1 /*
   2  * Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciFlatArrayKlass.hpp"
  35 #include "ci/ciInlineKlass.hpp"
  36 #include "ci/ciInstance.hpp"
  37 #include "ci/ciObjArray.hpp"
  38 #include "ci/ciUtilities.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/c1/barrierSetC1.hpp"
  41 #include "oops/klass.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 
  49 #ifdef ASSERT
  50 #define __ gen()->lir(__FILE__, __LINE__)->
  51 #else
  52 #define __ gen()->lir()->
  53 #endif
  54 
  55 #ifndef PATCHED_ADDR
  56 #define PATCHED_ADDR  (max_jint)
  57 #endif
  58 
  59 void PhiResolverState::reset() {
  60   _virtual_operands.clear();
  61   _other_operands.clear();
  62   _vreg_table.clear();
  63 }
  64 
  65 
  66 //--------------------------------------------------------------
  67 // PhiResolver
  68 
  69 // Resolves cycles:
  70 //
  71 //  r1 := r2  becomes  temp := r1
  72 //  r2 := r1           r1 := r2
  73 //                     r2 := temp
  74 // and orders moves:
  75 //
  76 //  r2 := r3  becomes  r1 := r2
  77 //  r1 := r2           r2 := r3
  78 
  79 PhiResolver::PhiResolver(LIRGenerator* gen)
  80  : _gen(gen)
  81  , _state(gen->resolver_state())
  82  , _temp(LIR_OprFact::illegalOpr)
  83 {
  84   // reinitialize the shared state arrays
  85   _state.reset();
  86 }
  87 
  88 
  89 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  90   assert(src->is_valid(), "");
  91   assert(dest->is_valid(), "");
  92   __ move(src, dest);
  93 }
  94 
  95 
  96 void PhiResolver::move_temp_to(LIR_Opr dest) {
  97   assert(_temp->is_valid(), "");
  98   emit_move(_temp, dest);
  99   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 100 }
 101 
 102 
 103 void PhiResolver::move_to_temp(LIR_Opr src) {
 104   assert(_temp->is_illegal(), "");
 105   _temp = _gen->new_register(src->type());
 106   emit_move(src, _temp);
 107 }
 108 
 109 
 110 // Traverse assignment graph in depth first order and generate moves in post order
 111 // ie. two assignments: b := c, a := b start with node c:
 112 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 113 // Generates moves in this order: move b to a and move c to b
 114 // ie. cycle a := b, b := a start with node a
 115 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 116 // Generates moves in this order: move b to temp, move a to b, move temp to a
 117 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 118   if (!dest->visited()) {
 119     dest->set_visited();
 120     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 121       move(dest, dest->destination_at(i));
 122     }
 123   } else if (!dest->start_node()) {
 124     // cylce in graph detected
 125     assert(_loop == NULL, "only one loop valid!");
 126     _loop = dest;
 127     move_to_temp(src->operand());
 128     return;
 129   } // else dest is a start node
 130 
 131   if (!dest->assigned()) {
 132     if (_loop == dest) {
 133       move_temp_to(dest->operand());
 134       dest->set_assigned();
 135     } else if (src != NULL) {
 136       emit_move(src->operand(), dest->operand());
 137       dest->set_assigned();
 138     }
 139   }
 140 }
 141 
 142 
 143 PhiResolver::~PhiResolver() {
 144   int i;
 145   // resolve any cycles in moves from and to virtual registers
 146   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 147     ResolveNode* node = virtual_operands().at(i);
 148     if (!node->visited()) {
 149       _loop = NULL;
 150       move(NULL, node);
 151       node->set_start_node();
 152       assert(_temp->is_illegal(), "move_temp_to() call missing");
 153     }
 154   }
 155 
 156   // generate move for move from non virtual register to abitrary destination
 157   for (i = other_operands().length() - 1; i >= 0; i --) {
 158     ResolveNode* node = other_operands().at(i);
 159     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 160       emit_move(node->operand(), node->destination_at(j)->operand());
 161     }
 162   }
 163 }
 164 
 165 
 166 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 167   ResolveNode* node;
 168   if (opr->is_virtual()) {
 169     int vreg_num = opr->vreg_number();
 170     node = vreg_table().at_grow(vreg_num, NULL);
 171     assert(node == NULL || node->operand() == opr, "");
 172     if (node == NULL) {
 173       node = new ResolveNode(opr);
 174       vreg_table().at_put(vreg_num, node);
 175     }
 176     // Make sure that all virtual operands show up in the list when
 177     // they are used as the source of a move.
 178     if (source && !virtual_operands().contains(node)) {
 179       virtual_operands().append(node);
 180     }
 181   } else {
 182     assert(source, "");
 183     node = new ResolveNode(opr);
 184     other_operands().append(node);
 185   }
 186   return node;
 187 }
 188 
 189 
 190 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 191   assert(dest->is_virtual(), "");
 192   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 193   assert(src->is_valid(), "");
 194   assert(dest->is_valid(), "");
 195   ResolveNode* source = source_node(src);
 196   source->append(destination_node(dest));
 197 }
 198 
 199 
 200 //--------------------------------------------------------------
 201 // LIRItem
 202 
 203 void LIRItem::set_result(LIR_Opr opr) {
 204   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 205   value()->set_operand(opr);
 206 
 207   if (opr->is_virtual()) {
 208     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 209   }
 210 
 211   _result = opr;
 212 }
 213 
 214 void LIRItem::load_item() {
 215   assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code");
 216 
 217   if (result()->is_illegal()) {
 218     // update the items result
 219     _result = value()->operand();
 220   }
 221   if (!result()->is_register()) {
 222     LIR_Opr reg = _gen->new_register(value()->type());
 223     __ move(result(), reg);
 224     if (result()->is_constant()) {
 225       _result = reg;
 226     } else {
 227       set_result(reg);
 228     }
 229   }
 230 }
 231 
 232 
 233 void LIRItem::load_for_store(BasicType type) {
 234   if (_gen->can_store_as_constant(value(), type)) {
 235     _result = value()->operand();
 236     if (!_result->is_constant()) {
 237       _result = LIR_OprFact::value_type(value()->type());
 238     }
 239   } else if (type == T_BYTE || type == T_BOOLEAN) {
 240     load_byte_item();
 241   } else {
 242     load_item();
 243   }
 244 }
 245 
 246 void LIRItem::load_item_force(LIR_Opr reg) {
 247   LIR_Opr r = result();
 248   if (r != reg) {
 249 #if !defined(ARM) && !defined(E500V2)
 250     if (r->type() != reg->type()) {
 251       // moves between different types need an intervening spill slot
 252       r = _gen->force_to_spill(r, reg->type());
 253     }
 254 #endif
 255     __ move(r, reg);
 256     _result = reg;
 257   }
 258 }
 259 
 260 ciObject* LIRItem::get_jobject_constant() const {
 261   ObjectType* oc = type()->as_ObjectType();
 262   if (oc) {
 263     return oc->constant_value();
 264   }
 265   return NULL;
 266 }
 267 
 268 
 269 jint LIRItem::get_jint_constant() const {
 270   assert(is_constant() && value() != NULL, "");
 271   assert(type()->as_IntConstant() != NULL, "type check");
 272   return type()->as_IntConstant()->value();
 273 }
 274 
 275 
 276 jint LIRItem::get_address_constant() const {
 277   assert(is_constant() && value() != NULL, "");
 278   assert(type()->as_AddressConstant() != NULL, "type check");
 279   return type()->as_AddressConstant()->value();
 280 }
 281 
 282 
 283 jfloat LIRItem::get_jfloat_constant() const {
 284   assert(is_constant() && value() != NULL, "");
 285   assert(type()->as_FloatConstant() != NULL, "type check");
 286   return type()->as_FloatConstant()->value();
 287 }
 288 
 289 
 290 jdouble LIRItem::get_jdouble_constant() const {
 291   assert(is_constant() && value() != NULL, "");
 292   assert(type()->as_DoubleConstant() != NULL, "type check");
 293   return type()->as_DoubleConstant()->value();
 294 }
 295 
 296 
 297 jlong LIRItem::get_jlong_constant() const {
 298   assert(is_constant() && value() != NULL, "");
 299   assert(type()->as_LongConstant() != NULL, "type check");
 300   return type()->as_LongConstant()->value();
 301 }
 302 
 303 
 304 
 305 //--------------------------------------------------------------
 306 
 307 
 308 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 309 #ifndef PRODUCT
 310   if (PrintIRWithLIR) {
 311     block->print();
 312   }
 313 #endif
 314 
 315   // set up the list of LIR instructions
 316   assert(block->lir() == NULL, "LIR list already computed for this block");
 317   _lir = new LIR_List(compilation(), block);
 318   block->set_lir(_lir);
 319 
 320   __ branch_destination(block->label());
 321 
 322   if (LIRTraceExecution &&
 323       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 324       !block->is_set(BlockBegin::exception_entry_flag)) {
 325     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 326     trace_block_entry(block);
 327   }
 328 }
 329 
 330 
 331 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 332 #ifndef PRODUCT
 333   if (PrintIRWithLIR) {
 334     tty->cr();
 335   }
 336 #endif
 337 
 338   // LIR_Opr for unpinned constants shouldn't be referenced by other
 339   // blocks so clear them out after processing the block.
 340   for (int i = 0; i < _unpinned_constants.length(); i++) {
 341     _unpinned_constants.at(i)->clear_operand();
 342   }
 343   _unpinned_constants.trunc_to(0);
 344 
 345   // clear our any registers for other local constants
 346   _constants.trunc_to(0);
 347   _reg_for_constants.trunc_to(0);
 348 }
 349 
 350 
 351 void LIRGenerator::block_do(BlockBegin* block) {
 352   CHECK_BAILOUT();
 353 
 354   block_do_prolog(block);
 355   set_block(block);
 356 
 357   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 358     if (instr->is_pinned()) do_root(instr);
 359   }
 360 
 361   set_block(NULL);
 362   block_do_epilog(block);
 363 }
 364 
 365 
 366 //-------------------------LIRGenerator-----------------------------
 367 
 368 // This is where the tree-walk starts; instr must be root;
 369 void LIRGenerator::do_root(Value instr) {
 370   CHECK_BAILOUT();
 371 
 372   InstructionMark im(compilation(), instr);
 373 
 374   assert(instr->is_pinned(), "use only with roots");
 375   assert(instr->subst() == instr, "shouldn't have missed substitution");
 376 
 377   instr->visit(this);
 378 
 379   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 380          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 381 }
 382 
 383 
 384 // This is called for each node in tree; the walk stops if a root is reached
 385 void LIRGenerator::walk(Value instr) {
 386   InstructionMark im(compilation(), instr);
 387   //stop walk when encounter a root
 388   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 389     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 390   } else {
 391     assert(instr->subst() == instr, "shouldn't have missed substitution");
 392     instr->visit(this);
 393     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 394   }
 395 }
 396 
 397 
 398 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 399   assert(state != NULL, "state must be defined");
 400 
 401 #ifndef PRODUCT
 402   state->verify();
 403 #endif
 404 
 405   ValueStack* s = state;
 406   for_each_state(s) {
 407     if (s->kind() == ValueStack::EmptyExceptionState) {
 408       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 409       continue;
 410     }
 411 
 412     int index;
 413     Value value;
 414     for_each_stack_value(s, index, value) {
 415       assert(value->subst() == value, "missed substitution");
 416       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 417         walk(value);
 418         assert(value->operand()->is_valid(), "must be evaluated now");
 419       }
 420     }
 421 
 422     int bci = s->bci();
 423     IRScope* scope = s->scope();
 424     ciMethod* method = scope->method();
 425 
 426     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 427     if (bci == SynchronizationEntryBCI) {
 428       if (x->as_ExceptionObject() || x->as_Throw()) {
 429         // all locals are dead on exit from the synthetic unlocker
 430         liveness.clear();
 431       } else {
 432         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 433       }
 434     }
 435     if (!liveness.is_valid()) {
 436       // Degenerate or breakpointed method.
 437       bailout("Degenerate or breakpointed method");
 438     } else {
 439       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 440       for_each_local_value(s, index, value) {
 441         assert(value->subst() == value, "missed substition");
 442         if (liveness.at(index) && !value->type()->is_illegal()) {
 443           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 444             walk(value);
 445             assert(value->operand()->is_valid(), "must be evaluated now");
 446           }
 447         } else {
 448           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 449           s->invalidate_local(index);
 450         }
 451       }
 452     }
 453   }
 454 
 455   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 456 }
 457 
 458 
 459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 460   return state_for(x, x->exception_state());
 461 }
 462 
 463 
 464 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 465   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
 466    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 467    * the class. */
 468   if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
 469     assert(info != NULL, "info must be set if class is not loaded");
 470     __ klass2reg_patch(NULL, r, info);
 471   } else {
 472     // no patching needed
 473     __ metadata2reg(obj->constant_encoding(), r);
 474   }
 475 }
 476 
 477 
 478 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 479                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 480   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 481   if (index->is_constant()) {
 482     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 483                 index->as_jint(), null_check_info);
 484     __ branch(lir_cond_belowEqual, stub); // forward branch
 485   } else {
 486     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 487                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 488     __ branch(lir_cond_aboveEqual, stub); // forward branch
 489   }
 490 }
 491 
 492 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
 493   LIR_Opr result_op = result;
 494   LIR_Opr left_op   = left;
 495   LIR_Opr right_op  = right;
 496 
 497   if (TwoOperandLIRForm && left_op != result_op) {
 498     assert(right_op != result_op, "malformed");
 499     __ move(left_op, result_op);
 500     left_op = result_op;
 501   }
 502 
 503   switch(code) {
 504     case Bytecodes::_dadd:
 505     case Bytecodes::_fadd:
 506     case Bytecodes::_ladd:
 507     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 508     case Bytecodes::_fmul:
 509     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 510 
 511     case Bytecodes::_dmul:  __ mul(left_op, right_op, result_op, tmp_op); break;
 512 
 513     case Bytecodes::_imul:
 514       {
 515         bool did_strength_reduce = false;
 516 
 517         if (right->is_constant()) {
 518           jint c = right->as_jint();
 519           if (c > 0 && is_power_of_2(c)) {
 520             // do not need tmp here
 521             __ shift_left(left_op, exact_log2(c), result_op);
 522             did_strength_reduce = true;
 523           } else {
 524             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 525           }
 526         }
 527         // we couldn't strength reduce so just emit the multiply
 528         if (!did_strength_reduce) {
 529           __ mul(left_op, right_op, result_op);
 530         }
 531       }
 532       break;
 533 
 534     case Bytecodes::_dsub:
 535     case Bytecodes::_fsub:
 536     case Bytecodes::_lsub:
 537     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 538 
 539     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 540     // ldiv and lrem are implemented with a direct runtime call
 541 
 542     case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
 543 
 544     case Bytecodes::_drem:
 545     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 546 
 547     default: ShouldNotReachHere();
 548   }
 549 }
 550 
 551 
 552 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 553   arithmetic_op(code, result, left, right, tmp);
 554 }
 555 
 556 
 557 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 558   arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
 559 }
 560 
 561 
 562 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 563   arithmetic_op(code, result, left, right, tmp);
 564 }
 565 
 566 
 567 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 568 
 569   if (TwoOperandLIRForm && value != result_op
 570       // Only 32bit right shifts require two operand form on S390.
 571       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 572     assert(count != result_op, "malformed");
 573     __ move(value, result_op);
 574     value = result_op;
 575   }
 576 
 577   assert(count->is_constant() || count->is_register(), "must be");
 578   switch(code) {
 579   case Bytecodes::_ishl:
 580   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 581   case Bytecodes::_ishr:
 582   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 583   case Bytecodes::_iushr:
 584   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 585   default: ShouldNotReachHere();
 586   }
 587 }
 588 
 589 
 590 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 591   if (TwoOperandLIRForm && left_op != result_op) {
 592     assert(right_op != result_op, "malformed");
 593     __ move(left_op, result_op);
 594     left_op = result_op;
 595   }
 596 
 597   switch(code) {
 598     case Bytecodes::_iand:
 599     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 600 
 601     case Bytecodes::_ior:
 602     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 603 
 604     case Bytecodes::_ixor:
 605     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 606 
 607     default: ShouldNotReachHere();
 608   }
 609 }
 610 
 611 
 612 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
 613                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_imse_stub) {
 614   if (!GenerateSynchronizationCode) return;
 615   // for slow path, use debug info for state after successful locking
 616   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_imse_stub, scratch);
 617   __ load_stack_address_monitor(monitor_no, lock);
 618   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 619   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_imse_stub);
 620 }
 621 
 622 
 623 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 624   if (!GenerateSynchronizationCode) return;
 625   // setup registers
 626   LIR_Opr hdr = lock;
 627   lock = new_hdr;
 628   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 629   __ load_stack_address_monitor(monitor_no, lock);
 630   __ unlock_object(hdr, object, lock, scratch, slow_path);
 631 }
 632 
 633 #ifndef PRODUCT
 634 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 635   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 636     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 637   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 638     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 639   }
 640 }
 641 #endif
 642 
 643 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 644   if (allow_inline) {
 645     assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved");
 646     __ metadata2reg(klass->constant_encoding(), klass_reg);
 647   } else {
 648     klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 649   }
 650   // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass
 651   if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype())
 652       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 653 
 654     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 655 
 656     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 657 
 658     assert(klass->is_loaded(), "must be loaded");
 659     // allocate space for instance
 660     assert(klass->size_helper() > 0, "illegal instance size");
 661     const int instance_size = align_object_size(klass->size_helper());
 662     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 663                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 664   } else {
 665     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, allow_inline ? Runtime1::new_instance_id : Runtime1::new_instance_no_inline_id);
 666     __ jump(slow_path);
 667     __ branch_destination(slow_path->continuation());
 668   }
 669 }
 670 
 671 
 672 static bool is_constant_zero(Instruction* inst) {
 673   IntConstant* c = inst->type()->as_IntConstant();
 674   if (c) {
 675     return (c->value() == 0);
 676   }
 677   return false;
 678 }
 679 
 680 
 681 static bool positive_constant(Instruction* inst) {
 682   IntConstant* c = inst->type()->as_IntConstant();
 683   if (c) {
 684     return (c->value() >= 0);
 685   }
 686   return false;
 687 }
 688 
 689 
 690 static ciArrayKlass* as_array_klass(ciType* type) {
 691   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 692     return (ciArrayKlass*)type;
 693   } else {
 694     return NULL;
 695   }
 696 }
 697 
 698 static ciType* phi_declared_type(Phi* phi) {
 699   ciType* t = phi->operand_at(0)->declared_type();
 700   if (t == NULL) {
 701     return NULL;
 702   }
 703   for(int i = 1; i < phi->operand_count(); i++) {
 704     if (t != phi->operand_at(i)->declared_type()) {
 705       return NULL;
 706     }
 707   }
 708   return t;
 709 }
 710 
 711 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 712   Instruction* src     = x->argument_at(0);
 713   Instruction* src_pos = x->argument_at(1);
 714   Instruction* dst     = x->argument_at(2);
 715   Instruction* dst_pos = x->argument_at(3);
 716   Instruction* length  = x->argument_at(4);
 717 
 718   // first try to identify the likely type of the arrays involved
 719   ciArrayKlass* expected_type = NULL;
 720   bool is_exact = false, src_objarray = false, dst_objarray = false;
 721   {
 722     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 723     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 724     Phi* phi;
 725     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 726       src_declared_type = as_array_klass(phi_declared_type(phi));
 727     }
 728     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 729     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 730     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 731       dst_declared_type = as_array_klass(phi_declared_type(phi));
 732     }
 733 
 734     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 735       // the types exactly match so the type is fully known
 736       is_exact = true;
 737       expected_type = src_exact_type;
 738     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 739       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 740       ciArrayKlass* src_type = NULL;
 741       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 742         src_type = (ciArrayKlass*) src_exact_type;
 743       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 744         src_type = (ciArrayKlass*) src_declared_type;
 745       }
 746       if (src_type != NULL) {
 747         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 748           is_exact = true;
 749           expected_type = dst_type;
 750         }
 751       }
 752     }
 753     // at least pass along a good guess
 754     if (expected_type == NULL) expected_type = dst_exact_type;
 755     if (expected_type == NULL) expected_type = src_declared_type;
 756     if (expected_type == NULL) expected_type = dst_declared_type;
 757 
 758     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 759     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 760   }
 761 
 762   // if a probable array type has been identified, figure out if any
 763   // of the required checks for a fast case can be elided.
 764   int flags = LIR_OpArrayCopy::all_flags;
 765 
 766   if (!src->is_loaded_flattened_array() && !dst->is_loaded_flattened_array()) {
 767     flags &= ~LIR_OpArrayCopy::always_slow_path;
 768   }
 769   if (!src->maybe_flattened_array()) {
 770     flags &= ~LIR_OpArrayCopy::src_inlinetype_check;
 771   }
 772   if (!dst->maybe_flattened_array() && !dst->maybe_null_free_array()) {
 773     flags &= ~LIR_OpArrayCopy::dst_inlinetype_check;
 774   }
 775 
 776   if (!src_objarray)
 777     flags &= ~LIR_OpArrayCopy::src_objarray;
 778   if (!dst_objarray)
 779     flags &= ~LIR_OpArrayCopy::dst_objarray;
 780 
 781   if (!x->arg_needs_null_check(0))
 782     flags &= ~LIR_OpArrayCopy::src_null_check;
 783   if (!x->arg_needs_null_check(2))
 784     flags &= ~LIR_OpArrayCopy::dst_null_check;
 785 
 786 
 787   if (expected_type != NULL) {
 788     Value length_limit = NULL;
 789 
 790     IfOp* ifop = length->as_IfOp();
 791     if (ifop != NULL) {
 792       // look for expressions like min(v, a.length) which ends up as
 793       //   x > y ? y : x  or  x >= y ? y : x
 794       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 795           ifop->x() == ifop->fval() &&
 796           ifop->y() == ifop->tval()) {
 797         length_limit = ifop->y();
 798       }
 799     }
 800 
 801     // try to skip null checks and range checks
 802     NewArray* src_array = src->as_NewArray();
 803     if (src_array != NULL) {
 804       flags &= ~LIR_OpArrayCopy::src_null_check;
 805       if (length_limit != NULL &&
 806           src_array->length() == length_limit &&
 807           is_constant_zero(src_pos)) {
 808         flags &= ~LIR_OpArrayCopy::src_range_check;
 809       }
 810     }
 811 
 812     NewArray* dst_array = dst->as_NewArray();
 813     if (dst_array != NULL) {
 814       flags &= ~LIR_OpArrayCopy::dst_null_check;
 815       if (length_limit != NULL &&
 816           dst_array->length() == length_limit &&
 817           is_constant_zero(dst_pos)) {
 818         flags &= ~LIR_OpArrayCopy::dst_range_check;
 819       }
 820     }
 821 
 822     // check from incoming constant values
 823     if (positive_constant(src_pos))
 824       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 825     if (positive_constant(dst_pos))
 826       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 827     if (positive_constant(length))
 828       flags &= ~LIR_OpArrayCopy::length_positive_check;
 829 
 830     // see if the range check can be elided, which might also imply
 831     // that src or dst is non-null.
 832     ArrayLength* al = length->as_ArrayLength();
 833     if (al != NULL) {
 834       if (al->array() == src) {
 835         // it's the length of the source array
 836         flags &= ~LIR_OpArrayCopy::length_positive_check;
 837         flags &= ~LIR_OpArrayCopy::src_null_check;
 838         if (is_constant_zero(src_pos))
 839           flags &= ~LIR_OpArrayCopy::src_range_check;
 840       }
 841       if (al->array() == dst) {
 842         // it's the length of the destination array
 843         flags &= ~LIR_OpArrayCopy::length_positive_check;
 844         flags &= ~LIR_OpArrayCopy::dst_null_check;
 845         if (is_constant_zero(dst_pos))
 846           flags &= ~LIR_OpArrayCopy::dst_range_check;
 847       }
 848     }
 849     if (is_exact) {
 850       flags &= ~LIR_OpArrayCopy::type_check;
 851     }
 852   }
 853 
 854   IntConstant* src_int = src_pos->type()->as_IntConstant();
 855   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 856   if (src_int && dst_int) {
 857     int s_offs = src_int->value();
 858     int d_offs = dst_int->value();
 859     if (src_int->value() >= dst_int->value()) {
 860       flags &= ~LIR_OpArrayCopy::overlapping;
 861     }
 862     if (expected_type != NULL) {
 863       BasicType t = expected_type->element_type()->basic_type();
 864       int element_size = type2aelembytes(t);
 865       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 866           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 867         flags &= ~LIR_OpArrayCopy::unaligned;
 868       }
 869     }
 870   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 871     // src and dest positions are the same, or dst is zero so assume
 872     // nonoverlapping copy.
 873     flags &= ~LIR_OpArrayCopy::overlapping;
 874   }
 875 
 876   if (src == dst) {
 877     // moving within a single array so no type checks are needed
 878     if (flags & LIR_OpArrayCopy::type_check) {
 879       flags &= ~LIR_OpArrayCopy::type_check;
 880     }
 881   }
 882   *flagsp = flags;
 883   *expected_typep = (ciArrayKlass*)expected_type;
 884 }
 885 
 886 
 887 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 888   assert(opr->is_register(), "why spill if item is not register?");
 889 
 890   if (strict_fp_requires_explicit_rounding) {
 891 #ifdef IA32
 892     if (UseSSE < 1 && opr->is_single_fpu()) {
 893       LIR_Opr result = new_register(T_FLOAT);
 894       set_vreg_flag(result, must_start_in_memory);
 895       assert(opr->is_register(), "only a register can be spilled");
 896       assert(opr->value_type()->is_float(), "rounding only for floats available");
 897       __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 898       return result;
 899     }
 900 #else
 901     Unimplemented();
 902 #endif // IA32
 903   }
 904   return opr;
 905 }
 906 
 907 
 908 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 909   assert(type2size[t] == type2size[value->type()],
 910          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 911   if (!value->is_register()) {
 912     // force into a register
 913     LIR_Opr r = new_register(value->type());
 914     __ move(value, r);
 915     value = r;
 916   }
 917 
 918   // create a spill location
 919   LIR_Opr tmp = new_register(t);
 920   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 921 
 922   // move from register to spill
 923   __ move(value, tmp);
 924   return tmp;
 925 }
 926 
 927 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 928   if (if_instr->should_profile()) {
 929     ciMethod* method = if_instr->profiled_method();
 930     assert(method != NULL, "method should be set if branch is profiled");
 931     ciMethodData* md = method->method_data_or_null();
 932     assert(md != NULL, "Sanity");
 933     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 934     assert(data != NULL, "must have profiling data");
 935     assert(data->is_BranchData(), "need BranchData for two-way branches");
 936     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 937     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 938     if (if_instr->is_swapped()) {
 939       int t = taken_count_offset;
 940       taken_count_offset = not_taken_count_offset;
 941       not_taken_count_offset = t;
 942     }
 943 
 944     LIR_Opr md_reg = new_register(T_METADATA);
 945     __ metadata2reg(md->constant_encoding(), md_reg);
 946 
 947     LIR_Opr data_offset_reg = new_pointer_register();
 948     __ cmove(lir_cond(cond),
 949              LIR_OprFact::intptrConst(taken_count_offset),
 950              LIR_OprFact::intptrConst(not_taken_count_offset),
 951              data_offset_reg, as_BasicType(if_instr->x()->type()));
 952 
 953     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 954     LIR_Opr data_reg = new_pointer_register();
 955     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 956     __ move(data_addr, data_reg);
 957     // Use leal instead of add to avoid destroying condition codes on x86
 958     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 959     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 960     __ move(data_reg, data_addr);
 961   }
 962 }
 963 
 964 // Phi technique:
 965 // This is about passing live values from one basic block to the other.
 966 // In code generated with Java it is rather rare that more than one
 967 // value is on the stack from one basic block to the other.
 968 // We optimize our technique for efficient passing of one value
 969 // (of type long, int, double..) but it can be extended.
 970 // When entering or leaving a basic block, all registers and all spill
 971 // slots are release and empty. We use the released registers
 972 // and spill slots to pass the live values from one block
 973 // to the other. The topmost value, i.e., the value on TOS of expression
 974 // stack is passed in registers. All other values are stored in spilling
 975 // area. Every Phi has an index which designates its spill slot
 976 // At exit of a basic block, we fill the register(s) and spill slots.
 977 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 978 // and locks necessary registers and spilling slots.
 979 
 980 
 981 // move current value to referenced phi function
 982 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 983   Phi* phi = sux_val->as_Phi();
 984   // cur_val can be null without phi being null in conjunction with inlining
 985   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 986     Phi* cur_phi = cur_val->as_Phi();
 987     if (cur_phi != NULL && cur_phi->is_illegal()) {
 988       // Phi and local would need to get invalidated
 989       // (which is unexpected for Linear Scan).
 990       // But this case is very rare so we simply bail out.
 991       bailout("propagation of illegal phi");
 992       return;
 993     }
 994     LIR_Opr operand = cur_val->operand();
 995     if (operand->is_illegal()) {
 996       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
 997              "these can be produced lazily");
 998       operand = operand_for_instruction(cur_val);
 999     }
1000     resolver->move(operand, operand_for_instruction(phi));
1001   }
1002 }
1003 
1004 
1005 // Moves all stack values into their PHI position
1006 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1007   BlockBegin* bb = block();
1008   if (bb->number_of_sux() == 1) {
1009     BlockBegin* sux = bb->sux_at(0);
1010     assert(sux->number_of_preds() > 0, "invalid CFG");
1011 
1012     // a block with only one predecessor never has phi functions
1013     if (sux->number_of_preds() > 1) {
1014       PhiResolver resolver(this);
1015 
1016       ValueStack* sux_state = sux->state();
1017       Value sux_value;
1018       int index;
1019 
1020       assert(cur_state->scope() == sux_state->scope(), "not matching");
1021       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1022       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1023 
1024       for_each_stack_value(sux_state, index, sux_value) {
1025         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1026       }
1027 
1028       for_each_local_value(sux_state, index, sux_value) {
1029         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1030       }
1031 
1032       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1033     }
1034   }
1035 }
1036 
1037 
1038 LIR_Opr LIRGenerator::new_register(BasicType type) {
1039   int vreg_num = _virtual_register_number;
1040   // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1041   // a few extra registers before we really run out which helps to avoid to trip over assertions.
1042   if (vreg_num + 20 >= LIR_OprDesc::vreg_max) {
1043     bailout("out of virtual registers in LIR generator");
1044     if (vreg_num + 2 >= LIR_OprDesc::vreg_max) {
1045       // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1046       _virtual_register_number = LIR_OprDesc::vreg_base;
1047       vreg_num = LIR_OprDesc::vreg_base;
1048     }
1049   }
1050   _virtual_register_number += 1;
1051   LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1052   assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1053   return vreg;
1054 }
1055 
1056 
1057 // Try to lock using register in hint
1058 LIR_Opr LIRGenerator::rlock(Value instr) {
1059   return new_register(instr->type());
1060 }
1061 
1062 
1063 // does an rlock and sets result
1064 LIR_Opr LIRGenerator::rlock_result(Value x) {
1065   LIR_Opr reg = rlock(x);
1066   set_result(x, reg);
1067   return reg;
1068 }
1069 
1070 
1071 // does an rlock and sets result
1072 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1073   LIR_Opr reg;
1074   switch (type) {
1075   case T_BYTE:
1076   case T_BOOLEAN:
1077     reg = rlock_byte(type);
1078     break;
1079   default:
1080     reg = rlock(x);
1081     break;
1082   }
1083 
1084   set_result(x, reg);
1085   return reg;
1086 }
1087 
1088 
1089 //---------------------------------------------------------------------
1090 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1091   ObjectType* oc = value->type()->as_ObjectType();
1092   if (oc) {
1093     return oc->constant_value();
1094   }
1095   return NULL;
1096 }
1097 
1098 
1099 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1100   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1101   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1102 
1103   // no moves are created for phi functions at the begin of exception
1104   // handlers, so assign operands manually here
1105   for_each_phi_fun(block(), phi,
1106                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1107 
1108   LIR_Opr thread_reg = getThreadPointer();
1109   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1110                exceptionOopOpr());
1111   __ move_wide(LIR_OprFact::oopConst(NULL),
1112                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1113   __ move_wide(LIR_OprFact::oopConst(NULL),
1114                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1115 
1116   LIR_Opr result = new_register(T_OBJECT);
1117   __ move(exceptionOopOpr(), result);
1118   set_result(x, result);
1119 }
1120 
1121 
1122 //----------------------------------------------------------------------
1123 //----------------------------------------------------------------------
1124 //----------------------------------------------------------------------
1125 //----------------------------------------------------------------------
1126 //                        visitor functions
1127 //----------------------------------------------------------------------
1128 //----------------------------------------------------------------------
1129 //----------------------------------------------------------------------
1130 //----------------------------------------------------------------------
1131 
1132 void LIRGenerator::do_Phi(Phi* x) {
1133   // phi functions are never visited directly
1134   ShouldNotReachHere();
1135 }
1136 
1137 
1138 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1139 void LIRGenerator::do_Constant(Constant* x) {
1140   if (x->state_before() != NULL) {
1141     // Any constant with a ValueStack requires patching so emit the patch here
1142     LIR_Opr reg = rlock_result(x);
1143     CodeEmitInfo* info = state_for(x, x->state_before());
1144     __ oop2reg_patch(NULL, reg, info);
1145   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1146     if (!x->is_pinned()) {
1147       // unpinned constants are handled specially so that they can be
1148       // put into registers when they are used multiple times within a
1149       // block.  After the block completes their operand will be
1150       // cleared so that other blocks can't refer to that register.
1151       set_result(x, load_constant(x));
1152     } else {
1153       LIR_Opr res = x->operand();
1154       if (!res->is_valid()) {
1155         res = LIR_OprFact::value_type(x->type());
1156       }
1157       if (res->is_constant()) {
1158         LIR_Opr reg = rlock_result(x);
1159         __ move(res, reg);
1160       } else {
1161         set_result(x, res);
1162       }
1163     }
1164   } else {
1165     set_result(x, LIR_OprFact::value_type(x->type()));
1166   }
1167 }
1168 
1169 
1170 void LIRGenerator::do_Local(Local* x) {
1171   // operand_for_instruction has the side effect of setting the result
1172   // so there's no need to do it here.
1173   operand_for_instruction(x);
1174 }
1175 
1176 
1177 void LIRGenerator::do_Return(Return* x) {
1178   if (compilation()->env()->dtrace_method_probes()) {
1179     BasicTypeList signature;
1180     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1181     signature.append(T_METADATA); // Method*
1182     LIR_OprList* args = new LIR_OprList();
1183     args->append(getThreadPointer());
1184     LIR_Opr meth = new_register(T_METADATA);
1185     __ metadata2reg(method()->constant_encoding(), meth);
1186     args->append(meth);
1187     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1188   }
1189 
1190   if (x->type()->is_void()) {
1191     __ return_op(LIR_OprFact::illegalOpr);
1192   } else {
1193     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1194     LIRItem result(x->result(), this);
1195 
1196     result.load_item_force(reg);
1197     __ return_op(result.result());
1198   }
1199   set_no_result(x);
1200 }
1201 
1202 // Examble: ref.get()
1203 // Combination of LoadField and g1 pre-write barrier
1204 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1205 
1206   const int referent_offset = java_lang_ref_Reference::referent_offset();
1207 
1208   assert(x->number_of_arguments() == 1, "wrong type");
1209 
1210   LIRItem reference(x->argument_at(0), this);
1211   reference.load_item();
1212 
1213   // need to perform the null check on the reference objecy
1214   CodeEmitInfo* info = NULL;
1215   if (x->needs_null_check()) {
1216     info = state_for(x);
1217   }
1218 
1219   LIR_Opr result = rlock_result(x, T_OBJECT);
1220   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1221                  reference, LIR_OprFact::intConst(referent_offset), result);
1222 }
1223 
1224 // Example: clazz.isInstance(object)
1225 void LIRGenerator::do_isInstance(Intrinsic* x) {
1226   assert(x->number_of_arguments() == 2, "wrong type");
1227 
1228   // TODO could try to substitute this node with an equivalent InstanceOf
1229   // if clazz is known to be a constant Class. This will pick up newly found
1230   // constants after HIR construction. I'll leave this to a future change.
1231 
1232   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1233   // could follow the aastore example in a future change.
1234 
1235   LIRItem clazz(x->argument_at(0), this);
1236   LIRItem object(x->argument_at(1), this);
1237   clazz.load_item();
1238   object.load_item();
1239   LIR_Opr result = rlock_result(x);
1240 
1241   // need to perform null check on clazz
1242   if (x->needs_null_check()) {
1243     CodeEmitInfo* info = state_for(x);
1244     __ null_check(clazz.result(), info);
1245   }
1246 
1247   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1248                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1249                                      x->type(),
1250                                      NULL); // NULL CodeEmitInfo results in a leaf call
1251   __ move(call_result, result);
1252 }
1253 
1254 // Example: object.getClass ()
1255 void LIRGenerator::do_getClass(Intrinsic* x) {
1256   assert(x->number_of_arguments() == 1, "wrong type");
1257 
1258   LIRItem rcvr(x->argument_at(0), this);
1259   rcvr.load_item();
1260   LIR_Opr temp = new_register(T_METADATA);
1261   LIR_Opr result = rlock_result(x);
1262 
1263   // need to perform the null check on the rcvr
1264   CodeEmitInfo* info = NULL;
1265   if (x->needs_null_check()) {
1266     info = state_for(x);
1267   }
1268 
1269   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1270   // meaning of these two is mixed up (see JDK-8026837).
1271   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1272   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1273   // mirror = ((OopHandle)mirror)->resolve();
1274   access_load(IN_NATIVE, T_OBJECT,
1275               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1276 }
1277 
1278 // java.lang.Class::isPrimitive()
1279 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1280   assert(x->number_of_arguments() == 1, "wrong type");
1281 
1282   LIRItem rcvr(x->argument_at(0), this);
1283   rcvr.load_item();
1284   LIR_Opr temp = new_register(T_METADATA);
1285   LIR_Opr result = rlock_result(x);
1286 
1287   CodeEmitInfo* info = NULL;
1288   if (x->needs_null_check()) {
1289     info = state_for(x);
1290   }
1291 
1292   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info);
1293   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0));
1294   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1295 }
1296 
1297 // Example: Foo.class.getModifiers()
1298 void LIRGenerator::do_getModifiers(Intrinsic* x) {
1299   assert(x->number_of_arguments() == 1, "wrong type");
1300 
1301   LIRItem receiver(x->argument_at(0), this);
1302   receiver.load_item();
1303   LIR_Opr result = rlock_result(x);
1304 
1305   CodeEmitInfo* info = NULL;
1306   if (x->needs_null_check()) {
1307     info = state_for(x);
1308   }
1309 
1310   LabelObj* L_not_prim = new LabelObj();
1311   LabelObj* L_done = new LabelObj();
1312 
1313   LIR_Opr klass = new_register(T_METADATA);
1314   // Checking if it's a java mirror of primitive type
1315   __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), klass, info);
1316   __ cmp(lir_cond_notEqual, klass, LIR_OprFact::metadataConst(0));
1317   __ branch(lir_cond_notEqual, L_not_prim->label());
1318   __ move(LIR_OprFact::intConst(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), result);
1319   __ branch(lir_cond_always, L_done->label());
1320 
1321   __ branch_destination(L_not_prim->label());
1322   __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result);
1323   __ branch_destination(L_done->label());
1324 }
1325 
1326 // Example: Thread.currentThread()
1327 void LIRGenerator::do_currentThread(Intrinsic* x) {
1328   assert(x->number_of_arguments() == 0, "wrong type");
1329   LIR_Opr temp = new_register(T_ADDRESS);
1330   LIR_Opr reg = rlock_result(x);
1331   __ move(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_ADDRESS), temp);
1332   // threadObj = ((OopHandle)_threadObj)->resolve();
1333   access_load(IN_NATIVE, T_OBJECT,
1334               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1335 }
1336 
1337 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1338   assert(x->number_of_arguments() == 3, "wrong type");
1339   LIR_Opr result_reg = rlock_result(x);
1340 
1341   LIRItem value(x->argument_at(2), this);
1342   value.load_item();
1343 
1344   LIR_Opr klass = new_register(T_METADATA);
1345   __ move(new LIR_Address(value.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, NULL);
1346   LIR_Opr layout = new_register(T_INT);
1347   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1348 
1349   LabelObj* L_done = new LabelObj();
1350   LabelObj* L_array = new LabelObj();
1351 
1352   __ cmp(lir_cond_lessEqual, layout, 0);
1353   __ branch(lir_cond_lessEqual, L_array->label());
1354 
1355   // Instance case: the layout helper gives us instance size almost directly,
1356   // but we need to mask out the _lh_instance_slow_path_bit.
1357   __ convert(Bytecodes::_i2l, layout, result_reg);
1358 
1359   assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1360   jlong mask = ~(jlong) right_n_bits(LogBytesPerLong);
1361   __ logical_and(result_reg, LIR_OprFact::longConst(mask), result_reg);
1362 
1363   __ branch(lir_cond_always, L_done->label());
1364 
1365   // Array case: size is round(header + element_size*arraylength).
1366   // Since arraylength is different for every array instance, we have to
1367   // compute the whole thing at runtime.
1368 
1369   __ branch_destination(L_array->label());
1370 
1371   int round_mask = MinObjAlignmentInBytes - 1;
1372 
1373   // Figure out header sizes first.
1374   LIR_Opr hss = LIR_OprFact::intConst(Klass::_lh_header_size_shift);
1375   LIR_Opr hsm = LIR_OprFact::intConst(Klass::_lh_header_size_mask);
1376 
1377   LIR_Opr header_size = new_register(T_INT);
1378   __ move(layout, header_size);
1379   LIR_Opr tmp = new_register(T_INT);
1380   __ unsigned_shift_right(header_size, hss, header_size, tmp);
1381   __ logical_and(header_size, hsm, header_size);
1382   __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1383 
1384   // Figure out the array length in bytes
1385   assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1386   LIR_Opr l2esm = LIR_OprFact::intConst(Klass::_lh_log2_element_size_mask);
1387   __ logical_and(layout, l2esm, layout);
1388 
1389   LIR_Opr length_int = new_register(T_INT);
1390   __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1391 
1392 #ifdef _LP64
1393   LIR_Opr length = new_register(T_LONG);
1394   __ convert(Bytecodes::_i2l, length_int, length);
1395 #endif
1396 
1397   // Shift-left awkwardness. Normally it is just:
1398   //   __ shift_left(length, layout, length);
1399   // But C1 cannot perform shift_left with non-constant count, so we end up
1400   // doing the per-bit loop dance here. x86_32 also does not know how to shift
1401   // longs, so we have to act on ints.
1402   LabelObj* L_shift_loop = new LabelObj();
1403   LabelObj* L_shift_exit = new LabelObj();
1404 
1405   __ branch_destination(L_shift_loop->label());
1406   __ cmp(lir_cond_equal, layout, 0);
1407   __ branch(lir_cond_equal, L_shift_exit->label());
1408 
1409 #ifdef _LP64
1410   __ shift_left(length, 1, length);
1411 #else
1412   __ shift_left(length_int, 1, length_int);
1413 #endif
1414 
1415   __ sub(layout, LIR_OprFact::intConst(1), layout);
1416 
1417   __ branch(lir_cond_always, L_shift_loop->label());
1418   __ branch_destination(L_shift_exit->label());
1419 
1420   // Mix all up, round, and push to the result.
1421 #ifdef _LP64
1422   LIR_Opr header_size_long = new_register(T_LONG);
1423   __ convert(Bytecodes::_i2l, header_size, header_size_long);
1424   __ add(length, header_size_long, length);
1425   if (round_mask != 0) {
1426     __ logical_and(length, LIR_OprFact::longConst(~round_mask), length);
1427   }
1428   __ move(length, result_reg);
1429 #else
1430   __ add(length_int, header_size, length_int);
1431   if (round_mask != 0) {
1432     __ logical_and(length_int, LIR_OprFact::intConst(~round_mask), length_int);
1433   }
1434   __ convert(Bytecodes::_i2l, length_int, result_reg);
1435 #endif
1436 
1437   __ branch_destination(L_done->label());
1438 }
1439 
1440 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1441   assert(x->number_of_arguments() == 1, "wrong type");
1442   LIRItem receiver(x->argument_at(0), this);
1443 
1444   receiver.load_item();
1445   BasicTypeList signature;
1446   signature.append(T_OBJECT); // receiver
1447   LIR_OprList* args = new LIR_OprList();
1448   args->append(receiver.result());
1449   CodeEmitInfo* info = state_for(x, x->state());
1450   call_runtime(&signature, args,
1451                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1452                voidType, info);
1453 
1454   set_no_result(x);
1455 }
1456 
1457 
1458 //------------------------local access--------------------------------------
1459 
1460 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1461   if (x->operand()->is_illegal()) {
1462     Constant* c = x->as_Constant();
1463     if (c != NULL) {
1464       x->set_operand(LIR_OprFact::value_type(c->type()));
1465     } else {
1466       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1467       // allocate a virtual register for this local or phi
1468       x->set_operand(rlock(x));
1469       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1470     }
1471   }
1472   return x->operand();
1473 }
1474 
1475 
1476 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1477   if (opr->is_virtual()) {
1478     return instruction_for_vreg(opr->vreg_number());
1479   }
1480   return NULL;
1481 }
1482 
1483 
1484 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1485   if (reg_num < _instruction_for_operand.length()) {
1486     return _instruction_for_operand.at(reg_num);
1487   }
1488   return NULL;
1489 }
1490 
1491 
1492 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1493   if (_vreg_flags.size_in_bits() == 0) {
1494     BitMap2D temp(100, num_vreg_flags);
1495     _vreg_flags = temp;
1496   }
1497   _vreg_flags.at_put_grow(vreg_num, f, true);
1498 }
1499 
1500 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1501   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1502     return false;
1503   }
1504   return _vreg_flags.at(vreg_num, f);
1505 }
1506 
1507 
1508 // Block local constant handling.  This code is useful for keeping
1509 // unpinned constants and constants which aren't exposed in the IR in
1510 // registers.  Unpinned Constant instructions have their operands
1511 // cleared when the block is finished so that other blocks can't end
1512 // up referring to their registers.
1513 
1514 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1515   assert(!x->is_pinned(), "only for unpinned constants");
1516   _unpinned_constants.append(x);
1517   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1518 }
1519 
1520 
1521 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1522   BasicType t = c->type();
1523   for (int i = 0; i < _constants.length(); i++) {
1524     LIR_Const* other = _constants.at(i);
1525     if (t == other->type()) {
1526       switch (t) {
1527       case T_INT:
1528       case T_FLOAT:
1529         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1530         break;
1531       case T_LONG:
1532       case T_DOUBLE:
1533         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1534         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1535         break;
1536       case T_OBJECT:
1537         if (c->as_jobject() != other->as_jobject()) continue;
1538         break;
1539       default:
1540         break;
1541       }
1542       return _reg_for_constants.at(i);
1543     }
1544   }
1545 
1546   LIR_Opr result = new_register(t);
1547   __ move((LIR_Opr)c, result);
1548   if (!in_conditional_code()) {
1549     _constants.append(c);
1550     _reg_for_constants.append(result);
1551   }
1552   return result;
1553 }
1554 
1555 void LIRGenerator::set_in_conditional_code(bool v) {
1556   assert(v != _in_conditional_code, "must change state");
1557   _in_conditional_code = v;
1558 }
1559 
1560 
1561 //------------------------field access--------------------------------------
1562 
1563 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1564   assert(x->number_of_arguments() == 4, "wrong type");
1565   LIRItem obj   (x->argument_at(0), this);  // object
1566   LIRItem offset(x->argument_at(1), this);  // offset of field
1567   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1568   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1569   assert(obj.type()->tag() == objectTag, "invalid type");
1570   assert(cmp.type()->tag() == type->tag(), "invalid type");
1571   assert(val.type()->tag() == type->tag(), "invalid type");
1572 
1573   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1574                                             obj, offset, cmp, val);
1575   set_result(x, result);
1576 }
1577 
1578 // Comment copied form templateTable_i486.cpp
1579 // ----------------------------------------------------------------------------
1580 // Volatile variables demand their effects be made known to all CPU's in
1581 // order.  Store buffers on most chips allow reads & writes to reorder; the
1582 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1583 // memory barrier (i.e., it's not sufficient that the interpreter does not
1584 // reorder volatile references, the hardware also must not reorder them).
1585 //
1586 // According to the new Java Memory Model (JMM):
1587 // (1) All volatiles are serialized wrt to each other.
1588 // ALSO reads & writes act as aquire & release, so:
1589 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1590 // the read float up to before the read.  It's OK for non-volatile memory refs
1591 // that happen before the volatile read to float down below it.
1592 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1593 // that happen BEFORE the write float down to after the write.  It's OK for
1594 // non-volatile memory refs that happen after the volatile write to float up
1595 // before it.
1596 //
1597 // We only put in barriers around volatile refs (they are expensive), not
1598 // _between_ memory refs (that would require us to track the flavor of the
1599 // previous memory refs).  Requirements (2) and (3) require some barriers
1600 // before volatile stores and after volatile loads.  These nearly cover
1601 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1602 // case is placed after volatile-stores although it could just as well go
1603 // before volatile-loads.
1604 
1605 
1606 void LIRGenerator::do_StoreField(StoreField* x) {
1607   bool needs_patching = x->needs_patching();
1608   bool is_volatile = x->field()->is_volatile();
1609   BasicType field_type = x->field_type();
1610 
1611   CodeEmitInfo* info = NULL;
1612   if (needs_patching) {
1613     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1614     info = state_for(x, x->state_before());
1615   } else if (x->needs_null_check()) {
1616     NullCheck* nc = x->explicit_null_check();
1617     if (nc == NULL) {
1618       info = state_for(x);
1619     } else {
1620       info = state_for(nc);
1621     }
1622   }
1623 
1624   LIRItem object(x->obj(), this);
1625   LIRItem value(x->value(),  this);
1626 
1627   object.load_item();
1628 
1629   if (is_volatile || needs_patching) {
1630     // load item if field is volatile (fewer special cases for volatiles)
1631     // load item if field not initialized
1632     // load item if field not constant
1633     // because of code patching we cannot inline constants
1634     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1635       value.load_byte_item();
1636     } else  {
1637       value.load_item();
1638     }
1639   } else {
1640     value.load_for_store(field_type);
1641   }
1642 
1643   set_no_result(x);
1644 
1645 #ifndef PRODUCT
1646   if (PrintNotLoaded && needs_patching) {
1647     tty->print_cr("   ###class not loaded at store_%s bci %d",
1648                   x->is_static() ?  "static" : "field", x->printable_bci());
1649   }
1650 #endif
1651 
1652   if (!inline_type_field_access_prolog(x)) {
1653     // Field store will always deopt due to unloaded field or holder klass
1654     return;
1655   }
1656 
1657   if (x->needs_null_check() &&
1658       (needs_patching ||
1659        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1660     // Emit an explicit null check because the offset is too large.
1661     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1662     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1663     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1664   }
1665 
1666   DecoratorSet decorators = IN_HEAP;
1667   if (is_volatile) {
1668     decorators |= MO_SEQ_CST;
1669   }
1670   if (needs_patching) {
1671     decorators |= C1_NEEDS_PATCHING;
1672   }
1673 
1674   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1675                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1676 }
1677 
1678 // FIXME -- I can't find any other way to pass an address to access_load_at().
1679 class TempResolvedAddress: public Instruction {
1680  public:
1681   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1682     set_operand(addr);
1683   }
1684   virtual void input_values_do(ValueVisitor*) {}
1685   virtual void visit(InstructionVisitor* v)   {}
1686   virtual const char* name() const  { return "TempResolvedAddress"; }
1687 };
1688 
1689 LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) {
1690   ciType* array_type = array.value()->declared_type();
1691   ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass();
1692   assert(flat_array_klass->is_loaded(), "must be");
1693 
1694   int array_header_size = flat_array_klass->array_header_in_bytes();
1695   int shift = flat_array_klass->log2_element_size();
1696 
1697 #ifndef _LP64
1698   LIR_Opr index_op = new_register(T_INT);
1699   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1700   // the top (shift+1) bits of index_op must be zero, or
1701   // else throw ArrayIndexOutOfBoundsException
1702   if (index.result()->is_constant()) {
1703     jint const_index = index.result()->as_jint();
1704     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1705   } else {
1706     __ shift_left(index_op, shift, index.result());
1707   }
1708 #else
1709   LIR_Opr index_op = new_register(T_LONG);
1710   if (index.result()->is_constant()) {
1711     jint const_index = index.result()->as_jint();
1712     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1713   } else {
1714     __ convert(Bytecodes::_i2l, index.result(), index_op);
1715     // Need to shift manually, as LIR_Address can scale only up to 3.
1716     __ shift_left(index_op, shift, index_op);
1717   }
1718 #endif
1719 
1720   LIR_Opr elm_op = new_pointer_register();
1721   LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS);
1722   __ leal(LIR_OprFact::address(elm_address), elm_op);
1723   return elm_op;
1724 }
1725 
1726 void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, int sub_offset) {
1727   assert(field != NULL, "Need a subelement type specified");
1728 
1729   // Find the starting address of the source (inside the array)
1730   LIR_Opr elm_op = get_and_load_element_address(array, index);
1731 
1732   BasicType subelt_type = field->type()->basic_type();
1733   TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op);
1734   LIRItem elm_item(elm_resolved_addr, this);
1735 
1736   DecoratorSet decorators = IN_HEAP;
1737   access_load_at(decorators, subelt_type,
1738                      elm_item, LIR_OprFact::intConst(sub_offset), result,
1739                      NULL, NULL);
1740 
1741   if (field->is_null_free()) {
1742     assert(field->type()->as_inline_klass()->is_loaded(), "Must be");
1743     LabelObj* L_end = new LabelObj();
1744     __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(NULL));
1745     __ branch(lir_cond_notEqual, L_end->label());
1746     set_in_conditional_code(true);
1747     Constant* default_value = new Constant(new InstanceConstant(field->type()->as_inline_klass()->default_instance()));
1748     if (default_value->is_pinned()) {
1749       __ move(LIR_OprFact::value_type(default_value->type()), result);
1750     } else {
1751       __ move(load_constant(default_value), result);
1752     }
1753     __ branch_destination(L_end->label());
1754     set_in_conditional_code(false);
1755   }
1756 }
1757 
1758 void LIRGenerator::access_flattened_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item,
1759                                           ciField* field, int sub_offset) {
1760   assert(sub_offset == 0 || field != NULL, "Sanity check");
1761 
1762   // Find the starting address of the source (inside the array)
1763   LIR_Opr elm_op = get_and_load_element_address(array, index);
1764 
1765   ciInlineKlass* elem_klass = NULL;
1766   if (field != NULL) {
1767     elem_klass = field->type()->as_inline_klass();
1768   } else {
1769     elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
1770   }
1771   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1772     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1773     assert(!inner_field->is_flattened(), "flattened fields must have been expanded");
1774     int obj_offset = inner_field->offset();
1775     int elm_offset = obj_offset - elem_klass->first_field_offset() + sub_offset; // object header is not stored in array.
1776     BasicType field_type = inner_field->type()->basic_type();
1777 
1778     // Types which are smaller than int are still passed in an int register.
1779     BasicType reg_type = field_type;
1780     switch (reg_type) {
1781     case T_BYTE:
1782     case T_BOOLEAN:
1783     case T_SHORT:
1784     case T_CHAR:
1785       reg_type = T_INT;
1786       break;
1787     default:
1788       break;
1789     }
1790 
1791     LIR_Opr temp = new_register(reg_type);
1792     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1793     LIRItem elm_item(elm_resolved_addr, this);
1794 
1795     DecoratorSet decorators = IN_HEAP;
1796     if (is_load) {
1797       access_load_at(decorators, field_type,
1798                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1799                      NULL, NULL);
1800       access_store_at(decorators, field_type,
1801                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1802                       NULL, NULL);
1803     } else {
1804       access_load_at(decorators, field_type,
1805                      obj_item, LIR_OprFact::intConst(obj_offset), temp,
1806                      NULL, NULL);
1807       access_store_at(decorators, field_type,
1808                       elm_item, LIR_OprFact::intConst(elm_offset), temp,
1809                       NULL, NULL);
1810     }
1811   }
1812 }
1813 
1814 void LIRGenerator::check_flattened_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) {
1815   LIR_Opr tmp = new_register(T_METADATA);
1816   __ check_flattened_array(array, value, tmp, slow_path);
1817 }
1818 
1819 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) {
1820   LabelObj* L_end = new LabelObj();
1821   LIR_Opr tmp = new_register(T_METADATA);
1822   __ check_null_free_array(array.result(), tmp);
1823   __ branch(lir_cond_equal, L_end->label());
1824   __ null_check(value.result(), info);
1825   __ branch_destination(L_end->label());
1826 }
1827 
1828 bool LIRGenerator::needs_flattened_array_store_check(StoreIndexed* x) {
1829   if (x->elt_type() == T_OBJECT && x->array()->maybe_flattened_array()) {
1830     ciType* type = x->value()->declared_type();
1831     if (type != NULL && type->is_klass()) {
1832       ciKlass* klass = type->as_klass();
1833       if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->flatten_array())) {
1834         // This is known to be a non-flattened object. If the array is flattened,
1835         // it will be caught by the code generated by array_store_check().
1836         return false;
1837       }
1838     }
1839     // We're not 100% sure, so let's do the flattened_array_store_check.
1840     return true;
1841   }
1842   return false;
1843 }
1844 
1845 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) {
1846   return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array();
1847 }
1848 
1849 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1850   assert(x->is_pinned(),"");
1851   assert(x->elt_type() != T_ARRAY, "never used");
1852   bool is_loaded_flattened_array = x->array()->is_loaded_flattened_array();
1853   bool needs_range_check = x->compute_needs_range_check();
1854   bool use_length = x->length() != NULL;
1855   bool obj_store = is_reference_type(x->elt_type());
1856   bool needs_store_check = obj_store && !(is_loaded_flattened_array && x->is_exact_flattened_array_store()) &&
1857                                         (x->value()->as_Constant() == NULL ||
1858                                          !get_jobject_constant(x->value())->is_null_object());
1859 
1860   LIRItem array(x->array(), this);
1861   LIRItem index(x->index(), this);
1862   LIRItem value(x->value(), this);
1863   LIRItem length(this);
1864 
1865   array.load_item();
1866   index.load_nonconstant();
1867 
1868   if (use_length && needs_range_check) {
1869     length.set_instruction(x->length());
1870     length.load_item();
1871   }
1872 
1873   if (needs_store_check || x->check_boolean()
1874       || is_loaded_flattened_array || needs_flattened_array_store_check(x) || needs_null_free_array_store_check(x)) {
1875     value.load_item();
1876   } else {
1877     value.load_for_store(x->elt_type());
1878   }
1879 
1880   set_no_result(x);
1881 
1882   // the CodeEmitInfo must be duplicated for each different
1883   // LIR-instruction because spilling can occur anywhere between two
1884   // instructions and so the debug information must be different
1885   CodeEmitInfo* range_check_info = state_for(x);
1886   CodeEmitInfo* null_check_info = NULL;
1887   if (x->needs_null_check()) {
1888     null_check_info = new CodeEmitInfo(range_check_info);
1889   }
1890 
1891   if (GenerateRangeChecks && needs_range_check) {
1892     if (use_length) {
1893       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1894       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1895     } else {
1896       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1897       // range_check also does the null check
1898       null_check_info = NULL;
1899     }
1900   }
1901 
1902   if (x->should_profile()) {
1903     if (x->array()->is_loaded_flattened_array()) {
1904       // No need to profile a store to a flattened array of known type. This can happen if
1905       // the type only became known after optimizations (for example, after the PhiSimplifier).
1906       x->set_should_profile(false);
1907     } else {
1908       ciMethodData* md = NULL;
1909       ciArrayLoadStoreData* load_store = NULL;
1910       profile_array_type(x, md, load_store);
1911       if (x->array()->maybe_null_free_array()) {
1912         profile_null_free_array(array, md, load_store);
1913       }
1914       profile_element_type(x->value(), md, load_store);
1915     }
1916   }
1917 
1918   if (GenerateArrayStoreCheck && needs_store_check) {
1919     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1920     array_store_check(value.result(), array.result(), store_check_info, NULL, -1);
1921   }
1922 
1923   if (is_loaded_flattened_array) {
1924     if (!x->value()->is_null_free()) {
1925       __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1926     }
1927     // If array element is an empty inline type, no need to copy anything
1928     if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
1929       access_flattened_array(false, array, index, value);
1930     }
1931   } else {
1932     StoreFlattenedArrayStub* slow_path = NULL;
1933 
1934     if (needs_flattened_array_store_check(x)) {
1935       // Check if we indeed have a flattened array
1936       index.load_item();
1937       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before()));
1938       check_flattened_array(array.result(), value.result(), slow_path);
1939       set_in_conditional_code(true);
1940     } else if (needs_null_free_array_store_check(x)) {
1941       CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1942       check_null_free_array(array, value, info);
1943     }
1944 
1945     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1946     if (x->check_boolean()) {
1947       decorators |= C1_MASK_BOOLEAN;
1948     }
1949 
1950     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1951                     NULL, null_check_info);
1952     if (slow_path != NULL) {
1953       __ branch_destination(slow_path->continuation());
1954       set_in_conditional_code(false);
1955     }
1956   }
1957 }
1958 
1959 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1960                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1961                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1962   decorators |= ACCESS_READ;
1963   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1964   if (access.is_raw()) {
1965     _barrier_set->BarrierSetC1::load_at(access, result);
1966   } else {
1967     _barrier_set->load_at(access, result);
1968   }
1969 }
1970 
1971 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1972                                LIR_Opr addr, LIR_Opr result) {
1973   decorators |= ACCESS_READ;
1974   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1975   access.set_resolved_addr(addr);
1976   if (access.is_raw()) {
1977     _barrier_set->BarrierSetC1::load(access, result);
1978   } else {
1979     _barrier_set->load(access, result);
1980   }
1981 }
1982 
1983 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1984                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1985                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1986   decorators |= ACCESS_WRITE;
1987   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1988   if (access.is_raw()) {
1989     _barrier_set->BarrierSetC1::store_at(access, value);
1990   } else {
1991     _barrier_set->store_at(access, value);
1992   }
1993 }
1994 
1995 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1996                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1997   decorators |= ACCESS_READ;
1998   decorators |= ACCESS_WRITE;
1999   // Atomic operations are SEQ_CST by default
2000   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2001   LIRAccess access(this, decorators, base, offset, type);
2002   if (access.is_raw()) {
2003     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
2004   } else {
2005     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
2006   }
2007 }
2008 
2009 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
2010                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
2011   decorators |= ACCESS_READ;
2012   decorators |= ACCESS_WRITE;
2013   // Atomic operations are SEQ_CST by default
2014   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2015   LIRAccess access(this, decorators, base, offset, type);
2016   if (access.is_raw()) {
2017     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
2018   } else {
2019     return _barrier_set->atomic_xchg_at(access, value);
2020   }
2021 }
2022 
2023 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
2024                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
2025   decorators |= ACCESS_READ;
2026   decorators |= ACCESS_WRITE;
2027   // Atomic operations are SEQ_CST by default
2028   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2029   LIRAccess access(this, decorators, base, offset, type);
2030   if (access.is_raw()) {
2031     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
2032   } else {
2033     return _barrier_set->atomic_add_at(access, value);
2034   }
2035 }
2036 
2037 bool LIRGenerator::inline_type_field_access_prolog(AccessField* x) {
2038   ciField* field = x->field();
2039   assert(!field->is_flattened(), "Flattened field access should have been expanded");
2040   if (!field->is_null_free()) {
2041     return true; // Not an inline type field
2042   }
2043   // Deoptimize if the access is non-static and requires patching (holder not loaded
2044   // or not accessible) because then we only have partial field information and the
2045   // field could be flattened (see ciField constructor).
2046   bool could_be_flat = !x->is_static() && x->needs_patching();
2047   // Deoptimize if we load from a static field with an uninitialized type because we
2048   // need to throw an exception if initialization of the type failed.
2049   bool not_initialized = x->is_static() && x->as_LoadField() != NULL &&
2050       !field->type()->as_instance_klass()->is_initialized();
2051   if (could_be_flat || not_initialized) {
2052     CodeEmitInfo* info = state_for(x, x->state_before());
2053     CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
2054                                         Deoptimization::Reason_unloaded,
2055                                         Deoptimization::Action_make_not_entrant);
2056     __ jump(stub);
2057     return false;
2058   }
2059   return true;
2060 }
2061 
2062 void LIRGenerator::do_LoadField(LoadField* x) {
2063   bool needs_patching = x->needs_patching();
2064   bool is_volatile = x->field()->is_volatile();
2065   BasicType field_type = x->field_type();
2066 
2067   CodeEmitInfo* info = NULL;
2068   if (needs_patching) {
2069     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
2070     info = state_for(x, x->state_before());
2071   } else if (x->needs_null_check()) {
2072     NullCheck* nc = x->explicit_null_check();
2073     if (nc == NULL) {
2074       info = state_for(x);
2075     } else {
2076       info = state_for(nc);
2077     }
2078   }
2079 
2080   LIRItem object(x->obj(), this);
2081 
2082   object.load_item();
2083 
2084 #ifndef PRODUCT
2085   if (PrintNotLoaded && needs_patching) {
2086     tty->print_cr("   ###class not loaded at load_%s bci %d",
2087                   x->is_static() ?  "static" : "field", x->printable_bci());
2088   }
2089 #endif
2090 
2091   if (!inline_type_field_access_prolog(x)) {
2092     // Field load will always deopt due to unloaded field or holder klass
2093     LIR_Opr result = rlock_result(x, field_type);
2094     __ move(LIR_OprFact::oopConst(NULL), result);
2095     return;
2096   }
2097 
2098   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
2099   if (x->needs_null_check() &&
2100       (needs_patching ||
2101        MacroAssembler::needs_explicit_null_check(x->offset()) ||
2102        stress_deopt)) {
2103     LIR_Opr obj = object.result();
2104     if (stress_deopt) {
2105       obj = new_register(T_OBJECT);
2106       __ move(LIR_OprFact::oopConst(NULL), obj);
2107     }
2108     // Emit an explicit null check because the offset is too large.
2109     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
2110     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
2111     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
2112   }
2113 
2114   DecoratorSet decorators = IN_HEAP;
2115   if (is_volatile) {
2116     decorators |= MO_SEQ_CST;
2117   }
2118   if (needs_patching) {
2119     decorators |= C1_NEEDS_PATCHING;
2120   }
2121 
2122   LIR_Opr result = rlock_result(x, field_type);
2123   access_load_at(decorators, field_type,
2124                  object, LIR_OprFact::intConst(x->offset()), result,
2125                  info ? new CodeEmitInfo(info) : NULL, info);
2126 
2127   ciField* field = x->field();
2128   if (field->is_null_free()) {
2129     // Load from non-flattened inline type field requires
2130     // a null check to replace null with the default value.
2131     ciInstanceKlass* holder = field->holder();
2132     if (field->is_static() && holder->is_loaded()) {
2133       ciObject* val = holder->java_mirror()->field_value(field).as_object();
2134       if (!val->is_null_object()) {
2135         // Static field is initialized, we don need to perform a null check.
2136         return;
2137       }
2138     }
2139     LabelObj* L_end = new LabelObj();
2140     __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(NULL));
2141     __ branch(lir_cond_notEqual, L_end->label());
2142     set_in_conditional_code(true);
2143     ciInlineKlass* inline_klass = field->type()->as_inline_klass();
2144     Constant* default_value = new Constant(new InstanceConstant(inline_klass->default_instance()));
2145     if (default_value->is_pinned()) {
2146       __ move(LIR_OprFact::value_type(default_value->type()), result);
2147     } else {
2148       __ move(load_constant(default_value), result);
2149     }
2150     __ branch_destination(L_end->label());
2151     set_in_conditional_code(false);
2152   }
2153 }
2154 
2155 // int/long jdk.internal.util.Preconditions.checkIndex
2156 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
2157   assert(x->number_of_arguments() == 3, "wrong type");
2158   LIRItem index(x->argument_at(0), this);
2159   LIRItem length(x->argument_at(1), this);
2160   LIRItem oobef(x->argument_at(2), this);
2161 
2162   index.load_item();
2163   length.load_item();
2164   oobef.load_item();
2165 
2166   LIR_Opr result = rlock_result(x);
2167   // x->state() is created from copy_state_for_exception, it does not contains arguments
2168   // we should prepare them before entering into interpreter mode due to deoptimization.
2169   ValueStack* state = x->state();
2170   for (int i = 0; i < x->number_of_arguments(); i++) {
2171     Value arg = x->argument_at(i);
2172     state->push(arg->type(), arg);
2173   }
2174   CodeEmitInfo* info = state_for(x, state);
2175 
2176   LIR_Opr len = length.result();
2177   LIR_Opr zero = NULL;
2178   if (type == T_INT) {
2179     zero = LIR_OprFact::intConst(0);
2180     if (length.result()->is_constant()){
2181       len = LIR_OprFact::intConst(length.result()->as_jint());
2182     }
2183   } else {
2184     assert(type == T_LONG, "sanity check");
2185     zero = LIR_OprFact::longConst(0);
2186     if (length.result()->is_constant()){
2187       len = LIR_OprFact::longConst(length.result()->as_jlong());
2188     }
2189   }
2190   // C1 can not handle the case that comparing index with constant value while condition
2191   // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
2192   LIR_Opr zero_reg = new_register(type);
2193   __ move(zero, zero_reg);
2194 #if defined(X86) && !defined(_LP64)
2195   // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
2196   LIR_Opr index_copy = new_register(index.type());
2197   // index >= 0
2198   __ move(index.result(), index_copy);
2199   __ cmp(lir_cond_less, index_copy, zero_reg);
2200   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2201                                                     Deoptimization::Action_make_not_entrant));
2202   // index < length
2203   __ move(index.result(), index_copy);
2204   __ cmp(lir_cond_greaterEqual, index_copy, len);
2205   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2206                                                             Deoptimization::Action_make_not_entrant));
2207 #else
2208   // index >= 0
2209   __ cmp(lir_cond_less, index.result(), zero_reg);
2210   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2211                                                     Deoptimization::Action_make_not_entrant));
2212   // index < length
2213   __ cmp(lir_cond_greaterEqual, index.result(), len);
2214   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
2215                                                             Deoptimization::Action_make_not_entrant));
2216 #endif
2217   __ move(index.result(), result);
2218 }
2219 
2220 //------------------------array access--------------------------------------
2221 
2222 
2223 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
2224   LIRItem array(x->array(), this);
2225   array.load_item();
2226   LIR_Opr reg = rlock_result(x);
2227 
2228   CodeEmitInfo* info = NULL;
2229   if (x->needs_null_check()) {
2230     NullCheck* nc = x->explicit_null_check();
2231     if (nc == NULL) {
2232       info = state_for(x);
2233     } else {
2234       info = state_for(nc);
2235     }
2236     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
2237       LIR_Opr obj = new_register(T_OBJECT);
2238       __ move(LIR_OprFact::oopConst(NULL), obj);
2239       __ null_check(obj, new CodeEmitInfo(info));
2240     }
2241   }
2242   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
2243 }
2244 
2245 
2246 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
2247   bool use_length = x->length() != NULL;
2248   LIRItem array(x->array(), this);
2249   LIRItem index(x->index(), this);
2250   LIRItem length(this);
2251   bool needs_range_check = x->compute_needs_range_check();
2252 
2253   if (use_length && needs_range_check) {
2254     length.set_instruction(x->length());
2255     length.load_item();
2256   }
2257 
2258   array.load_item();
2259   if (index.is_constant() && can_inline_as_constant(x->index())) {
2260     // let it be a constant
2261     index.dont_load_item();
2262   } else {
2263     index.load_item();
2264   }
2265 
2266   CodeEmitInfo* range_check_info = state_for(x);
2267   CodeEmitInfo* null_check_info = NULL;
2268   if (x->needs_null_check()) {
2269     NullCheck* nc = x->explicit_null_check();
2270     if (nc != NULL) {
2271       null_check_info = state_for(nc);
2272     } else {
2273       null_check_info = range_check_info;
2274     }
2275     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2276       LIR_Opr obj = new_register(T_OBJECT);
2277       __ move(LIR_OprFact::oopConst(NULL), obj);
2278       __ null_check(obj, new CodeEmitInfo(null_check_info));
2279     }
2280   }
2281 
2282   if (GenerateRangeChecks && needs_range_check) {
2283     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2284       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2285     } else if (use_length) {
2286       // TODO: use a (modified) version of array_range_check that does not require a
2287       //       constant length to be loaded to a register
2288       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2289       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2290     } else {
2291       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2292       // The range check performs the null check, so clear it out for the load
2293       null_check_info = NULL;
2294     }
2295   }
2296 
2297   ciMethodData* md = NULL;
2298   ciArrayLoadStoreData* load_store = NULL;
2299   if (x->should_profile()) {
2300     if (x->array()->is_loaded_flattened_array()) {
2301       // No need to profile a load from a flattened array of known type. This can happen if
2302       // the type only became known after optimizations (for example, after the PhiSimplifier).
2303       x->set_should_profile(false);
2304     } else {
2305       profile_array_type(x, md, load_store);
2306     }
2307   }
2308 
2309   Value element;
2310   if (x->vt() != NULL) {
2311     assert(x->array()->is_loaded_flattened_array(), "must be");
2312     // Find the destination address (of the NewInlineTypeInstance).
2313     LIRItem obj_item(x->vt(), this);
2314 
2315     access_flattened_array(true, array, index, obj_item,
2316                            x->delayed() == NULL ? 0 : x->delayed()->field(),
2317                            x->delayed() == NULL ? 0 : x->delayed()->offset());
2318     set_no_result(x);
2319   } else if (x->delayed() != NULL) {
2320     assert(x->array()->is_loaded_flattened_array(), "must be");
2321     LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type());
2322     access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset());
2323   } else if (x->array() != NULL && x->array()->is_loaded_flattened_array() &&
2324              x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
2325     // Load the default instance instead of reading the element
2326     ciInlineKlass* elem_klass = x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
2327     LIR_Opr result = rlock_result(x, x->elt_type());
2328     Constant* default_value = new Constant(new InstanceConstant(elem_klass->default_instance()));
2329     if (default_value->is_pinned()) {
2330       __ move(LIR_OprFact::value_type(default_value->type()), result);
2331     } else {
2332       __ move(load_constant(default_value), result);
2333     }
2334   } else {
2335     LIR_Opr result = rlock_result(x, x->elt_type());
2336     LoadFlattenedArrayStub* slow_path = NULL;
2337 
2338     if (x->should_profile() && x->array()->maybe_null_free_array()) {
2339       profile_null_free_array(array, md, load_store);
2340     }
2341 
2342     if (x->elt_type() == T_OBJECT && x->array()->maybe_flattened_array()) {
2343       assert(x->delayed() == NULL, "Delayed LoadIndexed only apply to loaded_flattened_arrays");
2344       index.load_item();
2345       // if we are loading from flattened array, load it using a runtime call
2346       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before()));
2347       check_flattened_array(array.result(), LIR_OprFact::illegalOpr, slow_path);
2348       set_in_conditional_code(true);
2349     }
2350 
2351     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2352     access_load_at(decorators, x->elt_type(),
2353                    array, index.result(), result,
2354                    NULL, null_check_info);
2355 
2356     if (slow_path != NULL) {
2357       __ branch_destination(slow_path->continuation());
2358       set_in_conditional_code(false);
2359     }
2360 
2361     element = x;
2362   }
2363 
2364   if (x->should_profile()) {
2365     profile_element_type(element, md, load_store);
2366   }
2367 }
2368 
2369 void LIRGenerator::do_Deoptimize(Deoptimize* x) {
2370   // This happens only when a class X uses the withfield/defaultvalue bytecode
2371   // to refer to an inline class V, where V has not yet been loaded/resolved.
2372   // This is not a common case. Let's just deoptimize.
2373   CodeEmitInfo* info = state_for(x, x->state_before());
2374   CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
2375                                       Deoptimization::Reason_unloaded,
2376                                       Deoptimization::Action_make_not_entrant);
2377   __ jump(stub);
2378   LIR_Opr reg = rlock_result(x, T_OBJECT);
2379   __ move(LIR_OprFact::oopConst(NULL), reg);
2380 }
2381 
2382 void LIRGenerator::do_NullCheck(NullCheck* x) {
2383   if (x->can_trap()) {
2384     LIRItem value(x->obj(), this);
2385     value.load_item();
2386     CodeEmitInfo* info = state_for(x);
2387     __ null_check(value.result(), info);
2388   }
2389 }
2390 
2391 
2392 void LIRGenerator::do_TypeCast(TypeCast* x) {
2393   LIRItem value(x->obj(), this);
2394   value.load_item();
2395   // the result is the same as from the node we are casting
2396   set_result(x, value.result());
2397 }
2398 
2399 
2400 void LIRGenerator::do_Throw(Throw* x) {
2401   LIRItem exception(x->exception(), this);
2402   exception.load_item();
2403   set_no_result(x);
2404   LIR_Opr exception_opr = exception.result();
2405   CodeEmitInfo* info = state_for(x, x->state());
2406 
2407 #ifndef PRODUCT
2408   if (PrintC1Statistics) {
2409     increment_counter(Runtime1::throw_count_address(), T_INT);
2410   }
2411 #endif
2412 
2413   // check if the instruction has an xhandler in any of the nested scopes
2414   bool unwind = false;
2415   if (info->exception_handlers()->length() == 0) {
2416     // this throw is not inside an xhandler
2417     unwind = true;
2418   } else {
2419     // get some idea of the throw type
2420     bool type_is_exact = true;
2421     ciType* throw_type = x->exception()->exact_type();
2422     if (throw_type == NULL) {
2423       type_is_exact = false;
2424       throw_type = x->exception()->declared_type();
2425     }
2426     if (throw_type != NULL && throw_type->is_instance_klass()) {
2427       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2428       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2429     }
2430   }
2431 
2432   // do null check before moving exception oop into fixed register
2433   // to avoid a fixed interval with an oop during the null check.
2434   // Use a copy of the CodeEmitInfo because debug information is
2435   // different for null_check and throw.
2436   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2437     // if the exception object wasn't created using new then it might be null.
2438     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2439   }
2440 
2441   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2442     // we need to go through the exception lookup path to get JVMTI
2443     // notification done
2444     unwind = false;
2445   }
2446 
2447   // move exception oop into fixed register
2448   __ move(exception_opr, exceptionOopOpr());
2449 
2450   if (unwind) {
2451     __ unwind_exception(exceptionOopOpr());
2452   } else {
2453     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2454   }
2455 }
2456 
2457 
2458 void LIRGenerator::do_RoundFP(RoundFP* x) {
2459   assert(strict_fp_requires_explicit_rounding, "not required");
2460 
2461   LIRItem input(x->input(), this);
2462   input.load_item();
2463   LIR_Opr input_opr = input.result();
2464   assert(input_opr->is_register(), "why round if value is not in a register?");
2465   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2466   if (input_opr->is_single_fpu()) {
2467     set_result(x, round_item(input_opr)); // This code path not currently taken
2468   } else {
2469     LIR_Opr result = new_register(T_DOUBLE);
2470     set_vreg_flag(result, must_start_in_memory);
2471     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2472     set_result(x, result);
2473   }
2474 }
2475 
2476 
2477 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2478   BasicType type = x->basic_type();
2479   LIRItem src(x->object(), this);
2480   LIRItem off(x->offset(), this);
2481 
2482   off.load_item();
2483   src.load_item();
2484 
2485   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2486 
2487   if (x->is_volatile()) {
2488     decorators |= MO_SEQ_CST;
2489   }
2490   if (type == T_BOOLEAN) {
2491     decorators |= C1_MASK_BOOLEAN;
2492   }
2493   if (is_reference_type(type)) {
2494     decorators |= ON_UNKNOWN_OOP_REF;
2495   }
2496 
2497   LIR_Opr result = rlock_result(x, type);
2498   if (!x->is_raw()) {
2499     access_load_at(decorators, type, src, off.result(), result);
2500   } else {
2501     // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2502     // It reads the value from [src + offset] directly.
2503 #ifdef _LP64
2504     LIR_Opr offset = new_register(T_LONG);
2505     __ convert(Bytecodes::_i2l, off.result(), offset);
2506 #else
2507     LIR_Opr offset = off.result();
2508 #endif
2509     LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2510     if (is_reference_type(type)) {
2511       __ move_wide(addr, result);
2512     } else {
2513       __ move(addr, result);
2514     }
2515   }
2516 }
2517 
2518 
2519 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2520   BasicType type = x->basic_type();
2521   LIRItem src(x->object(), this);
2522   LIRItem off(x->offset(), this);
2523   LIRItem data(x->value(), this);
2524 
2525   src.load_item();
2526   if (type == T_BOOLEAN || type == T_BYTE) {
2527     data.load_byte_item();
2528   } else {
2529     data.load_item();
2530   }
2531   off.load_item();
2532 
2533   set_no_result(x);
2534 
2535   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2536   if (is_reference_type(type)) {
2537     decorators |= ON_UNKNOWN_OOP_REF;
2538   }
2539   if (x->is_volatile()) {
2540     decorators |= MO_SEQ_CST;
2541   }
2542   access_store_at(decorators, type, src, off.result(), data.result());
2543 }
2544 
2545 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2546   BasicType type = x->basic_type();
2547   LIRItem src(x->object(), this);
2548   LIRItem off(x->offset(), this);
2549   LIRItem value(x->value(), this);
2550 
2551   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2552 
2553   if (is_reference_type(type)) {
2554     decorators |= ON_UNKNOWN_OOP_REF;
2555   }
2556 
2557   LIR_Opr result;
2558   if (x->is_add()) {
2559     result = access_atomic_add_at(decorators, type, src, off, value);
2560   } else {
2561     result = access_atomic_xchg_at(decorators, type, src, off, value);
2562   }
2563   set_result(x, result);
2564 }
2565 
2566 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2567   int lng = x->length();
2568 
2569   for (int i = 0; i < lng; i++) {
2570     C1SwitchRange* one_range = x->at(i);
2571     int low_key = one_range->low_key();
2572     int high_key = one_range->high_key();
2573     BlockBegin* dest = one_range->sux();
2574     if (low_key == high_key) {
2575       __ cmp(lir_cond_equal, value, low_key);
2576       __ branch(lir_cond_equal, dest);
2577     } else if (high_key - low_key == 1) {
2578       __ cmp(lir_cond_equal, value, low_key);
2579       __ branch(lir_cond_equal, dest);
2580       __ cmp(lir_cond_equal, value, high_key);
2581       __ branch(lir_cond_equal, dest);
2582     } else {
2583       LabelObj* L = new LabelObj();
2584       __ cmp(lir_cond_less, value, low_key);
2585       __ branch(lir_cond_less, L->label());
2586       __ cmp(lir_cond_lessEqual, value, high_key);
2587       __ branch(lir_cond_lessEqual, dest);
2588       __ branch_destination(L->label());
2589     }
2590   }
2591   __ jump(default_sux);
2592 }
2593 
2594 
2595 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2596   SwitchRangeList* res = new SwitchRangeList();
2597   int len = x->length();
2598   if (len > 0) {
2599     BlockBegin* sux = x->sux_at(0);
2600     int key = x->lo_key();
2601     BlockBegin* default_sux = x->default_sux();
2602     C1SwitchRange* range = new C1SwitchRange(key, sux);
2603     for (int i = 0; i < len; i++, key++) {
2604       BlockBegin* new_sux = x->sux_at(i);
2605       if (sux == new_sux) {
2606         // still in same range
2607         range->set_high_key(key);
2608       } else {
2609         // skip tests which explicitly dispatch to the default
2610         if (sux != default_sux) {
2611           res->append(range);
2612         }
2613         range = new C1SwitchRange(key, new_sux);
2614       }
2615       sux = new_sux;
2616     }
2617     if (res->length() == 0 || res->last() != range)  res->append(range);
2618   }
2619   return res;
2620 }
2621 
2622 
2623 // we expect the keys to be sorted by increasing value
2624 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2625   SwitchRangeList* res = new SwitchRangeList();
2626   int len = x->length();
2627   if (len > 0) {
2628     BlockBegin* default_sux = x->default_sux();
2629     int key = x->key_at(0);
2630     BlockBegin* sux = x->sux_at(0);
2631     C1SwitchRange* range = new C1SwitchRange(key, sux);
2632     for (int i = 1; i < len; i++) {
2633       int new_key = x->key_at(i);
2634       BlockBegin* new_sux = x->sux_at(i);
2635       if (key+1 == new_key && sux == new_sux) {
2636         // still in same range
2637         range->set_high_key(new_key);
2638       } else {
2639         // skip tests which explicitly dispatch to the default
2640         if (range->sux() != default_sux) {
2641           res->append(range);
2642         }
2643         range = new C1SwitchRange(new_key, new_sux);
2644       }
2645       key = new_key;
2646       sux = new_sux;
2647     }
2648     if (res->length() == 0 || res->last() != range)  res->append(range);
2649   }
2650   return res;
2651 }
2652 
2653 
2654 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2655   LIRItem tag(x->tag(), this);
2656   tag.load_item();
2657   set_no_result(x);
2658 
2659   if (x->is_safepoint()) {
2660     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2661   }
2662 
2663   // move values into phi locations
2664   move_to_phi(x->state());
2665 
2666   int lo_key = x->lo_key();
2667   int len = x->length();
2668   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2669   LIR_Opr value = tag.result();
2670 
2671   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2672     ciMethod* method = x->state()->scope()->method();
2673     ciMethodData* md = method->method_data_or_null();
2674     assert(md != NULL, "Sanity");
2675     ciProfileData* data = md->bci_to_data(x->state()->bci());
2676     assert(data != NULL, "must have profiling data");
2677     assert(data->is_MultiBranchData(), "bad profile data?");
2678     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2679     LIR_Opr md_reg = new_register(T_METADATA);
2680     __ metadata2reg(md->constant_encoding(), md_reg);
2681     LIR_Opr data_offset_reg = new_pointer_register();
2682     LIR_Opr tmp_reg = new_pointer_register();
2683 
2684     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2685     for (int i = 0; i < len; i++) {
2686       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2687       __ cmp(lir_cond_equal, value, i + lo_key);
2688       __ move(data_offset_reg, tmp_reg);
2689       __ cmove(lir_cond_equal,
2690                LIR_OprFact::intptrConst(count_offset),
2691                tmp_reg,
2692                data_offset_reg, T_INT);
2693     }
2694 
2695     LIR_Opr data_reg = new_pointer_register();
2696     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2697     __ move(data_addr, data_reg);
2698     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2699     __ move(data_reg, data_addr);
2700   }
2701 
2702   if (UseTableRanges) {
2703     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2704   } else {
2705     for (int i = 0; i < len; i++) {
2706       __ cmp(lir_cond_equal, value, i + lo_key);
2707       __ branch(lir_cond_equal, x->sux_at(i));
2708     }
2709     __ jump(x->default_sux());
2710   }
2711 }
2712 
2713 
2714 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2715   LIRItem tag(x->tag(), this);
2716   tag.load_item();
2717   set_no_result(x);
2718 
2719   if (x->is_safepoint()) {
2720     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2721   }
2722 
2723   // move values into phi locations
2724   move_to_phi(x->state());
2725 
2726   LIR_Opr value = tag.result();
2727   int len = x->length();
2728 
2729   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2730     ciMethod* method = x->state()->scope()->method();
2731     ciMethodData* md = method->method_data_or_null();
2732     assert(md != NULL, "Sanity");
2733     ciProfileData* data = md->bci_to_data(x->state()->bci());
2734     assert(data != NULL, "must have profiling data");
2735     assert(data->is_MultiBranchData(), "bad profile data?");
2736     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2737     LIR_Opr md_reg = new_register(T_METADATA);
2738     __ metadata2reg(md->constant_encoding(), md_reg);
2739     LIR_Opr data_offset_reg = new_pointer_register();
2740     LIR_Opr tmp_reg = new_pointer_register();
2741 
2742     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2743     for (int i = 0; i < len; i++) {
2744       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2745       __ cmp(lir_cond_equal, value, x->key_at(i));
2746       __ move(data_offset_reg, tmp_reg);
2747       __ cmove(lir_cond_equal,
2748                LIR_OprFact::intptrConst(count_offset),
2749                tmp_reg,
2750                data_offset_reg, T_INT);
2751     }
2752 
2753     LIR_Opr data_reg = new_pointer_register();
2754     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2755     __ move(data_addr, data_reg);
2756     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2757     __ move(data_reg, data_addr);
2758   }
2759 
2760   if (UseTableRanges) {
2761     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2762   } else {
2763     int len = x->length();
2764     for (int i = 0; i < len; i++) {
2765       __ cmp(lir_cond_equal, value, x->key_at(i));
2766       __ branch(lir_cond_equal, x->sux_at(i));
2767     }
2768     __ jump(x->default_sux());
2769   }
2770 }
2771 
2772 
2773 void LIRGenerator::do_Goto(Goto* x) {
2774   set_no_result(x);
2775 
2776   if (block()->next()->as_OsrEntry()) {
2777     // need to free up storage used for OSR entry point
2778     LIR_Opr osrBuffer = block()->next()->operand();
2779     BasicTypeList signature;
2780     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2781     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2782     __ move(osrBuffer, cc->args()->at(0));
2783     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2784                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2785   }
2786 
2787   if (x->is_safepoint()) {
2788     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2789 
2790     // increment backedge counter if needed
2791     CodeEmitInfo* info = state_for(x, state);
2792     increment_backedge_counter(info, x->profiled_bci());
2793     CodeEmitInfo* safepoint_info = state_for(x, state);
2794     __ safepoint(safepoint_poll_register(), safepoint_info);
2795   }
2796 
2797   // Gotos can be folded Ifs, handle this case.
2798   if (x->should_profile()) {
2799     ciMethod* method = x->profiled_method();
2800     assert(method != NULL, "method should be set if branch is profiled");
2801     ciMethodData* md = method->method_data_or_null();
2802     assert(md != NULL, "Sanity");
2803     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2804     assert(data != NULL, "must have profiling data");
2805     int offset;
2806     if (x->direction() == Goto::taken) {
2807       assert(data->is_BranchData(), "need BranchData for two-way branches");
2808       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2809     } else if (x->direction() == Goto::not_taken) {
2810       assert(data->is_BranchData(), "need BranchData for two-way branches");
2811       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2812     } else {
2813       assert(data->is_JumpData(), "need JumpData for branches");
2814       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2815     }
2816     LIR_Opr md_reg = new_register(T_METADATA);
2817     __ metadata2reg(md->constant_encoding(), md_reg);
2818 
2819     increment_counter(new LIR_Address(md_reg, offset,
2820                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2821   }
2822 
2823   // emit phi-instruction move after safepoint since this simplifies
2824   // describing the state as the safepoint.
2825   move_to_phi(x->state());
2826 
2827   __ jump(x->default_sux());
2828 }
2829 
2830 /**
2831  * Emit profiling code if needed for arguments, parameters, return value types
2832  *
2833  * @param md                    MDO the code will update at runtime
2834  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2835  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2836  * @param profiled_k            current profile
2837  * @param obj                   IR node for the object to be profiled
2838  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2839  *                              Set once we find an update to make and use for next ones.
2840  * @param not_null              true if we know obj cannot be null
2841  * @param signature_at_call_k   signature at call for obj
2842  * @param callee_signature_k    signature of callee for obj
2843  *                              at call and callee signatures differ at method handle call
2844  * @return                      the only klass we know will ever be seen at this profile point
2845  */
2846 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2847                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2848                                     ciKlass* callee_signature_k) {
2849   ciKlass* result = NULL;
2850   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2851   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2852   // known not to be null or null bit already set and already set to
2853   // unknown: nothing we can do to improve profiling
2854   if (!do_null && !do_update) {
2855     return result;
2856   }
2857 
2858   ciKlass* exact_klass = NULL;
2859   Compilation* comp = Compilation::current();
2860   if (do_update) {
2861     // try to find exact type, using CHA if possible, so that loading
2862     // the klass from the object can be avoided
2863     ciType* type = obj->exact_type();
2864     if (type == NULL) {
2865       type = obj->declared_type();
2866       type = comp->cha_exact_type(type);
2867     }
2868     assert(type == NULL || type->is_klass(), "type should be class");
2869     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2870 
2871     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2872   }
2873 
2874   if (!do_null && !do_update) {
2875     return result;
2876   }
2877 
2878   ciKlass* exact_signature_k = NULL;
2879   if (do_update && signature_at_call_k != NULL) {
2880     // Is the type from the signature exact (the only one possible)?
2881     exact_signature_k = signature_at_call_k->exact_klass();
2882     if (exact_signature_k == NULL) {
2883       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2884     } else {
2885       result = exact_signature_k;
2886       // Known statically. No need to emit any code: prevent
2887       // LIR_Assembler::emit_profile_type() from emitting useless code
2888       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2889     }
2890     // exact_klass and exact_signature_k can be both non NULL but
2891     // different if exact_klass is loaded after the ciObject for
2892     // exact_signature_k is created.
2893     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2894       // sometimes the type of the signature is better than the best type
2895       // the compiler has
2896       exact_klass = exact_signature_k;
2897     }
2898     if (callee_signature_k != NULL &&
2899         callee_signature_k != signature_at_call_k) {
2900       ciKlass* improved_klass = callee_signature_k->exact_klass();
2901       if (improved_klass == NULL) {
2902         improved_klass = comp->cha_exact_type(callee_signature_k);
2903       }
2904       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2905         exact_klass = exact_signature_k;
2906       }
2907     }
2908     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2909   }
2910 
2911   if (!do_null && !do_update) {
2912     return result;
2913   }
2914 
2915   if (mdp == LIR_OprFact::illegalOpr) {
2916     mdp = new_register(T_METADATA);
2917     __ metadata2reg(md->constant_encoding(), mdp);
2918     if (md_base_offset != 0) {
2919       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2920       mdp = new_pointer_register();
2921       __ leal(LIR_OprFact::address(base_type_address), mdp);
2922     }
2923   }
2924   LIRItem value(obj, this);
2925   value.load_item();
2926   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2927                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2928   return result;
2929 }
2930 
2931 // profile parameters on entry to the root of the compilation
2932 void LIRGenerator::profile_parameters(Base* x) {
2933   if (compilation()->profile_parameters()) {
2934     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2935     ciMethodData* md = scope()->method()->method_data_or_null();
2936     assert(md != NULL, "Sanity");
2937 
2938     if (md->parameters_type_data() != NULL) {
2939       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2940       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2941       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2942       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2943         LIR_Opr src = args->at(i);
2944         assert(!src->is_illegal(), "check");
2945         BasicType t = src->type();
2946         if (is_reference_type(t)) {
2947           intptr_t profiled_k = parameters->type(j);
2948           Local* local = x->state()->local_at(java_index)->as_Local();
2949           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2950                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2951                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2952           // If the profile is known statically set it once for all and do not emit any code
2953           if (exact != NULL) {
2954             md->set_parameter_type(j, exact);
2955           }
2956           j++;
2957         }
2958         java_index += type2size[t];
2959       }
2960     }
2961   }
2962 }
2963 
2964 void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) {
2965   assert(md != NULL && data != NULL, "should have been initialized");
2966   LIR_Opr mdp = new_register(T_METADATA);
2967   __ metadata2reg(md->constant_encoding(), mdp);
2968   LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE);
2969   LIR_Opr flags = new_register(T_INT);
2970   __ move(addr, flags);
2971   if (condition != lir_cond_always) {
2972     LIR_Opr update = new_register(T_INT);
2973     __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT);
2974   } else {
2975     __ logical_or(flags, LIR_OprFact::intConst(flag), flags);
2976   }
2977   __ store(flags, addr);
2978 }
2979 
2980 void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ciArrayLoadStoreData* load_store) {
2981   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2982   LabelObj* L_end = new LabelObj();
2983   LIR_Opr tmp = new_register(T_METADATA);
2984   __ check_null_free_array(array.result(), tmp);
2985 
2986   profile_flags(md, load_store, ArrayLoadStoreData::null_free_array_byte_constant(), lir_cond_equal);
2987 }
2988 
2989 void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ciArrayLoadStoreData*& load_store) {
2990   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2991   int bci = x->profiled_bci();
2992   md = x->profiled_method()->method_data();
2993   assert(md != NULL, "Sanity");
2994   ciProfileData* data = md->bci_to_data(bci);
2995   assert(data != NULL && data->is_ArrayLoadStoreData(), "incorrect profiling entry");
2996   load_store = (ciArrayLoadStoreData*)data;
2997   LIR_Opr mdp = LIR_OprFact::illegalOpr;
2998   profile_type(md, md->byte_offset_of_slot(load_store, ArrayLoadStoreData::array_offset()), 0,
2999                load_store->array()->type(), x->array(), mdp, true, NULL, NULL);
3000 }
3001 
3002 void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadStoreData* load_store) {
3003   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
3004   assert(md != NULL && load_store != NULL, "should have been initialized");
3005   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3006   profile_type(md, md->byte_offset_of_slot(load_store, ArrayLoadStoreData::element_offset()), 0,
3007                load_store->element()->type(), element, mdp, false, NULL, NULL);
3008 }
3009 
3010 void LIRGenerator::do_Base(Base* x) {
3011   __ std_entry(LIR_OprFact::illegalOpr);
3012   // Emit moves from physical registers / stack slots to virtual registers
3013   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3014   IRScope* irScope = compilation()->hir()->top_scope();
3015   int java_index = 0;
3016   for (int i = 0; i < args->length(); i++) {
3017     LIR_Opr src = args->at(i);
3018     assert(!src->is_illegal(), "check");
3019     BasicType t = src->type();
3020 
3021     // Types which are smaller than int are passed as int, so
3022     // correct the type which passed.
3023     switch (t) {
3024     case T_BYTE:
3025     case T_BOOLEAN:
3026     case T_SHORT:
3027     case T_CHAR:
3028       t = T_INT;
3029       break;
3030     default:
3031       break;
3032     }
3033 
3034     LIR_Opr dest = new_register(t);
3035     __ move(src, dest);
3036 
3037     // Assign new location to Local instruction for this local
3038     Local* local = x->state()->local_at(java_index)->as_Local();
3039     assert(local != NULL, "Locals for incoming arguments must have been created");
3040 #ifndef __SOFTFP__
3041     // The java calling convention passes double as long and float as int.
3042     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
3043 #endif // __SOFTFP__
3044     local->set_operand(dest);
3045     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
3046     java_index += type2size[t];
3047   }
3048 
3049   if (compilation()->env()->dtrace_method_probes()) {
3050     BasicTypeList signature;
3051     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3052     signature.append(T_METADATA); // Method*
3053     LIR_OprList* args = new LIR_OprList();
3054     args->append(getThreadPointer());
3055     LIR_Opr meth = new_register(T_METADATA);
3056     __ metadata2reg(method()->constant_encoding(), meth);
3057     args->append(meth);
3058     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
3059   }
3060 
3061   if (method()->is_synchronized()) {
3062     LIR_Opr obj;
3063     if (method()->is_static()) {
3064       obj = new_register(T_OBJECT);
3065       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
3066     } else {
3067       Local* receiver = x->state()->local_at(0)->as_Local();
3068       assert(receiver != NULL, "must already exist");
3069       obj = receiver->operand();
3070     }
3071     assert(obj->is_valid(), "must be valid");
3072 
3073     if (method()->is_synchronized() && GenerateSynchronizationCode) {
3074       LIR_Opr lock = syncLockOpr();
3075       __ load_stack_address_monitor(0, lock);
3076 
3077       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
3078       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
3079 
3080       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
3081       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
3082     }
3083   }
3084   if (compilation()->age_code()) {
3085     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
3086     decrement_age(info);
3087   }
3088   // increment invocation counters if needed
3089   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
3090     profile_parameters(x);
3091     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
3092     increment_invocation_counter(info);
3093   }
3094   if (method()->has_scalarized_args()) {
3095     // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments
3096     // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state.
3097     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
3098     CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none);
3099     __ append(new LIR_Op0(lir_check_orig_pc));
3100     __ branch(lir_cond_notEqual, deopt_stub);
3101   }
3102 
3103   // all blocks with a successor must end with an unconditional jump
3104   // to the successor even if they are consecutive
3105   __ jump(x->default_sux());
3106 }
3107 
3108 
3109 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
3110   // construct our frame and model the production of incoming pointer
3111   // to the OSR buffer.
3112   __ osr_entry(LIR_Assembler::osrBufferPointer());
3113   LIR_Opr result = rlock_result(x);
3114   __ move(LIR_Assembler::osrBufferPointer(), result);
3115 }
3116 
3117 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) {
3118   if (loc->is_register()) {
3119     param->load_item_force(loc);
3120   } else {
3121     LIR_Address* addr = loc->as_address_ptr();
3122     param->load_for_store(addr->type());
3123     assert(addr->type() != T_INLINE_TYPE, "not supported yet");
3124     if (addr->type() == T_OBJECT) {
3125       __ move_wide(param->result(), addr);
3126     } else {
3127       __ move(param->result(), addr);
3128     }
3129   }
3130 }
3131 
3132 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3133   assert(args->length() == arg_list->length(),
3134          "args=%d, arg_list=%d", args->length(), arg_list->length());
3135   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3136     LIRItem* param = args->at(i);
3137     LIR_Opr loc = arg_list->at(i);
3138     invoke_load_one_argument(param, loc);
3139   }
3140 
3141   if (x->has_receiver()) {
3142     LIRItem* receiver = args->at(0);
3143     LIR_Opr loc = arg_list->at(0);
3144     if (loc->is_register()) {
3145       receiver->load_item_force(loc);
3146     } else {
3147       assert(loc->is_address(), "just checking");
3148       receiver->load_for_store(T_OBJECT);
3149       __ move_wide(receiver->result(), loc->as_address_ptr());
3150     }
3151   }
3152 }
3153 
3154 
3155 // Visits all arguments, returns appropriate items without loading them
3156 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3157   LIRItemList* argument_items = new LIRItemList();
3158   if (x->has_receiver()) {
3159     LIRItem* receiver = new LIRItem(x->receiver(), this);
3160     argument_items->append(receiver);
3161   }
3162   for (int i = 0; i < x->number_of_arguments(); i++) {
3163     LIRItem* param = new LIRItem(x->argument_at(i), this);
3164     argument_items->append(param);
3165   }
3166   return argument_items;
3167 }
3168 
3169 
3170 // The invoke with receiver has following phases:
3171 //   a) traverse and load/lock receiver;
3172 //   b) traverse all arguments -> item-array (invoke_visit_argument)
3173 //   c) push receiver on stack
3174 //   d) load each of the items and push on stack
3175 //   e) unlock receiver
3176 //   f) move receiver into receiver-register %o0
3177 //   g) lock result registers and emit call operation
3178 //
3179 // Before issuing a call, we must spill-save all values on stack
3180 // that are in caller-save register. "spill-save" moves those registers
3181 // either in a free callee-save register or spills them if no free
3182 // callee save register is available.
3183 //
3184 // The problem is where to invoke spill-save.
3185 // - if invoked between e) and f), we may lock callee save
3186 //   register in "spill-save" that destroys the receiver register
3187 //   before f) is executed
3188 // - if we rearrange f) to be earlier (by loading %o0) it
3189 //   may destroy a value on the stack that is currently in %o0
3190 //   and is waiting to be spilled
3191 // - if we keep the receiver locked while doing spill-save,
3192 //   we cannot spill it as it is spill-locked
3193 //
3194 void LIRGenerator::do_Invoke(Invoke* x) {
3195   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
3196 
3197   LIR_OprList* arg_list = cc->args();
3198   LIRItemList* args = invoke_visit_arguments(x);
3199   LIR_Opr receiver = LIR_OprFact::illegalOpr;
3200 
3201   // setup result register
3202   LIR_Opr result_register = LIR_OprFact::illegalOpr;
3203   if (x->type() != voidType) {
3204     result_register = result_register_for(x->type());
3205   }
3206 
3207   CodeEmitInfo* info = state_for(x, x->state());
3208 
3209   invoke_load_arguments(x, args, arg_list);
3210 
3211   if (x->has_receiver()) {
3212     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3213     receiver = args->at(0)->result();
3214   }
3215 
3216   // emit invoke code
3217   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3218 
3219   // JSR 292
3220   // Preserve the SP over MethodHandle call sites, if needed.
3221   ciMethod* target = x->target();
3222   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3223                                   target->is_method_handle_intrinsic() ||
3224                                   target->is_compiled_lambda_form());
3225   if (is_method_handle_invoke) {
3226     info->set_is_method_handle_invoke(true);
3227     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3228         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3229     }
3230   }
3231 
3232   switch (x->code()) {
3233     case Bytecodes::_invokestatic:
3234       __ call_static(target, result_register,
3235                      SharedRuntime::get_resolve_static_call_stub(),
3236                      arg_list, info);
3237       break;
3238     case Bytecodes::_invokespecial:
3239     case Bytecodes::_invokevirtual:
3240     case Bytecodes::_invokeinterface:
3241       // for loaded and final (method or class) target we still produce an inline cache,
3242       // in order to be able to call mixed mode
3243       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3244         __ call_opt_virtual(target, receiver, result_register,
3245                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3246                             arg_list, info);
3247       } else {
3248         __ call_icvirtual(target, receiver, result_register,
3249                           SharedRuntime::get_resolve_virtual_call_stub(),
3250                           arg_list, info);
3251       }
3252       break;
3253     case Bytecodes::_invokedynamic: {
3254       __ call_dynamic(target, receiver, result_register,
3255                       SharedRuntime::get_resolve_static_call_stub(),
3256                       arg_list, info);
3257       break;
3258     }
3259     default:
3260       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3261       break;
3262   }
3263 
3264   // JSR 292
3265   // Restore the SP after MethodHandle call sites, if needed.
3266   if (is_method_handle_invoke
3267       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3268     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3269   }
3270 
3271   if (result_register->is_valid()) {
3272     LIR_Opr result = rlock_result(x);
3273     __ move(result_register, result);
3274   }
3275 }
3276 
3277 
3278 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3279   assert(x->number_of_arguments() == 1, "wrong type");
3280   LIRItem value       (x->argument_at(0), this);
3281   LIR_Opr reg = rlock_result(x);
3282   value.load_item();
3283   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3284   __ move(tmp, reg);
3285 }
3286 
3287 
3288 
3289 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3290 void LIRGenerator::do_IfOp(IfOp* x) {
3291 #ifdef ASSERT
3292   {
3293     ValueTag xtag = x->x()->type()->tag();
3294     ValueTag ttag = x->tval()->type()->tag();
3295     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3296     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3297     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3298   }
3299 #endif
3300 
3301   LIRItem left(x->x(), this);
3302   LIRItem right(x->y(), this);
3303   left.load_item();
3304   if (can_inline_as_constant(right.value()) && !x->substitutability_check()) {
3305     right.dont_load_item();
3306   } else {
3307     // substitutability_check() needs to use right as a base register.
3308     right.load_item();
3309   }
3310 
3311   LIRItem t_val(x->tval(), this);
3312   LIRItem f_val(x->fval(), this);
3313   t_val.dont_load_item();
3314   f_val.dont_load_item();
3315 
3316   if (x->substitutability_check()) {
3317     substitutability_check(x, left, right, t_val, f_val);
3318   } else {
3319     LIR_Opr reg = rlock_result(x);
3320     __ cmp(lir_cond(x->cond()), left.result(), right.result());
3321     __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3322   }
3323 }
3324 
3325 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) {
3326   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3327   bool is_acmpeq = (x->cond() == If::eql);
3328   LIR_Opr equal_result     = is_acmpeq ? t_val.result() : f_val.result();
3329   LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result();
3330   LIR_Opr result = rlock_result(x);
3331   CodeEmitInfo* info = state_for(x, x->state_before());
3332 
3333   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3334 }
3335 
3336 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) {
3337   LIR_Opr equal_result     = LIR_OprFact::intConst(1);
3338   LIR_Opr not_equal_result = LIR_OprFact::intConst(0);
3339   LIR_Opr result = new_register(T_INT);
3340   CodeEmitInfo* info = state_for(x, x->state_before());
3341 
3342   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3343 
3344   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3345   __ cmp(lir_cond(x->cond()), result, equal_result);
3346 }
3347 
3348 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right,
3349                                                  LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result,
3350                                                  CodeEmitInfo* info) {
3351   LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
3352   LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
3353   LIR_Opr left_klass_op = LIR_OprFact::illegalOpr;
3354   LIR_Opr right_klass_op = LIR_OprFact::illegalOpr;
3355 
3356   ciKlass* left_klass  = left_val ->as_loaded_klass_or_null();
3357   ciKlass* right_klass = right_val->as_loaded_klass_or_null();
3358 
3359   if ((left_klass == NULL || right_klass == NULL) ||// The klass is still unloaded, or came from a Phi node.
3360       !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) {
3361     init_temps_for_substitutability_check(tmp1, tmp2);
3362   }
3363 
3364   if (left_klass != NULL && left_klass->is_inlinetype() && left_klass == right_klass) {
3365     // No need to load klass -- the operands are statically known to be the same inline klass.
3366   } else {
3367     BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA;
3368     left_klass_op = new_register(t_klass);
3369     right_klass_op = new_register(t_klass);
3370   }
3371 
3372   CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info);
3373   __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result,
3374                             tmp1, tmp2,
3375                             left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path);
3376 }
3377 
3378 #ifdef JFR_HAVE_INTRINSICS
3379 
3380 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
3381   LabelObj* L_end = new LabelObj();
3382 
3383   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
3384   // meaning of these two is mixed up (see JDK-8026837).
3385   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3386                                            in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
3387                                            T_ADDRESS);
3388   LIR_Opr result = rlock_result(x);
3389   __ move(LIR_OprFact::oopConst(NULL), result);
3390   LIR_Opr jobj = new_register(T_METADATA);
3391   __ move_wide(jobj_addr, jobj);
3392   __ cmp(lir_cond_equal, jobj, LIR_OprFact::metadataConst(0));
3393   __ branch(lir_cond_equal, L_end->label());
3394 
3395   access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
3396 
3397   __ branch_destination(L_end->label());
3398 }
3399 
3400 #endif
3401 
3402 
3403 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3404   assert(x->number_of_arguments() == 0, "wrong type");
3405   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3406   BasicTypeList signature;
3407   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3408   LIR_Opr reg = result_register_for(x->type());
3409   __ call_runtime_leaf(routine, getThreadTemp(),
3410                        reg, new LIR_OprList());
3411   LIR_Opr result = rlock_result(x);
3412   __ move(reg, result);
3413 }
3414 
3415 
3416 
3417 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3418   switch (x->id()) {
3419   case vmIntrinsics::_intBitsToFloat      :
3420   case vmIntrinsics::_doubleToRawLongBits :
3421   case vmIntrinsics::_longBitsToDouble    :
3422   case vmIntrinsics::_floatToRawIntBits   : {
3423     do_FPIntrinsics(x);
3424     break;
3425   }
3426 
3427 #ifdef JFR_HAVE_INTRINSICS
3428   case vmIntrinsics::_getEventWriter:
3429     do_getEventWriter(x);
3430     break;
3431   case vmIntrinsics::_counterTime:
3432     do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
3433     break;
3434 #endif
3435 
3436   case vmIntrinsics::_currentTimeMillis:
3437     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3438     break;
3439 
3440   case vmIntrinsics::_nanoTime:
3441     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3442     break;
3443 
3444   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3445   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3446   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3447   case vmIntrinsics::_getModifiers:   do_getModifiers(x);  break;
3448   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3449   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3450   case vmIntrinsics::_getObjectSize:  do_getObjectSize(x); break;
3451 
3452   case vmIntrinsics::_dlog:           // fall through
3453   case vmIntrinsics::_dlog10:         // fall through
3454   case vmIntrinsics::_dabs:           // fall through
3455   case vmIntrinsics::_dsqrt:          // fall through
3456   case vmIntrinsics::_dtan:           // fall through
3457   case vmIntrinsics::_dsin :          // fall through
3458   case vmIntrinsics::_dcos :          // fall through
3459   case vmIntrinsics::_dexp :          // fall through
3460   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3461   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3462 
3463   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3464   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3465 
3466   case vmIntrinsics::_Preconditions_checkIndex:
3467     do_PreconditionsCheckIndex(x, T_INT);
3468     break;
3469   case vmIntrinsics::_Preconditions_checkLongIndex:
3470     do_PreconditionsCheckIndex(x, T_LONG);
3471     break;
3472 
3473   case vmIntrinsics::_compareAndSetReference:
3474     do_CompareAndSwap(x, objectType);
3475     break;
3476   case vmIntrinsics::_compareAndSetInt:
3477     do_CompareAndSwap(x, intType);
3478     break;
3479   case vmIntrinsics::_compareAndSetLong:
3480     do_CompareAndSwap(x, longType);
3481     break;
3482 
3483   case vmIntrinsics::_loadFence :
3484     __ membar_acquire();
3485     break;
3486   case vmIntrinsics::_storeFence:
3487     __ membar_release();
3488     break;
3489   case vmIntrinsics::_fullFence :
3490     __ membar();
3491     break;
3492   case vmIntrinsics::_onSpinWait:
3493     __ on_spin_wait();
3494     break;
3495   case vmIntrinsics::_Reference_get:
3496     do_Reference_get(x);
3497     break;
3498 
3499   case vmIntrinsics::_updateCRC32:
3500   case vmIntrinsics::_updateBytesCRC32:
3501   case vmIntrinsics::_updateByteBufferCRC32:
3502     do_update_CRC32(x);
3503     break;
3504 
3505   case vmIntrinsics::_updateBytesCRC32C:
3506   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3507     do_update_CRC32C(x);
3508     break;
3509 
3510   case vmIntrinsics::_vectorizedMismatch:
3511     do_vectorizedMismatch(x);
3512     break;
3513 
3514   case vmIntrinsics::_blackhole:
3515     do_blackhole(x);
3516     break;
3517 
3518   default: ShouldNotReachHere(); break;
3519   }
3520 }
3521 
3522 void LIRGenerator::profile_arguments(ProfileCall* x) {
3523   if (compilation()->profile_arguments()) {
3524     int bci = x->bci_of_invoke();
3525     ciMethodData* md = x->method()->method_data_or_null();
3526     assert(md != NULL, "Sanity");
3527     ciProfileData* data = md->bci_to_data(bci);
3528     if (data != NULL) {
3529       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3530           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3531         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3532         int base_offset = md->byte_offset_of_slot(data, extra);
3533         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3534         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3535 
3536         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3537         int start = 0;
3538         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3539         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3540           // first argument is not profiled at call (method handle invoke)
3541           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3542           start = 1;
3543         }
3544         ciSignature* callee_signature = x->callee()->signature();
3545         // method handle call to virtual method
3546         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3547         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3548 
3549         bool ignored_will_link;
3550         ciSignature* signature_at_call = NULL;
3551         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3552         ciSignatureStream signature_at_call_stream(signature_at_call);
3553 
3554         // if called through method handle invoke, some arguments may have been popped
3555         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3556           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3557           ciKlass* exact = profile_type(md, base_offset, off,
3558               args->type(i), x->profiled_arg_at(i+start), mdp,
3559               !x->arg_needs_null_check(i+start),
3560               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3561           if (exact != NULL) {
3562             md->set_argument_type(bci, i, exact);
3563           }
3564         }
3565       } else {
3566 #ifdef ASSERT
3567         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3568         int n = x->nb_profiled_args();
3569         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3570             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3571             "only at JSR292 bytecodes");
3572 #endif
3573       }
3574     }
3575   }
3576 }
3577 
3578 // profile parameters on entry to an inlined method
3579 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3580   if (compilation()->profile_parameters() && x->inlined()) {
3581     ciMethodData* md = x->callee()->method_data_or_null();
3582     if (md != NULL) {
3583       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3584       if (parameters_type_data != NULL) {
3585         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3586         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3587         bool has_receiver = !x->callee()->is_static();
3588         ciSignature* sig = x->callee()->signature();
3589         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3590         int i = 0; // to iterate on the Instructions
3591         Value arg = x->recv();
3592         bool not_null = false;
3593         int bci = x->bci_of_invoke();
3594         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3595         // The first parameter is the receiver so that's what we start
3596         // with if it exists. One exception is method handle call to
3597         // virtual method: the receiver is in the args list
3598         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3599           i = 1;
3600           arg = x->profiled_arg_at(0);
3601           not_null = !x->arg_needs_null_check(0);
3602         }
3603         int k = 0; // to iterate on the profile data
3604         for (;;) {
3605           intptr_t profiled_k = parameters->type(k);
3606           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3607                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3608                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3609           // If the profile is known statically set it once for all and do not emit any code
3610           if (exact != NULL) {
3611             md->set_parameter_type(k, exact);
3612           }
3613           k++;
3614           if (k >= parameters_type_data->number_of_parameters()) {
3615 #ifdef ASSERT
3616             int extra = 0;
3617             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3618                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3619                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3620               extra += 1;
3621             }
3622             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3623 #endif
3624             break;
3625           }
3626           arg = x->profiled_arg_at(i);
3627           not_null = !x->arg_needs_null_check(i);
3628           i++;
3629         }
3630       }
3631     }
3632   }
3633 }
3634 
3635 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3636   // Need recv in a temporary register so it interferes with the other temporaries
3637   LIR_Opr recv = LIR_OprFact::illegalOpr;
3638   LIR_Opr mdo = new_register(T_METADATA);
3639   // tmp is used to hold the counters on SPARC
3640   LIR_Opr tmp = new_pointer_register();
3641 
3642   if (x->nb_profiled_args() > 0) {
3643     profile_arguments(x);
3644   }
3645 
3646   // profile parameters on inlined method entry including receiver
3647   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3648     profile_parameters_at_call(x);
3649   }
3650 
3651   if (x->recv() != NULL) {
3652     LIRItem value(x->recv(), this);
3653     value.load_item();
3654     recv = new_register(T_OBJECT);
3655     __ move(value.result(), recv);
3656   }
3657   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3658 }
3659 
3660 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3661   int bci = x->bci_of_invoke();
3662   ciMethodData* md = x->method()->method_data_or_null();
3663   assert(md != NULL, "Sanity");
3664   ciProfileData* data = md->bci_to_data(bci);
3665   if (data != NULL) {
3666     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3667     ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3668     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3669 
3670     bool ignored_will_link;
3671     ciSignature* signature_at_call = NULL;
3672     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3673 
3674     // The offset within the MDO of the entry to update may be too large
3675     // to be used in load/store instructions on some platforms. So have
3676     // profile_type() compute the address of the profile in a register.
3677     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3678         ret->type(), x->ret(), mdp,
3679         !x->needs_null_check(),
3680         signature_at_call->return_type()->as_klass(),
3681         x->callee()->signature()->return_type()->as_klass());
3682     if (exact != NULL) {
3683       md->set_return_type(bci, exact);
3684     }
3685   }
3686 }
3687 
3688 bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) {
3689   ciKlass* klass = value->as_loaded_klass_or_null();
3690   if (klass != NULL) {
3691     if (klass->is_inlinetype()) {
3692       profile_flags(md, data, flag, lir_cond_always);
3693     } else if (klass->can_be_inline_klass()) {
3694       return false;
3695     }
3696   } else {
3697     return false;
3698   }
3699   return true;
3700 }
3701 
3702 
3703 void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) {
3704   ciMethod* method = x->method();
3705   assert(method != NULL, "method should be set if branch is profiled");
3706   ciMethodData* md = method->method_data_or_null();
3707   assert(md != NULL, "Sanity");
3708   ciProfileData* data = md->bci_to_data(x->bci());
3709   assert(data != NULL, "must have profiling data");
3710   assert(data->is_ACmpData(), "need BranchData for two-way branches");
3711   ciACmpData* acmp = (ciACmpData*)data;
3712   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3713   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0,
3714                acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), NULL, NULL);
3715   int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset());
3716   if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) {
3717     LIR_Opr mdp = new_register(T_METADATA);
3718     __ metadata2reg(md->constant_encoding(), mdp);
3719     LIRItem value(x->left(), this);
3720     value.load_item();
3721     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3722   }
3723   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()),
3724                in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()),
3725                acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), NULL, NULL);
3726   if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) {
3727     LIR_Opr mdp = new_register(T_METADATA);
3728     __ metadata2reg(md->constant_encoding(), mdp);
3729     LIRItem value(x->right(), this);
3730     value.load_item();
3731     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3732   }
3733 }
3734 
3735 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3736   // We can safely ignore accessors here, since c2 will inline them anyway,
3737   // accessors are also always mature.
3738   if (!x->inlinee()->is_accessor()) {
3739     CodeEmitInfo* info = state_for(x, x->state(), true);
3740     // Notify the runtime very infrequently only to take care of counter overflows
3741     int freq_log = Tier23InlineeNotifyFreqLog;
3742     double scale;
3743     if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3744       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3745     }
3746     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3747   }
3748 }
3749 
3750 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3751   if (compilation()->is_profiling()) {
3752 #if defined(X86) && !defined(_LP64)
3753     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3754     LIR_Opr left_copy = new_register(left->type());
3755     __ move(left, left_copy);
3756     __ cmp(cond, left_copy, right);
3757 #else
3758     __ cmp(cond, left, right);
3759 #endif
3760     LIR_Opr step = new_register(T_INT);
3761     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3762     LIR_Opr zero = LIR_OprFact::intConst(0);
3763     __ cmove(cond,
3764         (left_bci < bci) ? plus_one : zero,
3765         (right_bci < bci) ? plus_one : zero,
3766         step, left->type());
3767     increment_backedge_counter(info, step, bci);
3768   }
3769 }
3770 
3771 
3772 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3773   int freq_log = 0;
3774   int level = compilation()->env()->comp_level();
3775   if (level == CompLevel_limited_profile) {
3776     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3777   } else if (level == CompLevel_full_profile) {
3778     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3779   } else {
3780     ShouldNotReachHere();
3781   }
3782   // Increment the appropriate invocation/backedge counter and notify the runtime.
3783   double scale;
3784   if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3785     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3786   }
3787   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3788 }
3789 
3790 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3791   ciMethod* method = info->scope()->method();
3792   MethodCounters* mc_adr = method->ensure_method_counters();
3793   if (mc_adr != NULL) {
3794     LIR_Opr mc = new_pointer_register();
3795     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3796     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3797     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3798     LIR_Opr result = new_register(T_INT);
3799     __ load(counter, result);
3800     __ sub(result, LIR_OprFact::intConst(1), result);
3801     __ store(result, counter);
3802     // DeoptimizeStub will reexecute from the current state in code info.
3803     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3804                                          Deoptimization::Action_make_not_entrant);
3805     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3806     __ branch(lir_cond_lessEqual, deopt);
3807   }
3808 }
3809 
3810 
3811 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3812                                                 ciMethod *method, LIR_Opr step, int frequency,
3813                                                 int bci, bool backedge, bool notify) {
3814   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3815   int level = _compilation->env()->comp_level();
3816   assert(level > CompLevel_simple, "Shouldn't be here");
3817 
3818   int offset = -1;
3819   LIR_Opr counter_holder = NULL;
3820   if (level == CompLevel_limited_profile) {
3821     MethodCounters* counters_adr = method->ensure_method_counters();
3822     if (counters_adr == NULL) {
3823       bailout("method counters allocation failed");
3824       return;
3825     }
3826     counter_holder = new_pointer_register();
3827     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3828     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3829                                  MethodCounters::invocation_counter_offset());
3830   } else if (level == CompLevel_full_profile) {
3831     counter_holder = new_register(T_METADATA);
3832     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3833                                  MethodData::invocation_counter_offset());
3834     ciMethodData* md = method->method_data_or_null();
3835     assert(md != NULL, "Sanity");
3836     __ metadata2reg(md->constant_encoding(), counter_holder);
3837   } else {
3838     ShouldNotReachHere();
3839   }
3840   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3841   LIR_Opr result = new_register(T_INT);
3842   __ load(counter, result);
3843   __ add(result, step, result);
3844   __ store(result, counter);
3845   if (notify && (!backedge || UseOnStackReplacement)) {
3846     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3847     // The bci for info can point to cmp for if's we want the if bci
3848     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3849     int freq = frequency << InvocationCounter::count_shift;
3850     if (freq == 0) {
3851       if (!step->is_constant()) {
3852         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3853         __ branch(lir_cond_notEqual, overflow);
3854       } else {
3855         __ branch(lir_cond_always, overflow);
3856       }
3857     } else {
3858       LIR_Opr mask = load_immediate(freq, T_INT);
3859       if (!step->is_constant()) {
3860         // If step is 0, make sure the overflow check below always fails
3861         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3862         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3863       }
3864       __ logical_and(result, mask, result);
3865       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3866       __ branch(lir_cond_equal, overflow);
3867     }
3868     __ branch_destination(overflow->continuation());
3869   }
3870 }
3871 
3872 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3873   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3874   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3875 
3876   if (x->pass_thread()) {
3877     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3878     args->append(getThreadPointer());
3879   }
3880 
3881   for (int i = 0; i < x->number_of_arguments(); i++) {
3882     Value a = x->argument_at(i);
3883     LIRItem* item = new LIRItem(a, this);
3884     item->load_item();
3885     args->append(item->result());
3886     signature->append(as_BasicType(a->type()));
3887   }
3888 
3889   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3890   if (x->type() == voidType) {
3891     set_no_result(x);
3892   } else {
3893     __ move(result, rlock_result(x));
3894   }
3895 }
3896 
3897 #ifdef ASSERT
3898 void LIRGenerator::do_Assert(Assert *x) {
3899   ValueTag tag = x->x()->type()->tag();
3900   If::Condition cond = x->cond();
3901 
3902   LIRItem xitem(x->x(), this);
3903   LIRItem yitem(x->y(), this);
3904   LIRItem* xin = &xitem;
3905   LIRItem* yin = &yitem;
3906 
3907   assert(tag == intTag, "Only integer assertions are valid!");
3908 
3909   xin->load_item();
3910   yin->dont_load_item();
3911 
3912   set_no_result(x);
3913 
3914   LIR_Opr left = xin->result();
3915   LIR_Opr right = yin->result();
3916 
3917   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3918 }
3919 #endif
3920 
3921 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3922 
3923 
3924   Instruction *a = x->x();
3925   Instruction *b = x->y();
3926   if (!a || StressRangeCheckElimination) {
3927     assert(!b || StressRangeCheckElimination, "B must also be null");
3928 
3929     CodeEmitInfo *info = state_for(x, x->state());
3930     CodeStub* stub = new PredicateFailedStub(info);
3931 
3932     __ jump(stub);
3933   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3934     int a_int = a->type()->as_IntConstant()->value();
3935     int b_int = b->type()->as_IntConstant()->value();
3936 
3937     bool ok = false;
3938 
3939     switch(x->cond()) {
3940       case Instruction::eql: ok = (a_int == b_int); break;
3941       case Instruction::neq: ok = (a_int != b_int); break;
3942       case Instruction::lss: ok = (a_int < b_int); break;
3943       case Instruction::leq: ok = (a_int <= b_int); break;
3944       case Instruction::gtr: ok = (a_int > b_int); break;
3945       case Instruction::geq: ok = (a_int >= b_int); break;
3946       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3947       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3948       default: ShouldNotReachHere();
3949     }
3950 
3951     if (ok) {
3952 
3953       CodeEmitInfo *info = state_for(x, x->state());
3954       CodeStub* stub = new PredicateFailedStub(info);
3955 
3956       __ jump(stub);
3957     }
3958   } else {
3959 
3960     ValueTag tag = x->x()->type()->tag();
3961     If::Condition cond = x->cond();
3962     LIRItem xitem(x->x(), this);
3963     LIRItem yitem(x->y(), this);
3964     LIRItem* xin = &xitem;
3965     LIRItem* yin = &yitem;
3966 
3967     assert(tag == intTag, "Only integer deoptimizations are valid!");
3968 
3969     xin->load_item();
3970     yin->dont_load_item();
3971     set_no_result(x);
3972 
3973     LIR_Opr left = xin->result();
3974     LIR_Opr right = yin->result();
3975 
3976     CodeEmitInfo *info = state_for(x, x->state());
3977     CodeStub* stub = new PredicateFailedStub(info);
3978 
3979     __ cmp(lir_cond(cond), left, right);
3980     __ branch(lir_cond(cond), stub);
3981   }
3982 }
3983 
3984 void LIRGenerator::do_blackhole(Intrinsic *x) {
3985   assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3986   for (int c = 0; c < x->number_of_arguments(); c++) {
3987     // Load the argument
3988     LIRItem vitem(x->argument_at(c), this);
3989     vitem.load_item();
3990     // ...and leave it unused.
3991   }
3992 }
3993 
3994 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3995   LIRItemList args(1);
3996   LIRItem value(arg1, this);
3997   args.append(&value);
3998   BasicTypeList signature;
3999   signature.append(as_BasicType(arg1->type()));
4000 
4001   return call_runtime(&signature, &args, entry, result_type, info);
4002 }
4003 
4004 
4005 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
4006   LIRItemList args(2);
4007   LIRItem value1(arg1, this);
4008   LIRItem value2(arg2, this);
4009   args.append(&value1);
4010   args.append(&value2);
4011   BasicTypeList signature;
4012   signature.append(as_BasicType(arg1->type()));
4013   signature.append(as_BasicType(arg2->type()));
4014 
4015   return call_runtime(&signature, &args, entry, result_type, info);
4016 }
4017 
4018 
4019 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
4020                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
4021   // get a result register
4022   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
4023   LIR_Opr result = LIR_OprFact::illegalOpr;
4024   if (result_type->tag() != voidTag) {
4025     result = new_register(result_type);
4026     phys_reg = result_register_for(result_type);
4027   }
4028 
4029   // move the arguments into the correct location
4030   CallingConvention* cc = frame_map()->c_calling_convention(signature);
4031   assert(cc->length() == args->length(), "argument mismatch");
4032   for (int i = 0; i < args->length(); i++) {
4033     LIR_Opr arg = args->at(i);
4034     LIR_Opr loc = cc->at(i);
4035     if (loc->is_register()) {
4036       __ move(arg, loc);
4037     } else {
4038       LIR_Address* addr = loc->as_address_ptr();
4039 //           if (!can_store_as_constant(arg)) {
4040 //             LIR_Opr tmp = new_register(arg->type());
4041 //             __ move(arg, tmp);
4042 //             arg = tmp;
4043 //           }
4044       __ move(arg, addr);
4045     }
4046   }
4047 
4048   if (info) {
4049     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
4050   } else {
4051     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
4052   }
4053   if (result->is_valid()) {
4054     __ move(phys_reg, result);
4055   }
4056   return result;
4057 }
4058 
4059 
4060 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
4061                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
4062   // get a result register
4063   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
4064   LIR_Opr result = LIR_OprFact::illegalOpr;
4065   if (result_type->tag() != voidTag) {
4066     result = new_register(result_type);
4067     phys_reg = result_register_for(result_type);
4068   }
4069 
4070   // move the arguments into the correct location
4071   CallingConvention* cc = frame_map()->c_calling_convention(signature);
4072 
4073   assert(cc->length() == args->length(), "argument mismatch");
4074   for (int i = 0; i < args->length(); i++) {
4075     LIRItem* arg = args->at(i);
4076     LIR_Opr loc = cc->at(i);
4077     if (loc->is_register()) {
4078       arg->load_item_force(loc);
4079     } else {
4080       LIR_Address* addr = loc->as_address_ptr();
4081       arg->load_for_store(addr->type());
4082       __ move(arg->result(), addr);
4083     }
4084   }
4085 
4086   if (info) {
4087     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
4088   } else {
4089     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
4090   }
4091   if (result->is_valid()) {
4092     __ move(phys_reg, result);
4093   }
4094   return result;
4095 }
4096 
4097 void LIRGenerator::do_MemBar(MemBar* x) {
4098   LIR_Code code = x->code();
4099   switch(code) {
4100   case lir_membar_acquire   : __ membar_acquire(); break;
4101   case lir_membar_release   : __ membar_release(); break;
4102   case lir_membar           : __ membar(); break;
4103   case lir_membar_loadload  : __ membar_loadload(); break;
4104   case lir_membar_storestore: __ membar_storestore(); break;
4105   case lir_membar_loadstore : __ membar_loadstore(); break;
4106   case lir_membar_storeload : __ membar_storeload(); break;
4107   default                   : ShouldNotReachHere(); break;
4108   }
4109 }
4110 
4111 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
4112   LIR_Opr value_fixed = rlock_byte(T_BYTE);
4113   if (TwoOperandLIRForm) {
4114     __ move(value, value_fixed);
4115     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
4116   } else {
4117     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
4118   }
4119   LIR_Opr klass = new_register(T_METADATA);
4120   __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
4121   null_check_info = NULL;
4122   LIR_Opr layout = new_register(T_INT);
4123   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
4124   int diffbit = Klass::layout_helper_boolean_diffbit();
4125   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
4126   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
4127   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
4128   value = value_fixed;
4129   return value;
4130 }