1 /* 2 * Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciFlatArrayKlass.hpp" 35 #include "ci/ciInlineKlass.hpp" 36 #include "ci/ciInstance.hpp" 37 #include "ci/ciObjArray.hpp" 38 #include "ci/ciUtilities.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/c1/barrierSetC1.hpp" 41 #include "oops/klass.inline.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "runtime/stubRoutines.hpp" 44 #include "runtime/vm_version.hpp" 45 #include "utilities/bitMap.inline.hpp" 46 #include "utilities/macros.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 49 #ifdef ASSERT 50 #define __ gen()->lir(__FILE__, __LINE__)-> 51 #else 52 #define __ gen()->lir()-> 53 #endif 54 55 #ifndef PATCHED_ADDR 56 #define PATCHED_ADDR (max_jint) 57 #endif 58 59 void PhiResolverState::reset() { 60 _virtual_operands.clear(); 61 _other_operands.clear(); 62 _vreg_table.clear(); 63 } 64 65 66 //-------------------------------------------------------------- 67 // PhiResolver 68 69 // Resolves cycles: 70 // 71 // r1 := r2 becomes temp := r1 72 // r2 := r1 r1 := r2 73 // r2 := temp 74 // and orders moves: 75 // 76 // r2 := r3 becomes r1 := r2 77 // r1 := r2 r2 := r3 78 79 PhiResolver::PhiResolver(LIRGenerator* gen) 80 : _gen(gen) 81 , _state(gen->resolver_state()) 82 , _temp(LIR_OprFact::illegalOpr) 83 { 84 // reinitialize the shared state arrays 85 _state.reset(); 86 } 87 88 89 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 90 assert(src->is_valid(), ""); 91 assert(dest->is_valid(), ""); 92 __ move(src, dest); 93 } 94 95 96 void PhiResolver::move_temp_to(LIR_Opr dest) { 97 assert(_temp->is_valid(), ""); 98 emit_move(_temp, dest); 99 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 100 } 101 102 103 void PhiResolver::move_to_temp(LIR_Opr src) { 104 assert(_temp->is_illegal(), ""); 105 _temp = _gen->new_register(src->type()); 106 emit_move(src, _temp); 107 } 108 109 110 // Traverse assignment graph in depth first order and generate moves in post order 111 // ie. two assignments: b := c, a := b start with node c: 112 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a) 113 // Generates moves in this order: move b to a and move c to b 114 // ie. cycle a := b, b := a start with node a 115 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a) 116 // Generates moves in this order: move b to temp, move a to b, move temp to a 117 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 118 if (!dest->visited()) { 119 dest->set_visited(); 120 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 121 move(dest, dest->destination_at(i)); 122 } 123 } else if (!dest->start_node()) { 124 // cylce in graph detected 125 assert(_loop == NULL, "only one loop valid!"); 126 _loop = dest; 127 move_to_temp(src->operand()); 128 return; 129 } // else dest is a start node 130 131 if (!dest->assigned()) { 132 if (_loop == dest) { 133 move_temp_to(dest->operand()); 134 dest->set_assigned(); 135 } else if (src != NULL) { 136 emit_move(src->operand(), dest->operand()); 137 dest->set_assigned(); 138 } 139 } 140 } 141 142 143 PhiResolver::~PhiResolver() { 144 int i; 145 // resolve any cycles in moves from and to virtual registers 146 for (i = virtual_operands().length() - 1; i >= 0; i --) { 147 ResolveNode* node = virtual_operands().at(i); 148 if (!node->visited()) { 149 _loop = NULL; 150 move(NULL, node); 151 node->set_start_node(); 152 assert(_temp->is_illegal(), "move_temp_to() call missing"); 153 } 154 } 155 156 // generate move for move from non virtual register to abitrary destination 157 for (i = other_operands().length() - 1; i >= 0; i --) { 158 ResolveNode* node = other_operands().at(i); 159 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 160 emit_move(node->operand(), node->destination_at(j)->operand()); 161 } 162 } 163 } 164 165 166 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 167 ResolveNode* node; 168 if (opr->is_virtual()) { 169 int vreg_num = opr->vreg_number(); 170 node = vreg_table().at_grow(vreg_num, NULL); 171 assert(node == NULL || node->operand() == opr, ""); 172 if (node == NULL) { 173 node = new ResolveNode(opr); 174 vreg_table().at_put(vreg_num, node); 175 } 176 // Make sure that all virtual operands show up in the list when 177 // they are used as the source of a move. 178 if (source && !virtual_operands().contains(node)) { 179 virtual_operands().append(node); 180 } 181 } else { 182 assert(source, ""); 183 node = new ResolveNode(opr); 184 other_operands().append(node); 185 } 186 return node; 187 } 188 189 190 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 191 assert(dest->is_virtual(), ""); 192 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 193 assert(src->is_valid(), ""); 194 assert(dest->is_valid(), ""); 195 ResolveNode* source = source_node(src); 196 source->append(destination_node(dest)); 197 } 198 199 200 //-------------------------------------------------------------- 201 // LIRItem 202 203 void LIRItem::set_result(LIR_Opr opr) { 204 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 205 value()->set_operand(opr); 206 207 if (opr->is_virtual()) { 208 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL); 209 } 210 211 _result = opr; 212 } 213 214 void LIRItem::load_item() { 215 assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code"); 216 217 if (result()->is_illegal()) { 218 // update the items result 219 _result = value()->operand(); 220 } 221 if (!result()->is_register()) { 222 LIR_Opr reg = _gen->new_register(value()->type()); 223 __ move(result(), reg); 224 if (result()->is_constant()) { 225 _result = reg; 226 } else { 227 set_result(reg); 228 } 229 } 230 } 231 232 233 void LIRItem::load_for_store(BasicType type) { 234 if (_gen->can_store_as_constant(value(), type)) { 235 _result = value()->operand(); 236 if (!_result->is_constant()) { 237 _result = LIR_OprFact::value_type(value()->type()); 238 } 239 } else if (type == T_BYTE || type == T_BOOLEAN) { 240 load_byte_item(); 241 } else { 242 load_item(); 243 } 244 } 245 246 void LIRItem::load_item_force(LIR_Opr reg) { 247 LIR_Opr r = result(); 248 if (r != reg) { 249 #if !defined(ARM) && !defined(E500V2) 250 if (r->type() != reg->type()) { 251 // moves between different types need an intervening spill slot 252 r = _gen->force_to_spill(r, reg->type()); 253 } 254 #endif 255 __ move(r, reg); 256 _result = reg; 257 } 258 } 259 260 ciObject* LIRItem::get_jobject_constant() const { 261 ObjectType* oc = type()->as_ObjectType(); 262 if (oc) { 263 return oc->constant_value(); 264 } 265 return NULL; 266 } 267 268 269 jint LIRItem::get_jint_constant() const { 270 assert(is_constant() && value() != NULL, ""); 271 assert(type()->as_IntConstant() != NULL, "type check"); 272 return type()->as_IntConstant()->value(); 273 } 274 275 276 jint LIRItem::get_address_constant() const { 277 assert(is_constant() && value() != NULL, ""); 278 assert(type()->as_AddressConstant() != NULL, "type check"); 279 return type()->as_AddressConstant()->value(); 280 } 281 282 283 jfloat LIRItem::get_jfloat_constant() const { 284 assert(is_constant() && value() != NULL, ""); 285 assert(type()->as_FloatConstant() != NULL, "type check"); 286 return type()->as_FloatConstant()->value(); 287 } 288 289 290 jdouble LIRItem::get_jdouble_constant() const { 291 assert(is_constant() && value() != NULL, ""); 292 assert(type()->as_DoubleConstant() != NULL, "type check"); 293 return type()->as_DoubleConstant()->value(); 294 } 295 296 297 jlong LIRItem::get_jlong_constant() const { 298 assert(is_constant() && value() != NULL, ""); 299 assert(type()->as_LongConstant() != NULL, "type check"); 300 return type()->as_LongConstant()->value(); 301 } 302 303 304 305 //-------------------------------------------------------------- 306 307 308 void LIRGenerator::block_do_prolog(BlockBegin* block) { 309 #ifndef PRODUCT 310 if (PrintIRWithLIR) { 311 block->print(); 312 } 313 #endif 314 315 // set up the list of LIR instructions 316 assert(block->lir() == NULL, "LIR list already computed for this block"); 317 _lir = new LIR_List(compilation(), block); 318 block->set_lir(_lir); 319 320 __ branch_destination(block->label()); 321 322 if (LIRTraceExecution && 323 Compilation::current()->hir()->start()->block_id() != block->block_id() && 324 !block->is_set(BlockBegin::exception_entry_flag)) { 325 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 326 trace_block_entry(block); 327 } 328 } 329 330 331 void LIRGenerator::block_do_epilog(BlockBegin* block) { 332 #ifndef PRODUCT 333 if (PrintIRWithLIR) { 334 tty->cr(); 335 } 336 #endif 337 338 // LIR_Opr for unpinned constants shouldn't be referenced by other 339 // blocks so clear them out after processing the block. 340 for (int i = 0; i < _unpinned_constants.length(); i++) { 341 _unpinned_constants.at(i)->clear_operand(); 342 } 343 _unpinned_constants.trunc_to(0); 344 345 // clear our any registers for other local constants 346 _constants.trunc_to(0); 347 _reg_for_constants.trunc_to(0); 348 } 349 350 351 void LIRGenerator::block_do(BlockBegin* block) { 352 CHECK_BAILOUT(); 353 354 block_do_prolog(block); 355 set_block(block); 356 357 for (Instruction* instr = block; instr != NULL; instr = instr->next()) { 358 if (instr->is_pinned()) do_root(instr); 359 } 360 361 set_block(NULL); 362 block_do_epilog(block); 363 } 364 365 366 //-------------------------LIRGenerator----------------------------- 367 368 // This is where the tree-walk starts; instr must be root; 369 void LIRGenerator::do_root(Value instr) { 370 CHECK_BAILOUT(); 371 372 InstructionMark im(compilation(), instr); 373 374 assert(instr->is_pinned(), "use only with roots"); 375 assert(instr->subst() == instr, "shouldn't have missed substitution"); 376 377 instr->visit(this); 378 379 assert(!instr->has_uses() || instr->operand()->is_valid() || 380 instr->as_Constant() != NULL || bailed_out(), "invalid item set"); 381 } 382 383 384 // This is called for each node in tree; the walk stops if a root is reached 385 void LIRGenerator::walk(Value instr) { 386 InstructionMark im(compilation(), instr); 387 //stop walk when encounter a root 388 if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) { 389 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited"); 390 } else { 391 assert(instr->subst() == instr, "shouldn't have missed substitution"); 392 instr->visit(this); 393 // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use"); 394 } 395 } 396 397 398 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 399 assert(state != NULL, "state must be defined"); 400 401 #ifndef PRODUCT 402 state->verify(); 403 #endif 404 405 ValueStack* s = state; 406 for_each_state(s) { 407 if (s->kind() == ValueStack::EmptyExceptionState) { 408 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty"); 409 continue; 410 } 411 412 int index; 413 Value value; 414 for_each_stack_value(s, index, value) { 415 assert(value->subst() == value, "missed substitution"); 416 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 417 walk(value); 418 assert(value->operand()->is_valid(), "must be evaluated now"); 419 } 420 } 421 422 int bci = s->bci(); 423 IRScope* scope = s->scope(); 424 ciMethod* method = scope->method(); 425 426 MethodLivenessResult liveness = method->liveness_at_bci(bci); 427 if (bci == SynchronizationEntryBCI) { 428 if (x->as_ExceptionObject() || x->as_Throw()) { 429 // all locals are dead on exit from the synthetic unlocker 430 liveness.clear(); 431 } else { 432 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 433 } 434 } 435 if (!liveness.is_valid()) { 436 // Degenerate or breakpointed method. 437 bailout("Degenerate or breakpointed method"); 438 } else { 439 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 440 for_each_local_value(s, index, value) { 441 assert(value->subst() == value, "missed substition"); 442 if (liveness.at(index) && !value->type()->is_illegal()) { 443 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 444 walk(value); 445 assert(value->operand()->is_valid(), "must be evaluated now"); 446 } 447 } else { 448 // NULL out this local so that linear scan can assume that all non-NULL values are live. 449 s->invalidate_local(index); 450 } 451 } 452 } 453 } 454 455 return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 456 } 457 458 459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 460 return state_for(x, x->exception_state()); 461 } 462 463 464 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 465 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 466 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 467 * the class. */ 468 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 469 assert(info != NULL, "info must be set if class is not loaded"); 470 __ klass2reg_patch(NULL, r, info); 471 } else { 472 // no patching needed 473 __ metadata2reg(obj->constant_encoding(), r); 474 } 475 } 476 477 478 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 479 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 480 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 481 if (index->is_constant()) { 482 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 483 index->as_jint(), null_check_info); 484 __ branch(lir_cond_belowEqual, stub); // forward branch 485 } else { 486 cmp_reg_mem(lir_cond_aboveEqual, index, array, 487 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 488 __ branch(lir_cond_aboveEqual, stub); // forward branch 489 } 490 } 491 492 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 493 LIR_Opr result_op = result; 494 LIR_Opr left_op = left; 495 LIR_Opr right_op = right; 496 497 if (TwoOperandLIRForm && left_op != result_op) { 498 assert(right_op != result_op, "malformed"); 499 __ move(left_op, result_op); 500 left_op = result_op; 501 } 502 503 switch(code) { 504 case Bytecodes::_dadd: 505 case Bytecodes::_fadd: 506 case Bytecodes::_ladd: 507 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 508 case Bytecodes::_fmul: 509 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 510 511 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 512 513 case Bytecodes::_imul: 514 { 515 bool did_strength_reduce = false; 516 517 if (right->is_constant()) { 518 jint c = right->as_jint(); 519 if (c > 0 && is_power_of_2(c)) { 520 // do not need tmp here 521 __ shift_left(left_op, exact_log2(c), result_op); 522 did_strength_reduce = true; 523 } else { 524 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 525 } 526 } 527 // we couldn't strength reduce so just emit the multiply 528 if (!did_strength_reduce) { 529 __ mul(left_op, right_op, result_op); 530 } 531 } 532 break; 533 534 case Bytecodes::_dsub: 535 case Bytecodes::_fsub: 536 case Bytecodes::_lsub: 537 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 538 539 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 540 // ldiv and lrem are implemented with a direct runtime call 541 542 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 543 544 case Bytecodes::_drem: 545 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 546 547 default: ShouldNotReachHere(); 548 } 549 } 550 551 552 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 553 arithmetic_op(code, result, left, right, tmp); 554 } 555 556 557 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 558 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 559 } 560 561 562 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 563 arithmetic_op(code, result, left, right, tmp); 564 } 565 566 567 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 568 569 if (TwoOperandLIRForm && value != result_op 570 // Only 32bit right shifts require two operand form on S390. 571 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 572 assert(count != result_op, "malformed"); 573 __ move(value, result_op); 574 value = result_op; 575 } 576 577 assert(count->is_constant() || count->is_register(), "must be"); 578 switch(code) { 579 case Bytecodes::_ishl: 580 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 581 case Bytecodes::_ishr: 582 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 583 case Bytecodes::_iushr: 584 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 585 default: ShouldNotReachHere(); 586 } 587 } 588 589 590 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 591 if (TwoOperandLIRForm && left_op != result_op) { 592 assert(right_op != result_op, "malformed"); 593 __ move(left_op, result_op); 594 left_op = result_op; 595 } 596 597 switch(code) { 598 case Bytecodes::_iand: 599 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 600 601 case Bytecodes::_ior: 602 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 603 604 case Bytecodes::_ixor: 605 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 606 607 default: ShouldNotReachHere(); 608 } 609 } 610 611 612 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, 613 CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_imse_stub) { 614 if (!GenerateSynchronizationCode) return; 615 // for slow path, use debug info for state after successful locking 616 CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_imse_stub, scratch); 617 __ load_stack_address_monitor(monitor_no, lock); 618 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 619 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_imse_stub); 620 } 621 622 623 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 624 if (!GenerateSynchronizationCode) return; 625 // setup registers 626 LIR_Opr hdr = lock; 627 lock = new_hdr; 628 CodeStub* slow_path = new MonitorExitStub(lock, !UseHeavyMonitors, monitor_no); 629 __ load_stack_address_monitor(monitor_no, lock); 630 __ unlock_object(hdr, object, lock, scratch, slow_path); 631 } 632 633 #ifndef PRODUCT 634 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 635 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 636 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 637 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 638 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 639 } 640 } 641 #endif 642 643 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 644 if (allow_inline) { 645 assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved"); 646 __ metadata2reg(klass->constant_encoding(), klass_reg); 647 } else { 648 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 649 } 650 // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass 651 if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype()) 652 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 653 654 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id; 655 656 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 657 658 assert(klass->is_loaded(), "must be loaded"); 659 // allocate space for instance 660 assert(klass->size_helper() > 0, "illegal instance size"); 661 const int instance_size = align_object_size(klass->size_helper()); 662 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 663 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 664 } else { 665 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, allow_inline ? Runtime1::new_instance_id : Runtime1::new_instance_no_inline_id); 666 __ jump(slow_path); 667 __ branch_destination(slow_path->continuation()); 668 } 669 } 670 671 672 static bool is_constant_zero(Instruction* inst) { 673 IntConstant* c = inst->type()->as_IntConstant(); 674 if (c) { 675 return (c->value() == 0); 676 } 677 return false; 678 } 679 680 681 static bool positive_constant(Instruction* inst) { 682 IntConstant* c = inst->type()->as_IntConstant(); 683 if (c) { 684 return (c->value() >= 0); 685 } 686 return false; 687 } 688 689 690 static ciArrayKlass* as_array_klass(ciType* type) { 691 if (type != NULL && type->is_array_klass() && type->is_loaded()) { 692 return (ciArrayKlass*)type; 693 } else { 694 return NULL; 695 } 696 } 697 698 static ciType* phi_declared_type(Phi* phi) { 699 ciType* t = phi->operand_at(0)->declared_type(); 700 if (t == NULL) { 701 return NULL; 702 } 703 for(int i = 1; i < phi->operand_count(); i++) { 704 if (t != phi->operand_at(i)->declared_type()) { 705 return NULL; 706 } 707 } 708 return t; 709 } 710 711 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 712 Instruction* src = x->argument_at(0); 713 Instruction* src_pos = x->argument_at(1); 714 Instruction* dst = x->argument_at(2); 715 Instruction* dst_pos = x->argument_at(3); 716 Instruction* length = x->argument_at(4); 717 718 // first try to identify the likely type of the arrays involved 719 ciArrayKlass* expected_type = NULL; 720 bool is_exact = false, src_objarray = false, dst_objarray = false; 721 { 722 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 723 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 724 Phi* phi; 725 if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) { 726 src_declared_type = as_array_klass(phi_declared_type(phi)); 727 } 728 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 729 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 730 if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) { 731 dst_declared_type = as_array_klass(phi_declared_type(phi)); 732 } 733 734 if (src_exact_type != NULL && src_exact_type == dst_exact_type) { 735 // the types exactly match so the type is fully known 736 is_exact = true; 737 expected_type = src_exact_type; 738 } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) { 739 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 740 ciArrayKlass* src_type = NULL; 741 if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) { 742 src_type = (ciArrayKlass*) src_exact_type; 743 } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) { 744 src_type = (ciArrayKlass*) src_declared_type; 745 } 746 if (src_type != NULL) { 747 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 748 is_exact = true; 749 expected_type = dst_type; 750 } 751 } 752 } 753 // at least pass along a good guess 754 if (expected_type == NULL) expected_type = dst_exact_type; 755 if (expected_type == NULL) expected_type = src_declared_type; 756 if (expected_type == NULL) expected_type = dst_declared_type; 757 758 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 759 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 760 } 761 762 // if a probable array type has been identified, figure out if any 763 // of the required checks for a fast case can be elided. 764 int flags = LIR_OpArrayCopy::all_flags; 765 766 if (!src->is_loaded_flattened_array() && !dst->is_loaded_flattened_array()) { 767 flags &= ~LIR_OpArrayCopy::always_slow_path; 768 } 769 if (!src->maybe_flattened_array()) { 770 flags &= ~LIR_OpArrayCopy::src_inlinetype_check; 771 } 772 if (!dst->maybe_flattened_array() && !dst->maybe_null_free_array()) { 773 flags &= ~LIR_OpArrayCopy::dst_inlinetype_check; 774 } 775 776 if (!src_objarray) 777 flags &= ~LIR_OpArrayCopy::src_objarray; 778 if (!dst_objarray) 779 flags &= ~LIR_OpArrayCopy::dst_objarray; 780 781 if (!x->arg_needs_null_check(0)) 782 flags &= ~LIR_OpArrayCopy::src_null_check; 783 if (!x->arg_needs_null_check(2)) 784 flags &= ~LIR_OpArrayCopy::dst_null_check; 785 786 787 if (expected_type != NULL) { 788 Value length_limit = NULL; 789 790 IfOp* ifop = length->as_IfOp(); 791 if (ifop != NULL) { 792 // look for expressions like min(v, a.length) which ends up as 793 // x > y ? y : x or x >= y ? y : x 794 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 795 ifop->x() == ifop->fval() && 796 ifop->y() == ifop->tval()) { 797 length_limit = ifop->y(); 798 } 799 } 800 801 // try to skip null checks and range checks 802 NewArray* src_array = src->as_NewArray(); 803 if (src_array != NULL) { 804 flags &= ~LIR_OpArrayCopy::src_null_check; 805 if (length_limit != NULL && 806 src_array->length() == length_limit && 807 is_constant_zero(src_pos)) { 808 flags &= ~LIR_OpArrayCopy::src_range_check; 809 } 810 } 811 812 NewArray* dst_array = dst->as_NewArray(); 813 if (dst_array != NULL) { 814 flags &= ~LIR_OpArrayCopy::dst_null_check; 815 if (length_limit != NULL && 816 dst_array->length() == length_limit && 817 is_constant_zero(dst_pos)) { 818 flags &= ~LIR_OpArrayCopy::dst_range_check; 819 } 820 } 821 822 // check from incoming constant values 823 if (positive_constant(src_pos)) 824 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 825 if (positive_constant(dst_pos)) 826 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 827 if (positive_constant(length)) 828 flags &= ~LIR_OpArrayCopy::length_positive_check; 829 830 // see if the range check can be elided, which might also imply 831 // that src or dst is non-null. 832 ArrayLength* al = length->as_ArrayLength(); 833 if (al != NULL) { 834 if (al->array() == src) { 835 // it's the length of the source array 836 flags &= ~LIR_OpArrayCopy::length_positive_check; 837 flags &= ~LIR_OpArrayCopy::src_null_check; 838 if (is_constant_zero(src_pos)) 839 flags &= ~LIR_OpArrayCopy::src_range_check; 840 } 841 if (al->array() == dst) { 842 // it's the length of the destination array 843 flags &= ~LIR_OpArrayCopy::length_positive_check; 844 flags &= ~LIR_OpArrayCopy::dst_null_check; 845 if (is_constant_zero(dst_pos)) 846 flags &= ~LIR_OpArrayCopy::dst_range_check; 847 } 848 } 849 if (is_exact) { 850 flags &= ~LIR_OpArrayCopy::type_check; 851 } 852 } 853 854 IntConstant* src_int = src_pos->type()->as_IntConstant(); 855 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 856 if (src_int && dst_int) { 857 int s_offs = src_int->value(); 858 int d_offs = dst_int->value(); 859 if (src_int->value() >= dst_int->value()) { 860 flags &= ~LIR_OpArrayCopy::overlapping; 861 } 862 if (expected_type != NULL) { 863 BasicType t = expected_type->element_type()->basic_type(); 864 int element_size = type2aelembytes(t); 865 if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) && 866 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) { 867 flags &= ~LIR_OpArrayCopy::unaligned; 868 } 869 } 870 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 871 // src and dest positions are the same, or dst is zero so assume 872 // nonoverlapping copy. 873 flags &= ~LIR_OpArrayCopy::overlapping; 874 } 875 876 if (src == dst) { 877 // moving within a single array so no type checks are needed 878 if (flags & LIR_OpArrayCopy::type_check) { 879 flags &= ~LIR_OpArrayCopy::type_check; 880 } 881 } 882 *flagsp = flags; 883 *expected_typep = (ciArrayKlass*)expected_type; 884 } 885 886 887 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 888 assert(opr->is_register(), "why spill if item is not register?"); 889 890 if (strict_fp_requires_explicit_rounding) { 891 #ifdef IA32 892 if (UseSSE < 1 && opr->is_single_fpu()) { 893 LIR_Opr result = new_register(T_FLOAT); 894 set_vreg_flag(result, must_start_in_memory); 895 assert(opr->is_register(), "only a register can be spilled"); 896 assert(opr->value_type()->is_float(), "rounding only for floats available"); 897 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 898 return result; 899 } 900 #else 901 Unimplemented(); 902 #endif // IA32 903 } 904 return opr; 905 } 906 907 908 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 909 assert(type2size[t] == type2size[value->type()], 910 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 911 if (!value->is_register()) { 912 // force into a register 913 LIR_Opr r = new_register(value->type()); 914 __ move(value, r); 915 value = r; 916 } 917 918 // create a spill location 919 LIR_Opr tmp = new_register(t); 920 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 921 922 // move from register to spill 923 __ move(value, tmp); 924 return tmp; 925 } 926 927 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 928 if (if_instr->should_profile()) { 929 ciMethod* method = if_instr->profiled_method(); 930 assert(method != NULL, "method should be set if branch is profiled"); 931 ciMethodData* md = method->method_data_or_null(); 932 assert(md != NULL, "Sanity"); 933 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 934 assert(data != NULL, "must have profiling data"); 935 assert(data->is_BranchData(), "need BranchData for two-way branches"); 936 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 937 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 938 if (if_instr->is_swapped()) { 939 int t = taken_count_offset; 940 taken_count_offset = not_taken_count_offset; 941 not_taken_count_offset = t; 942 } 943 944 LIR_Opr md_reg = new_register(T_METADATA); 945 __ metadata2reg(md->constant_encoding(), md_reg); 946 947 LIR_Opr data_offset_reg = new_pointer_register(); 948 __ cmove(lir_cond(cond), 949 LIR_OprFact::intptrConst(taken_count_offset), 950 LIR_OprFact::intptrConst(not_taken_count_offset), 951 data_offset_reg, as_BasicType(if_instr->x()->type())); 952 953 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 954 LIR_Opr data_reg = new_pointer_register(); 955 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 956 __ move(data_addr, data_reg); 957 // Use leal instead of add to avoid destroying condition codes on x86 958 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 959 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 960 __ move(data_reg, data_addr); 961 } 962 } 963 964 // Phi technique: 965 // This is about passing live values from one basic block to the other. 966 // In code generated with Java it is rather rare that more than one 967 // value is on the stack from one basic block to the other. 968 // We optimize our technique for efficient passing of one value 969 // (of type long, int, double..) but it can be extended. 970 // When entering or leaving a basic block, all registers and all spill 971 // slots are release and empty. We use the released registers 972 // and spill slots to pass the live values from one block 973 // to the other. The topmost value, i.e., the value on TOS of expression 974 // stack is passed in registers. All other values are stored in spilling 975 // area. Every Phi has an index which designates its spill slot 976 // At exit of a basic block, we fill the register(s) and spill slots. 977 // At entry of a basic block, the block_prolog sets up the content of phi nodes 978 // and locks necessary registers and spilling slots. 979 980 981 // move current value to referenced phi function 982 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 983 Phi* phi = sux_val->as_Phi(); 984 // cur_val can be null without phi being null in conjunction with inlining 985 if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) { 986 if (phi->is_local()) { 987 for (int i = 0; i < phi->operand_count(); i++) { 988 Value op = phi->operand_at(i); 989 if (op != NULL && op->type()->is_illegal()) { 990 bailout("illegal phi operand"); 991 } 992 } 993 } 994 Phi* cur_phi = cur_val->as_Phi(); 995 if (cur_phi != NULL && cur_phi->is_illegal()) { 996 // Phi and local would need to get invalidated 997 // (which is unexpected for Linear Scan). 998 // But this case is very rare so we simply bail out. 999 bailout("propagation of illegal phi"); 1000 return; 1001 } 1002 LIR_Opr operand = cur_val->operand(); 1003 if (operand->is_illegal()) { 1004 assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL, 1005 "these can be produced lazily"); 1006 operand = operand_for_instruction(cur_val); 1007 } 1008 resolver->move(operand, operand_for_instruction(phi)); 1009 } 1010 } 1011 1012 1013 // Moves all stack values into their PHI position 1014 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 1015 BlockBegin* bb = block(); 1016 if (bb->number_of_sux() == 1) { 1017 BlockBegin* sux = bb->sux_at(0); 1018 assert(sux->number_of_preds() > 0, "invalid CFG"); 1019 1020 // a block with only one predecessor never has phi functions 1021 if (sux->number_of_preds() > 1) { 1022 PhiResolver resolver(this); 1023 1024 ValueStack* sux_state = sux->state(); 1025 Value sux_value; 1026 int index; 1027 1028 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1029 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1030 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1031 1032 for_each_stack_value(sux_state, index, sux_value) { 1033 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1034 } 1035 1036 for_each_local_value(sux_state, index, sux_value) { 1037 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1038 } 1039 1040 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1041 } 1042 } 1043 } 1044 1045 1046 LIR_Opr LIRGenerator::new_register(BasicType type) { 1047 int vreg_num = _virtual_register_number; 1048 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1049 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1050 if (vreg_num + 20 >= LIR_Opr::vreg_max) { 1051 bailout("out of virtual registers in LIR generator"); 1052 if (vreg_num + 2 >= LIR_Opr::vreg_max) { 1053 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1054 _virtual_register_number = LIR_Opr::vreg_base; 1055 vreg_num = LIR_Opr::vreg_base; 1056 } 1057 } 1058 _virtual_register_number += 1; 1059 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1060 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1061 return vreg; 1062 } 1063 1064 1065 // Try to lock using register in hint 1066 LIR_Opr LIRGenerator::rlock(Value instr) { 1067 return new_register(instr->type()); 1068 } 1069 1070 1071 // does an rlock and sets result 1072 LIR_Opr LIRGenerator::rlock_result(Value x) { 1073 LIR_Opr reg = rlock(x); 1074 set_result(x, reg); 1075 return reg; 1076 } 1077 1078 1079 // does an rlock and sets result 1080 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1081 LIR_Opr reg; 1082 switch (type) { 1083 case T_BYTE: 1084 case T_BOOLEAN: 1085 reg = rlock_byte(type); 1086 break; 1087 default: 1088 reg = rlock(x); 1089 break; 1090 } 1091 1092 set_result(x, reg); 1093 return reg; 1094 } 1095 1096 1097 //--------------------------------------------------------------------- 1098 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1099 ObjectType* oc = value->type()->as_ObjectType(); 1100 if (oc) { 1101 return oc->constant_value(); 1102 } 1103 return NULL; 1104 } 1105 1106 1107 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1108 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1109 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1110 1111 // no moves are created for phi functions at the begin of exception 1112 // handlers, so assign operands manually here 1113 for_each_phi_fun(block(), phi, 1114 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1115 1116 LIR_Opr thread_reg = getThreadPointer(); 1117 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1118 exceptionOopOpr()); 1119 __ move_wide(LIR_OprFact::oopConst(NULL), 1120 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1121 __ move_wide(LIR_OprFact::oopConst(NULL), 1122 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1123 1124 LIR_Opr result = new_register(T_OBJECT); 1125 __ move(exceptionOopOpr(), result); 1126 set_result(x, result); 1127 } 1128 1129 1130 //---------------------------------------------------------------------- 1131 //---------------------------------------------------------------------- 1132 //---------------------------------------------------------------------- 1133 //---------------------------------------------------------------------- 1134 // visitor functions 1135 //---------------------------------------------------------------------- 1136 //---------------------------------------------------------------------- 1137 //---------------------------------------------------------------------- 1138 //---------------------------------------------------------------------- 1139 1140 void LIRGenerator::do_Phi(Phi* x) { 1141 // phi functions are never visited directly 1142 ShouldNotReachHere(); 1143 } 1144 1145 1146 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1147 void LIRGenerator::do_Constant(Constant* x) { 1148 if (x->state_before() != NULL) { 1149 // Any constant with a ValueStack requires patching so emit the patch here 1150 LIR_Opr reg = rlock_result(x); 1151 CodeEmitInfo* info = state_for(x, x->state_before()); 1152 __ oop2reg_patch(NULL, reg, info); 1153 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1154 if (!x->is_pinned()) { 1155 // unpinned constants are handled specially so that they can be 1156 // put into registers when they are used multiple times within a 1157 // block. After the block completes their operand will be 1158 // cleared so that other blocks can't refer to that register. 1159 set_result(x, load_constant(x)); 1160 } else { 1161 LIR_Opr res = x->operand(); 1162 if (!res->is_valid()) { 1163 res = LIR_OprFact::value_type(x->type()); 1164 } 1165 if (res->is_constant()) { 1166 LIR_Opr reg = rlock_result(x); 1167 __ move(res, reg); 1168 } else { 1169 set_result(x, res); 1170 } 1171 } 1172 } else { 1173 set_result(x, LIR_OprFact::value_type(x->type())); 1174 } 1175 } 1176 1177 1178 void LIRGenerator::do_Local(Local* x) { 1179 // operand_for_instruction has the side effect of setting the result 1180 // so there's no need to do it here. 1181 operand_for_instruction(x); 1182 } 1183 1184 1185 void LIRGenerator::do_Return(Return* x) { 1186 if (compilation()->env()->dtrace_method_probes()) { 1187 BasicTypeList signature; 1188 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1189 signature.append(T_METADATA); // Method* 1190 LIR_OprList* args = new LIR_OprList(); 1191 args->append(getThreadPointer()); 1192 LIR_Opr meth = new_register(T_METADATA); 1193 __ metadata2reg(method()->constant_encoding(), meth); 1194 args->append(meth); 1195 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL); 1196 } 1197 1198 if (x->type()->is_void()) { 1199 __ return_op(LIR_OprFact::illegalOpr); 1200 } else { 1201 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1202 LIRItem result(x->result(), this); 1203 1204 result.load_item_force(reg); 1205 __ return_op(result.result()); 1206 } 1207 set_no_result(x); 1208 } 1209 1210 // Examble: ref.get() 1211 // Combination of LoadField and g1 pre-write barrier 1212 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1213 1214 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1215 1216 assert(x->number_of_arguments() == 1, "wrong type"); 1217 1218 LIRItem reference(x->argument_at(0), this); 1219 reference.load_item(); 1220 1221 // need to perform the null check on the reference objecy 1222 CodeEmitInfo* info = NULL; 1223 if (x->needs_null_check()) { 1224 info = state_for(x); 1225 } 1226 1227 LIR_Opr result = rlock_result(x, T_OBJECT); 1228 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1229 reference, LIR_OprFact::intConst(referent_offset), result); 1230 } 1231 1232 // Example: clazz.isInstance(object) 1233 void LIRGenerator::do_isInstance(Intrinsic* x) { 1234 assert(x->number_of_arguments() == 2, "wrong type"); 1235 1236 // TODO could try to substitute this node with an equivalent InstanceOf 1237 // if clazz is known to be a constant Class. This will pick up newly found 1238 // constants after HIR construction. I'll leave this to a future change. 1239 1240 // as a first cut, make a simple leaf call to runtime to stay platform independent. 1241 // could follow the aastore example in a future change. 1242 1243 LIRItem clazz(x->argument_at(0), this); 1244 LIRItem object(x->argument_at(1), this); 1245 clazz.load_item(); 1246 object.load_item(); 1247 LIR_Opr result = rlock_result(x); 1248 1249 // need to perform null check on clazz 1250 if (x->needs_null_check()) { 1251 CodeEmitInfo* info = state_for(x); 1252 __ null_check(clazz.result(), info); 1253 } 1254 1255 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1256 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), 1257 x->type(), 1258 NULL); // NULL CodeEmitInfo results in a leaf call 1259 __ move(call_result, result); 1260 } 1261 1262 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1263 __ load_klass(obj, klass, null_check_info); 1264 } 1265 1266 // Example: object.getClass () 1267 void LIRGenerator::do_getClass(Intrinsic* x) { 1268 assert(x->number_of_arguments() == 1, "wrong type"); 1269 1270 LIRItem rcvr(x->argument_at(0), this); 1271 rcvr.load_item(); 1272 LIR_Opr temp = new_register(T_ADDRESS); 1273 LIR_Opr result = rlock_result(x); 1274 1275 // need to perform the null check on the rcvr 1276 CodeEmitInfo* info = NULL; 1277 if (x->needs_null_check()) { 1278 info = state_for(x); 1279 } 1280 1281 LIR_Opr klass = new_register(T_METADATA); 1282 load_klass(rcvr.result(), klass, info); 1283 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1284 // mirror = ((OopHandle)mirror)->resolve(); 1285 access_load(IN_NATIVE, T_OBJECT, 1286 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1287 } 1288 1289 // java.lang.Class::isPrimitive() 1290 void LIRGenerator::do_isPrimitive(Intrinsic* x) { 1291 assert(x->number_of_arguments() == 1, "wrong type"); 1292 1293 LIRItem rcvr(x->argument_at(0), this); 1294 rcvr.load_item(); 1295 LIR_Opr temp = new_register(T_METADATA); 1296 LIR_Opr result = rlock_result(x); 1297 1298 CodeEmitInfo* info = NULL; 1299 if (x->needs_null_check()) { 1300 info = state_for(x); 1301 } 1302 1303 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info); 1304 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0)); 1305 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN); 1306 } 1307 1308 // Example: Foo.class.getModifiers() 1309 void LIRGenerator::do_getModifiers(Intrinsic* x) { 1310 assert(x->number_of_arguments() == 1, "wrong type"); 1311 1312 LIRItem receiver(x->argument_at(0), this); 1313 receiver.load_item(); 1314 LIR_Opr result = rlock_result(x); 1315 1316 CodeEmitInfo* info = NULL; 1317 if (x->needs_null_check()) { 1318 info = state_for(x); 1319 } 1320 1321 LabelObj* L_not_prim = new LabelObj(); 1322 LabelObj* L_done = new LabelObj(); 1323 1324 LIR_Opr klass = new_register(T_METADATA); 1325 // Checking if it's a java mirror of primitive type 1326 __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), klass, info); 1327 __ cmp(lir_cond_notEqual, klass, LIR_OprFact::metadataConst(0)); 1328 __ branch(lir_cond_notEqual, L_not_prim->label()); 1329 __ move(LIR_OprFact::intConst(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), result); 1330 __ branch(lir_cond_always, L_done->label()); 1331 1332 __ branch_destination(L_not_prim->label()); 1333 __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result); 1334 __ branch_destination(L_done->label()); 1335 } 1336 1337 // Example: Thread.currentThread() 1338 void LIRGenerator::do_currentThread(Intrinsic* x) { 1339 assert(x->number_of_arguments() == 0, "wrong type"); 1340 LIR_Opr temp = new_register(T_ADDRESS); 1341 LIR_Opr reg = rlock_result(x); 1342 __ move(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_ADDRESS), temp); 1343 // threadObj = ((OopHandle)_threadObj)->resolve(); 1344 access_load(IN_NATIVE, T_OBJECT, 1345 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1346 } 1347 1348 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1349 assert(x->number_of_arguments() == 3, "wrong type"); 1350 LIR_Opr result_reg = rlock_result(x); 1351 1352 LIRItem value(x->argument_at(2), this); 1353 value.load_item(); 1354 1355 LIR_Opr klass = new_register(T_METADATA); 1356 load_klass(value.result(), klass, NULL); 1357 LIR_Opr layout = new_register(T_INT); 1358 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1359 1360 LabelObj* L_done = new LabelObj(); 1361 LabelObj* L_array = new LabelObj(); 1362 1363 __ cmp(lir_cond_lessEqual, layout, 0); 1364 __ branch(lir_cond_lessEqual, L_array->label()); 1365 1366 // Instance case: the layout helper gives us instance size almost directly, 1367 // but we need to mask out the _lh_instance_slow_path_bit. 1368 __ convert(Bytecodes::_i2l, layout, result_reg); 1369 1370 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1371 jlong mask = ~(jlong) right_n_bits(LogBytesPerLong); 1372 __ logical_and(result_reg, LIR_OprFact::longConst(mask), result_reg); 1373 1374 __ branch(lir_cond_always, L_done->label()); 1375 1376 // Array case: size is round(header + element_size*arraylength). 1377 // Since arraylength is different for every array instance, we have to 1378 // compute the whole thing at runtime. 1379 1380 __ branch_destination(L_array->label()); 1381 1382 int round_mask = MinObjAlignmentInBytes - 1; 1383 1384 // Figure out header sizes first. 1385 LIR_Opr hss = LIR_OprFact::intConst(Klass::_lh_header_size_shift); 1386 LIR_Opr hsm = LIR_OprFact::intConst(Klass::_lh_header_size_mask); 1387 1388 LIR_Opr header_size = new_register(T_INT); 1389 __ move(layout, header_size); 1390 LIR_Opr tmp = new_register(T_INT); 1391 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1392 __ logical_and(header_size, hsm, header_size); 1393 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1394 1395 // Figure out the array length in bytes 1396 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1397 LIR_Opr l2esm = LIR_OprFact::intConst(Klass::_lh_log2_element_size_mask); 1398 __ logical_and(layout, l2esm, layout); 1399 1400 LIR_Opr length_int = new_register(T_INT); 1401 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1402 1403 #ifdef _LP64 1404 LIR_Opr length = new_register(T_LONG); 1405 __ convert(Bytecodes::_i2l, length_int, length); 1406 #endif 1407 1408 // Shift-left awkwardness. Normally it is just: 1409 // __ shift_left(length, layout, length); 1410 // But C1 cannot perform shift_left with non-constant count, so we end up 1411 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1412 // longs, so we have to act on ints. 1413 LabelObj* L_shift_loop = new LabelObj(); 1414 LabelObj* L_shift_exit = new LabelObj(); 1415 1416 __ branch_destination(L_shift_loop->label()); 1417 __ cmp(lir_cond_equal, layout, 0); 1418 __ branch(lir_cond_equal, L_shift_exit->label()); 1419 1420 #ifdef _LP64 1421 __ shift_left(length, 1, length); 1422 #else 1423 __ shift_left(length_int, 1, length_int); 1424 #endif 1425 1426 __ sub(layout, LIR_OprFact::intConst(1), layout); 1427 1428 __ branch(lir_cond_always, L_shift_loop->label()); 1429 __ branch_destination(L_shift_exit->label()); 1430 1431 // Mix all up, round, and push to the result. 1432 #ifdef _LP64 1433 LIR_Opr header_size_long = new_register(T_LONG); 1434 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1435 __ add(length, header_size_long, length); 1436 if (round_mask != 0) { 1437 __ logical_and(length, LIR_OprFact::longConst(~round_mask), length); 1438 } 1439 __ move(length, result_reg); 1440 #else 1441 __ add(length_int, header_size, length_int); 1442 if (round_mask != 0) { 1443 __ logical_and(length_int, LIR_OprFact::intConst(~round_mask), length_int); 1444 } 1445 __ convert(Bytecodes::_i2l, length_int, result_reg); 1446 #endif 1447 1448 __ branch_destination(L_done->label()); 1449 } 1450 1451 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1452 assert(x->number_of_arguments() == 1, "wrong type"); 1453 LIRItem receiver(x->argument_at(0), this); 1454 1455 receiver.load_item(); 1456 BasicTypeList signature; 1457 signature.append(T_OBJECT); // receiver 1458 LIR_OprList* args = new LIR_OprList(); 1459 args->append(receiver.result()); 1460 CodeEmitInfo* info = state_for(x, x->state()); 1461 call_runtime(&signature, args, 1462 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)), 1463 voidType, info); 1464 1465 set_no_result(x); 1466 } 1467 1468 1469 //------------------------local access-------------------------------------- 1470 1471 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1472 if (x->operand()->is_illegal()) { 1473 Constant* c = x->as_Constant(); 1474 if (c != NULL) { 1475 x->set_operand(LIR_OprFact::value_type(c->type())); 1476 } else { 1477 assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local"); 1478 // allocate a virtual register for this local or phi 1479 x->set_operand(rlock(x)); 1480 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL); 1481 } 1482 } 1483 return x->operand(); 1484 } 1485 1486 1487 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) { 1488 if (opr->is_virtual()) { 1489 return instruction_for_vreg(opr->vreg_number()); 1490 } 1491 return NULL; 1492 } 1493 1494 1495 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1496 if (reg_num < _instruction_for_operand.length()) { 1497 return _instruction_for_operand.at(reg_num); 1498 } 1499 return NULL; 1500 } 1501 1502 1503 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1504 if (_vreg_flags.size_in_bits() == 0) { 1505 BitMap2D temp(100, num_vreg_flags); 1506 _vreg_flags = temp; 1507 } 1508 _vreg_flags.at_put_grow(vreg_num, f, true); 1509 } 1510 1511 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1512 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1513 return false; 1514 } 1515 return _vreg_flags.at(vreg_num, f); 1516 } 1517 1518 1519 // Block local constant handling. This code is useful for keeping 1520 // unpinned constants and constants which aren't exposed in the IR in 1521 // registers. Unpinned Constant instructions have their operands 1522 // cleared when the block is finished so that other blocks can't end 1523 // up referring to their registers. 1524 1525 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1526 assert(!x->is_pinned(), "only for unpinned constants"); 1527 _unpinned_constants.append(x); 1528 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1529 } 1530 1531 1532 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1533 BasicType t = c->type(); 1534 for (int i = 0; i < _constants.length(); i++) { 1535 LIR_Const* other = _constants.at(i); 1536 if (t == other->type()) { 1537 switch (t) { 1538 case T_INT: 1539 case T_FLOAT: 1540 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1541 break; 1542 case T_LONG: 1543 case T_DOUBLE: 1544 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1545 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1546 break; 1547 case T_OBJECT: 1548 if (c->as_jobject() != other->as_jobject()) continue; 1549 break; 1550 default: 1551 break; 1552 } 1553 return _reg_for_constants.at(i); 1554 } 1555 } 1556 1557 LIR_Opr result = new_register(t); 1558 __ move((LIR_Opr)c, result); 1559 if (!in_conditional_code()) { 1560 _constants.append(c); 1561 _reg_for_constants.append(result); 1562 } 1563 return result; 1564 } 1565 1566 void LIRGenerator::set_in_conditional_code(bool v) { 1567 assert(v != _in_conditional_code, "must change state"); 1568 _in_conditional_code = v; 1569 } 1570 1571 1572 //------------------------field access-------------------------------------- 1573 1574 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1575 assert(x->number_of_arguments() == 4, "wrong type"); 1576 LIRItem obj (x->argument_at(0), this); // object 1577 LIRItem offset(x->argument_at(1), this); // offset of field 1578 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1579 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1580 assert(obj.type()->tag() == objectTag, "invalid type"); 1581 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1582 assert(val.type()->tag() == type->tag(), "invalid type"); 1583 1584 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1585 obj, offset, cmp, val); 1586 set_result(x, result); 1587 } 1588 1589 // Comment copied form templateTable_i486.cpp 1590 // ---------------------------------------------------------------------------- 1591 // Volatile variables demand their effects be made known to all CPU's in 1592 // order. Store buffers on most chips allow reads & writes to reorder; the 1593 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1594 // memory barrier (i.e., it's not sufficient that the interpreter does not 1595 // reorder volatile references, the hardware also must not reorder them). 1596 // 1597 // According to the new Java Memory Model (JMM): 1598 // (1) All volatiles are serialized wrt to each other. 1599 // ALSO reads & writes act as aquire & release, so: 1600 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1601 // the read float up to before the read. It's OK for non-volatile memory refs 1602 // that happen before the volatile read to float down below it. 1603 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1604 // that happen BEFORE the write float down to after the write. It's OK for 1605 // non-volatile memory refs that happen after the volatile write to float up 1606 // before it. 1607 // 1608 // We only put in barriers around volatile refs (they are expensive), not 1609 // _between_ memory refs (that would require us to track the flavor of the 1610 // previous memory refs). Requirements (2) and (3) require some barriers 1611 // before volatile stores and after volatile loads. These nearly cover 1612 // requirement (1) but miss the volatile-store-volatile-load case. This final 1613 // case is placed after volatile-stores although it could just as well go 1614 // before volatile-loads. 1615 1616 1617 void LIRGenerator::do_StoreField(StoreField* x) { 1618 bool needs_patching = x->needs_patching(); 1619 bool is_volatile = x->field()->is_volatile(); 1620 BasicType field_type = x->field_type(); 1621 1622 CodeEmitInfo* info = NULL; 1623 if (needs_patching) { 1624 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1625 info = state_for(x, x->state_before()); 1626 } else if (x->needs_null_check()) { 1627 NullCheck* nc = x->explicit_null_check(); 1628 if (nc == NULL) { 1629 info = state_for(x); 1630 } else { 1631 info = state_for(nc); 1632 } 1633 } 1634 1635 LIRItem object(x->obj(), this); 1636 LIRItem value(x->value(), this); 1637 1638 object.load_item(); 1639 1640 if (is_volatile || needs_patching) { 1641 // load item if field is volatile (fewer special cases for volatiles) 1642 // load item if field not initialized 1643 // load item if field not constant 1644 // because of code patching we cannot inline constants 1645 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1646 value.load_byte_item(); 1647 } else { 1648 value.load_item(); 1649 } 1650 } else { 1651 value.load_for_store(field_type); 1652 } 1653 1654 set_no_result(x); 1655 1656 #ifndef PRODUCT 1657 if (PrintNotLoaded && needs_patching) { 1658 tty->print_cr(" ###class not loaded at store_%s bci %d", 1659 x->is_static() ? "static" : "field", x->printable_bci()); 1660 } 1661 #endif 1662 1663 if (!inline_type_field_access_prolog(x)) { 1664 // Field store will always deopt due to unloaded field or holder klass 1665 return; 1666 } 1667 1668 if (x->needs_null_check() && 1669 (needs_patching || 1670 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1671 // Emit an explicit null check because the offset is too large. 1672 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a 1673 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1674 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1675 } 1676 1677 DecoratorSet decorators = IN_HEAP; 1678 if (is_volatile) { 1679 decorators |= MO_SEQ_CST; 1680 } 1681 if (needs_patching) { 1682 decorators |= C1_NEEDS_PATCHING; 1683 } 1684 1685 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1686 value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info); 1687 } 1688 1689 // FIXME -- I can't find any other way to pass an address to access_load_at(). 1690 class TempResolvedAddress: public Instruction { 1691 public: 1692 TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) { 1693 set_operand(addr); 1694 } 1695 virtual void input_values_do(ValueVisitor*) {} 1696 virtual void visit(InstructionVisitor* v) {} 1697 virtual const char* name() const { return "TempResolvedAddress"; } 1698 }; 1699 1700 LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) { 1701 ciType* array_type = array.value()->declared_type(); 1702 ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass(); 1703 assert(flat_array_klass->is_loaded(), "must be"); 1704 1705 int array_header_size = flat_array_klass->array_header_in_bytes(); 1706 int shift = flat_array_klass->log2_element_size(); 1707 1708 #ifndef _LP64 1709 LIR_Opr index_op = new_register(T_INT); 1710 // FIXME -- on 32-bit, the shift below can overflow, so we need to check that 1711 // the top (shift+1) bits of index_op must be zero, or 1712 // else throw ArrayIndexOutOfBoundsException 1713 if (index.result()->is_constant()) { 1714 jint const_index = index.result()->as_jint(); 1715 __ move(LIR_OprFact::intConst(const_index << shift), index_op); 1716 } else { 1717 __ shift_left(index_op, shift, index.result()); 1718 } 1719 #else 1720 LIR_Opr index_op = new_register(T_LONG); 1721 if (index.result()->is_constant()) { 1722 jint const_index = index.result()->as_jint(); 1723 __ move(LIR_OprFact::longConst(const_index << shift), index_op); 1724 } else { 1725 __ convert(Bytecodes::_i2l, index.result(), index_op); 1726 // Need to shift manually, as LIR_Address can scale only up to 3. 1727 __ shift_left(index_op, shift, index_op); 1728 } 1729 #endif 1730 1731 LIR_Opr elm_op = new_pointer_register(); 1732 LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS); 1733 __ leal(LIR_OprFact::address(elm_address), elm_op); 1734 return elm_op; 1735 } 1736 1737 void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, int sub_offset) { 1738 assert(field != NULL, "Need a subelement type specified"); 1739 1740 // Find the starting address of the source (inside the array) 1741 LIR_Opr elm_op = get_and_load_element_address(array, index); 1742 1743 BasicType subelt_type = field->type()->basic_type(); 1744 TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op); 1745 LIRItem elm_item(elm_resolved_addr, this); 1746 1747 DecoratorSet decorators = IN_HEAP; 1748 access_load_at(decorators, subelt_type, 1749 elm_item, LIR_OprFact::intConst(sub_offset), result, 1750 NULL, NULL); 1751 1752 if (field->is_null_free()) { 1753 assert(field->type()->is_loaded(), "Must be"); 1754 assert(field->type()->is_inlinetype(), "Must be if loaded"); 1755 assert(field->type()->as_inline_klass()->is_initialized(), "Must be"); 1756 LabelObj* L_end = new LabelObj(); 1757 __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(NULL)); 1758 __ branch(lir_cond_notEqual, L_end->label()); 1759 set_in_conditional_code(true); 1760 Constant* default_value = new Constant(new InstanceConstant(field->type()->as_inline_klass()->default_instance())); 1761 if (default_value->is_pinned()) { 1762 __ move(LIR_OprFact::value_type(default_value->type()), result); 1763 } else { 1764 __ move(load_constant(default_value), result); 1765 } 1766 __ branch_destination(L_end->label()); 1767 set_in_conditional_code(false); 1768 } 1769 } 1770 1771 void LIRGenerator::access_flattened_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item, 1772 ciField* field, int sub_offset) { 1773 assert(sub_offset == 0 || field != NULL, "Sanity check"); 1774 1775 // Find the starting address of the source (inside the array) 1776 LIR_Opr elm_op = get_and_load_element_address(array, index); 1777 1778 ciInlineKlass* elem_klass = NULL; 1779 if (field != NULL) { 1780 elem_klass = field->type()->as_inline_klass(); 1781 } else { 1782 elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass(); 1783 } 1784 for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) { 1785 ciField* inner_field = elem_klass->nonstatic_field_at(i); 1786 assert(!inner_field->is_flattened(), "flattened fields must have been expanded"); 1787 int obj_offset = inner_field->offset(); 1788 int elm_offset = obj_offset - elem_klass->first_field_offset() + sub_offset; // object header is not stored in array. 1789 BasicType field_type = inner_field->type()->basic_type(); 1790 1791 // Types which are smaller than int are still passed in an int register. 1792 BasicType reg_type = field_type; 1793 switch (reg_type) { 1794 case T_BYTE: 1795 case T_BOOLEAN: 1796 case T_SHORT: 1797 case T_CHAR: 1798 reg_type = T_INT; 1799 break; 1800 default: 1801 break; 1802 } 1803 1804 LIR_Opr temp = new_register(reg_type); 1805 TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op); 1806 LIRItem elm_item(elm_resolved_addr, this); 1807 1808 DecoratorSet decorators = IN_HEAP; 1809 if (is_load) { 1810 access_load_at(decorators, field_type, 1811 elm_item, LIR_OprFact::intConst(elm_offset), temp, 1812 NULL, NULL); 1813 access_store_at(decorators, field_type, 1814 obj_item, LIR_OprFact::intConst(obj_offset), temp, 1815 NULL, NULL); 1816 } else { 1817 access_load_at(decorators, field_type, 1818 obj_item, LIR_OprFact::intConst(obj_offset), temp, 1819 NULL, NULL); 1820 access_store_at(decorators, field_type, 1821 elm_item, LIR_OprFact::intConst(elm_offset), temp, 1822 NULL, NULL); 1823 } 1824 } 1825 } 1826 1827 void LIRGenerator::check_flattened_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) { 1828 LIR_Opr tmp = new_register(T_METADATA); 1829 __ check_flattened_array(array, value, tmp, slow_path); 1830 } 1831 1832 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) { 1833 LabelObj* L_end = new LabelObj(); 1834 LIR_Opr tmp = new_register(T_METADATA); 1835 __ check_null_free_array(array.result(), tmp); 1836 __ branch(lir_cond_equal, L_end->label()); 1837 __ null_check(value.result(), info); 1838 __ branch_destination(L_end->label()); 1839 } 1840 1841 bool LIRGenerator::needs_flattened_array_store_check(StoreIndexed* x) { 1842 if (x->elt_type() == T_OBJECT && x->array()->maybe_flattened_array()) { 1843 ciType* type = x->value()->declared_type(); 1844 if (type != NULL && type->is_klass()) { 1845 ciKlass* klass = type->as_klass(); 1846 if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->flatten_array())) { 1847 // This is known to be a non-flattened object. If the array is flattened, 1848 // it will be caught by the code generated by array_store_check(). 1849 return false; 1850 } 1851 } 1852 // We're not 100% sure, so let's do the flattened_array_store_check. 1853 return true; 1854 } 1855 return false; 1856 } 1857 1858 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) { 1859 return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array(); 1860 } 1861 1862 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1863 assert(x->is_pinned(),""); 1864 assert(x->elt_type() != T_ARRAY, "never used"); 1865 bool is_loaded_flattened_array = x->array()->is_loaded_flattened_array(); 1866 bool needs_range_check = x->compute_needs_range_check(); 1867 bool use_length = x->length() != NULL; 1868 bool obj_store = is_reference_type(x->elt_type()); 1869 bool needs_store_check = obj_store && !(is_loaded_flattened_array && x->is_exact_flattened_array_store()) && 1870 (x->value()->as_Constant() == NULL || 1871 !get_jobject_constant(x->value())->is_null_object()); 1872 1873 LIRItem array(x->array(), this); 1874 LIRItem index(x->index(), this); 1875 LIRItem value(x->value(), this); 1876 LIRItem length(this); 1877 1878 array.load_item(); 1879 index.load_nonconstant(); 1880 1881 if (use_length && needs_range_check) { 1882 length.set_instruction(x->length()); 1883 length.load_item(); 1884 } 1885 1886 if (needs_store_check || x->check_boolean() 1887 || is_loaded_flattened_array || needs_flattened_array_store_check(x) || needs_null_free_array_store_check(x)) { 1888 value.load_item(); 1889 } else { 1890 value.load_for_store(x->elt_type()); 1891 } 1892 1893 set_no_result(x); 1894 1895 // the CodeEmitInfo must be duplicated for each different 1896 // LIR-instruction because spilling can occur anywhere between two 1897 // instructions and so the debug information must be different 1898 CodeEmitInfo* range_check_info = state_for(x); 1899 CodeEmitInfo* null_check_info = NULL; 1900 if (x->needs_null_check()) { 1901 null_check_info = new CodeEmitInfo(range_check_info); 1902 } 1903 1904 if (GenerateRangeChecks && needs_range_check) { 1905 if (use_length) { 1906 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1907 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1908 } else { 1909 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1910 // range_check also does the null check 1911 null_check_info = NULL; 1912 } 1913 } 1914 1915 if (x->should_profile()) { 1916 if (x->array()->is_loaded_flattened_array()) { 1917 // No need to profile a store to a flattened array of known type. This can happen if 1918 // the type only became known after optimizations (for example, after the PhiSimplifier). 1919 x->set_should_profile(false); 1920 } else { 1921 ciMethodData* md = NULL; 1922 ciArrayLoadStoreData* load_store = NULL; 1923 profile_array_type(x, md, load_store); 1924 if (x->array()->maybe_null_free_array()) { 1925 profile_null_free_array(array, md, load_store); 1926 } 1927 profile_element_type(x->value(), md, load_store); 1928 } 1929 } 1930 1931 if (GenerateArrayStoreCheck && needs_store_check) { 1932 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1933 array_store_check(value.result(), array.result(), store_check_info, NULL, -1); 1934 } 1935 1936 if (is_loaded_flattened_array) { 1937 if (!x->value()->is_null_free()) { 1938 __ null_check(value.result(), new CodeEmitInfo(range_check_info)); 1939 } 1940 // If array element is an empty inline type, no need to copy anything 1941 if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) { 1942 access_flattened_array(false, array, index, value); 1943 } 1944 } else { 1945 StoreFlattenedArrayStub* slow_path = NULL; 1946 1947 if (needs_flattened_array_store_check(x)) { 1948 // Check if we indeed have a flattened array 1949 index.load_item(); 1950 slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before())); 1951 check_flattened_array(array.result(), value.result(), slow_path); 1952 set_in_conditional_code(true); 1953 } else if (needs_null_free_array_store_check(x)) { 1954 CodeEmitInfo* info = new CodeEmitInfo(range_check_info); 1955 check_null_free_array(array, value, info); 1956 } 1957 1958 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1959 if (x->check_boolean()) { 1960 decorators |= C1_MASK_BOOLEAN; 1961 } 1962 1963 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1964 NULL, null_check_info); 1965 if (slow_path != NULL) { 1966 __ branch_destination(slow_path->continuation()); 1967 set_in_conditional_code(false); 1968 } 1969 } 1970 } 1971 1972 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1973 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1974 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1975 decorators |= ACCESS_READ; 1976 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1977 if (access.is_raw()) { 1978 _barrier_set->BarrierSetC1::load_at(access, result); 1979 } else { 1980 _barrier_set->load_at(access, result); 1981 } 1982 } 1983 1984 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1985 LIR_Opr addr, LIR_Opr result) { 1986 decorators |= ACCESS_READ; 1987 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1988 access.set_resolved_addr(addr); 1989 if (access.is_raw()) { 1990 _barrier_set->BarrierSetC1::load(access, result); 1991 } else { 1992 _barrier_set->load(access, result); 1993 } 1994 } 1995 1996 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1997 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1998 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1999 decorators |= ACCESS_WRITE; 2000 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 2001 if (access.is_raw()) { 2002 _barrier_set->BarrierSetC1::store_at(access, value); 2003 } else { 2004 _barrier_set->store_at(access, value); 2005 } 2006 } 2007 2008 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 2009 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 2010 decorators |= ACCESS_READ; 2011 decorators |= ACCESS_WRITE; 2012 // Atomic operations are SEQ_CST by default 2013 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 2014 LIRAccess access(this, decorators, base, offset, type); 2015 if (access.is_raw()) { 2016 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 2017 } else { 2018 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 2019 } 2020 } 2021 2022 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 2023 LIRItem& base, LIRItem& offset, LIRItem& value) { 2024 decorators |= ACCESS_READ; 2025 decorators |= ACCESS_WRITE; 2026 // Atomic operations are SEQ_CST by default 2027 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 2028 LIRAccess access(this, decorators, base, offset, type); 2029 if (access.is_raw()) { 2030 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 2031 } else { 2032 return _barrier_set->atomic_xchg_at(access, value); 2033 } 2034 } 2035 2036 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 2037 LIRItem& base, LIRItem& offset, LIRItem& value) { 2038 decorators |= ACCESS_READ; 2039 decorators |= ACCESS_WRITE; 2040 // Atomic operations are SEQ_CST by default 2041 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 2042 LIRAccess access(this, decorators, base, offset, type); 2043 if (access.is_raw()) { 2044 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 2045 } else { 2046 return _barrier_set->atomic_add_at(access, value); 2047 } 2048 } 2049 2050 bool LIRGenerator::inline_type_field_access_prolog(AccessField* x) { 2051 ciField* field = x->field(); 2052 assert(!field->is_flattened(), "Flattened field access should have been expanded"); 2053 if (!field->is_null_free()) { 2054 return true; // Not an inline type field 2055 } 2056 // Deoptimize if the access is non-static and requires patching (holder not loaded 2057 // or not accessible) because then we only have partial field information and the 2058 // field could be flattened (see ciField constructor). 2059 bool could_be_flat = !x->is_static() && x->needs_patching(); 2060 // Deoptimize if we load from a static field with an uninitialized type because we 2061 // need to throw an exception if initialization of the type failed. 2062 bool not_initialized = x->is_static() && x->as_LoadField() != NULL && 2063 !field->type()->as_instance_klass()->is_initialized(); 2064 if (could_be_flat || not_initialized) { 2065 CodeEmitInfo* info = state_for(x, x->state_before()); 2066 CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info), 2067 Deoptimization::Reason_unloaded, 2068 Deoptimization::Action_make_not_entrant); 2069 __ jump(stub); 2070 return false; 2071 } 2072 return true; 2073 } 2074 2075 void LIRGenerator::do_LoadField(LoadField* x) { 2076 bool needs_patching = x->needs_patching(); 2077 bool is_volatile = x->field()->is_volatile(); 2078 BasicType field_type = x->field_type(); 2079 2080 CodeEmitInfo* info = NULL; 2081 if (needs_patching) { 2082 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 2083 info = state_for(x, x->state_before()); 2084 } else if (x->needs_null_check()) { 2085 NullCheck* nc = x->explicit_null_check(); 2086 if (nc == NULL) { 2087 info = state_for(x); 2088 } else { 2089 info = state_for(nc); 2090 } 2091 } 2092 2093 LIRItem object(x->obj(), this); 2094 2095 object.load_item(); 2096 2097 #ifndef PRODUCT 2098 if (PrintNotLoaded && needs_patching) { 2099 tty->print_cr(" ###class not loaded at load_%s bci %d", 2100 x->is_static() ? "static" : "field", x->printable_bci()); 2101 } 2102 #endif 2103 2104 if (!inline_type_field_access_prolog(x)) { 2105 // Field load will always deopt due to unloaded field or holder klass 2106 LIR_Opr result = rlock_result(x, field_type); 2107 __ move(LIR_OprFact::oopConst(NULL), result); 2108 return; 2109 } 2110 2111 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 2112 if (x->needs_null_check() && 2113 (needs_patching || 2114 MacroAssembler::needs_explicit_null_check(x->offset()) || 2115 stress_deopt)) { 2116 LIR_Opr obj = object.result(); 2117 if (stress_deopt) { 2118 obj = new_register(T_OBJECT); 2119 __ move(LIR_OprFact::oopConst(NULL), obj); 2120 } 2121 // Emit an explicit null check because the offset is too large. 2122 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a 2123 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 2124 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 2125 } 2126 2127 DecoratorSet decorators = IN_HEAP; 2128 if (is_volatile) { 2129 decorators |= MO_SEQ_CST; 2130 } 2131 if (needs_patching) { 2132 decorators |= C1_NEEDS_PATCHING; 2133 } 2134 2135 LIR_Opr result = rlock_result(x, field_type); 2136 access_load_at(decorators, field_type, 2137 object, LIR_OprFact::intConst(x->offset()), result, 2138 info ? new CodeEmitInfo(info) : NULL, info); 2139 2140 ciField* field = x->field(); 2141 if (field->is_null_free()) { 2142 // Load from non-flattened inline type field requires 2143 // a null check to replace null with the default value. 2144 ciInstanceKlass* holder = field->holder(); 2145 if (field->is_static() && holder->is_loaded()) { 2146 ciObject* val = holder->java_mirror()->field_value(field).as_object(); 2147 if (!val->is_null_object()) { 2148 // Static field is initialized, we don't need to perform a null check. 2149 return; 2150 } 2151 } 2152 ciInlineKlass* inline_klass = field->type()->as_inline_klass(); 2153 if (inline_klass->is_initialized()) { 2154 LabelObj* L_end = new LabelObj(); 2155 __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(NULL)); 2156 __ branch(lir_cond_notEqual, L_end->label()); 2157 set_in_conditional_code(true); 2158 Constant* default_value = new Constant(new InstanceConstant(inline_klass->default_instance())); 2159 if (default_value->is_pinned()) { 2160 __ move(LIR_OprFact::value_type(default_value->type()), result); 2161 } else { 2162 __ move(load_constant(default_value), result); 2163 } 2164 __ branch_destination(L_end->label()); 2165 set_in_conditional_code(false); 2166 } else { 2167 __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL)); 2168 __ branch(lir_cond_equal, new DeoptimizeStub(info, Deoptimization::Reason_uninitialized, 2169 Deoptimization::Action_make_not_entrant)); 2170 } 2171 } 2172 } 2173 2174 // int/long jdk.internal.util.Preconditions.checkIndex 2175 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) { 2176 assert(x->number_of_arguments() == 3, "wrong type"); 2177 LIRItem index(x->argument_at(0), this); 2178 LIRItem length(x->argument_at(1), this); 2179 LIRItem oobef(x->argument_at(2), this); 2180 2181 index.load_item(); 2182 length.load_item(); 2183 oobef.load_item(); 2184 2185 LIR_Opr result = rlock_result(x); 2186 // x->state() is created from copy_state_for_exception, it does not contains arguments 2187 // we should prepare them before entering into interpreter mode due to deoptimization. 2188 ValueStack* state = x->state(); 2189 for (int i = 0; i < x->number_of_arguments(); i++) { 2190 Value arg = x->argument_at(i); 2191 state->push(arg->type(), arg); 2192 } 2193 CodeEmitInfo* info = state_for(x, state); 2194 2195 LIR_Opr len = length.result(); 2196 LIR_Opr zero; 2197 if (type == T_INT) { 2198 zero = LIR_OprFact::intConst(0); 2199 if (length.result()->is_constant()){ 2200 len = LIR_OprFact::intConst(length.result()->as_jint()); 2201 } 2202 } else { 2203 assert(type == T_LONG, "sanity check"); 2204 zero = LIR_OprFact::longConst(0); 2205 if (length.result()->is_constant()){ 2206 len = LIR_OprFact::longConst(length.result()->as_jlong()); 2207 } 2208 } 2209 // C1 can not handle the case that comparing index with constant value while condition 2210 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op. 2211 LIR_Opr zero_reg = new_register(type); 2212 __ move(zero, zero_reg); 2213 #if defined(X86) && !defined(_LP64) 2214 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 2215 LIR_Opr index_copy = new_register(index.type()); 2216 // index >= 0 2217 __ move(index.result(), index_copy); 2218 __ cmp(lir_cond_less, index_copy, zero_reg); 2219 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2220 Deoptimization::Action_make_not_entrant)); 2221 // index < length 2222 __ move(index.result(), index_copy); 2223 __ cmp(lir_cond_greaterEqual, index_copy, len); 2224 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2225 Deoptimization::Action_make_not_entrant)); 2226 #else 2227 // index >= 0 2228 __ cmp(lir_cond_less, index.result(), zero_reg); 2229 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2230 Deoptimization::Action_make_not_entrant)); 2231 // index < length 2232 __ cmp(lir_cond_greaterEqual, index.result(), len); 2233 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2234 Deoptimization::Action_make_not_entrant)); 2235 #endif 2236 __ move(index.result(), result); 2237 } 2238 2239 //------------------------array access-------------------------------------- 2240 2241 2242 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 2243 LIRItem array(x->array(), this); 2244 array.load_item(); 2245 LIR_Opr reg = rlock_result(x); 2246 2247 CodeEmitInfo* info = NULL; 2248 if (x->needs_null_check()) { 2249 NullCheck* nc = x->explicit_null_check(); 2250 if (nc == NULL) { 2251 info = state_for(x); 2252 } else { 2253 info = state_for(nc); 2254 } 2255 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 2256 LIR_Opr obj = new_register(T_OBJECT); 2257 __ move(LIR_OprFact::oopConst(NULL), obj); 2258 __ null_check(obj, new CodeEmitInfo(info)); 2259 } 2260 } 2261 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 2262 } 2263 2264 2265 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 2266 bool use_length = x->length() != NULL; 2267 LIRItem array(x->array(), this); 2268 LIRItem index(x->index(), this); 2269 LIRItem length(this); 2270 bool needs_range_check = x->compute_needs_range_check(); 2271 2272 if (use_length && needs_range_check) { 2273 length.set_instruction(x->length()); 2274 length.load_item(); 2275 } 2276 2277 array.load_item(); 2278 if (index.is_constant() && can_inline_as_constant(x->index())) { 2279 // let it be a constant 2280 index.dont_load_item(); 2281 } else { 2282 index.load_item(); 2283 } 2284 2285 CodeEmitInfo* range_check_info = state_for(x); 2286 CodeEmitInfo* null_check_info = NULL; 2287 if (x->needs_null_check()) { 2288 NullCheck* nc = x->explicit_null_check(); 2289 if (nc != NULL) { 2290 null_check_info = state_for(nc); 2291 } else { 2292 null_check_info = range_check_info; 2293 } 2294 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 2295 LIR_Opr obj = new_register(T_OBJECT); 2296 __ move(LIR_OprFact::oopConst(NULL), obj); 2297 __ null_check(obj, new CodeEmitInfo(null_check_info)); 2298 } 2299 } 2300 2301 if (GenerateRangeChecks && needs_range_check) { 2302 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 2303 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 2304 } else if (use_length) { 2305 // TODO: use a (modified) version of array_range_check that does not require a 2306 // constant length to be loaded to a register 2307 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 2308 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 2309 } else { 2310 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 2311 // The range check performs the null check, so clear it out for the load 2312 null_check_info = NULL; 2313 } 2314 } 2315 2316 ciMethodData* md = NULL; 2317 ciArrayLoadStoreData* load_store = NULL; 2318 if (x->should_profile()) { 2319 if (x->array()->is_loaded_flattened_array()) { 2320 // No need to profile a load from a flattened array of known type. This can happen if 2321 // the type only became known after optimizations (for example, after the PhiSimplifier). 2322 x->set_should_profile(false); 2323 } else { 2324 profile_array_type(x, md, load_store); 2325 } 2326 } 2327 2328 Value element; 2329 if (x->vt() != NULL) { 2330 assert(x->array()->is_loaded_flattened_array(), "must be"); 2331 // Find the destination address (of the NewInlineTypeInstance). 2332 LIRItem obj_item(x->vt(), this); 2333 2334 access_flattened_array(true, array, index, obj_item, 2335 x->delayed() == NULL ? 0 : x->delayed()->field(), 2336 x->delayed() == NULL ? 0 : x->delayed()->offset()); 2337 set_no_result(x); 2338 } else if (x->delayed() != NULL) { 2339 assert(x->array()->is_loaded_flattened_array(), "must be"); 2340 LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type()); 2341 access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset()); 2342 } else if (x->array() != NULL && x->array()->is_loaded_flattened_array() && 2343 x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_initialized() && 2344 x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) { 2345 // Load the default instance instead of reading the element 2346 ciInlineKlass* elem_klass = x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass(); 2347 LIR_Opr result = rlock_result(x, x->elt_type()); 2348 assert(elem_klass->is_initialized(), "Must be"); 2349 Constant* default_value = new Constant(new InstanceConstant(elem_klass->default_instance())); 2350 if (default_value->is_pinned()) { 2351 __ move(LIR_OprFact::value_type(default_value->type()), result); 2352 } else { 2353 __ move(load_constant(default_value), result); 2354 } 2355 } else { 2356 LIR_Opr result = rlock_result(x, x->elt_type()); 2357 LoadFlattenedArrayStub* slow_path = NULL; 2358 2359 if (x->should_profile() && x->array()->maybe_null_free_array()) { 2360 profile_null_free_array(array, md, load_store); 2361 } 2362 2363 if (x->elt_type() == T_OBJECT && x->array()->maybe_flattened_array()) { 2364 assert(x->delayed() == NULL, "Delayed LoadIndexed only apply to loaded_flattened_arrays"); 2365 index.load_item(); 2366 // if we are loading from flattened array, load it using a runtime call 2367 slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before())); 2368 check_flattened_array(array.result(), LIR_OprFact::illegalOpr, slow_path); 2369 set_in_conditional_code(true); 2370 } 2371 2372 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 2373 access_load_at(decorators, x->elt_type(), 2374 array, index.result(), result, 2375 NULL, null_check_info); 2376 2377 if (slow_path != NULL) { 2378 __ branch_destination(slow_path->continuation()); 2379 set_in_conditional_code(false); 2380 } 2381 2382 element = x; 2383 } 2384 2385 if (x->should_profile()) { 2386 profile_element_type(element, md, load_store); 2387 } 2388 } 2389 2390 void LIRGenerator::do_Deoptimize(Deoptimize* x) { 2391 // This happens only when a class X uses the withfield/aconst_init bytecode 2392 // to refer to an inline class V, where V has not yet been loaded/resolved. 2393 // This is not a common case. Let's just deoptimize. 2394 CodeEmitInfo* info = state_for(x, x->state_before()); 2395 CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info), 2396 Deoptimization::Reason_unloaded, 2397 Deoptimization::Action_make_not_entrant); 2398 __ jump(stub); 2399 LIR_Opr reg = rlock_result(x, T_OBJECT); 2400 __ move(LIR_OprFact::oopConst(NULL), reg); 2401 } 2402 2403 void LIRGenerator::do_NullCheck(NullCheck* x) { 2404 if (x->can_trap()) { 2405 LIRItem value(x->obj(), this); 2406 value.load_item(); 2407 CodeEmitInfo* info = state_for(x); 2408 __ null_check(value.result(), info); 2409 } 2410 } 2411 2412 2413 void LIRGenerator::do_TypeCast(TypeCast* x) { 2414 LIRItem value(x->obj(), this); 2415 value.load_item(); 2416 // the result is the same as from the node we are casting 2417 set_result(x, value.result()); 2418 } 2419 2420 2421 void LIRGenerator::do_Throw(Throw* x) { 2422 LIRItem exception(x->exception(), this); 2423 exception.load_item(); 2424 set_no_result(x); 2425 LIR_Opr exception_opr = exception.result(); 2426 CodeEmitInfo* info = state_for(x, x->state()); 2427 2428 #ifndef PRODUCT 2429 if (PrintC1Statistics) { 2430 increment_counter(Runtime1::throw_count_address(), T_INT); 2431 } 2432 #endif 2433 2434 // check if the instruction has an xhandler in any of the nested scopes 2435 bool unwind = false; 2436 if (info->exception_handlers()->length() == 0) { 2437 // this throw is not inside an xhandler 2438 unwind = true; 2439 } else { 2440 // get some idea of the throw type 2441 bool type_is_exact = true; 2442 ciType* throw_type = x->exception()->exact_type(); 2443 if (throw_type == NULL) { 2444 type_is_exact = false; 2445 throw_type = x->exception()->declared_type(); 2446 } 2447 if (throw_type != NULL && throw_type->is_instance_klass()) { 2448 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2449 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2450 } 2451 } 2452 2453 // do null check before moving exception oop into fixed register 2454 // to avoid a fixed interval with an oop during the null check. 2455 // Use a copy of the CodeEmitInfo because debug information is 2456 // different for null_check and throw. 2457 if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) { 2458 // if the exception object wasn't created using new then it might be null. 2459 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2460 } 2461 2462 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2463 // we need to go through the exception lookup path to get JVMTI 2464 // notification done 2465 unwind = false; 2466 } 2467 2468 // move exception oop into fixed register 2469 __ move(exception_opr, exceptionOopOpr()); 2470 2471 if (unwind) { 2472 __ unwind_exception(exceptionOopOpr()); 2473 } else { 2474 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2475 } 2476 } 2477 2478 2479 void LIRGenerator::do_RoundFP(RoundFP* x) { 2480 assert(strict_fp_requires_explicit_rounding, "not required"); 2481 2482 LIRItem input(x->input(), this); 2483 input.load_item(); 2484 LIR_Opr input_opr = input.result(); 2485 assert(input_opr->is_register(), "why round if value is not in a register?"); 2486 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 2487 if (input_opr->is_single_fpu()) { 2488 set_result(x, round_item(input_opr)); // This code path not currently taken 2489 } else { 2490 LIR_Opr result = new_register(T_DOUBLE); 2491 set_vreg_flag(result, must_start_in_memory); 2492 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 2493 set_result(x, result); 2494 } 2495 } 2496 2497 2498 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) { 2499 BasicType type = x->basic_type(); 2500 LIRItem src(x->object(), this); 2501 LIRItem off(x->offset(), this); 2502 2503 off.load_item(); 2504 src.load_item(); 2505 2506 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2507 2508 if (x->is_volatile()) { 2509 decorators |= MO_SEQ_CST; 2510 } 2511 if (type == T_BOOLEAN) { 2512 decorators |= C1_MASK_BOOLEAN; 2513 } 2514 if (is_reference_type(type)) { 2515 decorators |= ON_UNKNOWN_OOP_REF; 2516 } 2517 2518 LIR_Opr result = rlock_result(x, type); 2519 if (!x->is_raw()) { 2520 access_load_at(decorators, type, src, off.result(), result); 2521 } else { 2522 // Currently it is only used in GraphBuilder::setup_osr_entry_block. 2523 // It reads the value from [src + offset] directly. 2524 #ifdef _LP64 2525 LIR_Opr offset = new_register(T_LONG); 2526 __ convert(Bytecodes::_i2l, off.result(), offset); 2527 #else 2528 LIR_Opr offset = off.result(); 2529 #endif 2530 LIR_Address* addr = new LIR_Address(src.result(), offset, type); 2531 if (is_reference_type(type)) { 2532 __ move_wide(addr, result); 2533 } else { 2534 __ move(addr, result); 2535 } 2536 } 2537 } 2538 2539 2540 void LIRGenerator::do_UnsafePut(UnsafePut* x) { 2541 BasicType type = x->basic_type(); 2542 LIRItem src(x->object(), this); 2543 LIRItem off(x->offset(), this); 2544 LIRItem data(x->value(), this); 2545 2546 src.load_item(); 2547 if (type == T_BOOLEAN || type == T_BYTE) { 2548 data.load_byte_item(); 2549 } else { 2550 data.load_item(); 2551 } 2552 off.load_item(); 2553 2554 set_no_result(x); 2555 2556 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2557 if (is_reference_type(type)) { 2558 decorators |= ON_UNKNOWN_OOP_REF; 2559 } 2560 if (x->is_volatile()) { 2561 decorators |= MO_SEQ_CST; 2562 } 2563 access_store_at(decorators, type, src, off.result(), data.result()); 2564 } 2565 2566 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) { 2567 BasicType type = x->basic_type(); 2568 LIRItem src(x->object(), this); 2569 LIRItem off(x->offset(), this); 2570 LIRItem value(x->value(), this); 2571 2572 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2573 2574 if (is_reference_type(type)) { 2575 decorators |= ON_UNKNOWN_OOP_REF; 2576 } 2577 2578 LIR_Opr result; 2579 if (x->is_add()) { 2580 result = access_atomic_add_at(decorators, type, src, off, value); 2581 } else { 2582 result = access_atomic_xchg_at(decorators, type, src, off, value); 2583 } 2584 set_result(x, result); 2585 } 2586 2587 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2588 int lng = x->length(); 2589 2590 for (int i = 0; i < lng; i++) { 2591 C1SwitchRange* one_range = x->at(i); 2592 int low_key = one_range->low_key(); 2593 int high_key = one_range->high_key(); 2594 BlockBegin* dest = one_range->sux(); 2595 if (low_key == high_key) { 2596 __ cmp(lir_cond_equal, value, low_key); 2597 __ branch(lir_cond_equal, dest); 2598 } else if (high_key - low_key == 1) { 2599 __ cmp(lir_cond_equal, value, low_key); 2600 __ branch(lir_cond_equal, dest); 2601 __ cmp(lir_cond_equal, value, high_key); 2602 __ branch(lir_cond_equal, dest); 2603 } else { 2604 LabelObj* L = new LabelObj(); 2605 __ cmp(lir_cond_less, value, low_key); 2606 __ branch(lir_cond_less, L->label()); 2607 __ cmp(lir_cond_lessEqual, value, high_key); 2608 __ branch(lir_cond_lessEqual, dest); 2609 __ branch_destination(L->label()); 2610 } 2611 } 2612 __ jump(default_sux); 2613 } 2614 2615 2616 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2617 SwitchRangeList* res = new SwitchRangeList(); 2618 int len = x->length(); 2619 if (len > 0) { 2620 BlockBegin* sux = x->sux_at(0); 2621 int key = x->lo_key(); 2622 BlockBegin* default_sux = x->default_sux(); 2623 C1SwitchRange* range = new C1SwitchRange(key, sux); 2624 for (int i = 0; i < len; i++, key++) { 2625 BlockBegin* new_sux = x->sux_at(i); 2626 if (sux == new_sux) { 2627 // still in same range 2628 range->set_high_key(key); 2629 } else { 2630 // skip tests which explicitly dispatch to the default 2631 if (sux != default_sux) { 2632 res->append(range); 2633 } 2634 range = new C1SwitchRange(key, new_sux); 2635 } 2636 sux = new_sux; 2637 } 2638 if (res->length() == 0 || res->last() != range) res->append(range); 2639 } 2640 return res; 2641 } 2642 2643 2644 // we expect the keys to be sorted by increasing value 2645 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2646 SwitchRangeList* res = new SwitchRangeList(); 2647 int len = x->length(); 2648 if (len > 0) { 2649 BlockBegin* default_sux = x->default_sux(); 2650 int key = x->key_at(0); 2651 BlockBegin* sux = x->sux_at(0); 2652 C1SwitchRange* range = new C1SwitchRange(key, sux); 2653 for (int i = 1; i < len; i++) { 2654 int new_key = x->key_at(i); 2655 BlockBegin* new_sux = x->sux_at(i); 2656 if (key+1 == new_key && sux == new_sux) { 2657 // still in same range 2658 range->set_high_key(new_key); 2659 } else { 2660 // skip tests which explicitly dispatch to the default 2661 if (range->sux() != default_sux) { 2662 res->append(range); 2663 } 2664 range = new C1SwitchRange(new_key, new_sux); 2665 } 2666 key = new_key; 2667 sux = new_sux; 2668 } 2669 if (res->length() == 0 || res->last() != range) res->append(range); 2670 } 2671 return res; 2672 } 2673 2674 2675 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2676 LIRItem tag(x->tag(), this); 2677 tag.load_item(); 2678 set_no_result(x); 2679 2680 if (x->is_safepoint()) { 2681 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2682 } 2683 2684 // move values into phi locations 2685 move_to_phi(x->state()); 2686 2687 int lo_key = x->lo_key(); 2688 int len = x->length(); 2689 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2690 LIR_Opr value = tag.result(); 2691 2692 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2693 ciMethod* method = x->state()->scope()->method(); 2694 ciMethodData* md = method->method_data_or_null(); 2695 assert(md != NULL, "Sanity"); 2696 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2697 assert(data != NULL, "must have profiling data"); 2698 assert(data->is_MultiBranchData(), "bad profile data?"); 2699 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2700 LIR_Opr md_reg = new_register(T_METADATA); 2701 __ metadata2reg(md->constant_encoding(), md_reg); 2702 LIR_Opr data_offset_reg = new_pointer_register(); 2703 LIR_Opr tmp_reg = new_pointer_register(); 2704 2705 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2706 for (int i = 0; i < len; i++) { 2707 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2708 __ cmp(lir_cond_equal, value, i + lo_key); 2709 __ move(data_offset_reg, tmp_reg); 2710 __ cmove(lir_cond_equal, 2711 LIR_OprFact::intptrConst(count_offset), 2712 tmp_reg, 2713 data_offset_reg, T_INT); 2714 } 2715 2716 LIR_Opr data_reg = new_pointer_register(); 2717 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2718 __ move(data_addr, data_reg); 2719 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2720 __ move(data_reg, data_addr); 2721 } 2722 2723 if (UseTableRanges) { 2724 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2725 } else { 2726 for (int i = 0; i < len; i++) { 2727 __ cmp(lir_cond_equal, value, i + lo_key); 2728 __ branch(lir_cond_equal, x->sux_at(i)); 2729 } 2730 __ jump(x->default_sux()); 2731 } 2732 } 2733 2734 2735 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2736 LIRItem tag(x->tag(), this); 2737 tag.load_item(); 2738 set_no_result(x); 2739 2740 if (x->is_safepoint()) { 2741 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2742 } 2743 2744 // move values into phi locations 2745 move_to_phi(x->state()); 2746 2747 LIR_Opr value = tag.result(); 2748 int len = x->length(); 2749 2750 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2751 ciMethod* method = x->state()->scope()->method(); 2752 ciMethodData* md = method->method_data_or_null(); 2753 assert(md != NULL, "Sanity"); 2754 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2755 assert(data != NULL, "must have profiling data"); 2756 assert(data->is_MultiBranchData(), "bad profile data?"); 2757 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2758 LIR_Opr md_reg = new_register(T_METADATA); 2759 __ metadata2reg(md->constant_encoding(), md_reg); 2760 LIR_Opr data_offset_reg = new_pointer_register(); 2761 LIR_Opr tmp_reg = new_pointer_register(); 2762 2763 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2764 for (int i = 0; i < len; i++) { 2765 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2766 __ cmp(lir_cond_equal, value, x->key_at(i)); 2767 __ move(data_offset_reg, tmp_reg); 2768 __ cmove(lir_cond_equal, 2769 LIR_OprFact::intptrConst(count_offset), 2770 tmp_reg, 2771 data_offset_reg, T_INT); 2772 } 2773 2774 LIR_Opr data_reg = new_pointer_register(); 2775 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2776 __ move(data_addr, data_reg); 2777 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2778 __ move(data_reg, data_addr); 2779 } 2780 2781 if (UseTableRanges) { 2782 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2783 } else { 2784 int len = x->length(); 2785 for (int i = 0; i < len; i++) { 2786 __ cmp(lir_cond_equal, value, x->key_at(i)); 2787 __ branch(lir_cond_equal, x->sux_at(i)); 2788 } 2789 __ jump(x->default_sux()); 2790 } 2791 } 2792 2793 2794 void LIRGenerator::do_Goto(Goto* x) { 2795 set_no_result(x); 2796 2797 if (block()->next()->as_OsrEntry()) { 2798 // need to free up storage used for OSR entry point 2799 LIR_Opr osrBuffer = block()->next()->operand(); 2800 BasicTypeList signature; 2801 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2802 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2803 __ move(osrBuffer, cc->args()->at(0)); 2804 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2805 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2806 } 2807 2808 if (x->is_safepoint()) { 2809 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2810 2811 // increment backedge counter if needed 2812 CodeEmitInfo* info = state_for(x, state); 2813 increment_backedge_counter(info, x->profiled_bci()); 2814 CodeEmitInfo* safepoint_info = state_for(x, state); 2815 __ safepoint(safepoint_poll_register(), safepoint_info); 2816 } 2817 2818 // Gotos can be folded Ifs, handle this case. 2819 if (x->should_profile()) { 2820 ciMethod* method = x->profiled_method(); 2821 assert(method != NULL, "method should be set if branch is profiled"); 2822 ciMethodData* md = method->method_data_or_null(); 2823 assert(md != NULL, "Sanity"); 2824 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2825 assert(data != NULL, "must have profiling data"); 2826 int offset; 2827 if (x->direction() == Goto::taken) { 2828 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2829 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2830 } else if (x->direction() == Goto::not_taken) { 2831 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2832 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2833 } else { 2834 assert(data->is_JumpData(), "need JumpData for branches"); 2835 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2836 } 2837 LIR_Opr md_reg = new_register(T_METADATA); 2838 __ metadata2reg(md->constant_encoding(), md_reg); 2839 2840 increment_counter(new LIR_Address(md_reg, offset, 2841 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2842 } 2843 2844 // emit phi-instruction move after safepoint since this simplifies 2845 // describing the state as the safepoint. 2846 move_to_phi(x->state()); 2847 2848 __ jump(x->default_sux()); 2849 } 2850 2851 /** 2852 * Emit profiling code if needed for arguments, parameters, return value types 2853 * 2854 * @param md MDO the code will update at runtime 2855 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2856 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2857 * @param profiled_k current profile 2858 * @param obj IR node for the object to be profiled 2859 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2860 * Set once we find an update to make and use for next ones. 2861 * @param not_null true if we know obj cannot be null 2862 * @param signature_at_call_k signature at call for obj 2863 * @param callee_signature_k signature of callee for obj 2864 * at call and callee signatures differ at method handle call 2865 * @return the only klass we know will ever be seen at this profile point 2866 */ 2867 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2868 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2869 ciKlass* callee_signature_k) { 2870 ciKlass* result = NULL; 2871 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2872 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2873 // known not to be null or null bit already set and already set to 2874 // unknown: nothing we can do to improve profiling 2875 if (!do_null && !do_update) { 2876 return result; 2877 } 2878 2879 ciKlass* exact_klass = NULL; 2880 Compilation* comp = Compilation::current(); 2881 if (do_update) { 2882 // try to find exact type, using CHA if possible, so that loading 2883 // the klass from the object can be avoided 2884 ciType* type = obj->exact_type(); 2885 if (type == NULL) { 2886 type = obj->declared_type(); 2887 type = comp->cha_exact_type(type); 2888 } 2889 assert(type == NULL || type->is_klass(), "type should be class"); 2890 exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL; 2891 2892 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2893 } 2894 2895 if (!do_null && !do_update) { 2896 return result; 2897 } 2898 2899 ciKlass* exact_signature_k = NULL; 2900 if (do_update && signature_at_call_k != NULL) { 2901 // Is the type from the signature exact (the only one possible)? 2902 exact_signature_k = signature_at_call_k->exact_klass(); 2903 if (exact_signature_k == NULL) { 2904 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2905 } else { 2906 result = exact_signature_k; 2907 // Known statically. No need to emit any code: prevent 2908 // LIR_Assembler::emit_profile_type() from emitting useless code 2909 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2910 } 2911 // exact_klass and exact_signature_k can be both non NULL but 2912 // different if exact_klass is loaded after the ciObject for 2913 // exact_signature_k is created. 2914 if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) { 2915 // sometimes the type of the signature is better than the best type 2916 // the compiler has 2917 exact_klass = exact_signature_k; 2918 } 2919 if (callee_signature_k != NULL && 2920 callee_signature_k != signature_at_call_k) { 2921 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2922 if (improved_klass == NULL) { 2923 improved_klass = comp->cha_exact_type(callee_signature_k); 2924 } 2925 if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) { 2926 exact_klass = exact_signature_k; 2927 } 2928 } 2929 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2930 } 2931 2932 if (!do_null && !do_update) { 2933 return result; 2934 } 2935 2936 if (mdp == LIR_OprFact::illegalOpr) { 2937 mdp = new_register(T_METADATA); 2938 __ metadata2reg(md->constant_encoding(), mdp); 2939 if (md_base_offset != 0) { 2940 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2941 mdp = new_pointer_register(); 2942 __ leal(LIR_OprFact::address(base_type_address), mdp); 2943 } 2944 } 2945 LIRItem value(obj, this); 2946 value.load_item(); 2947 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2948 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL); 2949 return result; 2950 } 2951 2952 // profile parameters on entry to the root of the compilation 2953 void LIRGenerator::profile_parameters(Base* x) { 2954 if (compilation()->profile_parameters()) { 2955 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2956 ciMethodData* md = scope()->method()->method_data_or_null(); 2957 assert(md != NULL, "Sanity"); 2958 2959 if (md->parameters_type_data() != NULL) { 2960 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2961 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2962 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2963 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2964 LIR_Opr src = args->at(i); 2965 assert(!src->is_illegal(), "check"); 2966 BasicType t = src->type(); 2967 if (is_reference_type(t)) { 2968 intptr_t profiled_k = parameters->type(j); 2969 Local* local = x->state()->local_at(java_index)->as_Local(); 2970 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2971 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2972 profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL); 2973 // If the profile is known statically set it once for all and do not emit any code 2974 if (exact != NULL) { 2975 md->set_parameter_type(j, exact); 2976 } 2977 j++; 2978 } 2979 java_index += type2size[t]; 2980 } 2981 } 2982 } 2983 } 2984 2985 void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) { 2986 assert(md != NULL && data != NULL, "should have been initialized"); 2987 LIR_Opr mdp = new_register(T_METADATA); 2988 __ metadata2reg(md->constant_encoding(), mdp); 2989 LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE); 2990 LIR_Opr flags = new_register(T_INT); 2991 __ move(addr, flags); 2992 if (condition != lir_cond_always) { 2993 LIR_Opr update = new_register(T_INT); 2994 __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT); 2995 } else { 2996 __ logical_or(flags, LIR_OprFact::intConst(flag), flags); 2997 } 2998 __ store(flags, addr); 2999 } 3000 3001 void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ciArrayLoadStoreData* load_store) { 3002 assert(compilation()->profile_array_accesses(), "array access profiling is disabled"); 3003 LabelObj* L_end = new LabelObj(); 3004 LIR_Opr tmp = new_register(T_METADATA); 3005 __ check_null_free_array(array.result(), tmp); 3006 3007 profile_flags(md, load_store, ArrayLoadStoreData::null_free_array_byte_constant(), lir_cond_equal); 3008 } 3009 3010 void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ciArrayLoadStoreData*& load_store) { 3011 assert(compilation()->profile_array_accesses(), "array access profiling is disabled"); 3012 int bci = x->profiled_bci(); 3013 md = x->profiled_method()->method_data(); 3014 assert(md != NULL, "Sanity"); 3015 ciProfileData* data = md->bci_to_data(bci); 3016 assert(data != NULL && data->is_ArrayLoadStoreData(), "incorrect profiling entry"); 3017 load_store = (ciArrayLoadStoreData*)data; 3018 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3019 profile_type(md, md->byte_offset_of_slot(load_store, ArrayLoadStoreData::array_offset()), 0, 3020 load_store->array()->type(), x->array(), mdp, true, NULL, NULL); 3021 } 3022 3023 void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadStoreData* load_store) { 3024 assert(compilation()->profile_array_accesses(), "array access profiling is disabled"); 3025 assert(md != NULL && load_store != NULL, "should have been initialized"); 3026 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3027 profile_type(md, md->byte_offset_of_slot(load_store, ArrayLoadStoreData::element_offset()), 0, 3028 load_store->element()->type(), element, mdp, false, NULL, NULL); 3029 } 3030 3031 void LIRGenerator::do_Base(Base* x) { 3032 __ std_entry(LIR_OprFact::illegalOpr); 3033 // Emit moves from physical registers / stack slots to virtual registers 3034 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 3035 IRScope* irScope = compilation()->hir()->top_scope(); 3036 int java_index = 0; 3037 for (int i = 0; i < args->length(); i++) { 3038 LIR_Opr src = args->at(i); 3039 assert(!src->is_illegal(), "check"); 3040 BasicType t = src->type(); 3041 3042 // Types which are smaller than int are passed as int, so 3043 // correct the type which passed. 3044 switch (t) { 3045 case T_BYTE: 3046 case T_BOOLEAN: 3047 case T_SHORT: 3048 case T_CHAR: 3049 t = T_INT; 3050 break; 3051 default: 3052 break; 3053 } 3054 3055 LIR_Opr dest = new_register(t); 3056 __ move(src, dest); 3057 3058 // Assign new location to Local instruction for this local 3059 Local* local = x->state()->local_at(java_index)->as_Local(); 3060 assert(local != NULL, "Locals for incoming arguments must have been created"); 3061 #ifndef __SOFTFP__ 3062 // The java calling convention passes double as long and float as int. 3063 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 3064 #endif // __SOFTFP__ 3065 local->set_operand(dest); 3066 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL); 3067 java_index += type2size[t]; 3068 } 3069 3070 if (compilation()->env()->dtrace_method_probes()) { 3071 BasicTypeList signature; 3072 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3073 signature.append(T_METADATA); // Method* 3074 LIR_OprList* args = new LIR_OprList(); 3075 args->append(getThreadPointer()); 3076 LIR_Opr meth = new_register(T_METADATA); 3077 __ metadata2reg(method()->constant_encoding(), meth); 3078 args->append(meth); 3079 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL); 3080 } 3081 3082 if (method()->is_synchronized()) { 3083 LIR_Opr obj; 3084 if (method()->is_static()) { 3085 obj = new_register(T_OBJECT); 3086 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 3087 } else { 3088 Local* receiver = x->state()->local_at(0)->as_Local(); 3089 assert(receiver != NULL, "must already exist"); 3090 obj = receiver->operand(); 3091 } 3092 assert(obj->is_valid(), "must be valid"); 3093 3094 if (method()->is_synchronized() && GenerateSynchronizationCode) { 3095 LIR_Opr lock = syncLockOpr(); 3096 __ load_stack_address_monitor(0, lock); 3097 3098 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException)); 3099 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 3100 3101 // receiver is guaranteed non-NULL so don't need CodeEmitInfo 3102 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL); 3103 } 3104 } 3105 if (compilation()->age_code()) { 3106 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false); 3107 decrement_age(info); 3108 } 3109 // increment invocation counters if needed 3110 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 3111 profile_parameters(x); 3112 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false); 3113 increment_invocation_counter(info); 3114 } 3115 if (method()->has_scalarized_args()) { 3116 // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments 3117 // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state. 3118 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false); 3119 CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none); 3120 __ append(new LIR_Op0(lir_check_orig_pc)); 3121 __ branch(lir_cond_notEqual, deopt_stub); 3122 } 3123 3124 // all blocks with a successor must end with an unconditional jump 3125 // to the successor even if they are consecutive 3126 __ jump(x->default_sux()); 3127 } 3128 3129 3130 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 3131 // construct our frame and model the production of incoming pointer 3132 // to the OSR buffer. 3133 __ osr_entry(LIR_Assembler::osrBufferPointer()); 3134 LIR_Opr result = rlock_result(x); 3135 __ move(LIR_Assembler::osrBufferPointer(), result); 3136 } 3137 3138 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) { 3139 if (loc->is_register()) { 3140 param->load_item_force(loc); 3141 } else { 3142 LIR_Address* addr = loc->as_address_ptr(); 3143 param->load_for_store(addr->type()); 3144 assert(addr->type() != T_PRIMITIVE_OBJECT, "not supported yet"); 3145 if (addr->type() == T_OBJECT) { 3146 __ move_wide(param->result(), addr); 3147 } else { 3148 __ move(param->result(), addr); 3149 } 3150 } 3151 } 3152 3153 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 3154 assert(args->length() == arg_list->length(), 3155 "args=%d, arg_list=%d", args->length(), arg_list->length()); 3156 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 3157 LIRItem* param = args->at(i); 3158 LIR_Opr loc = arg_list->at(i); 3159 invoke_load_one_argument(param, loc); 3160 } 3161 3162 if (x->has_receiver()) { 3163 LIRItem* receiver = args->at(0); 3164 LIR_Opr loc = arg_list->at(0); 3165 if (loc->is_register()) { 3166 receiver->load_item_force(loc); 3167 } else { 3168 assert(loc->is_address(), "just checking"); 3169 receiver->load_for_store(T_OBJECT); 3170 __ move_wide(receiver->result(), loc->as_address_ptr()); 3171 } 3172 } 3173 } 3174 3175 3176 // Visits all arguments, returns appropriate items without loading them 3177 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 3178 LIRItemList* argument_items = new LIRItemList(); 3179 if (x->has_receiver()) { 3180 LIRItem* receiver = new LIRItem(x->receiver(), this); 3181 argument_items->append(receiver); 3182 } 3183 for (int i = 0; i < x->number_of_arguments(); i++) { 3184 LIRItem* param = new LIRItem(x->argument_at(i), this); 3185 argument_items->append(param); 3186 } 3187 return argument_items; 3188 } 3189 3190 3191 // The invoke with receiver has following phases: 3192 // a) traverse and load/lock receiver; 3193 // b) traverse all arguments -> item-array (invoke_visit_argument) 3194 // c) push receiver on stack 3195 // d) load each of the items and push on stack 3196 // e) unlock receiver 3197 // f) move receiver into receiver-register %o0 3198 // g) lock result registers and emit call operation 3199 // 3200 // Before issuing a call, we must spill-save all values on stack 3201 // that are in caller-save register. "spill-save" moves those registers 3202 // either in a free callee-save register or spills them if no free 3203 // callee save register is available. 3204 // 3205 // The problem is where to invoke spill-save. 3206 // - if invoked between e) and f), we may lock callee save 3207 // register in "spill-save" that destroys the receiver register 3208 // before f) is executed 3209 // - if we rearrange f) to be earlier (by loading %o0) it 3210 // may destroy a value on the stack that is currently in %o0 3211 // and is waiting to be spilled 3212 // - if we keep the receiver locked while doing spill-save, 3213 // we cannot spill it as it is spill-locked 3214 // 3215 void LIRGenerator::do_Invoke(Invoke* x) { 3216 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 3217 3218 LIR_OprList* arg_list = cc->args(); 3219 LIRItemList* args = invoke_visit_arguments(x); 3220 LIR_Opr receiver = LIR_OprFact::illegalOpr; 3221 3222 // setup result register 3223 LIR_Opr result_register = LIR_OprFact::illegalOpr; 3224 if (x->type() != voidType) { 3225 result_register = result_register_for(x->type()); 3226 } 3227 3228 CodeEmitInfo* info = state_for(x, x->state()); 3229 3230 invoke_load_arguments(x, args, arg_list); 3231 3232 if (x->has_receiver()) { 3233 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 3234 receiver = args->at(0)->result(); 3235 } 3236 3237 // emit invoke code 3238 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 3239 3240 // JSR 292 3241 // Preserve the SP over MethodHandle call sites, if needed. 3242 ciMethod* target = x->target(); 3243 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 3244 target->is_method_handle_intrinsic() || 3245 target->is_compiled_lambda_form()); 3246 if (is_method_handle_invoke) { 3247 info->set_is_method_handle_invoke(true); 3248 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 3249 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 3250 } 3251 } 3252 3253 switch (x->code()) { 3254 case Bytecodes::_invokestatic: 3255 __ call_static(target, result_register, 3256 SharedRuntime::get_resolve_static_call_stub(), 3257 arg_list, info); 3258 break; 3259 case Bytecodes::_invokespecial: 3260 case Bytecodes::_invokevirtual: 3261 case Bytecodes::_invokeinterface: 3262 // for loaded and final (method or class) target we still produce an inline cache, 3263 // in order to be able to call mixed mode 3264 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 3265 __ call_opt_virtual(target, receiver, result_register, 3266 SharedRuntime::get_resolve_opt_virtual_call_stub(), 3267 arg_list, info); 3268 } else { 3269 __ call_icvirtual(target, receiver, result_register, 3270 SharedRuntime::get_resolve_virtual_call_stub(), 3271 arg_list, info); 3272 } 3273 break; 3274 case Bytecodes::_invokedynamic: { 3275 __ call_dynamic(target, receiver, result_register, 3276 SharedRuntime::get_resolve_static_call_stub(), 3277 arg_list, info); 3278 break; 3279 } 3280 default: 3281 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 3282 break; 3283 } 3284 3285 // JSR 292 3286 // Restore the SP after MethodHandle call sites, if needed. 3287 if (is_method_handle_invoke 3288 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 3289 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 3290 } 3291 3292 if (result_register->is_valid()) { 3293 LIR_Opr result = rlock_result(x); 3294 __ move(result_register, result); 3295 } 3296 } 3297 3298 3299 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 3300 assert(x->number_of_arguments() == 1, "wrong type"); 3301 LIRItem value (x->argument_at(0), this); 3302 LIR_Opr reg = rlock_result(x); 3303 value.load_item(); 3304 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 3305 __ move(tmp, reg); 3306 } 3307 3308 3309 3310 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 3311 void LIRGenerator::do_IfOp(IfOp* x) { 3312 #ifdef ASSERT 3313 { 3314 ValueTag xtag = x->x()->type()->tag(); 3315 ValueTag ttag = x->tval()->type()->tag(); 3316 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 3317 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 3318 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 3319 } 3320 #endif 3321 3322 LIRItem left(x->x(), this); 3323 LIRItem right(x->y(), this); 3324 left.load_item(); 3325 if (can_inline_as_constant(right.value()) && !x->substitutability_check()) { 3326 right.dont_load_item(); 3327 } else { 3328 // substitutability_check() needs to use right as a base register. 3329 right.load_item(); 3330 } 3331 3332 LIRItem t_val(x->tval(), this); 3333 LIRItem f_val(x->fval(), this); 3334 t_val.dont_load_item(); 3335 f_val.dont_load_item(); 3336 3337 if (x->substitutability_check()) { 3338 substitutability_check(x, left, right, t_val, f_val); 3339 } else { 3340 LIR_Opr reg = rlock_result(x); 3341 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 3342 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 3343 } 3344 } 3345 3346 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) { 3347 assert(x->cond() == If::eql || x->cond() == If::neq, "must be"); 3348 bool is_acmpeq = (x->cond() == If::eql); 3349 LIR_Opr equal_result = is_acmpeq ? t_val.result() : f_val.result(); 3350 LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result(); 3351 LIR_Opr result = rlock_result(x); 3352 CodeEmitInfo* info = state_for(x, x->state_before()); 3353 3354 substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info); 3355 } 3356 3357 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) { 3358 LIR_Opr equal_result = LIR_OprFact::intConst(1); 3359 LIR_Opr not_equal_result = LIR_OprFact::intConst(0); 3360 LIR_Opr result = new_register(T_INT); 3361 CodeEmitInfo* info = state_for(x, x->state_before()); 3362 3363 substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info); 3364 3365 assert(x->cond() == If::eql || x->cond() == If::neq, "must be"); 3366 __ cmp(lir_cond(x->cond()), result, equal_result); 3367 } 3368 3369 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right, 3370 LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result, 3371 CodeEmitInfo* info) { 3372 LIR_Opr tmp1 = LIR_OprFact::illegalOpr; 3373 LIR_Opr tmp2 = LIR_OprFact::illegalOpr; 3374 LIR_Opr left_klass_op = LIR_OprFact::illegalOpr; 3375 LIR_Opr right_klass_op = LIR_OprFact::illegalOpr; 3376 3377 ciKlass* left_klass = left_val ->as_loaded_klass_or_null(); 3378 ciKlass* right_klass = right_val->as_loaded_klass_or_null(); 3379 3380 if ((left_klass == NULL || right_klass == NULL) ||// The klass is still unloaded, or came from a Phi node. 3381 !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) { 3382 init_temps_for_substitutability_check(tmp1, tmp2); 3383 } 3384 3385 if (left_klass != NULL && left_klass->is_inlinetype() && left_klass == right_klass) { 3386 // No need to load klass -- the operands are statically known to be the same inline klass. 3387 } else { 3388 BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA; 3389 left_klass_op = new_register(t_klass); 3390 right_klass_op = new_register(t_klass); 3391 } 3392 3393 CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info); 3394 __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result, 3395 tmp1, tmp2, 3396 left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path); 3397 } 3398 3399 #ifdef JFR_HAVE_INTRINSICS 3400 3401 void LIRGenerator::do_getEventWriter(Intrinsic* x) { 3402 LabelObj* L_end = new LabelObj(); 3403 3404 // FIXME T_ADDRESS should actually be T_METADATA but it can't because the 3405 // meaning of these two is mixed up (see JDK-8026837). 3406 LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(), 3407 in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR), 3408 T_ADDRESS); 3409 LIR_Opr result = rlock_result(x); 3410 __ move(LIR_OprFact::oopConst(NULL), result); 3411 LIR_Opr jobj = new_register(T_METADATA); 3412 __ move_wide(jobj_addr, jobj); 3413 __ cmp(lir_cond_equal, jobj, LIR_OprFact::metadataConst(0)); 3414 __ branch(lir_cond_equal, L_end->label()); 3415 3416 access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result); 3417 3418 __ branch_destination(L_end->label()); 3419 } 3420 3421 #endif 3422 3423 3424 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 3425 assert(x->number_of_arguments() == 0, "wrong type"); 3426 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 3427 BasicTypeList signature; 3428 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 3429 LIR_Opr reg = result_register_for(x->type()); 3430 __ call_runtime_leaf(routine, getThreadTemp(), 3431 reg, new LIR_OprList()); 3432 LIR_Opr result = rlock_result(x); 3433 __ move(reg, result); 3434 } 3435 3436 3437 3438 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 3439 switch (x->id()) { 3440 case vmIntrinsics::_intBitsToFloat : 3441 case vmIntrinsics::_doubleToRawLongBits : 3442 case vmIntrinsics::_longBitsToDouble : 3443 case vmIntrinsics::_floatToRawIntBits : { 3444 do_FPIntrinsics(x); 3445 break; 3446 } 3447 3448 #ifdef JFR_HAVE_INTRINSICS 3449 case vmIntrinsics::_getEventWriter: 3450 do_getEventWriter(x); 3451 break; 3452 case vmIntrinsics::_counterTime: 3453 do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x); 3454 break; 3455 #endif 3456 3457 case vmIntrinsics::_currentTimeMillis: 3458 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 3459 break; 3460 3461 case vmIntrinsics::_nanoTime: 3462 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 3463 break; 3464 3465 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 3466 case vmIntrinsics::_isInstance: do_isInstance(x); break; 3467 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break; 3468 case vmIntrinsics::_getModifiers: do_getModifiers(x); break; 3469 case vmIntrinsics::_getClass: do_getClass(x); break; 3470 case vmIntrinsics::_currentThread: do_currentThread(x); break; 3471 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 3472 3473 case vmIntrinsics::_dlog: // fall through 3474 case vmIntrinsics::_dlog10: // fall through 3475 case vmIntrinsics::_dabs: // fall through 3476 case vmIntrinsics::_dsqrt: // fall through 3477 case vmIntrinsics::_dsqrt_strict: // fall through 3478 case vmIntrinsics::_dtan: // fall through 3479 case vmIntrinsics::_dsin : // fall through 3480 case vmIntrinsics::_dcos : // fall through 3481 case vmIntrinsics::_dexp : // fall through 3482 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 3483 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 3484 3485 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 3486 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 3487 3488 case vmIntrinsics::_Preconditions_checkIndex: 3489 do_PreconditionsCheckIndex(x, T_INT); 3490 break; 3491 case vmIntrinsics::_Preconditions_checkLongIndex: 3492 do_PreconditionsCheckIndex(x, T_LONG); 3493 break; 3494 3495 case vmIntrinsics::_compareAndSetReference: 3496 do_CompareAndSwap(x, objectType); 3497 break; 3498 case vmIntrinsics::_compareAndSetInt: 3499 do_CompareAndSwap(x, intType); 3500 break; 3501 case vmIntrinsics::_compareAndSetLong: 3502 do_CompareAndSwap(x, longType); 3503 break; 3504 3505 case vmIntrinsics::_loadFence : 3506 __ membar_acquire(); 3507 break; 3508 case vmIntrinsics::_storeFence: 3509 __ membar_release(); 3510 break; 3511 case vmIntrinsics::_storeStoreFence: 3512 __ membar_storestore(); 3513 break; 3514 case vmIntrinsics::_fullFence : 3515 __ membar(); 3516 break; 3517 case vmIntrinsics::_onSpinWait: 3518 __ on_spin_wait(); 3519 break; 3520 case vmIntrinsics::_Reference_get: 3521 do_Reference_get(x); 3522 break; 3523 3524 case vmIntrinsics::_updateCRC32: 3525 case vmIntrinsics::_updateBytesCRC32: 3526 case vmIntrinsics::_updateByteBufferCRC32: 3527 do_update_CRC32(x); 3528 break; 3529 3530 case vmIntrinsics::_updateBytesCRC32C: 3531 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3532 do_update_CRC32C(x); 3533 break; 3534 3535 case vmIntrinsics::_vectorizedMismatch: 3536 do_vectorizedMismatch(x); 3537 break; 3538 3539 case vmIntrinsics::_blackhole: 3540 do_blackhole(x); 3541 break; 3542 3543 default: ShouldNotReachHere(); break; 3544 } 3545 } 3546 3547 void LIRGenerator::profile_arguments(ProfileCall* x) { 3548 if (compilation()->profile_arguments()) { 3549 int bci = x->bci_of_invoke(); 3550 ciMethodData* md = x->method()->method_data_or_null(); 3551 assert(md != NULL, "Sanity"); 3552 ciProfileData* data = md->bci_to_data(bci); 3553 if (data != NULL) { 3554 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3555 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3556 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3557 int base_offset = md->byte_offset_of_slot(data, extra); 3558 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3559 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3560 3561 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3562 int start = 0; 3563 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3564 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3565 // first argument is not profiled at call (method handle invoke) 3566 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3567 start = 1; 3568 } 3569 ciSignature* callee_signature = x->callee()->signature(); 3570 // method handle call to virtual method 3571 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3572 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL); 3573 3574 bool ignored_will_link; 3575 ciSignature* signature_at_call = NULL; 3576 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3577 ciSignatureStream signature_at_call_stream(signature_at_call); 3578 3579 // if called through method handle invoke, some arguments may have been popped 3580 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3581 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3582 ciKlass* exact = profile_type(md, base_offset, off, 3583 args->type(i), x->profiled_arg_at(i+start), mdp, 3584 !x->arg_needs_null_check(i+start), 3585 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3586 if (exact != NULL) { 3587 md->set_argument_type(bci, i, exact); 3588 } 3589 } 3590 } else { 3591 #ifdef ASSERT 3592 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3593 int n = x->nb_profiled_args(); 3594 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3595 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3596 "only at JSR292 bytecodes"); 3597 #endif 3598 } 3599 } 3600 } 3601 } 3602 3603 // profile parameters on entry to an inlined method 3604 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3605 if (compilation()->profile_parameters() && x->inlined()) { 3606 ciMethodData* md = x->callee()->method_data_or_null(); 3607 if (md != NULL) { 3608 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3609 if (parameters_type_data != NULL) { 3610 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3611 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3612 bool has_receiver = !x->callee()->is_static(); 3613 ciSignature* sig = x->callee()->signature(); 3614 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL); 3615 int i = 0; // to iterate on the Instructions 3616 Value arg = x->recv(); 3617 bool not_null = false; 3618 int bci = x->bci_of_invoke(); 3619 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3620 // The first parameter is the receiver so that's what we start 3621 // with if it exists. One exception is method handle call to 3622 // virtual method: the receiver is in the args list 3623 if (arg == NULL || !Bytecodes::has_receiver(bc)) { 3624 i = 1; 3625 arg = x->profiled_arg_at(0); 3626 not_null = !x->arg_needs_null_check(0); 3627 } 3628 int k = 0; // to iterate on the profile data 3629 for (;;) { 3630 intptr_t profiled_k = parameters->type(k); 3631 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3632 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3633 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL); 3634 // If the profile is known statically set it once for all and do not emit any code 3635 if (exact != NULL) { 3636 md->set_parameter_type(k, exact); 3637 } 3638 k++; 3639 if (k >= parameters_type_data->number_of_parameters()) { 3640 #ifdef ASSERT 3641 int extra = 0; 3642 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3643 x->nb_profiled_args() >= TypeProfileParmsLimit && 3644 x->recv() != NULL && Bytecodes::has_receiver(bc)) { 3645 extra += 1; 3646 } 3647 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3648 #endif 3649 break; 3650 } 3651 arg = x->profiled_arg_at(i); 3652 not_null = !x->arg_needs_null_check(i); 3653 i++; 3654 } 3655 } 3656 } 3657 } 3658 } 3659 3660 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3661 // Need recv in a temporary register so it interferes with the other temporaries 3662 LIR_Opr recv = LIR_OprFact::illegalOpr; 3663 LIR_Opr mdo = new_register(T_METADATA); 3664 // tmp is used to hold the counters on SPARC 3665 LIR_Opr tmp = new_pointer_register(); 3666 3667 if (x->nb_profiled_args() > 0) { 3668 profile_arguments(x); 3669 } 3670 3671 // profile parameters on inlined method entry including receiver 3672 if (x->recv() != NULL || x->nb_profiled_args() > 0) { 3673 profile_parameters_at_call(x); 3674 } 3675 3676 if (x->recv() != NULL) { 3677 LIRItem value(x->recv(), this); 3678 value.load_item(); 3679 recv = new_register(T_OBJECT); 3680 __ move(value.result(), recv); 3681 } 3682 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3683 } 3684 3685 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3686 int bci = x->bci_of_invoke(); 3687 ciMethodData* md = x->method()->method_data_or_null(); 3688 assert(md != NULL, "Sanity"); 3689 ciProfileData* data = md->bci_to_data(bci); 3690 if (data != NULL) { 3691 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3692 ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3693 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3694 3695 bool ignored_will_link; 3696 ciSignature* signature_at_call = NULL; 3697 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3698 3699 // The offset within the MDO of the entry to update may be too large 3700 // to be used in load/store instructions on some platforms. So have 3701 // profile_type() compute the address of the profile in a register. 3702 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3703 ret->type(), x->ret(), mdp, 3704 !x->needs_null_check(), 3705 signature_at_call->return_type()->as_klass(), 3706 x->callee()->signature()->return_type()->as_klass()); 3707 if (exact != NULL) { 3708 md->set_return_type(bci, exact); 3709 } 3710 } 3711 } 3712 3713 bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) { 3714 ciKlass* klass = value->as_loaded_klass_or_null(); 3715 if (klass != NULL) { 3716 if (klass->is_inlinetype()) { 3717 profile_flags(md, data, flag, lir_cond_always); 3718 } else if (klass->can_be_inline_klass()) { 3719 return false; 3720 } 3721 } else { 3722 return false; 3723 } 3724 return true; 3725 } 3726 3727 3728 void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) { 3729 ciMethod* method = x->method(); 3730 assert(method != NULL, "method should be set if branch is profiled"); 3731 ciMethodData* md = method->method_data_or_null(); 3732 assert(md != NULL, "Sanity"); 3733 ciProfileData* data = md->bci_to_data(x->bci()); 3734 assert(data != NULL, "must have profiling data"); 3735 assert(data->is_ACmpData(), "need BranchData for two-way branches"); 3736 ciACmpData* acmp = (ciACmpData*)data; 3737 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3738 profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0, 3739 acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), NULL, NULL); 3740 int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset()); 3741 if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) { 3742 LIR_Opr mdp = new_register(T_METADATA); 3743 __ metadata2reg(md->constant_encoding(), mdp); 3744 LIRItem value(x->left(), this); 3745 value.load_item(); 3746 __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null()); 3747 } 3748 profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 3749 in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()), 3750 acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), NULL, NULL); 3751 if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) { 3752 LIR_Opr mdp = new_register(T_METADATA); 3753 __ metadata2reg(md->constant_encoding(), mdp); 3754 LIRItem value(x->right(), this); 3755 value.load_item(); 3756 __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null()); 3757 } 3758 } 3759 3760 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3761 // We can safely ignore accessors here, since c2 will inline them anyway, 3762 // accessors are also always mature. 3763 if (!x->inlinee()->is_accessor()) { 3764 CodeEmitInfo* info = state_for(x, x->state(), true); 3765 // Notify the runtime very infrequently only to take care of counter overflows 3766 int freq_log = Tier23InlineeNotifyFreqLog; 3767 double scale; 3768 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3769 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3770 } 3771 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3772 } 3773 } 3774 3775 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3776 if (compilation()->is_profiling()) { 3777 #if defined(X86) && !defined(_LP64) 3778 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3779 LIR_Opr left_copy = new_register(left->type()); 3780 __ move(left, left_copy); 3781 __ cmp(cond, left_copy, right); 3782 #else 3783 __ cmp(cond, left, right); 3784 #endif 3785 LIR_Opr step = new_register(T_INT); 3786 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3787 LIR_Opr zero = LIR_OprFact::intConst(0); 3788 __ cmove(cond, 3789 (left_bci < bci) ? plus_one : zero, 3790 (right_bci < bci) ? plus_one : zero, 3791 step, left->type()); 3792 increment_backedge_counter(info, step, bci); 3793 } 3794 } 3795 3796 3797 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3798 int freq_log = 0; 3799 int level = compilation()->env()->comp_level(); 3800 if (level == CompLevel_limited_profile) { 3801 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3802 } else if (level == CompLevel_full_profile) { 3803 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3804 } else { 3805 ShouldNotReachHere(); 3806 } 3807 // Increment the appropriate invocation/backedge counter and notify the runtime. 3808 double scale; 3809 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3810 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3811 } 3812 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3813 } 3814 3815 void LIRGenerator::decrement_age(CodeEmitInfo* info) { 3816 ciMethod* method = info->scope()->method(); 3817 MethodCounters* mc_adr = method->ensure_method_counters(); 3818 if (mc_adr != NULL) { 3819 LIR_Opr mc = new_pointer_register(); 3820 __ move(LIR_OprFact::intptrConst(mc_adr), mc); 3821 int offset = in_bytes(MethodCounters::nmethod_age_offset()); 3822 LIR_Address* counter = new LIR_Address(mc, offset, T_INT); 3823 LIR_Opr result = new_register(T_INT); 3824 __ load(counter, result); 3825 __ sub(result, LIR_OprFact::intConst(1), result); 3826 __ store(result, counter); 3827 // DeoptimizeStub will reexecute from the current state in code info. 3828 CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured, 3829 Deoptimization::Action_make_not_entrant); 3830 __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0)); 3831 __ branch(lir_cond_lessEqual, deopt); 3832 } 3833 } 3834 3835 3836 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3837 ciMethod *method, LIR_Opr step, int frequency, 3838 int bci, bool backedge, bool notify) { 3839 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3840 int level = _compilation->env()->comp_level(); 3841 assert(level > CompLevel_simple, "Shouldn't be here"); 3842 3843 int offset = -1; 3844 LIR_Opr counter_holder; 3845 if (level == CompLevel_limited_profile) { 3846 MethodCounters* counters_adr = method->ensure_method_counters(); 3847 if (counters_adr == NULL) { 3848 bailout("method counters allocation failed"); 3849 return; 3850 } 3851 counter_holder = new_pointer_register(); 3852 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3853 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3854 MethodCounters::invocation_counter_offset()); 3855 } else if (level == CompLevel_full_profile) { 3856 counter_holder = new_register(T_METADATA); 3857 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3858 MethodData::invocation_counter_offset()); 3859 ciMethodData* md = method->method_data_or_null(); 3860 assert(md != NULL, "Sanity"); 3861 __ metadata2reg(md->constant_encoding(), counter_holder); 3862 } else { 3863 ShouldNotReachHere(); 3864 } 3865 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3866 LIR_Opr result = new_register(T_INT); 3867 __ load(counter, result); 3868 __ add(result, step, result); 3869 __ store(result, counter); 3870 if (notify && (!backedge || UseOnStackReplacement)) { 3871 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3872 // The bci for info can point to cmp for if's we want the if bci 3873 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3874 int freq = frequency << InvocationCounter::count_shift; 3875 if (freq == 0) { 3876 if (!step->is_constant()) { 3877 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3878 __ branch(lir_cond_notEqual, overflow); 3879 } else { 3880 __ branch(lir_cond_always, overflow); 3881 } 3882 } else { 3883 LIR_Opr mask = load_immediate(freq, T_INT); 3884 if (!step->is_constant()) { 3885 // If step is 0, make sure the overflow check below always fails 3886 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3887 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3888 } 3889 __ logical_and(result, mask, result); 3890 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3891 __ branch(lir_cond_equal, overflow); 3892 } 3893 __ branch_destination(overflow->continuation()); 3894 } 3895 } 3896 3897 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3898 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3899 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3900 3901 if (x->pass_thread()) { 3902 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3903 args->append(getThreadPointer()); 3904 } 3905 3906 for (int i = 0; i < x->number_of_arguments(); i++) { 3907 Value a = x->argument_at(i); 3908 LIRItem* item = new LIRItem(a, this); 3909 item->load_item(); 3910 args->append(item->result()); 3911 signature->append(as_BasicType(a->type())); 3912 } 3913 3914 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL); 3915 if (x->type() == voidType) { 3916 set_no_result(x); 3917 } else { 3918 __ move(result, rlock_result(x)); 3919 } 3920 } 3921 3922 #ifdef ASSERT 3923 void LIRGenerator::do_Assert(Assert *x) { 3924 ValueTag tag = x->x()->type()->tag(); 3925 If::Condition cond = x->cond(); 3926 3927 LIRItem xitem(x->x(), this); 3928 LIRItem yitem(x->y(), this); 3929 LIRItem* xin = &xitem; 3930 LIRItem* yin = &yitem; 3931 3932 assert(tag == intTag, "Only integer assertions are valid!"); 3933 3934 xin->load_item(); 3935 yin->dont_load_item(); 3936 3937 set_no_result(x); 3938 3939 LIR_Opr left = xin->result(); 3940 LIR_Opr right = yin->result(); 3941 3942 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3943 } 3944 #endif 3945 3946 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3947 3948 3949 Instruction *a = x->x(); 3950 Instruction *b = x->y(); 3951 if (!a || StressRangeCheckElimination) { 3952 assert(!b || StressRangeCheckElimination, "B must also be null"); 3953 3954 CodeEmitInfo *info = state_for(x, x->state()); 3955 CodeStub* stub = new PredicateFailedStub(info); 3956 3957 __ jump(stub); 3958 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3959 int a_int = a->type()->as_IntConstant()->value(); 3960 int b_int = b->type()->as_IntConstant()->value(); 3961 3962 bool ok = false; 3963 3964 switch(x->cond()) { 3965 case Instruction::eql: ok = (a_int == b_int); break; 3966 case Instruction::neq: ok = (a_int != b_int); break; 3967 case Instruction::lss: ok = (a_int < b_int); break; 3968 case Instruction::leq: ok = (a_int <= b_int); break; 3969 case Instruction::gtr: ok = (a_int > b_int); break; 3970 case Instruction::geq: ok = (a_int >= b_int); break; 3971 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3972 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3973 default: ShouldNotReachHere(); 3974 } 3975 3976 if (ok) { 3977 3978 CodeEmitInfo *info = state_for(x, x->state()); 3979 CodeStub* stub = new PredicateFailedStub(info); 3980 3981 __ jump(stub); 3982 } 3983 } else { 3984 3985 ValueTag tag = x->x()->type()->tag(); 3986 If::Condition cond = x->cond(); 3987 LIRItem xitem(x->x(), this); 3988 LIRItem yitem(x->y(), this); 3989 LIRItem* xin = &xitem; 3990 LIRItem* yin = &yitem; 3991 3992 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3993 3994 xin->load_item(); 3995 yin->dont_load_item(); 3996 set_no_result(x); 3997 3998 LIR_Opr left = xin->result(); 3999 LIR_Opr right = yin->result(); 4000 4001 CodeEmitInfo *info = state_for(x, x->state()); 4002 CodeStub* stub = new PredicateFailedStub(info); 4003 4004 __ cmp(lir_cond(cond), left, right); 4005 __ branch(lir_cond(cond), stub); 4006 } 4007 } 4008 4009 void LIRGenerator::do_blackhole(Intrinsic *x) { 4010 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 4011 for (int c = 0; c < x->number_of_arguments(); c++) { 4012 // Load the argument 4013 LIRItem vitem(x->argument_at(c), this); 4014 vitem.load_item(); 4015 // ...and leave it unused. 4016 } 4017 } 4018 4019 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 4020 LIRItemList args(1); 4021 LIRItem value(arg1, this); 4022 args.append(&value); 4023 BasicTypeList signature; 4024 signature.append(as_BasicType(arg1->type())); 4025 4026 return call_runtime(&signature, &args, entry, result_type, info); 4027 } 4028 4029 4030 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 4031 LIRItemList args(2); 4032 LIRItem value1(arg1, this); 4033 LIRItem value2(arg2, this); 4034 args.append(&value1); 4035 args.append(&value2); 4036 BasicTypeList signature; 4037 signature.append(as_BasicType(arg1->type())); 4038 signature.append(as_BasicType(arg2->type())); 4039 4040 return call_runtime(&signature, &args, entry, result_type, info); 4041 } 4042 4043 4044 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 4045 address entry, ValueType* result_type, CodeEmitInfo* info) { 4046 // get a result register 4047 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 4048 LIR_Opr result = LIR_OprFact::illegalOpr; 4049 if (result_type->tag() != voidTag) { 4050 result = new_register(result_type); 4051 phys_reg = result_register_for(result_type); 4052 } 4053 4054 // move the arguments into the correct location 4055 CallingConvention* cc = frame_map()->c_calling_convention(signature); 4056 assert(cc->length() == args->length(), "argument mismatch"); 4057 for (int i = 0; i < args->length(); i++) { 4058 LIR_Opr arg = args->at(i); 4059 LIR_Opr loc = cc->at(i); 4060 if (loc->is_register()) { 4061 __ move(arg, loc); 4062 } else { 4063 LIR_Address* addr = loc->as_address_ptr(); 4064 // if (!can_store_as_constant(arg)) { 4065 // LIR_Opr tmp = new_register(arg->type()); 4066 // __ move(arg, tmp); 4067 // arg = tmp; 4068 // } 4069 __ move(arg, addr); 4070 } 4071 } 4072 4073 if (info) { 4074 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 4075 } else { 4076 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 4077 } 4078 if (result->is_valid()) { 4079 __ move(phys_reg, result); 4080 } 4081 return result; 4082 } 4083 4084 4085 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 4086 address entry, ValueType* result_type, CodeEmitInfo* info) { 4087 // get a result register 4088 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 4089 LIR_Opr result = LIR_OprFact::illegalOpr; 4090 if (result_type->tag() != voidTag) { 4091 result = new_register(result_type); 4092 phys_reg = result_register_for(result_type); 4093 } 4094 4095 // move the arguments into the correct location 4096 CallingConvention* cc = frame_map()->c_calling_convention(signature); 4097 4098 assert(cc->length() == args->length(), "argument mismatch"); 4099 for (int i = 0; i < args->length(); i++) { 4100 LIRItem* arg = args->at(i); 4101 LIR_Opr loc = cc->at(i); 4102 if (loc->is_register()) { 4103 arg->load_item_force(loc); 4104 } else { 4105 LIR_Address* addr = loc->as_address_ptr(); 4106 arg->load_for_store(addr->type()); 4107 __ move(arg->result(), addr); 4108 } 4109 } 4110 4111 if (info) { 4112 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 4113 } else { 4114 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 4115 } 4116 if (result->is_valid()) { 4117 __ move(phys_reg, result); 4118 } 4119 return result; 4120 } 4121 4122 void LIRGenerator::do_MemBar(MemBar* x) { 4123 LIR_Code code = x->code(); 4124 switch(code) { 4125 case lir_membar_acquire : __ membar_acquire(); break; 4126 case lir_membar_release : __ membar_release(); break; 4127 case lir_membar : __ membar(); break; 4128 case lir_membar_loadload : __ membar_loadload(); break; 4129 case lir_membar_storestore: __ membar_storestore(); break; 4130 case lir_membar_loadstore : __ membar_loadstore(); break; 4131 case lir_membar_storeload : __ membar_storeload(); break; 4132 default : ShouldNotReachHere(); break; 4133 } 4134 } 4135 4136 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 4137 LIR_Opr value_fixed = rlock_byte(T_BYTE); 4138 if (TwoOperandLIRForm) { 4139 __ move(value, value_fixed); 4140 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 4141 } else { 4142 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 4143 } 4144 LIR_Opr klass = new_register(T_METADATA); 4145 load_klass(array, klass, null_check_info); 4146 null_check_info = NULL; 4147 LIR_Opr layout = new_register(T_INT); 4148 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 4149 int diffbit = Klass::layout_helper_boolean_diffbit(); 4150 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 4151 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 4152 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 4153 value = value_fixed; 4154 return value; 4155 }