1 /*
   2  * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/javaClasses.inline.hpp"
  34 #include "classfile/vmClasses.hpp"
  35 #include "classfile/vmSymbols.hpp"
  36 #include "code/codeBlob.hpp"
  37 #include "code/compiledIC.hpp"
  38 #include "code/pcDesc.hpp"
  39 #include "code/scopeDesc.hpp"
  40 #include "code/vtableStubs.hpp"
  41 #include "compiler/compilationPolicy.hpp"
  42 #include "compiler/disassembler.hpp"
  43 #include "compiler/oopMap.hpp"
  44 #include "gc/shared/barrierSet.hpp"
  45 #include "gc/shared/c1/barrierSetC1.hpp"
  46 #include "gc/shared/collectedHeap.hpp"
  47 #include "interpreter/bytecode.hpp"
  48 #include "interpreter/interpreter.hpp"
  49 #include "jfr/support/jfrIntrinsics.hpp"
  50 #include "logging/log.hpp"
  51 #include "memory/allocation.inline.hpp"
  52 #include "memory/oopFactory.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "memory/universe.hpp"
  55 #include "oops/access.inline.hpp"
  56 #include "oops/klass.inline.hpp"
  57 #include "oops/objArrayOop.inline.hpp"
  58 #include "oops/objArrayKlass.hpp"
  59 #include "oops/oop.inline.hpp"
  60 #include "prims/jvmtiExport.hpp"
  61 #include "runtime/atomic.hpp"
  62 #include "runtime/fieldDescriptor.inline.hpp"
  63 #include "runtime/frame.inline.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/interfaceSupport.inline.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/stackWatermarkSet.hpp"
  69 #include "runtime/stubRoutines.hpp"
  70 #include "runtime/threadCritical.hpp"
  71 #include "runtime/vframe.inline.hpp"
  72 #include "runtime/vframeArray.hpp"
  73 #include "runtime/vm_version.hpp"
  74 #include "utilities/copy.hpp"
  75 #include "utilities/events.hpp"
  76 
  77 
  78 // Implementation of StubAssembler
  79 
  80 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  81   _name = name;
  82   _must_gc_arguments = false;
  83   _frame_size = no_frame_size;
  84   _num_rt_args = 0;
  85   _stub_id = stub_id;
  86 }
  87 
  88 
  89 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  90   _name = name;
  91   _must_gc_arguments = must_gc_arguments;
  92 }
  93 
  94 
  95 void StubAssembler::set_frame_size(int size) {
  96   if (_frame_size == no_frame_size) {
  97     _frame_size = size;
  98   }
  99   assert(_frame_size == size, "can't change the frame size");
 100 }
 101 
 102 
 103 void StubAssembler::set_num_rt_args(int args) {
 104   if (_num_rt_args == 0) {
 105     _num_rt_args = args;
 106   }
 107   assert(_num_rt_args == args, "can't change the number of args");
 108 }
 109 
 110 // Implementation of Runtime1
 111 
 112 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 113 const char *Runtime1::_blob_names[] = {
 114   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 115 };
 116 
 117 #ifndef PRODUCT
 118 // statistics
 119 uint Runtime1::_generic_arraycopystub_cnt = 0;
 120 uint Runtime1::_arraycopy_slowcase_cnt = 0;
 121 uint Runtime1::_arraycopy_checkcast_cnt = 0;
 122 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 123 uint Runtime1::_new_type_array_slowcase_cnt = 0;
 124 uint Runtime1::_new_object_array_slowcase_cnt = 0;
 125 uint Runtime1::_new_instance_slowcase_cnt = 0;
 126 uint Runtime1::_new_multi_array_slowcase_cnt = 0;
 127 uint Runtime1::_monitorenter_slowcase_cnt = 0;
 128 uint Runtime1::_monitorexit_slowcase_cnt = 0;
 129 uint Runtime1::_patch_code_slowcase_cnt = 0;
 130 uint Runtime1::_throw_range_check_exception_count = 0;
 131 uint Runtime1::_throw_index_exception_count = 0;
 132 uint Runtime1::_throw_div0_exception_count = 0;
 133 uint Runtime1::_throw_null_pointer_exception_count = 0;
 134 uint Runtime1::_throw_class_cast_exception_count = 0;
 135 uint Runtime1::_throw_incompatible_class_change_error_count = 0;
 136 uint Runtime1::_throw_count = 0;
 137 
 138 static uint _byte_arraycopy_stub_cnt = 0;
 139 static uint _short_arraycopy_stub_cnt = 0;
 140 static uint _int_arraycopy_stub_cnt = 0;
 141 static uint _long_arraycopy_stub_cnt = 0;
 142 static uint _oop_arraycopy_stub_cnt = 0;
 143 
 144 address Runtime1::arraycopy_count_address(BasicType type) {
 145   switch (type) {
 146   case T_BOOLEAN:
 147   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 148   case T_CHAR:
 149   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 150   case T_FLOAT:
 151   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 152   case T_DOUBLE:
 153   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 154   case T_ARRAY:
 155   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 156   default:
 157     ShouldNotReachHere();
 158     return nullptr;
 159   }
 160 }
 161 
 162 
 163 #endif
 164 
 165 // Simple helper to see if the caller of a runtime stub which
 166 // entered the VM has been deoptimized
 167 
 168 static bool caller_is_deopted(JavaThread* current) {
 169   RegisterMap reg_map(current,
 170                       RegisterMap::UpdateMap::skip,
 171                       RegisterMap::ProcessFrames::include,
 172                       RegisterMap::WalkContinuation::skip);
 173   frame runtime_frame = current->last_frame();
 174   frame caller_frame = runtime_frame.sender(&reg_map);
 175   assert(caller_frame.is_compiled_frame(), "must be compiled");
 176   return caller_frame.is_deoptimized_frame();
 177 }
 178 
 179 // Stress deoptimization
 180 static void deopt_caller(JavaThread* current) {
 181   if (!caller_is_deopted(current)) {
 182     RegisterMap reg_map(current,
 183                         RegisterMap::UpdateMap::skip,
 184                         RegisterMap::ProcessFrames::include,
 185                         RegisterMap::WalkContinuation::skip);
 186     frame runtime_frame = current->last_frame();
 187     frame caller_frame = runtime_frame.sender(&reg_map);
 188     Deoptimization::deoptimize_frame(current, caller_frame.id());
 189     assert(caller_is_deopted(current), "Must be deoptimized");
 190   }
 191 }
 192 
 193 class StubIDStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
 194  private:
 195   Runtime1::StubID _id;
 196  public:
 197   StubIDStubAssemblerCodeGenClosure(Runtime1::StubID id) : _id(id) {}
 198   virtual OopMapSet* generate_code(StubAssembler* sasm) {
 199     return Runtime1::generate_code_for(_id, sasm);
 200   }
 201 };
 202 
 203 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, int stub_id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
 204   ResourceMark rm;
 205   // create code buffer for code storage
 206   CodeBuffer code(buffer_blob);
 207 
 208   OopMapSet* oop_maps;
 209   int frame_size;
 210   bool must_gc_arguments;
 211 
 212   Compilation::setup_code_buffer(&code, 0);
 213 
 214   // create assembler for code generation
 215   StubAssembler* sasm = new StubAssembler(&code, name, stub_id);
 216   // generate code for runtime stub
 217   oop_maps = cl->generate_code(sasm);
 218   assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size,
 219          "if stub has an oop map it must have a valid frame size");
 220   assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap");
 221 
 222   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 223   sasm->align(BytesPerWord);
 224   // make sure all code is in code buffer
 225   sasm->flush();
 226 
 227   frame_size = sasm->frame_size();
 228   must_gc_arguments = sasm->must_gc_arguments();
 229   // create blob - distinguish a few special cases
 230   CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
 231                                                  &code,
 232                                                  CodeOffsets::frame_never_safe,
 233                                                  frame_size,
 234                                                  oop_maps,
 235                                                  must_gc_arguments);
 236   assert(blob != nullptr, "blob must exist");
 237   return blob;
 238 }
 239 
 240 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 241   assert(0 <= id && id < number_of_ids, "illegal stub id");
 242   bool expect_oop_map = true;
 243 #ifdef ASSERT
 244   // Make sure that stubs that need oopmaps have them
 245   switch (id) {
 246     // These stubs don't need to have an oopmap
 247   case dtrace_object_alloc_id:
 248   case slow_subtype_check_id:
 249   case fpu2long_stub_id:
 250   case unwind_exception_id:
 251   case counter_overflow_id:
 252     expect_oop_map = false;
 253     break;
 254   default:
 255     break;
 256   }
 257 #endif
 258   StubIDStubAssemblerCodeGenClosure cl(id);
 259   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 260   // install blob
 261   _blobs[id] = blob;
 262 }
 263 
 264 void Runtime1::initialize(BufferBlob* blob) {
 265   // platform-dependent initialization
 266   initialize_pd();
 267   // generate stubs
 268   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 269   // printing
 270 #ifndef PRODUCT
 271   if (PrintSimpleStubs) {
 272     ResourceMark rm;
 273     for (int id = 0; id < number_of_ids; id++) {
 274       _blobs[id]->print();
 275       if (_blobs[id]->oop_maps() != nullptr) {
 276         _blobs[id]->oop_maps()->print();
 277       }
 278     }
 279   }
 280 #endif
 281   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 282   bs->generate_c1_runtime_stubs(blob);
 283 }
 284 
 285 CodeBlob* Runtime1::blob_for(StubID id) {
 286   assert(0 <= id && id < number_of_ids, "illegal stub id");
 287   return _blobs[id];
 288 }
 289 
 290 
 291 const char* Runtime1::name_for(StubID id) {
 292   assert(0 <= id && id < number_of_ids, "illegal stub id");
 293   return _blob_names[id];
 294 }
 295 
 296 const char* Runtime1::name_for_address(address entry) {
 297   for (int id = 0; id < number_of_ids; id++) {
 298     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 299   }
 300 
 301 #define FUNCTION_CASE(a, f) \
 302   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 303 
 304   FUNCTION_CASE(entry, os::javaTimeMillis);
 305   FUNCTION_CASE(entry, os::javaTimeNanos);
 306   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 307   FUNCTION_CASE(entry, SharedRuntime::d2f);
 308   FUNCTION_CASE(entry, SharedRuntime::d2i);
 309   FUNCTION_CASE(entry, SharedRuntime::d2l);
 310   FUNCTION_CASE(entry, SharedRuntime::dcos);
 311   FUNCTION_CASE(entry, SharedRuntime::dexp);
 312   FUNCTION_CASE(entry, SharedRuntime::dlog);
 313   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 314   FUNCTION_CASE(entry, SharedRuntime::dpow);
 315   FUNCTION_CASE(entry, SharedRuntime::drem);
 316   FUNCTION_CASE(entry, SharedRuntime::dsin);
 317   FUNCTION_CASE(entry, SharedRuntime::dtan);
 318   FUNCTION_CASE(entry, SharedRuntime::f2i);
 319   FUNCTION_CASE(entry, SharedRuntime::f2l);
 320   FUNCTION_CASE(entry, SharedRuntime::frem);
 321   FUNCTION_CASE(entry, SharedRuntime::l2d);
 322   FUNCTION_CASE(entry, SharedRuntime::l2f);
 323   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 324   FUNCTION_CASE(entry, SharedRuntime::lmul);
 325   FUNCTION_CASE(entry, SharedRuntime::lrem);
 326   FUNCTION_CASE(entry, SharedRuntime::lrem);
 327   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 328   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 329   FUNCTION_CASE(entry, is_instance_of);
 330   FUNCTION_CASE(entry, trace_block_entry);
 331 #ifdef JFR_HAVE_INTRINSICS
 332   FUNCTION_CASE(entry, JfrTime::time_function());
 333 #endif
 334   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 335   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 336   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 337   FUNCTION_CASE(entry, StubRoutines::dexp());
 338   FUNCTION_CASE(entry, StubRoutines::dlog());
 339   FUNCTION_CASE(entry, StubRoutines::dlog10());
 340   FUNCTION_CASE(entry, StubRoutines::dpow());
 341   FUNCTION_CASE(entry, StubRoutines::dsin());
 342   FUNCTION_CASE(entry, StubRoutines::dcos());
 343   FUNCTION_CASE(entry, StubRoutines::dtan());
 344 
 345 #undef FUNCTION_CASE
 346 
 347   // Soft float adds more runtime names.
 348   return pd_name_for_address(entry);
 349 }
 350 
 351 
 352 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass))
 353 #ifndef PRODUCT
 354   if (PrintC1Statistics) {
 355     _new_instance_slowcase_cnt++;
 356   }
 357 #endif
 358   assert(klass->is_klass(), "not a class");
 359   Handle holder(current, klass->klass_holder()); // keep the klass alive
 360   InstanceKlass* h = InstanceKlass::cast(klass);
 361   h->check_valid_for_instantiation(true, CHECK);
 362   // make sure klass is initialized
 363   h->initialize(CHECK);
 364   // allocate instance and return via TLS
 365   oop obj = h->allocate_instance(CHECK);
 366   current->set_vm_result(obj);
 367 JRT_END
 368 
 369 
 370 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length))
 371 #ifndef PRODUCT
 372   if (PrintC1Statistics) {
 373     _new_type_array_slowcase_cnt++;
 374   }
 375 #endif
 376   // Note: no handle for klass needed since they are not used
 377   //       anymore after new_typeArray() and no GC can happen before.
 378   //       (This may have to change if this code changes!)
 379   assert(klass->is_klass(), "not a class");
 380   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 381   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 382   current->set_vm_result(obj);
 383   // This is pretty rare but this runtime patch is stressful to deoptimization
 384   // if we deoptimize here so force a deopt to stress the path.
 385   if (DeoptimizeALot) {
 386     deopt_caller(current);
 387   }
 388 
 389 JRT_END
 390 
 391 
 392 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length))
 393 #ifndef PRODUCT
 394   if (PrintC1Statistics) {
 395     _new_object_array_slowcase_cnt++;
 396   }
 397 #endif
 398   // Note: no handle for klass needed since they are not used
 399   //       anymore after new_objArray() and no GC can happen before.
 400   //       (This may have to change if this code changes!)
 401   assert(array_klass->is_klass(), "not a class");
 402   Handle holder(current, array_klass->klass_holder()); // keep the klass alive
 403   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 404   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 405   current->set_vm_result(obj);
 406   // This is pretty rare but this runtime patch is stressful to deoptimization
 407   // if we deoptimize here so force a deopt to stress the path.
 408   if (DeoptimizeALot) {
 409     deopt_caller(current);
 410   }
 411 JRT_END
 412 
 413 
 414 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims))
 415 #ifndef PRODUCT
 416   if (PrintC1Statistics) {
 417     _new_multi_array_slowcase_cnt++;
 418   }
 419 #endif
 420   assert(klass->is_klass(), "not a class");
 421   assert(rank >= 1, "rank must be nonzero");
 422   Handle holder(current, klass->klass_holder()); // keep the klass alive
 423   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 424   current->set_vm_result(obj);
 425 JRT_END
 426 
 427 
 428 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, StubID id))
 429   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 430 JRT_END
 431 
 432 
 433 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj))
 434   ResourceMark rm(current);
 435   const char* klass_name = obj->klass()->external_name();
 436   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 437 JRT_END
 438 
 439 
 440 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 441 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 442 // method) method is passed as an argument. In order to do that it is embedded in the code as
 443 // a constant.
 444 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) {
 445   nmethod* osr_nm = nullptr;
 446   methodHandle method(current, m);
 447 
 448   RegisterMap map(current,
 449                   RegisterMap::UpdateMap::skip,
 450                   RegisterMap::ProcessFrames::include,
 451                   RegisterMap::WalkContinuation::skip);
 452   frame fr =  current->last_frame().sender(&map);
 453   nmethod* nm = (nmethod*) fr.cb();
 454   assert(nm!= nullptr && nm->is_nmethod(), "Sanity check");
 455   methodHandle enclosing_method(current, nm->method());
 456 
 457   CompLevel level = (CompLevel)nm->comp_level();
 458   int bci = InvocationEntryBci;
 459   if (branch_bci != InvocationEntryBci) {
 460     // Compute destination bci
 461     address pc = method()->code_base() + branch_bci;
 462     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 463     int offset = 0;
 464     switch (branch) {
 465       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 466       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 467       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 468       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 469       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 470       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 471       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 472         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 473         break;
 474       case Bytecodes::_goto_w:
 475         offset = Bytes::get_Java_u4(pc + 1);
 476         break;
 477       default: ;
 478     }
 479     bci = branch_bci + offset;
 480   }
 481   osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current);
 482   return osr_nm;
 483 }
 484 
 485 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method))
 486   nmethod* osr_nm;
 487   JRT_BLOCK
 488     osr_nm = counter_overflow_helper(current, bci, method);
 489     if (osr_nm != nullptr) {
 490       RegisterMap map(current,
 491                       RegisterMap::UpdateMap::skip,
 492                       RegisterMap::ProcessFrames::include,
 493                       RegisterMap::WalkContinuation::skip);
 494       frame fr =  current->last_frame().sender(&map);
 495       Deoptimization::deoptimize_frame(current, fr.id());
 496     }
 497   JRT_BLOCK_END
 498   return nullptr;
 499 JRT_END
 500 
 501 extern void vm_exit(int code);
 502 
 503 // Enter this method from compiled code handler below. This is where we transition
 504 // to VM mode. This is done as a helper routine so that the method called directly
 505 // from compiled code does not have to transition to VM. This allows the entry
 506 // method to see if the nmethod that we have just looked up a handler for has
 507 // been deoptimized while we were in the vm. This simplifies the assembly code
 508 // cpu directories.
 509 //
 510 // We are entering here from exception stub (via the entry method below)
 511 // If there is a compiled exception handler in this method, we will continue there;
 512 // otherwise we will unwind the stack and continue at the caller of top frame method
 513 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 514 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 515 // check to see if the handler we are going to return is now in a nmethod that has
 516 // been deoptimized. If that is the case we return the deopt blob
 517 // unpack_with_exception entry instead. This makes life for the exception blob easier
 518 // because making that same check and diverting is painful from assembly language.
 519 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
 520   // Reset method handle flag.
 521   current->set_is_method_handle_return(false);
 522 
 523   Handle exception(current, ex);
 524 
 525   // This function is called when we are about to throw an exception. Therefore,
 526   // we have to poll the stack watermark barrier to make sure that not yet safe
 527   // stack frames are made safe before returning into them.
 528   if (current->last_frame().cb() == Runtime1::blob_for(Runtime1::handle_exception_from_callee_id)) {
 529     // The Runtime1::handle_exception_from_callee_id handler is invoked after the
 530     // frame has been unwound. It instead builds its own stub frame, to call the
 531     // runtime. But the throwing frame has already been unwound here.
 532     StackWatermarkSet::after_unwind(current);
 533   }
 534 
 535   nm = CodeCache::find_nmethod(pc);
 536   assert(nm != nullptr, "this is not an nmethod");
 537   // Adjust the pc as needed/
 538   if (nm->is_deopt_pc(pc)) {
 539     RegisterMap map(current,
 540                     RegisterMap::UpdateMap::skip,
 541                     RegisterMap::ProcessFrames::include,
 542                     RegisterMap::WalkContinuation::skip);
 543     frame exception_frame = current->last_frame().sender(&map);
 544     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 545     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 546     pc = exception_frame.pc();
 547   }
 548   assert(exception.not_null(), "null exceptions should be handled by throw_exception");
 549   // Check that exception is a subclass of Throwable
 550   assert(exception->is_a(vmClasses::Throwable_klass()),
 551          "Exception not subclass of Throwable");
 552 
 553   // debugging support
 554   // tracing
 555   if (log_is_enabled(Info, exceptions)) {
 556     ResourceMark rm; // print_value_string
 557     stringStream tempst;
 558     assert(nm->method() != nullptr, "Unexpected null method()");
 559     tempst.print("C1 compiled method <%s>\n"
 560                  " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 561                  nm->method()->print_value_string(), p2i(pc), p2i(current));
 562     Exceptions::log_exception(exception, tempst.freeze());
 563   }
 564   // for AbortVMOnException flag
 565   Exceptions::debug_check_abort(exception);
 566 
 567   // Check the stack guard pages and re-enable them if necessary and there is
 568   // enough space on the stack to do so.  Use fast exceptions only if the guard
 569   // pages are enabled.
 570   bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
 571 
 572   if (JvmtiExport::can_post_on_exceptions()) {
 573     // To ensure correct notification of exception catches and throws
 574     // we have to deoptimize here.  If we attempted to notify the
 575     // catches and throws during this exception lookup it's possible
 576     // we could deoptimize on the way out of the VM and end back in
 577     // the interpreter at the throw site.  This would result in double
 578     // notifications since the interpreter would also notify about
 579     // these same catches and throws as it unwound the frame.
 580 
 581     RegisterMap reg_map(current,
 582                         RegisterMap::UpdateMap::include,
 583                         RegisterMap::ProcessFrames::include,
 584                         RegisterMap::WalkContinuation::skip);
 585     frame stub_frame = current->last_frame();
 586     frame caller_frame = stub_frame.sender(&reg_map);
 587 
 588     // We don't really want to deoptimize the nmethod itself since we
 589     // can actually continue in the exception handler ourselves but I
 590     // don't see an easy way to have the desired effect.
 591     Deoptimization::deoptimize_frame(current, caller_frame.id());
 592     assert(caller_is_deopted(current), "Must be deoptimized");
 593 
 594     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 595   }
 596 
 597   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 598   if (guard_pages_enabled) {
 599     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 600     if (fast_continuation != nullptr) {
 601       // Set flag if return address is a method handle call site.
 602       current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 603       return fast_continuation;
 604     }
 605   }
 606 
 607   // If the stack guard pages are enabled, check whether there is a handler in
 608   // the current method.  Otherwise (guard pages disabled), force an unwind and
 609   // skip the exception cache update (i.e., just leave continuation as null).
 610   address continuation = nullptr;
 611   if (guard_pages_enabled) {
 612 
 613     // New exception handling mechanism can support inlined methods
 614     // with exception handlers since the mappings are from PC to PC
 615 
 616     // Clear out the exception oop and pc since looking up an
 617     // exception handler can cause class loading, which might throw an
 618     // exception and those fields are expected to be clear during
 619     // normal bytecode execution.
 620     current->clear_exception_oop_and_pc();
 621 
 622     bool recursive_exception = false;
 623     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 624     // If an exception was thrown during exception dispatch, the exception oop may have changed
 625     current->set_exception_oop(exception());
 626     current->set_exception_pc(pc);
 627 
 628     // the exception cache is used only by non-implicit exceptions
 629     // Update the exception cache only when there didn't happen
 630     // another exception during the computation of the compiled
 631     // exception handler. Checking for exception oop equality is not
 632     // sufficient because some exceptions are pre-allocated and reused.
 633     if (continuation != nullptr && !recursive_exception) {
 634       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 635     }
 636   }
 637 
 638   current->set_vm_result(exception());
 639   // Set flag if return address is a method handle call site.
 640   current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 641 
 642   if (log_is_enabled(Info, exceptions)) {
 643     ResourceMark rm;
 644     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 645                          " for exception thrown at PC " PTR_FORMAT,
 646                          p2i(current), p2i(continuation), p2i(pc));
 647   }
 648 
 649   return continuation;
 650 JRT_END
 651 
 652 // Enter this method from compiled code only if there is a Java exception handler
 653 // in the method handling the exception.
 654 // We are entering here from exception stub. We don't do a normal VM transition here.
 655 // We do it in a helper. This is so we can check to see if the nmethod we have just
 656 // searched for an exception handler has been deoptimized in the meantime.
 657 address Runtime1::exception_handler_for_pc(JavaThread* current) {
 658   oop exception = current->exception_oop();
 659   address pc = current->exception_pc();
 660   // Still in Java mode
 661   DEBUG_ONLY(NoHandleMark nhm);
 662   nmethod* nm = nullptr;
 663   address continuation = nullptr;
 664   {
 665     // Enter VM mode by calling the helper
 666     ResetNoHandleMark rnhm;
 667     continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
 668   }
 669   // Back in JAVA, use no oops DON'T safepoint
 670 
 671   // Now check to see if the nmethod we were called from is now deoptimized.
 672   // If so we must return to the deopt blob and deoptimize the nmethod
 673   if (nm != nullptr && caller_is_deopted(current)) {
 674     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 675   }
 676 
 677   assert(continuation != nullptr, "no handler found");
 678   return continuation;
 679 }
 680 
 681 
 682 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a))
 683 #ifndef PRODUCT
 684   if (PrintC1Statistics) {
 685     _throw_range_check_exception_count++;
 686   }
 687 #endif
 688   const int len = 35;
 689   assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
 690   char message[2 * jintAsStringSize + len];
 691   os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length());
 692   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 693 JRT_END
 694 
 695 
 696 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index))
 697 #ifndef PRODUCT
 698   if (PrintC1Statistics) {
 699     _throw_index_exception_count++;
 700   }
 701 #endif
 702   char message[16];
 703   os::snprintf_checked(message, sizeof(message), "%d", index);
 704   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 705 JRT_END
 706 
 707 
 708 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current))
 709 #ifndef PRODUCT
 710   if (PrintC1Statistics) {
 711     _throw_div0_exception_count++;
 712   }
 713 #endif
 714   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 715 JRT_END
 716 
 717 
 718 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current))
 719 #ifndef PRODUCT
 720   if (PrintC1Statistics) {
 721     _throw_null_pointer_exception_count++;
 722   }
 723 #endif
 724   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException());
 725 JRT_END
 726 
 727 
 728 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object))
 729 #ifndef PRODUCT
 730   if (PrintC1Statistics) {
 731     _throw_class_cast_exception_count++;
 732   }
 733 #endif
 734   ResourceMark rm(current);
 735   char* message = SharedRuntime::generate_class_cast_message(current, object->klass());
 736   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message);
 737 JRT_END
 738 
 739 
 740 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current))
 741 #ifndef PRODUCT
 742   if (PrintC1Statistics) {
 743     _throw_incompatible_class_change_error_count++;
 744   }
 745 #endif
 746   ResourceMark rm(current);
 747   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError());
 748 JRT_END
 749 
 750 
 751 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock))
 752 #ifndef PRODUCT
 753   if (PrintC1Statistics) {
 754     _monitorenter_slowcase_cnt++;
 755   }
 756 #endif
 757   if (LockingMode == LM_MONITOR) {
 758     lock->set_obj(obj);
 759   }
 760   assert(LockingMode == LM_LIGHTWEIGHT || obj == lock->obj(), "must match");
 761   SharedRuntime::monitor_enter_helper(obj, LockingMode == LM_LIGHTWEIGHT ? nullptr : lock->lock(), current);
 762 JRT_END
 763 
 764 
 765 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock))
 766   assert(current == JavaThread::current(), "pre-condition");
 767 #ifndef PRODUCT
 768   if (PrintC1Statistics) {
 769     _monitorexit_slowcase_cnt++;
 770   }
 771 #endif
 772   assert(current->last_Java_sp(), "last_Java_sp must be set");
 773   oop obj = lock->obj();
 774   assert(oopDesc::is_oop(obj), "must be null or an object");
 775   SharedRuntime::monitor_exit_helper(obj, lock->lock(), current);
 776 JRT_END
 777 
 778 // Cf. OptoRuntime::deoptimize_caller_frame
 779 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request))
 780   // Called from within the owner thread, so no need for safepoint
 781   RegisterMap reg_map(current,
 782                       RegisterMap::UpdateMap::skip,
 783                       RegisterMap::ProcessFrames::include,
 784                       RegisterMap::WalkContinuation::skip);
 785   frame stub_frame = current->last_frame();
 786   assert(stub_frame.is_runtime_frame(), "Sanity check");
 787   frame caller_frame = stub_frame.sender(&reg_map);
 788   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 789   assert(nm != nullptr, "Sanity check");
 790   methodHandle method(current, nm->method());
 791   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 792   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 793   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 794 
 795   if (action == Deoptimization::Action_make_not_entrant) {
 796     if (nm->make_not_entrant()) {
 797       if (reason == Deoptimization::Reason_tenured) {
 798         MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/);
 799         if (trap_mdo != nullptr) {
 800           trap_mdo->inc_tenure_traps();
 801         }
 802       }
 803     }
 804   }
 805 
 806   // Deoptimize the caller frame.
 807   Deoptimization::deoptimize_frame(current, caller_frame.id());
 808   // Return to the now deoptimized frame.
 809 JRT_END
 810 
 811 
 812 #ifndef DEOPTIMIZE_WHEN_PATCHING
 813 
 814 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 815   Bytecode_field field_access(caller, bci);
 816   // This can be static or non-static field access
 817   Bytecodes::Code code       = field_access.code();
 818 
 819   // We must load class, initialize class and resolve the field
 820   fieldDescriptor result; // initialize class if needed
 821   constantPoolHandle constants(THREAD, caller->constants());
 822   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 823   return result.field_holder();
 824 }
 825 
 826 
 827 //
 828 // This routine patches sites where a class wasn't loaded or
 829 // initialized at the time the code was generated.  It handles
 830 // references to classes, fields and forcing of initialization.  Most
 831 // of the cases are straightforward and involving simply forcing
 832 // resolution of a class, rewriting the instruction stream with the
 833 // needed constant and replacing the call in this function with the
 834 // patched code.  The case for static field is more complicated since
 835 // the thread which is in the process of initializing a class can
 836 // access it's static fields but other threads can't so the code
 837 // either has to deoptimize when this case is detected or execute a
 838 // check that the current thread is the initializing thread.  The
 839 // current
 840 //
 841 // Patches basically look like this:
 842 //
 843 //
 844 // patch_site: jmp patch stub     ;; will be patched
 845 // continue:   ...
 846 //             ...
 847 //             ...
 848 //             ...
 849 //
 850 // They have a stub which looks like this:
 851 //
 852 //             ;; patch body
 853 //             movl <const>, reg           (for class constants)
 854 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 855 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 856 //             <being_init offset> <bytes to copy> <bytes to skip>
 857 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 858 //             jmp patch_site
 859 //
 860 //
 861 // A normal patch is done by rewriting the patch body, usually a move,
 862 // and then copying it into place over top of the jmp instruction
 863 // being careful to flush caches and doing it in an MP-safe way.  The
 864 // constants following the patch body are used to find various pieces
 865 // of the patch relative to the call site for Runtime1::patch_code.
 866 // The case for getstatic and putstatic is more complicated because
 867 // getstatic and putstatic have special semantics when executing while
 868 // the class is being initialized.  getstatic/putstatic on a class
 869 // which is being_initialized may be executed by the initializing
 870 // thread but other threads have to block when they execute it.  This
 871 // is accomplished in compiled code by executing a test of the current
 872 // thread against the initializing thread of the class.  It's emitted
 873 // as boilerplate in their stub which allows the patched code to be
 874 // executed before it's copied back into the main body of the nmethod.
 875 //
 876 // being_init: get_thread(<tmp reg>
 877 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 878 //             jne patch_stub
 879 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 880 //             movl reg, [reg1 + <const>]  (for field offsets)
 881 //             jmp continue
 882 //             <being_init offset> <bytes to copy> <bytes to skip>
 883 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 884 //             jmp patch_site
 885 //
 886 // If the class is being initialized the patch body is rewritten and
 887 // the patch site is rewritten to jump to being_init, instead of
 888 // patch_stub.  Whenever this code is executed it checks the current
 889 // thread against the initializing thread so other threads will enter
 890 // the runtime and end up blocked waiting the class to finish
 891 // initializing inside the calls to resolve_field below.  The
 892 // initializing class will continue on it's way.  Once the class is
 893 // fully_initialized, the intializing_thread of the class becomes
 894 // null, so the next thread to execute this code will fail the test,
 895 // call into patch_code and complete the patching process by copying
 896 // the patch body back into the main part of the nmethod and resume
 897 // executing.
 898 
 899 // NB:
 900 //
 901 // Patchable instruction sequences inherently exhibit race conditions,
 902 // where thread A is patching an instruction at the same time thread B
 903 // is executing it.  The algorithms we use ensure that any observation
 904 // that B can make on any intermediate states during A's patching will
 905 // always end up with a correct outcome.  This is easiest if there are
 906 // few or no intermediate states.  (Some inline caches have two
 907 // related instructions that must be patched in tandem.  For those,
 908 // intermediate states seem to be unavoidable, but we will get the
 909 // right answer from all possible observation orders.)
 910 //
 911 // When patching the entry instruction at the head of a method, or a
 912 // linkable call instruction inside of a method, we try very hard to
 913 // use a patch sequence which executes as a single memory transaction.
 914 // This means, in practice, that when thread A patches an instruction,
 915 // it should patch a 32-bit or 64-bit word that somehow overlaps the
 916 // instruction or is contained in it.  We believe that memory hardware
 917 // will never break up such a word write, if it is naturally aligned
 918 // for the word being written.  We also know that some CPUs work very
 919 // hard to create atomic updates even of naturally unaligned words,
 920 // but we don't want to bet the farm on this always working.
 921 //
 922 // Therefore, if there is any chance of a race condition, we try to
 923 // patch only naturally aligned words, as single, full-word writes.
 924 
 925 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, Runtime1::StubID stub_id ))
 926 #ifndef PRODUCT
 927   if (PrintC1Statistics) {
 928     _patch_code_slowcase_cnt++;
 929   }
 930 #endif
 931 
 932   ResourceMark rm(current);
 933   RegisterMap reg_map(current,
 934                       RegisterMap::UpdateMap::skip,
 935                       RegisterMap::ProcessFrames::include,
 936                       RegisterMap::WalkContinuation::skip);
 937   frame runtime_frame = current->last_frame();
 938   frame caller_frame = runtime_frame.sender(&reg_map);
 939 
 940   // last java frame on stack
 941   vframeStream vfst(current, true);
 942   assert(!vfst.at_end(), "Java frame must exist");
 943 
 944   methodHandle caller_method(current, vfst.method());
 945   // Note that caller_method->code() may not be same as caller_code because of OSR's
 946   // Note also that in the presence of inlining it is not guaranteed
 947   // that caller_method() == caller_code->method()
 948 
 949   int bci = vfst.bci();
 950   Bytecodes::Code code = caller_method()->java_code_at(bci);
 951 
 952   // this is used by assertions in the access_field_patching_id
 953   BasicType patch_field_type = T_ILLEGAL;
 954   bool deoptimize_for_volatile = false;
 955   bool deoptimize_for_atomic = false;
 956   int patch_field_offset = -1;
 957   Klass* init_klass = nullptr; // klass needed by load_klass_patching code
 958   Klass* load_klass = nullptr; // klass needed by load_klass_patching code
 959   Handle mirror(current, nullptr); // oop needed by load_mirror_patching code
 960   Handle appendix(current, nullptr); // oop needed by appendix_patching code
 961   bool load_klass_or_mirror_patch_id =
 962     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 963 
 964   if (stub_id == Runtime1::access_field_patching_id) {
 965 
 966     Bytecode_field field_access(caller_method, bci);
 967     fieldDescriptor result; // initialize class if needed
 968     Bytecodes::Code code = field_access.code();
 969     constantPoolHandle constants(current, caller_method->constants());
 970     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
 971     patch_field_offset = result.offset();
 972 
 973     // If we're patching a field which is volatile then at compile it
 974     // must not have been know to be volatile, so the generated code
 975     // isn't correct for a volatile reference.  The nmethod has to be
 976     // deoptimized so that the code can be regenerated correctly.
 977     // This check is only needed for access_field_patching since this
 978     // is the path for patching field offsets.  load_klass is only
 979     // used for patching references to oops which don't need special
 980     // handling in the volatile case.
 981 
 982     deoptimize_for_volatile = result.access_flags().is_volatile();
 983 
 984     // If we are patching a field which should be atomic, then
 985     // the generated code is not correct either, force deoptimizing.
 986     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 987     // break access atomicity only for them.
 988 
 989     // Strictly speaking, the deoptimization on 64-bit platforms
 990     // is unnecessary, and T_LONG stores on 32-bit platforms need
 991     // to be handled by special patching code when AlwaysAtomicAccesses
 992     // becomes product feature. At this point, we are still going
 993     // for the deoptimization for consistency against volatile
 994     // accesses.
 995 
 996     patch_field_type = result.field_type();
 997     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
 998 
 999   } else if (load_klass_or_mirror_patch_id) {
1000     Klass* k = nullptr;
1001     switch (code) {
1002       case Bytecodes::_putstatic:
1003       case Bytecodes::_getstatic:
1004         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
1005           init_klass = klass;
1006           mirror = Handle(current, klass->java_mirror());
1007         }
1008         break;
1009       case Bytecodes::_new:
1010         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
1011           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
1012         }
1013         break;
1014       case Bytecodes::_multianewarray:
1015         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
1016           k = caller_method->constants()->klass_at(mna.index(), CHECK);
1017         }
1018         break;
1019       case Bytecodes::_instanceof:
1020         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
1021           k = caller_method->constants()->klass_at(io.index(), CHECK);
1022         }
1023         break;
1024       case Bytecodes::_checkcast:
1025         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
1026           k = caller_method->constants()->klass_at(cc.index(), CHECK);
1027         }
1028         break;
1029       case Bytecodes::_anewarray:
1030         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
1031           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
1032           k = ek->array_klass(CHECK);
1033         }
1034         break;
1035       case Bytecodes::_ldc:
1036       case Bytecodes::_ldc_w:
1037       case Bytecodes::_ldc2_w:
1038         {
1039           Bytecode_loadconstant cc(caller_method, bci);
1040           oop m = cc.resolve_constant(CHECK);
1041           mirror = Handle(current, m);
1042         }
1043         break;
1044       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
1045     }
1046     load_klass = k;
1047   } else if (stub_id == load_appendix_patching_id) {
1048     Bytecode_invoke bytecode(caller_method, bci);
1049     Bytecodes::Code bc = bytecode.invoke_code();
1050 
1051     CallInfo info;
1052     constantPoolHandle pool(current, caller_method->constants());
1053     int index = bytecode.index();
1054     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
1055     switch (bc) {
1056       case Bytecodes::_invokehandle: {
1057         ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info);
1058         appendix = Handle(current, pool->cache()->appendix_if_resolved(entry));
1059         break;
1060       }
1061       case Bytecodes::_invokedynamic: {
1062         int indy_index = pool->decode_invokedynamic_index(index);
1063         appendix = Handle(current, pool->cache()->set_dynamic_call(info, indy_index));
1064         break;
1065       }
1066       default: fatal("unexpected bytecode for load_appendix_patching_id");
1067     }
1068   } else {
1069     ShouldNotReachHere();
1070   }
1071 
1072   if (deoptimize_for_volatile || deoptimize_for_atomic) {
1073     // At compile time we assumed the field wasn't volatile/atomic but after
1074     // loading it turns out it was volatile/atomic so we have to throw the
1075     // compiled code out and let it be regenerated.
1076     if (TracePatching) {
1077       if (deoptimize_for_volatile) {
1078         tty->print_cr("Deoptimizing for patching volatile field reference");
1079       }
1080       if (deoptimize_for_atomic) {
1081         tty->print_cr("Deoptimizing for patching atomic field reference");
1082       }
1083     }
1084 
1085     // It's possible the nmethod was invalidated in the last
1086     // safepoint, but if it's still alive then make it not_entrant.
1087     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1088     if (nm != nullptr) {
1089       nm->make_not_entrant();
1090     }
1091 
1092     Deoptimization::deoptimize_frame(current, caller_frame.id());
1093 
1094     // Return to the now deoptimized frame.
1095   }
1096 
1097   // Now copy code back
1098 
1099   {
1100     MutexLocker ml_patch (current, Patching_lock, Mutex::_no_safepoint_check_flag);
1101     //
1102     // Deoptimization may have happened while we waited for the lock.
1103     // In that case we don't bother to do any patching we just return
1104     // and let the deopt happen
1105     if (!caller_is_deopted(current)) {
1106       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1107       address instr_pc = jump->jump_destination();
1108       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1109       if (ni->is_jump() ) {
1110         // the jump has not been patched yet
1111         // The jump destination is slow case and therefore not part of the stubs
1112         // (stubs are only for StaticCalls)
1113 
1114         // format of buffer
1115         //    ....
1116         //    instr byte 0     <-- copy_buff
1117         //    instr byte 1
1118         //    ..
1119         //    instr byte n-1
1120         //      n
1121         //    ....             <-- call destination
1122 
1123         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1124         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1125         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1126         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1127         address copy_buff = stub_location - *byte_skip - *byte_count;
1128         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1129         if (TracePatching) {
1130           ttyLocker ttyl;
1131           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1132                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1133           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1134           assert(caller_code != nullptr, "nmethod not found");
1135 
1136           // NOTE we use pc() not original_pc() because we already know they are
1137           // identical otherwise we'd have never entered this block of code
1138 
1139           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1140           assert(map != nullptr, "null check");
1141           map->print();
1142           tty->cr();
1143 
1144           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1145         }
1146         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1147         bool do_patch = true;
1148         if (stub_id == Runtime1::access_field_patching_id) {
1149           // The offset may not be correct if the class was not loaded at code generation time.
1150           // Set it now.
1151           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1152           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1153           assert(patch_field_offset >= 0, "illegal offset");
1154           n_move->add_offset_in_bytes(patch_field_offset);
1155         } else if (load_klass_or_mirror_patch_id) {
1156           // If a getstatic or putstatic is referencing a klass which
1157           // isn't fully initialized, the patch body isn't copied into
1158           // place until initialization is complete.  In this case the
1159           // patch site is setup so that any threads besides the
1160           // initializing thread are forced to come into the VM and
1161           // block.
1162           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1163                      InstanceKlass::cast(init_klass)->is_initialized();
1164           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1165           if (jump->jump_destination() == being_initialized_entry) {
1166             assert(do_patch == true, "initialization must be complete at this point");
1167           } else {
1168             // patch the instruction <move reg, klass>
1169             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1170 
1171             assert(n_copy->data() == 0 ||
1172                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1173                    "illegal init value");
1174             if (stub_id == Runtime1::load_klass_patching_id) {
1175               assert(load_klass != nullptr, "klass not set");
1176               n_copy->set_data((intx) (load_klass));
1177             } else {
1178               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1179               n_copy->set_data(cast_from_oop<intx>(mirror()));
1180             }
1181 
1182             if (TracePatching) {
1183               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1184             }
1185           }
1186         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1187           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1188           assert(n_copy->data() == 0 ||
1189                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1190                  "illegal init value");
1191           n_copy->set_data(cast_from_oop<intx>(appendix()));
1192 
1193           if (TracePatching) {
1194             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1195           }
1196         } else {
1197           ShouldNotReachHere();
1198         }
1199 
1200         if (do_patch) {
1201           // replace instructions
1202           // first replace the tail, then the call
1203 #ifdef ARM
1204           if((load_klass_or_mirror_patch_id ||
1205               stub_id == Runtime1::load_appendix_patching_id) &&
1206               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1207             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1208             address addr = nullptr;
1209             assert(nm != nullptr, "invalid nmethod_pc");
1210             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1211             while (mds.next()) {
1212               if (mds.type() == relocInfo::oop_type) {
1213                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1214                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1215                 oop_Relocation* r = mds.oop_reloc();
1216                 addr = (address)r->oop_addr();
1217                 break;
1218               } else if (mds.type() == relocInfo::metadata_type) {
1219                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1220                 metadata_Relocation* r = mds.metadata_reloc();
1221                 addr = (address)r->metadata_addr();
1222                 break;
1223               }
1224             }
1225             assert(addr != nullptr, "metadata relocation must exist");
1226             copy_buff -= *byte_count;
1227             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1228             n_copy2->set_pc_relative_offset(addr, instr_pc);
1229           }
1230 #endif
1231 
1232           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1233             address ptr = copy_buff + i;
1234             int a_byte = (*ptr) & 0xFF;
1235             address dst = instr_pc + i;
1236             *(unsigned char*)dst = (unsigned char) a_byte;
1237           }
1238           ICache::invalidate_range(instr_pc, *byte_count);
1239           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1240 
1241           if (load_klass_or_mirror_patch_id ||
1242               stub_id == Runtime1::load_appendix_patching_id) {
1243             relocInfo::relocType rtype =
1244               (stub_id == Runtime1::load_klass_patching_id) ?
1245                                    relocInfo::metadata_type :
1246                                    relocInfo::oop_type;
1247             // update relocInfo to metadata
1248             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1249             assert(nm != nullptr, "invalid nmethod_pc");
1250 
1251             // The old patch site is now a move instruction so update
1252             // the reloc info so that it will get updated during
1253             // future GCs.
1254             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1255             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1256                                                      relocInfo::none, rtype);
1257           }
1258 
1259         } else {
1260           ICache::invalidate_range(copy_buff, *byte_count);
1261           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1262         }
1263       }
1264     }
1265   }
1266 
1267   // If we are patching in a non-perm oop, make sure the nmethod
1268   // is on the right list.
1269   {
1270     MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag);
1271     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1272     guarantee(nm != nullptr, "only nmethods can contain non-perm oops");
1273 
1274     // Since we've patched some oops in the nmethod,
1275     // (re)register it with the heap.
1276     Universe::heap()->register_nmethod(nm);
1277   }
1278 JRT_END
1279 
1280 #else // DEOPTIMIZE_WHEN_PATCHING
1281 
1282 static bool is_patching_needed(JavaThread* current, Runtime1::StubID stub_id) {
1283   if (stub_id == Runtime1::load_klass_patching_id ||
1284       stub_id == Runtime1::load_mirror_patching_id) {
1285     // last java frame on stack
1286     vframeStream vfst(current, true);
1287     assert(!vfst.at_end(), "Java frame must exist");
1288 
1289     methodHandle caller_method(current, vfst.method());
1290     int bci = vfst.bci();
1291     Bytecodes::Code code = caller_method()->java_code_at(bci);
1292 
1293     switch (code) {
1294       case Bytecodes::_new:
1295       case Bytecodes::_anewarray:
1296       case Bytecodes::_multianewarray:
1297       case Bytecodes::_instanceof:
1298       case Bytecodes::_checkcast: {
1299         Bytecode bc(caller_method(), caller_method->bcp_from(bci));
1300         constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code));
1301         if (tag.is_unresolved_klass_in_error()) {
1302           return false; // throws resolution error
1303         }
1304         break;
1305       }
1306 
1307       default: break;
1308     }
1309   }
1310   return true;
1311 }
1312 
1313 void Runtime1::patch_code(JavaThread* current, Runtime1::StubID stub_id) {
1314 #ifndef PRODUCT
1315   if (PrintC1Statistics) {
1316     _patch_code_slowcase_cnt++;
1317   }
1318 #endif
1319 
1320   // Enable WXWrite: the function is called by c1 stub as a runtime function
1321   // (see another implementation above).
1322   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1323 
1324   if (TracePatching) {
1325     tty->print_cr("Deoptimizing because patch is needed");
1326   }
1327 
1328   RegisterMap reg_map(current,
1329                       RegisterMap::UpdateMap::skip,
1330                       RegisterMap::ProcessFrames::include,
1331                       RegisterMap::WalkContinuation::skip);
1332 
1333   frame runtime_frame = current->last_frame();
1334   frame caller_frame = runtime_frame.sender(&reg_map);
1335   assert(caller_frame.is_compiled_frame(), "Wrong frame type");
1336 
1337   if (is_patching_needed(current, stub_id)) {
1338     // Make sure the nmethod is invalidated, i.e. made not entrant.
1339     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1340     if (nm != nullptr) {
1341       nm->make_not_entrant();
1342     }
1343   }
1344 
1345   Deoptimization::deoptimize_frame(current, caller_frame.id());
1346   // Return to the now deoptimized frame.
1347   postcond(caller_is_deopted(current));
1348 }
1349 
1350 #endif // DEOPTIMIZE_WHEN_PATCHING
1351 
1352 // Entry point for compiled code. We want to patch a nmethod.
1353 // We don't do a normal VM transition here because we want to
1354 // know after the patching is complete and any safepoint(s) are taken
1355 // if the calling nmethod was deoptimized. We do this by calling a
1356 // helper method which does the normal VM transition and when it
1357 // completes we can check for deoptimization. This simplifies the
1358 // assembly code in the cpu directories.
1359 //
1360 int Runtime1::move_klass_patching(JavaThread* current) {
1361 //
1362 // NOTE: we are still in Java
1363 //
1364   debug_only(NoHandleMark nhm;)
1365   {
1366     // Enter VM mode
1367     ResetNoHandleMark rnhm;
1368     patch_code(current, load_klass_patching_id);
1369   }
1370   // Back in JAVA, use no oops DON'T safepoint
1371 
1372   // Return true if calling code is deoptimized
1373 
1374   return caller_is_deopted(current);
1375 }
1376 
1377 int Runtime1::move_mirror_patching(JavaThread* current) {
1378 //
1379 // NOTE: we are still in Java
1380 //
1381   debug_only(NoHandleMark nhm;)
1382   {
1383     // Enter VM mode
1384     ResetNoHandleMark rnhm;
1385     patch_code(current, load_mirror_patching_id);
1386   }
1387   // Back in JAVA, use no oops DON'T safepoint
1388 
1389   // Return true if calling code is deoptimized
1390 
1391   return caller_is_deopted(current);
1392 }
1393 
1394 int Runtime1::move_appendix_patching(JavaThread* current) {
1395 //
1396 // NOTE: we are still in Java
1397 //
1398   debug_only(NoHandleMark nhm;)
1399   {
1400     // Enter VM mode
1401     ResetNoHandleMark rnhm;
1402     patch_code(current, load_appendix_patching_id);
1403   }
1404   // Back in JAVA, use no oops DON'T safepoint
1405 
1406   // Return true if calling code is deoptimized
1407 
1408   return caller_is_deopted(current);
1409 }
1410 
1411 // Entry point for compiled code. We want to patch a nmethod.
1412 // We don't do a normal VM transition here because we want to
1413 // know after the patching is complete and any safepoint(s) are taken
1414 // if the calling nmethod was deoptimized. We do this by calling a
1415 // helper method which does the normal VM transition and when it
1416 // completes we can check for deoptimization. This simplifies the
1417 // assembly code in the cpu directories.
1418 //
1419 int Runtime1::access_field_patching(JavaThread* current) {
1420   //
1421   // NOTE: we are still in Java
1422   //
1423   // Handles created in this function will be deleted by the
1424   // HandleMarkCleaner in the transition to the VM.
1425   NoHandleMark nhm;
1426   {
1427     // Enter VM mode
1428     ResetNoHandleMark rnhm;
1429     patch_code(current, access_field_patching_id);
1430   }
1431   // Back in JAVA, use no oops DON'T safepoint
1432 
1433   // Return true if calling code is deoptimized
1434 
1435   return caller_is_deopted(current);
1436 }
1437 
1438 
1439 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1440   // for now we just print out the block id
1441   tty->print("%d ", block_id);
1442 JRT_END
1443 
1444 
1445 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1446   // had to return int instead of bool, otherwise there may be a mismatch
1447   // between the C calling convention and the Java one.
1448   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1449   // JVM takes the whole %eax as the return value, which may misinterpret
1450   // the return value as a boolean true.
1451 
1452   assert(mirror != nullptr, "should null-check on mirror before calling");
1453   Klass* k = java_lang_Class::as_Klass(mirror);
1454   return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0;
1455 JRT_END
1456 
1457 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current))
1458   ResourceMark rm;
1459 
1460   RegisterMap reg_map(current,
1461                       RegisterMap::UpdateMap::skip,
1462                       RegisterMap::ProcessFrames::include,
1463                       RegisterMap::WalkContinuation::skip);
1464   frame runtime_frame = current->last_frame();
1465   frame caller_frame = runtime_frame.sender(&reg_map);
1466 
1467   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1468   assert (nm != nullptr, "no more nmethod?");
1469   nm->make_not_entrant();
1470 
1471   methodHandle m(current, nm->method());
1472   MethodData* mdo = m->method_data();
1473 
1474   if (mdo == nullptr && !HAS_PENDING_EXCEPTION) {
1475     // Build an MDO.  Ignore errors like OutOfMemory;
1476     // that simply means we won't have an MDO to update.
1477     Method::build_profiling_method_data(m, THREAD);
1478     if (HAS_PENDING_EXCEPTION) {
1479       // Only metaspace OOM is expected. No Java code executed.
1480       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1481       CLEAR_PENDING_EXCEPTION;
1482     }
1483     mdo = m->method_data();
1484   }
1485 
1486   if (mdo != nullptr) {
1487     mdo->inc_trap_count(Deoptimization::Reason_none);
1488   }
1489 
1490   if (TracePredicateFailedTraps) {
1491     stringStream ss1, ss2;
1492     vframeStream vfst(current);
1493     Method* inlinee = vfst.method();
1494     inlinee->print_short_name(&ss1);
1495     m->print_short_name(&ss2);
1496     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc()));
1497   }
1498 
1499 
1500   Deoptimization::deoptimize_frame(current, caller_frame.id());
1501 
1502 JRT_END
1503 
1504 // Check exception if AbortVMOnException flag set
1505 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex))
1506   ResourceMark rm;
1507   const char* message = nullptr;
1508   if (ex->is_a(vmClasses::Throwable_klass())) {
1509     oop msg = java_lang_Throwable::message(ex);
1510     if (msg != nullptr) {
1511       message = java_lang_String::as_utf8_string(msg);
1512     }
1513   }
1514   Exceptions::debug_check_abort(ex->klass()->external_name(), message);
1515 JRT_END
1516 
1517 #ifndef PRODUCT
1518 void Runtime1::print_statistics() {
1519   tty->print_cr("C1 Runtime statistics:");
1520   tty->print_cr(" _resolve_invoke_virtual_cnt:     %u", SharedRuntime::_resolve_virtual_ctr);
1521   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr);
1522   tty->print_cr(" _resolve_invoke_static_cnt:      %u", SharedRuntime::_resolve_static_ctr);
1523   tty->print_cr(" _handle_wrong_method_cnt:        %u", SharedRuntime::_wrong_method_ctr);
1524   tty->print_cr(" _ic_miss_cnt:                    %u", SharedRuntime::_ic_miss_ctr);
1525   tty->print_cr(" _generic_arraycopystub_cnt:      %u", _generic_arraycopystub_cnt);
1526   tty->print_cr(" _byte_arraycopy_cnt:             %u", _byte_arraycopy_stub_cnt);
1527   tty->print_cr(" _short_arraycopy_cnt:            %u", _short_arraycopy_stub_cnt);
1528   tty->print_cr(" _int_arraycopy_cnt:              %u", _int_arraycopy_stub_cnt);
1529   tty->print_cr(" _long_arraycopy_cnt:             %u", _long_arraycopy_stub_cnt);
1530   tty->print_cr(" _oop_arraycopy_cnt:              %u", _oop_arraycopy_stub_cnt);
1531   tty->print_cr(" _arraycopy_slowcase_cnt:         %u", _arraycopy_slowcase_cnt);
1532   tty->print_cr(" _arraycopy_checkcast_cnt:        %u", _arraycopy_checkcast_cnt);
1533   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt);
1534 
1535   tty->print_cr(" _new_type_array_slowcase_cnt:    %u", _new_type_array_slowcase_cnt);
1536   tty->print_cr(" _new_object_array_slowcase_cnt:  %u", _new_object_array_slowcase_cnt);
1537   tty->print_cr(" _new_instance_slowcase_cnt:      %u", _new_instance_slowcase_cnt);
1538   tty->print_cr(" _new_multi_array_slowcase_cnt:   %u", _new_multi_array_slowcase_cnt);
1539   tty->print_cr(" _monitorenter_slowcase_cnt:      %u", _monitorenter_slowcase_cnt);
1540   tty->print_cr(" _monitorexit_slowcase_cnt:       %u", _monitorexit_slowcase_cnt);
1541   tty->print_cr(" _patch_code_slowcase_cnt:        %u", _patch_code_slowcase_cnt);
1542 
1543   tty->print_cr(" _throw_range_check_exception_count:            %u:", _throw_range_check_exception_count);
1544   tty->print_cr(" _throw_index_exception_count:                  %u:", _throw_index_exception_count);
1545   tty->print_cr(" _throw_div0_exception_count:                   %u:", _throw_div0_exception_count);
1546   tty->print_cr(" _throw_null_pointer_exception_count:           %u:", _throw_null_pointer_exception_count);
1547   tty->print_cr(" _throw_class_cast_exception_count:             %u:", _throw_class_cast_exception_count);
1548   tty->print_cr(" _throw_incompatible_class_change_error_count:  %u:", _throw_incompatible_class_change_error_count);
1549   tty->print_cr(" _throw_count:                                  %u:", _throw_count);
1550 
1551   SharedRuntime::print_ic_miss_histogram();
1552   tty->cr();
1553 }
1554 #endif // PRODUCT