 812 ifop->y() == ifop->tval()) { 813 length_limit = ifop->y(); 814 } 815 } 816 817 // try to skip null checks and range checks 818 NewArray* src_array = src->as_NewArray(); 819 if (src_array != nullptr) { 820 flags &= ~LIR_OpArrayCopy::src_null_check; 821 if (length_limit != nullptr && 822 src_array->length() == length_limit && 823 is_constant_zero(src_pos)) { 824 flags &= ~LIR_OpArrayCopy::src_range_check; 825 } 826 } 827 828 NewArray* dst_array = dst->as_NewArray(); 829 if (dst_array != nullptr) { 830 flags &= ~LIR_OpArrayCopy::dst_null_check; 831 if (length_limit != nullptr && 832 dst_array->length() == length_limit && 833 is_constant_zero(dst_pos)) { 834 flags &= ~LIR_OpArrayCopy::dst_range_check; 835 } 836 } 837 838 // check from incoming constant values 839 if (positive_constant(src_pos)) 840 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 841 if (positive_constant(dst_pos)) 842 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 843 if (positive_constant(length)) 844 flags &= ~LIR_OpArrayCopy::length_positive_check; 845 846 // see if the range check can be elided, which might also imply 847 // that src or dst is non-null. 848 ArrayLength* al = length->as_ArrayLength(); 849 if (al != nullptr) { 850 if (al->array() == src) { 851 // it's the length of the source array 852 flags &= ~LIR_OpArrayCopy::length_positive_check; 853 flags &= ~LIR_OpArrayCopy::src_null_check; 854 if (is_constant_zero(src_pos)) 855 flags &= ~LIR_OpArrayCopy::src_range_check; 856 } 857 if (al->array() == dst) { 858 // it's the length of the destination array 859 flags &= ~LIR_OpArrayCopy::length_positive_check; 860 flags &= ~LIR_OpArrayCopy::dst_null_check; 861 if (is_constant_zero(dst_pos)) 862 flags &= ~LIR_OpArrayCopy::dst_range_check; 863 } 864 } 865 if (is_exact) { 866 flags &= ~LIR_OpArrayCopy::type_check; 867 } 868 } 869 870 IntConstant* src_int = src_pos->type()->as_IntConstant(); 871 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 872 if (src_int && dst_int) { 873 int s_offs = src_int->value(); 874 int d_offs = dst_int->value(); 875 if (src_int->value() >= dst_int->value()) { 876 flags &= ~LIR_OpArrayCopy::overlapping; 877 } 878 if (expected_type != nullptr) { 879 BasicType t = expected_type->element_type()->basic_type(); 880 int element_size = type2aelembytes(t); 881 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) && 882 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) { 883 flags &= ~LIR_OpArrayCopy::unaligned; 884 } 885 } 886 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 887 // src and dest positions are the same, or dst is zero so assume 888 // nonoverlapping copy. 889 flags &= ~LIR_OpArrayCopy::overlapping; 890 } 891 892 if (src == dst) { 893 // moving within a single array so no type checks are needed 894 if (flags & LIR_OpArrayCopy::type_check) { 895 flags &= ~LIR_OpArrayCopy::type_check; 896 } 897 } 898 *flagsp = flags; 899 900 // TODO 8366668 901 if (expected_type != nullptr && expected_type->is_obj_array_klass()) { 902 expected_type = ciArrayKlass::make(expected_type->as_array_klass()->element_klass(), false, true, true); 903 } 904 905 *expected_typep = (ciArrayKlass*)expected_type; 906 } 907 908 909 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 910 assert(type2size[t] == type2size[value->type()], 911 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 912 if (!value->is_register()) { 913 // force into a register 914 LIR_Opr r = new_register(value->type()); 915 __ move(value, r); 916 value = r; 917 } 918 919 // create a spill location 920 LIR_Opr tmp = new_register(t); 921 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 922 923 // move from register to spill 924 __ move(value, tmp); 925 return tmp; 926 } 927 928 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 929 if (if_instr->should_profile()) { 930 ciMethod* method = if_instr->profiled_method(); 931 assert(method != nullptr, "method should be set if branch is profiled"); 932 ciMethodData* md = method->method_data_or_null(); 933 assert(md != nullptr, "Sanity"); 934 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 935 assert(data != nullptr, "must have profiling data"); 936 assert(data->is_BranchData(), "need BranchData for two-way branches"); 937 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 938 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 939 if (if_instr->is_swapped()) { 940 int t = taken_count_offset; 941 taken_count_offset = not_taken_count_offset; 942 not_taken_count_offset = t; 943 } 944 945 LIR_Opr md_reg = new_register(T_METADATA); 946 __ metadata2reg(md->constant_encoding(), md_reg); 947 948 LIR_Opr data_offset_reg = new_pointer_register(); 949 __ cmove(lir_cond(cond), 950 LIR_OprFact::intptrConst(taken_count_offset), 951 LIR_OprFact::intptrConst(not_taken_count_offset), 952 data_offset_reg, as_BasicType(if_instr->x()->type())); 953 954 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 955 LIR_Opr data_reg = new_pointer_register(); 956 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 957 __ move(data_addr, data_reg); 958 // Use leal instead of add to avoid destroying condition codes on x86 959 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 960 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 961 __ move(data_reg, data_addr); 962 } 963 } 964 965 // Phi technique: 966 // This is about passing live values from one basic block to the other. 967 // In code generated with Java it is rather rare that more than one 968 // value is on the stack from one basic block to the other. 969 // We optimize our technique for efficient passing of one value 970 // (of type long, int, double..) but it can be extended. 971 // When entering or leaving a basic block, all registers and all spill 972 // slots are release and empty. We use the released registers 973 // and spill slots to pass the live values from one block 974 // to the other. The topmost value, i.e., the value on TOS of expression 975 // stack is passed in registers. All other values are stored in spilling 976 // area. Every Phi has an index which designates its spill slot 977 // At exit of a basic block, we fill the register(s) and spill slots. 978 // At entry of a basic block, the block_prolog sets up the content of phi nodes 979 // and locks necessary registers and spilling slots. 980 981 982 // move current value to referenced phi function 983 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 984 Phi* phi = sux_val->as_Phi(); 985 // cur_val can be null without phi being null in conjunction with inlining 986 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) { 987 if (phi->is_local()) { 988 for (int i = 0; i < phi->operand_count(); i++) { 989 Value op = phi->operand_at(i); 990 if (op != nullptr && op->type()->is_illegal()) { 991 bailout("illegal phi operand"); 992 } 993 } 994 } 995 Phi* cur_phi = cur_val->as_Phi(); 996 if (cur_phi != nullptr && cur_phi->is_illegal()) { 997 // Phi and local would need to get invalidated 998 // (which is unexpected for Linear Scan). 999 // But this case is very rare so we simply bail out. 1000 bailout("propagation of illegal phi"); 1001 return; 1002 } 1003 LIR_Opr operand = cur_val->operand(); 1004 if (operand->is_illegal()) { 1005 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr, 1006 "these can be produced lazily"); 1007 operand = operand_for_instruction(cur_val); 1008 } 1009 resolver->move(operand, operand_for_instruction(phi)); 1010 } 1011 } 1012 1013 1014 // Moves all stack values into their PHI position 1015 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 1016 BlockBegin* bb = block(); 1017 if (bb->number_of_sux() == 1) { 1018 BlockBegin* sux = bb->sux_at(0); 1019 assert(sux->number_of_preds() > 0, "invalid CFG"); 1020 1021 // a block with only one predecessor never has phi functions 1022 if (sux->number_of_preds() > 1) { 1023 PhiResolver resolver(this); 1024 1025 ValueStack* sux_state = sux->state(); 1026 Value sux_value; 1027 int index; 1028 1029 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1030 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1031 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1032 1033 for_each_stack_value(sux_state, index, sux_value) { 1034 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1035 } 1036 1037 for_each_local_value(sux_state, index, sux_value) { 1038 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1039 } 1040 1041 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1042 } 1043 } 1044 } 1045 1046 1047 LIR_Opr LIRGenerator::new_register(BasicType type) { 1048 int vreg_num = _virtual_register_number; 1049 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1050 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1051 if (vreg_num + 20 >= LIR_Opr::vreg_max) { 1052 bailout("out of virtual registers in LIR generator"); 1053 if (vreg_num + 2 >= LIR_Opr::vreg_max) { 1054 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1055 _virtual_register_number = LIR_Opr::vreg_base; 1056 vreg_num = LIR_Opr::vreg_base; 1057 } 1058 } 1059 _virtual_register_number += 1; 1060 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1061 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1062 return vreg; 1063 } 1064 1065 1066 // Try to lock using register in hint 1067 LIR_Opr LIRGenerator::rlock(Value instr) { 1068 return new_register(instr->type()); 1069 } 1070 1071 1072 // does an rlock and sets result 1073 LIR_Opr LIRGenerator::rlock_result(Value x) { 1074 LIR_Opr reg = rlock(x); 1075 set_result(x, reg); 1076 return reg; 1077 } 1078 1079 1080 // does an rlock and sets result 1081 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1082 LIR_Opr reg; 1083 switch (type) { 1084 case T_BYTE: 1085 case T_BOOLEAN: 1086 reg = rlock_byte(type); 1087 break; 1088 default: 1089 reg = rlock(x); 1090 break; 1091 } 1092 1093 set_result(x, reg); 1094 return reg; 1095 } 1096 1097 1098 //--------------------------------------------------------------------- 1099 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1100 ObjectType* oc = value->type()->as_ObjectType(); 1101 if (oc) { 1102 return oc->constant_value(); 1103 } 1104 return nullptr; 1105 } 1106 1107 1108 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1109 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1110 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1111 1112 // no moves are created for phi functions at the begin of exception 1113 // handlers, so assign operands manually here 1114 for_each_phi_fun(block(), phi, 1115 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1116 1117 LIR_Opr thread_reg = getThreadPointer(); 1118 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1119 exceptionOopOpr()); 1120 __ move_wide(LIR_OprFact::oopConst(nullptr), 1121 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1122 __ move_wide(LIR_OprFact::oopConst(nullptr), 1123 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1124 1125 LIR_Opr result = new_register(T_OBJECT); 1126 __ move(exceptionOopOpr(), result); 1127 set_result(x, result); 1128 } 1129 1130 1131 //---------------------------------------------------------------------- 1132 //---------------------------------------------------------------------- 1133 //---------------------------------------------------------------------- 1134 //---------------------------------------------------------------------- 1135 // visitor functions 1136 //---------------------------------------------------------------------- 1137 //---------------------------------------------------------------------- 1138 //---------------------------------------------------------------------- 1139 //---------------------------------------------------------------------- 1140 1141 void LIRGenerator::do_Phi(Phi* x) { 1142 // phi functions are never visited directly 1143 ShouldNotReachHere(); 1144 } 1145 1146 1147 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1148 void LIRGenerator::do_Constant(Constant* x) { 1149 if (x->state_before() != nullptr) { 1150 // Any constant with a ValueStack requires patching so emit the patch here 1151 LIR_Opr reg = rlock_result(x); 1152 CodeEmitInfo* info = state_for(x, x->state_before()); 1153 __ oop2reg_patch(nullptr, reg, info); 1154 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1155 if (!x->is_pinned()) { 1156 // unpinned constants are handled specially so that they can be 1157 // put into registers when they are used multiple times within a 1158 // block. After the block completes their operand will be 1159 // cleared so that other blocks can't refer to that register. 1160 set_result(x, load_constant(x)); 1161 } else { 1162 LIR_Opr res = x->operand(); 1163 if (!res->is_valid()) { 1164 res = LIR_OprFact::value_type(x->type()); 1165 } 1166 if (res->is_constant()) { 1167 LIR_Opr reg = rlock_result(x); 1168 __ move(res, reg); 1169 } else { 1170 set_result(x, res); 1171 } 1172 } 1173 } else { 1174 set_result(x, LIR_OprFact::value_type(x->type())); 1175 } 1176 } 1177 1178 1179 void LIRGenerator::do_Local(Local* x) { 1180 // operand_for_instruction has the side effect of setting the result 1181 // so there's no need to do it here. 1182 operand_for_instruction(x); 1183 } 1184 1185 1186 void LIRGenerator::do_Return(Return* x) { 1187 if (compilation()->env()->dtrace_method_probes()) { 1188 BasicTypeList signature; 1189 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1190 signature.append(T_METADATA); // Method* 1191 LIR_OprList* args = new LIR_OprList(); 1192 args->append(getThreadPointer()); 1193 LIR_Opr meth = new_register(T_METADATA); 1194 __ metadata2reg(method()->constant_encoding(), meth); 1195 args->append(meth); 1196 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr); 1197 } 1198 1199 if (x->type()->is_void()) { 1200 __ return_op(LIR_OprFact::illegalOpr); 1201 } else { 1202 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1203 LIRItem result(x->result(), this); 1204 1205 result.load_item_force(reg); 1206 __ return_op(result.result()); 1207 } 1208 set_no_result(x); 1209 } 1210 1211 // Example: ref.get() 1212 // Combination of LoadField and g1 pre-write barrier 1213 void LIRGenerator::do_Reference_get0(Intrinsic* x) { 1214 1215 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1216 1217 assert(x->number_of_arguments() == 1, "wrong type"); 1218 1219 LIRItem reference(x->argument_at(0), this); 1220 reference.load_item(); 1221 1222 // need to perform the null check on the reference object 1223 CodeEmitInfo* info = nullptr; 1224 if (x->needs_null_check()) { 1225 info = state_for(x); 1226 } 1227 1228 LIR_Opr result = rlock_result(x, T_OBJECT); 1229 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1230 reference, LIR_OprFact::intConst(referent_offset), result, 1231 nullptr, info); 1232 } 1233 1234 // Example: clazz.isInstance(object) 1235 void LIRGenerator::do_isInstance(Intrinsic* x) { 1236 assert(x->number_of_arguments() == 2, "wrong type"); 1237 1238 LIRItem clazz(x->argument_at(0), this); 1239 LIRItem object(x->argument_at(1), this); 1240 clazz.load_item(); 1241 object.load_item(); 1242 LIR_Opr result = rlock_result(x); 1243 1244 // need to perform null check on clazz 1245 if (x->needs_null_check()) { 1246 CodeEmitInfo* info = state_for(x); 1247 __ null_check(clazz.result(), info); 1248 } 1249 1250 address pd_instanceof_fn = isInstance_entry(); 1251 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1252 pd_instanceof_fn, 1253 x->type(), 1254 nullptr); // null CodeEmitInfo results in a leaf call 1255 __ move(call_result, result); 1256 } 1257 1258 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1259 __ load_klass(obj, klass, null_check_info); 1260 } 1261 1262 // Example: object.getClass () 1263 void LIRGenerator::do_getClass(Intrinsic* x) { 1264 assert(x->number_of_arguments() == 1, "wrong type"); 1265 1266 LIRItem rcvr(x->argument_at(0), this); 1267 rcvr.load_item(); 1268 LIR_Opr temp = new_register(T_ADDRESS); 1269 LIR_Opr result = rlock_result(x); 1270 1271 // need to perform the null check on the rcvr 1272 CodeEmitInfo* info = nullptr; 1273 if (x->needs_null_check()) { 1274 info = state_for(x); 1275 } 1276 1277 LIR_Opr klass = new_register(T_METADATA); 1278 load_klass(rcvr.result(), klass, info); 1279 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1280 // mirror = ((OopHandle)mirror)->resolve(); 1281 access_load(IN_NATIVE, T_OBJECT, 1282 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1283 } 1284 1285 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1286 assert(x->number_of_arguments() == 3, "wrong type"); 1287 LIR_Opr result_reg = rlock_result(x); 1288 1289 LIRItem value(x->argument_at(2), this); 1290 value.load_item(); 1291 1292 LIR_Opr klass = new_register(T_METADATA); 1293 load_klass(value.result(), klass, nullptr); 1294 LIR_Opr layout = new_register(T_INT); 1295 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1296 1297 LabelObj* L_done = new LabelObj(); 1298 LabelObj* L_array = new LabelObj(); 1299 1300 __ cmp(lir_cond_lessEqual, layout, 0); 1301 __ branch(lir_cond_lessEqual, L_array->label()); 1302 1303 // Instance case: the layout helper gives us instance size almost directly, 1304 // but we need to mask out the _lh_instance_slow_path_bit. 1305 1306 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1307 1308 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT); 1309 __ logical_and(layout, mask, layout); 1310 __ convert(Bytecodes::_i2l, layout, result_reg); 1311 1312 __ branch(lir_cond_always, L_done->label()); 1313 1314 // Array case: size is round(header + element_size*arraylength). 1315 // Since arraylength is different for every array instance, we have to 1316 // compute the whole thing at runtime. 1317 1318 __ branch_destination(L_array->label()); 1319 1320 int round_mask = MinObjAlignmentInBytes - 1; 1321 1322 // Figure out header sizes first. 1323 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT); 1324 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT); 1325 1326 LIR_Opr header_size = new_register(T_INT); 1327 __ move(layout, header_size); 1328 LIR_Opr tmp = new_register(T_INT); 1329 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1330 __ logical_and(header_size, hsm, header_size); 1331 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1332 1333 // Figure out the array length in bytes 1334 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1335 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT); 1336 __ logical_and(layout, l2esm, layout); 1337 1338 LIR_Opr length_int = new_register(T_INT); 1339 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1340 1341 #ifdef _LP64 1342 LIR_Opr length = new_register(T_LONG); 1343 __ convert(Bytecodes::_i2l, length_int, length); 1344 #endif 1345 1346 // Shift-left awkwardness. Normally it is just: 1347 // __ shift_left(length, layout, length); 1348 // But C1 cannot perform shift_left with non-constant count, so we end up 1349 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1350 // longs, so we have to act on ints. 1351 LabelObj* L_shift_loop = new LabelObj(); 1352 LabelObj* L_shift_exit = new LabelObj(); 1353 1354 __ branch_destination(L_shift_loop->label()); 1355 __ cmp(lir_cond_equal, layout, 0); 1356 __ branch(lir_cond_equal, L_shift_exit->label()); 1357 1358 #ifdef _LP64 1359 __ shift_left(length, 1, length); 1360 #else 1361 __ shift_left(length_int, 1, length_int); 1362 #endif 1363 1364 __ sub(layout, LIR_OprFact::intConst(1), layout); 1365 1366 __ branch(lir_cond_always, L_shift_loop->label()); 1367 __ branch_destination(L_shift_exit->label()); 1368 1369 // Mix all up, round, and push to the result. 1370 #ifdef _LP64 1371 LIR_Opr header_size_long = new_register(T_LONG); 1372 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1373 __ add(length, header_size_long, length); 1374 if (round_mask != 0) { 1375 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG); 1376 __ logical_and(length, round_mask_opr, length); 1377 } 1378 __ move(length, result_reg); 1379 #else 1380 __ add(length_int, header_size, length_int); 1381 if (round_mask != 0) { 1382 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT); 1383 __ logical_and(length_int, round_mask_opr, length_int); 1384 } 1385 __ convert(Bytecodes::_i2l, length_int, result_reg); 1386 #endif 1387 1388 __ branch_destination(L_done->label()); 1389 } 1390 1391 void LIRGenerator::do_scopedValueCache(Intrinsic* x) { 1392 do_JavaThreadField(x, JavaThread::scopedValueCache_offset()); 1393 } 1394 1395 // Example: Thread.currentCarrierThread() 1396 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) { 1397 do_JavaThreadField(x, JavaThread::threadObj_offset()); 1398 } 1399 1400 void LIRGenerator::do_vthread(Intrinsic* x) { 1401 do_JavaThreadField(x, JavaThread::vthread_offset()); 1402 } 1403 1404 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) { 1405 assert(x->number_of_arguments() == 0, "wrong type"); 1406 LIR_Opr temp = new_register(T_ADDRESS); 1407 LIR_Opr reg = rlock_result(x); 1408 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp); 1409 access_load(IN_NATIVE, T_OBJECT, 1410 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1411 } 1412 1413 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1414 assert(x->number_of_arguments() == 1, "wrong type"); 1415 LIRItem receiver(x->argument_at(0), this); 1416 1417 receiver.load_item(); 1418 BasicTypeList signature; 1419 signature.append(T_OBJECT); // receiver 1420 LIR_OprList* args = new LIR_OprList(); 1421 args->append(receiver.result()); 1422 CodeEmitInfo* info = state_for(x, x->state()); 1423 call_runtime(&signature, args, 1424 CAST_FROM_FN_PTR(address, Runtime1::entry_for(StubId::c1_register_finalizer_id)), 1425 voidType, info); 1426 1427 set_no_result(x); 1428 } 1429 1430 1431 //------------------------local access-------------------------------------- 1432 1433 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1434 if (x->operand()->is_illegal()) { 1435 Constant* c = x->as_Constant(); 1436 if (c != nullptr) { 1437 x->set_operand(LIR_OprFact::value_type(c->type())); 1438 } else { 1439 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local"); 1440 // allocate a virtual register for this local or phi 1441 x->set_operand(rlock(x)); 1442 #ifdef ASSERT 1443 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr); 1444 #endif 1445 } 1446 } 1447 return x->operand(); 1448 } 1449 1450 #ifdef ASSERT 1451 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1452 if (reg_num < _instruction_for_operand.length()) { 1453 return _instruction_for_operand.at(reg_num); 1454 } 1455 return nullptr; 1456 } 1457 #endif 1458 1459 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1460 if (_vreg_flags.size_in_bits() == 0) { 1461 BitMap2D temp(100, num_vreg_flags); 1462 _vreg_flags = temp; 1463 } 1464 _vreg_flags.at_put_grow(vreg_num, f, true); 1465 } 1466 1467 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1468 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1469 return false; 1470 } 1471 return _vreg_flags.at(vreg_num, f); 1472 } 1473 1474 1475 // Block local constant handling. This code is useful for keeping 1476 // unpinned constants and constants which aren't exposed in the IR in 1477 // registers. Unpinned Constant instructions have their operands 1478 // cleared when the block is finished so that other blocks can't end 1479 // up referring to their registers. 1480 1481 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1482 assert(!x->is_pinned(), "only for unpinned constants"); 1483 _unpinned_constants.append(x); 1484 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1485 } 1486 1487 1488 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1489 BasicType t = c->type(); 1490 for (int i = 0; i < _constants.length() && !in_conditional_code(); i++) { 1491 LIR_Const* other = _constants.at(i); 1492 if (t == other->type()) { 1493 switch (t) { 1494 case T_INT: 1495 case T_FLOAT: 1496 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1497 break; 1498 case T_LONG: 1499 case T_DOUBLE: 1500 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1501 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1502 break; 1503 case T_OBJECT: 1504 if (c->as_jobject() != other->as_jobject()) continue; 1505 break; 1506 default: 1507 break; 1508 } 1509 return _reg_for_constants.at(i); 1510 } 1511 } 1512 1513 LIR_Opr result = new_register(t); 1514 __ move((LIR_Opr)c, result); 1515 if (!in_conditional_code()) { 1516 _constants.append(c); 1517 _reg_for_constants.append(result); 1518 } 1519 return result; 1520 } 1521 1522 void LIRGenerator::set_in_conditional_code(bool v) { 1523 assert(v != _in_conditional_code, "must change state"); 1524 _in_conditional_code = v; 1525 } 1526 1527 1528 //------------------------field access-------------------------------------- 1529 1530 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1531 assert(x->number_of_arguments() == 4, "wrong type"); 1532 LIRItem obj (x->argument_at(0), this); // object 1533 LIRItem offset(x->argument_at(1), this); // offset of field 1534 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1535 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1536 assert(obj.type()->tag() == objectTag, "invalid type"); 1537 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1538 assert(val.type()->tag() == type->tag(), "invalid type"); 1539 1540 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1541 obj, offset, cmp, val); 1542 set_result(x, result); 1543 } 1544 1545 // Returns a int/long value with the null marker bit set 1546 static LIR_Opr null_marker_mask(BasicType bt, ciField* field) { 1547 assert(field->null_marker_offset() != -1, "field does not have null marker"); 1548 int nm_offset = field->null_marker_offset() - field->offset_in_bytes(); 1549 jlong null_marker = 1ULL << (nm_offset << LogBitsPerByte); 1550 return (bt == T_LONG) ? LIR_OprFact::longConst(null_marker) : LIR_OprFact::intConst(null_marker); 1551 } 1552 1553 // Comment copied form templateTable_i486.cpp 1554 // ---------------------------------------------------------------------------- 1555 // Volatile variables demand their effects be made known to all CPU's in 1556 // order. Store buffers on most chips allow reads & writes to reorder; the 1557 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1558 // memory barrier (i.e., it's not sufficient that the interpreter does not 1559 // reorder volatile references, the hardware also must not reorder them). 1560 // 1561 // According to the new Java Memory Model (JMM): 1562 // (1) All volatiles are serialized wrt to each other. 1563 // ALSO reads & writes act as acquire & release, so: 1564 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1565 // the read float up to before the read. It's OK for non-volatile memory refs 1566 // that happen before the volatile read to float down below it. 1567 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1568 // that happen BEFORE the write float down to after the write. It's OK for 1569 // non-volatile memory refs that happen after the volatile write to float up 1570 // before it. 1571 // 1572 // We only put in barriers around volatile refs (they are expensive), not 1573 // _between_ memory refs (that would require us to track the flavor of the 1574 // previous memory refs). Requirements (2) and (3) require some barriers 1575 // before volatile stores and after volatile loads. These nearly cover 1576 // requirement (1) but miss the volatile-store-volatile-load case. This final 1577 // case is placed after volatile-stores although it could just as well go 1578 // before volatile-loads. 1579 1580 1581 void LIRGenerator::do_StoreField(StoreField* x) { 1582 ciField* field = x->field(); 1583 bool needs_patching = x->needs_patching(); 1584 bool is_volatile = field->is_volatile(); 1585 BasicType field_type = x->field_type(); 1586 1587 CodeEmitInfo* info = nullptr; 1588 if (needs_patching) { 1589 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1590 info = state_for(x, x->state_before()); 1591 } else if (x->needs_null_check()) { 1592 NullCheck* nc = x->explicit_null_check(); 1593 if (nc == nullptr) { 1594 info = state_for(x); 1595 } else { 1596 info = state_for(nc); 1597 } 1598 } 1599 1600 LIRItem object(x->obj(), this); 1601 LIRItem value(x->value(), this); 1602 1603 object.load_item(); 1604 1605 if (field->is_flat()) { 1606 value.load_item(); 1607 } else { 1608 if (is_volatile || needs_patching) { 1609 // load item if field is volatile (fewer special cases for volatiles) 1610 // load item if field not initialized 1611 // load item if field not constant 1612 // because of code patching we cannot inline constants 1613 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1614 value.load_byte_item(); 1615 } else { 1616 value.load_item(); 1617 } 1618 } else { 1619 value.load_for_store(field_type); 1620 } 1621 } 1622 1623 set_no_result(x); 1624 1625 #ifndef PRODUCT 1626 if (PrintNotLoaded && needs_patching) { 1627 tty->print_cr(" ###class not loaded at store_%s bci %d", 1628 x->is_static() ? "static" : "field", x->printable_bci()); 1629 } 1630 #endif 1631 1632 if (x->needs_null_check() && 1633 (needs_patching || 1634 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1635 // Emit an explicit null check because the offset is too large. 1636 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1637 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1638 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1639 } 1640 1641 DecoratorSet decorators = IN_HEAP; 1642 if (is_volatile) { 1643 decorators |= MO_SEQ_CST; 1644 } 1645 if (needs_patching) { 1646 decorators |= C1_NEEDS_PATCHING; 1647 } 1648 1649 if (field->is_flat()) { 1650 ciInlineKlass* vk = field->type()->as_inline_klass(); 1651 1652 #ifdef ASSERT 1653 bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1; 1654 bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic); 1655 assert(needs_atomic_access, "No atomic access required"); 1656 // ZGC does not support compressed oops, so only one oop can be in the payload which is written by a "normal" oop store. 1657 assert(!vk->contains_oops() || !UseZGC, "ZGC does not support embedded oops in flat fields"); 1658 #endif 1659 1660 // Zero the payload 1661 BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free()); 1662 LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT); 1663 LIR_Opr zero = (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0); 1664 __ move(zero, payload); 1665 1666 bool is_constant_null = value.is_constant() && value.value()->is_null_obj(); 1667 if (!is_constant_null) { 1668 LabelObj* L_isNull = new LabelObj(); 1669 bool needs_null_check = !value.is_constant() || value.value()->is_null_obj(); 1670 if (needs_null_check) { 1671 __ cmp(lir_cond_equal, value.result(), LIR_OprFact::oopConst(nullptr)); 1672 __ branch(lir_cond_equal, L_isNull->label()); 1673 } 1674 // Load payload (if not empty) and set null marker (if not null-free) 1675 if (!vk->is_empty()) { 1676 access_load_at(decorators, bt, value, LIR_OprFact::intConst(vk->payload_offset()), payload); 1677 } 1678 if (!field->is_null_free()) { 1679 __ logical_or(payload, null_marker_mask(bt, field), payload); 1680 } 1681 if (needs_null_check) { 1682 __ branch_destination(L_isNull->label()); 1683 } 1684 } 1685 access_store_at(decorators, bt, object, LIR_OprFact::intConst(x->offset()), payload, 1686 // Make sure to emit an implicit null check and pass the information 1687 // that this is a flat store that might require gc barriers for oop fields. 1688 info != nullptr ? new CodeEmitInfo(info) : nullptr, info, vk); 1689 return; 1690 } 1691 1692 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1693 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info); 1694 } 1695 1696 // FIXME -- I can't find any other way to pass an address to access_load_at(). 1697 class TempResolvedAddress: public Instruction { 1698 public: 1699 TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) { 1700 set_operand(addr); 1701 } 1702 virtual void input_values_do(ValueVisitor*) {} 1703 virtual void visit(InstructionVisitor* v) {} 1704 virtual const char* name() const { return "TempResolvedAddress"; } 1705 }; 1706 1707 LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) { 1708 ciType* array_type = array.value()->declared_type(); 1709 ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass(); 1710 assert(flat_array_klass->is_loaded(), "must be"); 1711 1712 int array_header_size = flat_array_klass->array_header_in_bytes(); 1713 int shift = flat_array_klass->log2_element_size(); 1714 1715 #ifndef _LP64 1716 LIR_Opr index_op = new_register(T_INT); 1717 // FIXME -- on 32-bit, the shift below can overflow, so we need to check that 1718 // the top (shift+1) bits of index_op must be zero, or 1719 // else throw ArrayIndexOutOfBoundsException 1720 if (index.result()->is_constant()) { 1721 jint const_index = index.result()->as_jint(); 1722 __ move(LIR_OprFact::intConst(const_index << shift), index_op); 1723 } else { 1724 __ shift_left(index_op, shift, index.result()); 1725 } 1726 #else 1727 LIR_Opr index_op = new_register(T_LONG); 1728 if (index.result()->is_constant()) { 1729 jint const_index = index.result()->as_jint(); 1730 __ move(LIR_OprFact::longConst(const_index << shift), index_op); 1731 } else { 1732 __ convert(Bytecodes::_i2l, index.result(), index_op); 1733 // Need to shift manually, as LIR_Address can scale only up to 3. 1734 __ shift_left(index_op, shift, index_op); 1735 } 1736 #endif 1737 1738 LIR_Opr elm_op = new_pointer_register(); 1739 LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS); 1740 __ leal(LIR_OprFact::address(elm_address), elm_op); 1741 return elm_op; 1742 } 1743 1744 void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, int sub_offset) { 1745 assert(field != nullptr, "Need a subelement type specified"); 1746 1747 // Find the starting address of the source (inside the array) 1748 LIR_Opr elm_op = get_and_load_element_address(array, index); 1749 1750 BasicType subelt_type = field->type()->basic_type(); 1751 TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op); 1752 LIRItem elm_item(elm_resolved_addr, this); 1753 1754 DecoratorSet decorators = IN_HEAP; 1755 access_load_at(decorators, subelt_type, 1756 elm_item, LIR_OprFact::intConst(sub_offset), result, 1757 nullptr, nullptr); 1758 } 1759 1760 void LIRGenerator::access_flat_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item, 1761 ciField* field, int sub_offset) { 1762 assert(sub_offset == 0 || field != nullptr, "Sanity check"); 1763 1764 // Find the starting address of the source (inside the array) 1765 LIR_Opr elm_op = get_and_load_element_address(array, index); 1766 1767 ciInlineKlass* elem_klass = nullptr; 1768 if (field != nullptr) { 1769 elem_klass = field->type()->as_inline_klass(); 1770 } else { 1771 elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass(); 1772 } 1773 for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) { 1774 ciField* inner_field = elem_klass->nonstatic_field_at(i); 1775 assert(!inner_field->is_flat(), "flat fields must have been expanded"); 1776 int obj_offset = inner_field->offset_in_bytes(); 1777 int elm_offset = obj_offset - elem_klass->payload_offset() + sub_offset; // object header is not stored in array. 1778 BasicType field_type = inner_field->type()->basic_type(); 1779 1780 // Types which are smaller than int are still passed in an int register. 1781 BasicType reg_type = field_type; 1782 switch (reg_type) { 1783 case T_BYTE: 1784 case T_BOOLEAN: 1785 case T_SHORT: 1786 case T_CHAR: 1787 reg_type = T_INT; 1788 break; 1789 default: 1790 break; 1791 } 1792 1793 LIR_Opr temp = new_register(reg_type); 1794 TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op); 1795 LIRItem elm_item(elm_resolved_addr, this); 1796 1797 DecoratorSet decorators = IN_HEAP; 1798 if (is_load) { 1799 access_load_at(decorators, field_type, 1800 elm_item, LIR_OprFact::intConst(elm_offset), temp, 1801 nullptr, nullptr); 1802 access_store_at(decorators, field_type, 1803 obj_item, LIR_OprFact::intConst(obj_offset), temp, 1804 nullptr, nullptr); 1805 } else { 1806 access_load_at(decorators, field_type, 1807 obj_item, LIR_OprFact::intConst(obj_offset), temp, 1808 nullptr, nullptr); 1809 access_store_at(decorators, field_type, 1810 elm_item, LIR_OprFact::intConst(elm_offset), temp, 1811 nullptr, nullptr); 1812 } 1813 } 1814 } 1815 1816 void LIRGenerator::check_flat_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) { 1817 LIR_Opr tmp = new_register(T_METADATA); 1818 __ check_flat_array(array, value, tmp, slow_path); 1819 } 1820 1821 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) { 1822 LabelObj* L_end = new LabelObj(); 1823 LIR_Opr tmp = new_register(T_METADATA); 1824 __ check_null_free_array(array.result(), tmp); 1825 __ branch(lir_cond_equal, L_end->label()); 1826 __ null_check(value.result(), info); 1827 __ branch_destination(L_end->label()); 1828 } 1829 1830 bool LIRGenerator::needs_flat_array_store_check(StoreIndexed* x) { 1831 if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) { 1832 ciType* type = x->value()->declared_type(); 1833 if (type != nullptr && type->is_klass()) { 1834 ciKlass* klass = type->as_klass(); 1835 if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->maybe_flat_in_array())) { 1836 // This is known to be a non-flat object. If the array is a flat array, 1837 // it will be caught by the code generated by array_store_check(). 1838 return false; 1839 } 1840 } 1841 // We're not 100% sure, so let's do the flat_array_store_check. 1842 return true; 1843 } 1844 return false; 1845 } 1846 1847 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) { 1848 return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array(); 1849 } 1850 1851 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1852 assert(x->is_pinned(),""); 1853 assert(x->elt_type() != T_ARRAY, "never used"); 1854 bool is_loaded_flat_array = x->array()->is_loaded_flat_array(); 1855 bool needs_range_check = x->compute_needs_range_check(); 1856 bool use_length = x->length() != nullptr; 1857 bool obj_store = is_reference_type(x->elt_type()); 1858 bool needs_store_check = obj_store && !(is_loaded_flat_array && x->is_exact_flat_array_store()) && 1859 (x->value()->as_Constant() == nullptr || 1860 !get_jobject_constant(x->value())->is_null_object()); 1861 1862 LIRItem array(x->array(), this); 1863 LIRItem index(x->index(), this); 1864 LIRItem value(x->value(), this); 1865 LIRItem length(this); 1866 1867 array.load_item(); 1868 index.load_nonconstant(); 1869 1870 if (use_length && needs_range_check) { 1871 length.set_instruction(x->length()); 1872 length.load_item(); 1873 } 1874 1875 if (needs_store_check || x->check_boolean() 1876 || is_loaded_flat_array || needs_flat_array_store_check(x) || needs_null_free_array_store_check(x)) { 1877 value.load_item(); 1878 } else { 1879 value.load_for_store(x->elt_type()); 1880 } 1881 1882 set_no_result(x); 1883 1884 // the CodeEmitInfo must be duplicated for each different 1885 // LIR-instruction because spilling can occur anywhere between two 1886 // instructions and so the debug information must be different 1887 CodeEmitInfo* range_check_info = state_for(x); 1888 CodeEmitInfo* null_check_info = nullptr; 1889 if (x->needs_null_check()) { 1890 null_check_info = new CodeEmitInfo(range_check_info); 1891 } 1892 1893 if (needs_range_check) { 1894 if (use_length) { 1895 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1896 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1897 } else { 1898 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1899 // range_check also does the null check 1900 null_check_info = nullptr; 1901 } 1902 } 1903 1904 if (x->should_profile()) { 1905 if (is_loaded_flat_array) { 1906 // No need to profile a store to a flat array of known type. This can happen if 1907 // the type only became known after optimizations (for example, after the PhiSimplifier). 1908 x->set_should_profile(false); 1909 } else { 1910 int bci = x->profiled_bci(); 1911 ciMethodData* md = x->profiled_method()->method_data(); 1912 assert(md != nullptr, "Sanity"); 1913 ciProfileData* data = md->bci_to_data(bci); 1914 assert(data != nullptr && data->is_ArrayStoreData(), "incorrect profiling entry"); 1915 ciArrayStoreData* store_data = (ciArrayStoreData*)data; 1916 profile_array_type(x, md, store_data); 1917 assert(store_data->is_ArrayStoreData(), "incorrect profiling entry"); 1918 if (x->array()->maybe_null_free_array()) { 1919 profile_null_free_array(array, md, store_data); 1920 } 1921 } 1922 } 1923 1924 if (GenerateArrayStoreCheck && needs_store_check) { 1925 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1926 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1927 } 1928 1929 if (is_loaded_flat_array) { 1930 // TODO 8350865 This is currently dead code 1931 if (!x->value()->is_null_free()) { 1932 __ null_check(value.result(), new CodeEmitInfo(range_check_info)); 1933 } 1934 // If array element is an empty inline type, no need to copy anything 1935 if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) { 1936 access_flat_array(false, array, index, value); 1937 } 1938 } else { 1939 StoreFlattenedArrayStub* slow_path = nullptr; 1940 1941 if (needs_flat_array_store_check(x)) { 1942 // Check if we indeed have a flat array 1943 index.load_item(); 1944 slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before())); 1945 check_flat_array(array.result(), value.result(), slow_path); 1946 set_in_conditional_code(true); 1947 } else if (needs_null_free_array_store_check(x)) { 1948 CodeEmitInfo* info = new CodeEmitInfo(range_check_info); 1949 check_null_free_array(array, value, info); 1950 } 1951 1952 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1953 if (x->check_boolean()) { 1954 decorators |= C1_MASK_BOOLEAN; 1955 } 1956 1957 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), nullptr, null_check_info); 1958 if (slow_path != nullptr) { 1959 __ branch_destination(slow_path->continuation()); 1960 set_in_conditional_code(false); 1961 } 1962 } 1963 } 1964 1965 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1966 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1967 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1968 decorators |= ACCESS_READ; 1969 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1970 if (access.is_raw()) { 1971 _barrier_set->BarrierSetC1::load_at(access, result); 1972 } else { 1973 _barrier_set->load_at(access, result); 1974 } 1975 } 1976 1977 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1978 LIR_Opr addr, LIR_Opr result) { 1979 decorators |= ACCESS_READ; 1980 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1981 access.set_resolved_addr(addr); 1982 if (access.is_raw()) { 1983 _barrier_set->BarrierSetC1::load(access, result); 1984 } else { 1985 _barrier_set->load(access, result); 1986 } 1987 } 1988 1989 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1990 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1991 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info, 1992 ciInlineKlass* vk) { 1993 decorators |= ACCESS_WRITE; 1994 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info, vk); 1995 if (access.is_raw()) { 1996 _barrier_set->BarrierSetC1::store_at(access, value); 1997 } else { 1998 _barrier_set->store_at(access, value); 1999 } 2000 } 2001 2002 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 2003 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 2004 decorators |= ACCESS_READ; 2005 decorators |= ACCESS_WRITE; 2006 // Atomic operations are SEQ_CST by default 2007 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 2008 LIRAccess access(this, decorators, base, offset, type); 2009 if (access.is_raw()) { 2010 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 2011 } else { 2012 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 2013 } 2014 } 2015 2016 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 2017 LIRItem& base, LIRItem& offset, LIRItem& value) { 2018 decorators |= ACCESS_READ; 2019 decorators |= ACCESS_WRITE; 2020 // Atomic operations are SEQ_CST by default 2021 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 2022 LIRAccess access(this, decorators, base, offset, type); 2023 if (access.is_raw()) { 2024 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 2025 } else { 2026 return _barrier_set->atomic_xchg_at(access, value); 2027 } 2028 } 2029 2030 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 2031 LIRItem& base, LIRItem& offset, LIRItem& value) { 2032 decorators |= ACCESS_READ; 2033 decorators |= ACCESS_WRITE; 2034 // Atomic operations are SEQ_CST by default 2035 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 2036 LIRAccess access(this, decorators, base, offset, type); 2037 if (access.is_raw()) { 2038 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 2039 } else { 2040 return _barrier_set->atomic_add_at(access, value); 2041 } 2042 } 2043 2044 void LIRGenerator::do_LoadField(LoadField* x) { 2045 ciField* field = x->field(); 2046 bool needs_patching = x->needs_patching(); 2047 bool is_volatile = field->is_volatile(); 2048 BasicType field_type = x->field_type(); 2049 2050 CodeEmitInfo* info = nullptr; 2051 if (needs_patching) { 2052 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 2053 info = state_for(x, x->state_before()); 2054 } else if (x->needs_null_check()) { 2055 NullCheck* nc = x->explicit_null_check(); 2056 if (nc == nullptr) { 2057 info = state_for(x); 2058 } else { 2059 info = state_for(nc); 2060 } 2061 } 2062 2063 LIRItem object(x->obj(), this); 2064 2065 object.load_item(); 2066 2067 #ifndef PRODUCT 2068 if (PrintNotLoaded && needs_patching) { 2069 tty->print_cr(" ###class not loaded at load_%s bci %d", 2070 x->is_static() ? "static" : "field", x->printable_bci()); 2071 } 2072 #endif 2073 2074 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 2075 if (x->needs_null_check() && 2076 (needs_patching || 2077 MacroAssembler::needs_explicit_null_check(x->offset()) || 2078 stress_deopt)) { 2079 LIR_Opr obj = object.result(); 2080 if (stress_deopt) { 2081 obj = new_register(T_OBJECT); 2082 __ move(LIR_OprFact::oopConst(nullptr), obj); 2083 } 2084 // Emit an explicit null check because the offset is too large. 2085 // If the class is not loaded and the object is null, we need to deoptimize to throw a 2086 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 2087 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 2088 } 2089 2090 DecoratorSet decorators = IN_HEAP; 2091 if (is_volatile) { 2092 decorators |= MO_SEQ_CST; 2093 } 2094 if (needs_patching) { 2095 decorators |= C1_NEEDS_PATCHING; 2096 } 2097 2098 if (field->is_flat()) { 2099 ciInlineKlass* vk = field->type()->as_inline_klass(); 2100 #ifdef ASSERT 2101 bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1; 2102 bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic); 2103 assert(needs_atomic_access, "No atomic access required"); 2104 assert(x->state_before() != nullptr, "Needs state before"); 2105 #endif 2106 2107 // Allocate buffer (we can't easily do this conditionally on the null check below 2108 // because branches added in the LIR are opaque to the register allocator). 2109 NewInstance* buffer = new NewInstance(vk, x->state_before(), false, true); 2110 do_NewInstance(buffer); 2111 LIRItem dest(buffer, this); 2112 2113 // Copy the payload to the buffer 2114 BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free()); 2115 LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT); 2116 access_load_at(decorators, bt, object, LIR_OprFact::intConst(field->offset_in_bytes()), payload, 2117 // Make sure to emit an implicit null check 2118 info ? new CodeEmitInfo(info) : nullptr, info); 2119 access_store_at(decorators, bt, dest, LIR_OprFact::intConst(vk->payload_offset()), payload); 2120 2121 if (field->is_null_free()) { 2122 set_result(x, buffer->operand()); 2123 } else { 2124 // Check the null marker and set result to null if it's not set 2125 __ logical_and(payload, null_marker_mask(bt, field), payload); 2126 __ cmp(lir_cond_equal, payload, (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0)); 2127 __ cmove(lir_cond_equal, LIR_OprFact::oopConst(nullptr), buffer->operand(), rlock_result(x), T_OBJECT); 2128 } 2129 2130 // Ensure the copy is visible before any subsequent store that publishes the buffer. 2131 __ membar_storestore(); 2132 return; 2133 } 2134 2135 LIR_Opr result = rlock_result(x, field_type); 2136 access_load_at(decorators, field_type, 2137 object, LIR_OprFact::intConst(x->offset()), result, 2138 info ? new CodeEmitInfo(info) : nullptr, info); 2139 } 2140 2141 // int/long jdk.internal.util.Preconditions.checkIndex 2142 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) { 2143 assert(x->number_of_arguments() == 3, "wrong type"); 2144 LIRItem index(x->argument_at(0), this); 2145 LIRItem length(x->argument_at(1), this); 2146 LIRItem oobef(x->argument_at(2), this); 2147 2148 index.load_item(); 2149 length.load_item(); 2150 oobef.load_item(); 2151 2152 LIR_Opr result = rlock_result(x); 2153 // x->state() is created from copy_state_for_exception, it does not contains arguments 2154 // we should prepare them before entering into interpreter mode due to deoptimization. 2155 ValueStack* state = x->state(); 2156 for (int i = 0; i < x->number_of_arguments(); i++) { 2157 Value arg = x->argument_at(i); 2158 state->push(arg->type(), arg); 2159 } 2160 CodeEmitInfo* info = state_for(x, state); 2161 2162 LIR_Opr len = length.result(); 2163 LIR_Opr zero; 2164 if (type == T_INT) { 2165 zero = LIR_OprFact::intConst(0); 2166 if (length.result()->is_constant()){ 2167 len = LIR_OprFact::intConst(length.result()->as_jint()); 2168 } 2169 } else { 2170 assert(type == T_LONG, "sanity check"); 2171 zero = LIR_OprFact::longConst(0); 2172 if (length.result()->is_constant()){ 2173 len = LIR_OprFact::longConst(length.result()->as_jlong()); 2174 } 2175 } 2176 // C1 can not handle the case that comparing index with constant value while condition 2177 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op. 2178 LIR_Opr zero_reg = new_register(type); 2179 __ move(zero, zero_reg); 2180 #if defined(X86) && !defined(_LP64) 2181 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 2182 LIR_Opr index_copy = new_register(index.type()); 2183 // index >= 0 2184 __ move(index.result(), index_copy); 2185 __ cmp(lir_cond_less, index_copy, zero_reg); 2186 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2187 Deoptimization::Action_make_not_entrant)); 2188 // index < length 2189 __ move(index.result(), index_copy); 2190 __ cmp(lir_cond_greaterEqual, index_copy, len); 2191 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2192 Deoptimization::Action_make_not_entrant)); 2193 #else 2194 // index >= 0 2195 __ cmp(lir_cond_less, index.result(), zero_reg); 2196 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2197 Deoptimization::Action_make_not_entrant)); 2198 // index < length 2199 __ cmp(lir_cond_greaterEqual, index.result(), len); 2200 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2201 Deoptimization::Action_make_not_entrant)); 2202 #endif 2203 __ move(index.result(), result); 2204 } 2205 2206 //------------------------array access-------------------------------------- 2207 2208 2209 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 2210 LIRItem array(x->array(), this); 2211 array.load_item(); 2212 LIR_Opr reg = rlock_result(x); 2213 2214 CodeEmitInfo* info = nullptr; 2215 if (x->needs_null_check()) { 2216 NullCheck* nc = x->explicit_null_check(); 2217 if (nc == nullptr) { 2218 info = state_for(x); 2219 } else { 2220 info = state_for(nc); 2221 } 2222 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 2223 LIR_Opr obj = new_register(T_OBJECT); 2224 __ move(LIR_OprFact::oopConst(nullptr), obj); 2225 __ null_check(obj, new CodeEmitInfo(info)); 2226 } 2227 } 2228 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 2229 } 2230 2231 2232 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 2233 bool use_length = x->length() != nullptr; 2234 LIRItem array(x->array(), this); 2235 LIRItem index(x->index(), this); 2236 LIRItem length(this); 2237 bool needs_range_check = x->compute_needs_range_check(); 2238 2239 if (use_length && needs_range_check) { 2240 length.set_instruction(x->length()); 2241 length.load_item(); 2242 } 2243 2244 array.load_item(); 2245 if (index.is_constant() && can_inline_as_constant(x->index())) { 2246 // let it be a constant 2247 index.dont_load_item(); 2248 } else { 2249 index.load_item(); 2250 } 2251 2252 CodeEmitInfo* range_check_info = state_for(x); 2253 CodeEmitInfo* null_check_info = nullptr; 2254 if (x->needs_null_check()) { 2255 NullCheck* nc = x->explicit_null_check(); 2256 if (nc != nullptr) { 2257 null_check_info = state_for(nc); 2258 } else { 2259 null_check_info = range_check_info; 2260 } 2261 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 2262 LIR_Opr obj = new_register(T_OBJECT); 2263 __ move(LIR_OprFact::oopConst(nullptr), obj); 2264 __ null_check(obj, new CodeEmitInfo(null_check_info)); 2265 } 2266 } 2267 2268 if (needs_range_check) { 2269 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 2270 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 2271 } else if (use_length) { 2272 // TODO: use a (modified) version of array_range_check that does not require a 2273 // constant length to be loaded to a register 2274 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 2275 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 2276 } else { 2277 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 2278 // The range check performs the null check, so clear it out for the load 2279 null_check_info = nullptr; 2280 } 2281 } 2282 2283 ciMethodData* md = nullptr; 2284 ciArrayLoadData* load_data = nullptr; 2285 if (x->should_profile()) { 2286 if (x->array()->is_loaded_flat_array()) { 2287 // No need to profile a load from a flat array of known type. This can happen if 2288 // the type only became known after optimizations (for example, after the PhiSimplifier). 2289 x->set_should_profile(false); 2290 } else { 2291 int bci = x->profiled_bci(); 2292 md = x->profiled_method()->method_data(); 2293 assert(md != nullptr, "Sanity"); 2294 ciProfileData* data = md->bci_to_data(bci); 2295 assert(data != nullptr && data->is_ArrayLoadData(), "incorrect profiling entry"); 2296 load_data = (ciArrayLoadData*)data; 2297 profile_array_type(x, md, load_data); 2298 } 2299 } 2300 2301 Value element; 2302 if (x->vt() != nullptr) { 2303 assert(x->array()->is_loaded_flat_array(), "must be"); 2304 // Find the destination address (of the NewInlineTypeInstance). 2305 LIRItem obj_item(x->vt(), this); 2306 2307 access_flat_array(true, array, index, obj_item, 2308 x->delayed() == nullptr ? 0 : x->delayed()->field(), 2309 x->delayed() == nullptr ? 0 : x->delayed()->offset()); 2310 set_no_result(x); 2311 } else if (x->delayed() != nullptr) { 2312 assert(x->array()->is_loaded_flat_array(), "must be"); 2313 LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type()); 2314 access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset()); 2315 } else { 2316 LIR_Opr result = rlock_result(x, x->elt_type()); 2317 LoadFlattenedArrayStub* slow_path = nullptr; 2318 2319 if (x->should_profile() && x->array()->maybe_null_free_array()) { 2320 profile_null_free_array(array, md, load_data); 2321 } 2322 2323 if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) { 2324 assert(x->delayed() == nullptr, "Delayed LoadIndexed only apply to loaded_flat_arrays"); 2325 index.load_item(); 2326 // if we are loading from a flat array, load it using a runtime call 2327 slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before())); 2328 check_flat_array(array.result(), LIR_OprFact::illegalOpr, slow_path); 2329 set_in_conditional_code(true); 2330 } 2331 2332 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 2333 access_load_at(decorators, x->elt_type(), 2334 array, index.result(), result, 2335 nullptr, null_check_info); 2336 2337 if (slow_path != nullptr) { 2338 __ branch_destination(slow_path->continuation()); 2339 set_in_conditional_code(false); 2340 } 2341 2342 element = x; 2343 } 2344 2345 if (x->should_profile()) { 2346 profile_element_type(element, md, load_data); 2347 } 2348 } 2349 2350 2351 void LIRGenerator::do_NullCheck(NullCheck* x) { 2352 if (x->can_trap()) { 2353 LIRItem value(x->obj(), this); 2354 value.load_item(); 2355 CodeEmitInfo* info = state_for(x); 2356 __ null_check(value.result(), info); 2357 } 2358 } 2359 2360 2361 void LIRGenerator::do_TypeCast(TypeCast* x) { 2362 LIRItem value(x->obj(), this); 2363 value.load_item(); 2364 // the result is the same as from the node we are casting 2365 set_result(x, value.result()); 2366 } 2367 2368 2369 void LIRGenerator::do_Throw(Throw* x) { 2370 LIRItem exception(x->exception(), this); 2371 exception.load_item(); 2372 set_no_result(x); 2373 LIR_Opr exception_opr = exception.result(); 2374 CodeEmitInfo* info = state_for(x, x->state()); 2375 2376 #ifndef PRODUCT 2377 if (PrintC1Statistics) { 2378 increment_counter(Runtime1::throw_count_address(), T_INT); 2379 } 2380 #endif 2381 2382 // check if the instruction has an xhandler in any of the nested scopes 2383 bool unwind = false; 2384 if (info->exception_handlers()->length() == 0) { 2385 // this throw is not inside an xhandler 2386 unwind = true; 2387 } else { 2388 // get some idea of the throw type 2389 bool type_is_exact = true; 2390 ciType* throw_type = x->exception()->exact_type(); 2391 if (throw_type == nullptr) { 2392 type_is_exact = false; 2393 throw_type = x->exception()->declared_type(); 2394 } 2395 if (throw_type != nullptr && throw_type->is_instance_klass()) { 2396 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2397 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2398 } 2399 } 2400 2401 // do null check before moving exception oop into fixed register 2402 // to avoid a fixed interval with an oop during the null check. 2403 // Use a copy of the CodeEmitInfo because debug information is 2404 // different for null_check and throw. 2405 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) { 2406 // if the exception object wasn't created using new then it might be null. 2407 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2408 } 2409 2410 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2411 // we need to go through the exception lookup path to get JVMTI 2412 // notification done 2413 unwind = false; 2414 } 2415 2416 // move exception oop into fixed register 2417 __ move(exception_opr, exceptionOopOpr()); 2418 2419 if (unwind) { 2420 __ unwind_exception(exceptionOopOpr()); 2421 } else { 2422 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2423 } 2424 } 2425 2426 2427 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) { 2428 BasicType type = x->basic_type(); 2429 LIRItem src(x->object(), this); 2430 LIRItem off(x->offset(), this); 2431 2432 off.load_item(); 2433 src.load_item(); 2434 2435 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2436 2437 if (x->is_volatile()) { 2438 decorators |= MO_SEQ_CST; 2439 } 2440 if (type == T_BOOLEAN) { 2441 decorators |= C1_MASK_BOOLEAN; 2442 } 2443 if (is_reference_type(type)) { 2444 decorators |= ON_UNKNOWN_OOP_REF; 2445 } 2446 2447 LIR_Opr result = rlock_result(x, type); 2448 if (!x->is_raw()) { 2449 access_load_at(decorators, type, src, off.result(), result); 2450 } else { 2451 // Currently it is only used in GraphBuilder::setup_osr_entry_block. 2452 // It reads the value from [src + offset] directly. 2453 #ifdef _LP64 2454 LIR_Opr offset = new_register(T_LONG); 2455 __ convert(Bytecodes::_i2l, off.result(), offset); 2456 #else 2457 LIR_Opr offset = off.result(); 2458 #endif 2459 LIR_Address* addr = new LIR_Address(src.result(), offset, type); 2460 if (is_reference_type(type)) { 2461 __ move_wide(addr, result); 2462 } else { 2463 __ move(addr, result); 2464 } 2465 } 2466 } 2467 2468 2469 void LIRGenerator::do_UnsafePut(UnsafePut* x) { 2470 BasicType type = x->basic_type(); 2471 LIRItem src(x->object(), this); 2472 LIRItem off(x->offset(), this); 2473 LIRItem data(x->value(), this); 2474 2475 src.load_item(); 2476 if (type == T_BOOLEAN || type == T_BYTE) { 2477 data.load_byte_item(); 2478 } else { 2479 data.load_item(); 2480 } 2481 off.load_item(); 2482 2483 set_no_result(x); 2484 2485 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2486 if (is_reference_type(type)) { 2487 decorators |= ON_UNKNOWN_OOP_REF; 2488 } 2489 if (x->is_volatile()) { 2490 decorators |= MO_SEQ_CST; 2491 } 2492 access_store_at(decorators, type, src, off.result(), data.result()); 2493 } 2494 2495 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) { 2496 BasicType type = x->basic_type(); 2497 LIRItem src(x->object(), this); 2498 LIRItem off(x->offset(), this); 2499 LIRItem value(x->value(), this); 2500 2501 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2502 2503 if (is_reference_type(type)) { 2504 decorators |= ON_UNKNOWN_OOP_REF; 2505 } 2506 2507 LIR_Opr result; 2508 if (x->is_add()) { 2509 result = access_atomic_add_at(decorators, type, src, off, value); 2510 } else { 2511 result = access_atomic_xchg_at(decorators, type, src, off, value); 2512 } 2513 set_result(x, result); 2514 } 2515 2516 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2517 int lng = x->length(); 2518 2519 for (int i = 0; i < lng; i++) { 2520 C1SwitchRange* one_range = x->at(i); 2521 int low_key = one_range->low_key(); 2522 int high_key = one_range->high_key(); 2523 BlockBegin* dest = one_range->sux(); 2524 if (low_key == high_key) { 2525 __ cmp(lir_cond_equal, value, low_key); 2526 __ branch(lir_cond_equal, dest); 2527 } else if (high_key - low_key == 1) { 2528 __ cmp(lir_cond_equal, value, low_key); 2529 __ branch(lir_cond_equal, dest); 2530 __ cmp(lir_cond_equal, value, high_key); 2531 __ branch(lir_cond_equal, dest); 2532 } else { 2533 LabelObj* L = new LabelObj(); 2534 __ cmp(lir_cond_less, value, low_key); 2535 __ branch(lir_cond_less, L->label()); 2536 __ cmp(lir_cond_lessEqual, value, high_key); 2537 __ branch(lir_cond_lessEqual, dest); 2538 __ branch_destination(L->label()); 2539 } 2540 } 2541 __ jump(default_sux); 2542 } 2543 2544 2545 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2546 SwitchRangeList* res = new SwitchRangeList(); 2547 int len = x->length(); 2548 if (len > 0) { 2549 BlockBegin* sux = x->sux_at(0); 2550 int low = x->lo_key(); 2551 BlockBegin* default_sux = x->default_sux(); 2552 C1SwitchRange* range = new C1SwitchRange(low, sux); 2553 for (int i = 0; i < len; i++) { 2554 int key = low + i; 2555 BlockBegin* new_sux = x->sux_at(i); 2556 if (sux == new_sux) { 2557 // still in same range 2558 range->set_high_key(key); 2559 } else { 2560 // skip tests which explicitly dispatch to the default 2561 if (sux != default_sux) { 2562 res->append(range); 2563 } 2564 range = new C1SwitchRange(key, new_sux); 2565 } 2566 sux = new_sux; 2567 } 2568 if (res->length() == 0 || res->last() != range) res->append(range); 2569 } 2570 return res; 2571 } 2572 2573 2574 // we expect the keys to be sorted by increasing value 2575 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2576 SwitchRangeList* res = new SwitchRangeList(); 2577 int len = x->length(); 2578 if (len > 0) { 2579 BlockBegin* default_sux = x->default_sux(); 2580 int key = x->key_at(0); 2581 BlockBegin* sux = x->sux_at(0); 2582 C1SwitchRange* range = new C1SwitchRange(key, sux); 2583 for (int i = 1; i < len; i++) { 2584 int new_key = x->key_at(i); 2585 BlockBegin* new_sux = x->sux_at(i); 2586 if (key+1 == new_key && sux == new_sux) { 2587 // still in same range 2588 range->set_high_key(new_key); 2589 } else { 2590 // skip tests which explicitly dispatch to the default 2591 if (range->sux() != default_sux) { 2592 res->append(range); 2593 } 2594 range = new C1SwitchRange(new_key, new_sux); 2595 } 2596 key = new_key; 2597 sux = new_sux; 2598 } 2599 if (res->length() == 0 || res->last() != range) res->append(range); 2600 } 2601 return res; 2602 } 2603 2604 2605 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2606 LIRItem tag(x->tag(), this); 2607 tag.load_item(); 2608 set_no_result(x); 2609 2610 if (x->is_safepoint()) { 2611 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2612 } 2613 2614 // move values into phi locations 2615 move_to_phi(x->state()); 2616 2617 int lo_key = x->lo_key(); 2618 int len = x->length(); 2619 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2620 LIR_Opr value = tag.result(); 2621 2622 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2623 ciMethod* method = x->state()->scope()->method(); 2624 ciMethodData* md = method->method_data_or_null(); 2625 assert(md != nullptr, "Sanity"); 2626 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2627 assert(data != nullptr, "must have profiling data"); 2628 assert(data->is_MultiBranchData(), "bad profile data?"); 2629 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2630 LIR_Opr md_reg = new_register(T_METADATA); 2631 __ metadata2reg(md->constant_encoding(), md_reg); 2632 LIR_Opr data_offset_reg = new_pointer_register(); 2633 LIR_Opr tmp_reg = new_pointer_register(); 2634 2635 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2636 for (int i = 0; i < len; i++) { 2637 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2638 __ cmp(lir_cond_equal, value, i + lo_key); 2639 __ move(data_offset_reg, tmp_reg); 2640 __ cmove(lir_cond_equal, 2641 LIR_OprFact::intptrConst(count_offset), 2642 tmp_reg, 2643 data_offset_reg, T_INT); 2644 } 2645 2646 LIR_Opr data_reg = new_pointer_register(); 2647 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2648 __ move(data_addr, data_reg); 2649 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2650 __ move(data_reg, data_addr); 2651 } 2652 2653 if (UseTableRanges) { 2654 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2655 } else { 2656 for (int i = 0; i < len; i++) { 2657 __ cmp(lir_cond_equal, value, i + lo_key); 2658 __ branch(lir_cond_equal, x->sux_at(i)); 2659 } 2660 __ jump(x->default_sux()); 2661 } 2662 } 2663 2664 2665 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2666 LIRItem tag(x->tag(), this); 2667 tag.load_item(); 2668 set_no_result(x); 2669 2670 if (x->is_safepoint()) { 2671 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2672 } 2673 2674 // move values into phi locations 2675 move_to_phi(x->state()); 2676 2677 LIR_Opr value = tag.result(); 2678 int len = x->length(); 2679 2680 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2681 ciMethod* method = x->state()->scope()->method(); 2682 ciMethodData* md = method->method_data_or_null(); 2683 assert(md != nullptr, "Sanity"); 2684 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2685 assert(data != nullptr, "must have profiling data"); 2686 assert(data->is_MultiBranchData(), "bad profile data?"); 2687 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2688 LIR_Opr md_reg = new_register(T_METADATA); 2689 __ metadata2reg(md->constant_encoding(), md_reg); 2690 LIR_Opr data_offset_reg = new_pointer_register(); 2691 LIR_Opr tmp_reg = new_pointer_register(); 2692 2693 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2694 for (int i = 0; i < len; i++) { 2695 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2696 __ cmp(lir_cond_equal, value, x->key_at(i)); 2697 __ move(data_offset_reg, tmp_reg); 2698 __ cmove(lir_cond_equal, 2699 LIR_OprFact::intptrConst(count_offset), 2700 tmp_reg, 2701 data_offset_reg, T_INT); 2702 } 2703 2704 LIR_Opr data_reg = new_pointer_register(); 2705 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2706 __ move(data_addr, data_reg); 2707 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2708 __ move(data_reg, data_addr); 2709 } 2710 2711 if (UseTableRanges) { 2712 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2713 } else { 2714 int len = x->length(); 2715 for (int i = 0; i < len; i++) { 2716 __ cmp(lir_cond_equal, value, x->key_at(i)); 2717 __ branch(lir_cond_equal, x->sux_at(i)); 2718 } 2719 __ jump(x->default_sux()); 2720 } 2721 } 2722 2723 2724 void LIRGenerator::do_Goto(Goto* x) { 2725 set_no_result(x); 2726 2727 if (block()->next()->as_OsrEntry()) { 2728 // need to free up storage used for OSR entry point 2729 LIR_Opr osrBuffer = block()->next()->operand(); 2730 BasicTypeList signature; 2731 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2732 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2733 __ move(osrBuffer, cc->args()->at(0)); 2734 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2735 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2736 } 2737 2738 if (x->is_safepoint()) { 2739 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2740 2741 // increment backedge counter if needed 2742 CodeEmitInfo* info = state_for(x, state); 2743 increment_backedge_counter(info, x->profiled_bci()); 2744 CodeEmitInfo* safepoint_info = state_for(x, state); 2745 __ safepoint(safepoint_poll_register(), safepoint_info); 2746 } 2747 2748 // Gotos can be folded Ifs, handle this case. 2749 if (x->should_profile()) { 2750 ciMethod* method = x->profiled_method(); 2751 assert(method != nullptr, "method should be set if branch is profiled"); 2752 ciMethodData* md = method->method_data_or_null(); 2753 assert(md != nullptr, "Sanity"); 2754 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2755 assert(data != nullptr, "must have profiling data"); 2756 int offset; 2757 if (x->direction() == Goto::taken) { 2758 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2759 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2760 } else if (x->direction() == Goto::not_taken) { 2761 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2762 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2763 } else { 2764 assert(data->is_JumpData(), "need JumpData for branches"); 2765 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2766 } 2767 LIR_Opr md_reg = new_register(T_METADATA); 2768 __ metadata2reg(md->constant_encoding(), md_reg); 2769 2770 increment_counter(new LIR_Address(md_reg, offset, 2771 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2772 } 2773 2774 // emit phi-instruction move after safepoint since this simplifies 2775 // describing the state as the safepoint. 2776 move_to_phi(x->state()); 2777 2778 __ jump(x->default_sux()); 2779 } 2780 2781 /** 2782 * Emit profiling code if needed for arguments, parameters, return value types 2783 * 2784 * @param md MDO the code will update at runtime 2785 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2786 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2787 * @param profiled_k current profile 2788 * @param obj IR node for the object to be profiled 2789 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2790 * Set once we find an update to make and use for next ones. 2791 * @param not_null true if we know obj cannot be null 2792 * @param signature_at_call_k signature at call for obj 2793 * @param callee_signature_k signature of callee for obj 2794 * at call and callee signatures differ at method handle call 2795 * @return the only klass we know will ever be seen at this profile point 2796 */ 2797 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2798 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2799 ciKlass* callee_signature_k) { 2800 ciKlass* result = nullptr; 2801 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2802 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2803 // known not to be null or null bit already set and already set to 2804 // unknown: nothing we can do to improve profiling 2805 if (!do_null && !do_update) { 2806 return result; 2807 } 2808 2809 ciKlass* exact_klass = nullptr; 2810 Compilation* comp = Compilation::current(); 2811 if (do_update) { 2812 // try to find exact type, using CHA if possible, so that loading 2813 // the klass from the object can be avoided 2814 ciType* type = obj->exact_type(); 2815 if (type == nullptr) { 2816 type = obj->declared_type(); 2817 type = comp->cha_exact_type(type); 2818 } 2819 assert(type == nullptr || type->is_klass(), "type should be class"); 2820 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr; 2821 2822 // TODO 8366668 2823 if (exact_klass != nullptr && exact_klass->is_obj_array_klass()) { 2824 if (exact_klass->as_obj_array_klass()->element_klass()->is_inlinetype()) { 2825 // Could be flat, null free etc. 2826 exact_klass = nullptr; 2827 } else { 2828 exact_klass = ciObjArrayKlass::make(exact_klass->as_array_klass()->element_klass(), true); 2829 } 2830 } 2831 2832 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2833 } 2834 2835 if (!do_null && !do_update) { 2836 return result; 2837 } 2838 2839 ciKlass* exact_signature_k = nullptr; 2840 if (do_update && signature_at_call_k != nullptr) { 2841 // Is the type from the signature exact (the only one possible)? 2842 exact_signature_k = signature_at_call_k->exact_klass(); 2843 if (exact_signature_k == nullptr) { 2844 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2845 } else { 2846 result = exact_signature_k; 2847 // Known statically. No need to emit any code: prevent 2848 // LIR_Assembler::emit_profile_type() from emitting useless code 2849 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2850 } 2851 // exact_klass and exact_signature_k can be both non null but 2852 // different if exact_klass is loaded after the ciObject for 2853 // exact_signature_k is created. 2854 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) { 2855 // sometimes the type of the signature is better than the best type 2856 // the compiler has 2857 exact_klass = exact_signature_k; 2858 } 2859 if (callee_signature_k != nullptr && 2860 callee_signature_k != signature_at_call_k) { 2861 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2862 if (improved_klass == nullptr) { 2863 improved_klass = comp->cha_exact_type(callee_signature_k); 2864 } 2865 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) { 2866 exact_klass = exact_signature_k; 2867 } 2868 } 2869 2870 // TODO 8366668 2871 if (exact_klass != nullptr && exact_klass->is_obj_array_klass()) { 2872 if (exact_klass->as_obj_array_klass()->element_klass()->is_inlinetype()) { 2873 // Could be flat, null free etc. 2874 exact_klass = nullptr; 2875 } else { 2876 exact_klass = ciObjArrayKlass::make(exact_klass->as_array_klass()->element_klass(), true); 2877 } 2878 } 2879 2880 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2881 } 2882 2883 if (!do_null && !do_update) { 2884 return result; 2885 } 2886 2887 if (mdp == LIR_OprFact::illegalOpr) { 2888 mdp = new_register(T_METADATA); 2889 __ metadata2reg(md->constant_encoding(), mdp); 2890 if (md_base_offset != 0) { 2891 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2892 mdp = new_pointer_register(); 2893 __ leal(LIR_OprFact::address(base_type_address), mdp); 2894 } 2895 } 2896 LIRItem value(obj, this); 2897 value.load_item(); 2898 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2899 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr); 2900 return result; 2901 } 2902 2903 // profile parameters on entry to the root of the compilation 2904 void LIRGenerator::profile_parameters(Base* x) { 2905 if (compilation()->profile_parameters()) { 2906 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2907 ciMethodData* md = scope()->method()->method_data_or_null(); 2908 assert(md != nullptr, "Sanity"); 2909 2910 if (md->parameters_type_data() != nullptr) { 2911 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2912 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2913 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2914 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2915 LIR_Opr src = args->at(i); 2916 assert(!src->is_illegal(), "check"); 2917 BasicType t = src->type(); 2918 if (is_reference_type(t)) { 2919 intptr_t profiled_k = parameters->type(j); 2920 Local* local = x->state()->local_at(java_index)->as_Local(); 2921 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2922 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2923 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr); 2924 // If the profile is known statically set it once for all and do not emit any code 2925 if (exact != nullptr) { 2926 md->set_parameter_type(j, exact); 2927 } 2928 j++; 2929 } 2930 java_index += type2size[t]; 2931 } 2932 } 2933 } 2934 } 2935 2936 void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) { 2937 assert(md != nullptr && data != nullptr, "should have been initialized"); 2938 LIR_Opr mdp = new_register(T_METADATA); 2939 __ metadata2reg(md->constant_encoding(), mdp); 2940 LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE); 2941 LIR_Opr flags = new_register(T_INT); 2942 __ move(addr, flags); 2943 if (condition != lir_cond_always) { 2944 LIR_Opr update = new_register(T_INT); 2945 __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT); 2946 } else { 2947 __ logical_or(flags, LIR_OprFact::intConst(flag), flags); 2948 } 2949 __ store(flags, addr); 2950 } 2951 2952 template <class ArrayData> void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ArrayData* load_store) { 2953 assert(compilation()->profile_array_accesses(), "array access profiling is disabled"); 2954 LabelObj* L_end = new LabelObj(); 2955 LIR_Opr tmp = new_register(T_METADATA); 2956 __ check_null_free_array(array.result(), tmp); 2957 2958 profile_flags(md, load_store, ArrayStoreData::null_free_array_byte_constant(), lir_cond_equal); 2959 } 2960 2961 template <class ArrayData> void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ArrayData*& load_store) { 2962 assert(compilation()->profile_array_accesses(), "array access profiling is disabled"); 2963 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2964 profile_type(md, md->byte_offset_of_slot(load_store, ArrayData::array_offset()), 0, 2965 load_store->array()->type(), x->array(), mdp, true, nullptr, nullptr); 2966 } 2967 2968 void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadData* load_data) { 2969 assert(compilation()->profile_array_accesses(), "array access profiling is disabled"); 2970 assert(md != nullptr && load_data != nullptr, "should have been initialized"); 2971 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2972 profile_type(md, md->byte_offset_of_slot(load_data, ArrayLoadData::element_offset()), 0, 2973 load_data->element()->type(), element, mdp, false, nullptr, nullptr); 2974 } 2975 2976 void LIRGenerator::do_Base(Base* x) { 2977 __ std_entry(LIR_OprFact::illegalOpr); 2978 // Emit moves from physical registers / stack slots to virtual registers 2979 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2980 IRScope* irScope = compilation()->hir()->top_scope(); 2981 int java_index = 0; 2982 for (int i = 0; i < args->length(); i++) { 2983 LIR_Opr src = args->at(i); 2984 assert(!src->is_illegal(), "check"); 2985 BasicType t = src->type(); 2986 2987 // Types which are smaller than int are passed as int, so 2988 // correct the type which passed. 2989 switch (t) { 2990 case T_BYTE: 2991 case T_BOOLEAN: 2992 case T_SHORT: 2993 case T_CHAR: 2994 t = T_INT; 2995 break; 2996 default: 2997 break; 2998 } 2999 3000 LIR_Opr dest = new_register(t); 3001 __ move(src, dest); 3002 3003 // Assign new location to Local instruction for this local 3004 Local* local = x->state()->local_at(java_index)->as_Local(); 3005 assert(local != nullptr, "Locals for incoming arguments must have been created"); 3006 #ifndef __SOFTFP__ 3007 // The java calling convention passes double as long and float as int. 3008 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 3009 #endif // __SOFTFP__ 3010 local->set_operand(dest); 3011 #ifdef ASSERT 3012 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr); 3013 #endif 3014 java_index += type2size[t]; 3015 } 3016 3017 // Check if we need a membar at the beginning of the java.lang.Object 3018 // constructor to satisfy the memory model for strict fields. 3019 if (EnableValhalla && method()->intrinsic_id() == vmIntrinsics::_Object_init) { 3020 __ membar_storestore(); 3021 } 3022 3023 if (compilation()->env()->dtrace_method_probes()) { 3024 BasicTypeList signature; 3025 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3026 signature.append(T_METADATA); // Method* 3027 LIR_OprList* args = new LIR_OprList(); 3028 args->append(getThreadPointer()); 3029 LIR_Opr meth = new_register(T_METADATA); 3030 __ metadata2reg(method()->constant_encoding(), meth); 3031 args->append(meth); 3032 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr); 3033 } 3034 3035 if (method()->is_synchronized()) { 3036 LIR_Opr obj; 3037 if (method()->is_static()) { 3038 obj = new_register(T_OBJECT); 3039 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 3040 } else { 3041 Local* receiver = x->state()->local_at(0)->as_Local(); 3042 assert(receiver != nullptr, "must already exist"); 3043 obj = receiver->operand(); 3044 } 3045 assert(obj->is_valid(), "must be valid"); 3046 3047 if (method()->is_synchronized()) { 3048 LIR_Opr lock = syncLockOpr(); 3049 __ load_stack_address_monitor(0, lock); 3050 3051 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException)); 3052 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 3053 3054 // receiver is guaranteed non-null so don't need CodeEmitInfo 3055 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr); 3056 } 3057 } 3058 // increment invocation counters if needed 3059 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 3060 profile_parameters(x); 3061 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false); 3062 increment_invocation_counter(info); 3063 } 3064 if (method()->has_scalarized_args()) { 3065 // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments 3066 // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state. 3067 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), nullptr, false); 3068 CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none); 3069 __ append(new LIR_Op0(lir_check_orig_pc)); 3070 __ branch(lir_cond_notEqual, deopt_stub); 3071 } 3072 3073 // all blocks with a successor must end with an unconditional jump 3074 // to the successor even if they are consecutive 3075 __ jump(x->default_sux()); 3076 } 3077 3078 3079 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 3080 // construct our frame and model the production of incoming pointer 3081 // to the OSR buffer. 3082 __ osr_entry(LIR_Assembler::osrBufferPointer()); 3083 LIR_Opr result = rlock_result(x); 3084 __ move(LIR_Assembler::osrBufferPointer(), result); 3085 } 3086 3087 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) { 3088 if (loc->is_register()) { 3089 param->load_item_force(loc); 3090 } else { 3091 LIR_Address* addr = loc->as_address_ptr(); 3092 param->load_for_store(addr->type()); 3093 if (addr->type() == T_OBJECT) { 3094 __ move_wide(param->result(), addr); 3095 } else { 3096 __ move(param->result(), addr); 3097 } 3098 } 3099 } 3100 3101 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 3102 assert(args->length() == arg_list->length(), 3103 "args=%d, arg_list=%d", args->length(), arg_list->length()); 3104 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 3105 LIRItem* param = args->at(i); 3106 LIR_Opr loc = arg_list->at(i); 3107 invoke_load_one_argument(param, loc); 3108 } 3109 3110 if (x->has_receiver()) { 3111 LIRItem* receiver = args->at(0); 3112 LIR_Opr loc = arg_list->at(0); 3113 if (loc->is_register()) { 3114 receiver->load_item_force(loc); 3115 } else { 3116 assert(loc->is_address(), "just checking"); 3117 receiver->load_for_store(T_OBJECT); 3118 __ move_wide(receiver->result(), loc->as_address_ptr()); 3119 } 3120 } 3121 } 3122 3123 3124 // Visits all arguments, returns appropriate items without loading them 3125 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 3126 LIRItemList* argument_items = new LIRItemList(); 3127 if (x->has_receiver()) { 3128 LIRItem* receiver = new LIRItem(x->receiver(), this); 3129 argument_items->append(receiver); 3130 } 3131 for (int i = 0; i < x->number_of_arguments(); i++) { 3132 LIRItem* param = new LIRItem(x->argument_at(i), this); 3133 argument_items->append(param); 3134 } 3135 return argument_items; 3136 } 3137 3138 3139 // The invoke with receiver has following phases: 3140 // a) traverse and load/lock receiver; 3141 // b) traverse all arguments -> item-array (invoke_visit_argument) 3142 // c) push receiver on stack 3143 // d) load each of the items and push on stack 3144 // e) unlock receiver 3145 // f) move receiver into receiver-register %o0 3146 // g) lock result registers and emit call operation 3147 // 3148 // Before issuing a call, we must spill-save all values on stack 3149 // that are in caller-save register. "spill-save" moves those registers 3150 // either in a free callee-save register or spills them if no free 3151 // callee save register is available. 3152 // 3153 // The problem is where to invoke spill-save. 3154 // - if invoked between e) and f), we may lock callee save 3155 // register in "spill-save" that destroys the receiver register 3156 // before f) is executed 3157 // - if we rearrange f) to be earlier (by loading %o0) it 3158 // may destroy a value on the stack that is currently in %o0 3159 // and is waiting to be spilled 3160 // - if we keep the receiver locked while doing spill-save, 3161 // we cannot spill it as it is spill-locked 3162 // 3163 void LIRGenerator::do_Invoke(Invoke* x) { 3164 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 3165 3166 LIR_OprList* arg_list = cc->args(); 3167 LIRItemList* args = invoke_visit_arguments(x); 3168 LIR_Opr receiver = LIR_OprFact::illegalOpr; 3169 3170 // setup result register 3171 LIR_Opr result_register = LIR_OprFact::illegalOpr; 3172 if (x->type() != voidType) { 3173 result_register = result_register_for(x->type()); 3174 } 3175 3176 CodeEmitInfo* info = state_for(x, x->state()); 3177 3178 invoke_load_arguments(x, args, arg_list); 3179 3180 if (x->has_receiver()) { 3181 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 3182 receiver = args->at(0)->result(); 3183 } 3184 3185 // emit invoke code 3186 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 3187 3188 // JSR 292 3189 // Preserve the SP over MethodHandle call sites, if needed. 3190 ciMethod* target = x->target(); 3191 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 3192 target->is_method_handle_intrinsic() || 3193 target->is_compiled_lambda_form()); 3194 if (is_method_handle_invoke) { 3195 info->set_is_method_handle_invoke(true); 3196 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 3197 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 3198 } 3199 } 3200 3201 switch (x->code()) { 3202 case Bytecodes::_invokestatic: 3203 __ call_static(target, result_register, 3204 SharedRuntime::get_resolve_static_call_stub(), 3205 arg_list, info); 3206 break; 3207 case Bytecodes::_invokespecial: 3208 case Bytecodes::_invokevirtual: 3209 case Bytecodes::_invokeinterface: 3210 // for loaded and final (method or class) target we still produce an inline cache, 3211 // in order to be able to call mixed mode 3212 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 3213 __ call_opt_virtual(target, receiver, result_register, 3214 SharedRuntime::get_resolve_opt_virtual_call_stub(), 3215 arg_list, info); 3216 } else { 3217 __ call_icvirtual(target, receiver, result_register, 3218 SharedRuntime::get_resolve_virtual_call_stub(), 3219 arg_list, info); 3220 } 3221 break; 3222 case Bytecodes::_invokedynamic: { 3223 __ call_dynamic(target, receiver, result_register, 3224 SharedRuntime::get_resolve_static_call_stub(), 3225 arg_list, info); 3226 break; 3227 } 3228 default: 3229 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 3230 break; 3231 } 3232 3233 // JSR 292 3234 // Restore the SP after MethodHandle call sites, if needed. 3235 if (is_method_handle_invoke 3236 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 3237 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 3238 } 3239 3240 if (result_register->is_valid()) { 3241 LIR_Opr result = rlock_result(x); 3242 __ move(result_register, result); 3243 } 3244 } 3245 3246 3247 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 3248 assert(x->number_of_arguments() == 1, "wrong type"); 3249 LIRItem value (x->argument_at(0), this); 3250 LIR_Opr reg = rlock_result(x); 3251 value.load_item(); 3252 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 3253 __ move(tmp, reg); 3254 } 3255 3256 3257 3258 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 3259 void LIRGenerator::do_IfOp(IfOp* x) { 3260 #ifdef ASSERT 3261 { 3262 ValueTag xtag = x->x()->type()->tag(); 3263 ValueTag ttag = x->tval()->type()->tag(); 3264 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 3265 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 3266 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 3267 } 3268 #endif 3269 3270 LIRItem left(x->x(), this); 3271 LIRItem right(x->y(), this); 3272 left.load_item(); 3273 if (can_inline_as_constant(right.value()) && !x->substitutability_check()) { 3274 right.dont_load_item(); 3275 } else { 3276 // substitutability_check() needs to use right as a base register. 3277 right.load_item(); 3278 } 3279 3280 LIRItem t_val(x->tval(), this); 3281 LIRItem f_val(x->fval(), this); 3282 t_val.dont_load_item(); 3283 f_val.dont_load_item(); 3284 3285 if (x->substitutability_check()) { 3286 substitutability_check(x, left, right, t_val, f_val); 3287 } else { 3288 LIR_Opr reg = rlock_result(x); 3289 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 3290 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 3291 } 3292 } 3293 3294 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) { 3295 assert(x->cond() == If::eql || x->cond() == If::neq, "must be"); 3296 bool is_acmpeq = (x->cond() == If::eql); 3297 LIR_Opr equal_result = is_acmpeq ? t_val.result() : f_val.result(); 3298 LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result(); 3299 LIR_Opr result = rlock_result(x); 3300 CodeEmitInfo* info = state_for(x, x->state_before()); 3301 3302 substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info); 3303 } 3304 3305 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) { 3306 LIR_Opr equal_result = LIR_OprFact::intConst(1); 3307 LIR_Opr not_equal_result = LIR_OprFact::intConst(0); 3308 LIR_Opr result = new_register(T_INT); 3309 CodeEmitInfo* info = state_for(x, x->state_before()); 3310 3311 substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info); 3312 3313 assert(x->cond() == If::eql || x->cond() == If::neq, "must be"); 3314 __ cmp(lir_cond(x->cond()), result, equal_result); 3315 } 3316 3317 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right, 3318 LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result, 3319 CodeEmitInfo* info) { 3320 LIR_Opr tmp1 = LIR_OprFact::illegalOpr; 3321 LIR_Opr tmp2 = LIR_OprFact::illegalOpr; 3322 LIR_Opr left_klass_op = LIR_OprFact::illegalOpr; 3323 LIR_Opr right_klass_op = LIR_OprFact::illegalOpr; 3324 3325 ciKlass* left_klass = left_val ->as_loaded_klass_or_null(); 3326 ciKlass* right_klass = right_val->as_loaded_klass_or_null(); 3327 3328 if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node. 3329 !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) { 3330 init_temps_for_substitutability_check(tmp1, tmp2); 3331 } 3332 3333 if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) { 3334 // No need to load klass -- the operands are statically known to be the same inline klass. 3335 } else { 3336 BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA; 3337 left_klass_op = new_register(t_klass); 3338 right_klass_op = new_register(t_klass); 3339 } 3340 3341 CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info); 3342 __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result, 3343 tmp1, tmp2, 3344 left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path); 3345 } 3346 3347 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 3348 assert(x->number_of_arguments() == 0, "wrong type"); 3349 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 3350 BasicTypeList signature; 3351 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 3352 LIR_Opr reg = result_register_for(x->type()); 3353 __ call_runtime_leaf(routine, getThreadTemp(), 3354 reg, new LIR_OprList()); 3355 LIR_Opr result = rlock_result(x); 3356 __ move(reg, result); 3357 } 3358 3359 3360 3361 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 3362 switch (x->id()) { 3363 case vmIntrinsics::_intBitsToFloat : 3364 case vmIntrinsics::_doubleToRawLongBits : 3365 case vmIntrinsics::_longBitsToDouble : 3366 case vmIntrinsics::_floatToRawIntBits : { 3367 do_FPIntrinsics(x); 3368 break; 3369 } 3370 3371 #ifdef JFR_HAVE_INTRINSICS 3372 case vmIntrinsics::_counterTime: 3373 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x); 3374 break; 3375 #endif 3376 3377 case vmIntrinsics::_currentTimeMillis: 3378 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 3379 break; 3380 3381 case vmIntrinsics::_nanoTime: 3382 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 3383 break; 3384 3385 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 3386 case vmIntrinsics::_isInstance: do_isInstance(x); break; 3387 case vmIntrinsics::_getClass: do_getClass(x); break; 3388 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 3389 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break; 3390 case vmIntrinsics::_currentThread: do_vthread(x); break; 3391 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break; 3392 3393 case vmIntrinsics::_dlog: // fall through 3394 case vmIntrinsics::_dlog10: // fall through 3395 case vmIntrinsics::_dabs: // fall through 3396 case vmIntrinsics::_dsqrt: // fall through 3397 case vmIntrinsics::_dsqrt_strict: // fall through 3398 case vmIntrinsics::_dtan: // fall through 3399 case vmIntrinsics::_dsinh: // fall through 3400 case vmIntrinsics::_dtanh: // fall through 3401 case vmIntrinsics::_dsin : // fall through 3402 case vmIntrinsics::_dcos : // fall through 3403 case vmIntrinsics::_dcbrt : // fall through 3404 case vmIntrinsics::_dexp : // fall through 3405 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 3406 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 3407 3408 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 3409 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 3410 3411 // Use java.lang.Math intrinsics code since it works for these intrinsics too. 3412 case vmIntrinsics::_floatToFloat16: // fall through 3413 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break; 3414 3415 case vmIntrinsics::_Preconditions_checkIndex: 3416 do_PreconditionsCheckIndex(x, T_INT); 3417 break; 3418 case vmIntrinsics::_Preconditions_checkLongIndex: 3419 do_PreconditionsCheckIndex(x, T_LONG); 3420 break; 3421 3422 case vmIntrinsics::_compareAndSetReference: 3423 do_CompareAndSwap(x, objectType); 3424 break; 3425 case vmIntrinsics::_compareAndSetInt: 3426 do_CompareAndSwap(x, intType); 3427 break; 3428 case vmIntrinsics::_compareAndSetLong: 3429 do_CompareAndSwap(x, longType); 3430 break; 3431 3432 case vmIntrinsics::_loadFence : 3433 __ membar_acquire(); 3434 break; 3435 case vmIntrinsics::_storeFence: 3436 __ membar_release(); 3437 break; 3438 case vmIntrinsics::_storeStoreFence: 3439 __ membar_storestore(); 3440 break; 3441 case vmIntrinsics::_fullFence : 3442 __ membar(); 3443 break; 3444 case vmIntrinsics::_onSpinWait: 3445 __ on_spin_wait(); 3446 break; 3447 case vmIntrinsics::_Reference_get0: 3448 do_Reference_get0(x); 3449 break; 3450 3451 case vmIntrinsics::_updateCRC32: 3452 case vmIntrinsics::_updateBytesCRC32: 3453 case vmIntrinsics::_updateByteBufferCRC32: 3454 do_update_CRC32(x); 3455 break; 3456 3457 case vmIntrinsics::_updateBytesCRC32C: 3458 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3459 do_update_CRC32C(x); 3460 break; 3461 3462 case vmIntrinsics::_vectorizedMismatch: 3463 do_vectorizedMismatch(x); 3464 break; 3465 3466 case vmIntrinsics::_blackhole: 3467 do_blackhole(x); 3468 break; 3469 3470 default: ShouldNotReachHere(); break; 3471 } 3472 } 3473 3474 void LIRGenerator::profile_arguments(ProfileCall* x) { 3475 if (compilation()->profile_arguments()) { 3476 int bci = x->bci_of_invoke(); 3477 ciMethodData* md = x->method()->method_data_or_null(); 3478 assert(md != nullptr, "Sanity"); 3479 ciProfileData* data = md->bci_to_data(bci); 3480 if (data != nullptr) { 3481 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3482 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3483 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3484 int base_offset = md->byte_offset_of_slot(data, extra); 3485 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3486 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3487 3488 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3489 int start = 0; 3490 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3491 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3492 // first argument is not profiled at call (method handle invoke) 3493 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3494 start = 1; 3495 } 3496 ciSignature* callee_signature = x->callee()->signature(); 3497 // method handle call to virtual method 3498 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3499 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr); 3500 3501 bool ignored_will_link; 3502 ciSignature* signature_at_call = nullptr; 3503 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3504 ciSignatureStream signature_at_call_stream(signature_at_call); 3505 3506 // if called through method handle invoke, some arguments may have been popped 3507 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3508 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3509 ciKlass* exact = profile_type(md, base_offset, off, 3510 args->type(i), x->profiled_arg_at(i+start), mdp, 3511 !x->arg_needs_null_check(i+start), 3512 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3513 if (exact != nullptr) { 3514 md->set_argument_type(bci, i, exact); 3515 } 3516 } 3517 } else { 3518 #ifdef ASSERT 3519 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3520 int n = x->nb_profiled_args(); 3521 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3522 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3523 "only at JSR292 bytecodes"); 3524 #endif 3525 } 3526 } 3527 } 3528 } 3529 3530 // profile parameters on entry to an inlined method 3531 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3532 if (compilation()->profile_parameters() && x->inlined()) { 3533 ciMethodData* md = x->callee()->method_data_or_null(); 3534 if (md != nullptr) { 3535 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3536 if (parameters_type_data != nullptr) { 3537 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3538 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3539 bool has_receiver = !x->callee()->is_static(); 3540 ciSignature* sig = x->callee()->signature(); 3541 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr); 3542 int i = 0; // to iterate on the Instructions 3543 Value arg = x->recv(); 3544 bool not_null = false; 3545 int bci = x->bci_of_invoke(); 3546 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3547 // The first parameter is the receiver so that's what we start 3548 // with if it exists. One exception is method handle call to 3549 // virtual method: the receiver is in the args list 3550 if (arg == nullptr || !Bytecodes::has_receiver(bc)) { 3551 i = 1; 3552 arg = x->profiled_arg_at(0); 3553 not_null = !x->arg_needs_null_check(0); 3554 } 3555 int k = 0; // to iterate on the profile data 3556 for (;;) { 3557 intptr_t profiled_k = parameters->type(k); 3558 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3559 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3560 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr); 3561 // If the profile is known statically set it once for all and do not emit any code 3562 if (exact != nullptr) { 3563 md->set_parameter_type(k, exact); 3564 } 3565 k++; 3566 if (k >= parameters_type_data->number_of_parameters()) { 3567 #ifdef ASSERT 3568 int extra = 0; 3569 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3570 x->nb_profiled_args() >= TypeProfileParmsLimit && 3571 x->recv() != nullptr && Bytecodes::has_receiver(bc)) { 3572 extra += 1; 3573 } 3574 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3575 #endif 3576 break; 3577 } 3578 arg = x->profiled_arg_at(i); 3579 not_null = !x->arg_needs_null_check(i); 3580 i++; 3581 } 3582 } 3583 } 3584 } 3585 } 3586 3587 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3588 // Need recv in a temporary register so it interferes with the other temporaries 3589 LIR_Opr recv = LIR_OprFact::illegalOpr; 3590 LIR_Opr mdo = new_register(T_METADATA); 3591 // tmp is used to hold the counters on SPARC 3592 LIR_Opr tmp = new_pointer_register(); 3593 3594 if (x->nb_profiled_args() > 0) { 3595 profile_arguments(x); 3596 } 3597 3598 // profile parameters on inlined method entry including receiver 3599 if (x->recv() != nullptr || x->nb_profiled_args() > 0) { 3600 profile_parameters_at_call(x); 3601 } 3602 3603 if (x->recv() != nullptr) { 3604 LIRItem value(x->recv(), this); 3605 value.load_item(); 3606 recv = new_register(T_OBJECT); 3607 __ move(value.result(), recv); 3608 } 3609 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3610 } 3611 3612 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3613 int bci = x->bci_of_invoke(); 3614 ciMethodData* md = x->method()->method_data_or_null(); 3615 assert(md != nullptr, "Sanity"); 3616 ciProfileData* data = md->bci_to_data(bci); 3617 if (data != nullptr) { 3618 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3619 ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3620 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3621 3622 bool ignored_will_link; 3623 ciSignature* signature_at_call = nullptr; 3624 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3625 3626 // The offset within the MDO of the entry to update may be too large 3627 // to be used in load/store instructions on some platforms. So have 3628 // profile_type() compute the address of the profile in a register. 3629 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3630 ret->type(), x->ret(), mdp, 3631 !x->needs_null_check(), 3632 signature_at_call->return_type()->as_klass(), 3633 x->callee()->signature()->return_type()->as_klass()); 3634 if (exact != nullptr) { 3635 md->set_return_type(bci, exact); 3636 } 3637 } 3638 } 3639 3640 bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) { 3641 ciKlass* klass = value->as_loaded_klass_or_null(); 3642 if (klass != nullptr) { 3643 if (klass->is_inlinetype()) { 3644 profile_flags(md, data, flag, lir_cond_always); 3645 } else if (klass->can_be_inline_klass()) { 3646 return false; 3647 } 3648 } else { 3649 return false; 3650 } 3651 return true; 3652 } 3653 3654 3655 void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) { 3656 ciMethod* method = x->method(); 3657 assert(method != nullptr, "method should be set if branch is profiled"); 3658 ciMethodData* md = method->method_data_or_null(); 3659 assert(md != nullptr, "Sanity"); 3660 ciProfileData* data = md->bci_to_data(x->bci()); 3661 assert(data != nullptr, "must have profiling data"); 3662 assert(data->is_ACmpData(), "need BranchData for two-way branches"); 3663 ciACmpData* acmp = (ciACmpData*)data; 3664 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3665 profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0, 3666 acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), nullptr, nullptr); 3667 int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset()); 3668 if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) { 3669 LIR_Opr mdp = new_register(T_METADATA); 3670 __ metadata2reg(md->constant_encoding(), mdp); 3671 LIRItem value(x->left(), this); 3672 value.load_item(); 3673 __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null()); 3674 } 3675 profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 3676 in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()), 3677 acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), nullptr, nullptr); 3678 if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) { 3679 LIR_Opr mdp = new_register(T_METADATA); 3680 __ metadata2reg(md->constant_encoding(), mdp); 3681 LIRItem value(x->right(), this); 3682 value.load_item(); 3683 __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null()); 3684 } 3685 } 3686 3687 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3688 // We can safely ignore accessors here, since c2 will inline them anyway, 3689 // accessors are also always mature. 3690 if (!x->inlinee()->is_accessor()) { 3691 CodeEmitInfo* info = state_for(x, x->state(), true); 3692 // Notify the runtime very infrequently only to take care of counter overflows 3693 int freq_log = Tier23InlineeNotifyFreqLog; 3694 double scale; 3695 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3696 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3697 } 3698 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3699 } 3700 } 3701 3702 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3703 if (compilation()->is_profiling()) { 3704 #if defined(X86) && !defined(_LP64) 3705 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3706 LIR_Opr left_copy = new_register(left->type()); 3707 __ move(left, left_copy); 3708 __ cmp(cond, left_copy, right); 3709 #else 3710 __ cmp(cond, left, right); 3711 #endif 3712 LIR_Opr step = new_register(T_INT); 3713 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3714 LIR_Opr zero = LIR_OprFact::intConst(0); 3715 __ cmove(cond, 3716 (left_bci < bci) ? plus_one : zero, 3717 (right_bci < bci) ? plus_one : zero, 3718 step, left->type()); 3719 increment_backedge_counter(info, step, bci); 3720 } 3721 } 3722 3723 3724 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3725 int freq_log = 0; 3726 int level = compilation()->env()->comp_level(); 3727 if (level == CompLevel_limited_profile) { 3728 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3729 } else if (level == CompLevel_full_profile) { 3730 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3731 } else { 3732 ShouldNotReachHere(); 3733 } 3734 // Increment the appropriate invocation/backedge counter and notify the runtime. 3735 double scale; 3736 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3737 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3738 } 3739 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3740 } 3741 3742 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3743 ciMethod *method, LIR_Opr step, int frequency, 3744 int bci, bool backedge, bool notify) { 3745 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3746 int level = _compilation->env()->comp_level(); 3747 assert(level > CompLevel_simple, "Shouldn't be here"); 3748 3749 int offset = -1; 3750 LIR_Opr counter_holder; 3751 if (level == CompLevel_limited_profile) { 3752 MethodCounters* counters_adr = method->ensure_method_counters(); 3753 if (counters_adr == nullptr) { 3754 bailout("method counters allocation failed"); 3755 return; 3756 } 3757 counter_holder = new_pointer_register(); 3758 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3759 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3760 MethodCounters::invocation_counter_offset()); 3761 } else if (level == CompLevel_full_profile) { 3762 counter_holder = new_register(T_METADATA); 3763 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3764 MethodData::invocation_counter_offset()); 3765 ciMethodData* md = method->method_data_or_null(); 3766 assert(md != nullptr, "Sanity"); 3767 __ metadata2reg(md->constant_encoding(), counter_holder); 3768 } else { 3769 ShouldNotReachHere(); 3770 } 3771 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3772 LIR_Opr result = new_register(T_INT); 3773 __ load(counter, result); 3774 __ add(result, step, result); 3775 __ store(result, counter); 3776 if (notify && (!backedge || UseOnStackReplacement)) { 3777 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3778 // The bci for info can point to cmp for if's we want the if bci 3779 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3780 int freq = frequency << InvocationCounter::count_shift; 3781 if (freq == 0) { 3782 if (!step->is_constant()) { 3783 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3784 __ branch(lir_cond_notEqual, overflow); 3785 } else { 3786 __ branch(lir_cond_always, overflow); 3787 } 3788 } else { 3789 LIR_Opr mask = load_immediate(freq, T_INT); 3790 if (!step->is_constant()) { 3791 // If step is 0, make sure the overflow check below always fails 3792 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3793 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3794 } 3795 __ logical_and(result, mask, result); 3796 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3797 __ branch(lir_cond_equal, overflow); 3798 } 3799 __ branch_destination(overflow->continuation()); 3800 } 3801 } 3802 3803 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3804 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3805 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3806 3807 if (x->pass_thread()) { 3808 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3809 args->append(getThreadPointer()); 3810 } 3811 3812 for (int i = 0; i < x->number_of_arguments(); i++) { 3813 Value a = x->argument_at(i); 3814 LIRItem* item = new LIRItem(a, this); 3815 item->load_item(); 3816 args->append(item->result()); 3817 signature->append(as_BasicType(a->type())); 3818 } 3819 3820 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr); 3821 if (x->type() == voidType) { 3822 set_no_result(x); 3823 } else { 3824 __ move(result, rlock_result(x)); 3825 } 3826 } 3827 3828 #ifdef ASSERT 3829 void LIRGenerator::do_Assert(Assert *x) { 3830 ValueTag tag = x->x()->type()->tag(); 3831 If::Condition cond = x->cond(); 3832 3833 LIRItem xitem(x->x(), this); 3834 LIRItem yitem(x->y(), this); 3835 LIRItem* xin = &xitem; 3836 LIRItem* yin = &yitem; 3837 3838 assert(tag == intTag, "Only integer assertions are valid!"); 3839 3840 xin->load_item(); 3841 yin->dont_load_item(); 3842 3843 set_no_result(x); 3844 3845 LIR_Opr left = xin->result(); 3846 LIR_Opr right = yin->result(); 3847 3848 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3849 } 3850 #endif 3851 3852 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3853 3854 3855 Instruction *a = x->x(); 3856 Instruction *b = x->y(); 3857 if (!a || StressRangeCheckElimination) { 3858 assert(!b || StressRangeCheckElimination, "B must also be null"); 3859 3860 CodeEmitInfo *info = state_for(x, x->state()); 3861 CodeStub* stub = new PredicateFailedStub(info); 3862 3863 __ jump(stub); 3864 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3865 int a_int = a->type()->as_IntConstant()->value(); 3866 int b_int = b->type()->as_IntConstant()->value(); 3867 3868 bool ok = false; 3869 3870 switch(x->cond()) { 3871 case Instruction::eql: ok = (a_int == b_int); break; 3872 case Instruction::neq: ok = (a_int != b_int); break; 3873 case Instruction::lss: ok = (a_int < b_int); break; 3874 case Instruction::leq: ok = (a_int <= b_int); break; 3875 case Instruction::gtr: ok = (a_int > b_int); break; 3876 case Instruction::geq: ok = (a_int >= b_int); break; 3877 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3878 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3879 default: ShouldNotReachHere(); 3880 } 3881 3882 if (ok) { 3883 3884 CodeEmitInfo *info = state_for(x, x->state()); 3885 CodeStub* stub = new PredicateFailedStub(info); 3886 3887 __ jump(stub); 3888 } 3889 } else { 3890 3891 ValueTag tag = x->x()->type()->tag(); 3892 If::Condition cond = x->cond(); 3893 LIRItem xitem(x->x(), this); 3894 LIRItem yitem(x->y(), this); 3895 LIRItem* xin = &xitem; 3896 LIRItem* yin = &yitem; 3897 3898 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3899 3900 xin->load_item(); 3901 yin->dont_load_item(); 3902 set_no_result(x); 3903 3904 LIR_Opr left = xin->result(); 3905 LIR_Opr right = yin->result(); 3906 3907 CodeEmitInfo *info = state_for(x, x->state()); 3908 CodeStub* stub = new PredicateFailedStub(info); 3909 3910 __ cmp(lir_cond(cond), left, right); 3911 __ branch(lir_cond(cond), stub); 3912 } 3913 } 3914 3915 void LIRGenerator::do_blackhole(Intrinsic *x) { 3916 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3917 for (int c = 0; c < x->number_of_arguments(); c++) { 3918 // Load the argument 3919 LIRItem vitem(x->argument_at(c), this); 3920 vitem.load_item(); 3921 // ...and leave it unused. 3922 } 3923 } 3924 3925 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3926 LIRItemList args(1); 3927 LIRItem value(arg1, this); 3928 args.append(&value); 3929 BasicTypeList signature; 3930 signature.append(as_BasicType(arg1->type())); 3931 3932 return call_runtime(&signature, &args, entry, result_type, info); 3933 } 3934 3935 3936 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3937 LIRItemList args(2); 3938 LIRItem value1(arg1, this); 3939 LIRItem value2(arg2, this); 3940 args.append(&value1); 3941 args.append(&value2); 3942 BasicTypeList signature; 3943 signature.append(as_BasicType(arg1->type())); 3944 signature.append(as_BasicType(arg2->type())); 3945 3946 return call_runtime(&signature, &args, entry, result_type, info); 3947 } 3948 3949 3950 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3951 address entry, ValueType* result_type, CodeEmitInfo* info) { 3952 // get a result register 3953 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3954 LIR_Opr result = LIR_OprFact::illegalOpr; 3955 if (result_type->tag() != voidTag) { 3956 result = new_register(result_type); 3957 phys_reg = result_register_for(result_type); 3958 } 3959 3960 // move the arguments into the correct location 3961 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3962 assert(cc->length() == args->length(), "argument mismatch"); 3963 for (int i = 0; i < args->length(); i++) { 3964 LIR_Opr arg = args->at(i); 3965 LIR_Opr loc = cc->at(i); 3966 if (loc->is_register()) { 3967 __ move(arg, loc); 3968 } else { 3969 LIR_Address* addr = loc->as_address_ptr(); 3970 // if (!can_store_as_constant(arg)) { 3971 // LIR_Opr tmp = new_register(arg->type()); 3972 // __ move(arg, tmp); 3973 // arg = tmp; 3974 // } 3975 __ move(arg, addr); 3976 } 3977 } 3978 3979 if (info) { 3980 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3981 } else { 3982 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3983 } 3984 if (result->is_valid()) { 3985 __ move(phys_reg, result); 3986 } 3987 return result; 3988 } 3989 3990 3991 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3992 address entry, ValueType* result_type, CodeEmitInfo* info) { 3993 // get a result register 3994 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3995 LIR_Opr result = LIR_OprFact::illegalOpr; 3996 if (result_type->tag() != voidTag) { 3997 result = new_register(result_type); 3998 phys_reg = result_register_for(result_type); 3999 } 4000 4001 // move the arguments into the correct location 4002 CallingConvention* cc = frame_map()->c_calling_convention(signature); 4003 4004 assert(cc->length() == args->length(), "argument mismatch"); 4005 for (int i = 0; i < args->length(); i++) { 4006 LIRItem* arg = args->at(i); 4007 LIR_Opr loc = cc->at(i); 4008 if (loc->is_register()) { 4009 arg->load_item_force(loc); 4010 } else { 4011 LIR_Address* addr = loc->as_address_ptr(); 4012 arg->load_for_store(addr->type()); 4013 __ move(arg->result(), addr); 4014 } 4015 } 4016 4017 if (info) { 4018 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 4019 } else { 4020 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 4021 } 4022 if (result->is_valid()) { 4023 __ move(phys_reg, result); 4024 } 4025 return result; 4026 } 4027 4028 void LIRGenerator::do_MemBar(MemBar* x) { 4029 LIR_Code code = x->code(); 4030 switch(code) { 4031 case lir_membar_acquire : __ membar_acquire(); break; 4032 case lir_membar_release : __ membar_release(); break; 4033 case lir_membar : __ membar(); break; 4034 case lir_membar_loadload : __ membar_loadload(); break; 4035 case lir_membar_storestore: __ membar_storestore(); break; 4036 case lir_membar_loadstore : __ membar_loadstore(); break; 4037 case lir_membar_storeload : __ membar_storeload(); break; 4038 default : ShouldNotReachHere(); break; 4039 } 4040 } 4041 4042 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 4043 LIR_Opr value_fixed = rlock_byte(T_BYTE); 4044 if (two_operand_lir_form) { 4045 __ move(value, value_fixed); 4046 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 4047 } else { 4048 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 4049 } 4050 LIR_Opr klass = new_register(T_METADATA); 4051 load_klass(array, klass, null_check_info); 4052 null_check_info = nullptr; 4053 LIR_Opr layout = new_register(T_INT); 4054 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 4055 int diffbit = Klass::layout_helper_boolean_diffbit(); 4056 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 4057 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 4058 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 4059 value = value_fixed; 4060 return value; 4061 }