1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/codeBuffer.hpp" 26 #include "c1/c1_CodeStubs.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_LIRAssembler.hpp" 29 #include "c1/c1_MacroAssembler.hpp" 30 #include "c1/c1_Runtime1.hpp" 31 #include "classfile/javaClasses.inline.hpp" 32 #include "classfile/vmClasses.hpp" 33 #include "classfile/vmSymbols.hpp" 34 #include "code/aotCodeCache.hpp" 35 #include "code/codeBlob.hpp" 36 #include "code/compiledIC.hpp" 37 #include "code/scopeDesc.hpp" 38 #include "code/vtableStubs.hpp" 39 #include "compiler/compilationPolicy.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "compiler/oopMap.hpp" 42 #include "gc/shared/barrierSet.hpp" 43 #include "gc/shared/c1/barrierSetC1.hpp" 44 #include "gc/shared/collectedHeap.hpp" 45 #include "interpreter/bytecode.hpp" 46 #include "interpreter/interpreter.hpp" 47 #include "jfr/support/jfrIntrinsics.hpp" 48 #include "logging/log.hpp" 49 #include "memory/oopFactory.hpp" 50 #include "memory/resourceArea.hpp" 51 #include "memory/universe.hpp" 52 #include "oops/access.inline.hpp" 53 #include "oops/flatArrayKlass.hpp" 54 #include "oops/flatArrayOop.inline.hpp" 55 #include "oops/objArrayKlass.hpp" 56 #include "oops/objArrayOop.inline.hpp" 57 #include "oops/oop.inline.hpp" 58 #include "prims/jvmtiExport.hpp" 59 #include "runtime/atomic.hpp" 60 #include "runtime/fieldDescriptor.inline.hpp" 61 #include "runtime/frame.inline.hpp" 62 #include "runtime/handles.inline.hpp" 63 #include "runtime/interfaceSupport.inline.hpp" 64 #include "runtime/javaCalls.hpp" 65 #include "runtime/sharedRuntime.hpp" 66 #include "runtime/stackWatermarkSet.hpp" 67 #include "runtime/stubRoutines.hpp" 68 #include "runtime/vframe.inline.hpp" 69 #include "runtime/vframeArray.hpp" 70 #include "runtime/vm_version.hpp" 71 #include "utilities/copy.hpp" 72 #include "utilities/events.hpp" 73 74 75 // Implementation of StubAssembler 76 77 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) { 78 _name = name; 79 _must_gc_arguments = false; 80 _frame_size = no_frame_size; 81 _num_rt_args = 0; 82 _stub_id = stub_id; 83 } 84 85 86 void StubAssembler::set_info(const char* name, bool must_gc_arguments) { 87 _name = name; 88 _must_gc_arguments = must_gc_arguments; 89 } 90 91 92 void StubAssembler::set_frame_size(int size) { 93 if (_frame_size == no_frame_size) { 94 _frame_size = size; 95 } 96 assert(_frame_size == size, "can't change the frame size"); 97 } 98 99 100 void StubAssembler::set_num_rt_args(int args) { 101 if (_num_rt_args == 0) { 102 _num_rt_args = args; 103 } 104 assert(_num_rt_args == args, "can't change the number of args"); 105 } 106 107 // Implementation of Runtime1 108 109 CodeBlob* Runtime1::_blobs[(int)C1StubId::NUM_STUBIDS]; 110 111 #define C1_BLOB_NAME_DEFINE(name) "C1 Runtime " # name "_blob", 112 const char *Runtime1::_blob_names[] = { 113 C1_STUBS_DO(C1_BLOB_NAME_DEFINE) 114 }; 115 #undef C1_STUB_NAME_DEFINE 116 117 #ifndef PRODUCT 118 // statistics 119 uint Runtime1::_generic_arraycopystub_cnt = 0; 120 uint Runtime1::_arraycopy_slowcase_cnt = 0; 121 uint Runtime1::_arraycopy_checkcast_cnt = 0; 122 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0; 123 uint Runtime1::_new_type_array_slowcase_cnt = 0; 124 uint Runtime1::_new_object_array_slowcase_cnt = 0; 125 uint Runtime1::_new_null_free_array_slowcase_cnt = 0; 126 uint Runtime1::_new_instance_slowcase_cnt = 0; 127 uint Runtime1::_new_multi_array_slowcase_cnt = 0; 128 uint Runtime1::_load_flat_array_slowcase_cnt = 0; 129 uint Runtime1::_store_flat_array_slowcase_cnt = 0; 130 uint Runtime1::_substitutability_check_slowcase_cnt = 0; 131 uint Runtime1::_buffer_inline_args_slowcase_cnt = 0; 132 uint Runtime1::_buffer_inline_args_no_receiver_slowcase_cnt = 0; 133 uint Runtime1::_monitorenter_slowcase_cnt = 0; 134 uint Runtime1::_monitorexit_slowcase_cnt = 0; 135 uint Runtime1::_patch_code_slowcase_cnt = 0; 136 uint Runtime1::_throw_range_check_exception_count = 0; 137 uint Runtime1::_throw_index_exception_count = 0; 138 uint Runtime1::_throw_div0_exception_count = 0; 139 uint Runtime1::_throw_null_pointer_exception_count = 0; 140 uint Runtime1::_throw_class_cast_exception_count = 0; 141 uint Runtime1::_throw_incompatible_class_change_error_count = 0; 142 uint Runtime1::_throw_illegal_monitor_state_exception_count = 0; 143 uint Runtime1::_throw_identity_exception_count = 0; 144 uint Runtime1::_throw_count = 0; 145 146 static uint _byte_arraycopy_stub_cnt = 0; 147 static uint _short_arraycopy_stub_cnt = 0; 148 static uint _int_arraycopy_stub_cnt = 0; 149 static uint _long_arraycopy_stub_cnt = 0; 150 static uint _oop_arraycopy_stub_cnt = 0; 151 152 address Runtime1::arraycopy_count_address(BasicType type) { 153 switch (type) { 154 case T_BOOLEAN: 155 case T_BYTE: return (address)&_byte_arraycopy_stub_cnt; 156 case T_CHAR: 157 case T_SHORT: return (address)&_short_arraycopy_stub_cnt; 158 case T_FLOAT: 159 case T_INT: return (address)&_int_arraycopy_stub_cnt; 160 case T_DOUBLE: 161 case T_LONG: return (address)&_long_arraycopy_stub_cnt; 162 case T_ARRAY: 163 case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt; 164 default: 165 ShouldNotReachHere(); 166 return nullptr; 167 } 168 } 169 170 171 #endif 172 173 // Simple helper to see if the caller of a runtime stub which 174 // entered the VM has been deoptimized 175 176 static bool caller_is_deopted(JavaThread* current) { 177 RegisterMap reg_map(current, 178 RegisterMap::UpdateMap::skip, 179 RegisterMap::ProcessFrames::include, 180 RegisterMap::WalkContinuation::skip); 181 frame runtime_frame = current->last_frame(); 182 frame caller_frame = runtime_frame.sender(®_map); 183 assert(caller_frame.is_compiled_frame(), "must be compiled"); 184 return caller_frame.is_deoptimized_frame(); 185 } 186 187 // Stress deoptimization 188 static void deopt_caller(JavaThread* current) { 189 if (!caller_is_deopted(current)) { 190 RegisterMap reg_map(current, 191 RegisterMap::UpdateMap::skip, 192 RegisterMap::ProcessFrames::include, 193 RegisterMap::WalkContinuation::skip); 194 frame runtime_frame = current->last_frame(); 195 frame caller_frame = runtime_frame.sender(®_map); 196 Deoptimization::deoptimize_frame(current, caller_frame.id()); 197 assert(caller_is_deopted(current), "Must be deoptimized"); 198 } 199 } 200 201 class C1StubIdStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure { 202 private: 203 C1StubId _id; 204 public: 205 C1StubIdStubAssemblerCodeGenClosure(C1StubId id) : _id(id) {} 206 virtual OopMapSet* generate_code(StubAssembler* sasm) { 207 return Runtime1::generate_code_for(_id, sasm); 208 } 209 }; 210 211 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, C1StubId id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) { 212 if ((int)id >= 0) { 213 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::C1Blob, (uint)id, name, 0, nullptr); 214 if (blob != nullptr) { 215 return blob; 216 } 217 } 218 219 ResourceMark rm; 220 // create code buffer for code storage 221 CodeBuffer code(buffer_blob); 222 223 OopMapSet* oop_maps; 224 int frame_size; 225 bool must_gc_arguments; 226 227 Compilation::setup_code_buffer(&code, 0); 228 229 // create assembler for code generation 230 StubAssembler* sasm = new StubAssembler(&code, name, (int)id); 231 // generate code for runtime stub 232 oop_maps = cl->generate_code(sasm); 233 assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size, 234 "if stub has an oop map it must have a valid frame size"); 235 assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap"); 236 237 // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned) 238 sasm->align(BytesPerWord); 239 // make sure all code is in code buffer 240 sasm->flush(); 241 242 frame_size = sasm->frame_size(); 243 must_gc_arguments = sasm->must_gc_arguments(); 244 // create blob - distinguish a few special cases 245 CodeBlob* blob = RuntimeStub::new_runtime_stub(name, 246 &code, 247 CodeOffsets::frame_never_safe, 248 frame_size, 249 oop_maps, 250 must_gc_arguments, 251 false /* alloc_fail_is_fatal */ ); 252 if (blob != nullptr && (int)id >= 0) { 253 AOTCodeCache::store_code_blob(*blob, AOTCodeEntry::C1Blob, (uint)id, name, 0, nullptr); 254 } 255 return blob; 256 } 257 258 bool Runtime1::generate_blob_for(BufferBlob* buffer_blob, C1StubId id) { 259 assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id"); 260 bool expect_oop_map = true; 261 #ifdef ASSERT 262 // Make sure that stubs that need oopmaps have them 263 switch (id) { 264 // These stubs don't need to have an oopmap 265 case C1StubId::dtrace_object_alloc_id: 266 case C1StubId::slow_subtype_check_id: 267 case C1StubId::fpu2long_stub_id: 268 case C1StubId::unwind_exception_id: 269 case C1StubId::counter_overflow_id: 270 case C1StubId::is_instance_of_id: 271 expect_oop_map = false; 272 break; 273 default: 274 break; 275 } 276 #endif 277 C1StubIdStubAssemblerCodeGenClosure cl(id); 278 CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl); 279 // install blob 280 _blobs[(int)id] = blob; 281 return blob != nullptr; 282 } 283 284 bool Runtime1::initialize(BufferBlob* blob) { 285 // platform-dependent initialization 286 initialize_pd(); 287 // generate stubs 288 int limit = (int)C1StubId::NUM_STUBIDS; 289 for (int id = 0; id <= (int)C1StubId::forward_exception_id; id++) { 290 if (!generate_blob_for(blob, (C1StubId) id)) { 291 return false; 292 } 293 } 294 AOTCodeCache::init_early_c1_table(); 295 for (int id = (int)C1StubId::forward_exception_id+1; id < limit; id++) { 296 if (!generate_blob_for(blob, (C1StubId) id)) { 297 return false; 298 } 299 } 300 // printing 301 #ifndef PRODUCT 302 if (PrintSimpleStubs) { 303 ResourceMark rm; 304 for (int id = 0; id < limit; id++) { 305 _blobs[id]->print(); 306 if (_blobs[id]->oop_maps() != nullptr) { 307 _blobs[id]->oop_maps()->print(); 308 } 309 } 310 } 311 #endif 312 BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1(); 313 return bs->generate_c1_runtime_stubs(blob); 314 } 315 316 CodeBlob* Runtime1::blob_for(C1StubId id) { 317 assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id"); 318 return _blobs[(int)id]; 319 } 320 321 322 const char* Runtime1::name_for(C1StubId id) { 323 assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id"); 324 return _blob_names[(int)id]; 325 } 326 327 const char* Runtime1::name_for_address(address entry) { 328 int limit = (int)C1StubId::NUM_STUBIDS; 329 for (int i = 0; i < limit; i++) { 330 C1StubId id = (C1StubId)i; 331 if (entry == entry_for(id)) return name_for(id); 332 } 333 334 #define FUNCTION_CASE(a, f) \ 335 if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f 336 337 FUNCTION_CASE(entry, os::javaTimeMillis); 338 FUNCTION_CASE(entry, os::javaTimeNanos); 339 FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end); 340 FUNCTION_CASE(entry, SharedRuntime::d2f); 341 FUNCTION_CASE(entry, SharedRuntime::d2i); 342 FUNCTION_CASE(entry, SharedRuntime::d2l); 343 FUNCTION_CASE(entry, SharedRuntime::dcos); 344 FUNCTION_CASE(entry, SharedRuntime::dexp); 345 FUNCTION_CASE(entry, SharedRuntime::dlog); 346 FUNCTION_CASE(entry, SharedRuntime::dlog10); 347 FUNCTION_CASE(entry, SharedRuntime::dpow); 348 FUNCTION_CASE(entry, SharedRuntime::drem); 349 FUNCTION_CASE(entry, SharedRuntime::dsin); 350 FUNCTION_CASE(entry, SharedRuntime::dtan); 351 FUNCTION_CASE(entry, SharedRuntime::f2i); 352 FUNCTION_CASE(entry, SharedRuntime::f2l); 353 FUNCTION_CASE(entry, SharedRuntime::frem); 354 FUNCTION_CASE(entry, SharedRuntime::l2d); 355 FUNCTION_CASE(entry, SharedRuntime::l2f); 356 FUNCTION_CASE(entry, SharedRuntime::ldiv); 357 FUNCTION_CASE(entry, SharedRuntime::lmul); 358 FUNCTION_CASE(entry, SharedRuntime::lrem); 359 FUNCTION_CASE(entry, SharedRuntime::lrem); 360 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry); 361 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit); 362 FUNCTION_CASE(entry, is_instance_of); 363 FUNCTION_CASE(entry, trace_block_entry); 364 #ifdef JFR_HAVE_INTRINSICS 365 FUNCTION_CASE(entry, JfrTime::time_function()); 366 #endif 367 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32()); 368 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C()); 369 FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch()); 370 FUNCTION_CASE(entry, StubRoutines::dexp()); 371 FUNCTION_CASE(entry, StubRoutines::dlog()); 372 FUNCTION_CASE(entry, StubRoutines::dlog10()); 373 FUNCTION_CASE(entry, StubRoutines::dpow()); 374 FUNCTION_CASE(entry, StubRoutines::dsin()); 375 FUNCTION_CASE(entry, StubRoutines::dcos()); 376 FUNCTION_CASE(entry, StubRoutines::dtan()); 377 FUNCTION_CASE(entry, StubRoutines::dtanh()); 378 FUNCTION_CASE(entry, StubRoutines::dcbrt()); 379 380 #undef FUNCTION_CASE 381 382 // Soft float adds more runtime names. 383 return pd_name_for_address(entry); 384 } 385 386 static void allocate_instance(JavaThread* current, Klass* klass, TRAPS) { 387 #ifndef PRODUCT 388 if (PrintC1Statistics) { 389 Runtime1::_new_instance_slowcase_cnt++; 390 } 391 #endif 392 assert(klass->is_klass(), "not a class"); 393 Handle holder(current, klass->klass_holder()); // keep the klass alive 394 InstanceKlass* h = InstanceKlass::cast(klass); 395 h->check_valid_for_instantiation(true, CHECK); 396 // make sure klass is initialized 397 h->initialize(CHECK); 398 // allocate instance and return via TLS 399 oop obj = h->allocate_instance(CHECK); 400 current->set_vm_result_oop(obj); 401 JRT_END 402 403 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass)) 404 allocate_instance(current, klass, CHECK); 405 JRT_END 406 407 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length)) 408 #ifndef PRODUCT 409 if (PrintC1Statistics) { 410 _new_type_array_slowcase_cnt++; 411 } 412 #endif 413 // Note: no handle for klass needed since they are not used 414 // anymore after new_typeArray() and no GC can happen before. 415 // (This may have to change if this code changes!) 416 assert(klass->is_klass(), "not a class"); 417 BasicType elt_type = TypeArrayKlass::cast(klass)->element_type(); 418 oop obj = oopFactory::new_typeArray(elt_type, length, CHECK); 419 current->set_vm_result_oop(obj); 420 // This is pretty rare but this runtime patch is stressful to deoptimization 421 // if we deoptimize here so force a deopt to stress the path. 422 if (DeoptimizeALot) { 423 deopt_caller(current); 424 } 425 426 JRT_END 427 428 429 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length)) 430 #ifndef PRODUCT 431 if (PrintC1Statistics) { 432 _new_object_array_slowcase_cnt++; 433 } 434 #endif 435 // Note: no handle for klass needed since they are not used 436 // anymore after new_objArray() and no GC can happen before. 437 // (This may have to change if this code changes!) 438 assert(array_klass->is_klass(), "not a class"); 439 Handle holder(current, array_klass->klass_holder()); // keep the klass alive 440 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); 441 objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK); 442 current->set_vm_result_oop(obj); 443 // This is pretty rare but this runtime patch is stressful to deoptimization 444 // if we deoptimize here so force a deopt to stress the path. 445 if (DeoptimizeALot) { 446 deopt_caller(current); 447 } 448 JRT_END 449 450 451 JRT_ENTRY(void, Runtime1::new_null_free_array(JavaThread* current, Klass* array_klass, jint length)) 452 NOT_PRODUCT(_new_null_free_array_slowcase_cnt++;) 453 // TODO 8350865 This is dead code since 8325660 because null-free arrays can only be created via the factory methods that are not yet implemented in C1. Should probably be fixed by 8265122. 454 455 // Note: no handle for klass needed since they are not used 456 // anymore after new_objArray() and no GC can happen before. 457 // (This may have to change if this code changes!) 458 assert(array_klass->is_klass(), "not a class"); 459 Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive 460 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); 461 assert(elem_klass->is_inline_klass(), "must be"); 462 InlineKlass* vk = InlineKlass::cast(elem_klass); 463 // Logically creates elements, ensure klass init 464 elem_klass->initialize(CHECK); 465 arrayOop obj= oopFactory::new_objArray(elem_klass, length, ArrayKlass::ArrayProperties::NULL_RESTRICTED, CHECK); 466 current->set_vm_result_oop(obj); 467 // This is pretty rare but this runtime patch is stressful to deoptimization 468 // if we deoptimize here so force a deopt to stress the path. 469 if (DeoptimizeALot) { 470 deopt_caller(current); 471 } 472 JRT_END 473 474 475 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims)) 476 #ifndef PRODUCT 477 if (PrintC1Statistics) { 478 _new_multi_array_slowcase_cnt++; 479 } 480 #endif 481 assert(klass->is_klass(), "not a class"); 482 assert(rank >= 1, "rank must be nonzero"); 483 Handle holder(current, klass->klass_holder()); // keep the klass alive 484 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); 485 current->set_vm_result_oop(obj); 486 JRT_END 487 488 489 static void profile_flat_array(JavaThread* current, bool load, bool null_free) { 490 ResourceMark rm(current); 491 vframeStream vfst(current, true); 492 assert(!vfst.at_end(), "Java frame must exist"); 493 // Check if array access profiling is enabled 494 if (vfst.nm()->comp_level() != CompLevel_full_profile || !C1UpdateMethodData) { 495 return; 496 } 497 int bci = vfst.bci(); 498 Method* method = vfst.method(); 499 MethodData* md = method->method_data(); 500 if (md != nullptr) { 501 // Lock to access ProfileData, and ensure lock is not broken by a safepoint 502 MutexLocker ml(md->extra_data_lock(), Mutex::_no_safepoint_check_flag); 503 504 ProfileData* data = md->bci_to_data(bci); 505 assert(data != nullptr, "incorrect profiling entry"); 506 if (data->is_ArrayLoadData()) { 507 assert(load, "should be an array load"); 508 ArrayLoadData* load_data = (ArrayLoadData*) data; 509 load_data->set_flat_array(); 510 if (null_free) { 511 load_data->set_null_free_array(); 512 } 513 } else { 514 assert(data->is_ArrayStoreData(), ""); 515 assert(!load, "should be an array store"); 516 ArrayStoreData* store_data = (ArrayStoreData*) data; 517 store_data->set_flat_array(); 518 if (null_free) { 519 store_data->set_null_free_array(); 520 } 521 } 522 } 523 } 524 525 JRT_ENTRY(void, Runtime1::load_flat_array(JavaThread* current, flatArrayOopDesc* array, int index)) 526 assert(array->klass()->is_flatArray_klass(), "should not be called"); 527 profile_flat_array(current, true, array->is_null_free_array()); 528 529 NOT_PRODUCT(_load_flat_array_slowcase_cnt++;) 530 assert(array->length() > 0 && index < array->length(), "already checked"); 531 flatArrayHandle vah(current, array); 532 oop obj = array->obj_at(index, CHECK); 533 current->set_vm_result_oop(obj); 534 JRT_END 535 536 JRT_ENTRY(void, Runtime1::store_flat_array(JavaThread* current, flatArrayOopDesc* array, int index, oopDesc* value)) 537 // TOOD 8350865 We can call here with a non-flat array because of LIR_Assembler::emit_opFlattenedArrayCheck 538 if (array->klass()->is_flatArray_klass()) { 539 profile_flat_array(current, false, array->is_null_free_array()); 540 } 541 542 NOT_PRODUCT(_store_flat_array_slowcase_cnt++;) 543 if (value == nullptr && array->is_null_free_array()) { 544 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException()); 545 } else { 546 assert(array->klass()->is_flatArray_klass(), "should not be called"); 547 array->obj_at_put(index, value, CHECK); 548 } 549 JRT_END 550 551 JRT_ENTRY(int, Runtime1::substitutability_check(JavaThread* current, oopDesc* left, oopDesc* right)) 552 NOT_PRODUCT(_substitutability_check_slowcase_cnt++;) 553 JavaCallArguments args; 554 args.push_oop(Handle(THREAD, left)); 555 args.push_oop(Handle(THREAD, right)); 556 JavaValue result(T_BOOLEAN); 557 JavaCalls::call_static(&result, 558 vmClasses::ValueObjectMethods_klass(), 559 vmSymbols::isSubstitutable_name(), 560 vmSymbols::object_object_boolean_signature(), 561 &args, CHECK_0); 562 return result.get_jboolean() ? 1 : 0; 563 JRT_END 564 565 566 extern "C" void ps(); 567 568 void Runtime1::buffer_inline_args_impl(JavaThread* current, Method* m, bool allocate_receiver) { 569 JavaThread* THREAD = current; 570 methodHandle method(current, m); // We are inside the verified_entry or verified_inline_ro_entry of this method. 571 oop obj = SharedRuntime::allocate_inline_types_impl(current, method, allocate_receiver, CHECK); 572 current->set_vm_result_oop(obj); 573 } 574 575 JRT_ENTRY(void, Runtime1::buffer_inline_args(JavaThread* current, Method* method)) 576 NOT_PRODUCT(_buffer_inline_args_slowcase_cnt++;) 577 buffer_inline_args_impl(current, method, true); 578 JRT_END 579 580 JRT_ENTRY(void, Runtime1::buffer_inline_args_no_receiver(JavaThread* current, Method* method)) 581 NOT_PRODUCT(_buffer_inline_args_no_receiver_slowcase_cnt++;) 582 buffer_inline_args_impl(current, method, false); 583 JRT_END 584 585 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, C1StubId id)) 586 tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id); 587 JRT_END 588 589 590 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj)) 591 ResourceMark rm(current); 592 const char* klass_name = obj->klass()->external_name(); 593 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name); 594 JRT_END 595 596 597 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method 598 // associated with the top activation record. The inlinee (that is possibly included in the enclosing 599 // method) method is passed as an argument. In order to do that it is embedded in the code as 600 // a constant. 601 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) { 602 nmethod* osr_nm = nullptr; 603 methodHandle method(current, m); 604 605 RegisterMap map(current, 606 RegisterMap::UpdateMap::skip, 607 RegisterMap::ProcessFrames::include, 608 RegisterMap::WalkContinuation::skip); 609 frame fr = current->last_frame().sender(&map); 610 nmethod* nm = (nmethod*) fr.cb(); 611 assert(nm!= nullptr && nm->is_nmethod(), "Sanity check"); 612 methodHandle enclosing_method(current, nm->method()); 613 614 CompLevel level = (CompLevel)nm->comp_level(); 615 int bci = InvocationEntryBci; 616 if (branch_bci != InvocationEntryBci) { 617 // Compute destination bci 618 address pc = method()->code_base() + branch_bci; 619 Bytecodes::Code branch = Bytecodes::code_at(method(), pc); 620 int offset = 0; 621 switch (branch) { 622 case Bytecodes::_if_icmplt: case Bytecodes::_iflt: 623 case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt: 624 case Bytecodes::_if_icmple: case Bytecodes::_ifle: 625 case Bytecodes::_if_icmpge: case Bytecodes::_ifge: 626 case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq: 627 case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne: 628 case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto: 629 offset = (int16_t)Bytes::get_Java_u2(pc + 1); 630 break; 631 case Bytecodes::_goto_w: 632 offset = Bytes::get_Java_u4(pc + 1); 633 break; 634 default: ; 635 } 636 bci = branch_bci + offset; 637 } 638 osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current); 639 return osr_nm; 640 } 641 642 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method)) 643 nmethod* osr_nm; 644 JRT_BLOCK_NO_ASYNC 645 osr_nm = counter_overflow_helper(current, bci, method); 646 if (osr_nm != nullptr) { 647 RegisterMap map(current, 648 RegisterMap::UpdateMap::skip, 649 RegisterMap::ProcessFrames::include, 650 RegisterMap::WalkContinuation::skip); 651 frame fr = current->last_frame().sender(&map); 652 Deoptimization::deoptimize_frame(current, fr.id()); 653 } 654 JRT_BLOCK_END 655 return nullptr; 656 JRT_END 657 658 extern void vm_exit(int code); 659 660 // Enter this method from compiled code handler below. This is where we transition 661 // to VM mode. This is done as a helper routine so that the method called directly 662 // from compiled code does not have to transition to VM. This allows the entry 663 // method to see if the nmethod that we have just looked up a handler for has 664 // been deoptimized while we were in the vm. This simplifies the assembly code 665 // cpu directories. 666 // 667 // We are entering here from exception stub (via the entry method below) 668 // If there is a compiled exception handler in this method, we will continue there; 669 // otherwise we will unwind the stack and continue at the caller of top frame method 670 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to 671 // control the area where we can allow a safepoint. After we exit the safepoint area we can 672 // check to see if the handler we are going to return is now in a nmethod that has 673 // been deoptimized. If that is the case we return the deopt blob 674 // unpack_with_exception entry instead. This makes life for the exception blob easier 675 // because making that same check and diverting is painful from assembly language. 676 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm)) 677 // Reset method handle flag. 678 current->set_is_method_handle_return(false); 679 680 Handle exception(current, ex); 681 682 // This function is called when we are about to throw an exception. Therefore, 683 // we have to poll the stack watermark barrier to make sure that not yet safe 684 // stack frames are made safe before returning into them. 685 if (current->last_frame().cb() == Runtime1::blob_for(C1StubId::handle_exception_from_callee_id)) { 686 // The C1StubId::handle_exception_from_callee_id handler is invoked after the 687 // frame has been unwound. It instead builds its own stub frame, to call the 688 // runtime. But the throwing frame has already been unwound here. 689 StackWatermarkSet::after_unwind(current); 690 } 691 692 nm = CodeCache::find_nmethod(pc); 693 assert(nm != nullptr, "this is not an nmethod"); 694 // Adjust the pc as needed/ 695 if (nm->is_deopt_pc(pc)) { 696 RegisterMap map(current, 697 RegisterMap::UpdateMap::skip, 698 RegisterMap::ProcessFrames::include, 699 RegisterMap::WalkContinuation::skip); 700 frame exception_frame = current->last_frame().sender(&map); 701 // if the frame isn't deopted then pc must not correspond to the caller of last_frame 702 assert(exception_frame.is_deoptimized_frame(), "must be deopted"); 703 pc = exception_frame.pc(); 704 } 705 assert(exception.not_null(), "null exceptions should be handled by throw_exception"); 706 // Check that exception is a subclass of Throwable 707 assert(exception->is_a(vmClasses::Throwable_klass()), 708 "Exception not subclass of Throwable"); 709 710 // debugging support 711 // tracing 712 if (log_is_enabled(Info, exceptions)) { 713 ResourceMark rm; // print_value_string 714 stringStream tempst; 715 assert(nm->method() != nullptr, "Unexpected null method()"); 716 tempst.print("C1 compiled method <%s>\n" 717 " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT, 718 nm->method()->print_value_string(), p2i(pc), p2i(current)); 719 Exceptions::log_exception(exception, tempst.freeze()); 720 } 721 // for AbortVMOnException flag 722 Exceptions::debug_check_abort(exception); 723 724 // Check the stack guard pages and re-enable them if necessary and there is 725 // enough space on the stack to do so. Use fast exceptions only if the guard 726 // pages are enabled. 727 bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed(); 728 729 if (JvmtiExport::can_post_on_exceptions()) { 730 // To ensure correct notification of exception catches and throws 731 // we have to deoptimize here. If we attempted to notify the 732 // catches and throws during this exception lookup it's possible 733 // we could deoptimize on the way out of the VM and end back in 734 // the interpreter at the throw site. This would result in double 735 // notifications since the interpreter would also notify about 736 // these same catches and throws as it unwound the frame. 737 738 RegisterMap reg_map(current, 739 RegisterMap::UpdateMap::include, 740 RegisterMap::ProcessFrames::include, 741 RegisterMap::WalkContinuation::skip); 742 frame stub_frame = current->last_frame(); 743 frame caller_frame = stub_frame.sender(®_map); 744 745 // We don't really want to deoptimize the nmethod itself since we 746 // can actually continue in the exception handler ourselves but I 747 // don't see an easy way to have the desired effect. 748 Deoptimization::deoptimize_frame(current, caller_frame.id()); 749 assert(caller_is_deopted(current), "Must be deoptimized"); 750 751 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 752 } 753 754 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions 755 if (guard_pages_enabled) { 756 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); 757 if (fast_continuation != nullptr) { 758 // Set flag if return address is a method handle call site. 759 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 760 return fast_continuation; 761 } 762 } 763 764 // If the stack guard pages are enabled, check whether there is a handler in 765 // the current method. Otherwise (guard pages disabled), force an unwind and 766 // skip the exception cache update (i.e., just leave continuation as null). 767 address continuation = nullptr; 768 if (guard_pages_enabled) { 769 770 // New exception handling mechanism can support inlined methods 771 // with exception handlers since the mappings are from PC to PC 772 773 // Clear out the exception oop and pc since looking up an 774 // exception handler can cause class loading, which might throw an 775 // exception and those fields are expected to be clear during 776 // normal bytecode execution. 777 current->clear_exception_oop_and_pc(); 778 779 bool recursive_exception = false; 780 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception); 781 // If an exception was thrown during exception dispatch, the exception oop may have changed 782 current->set_exception_oop(exception()); 783 current->set_exception_pc(pc); 784 785 // the exception cache is used only by non-implicit exceptions 786 // Update the exception cache only when there didn't happen 787 // another exception during the computation of the compiled 788 // exception handler. Checking for exception oop equality is not 789 // sufficient because some exceptions are pre-allocated and reused. 790 if (continuation != nullptr && !recursive_exception) { 791 nm->add_handler_for_exception_and_pc(exception, pc, continuation); 792 } 793 } 794 795 current->set_vm_result_oop(exception()); 796 // Set flag if return address is a method handle call site. 797 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 798 799 if (log_is_enabled(Info, exceptions)) { 800 ResourceMark rm; 801 log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT 802 " for exception thrown at PC " PTR_FORMAT, 803 p2i(current), p2i(continuation), p2i(pc)); 804 } 805 806 return continuation; 807 JRT_END 808 809 // Enter this method from compiled code only if there is a Java exception handler 810 // in the method handling the exception. 811 // We are entering here from exception stub. We don't do a normal VM transition here. 812 // We do it in a helper. This is so we can check to see if the nmethod we have just 813 // searched for an exception handler has been deoptimized in the meantime. 814 address Runtime1::exception_handler_for_pc(JavaThread* current) { 815 oop exception = current->exception_oop(); 816 address pc = current->exception_pc(); 817 // Still in Java mode 818 DEBUG_ONLY(NoHandleMark nhm); 819 nmethod* nm = nullptr; 820 address continuation = nullptr; 821 { 822 // Enter VM mode by calling the helper 823 ResetNoHandleMark rnhm; 824 continuation = exception_handler_for_pc_helper(current, exception, pc, nm); 825 } 826 // Back in JAVA, use no oops DON'T safepoint 827 828 // Now check to see if the nmethod we were called from is now deoptimized. 829 // If so we must return to the deopt blob and deoptimize the nmethod 830 if (nm != nullptr && caller_is_deopted(current)) { 831 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 832 } 833 834 assert(continuation != nullptr, "no handler found"); 835 return continuation; 836 } 837 838 839 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a)) 840 #ifndef PRODUCT 841 if (PrintC1Statistics) { 842 _throw_range_check_exception_count++; 843 } 844 #endif 845 const int len = 35; 846 assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message."); 847 char message[2 * jintAsStringSize + len]; 848 os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length()); 849 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message); 850 JRT_END 851 852 853 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index)) 854 #ifndef PRODUCT 855 if (PrintC1Statistics) { 856 _throw_index_exception_count++; 857 } 858 #endif 859 char message[16]; 860 os::snprintf_checked(message, sizeof(message), "%d", index); 861 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message); 862 JRT_END 863 864 865 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current)) 866 #ifndef PRODUCT 867 if (PrintC1Statistics) { 868 _throw_div0_exception_count++; 869 } 870 #endif 871 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 872 JRT_END 873 874 875 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current)) 876 #ifndef PRODUCT 877 if (PrintC1Statistics) { 878 _throw_null_pointer_exception_count++; 879 } 880 #endif 881 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException()); 882 JRT_END 883 884 885 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object)) 886 #ifndef PRODUCT 887 if (PrintC1Statistics) { 888 _throw_class_cast_exception_count++; 889 } 890 #endif 891 ResourceMark rm(current); 892 char* message = SharedRuntime::generate_class_cast_message(current, object->klass()); 893 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message); 894 JRT_END 895 896 897 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current)) 898 #ifndef PRODUCT 899 if (PrintC1Statistics) { 900 _throw_incompatible_class_change_error_count++; 901 } 902 #endif 903 ResourceMark rm(current); 904 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError()); 905 JRT_END 906 907 908 JRT_ENTRY(void, Runtime1::throw_illegal_monitor_state_exception(JavaThread* current)) 909 NOT_PRODUCT(_throw_illegal_monitor_state_exception_count++;) 910 ResourceMark rm(current); 911 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IllegalMonitorStateException()); 912 JRT_END 913 914 JRT_ENTRY(void, Runtime1::throw_identity_exception(JavaThread* current, oopDesc* object)) 915 NOT_PRODUCT(_throw_identity_exception_count++;) 916 ResourceMark rm(current); 917 char* message = SharedRuntime::generate_identity_exception_message(current, object->klass()); 918 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IdentityException(), message); 919 JRT_END 920 921 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock)) 922 #ifndef PRODUCT 923 if (PrintC1Statistics) { 924 _monitorenter_slowcase_cnt++; 925 } 926 #endif 927 if (LockingMode == LM_MONITOR) { 928 lock->set_obj(obj); 929 } 930 assert(obj == lock->obj(), "must match"); 931 SharedRuntime::monitor_enter_helper(obj, lock->lock(), current); 932 JRT_END 933 934 935 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock)) 936 assert(current == JavaThread::current(), "pre-condition"); 937 #ifndef PRODUCT 938 if (PrintC1Statistics) { 939 _monitorexit_slowcase_cnt++; 940 } 941 #endif 942 assert(current->last_Java_sp(), "last_Java_sp must be set"); 943 oop obj = lock->obj(); 944 assert(oopDesc::is_oop(obj), "must be null or an object"); 945 SharedRuntime::monitor_exit_helper(obj, lock->lock(), current); 946 JRT_END 947 948 // Cf. OptoRuntime::deoptimize_caller_frame 949 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request)) 950 // Called from within the owner thread, so no need for safepoint 951 RegisterMap reg_map(current, 952 RegisterMap::UpdateMap::skip, 953 RegisterMap::ProcessFrames::include, 954 RegisterMap::WalkContinuation::skip); 955 frame stub_frame = current->last_frame(); 956 assert(stub_frame.is_runtime_frame(), "Sanity check"); 957 frame caller_frame = stub_frame.sender(®_map); 958 nmethod* nm = caller_frame.cb()->as_nmethod_or_null(); 959 assert(nm != nullptr, "Sanity check"); 960 methodHandle method(current, nm->method()); 961 assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same"); 962 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); 963 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); 964 965 if (action == Deoptimization::Action_make_not_entrant) { 966 if (nm->make_not_entrant(nmethod::InvalidationReason::C1_DEOPTIMIZE)) { 967 if (reason == Deoptimization::Reason_tenured) { 968 MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/); 969 if (trap_mdo != nullptr) { 970 trap_mdo->inc_tenure_traps(); 971 } 972 } 973 } 974 } 975 976 // Deoptimize the caller frame. 977 Deoptimization::deoptimize_frame(current, caller_frame.id()); 978 // Return to the now deoptimized frame. 979 JRT_END 980 981 982 #ifndef DEOPTIMIZE_WHEN_PATCHING 983 984 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) { 985 Bytecode_field field_access(caller, bci); 986 // This can be static or non-static field access 987 Bytecodes::Code code = field_access.code(); 988 989 // We must load class, initialize class and resolve the field 990 fieldDescriptor result; // initialize class if needed 991 constantPoolHandle constants(THREAD, caller->constants()); 992 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL); 993 return result.field_holder(); 994 } 995 996 997 // 998 // This routine patches sites where a class wasn't loaded or 999 // initialized at the time the code was generated. It handles 1000 // references to classes, fields and forcing of initialization. Most 1001 // of the cases are straightforward and involving simply forcing 1002 // resolution of a class, rewriting the instruction stream with the 1003 // needed constant and replacing the call in this function with the 1004 // patched code. The case for static field is more complicated since 1005 // the thread which is in the process of initializing a class can 1006 // access it's static fields but other threads can't so the code 1007 // either has to deoptimize when this case is detected or execute a 1008 // check that the current thread is the initializing thread. The 1009 // current 1010 // 1011 // Patches basically look like this: 1012 // 1013 // 1014 // patch_site: jmp patch stub ;; will be patched 1015 // continue: ... 1016 // ... 1017 // ... 1018 // ... 1019 // 1020 // They have a stub which looks like this: 1021 // 1022 // ;; patch body 1023 // movl <const>, reg (for class constants) 1024 // <or> movl [reg1 + <const>], reg (for field offsets) 1025 // <or> movl reg, [reg1 + <const>] (for field offsets) 1026 // <being_init offset> <bytes to copy> <bytes to skip> 1027 // patch_stub: call Runtime1::patch_code (through a runtime stub) 1028 // jmp patch_site 1029 // 1030 // 1031 // A normal patch is done by rewriting the patch body, usually a move, 1032 // and then copying it into place over top of the jmp instruction 1033 // being careful to flush caches and doing it in an MP-safe way. The 1034 // constants following the patch body are used to find various pieces 1035 // of the patch relative to the call site for Runtime1::patch_code. 1036 // The case for getstatic and putstatic is more complicated because 1037 // getstatic and putstatic have special semantics when executing while 1038 // the class is being initialized. getstatic/putstatic on a class 1039 // which is being_initialized may be executed by the initializing 1040 // thread but other threads have to block when they execute it. This 1041 // is accomplished in compiled code by executing a test of the current 1042 // thread against the initializing thread of the class. It's emitted 1043 // as boilerplate in their stub which allows the patched code to be 1044 // executed before it's copied back into the main body of the nmethod. 1045 // 1046 // being_init: get_thread(<tmp reg> 1047 // cmpl [reg1 + <init_thread_offset>], <tmp reg> 1048 // jne patch_stub 1049 // movl [reg1 + <const>], reg (for field offsets) <or> 1050 // movl reg, [reg1 + <const>] (for field offsets) 1051 // jmp continue 1052 // <being_init offset> <bytes to copy> <bytes to skip> 1053 // patch_stub: jmp Runtime1::patch_code (through a runtime stub) 1054 // jmp patch_site 1055 // 1056 // If the class is being initialized the patch body is rewritten and 1057 // the patch site is rewritten to jump to being_init, instead of 1058 // patch_stub. Whenever this code is executed it checks the current 1059 // thread against the initializing thread so other threads will enter 1060 // the runtime and end up blocked waiting the class to finish 1061 // initializing inside the calls to resolve_field below. The 1062 // initializing class will continue on it's way. Once the class is 1063 // fully_initialized, the intializing_thread of the class becomes 1064 // null, so the next thread to execute this code will fail the test, 1065 // call into patch_code and complete the patching process by copying 1066 // the patch body back into the main part of the nmethod and resume 1067 // executing. 1068 1069 // NB: 1070 // 1071 // Patchable instruction sequences inherently exhibit race conditions, 1072 // where thread A is patching an instruction at the same time thread B 1073 // is executing it. The algorithms we use ensure that any observation 1074 // that B can make on any intermediate states during A's patching will 1075 // always end up with a correct outcome. This is easiest if there are 1076 // few or no intermediate states. (Some inline caches have two 1077 // related instructions that must be patched in tandem. For those, 1078 // intermediate states seem to be unavoidable, but we will get the 1079 // right answer from all possible observation orders.) 1080 // 1081 // When patching the entry instruction at the head of a method, or a 1082 // linkable call instruction inside of a method, we try very hard to 1083 // use a patch sequence which executes as a single memory transaction. 1084 // This means, in practice, that when thread A patches an instruction, 1085 // it should patch a 32-bit or 64-bit word that somehow overlaps the 1086 // instruction or is contained in it. We believe that memory hardware 1087 // will never break up such a word write, if it is naturally aligned 1088 // for the word being written. We also know that some CPUs work very 1089 // hard to create atomic updates even of naturally unaligned words, 1090 // but we don't want to bet the farm on this always working. 1091 // 1092 // Therefore, if there is any chance of a race condition, we try to 1093 // patch only naturally aligned words, as single, full-word writes. 1094 1095 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, C1StubId stub_id )) 1096 #ifndef PRODUCT 1097 if (PrintC1Statistics) { 1098 _patch_code_slowcase_cnt++; 1099 } 1100 #endif 1101 1102 ResourceMark rm(current); 1103 RegisterMap reg_map(current, 1104 RegisterMap::UpdateMap::skip, 1105 RegisterMap::ProcessFrames::include, 1106 RegisterMap::WalkContinuation::skip); 1107 frame runtime_frame = current->last_frame(); 1108 frame caller_frame = runtime_frame.sender(®_map); 1109 1110 // last java frame on stack 1111 vframeStream vfst(current, true); 1112 assert(!vfst.at_end(), "Java frame must exist"); 1113 1114 methodHandle caller_method(current, vfst.method()); 1115 // Note that caller_method->code() may not be same as caller_code because of OSR's 1116 // Note also that in the presence of inlining it is not guaranteed 1117 // that caller_method() == caller_code->method() 1118 1119 int bci = vfst.bci(); 1120 Bytecodes::Code code = caller_method()->java_code_at(bci); 1121 1122 // this is used by assertions in the access_field_patching_id 1123 BasicType patch_field_type = T_ILLEGAL; 1124 bool deoptimize_for_volatile = false; 1125 bool deoptimize_for_atomic = false; 1126 bool deoptimize_for_null_free = false; 1127 bool deoptimize_for_flat = false; 1128 bool deoptimize_for_strict_static = false; 1129 int patch_field_offset = -1; 1130 Klass* init_klass = nullptr; // klass needed by load_klass_patching code 1131 Klass* load_klass = nullptr; // klass needed by load_klass_patching code 1132 Handle mirror(current, nullptr); // oop needed by load_mirror_patching code 1133 Handle appendix(current, nullptr); // oop needed by appendix_patching code 1134 bool load_klass_or_mirror_patch_id = 1135 (stub_id == C1StubId::load_klass_patching_id || stub_id == C1StubId::load_mirror_patching_id); 1136 1137 if (stub_id == C1StubId::access_field_patching_id) { 1138 1139 Bytecode_field field_access(caller_method, bci); 1140 fieldDescriptor result; // initialize class if needed 1141 Bytecodes::Code code = field_access.code(); 1142 constantPoolHandle constants(current, caller_method->constants()); 1143 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK); 1144 patch_field_offset = result.offset(); 1145 1146 // If we're patching a field which is volatile then at compile it 1147 // must not have been know to be volatile, so the generated code 1148 // isn't correct for a volatile reference. The nmethod has to be 1149 // deoptimized so that the code can be regenerated correctly. 1150 // This check is only needed for access_field_patching since this 1151 // is the path for patching field offsets. load_klass is only 1152 // used for patching references to oops which don't need special 1153 // handling in the volatile case. 1154 1155 deoptimize_for_volatile = result.access_flags().is_volatile(); 1156 1157 // If we are patching a field which should be atomic, then 1158 // the generated code is not correct either, force deoptimizing. 1159 // We need to only cover T_LONG and T_DOUBLE fields, as we can 1160 // break access atomicity only for them. 1161 1162 // Strictly speaking, the deoptimization on 64-bit platforms 1163 // is unnecessary, and T_LONG stores on 32-bit platforms need 1164 // to be handled by special patching code when AlwaysAtomicAccesses 1165 // becomes product feature. At this point, we are still going 1166 // for the deoptimization for consistency against volatile 1167 // accesses. 1168 1169 patch_field_type = result.field_type(); 1170 deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)); 1171 1172 // The field we are patching is null-free. Deoptimize and regenerate 1173 // the compiled code if we patch a putfield/putstatic because it 1174 // does not contain the required null check. 1175 deoptimize_for_null_free = result.is_null_free_inline_type() && (field_access.is_putfield() || field_access.is_putstatic()); 1176 1177 // The field we are patching is flat. Deoptimize and regenerate 1178 // the compiled code which can't handle the layout of the flat 1179 // field because it was unknown at compile time. 1180 deoptimize_for_flat = result.is_flat(); 1181 1182 // Strict statics may require tracking if their class is not fully initialized. 1183 // For now we can bail out of the compiler and let the interpreter handle it. 1184 deoptimize_for_strict_static = result.is_strict_static_unset(); 1185 } else if (load_klass_or_mirror_patch_id) { 1186 Klass* k = nullptr; 1187 switch (code) { 1188 case Bytecodes::_putstatic: 1189 case Bytecodes::_getstatic: 1190 { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK); 1191 init_klass = klass; 1192 mirror = Handle(current, klass->java_mirror()); 1193 } 1194 break; 1195 case Bytecodes::_new: 1196 { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci)); 1197 k = caller_method->constants()->klass_at(bnew.index(), CHECK); 1198 } 1199 break; 1200 case Bytecodes::_multianewarray: 1201 { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci)); 1202 k = caller_method->constants()->klass_at(mna.index(), CHECK); 1203 } 1204 break; 1205 case Bytecodes::_instanceof: 1206 { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci)); 1207 k = caller_method->constants()->klass_at(io.index(), CHECK); 1208 } 1209 break; 1210 case Bytecodes::_checkcast: 1211 { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci)); 1212 k = caller_method->constants()->klass_at(cc.index(), CHECK); 1213 } 1214 break; 1215 case Bytecodes::_anewarray: 1216 { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci)); 1217 Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK); 1218 k = ek->array_klass(CHECK); 1219 if (!k->is_typeArray_klass() && !k->is_refArray_klass() && !k->is_flatArray_klass()) { 1220 k = ObjArrayKlass::cast(k)->klass_with_properties(ArrayKlass::ArrayProperties::DEFAULT, THREAD); 1221 } 1222 if (k->is_flatArray_klass()) { 1223 deoptimize_for_flat = true; 1224 } 1225 } 1226 break; 1227 case Bytecodes::_ldc: 1228 case Bytecodes::_ldc_w: 1229 case Bytecodes::_ldc2_w: 1230 { 1231 Bytecode_loadconstant cc(caller_method, bci); 1232 oop m = cc.resolve_constant(CHECK); 1233 mirror = Handle(current, m); 1234 } 1235 break; 1236 default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id"); 1237 } 1238 load_klass = k; 1239 } else if (stub_id == C1StubId::load_appendix_patching_id) { 1240 Bytecode_invoke bytecode(caller_method, bci); 1241 Bytecodes::Code bc = bytecode.invoke_code(); 1242 1243 CallInfo info; 1244 constantPoolHandle pool(current, caller_method->constants()); 1245 int index = bytecode.index(); 1246 LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK); 1247 switch (bc) { 1248 case Bytecodes::_invokehandle: { 1249 ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info); 1250 appendix = Handle(current, pool->cache()->appendix_if_resolved(entry)); 1251 break; 1252 } 1253 case Bytecodes::_invokedynamic: { 1254 appendix = Handle(current, pool->cache()->set_dynamic_call(info, index)); 1255 break; 1256 } 1257 default: fatal("unexpected bytecode for load_appendix_patching_id"); 1258 } 1259 } else { 1260 ShouldNotReachHere(); 1261 } 1262 1263 if (deoptimize_for_volatile || 1264 deoptimize_for_atomic || 1265 deoptimize_for_null_free || 1266 deoptimize_for_flat || 1267 deoptimize_for_strict_static) { 1268 // At compile time we assumed the field wasn't volatile/atomic but after 1269 // loading it turns out it was volatile/atomic so we have to throw the 1270 // compiled code out and let it be regenerated. 1271 if (TracePatching) { 1272 if (deoptimize_for_volatile) { 1273 tty->print_cr("Deoptimizing for patching volatile field reference"); 1274 } 1275 if (deoptimize_for_atomic) { 1276 tty->print_cr("Deoptimizing for patching atomic field reference"); 1277 } 1278 if (deoptimize_for_null_free) { 1279 tty->print_cr("Deoptimizing for patching null-free field reference"); 1280 } 1281 if (deoptimize_for_flat) { 1282 tty->print_cr("Deoptimizing for patching flat field or array reference"); 1283 } 1284 if (deoptimize_for_strict_static) { 1285 tty->print_cr("Deoptimizing for patching strict static field reference"); 1286 } 1287 } 1288 1289 // It's possible the nmethod was invalidated in the last 1290 // safepoint, but if it's still alive then make it not_entrant. 1291 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1292 if (nm != nullptr) { 1293 nm->make_not_entrant(nmethod::InvalidationReason::C1_CODEPATCH); 1294 } 1295 1296 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1297 1298 // Return to the now deoptimized frame. 1299 } 1300 1301 // Now copy code back 1302 1303 { 1304 MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag); 1305 // 1306 // Deoptimization may have happened while we waited for the lock. 1307 // In that case we don't bother to do any patching we just return 1308 // and let the deopt happen 1309 if (!caller_is_deopted(current)) { 1310 NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc()); 1311 address instr_pc = jump->jump_destination(); 1312 NativeInstruction* ni = nativeInstruction_at(instr_pc); 1313 if (ni->is_jump() ) { 1314 // the jump has not been patched yet 1315 // The jump destination is slow case and therefore not part of the stubs 1316 // (stubs are only for StaticCalls) 1317 1318 // format of buffer 1319 // .... 1320 // instr byte 0 <-- copy_buff 1321 // instr byte 1 1322 // .. 1323 // instr byte n-1 1324 // n 1325 // .... <-- call destination 1326 1327 address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset(); 1328 unsigned char* byte_count = (unsigned char*) (stub_location - 1); 1329 unsigned char* byte_skip = (unsigned char*) (stub_location - 2); 1330 unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3); 1331 address copy_buff = stub_location - *byte_skip - *byte_count; 1332 address being_initialized_entry = stub_location - *being_initialized_entry_offset; 1333 if (TracePatching) { 1334 ttyLocker ttyl; 1335 tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT " (%s)", Bytecodes::name(code), bci, 1336 p2i(instr_pc), (stub_id == C1StubId::access_field_patching_id) ? "field" : "klass"); 1337 nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc()); 1338 assert(caller_code != nullptr, "nmethod not found"); 1339 1340 // NOTE we use pc() not original_pc() because we already know they are 1341 // identical otherwise we'd have never entered this block of code 1342 1343 const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc()); 1344 assert(map != nullptr, "null check"); 1345 map->print(); 1346 tty->cr(); 1347 1348 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1349 } 1350 // depending on the code below, do_patch says whether to copy the patch body back into the nmethod 1351 bool do_patch = true; 1352 if (stub_id == C1StubId::access_field_patching_id) { 1353 // The offset may not be correct if the class was not loaded at code generation time. 1354 // Set it now. 1355 NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff); 1356 assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type"); 1357 assert(patch_field_offset >= 0, "illegal offset"); 1358 n_move->add_offset_in_bytes(patch_field_offset); 1359 } else if (load_klass_or_mirror_patch_id) { 1360 // If a getstatic or putstatic is referencing a klass which 1361 // isn't fully initialized, the patch body isn't copied into 1362 // place until initialization is complete. In this case the 1363 // patch site is setup so that any threads besides the 1364 // initializing thread are forced to come into the VM and 1365 // block. 1366 do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) || 1367 InstanceKlass::cast(init_klass)->is_initialized(); 1368 NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc); 1369 if (jump->jump_destination() == being_initialized_entry) { 1370 assert(do_patch == true, "initialization must be complete at this point"); 1371 } else { 1372 // patch the instruction <move reg, klass> 1373 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1374 1375 assert(n_copy->data() == 0 || 1376 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1377 "illegal init value"); 1378 if (stub_id == C1StubId::load_klass_patching_id) { 1379 assert(load_klass != nullptr, "klass not set"); 1380 n_copy->set_data((intx) (load_klass)); 1381 } else { 1382 // Don't need a G1 pre-barrier here since we assert above that data isn't an oop. 1383 n_copy->set_data(cast_from_oop<intx>(mirror())); 1384 } 1385 1386 if (TracePatching) { 1387 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1388 } 1389 } 1390 } else if (stub_id == C1StubId::load_appendix_patching_id) { 1391 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1392 assert(n_copy->data() == 0 || 1393 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1394 "illegal init value"); 1395 n_copy->set_data(cast_from_oop<intx>(appendix())); 1396 1397 if (TracePatching) { 1398 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1399 } 1400 } else { 1401 ShouldNotReachHere(); 1402 } 1403 1404 if (do_patch) { 1405 // replace instructions 1406 // first replace the tail, then the call 1407 #ifdef ARM 1408 if((load_klass_or_mirror_patch_id || 1409 stub_id == C1StubId::load_appendix_patching_id) && 1410 nativeMovConstReg_at(copy_buff)->is_pc_relative()) { 1411 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1412 address addr = nullptr; 1413 assert(nm != nullptr, "invalid nmethod_pc"); 1414 RelocIterator mds(nm, copy_buff, copy_buff + 1); 1415 while (mds.next()) { 1416 if (mds.type() == relocInfo::oop_type) { 1417 assert(stub_id == C1StubId::load_mirror_patching_id || 1418 stub_id == C1StubId::load_appendix_patching_id, "wrong stub id"); 1419 oop_Relocation* r = mds.oop_reloc(); 1420 addr = (address)r->oop_addr(); 1421 break; 1422 } else if (mds.type() == relocInfo::metadata_type) { 1423 assert(stub_id == C1StubId::load_klass_patching_id, "wrong stub id"); 1424 metadata_Relocation* r = mds.metadata_reloc(); 1425 addr = (address)r->metadata_addr(); 1426 break; 1427 } 1428 } 1429 assert(addr != nullptr, "metadata relocation must exist"); 1430 copy_buff -= *byte_count; 1431 NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff); 1432 n_copy2->set_pc_relative_offset(addr, instr_pc); 1433 } 1434 #endif 1435 1436 for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) { 1437 address ptr = copy_buff + i; 1438 int a_byte = (*ptr) & 0xFF; 1439 address dst = instr_pc + i; 1440 *(unsigned char*)dst = (unsigned char) a_byte; 1441 } 1442 ICache::invalidate_range(instr_pc, *byte_count); 1443 NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff); 1444 1445 if (load_klass_or_mirror_patch_id || 1446 stub_id == C1StubId::load_appendix_patching_id) { 1447 relocInfo::relocType rtype = 1448 (stub_id == C1StubId::load_klass_patching_id) ? 1449 relocInfo::metadata_type : 1450 relocInfo::oop_type; 1451 // update relocInfo to metadata 1452 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1453 assert(nm != nullptr, "invalid nmethod_pc"); 1454 1455 // The old patch site is now a move instruction so update 1456 // the reloc info so that it will get updated during 1457 // future GCs. 1458 RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1)); 1459 relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc, 1460 relocInfo::none, rtype); 1461 } 1462 1463 } else { 1464 ICache::invalidate_range(copy_buff, *byte_count); 1465 NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry); 1466 } 1467 } 1468 } 1469 // If we are patching in a non-perm oop, make sure the nmethod 1470 // is on the right list. 1471 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1472 guarantee(nm != nullptr, "only nmethods can contain non-perm oops"); 1473 1474 // Since we've patched some oops in the nmethod, 1475 // (re)register it with the heap. 1476 Universe::heap()->register_nmethod(nm); 1477 } 1478 JRT_END 1479 1480 #else // DEOPTIMIZE_WHEN_PATCHING 1481 1482 static bool is_patching_needed(JavaThread* current, C1StubId stub_id) { 1483 if (stub_id == C1StubId::load_klass_patching_id || 1484 stub_id == C1StubId::load_mirror_patching_id) { 1485 // last java frame on stack 1486 vframeStream vfst(current, true); 1487 assert(!vfst.at_end(), "Java frame must exist"); 1488 1489 methodHandle caller_method(current, vfst.method()); 1490 int bci = vfst.bci(); 1491 Bytecodes::Code code = caller_method()->java_code_at(bci); 1492 1493 switch (code) { 1494 case Bytecodes::_new: 1495 case Bytecodes::_anewarray: 1496 case Bytecodes::_multianewarray: 1497 case Bytecodes::_instanceof: 1498 case Bytecodes::_checkcast: { 1499 Bytecode bc(caller_method(), caller_method->bcp_from(bci)); 1500 constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code)); 1501 if (tag.is_unresolved_klass_in_error()) { 1502 return false; // throws resolution error 1503 } 1504 break; 1505 } 1506 1507 default: break; 1508 } 1509 } 1510 return true; 1511 } 1512 1513 void Runtime1::patch_code(JavaThread* current, C1StubId stub_id) { 1514 #ifndef PRODUCT 1515 if (PrintC1Statistics) { 1516 _patch_code_slowcase_cnt++; 1517 } 1518 #endif 1519 1520 // Enable WXWrite: the function is called by c1 stub as a runtime function 1521 // (see another implementation above). 1522 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 1523 1524 if (TracePatching) { 1525 tty->print_cr("Deoptimizing because patch is needed"); 1526 } 1527 1528 RegisterMap reg_map(current, 1529 RegisterMap::UpdateMap::skip, 1530 RegisterMap::ProcessFrames::include, 1531 RegisterMap::WalkContinuation::skip); 1532 1533 frame runtime_frame = current->last_frame(); 1534 frame caller_frame = runtime_frame.sender(®_map); 1535 assert(caller_frame.is_compiled_frame(), "Wrong frame type"); 1536 1537 if (is_patching_needed(current, stub_id)) { 1538 // Make sure the nmethod is invalidated, i.e. made not entrant. 1539 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1540 if (nm != nullptr) { 1541 nm->make_not_entrant(nmethod::InvalidationReason::C1_DEOPTIMIZE_FOR_PATCHING); 1542 } 1543 } 1544 1545 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1546 // Return to the now deoptimized frame. 1547 postcond(caller_is_deopted(current)); 1548 } 1549 1550 #endif // DEOPTIMIZE_WHEN_PATCHING 1551 1552 // Entry point for compiled code. We want to patch a nmethod. 1553 // We don't do a normal VM transition here because we want to 1554 // know after the patching is complete and any safepoint(s) are taken 1555 // if the calling nmethod was deoptimized. We do this by calling a 1556 // helper method which does the normal VM transition and when it 1557 // completes we can check for deoptimization. This simplifies the 1558 // assembly code in the cpu directories. 1559 // 1560 int Runtime1::move_klass_patching(JavaThread* current) { 1561 // 1562 // NOTE: we are still in Java 1563 // 1564 DEBUG_ONLY(NoHandleMark nhm;) 1565 { 1566 // Enter VM mode 1567 ResetNoHandleMark rnhm; 1568 patch_code(current, C1StubId::load_klass_patching_id); 1569 } 1570 // Back in JAVA, use no oops DON'T safepoint 1571 1572 // Return true if calling code is deoptimized 1573 1574 return caller_is_deopted(current); 1575 } 1576 1577 int Runtime1::move_mirror_patching(JavaThread* current) { 1578 // 1579 // NOTE: we are still in Java 1580 // 1581 DEBUG_ONLY(NoHandleMark nhm;) 1582 { 1583 // Enter VM mode 1584 ResetNoHandleMark rnhm; 1585 patch_code(current, C1StubId::load_mirror_patching_id); 1586 } 1587 // Back in JAVA, use no oops DON'T safepoint 1588 1589 // Return true if calling code is deoptimized 1590 1591 return caller_is_deopted(current); 1592 } 1593 1594 int Runtime1::move_appendix_patching(JavaThread* current) { 1595 // 1596 // NOTE: we are still in Java 1597 // 1598 DEBUG_ONLY(NoHandleMark nhm;) 1599 { 1600 // Enter VM mode 1601 ResetNoHandleMark rnhm; 1602 patch_code(current, C1StubId::load_appendix_patching_id); 1603 } 1604 // Back in JAVA, use no oops DON'T safepoint 1605 1606 // Return true if calling code is deoptimized 1607 1608 return caller_is_deopted(current); 1609 } 1610 1611 // Entry point for compiled code. We want to patch a nmethod. 1612 // We don't do a normal VM transition here because we want to 1613 // know after the patching is complete and any safepoint(s) are taken 1614 // if the calling nmethod was deoptimized. We do this by calling a 1615 // helper method which does the normal VM transition and when it 1616 // completes we can check for deoptimization. This simplifies the 1617 // assembly code in the cpu directories. 1618 // 1619 int Runtime1::access_field_patching(JavaThread* current) { 1620 // 1621 // NOTE: we are still in Java 1622 // 1623 // Handles created in this function will be deleted by the 1624 // HandleMarkCleaner in the transition to the VM. 1625 NoHandleMark nhm; 1626 { 1627 // Enter VM mode 1628 ResetNoHandleMark rnhm; 1629 patch_code(current, C1StubId::access_field_patching_id); 1630 } 1631 // Back in JAVA, use no oops DON'T safepoint 1632 1633 // Return true if calling code is deoptimized 1634 1635 return caller_is_deopted(current); 1636 } 1637 1638 1639 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id)) 1640 // for now we just print out the block id 1641 tty->print("%d ", block_id); 1642 JRT_END 1643 1644 1645 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj)) 1646 // had to return int instead of bool, otherwise there may be a mismatch 1647 // between the C calling convention and the Java one. 1648 // e.g., on x86, GCC may clear only %al when returning a bool false, but 1649 // JVM takes the whole %eax as the return value, which may misinterpret 1650 // the return value as a boolean true. 1651 1652 assert(mirror != nullptr, "should null-check on mirror before calling"); 1653 Klass* k = java_lang_Class::as_Klass(mirror); 1654 return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0; 1655 JRT_END 1656 1657 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current)) 1658 ResourceMark rm; 1659 1660 RegisterMap reg_map(current, 1661 RegisterMap::UpdateMap::skip, 1662 RegisterMap::ProcessFrames::include, 1663 RegisterMap::WalkContinuation::skip); 1664 frame runtime_frame = current->last_frame(); 1665 frame caller_frame = runtime_frame.sender(®_map); 1666 1667 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1668 assert (nm != nullptr, "no more nmethod?"); 1669 nm->make_not_entrant(nmethod::InvalidationReason::C1_PREDICATE_FAILED_TRAP); 1670 1671 methodHandle m(current, nm->method()); 1672 MethodData* mdo = m->method_data(); 1673 1674 if (mdo == nullptr && !HAS_PENDING_EXCEPTION) { 1675 // Build an MDO. Ignore errors like OutOfMemory; 1676 // that simply means we won't have an MDO to update. 1677 Method::build_profiling_method_data(m, THREAD); 1678 if (HAS_PENDING_EXCEPTION) { 1679 // Only metaspace OOM is expected. No Java code executed. 1680 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1681 CLEAR_PENDING_EXCEPTION; 1682 } 1683 mdo = m->method_data(); 1684 } 1685 1686 if (mdo != nullptr) { 1687 mdo->inc_trap_count(Deoptimization::Reason_none); 1688 } 1689 1690 if (TracePredicateFailedTraps) { 1691 stringStream ss1, ss2; 1692 vframeStream vfst(current); 1693 Method* inlinee = vfst.method(); 1694 inlinee->print_short_name(&ss1); 1695 m->print_short_name(&ss2); 1696 tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc())); 1697 } 1698 1699 1700 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1701 1702 JRT_END 1703 1704 // Check exception if AbortVMOnException flag set 1705 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex)) 1706 ResourceMark rm; 1707 const char* message = nullptr; 1708 if (ex->is_a(vmClasses::Throwable_klass())) { 1709 oop msg = java_lang_Throwable::message(ex); 1710 if (msg != nullptr) { 1711 message = java_lang_String::as_utf8_string(msg); 1712 } 1713 } 1714 Exceptions::debug_check_abort(ex->klass()->external_name(), message); 1715 JRT_END 1716 1717 #ifndef PRODUCT 1718 void Runtime1::print_statistics() { 1719 tty->print_cr("C1 Runtime statistics:"); 1720 tty->print_cr(" _resolve_invoke_virtual_cnt: %u", SharedRuntime::_resolve_virtual_ctr); 1721 tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr); 1722 tty->print_cr(" _resolve_invoke_static_cnt: %u", SharedRuntime::_resolve_static_ctr); 1723 tty->print_cr(" _handle_wrong_method_cnt: %u", SharedRuntime::_wrong_method_ctr); 1724 tty->print_cr(" _ic_miss_cnt: %u", SharedRuntime::_ic_miss_ctr); 1725 tty->print_cr(" _generic_arraycopystub_cnt: %u", _generic_arraycopystub_cnt); 1726 tty->print_cr(" _byte_arraycopy_cnt: %u", _byte_arraycopy_stub_cnt); 1727 tty->print_cr(" _short_arraycopy_cnt: %u", _short_arraycopy_stub_cnt); 1728 tty->print_cr(" _int_arraycopy_cnt: %u", _int_arraycopy_stub_cnt); 1729 tty->print_cr(" _long_arraycopy_cnt: %u", _long_arraycopy_stub_cnt); 1730 tty->print_cr(" _oop_arraycopy_cnt: %u", _oop_arraycopy_stub_cnt); 1731 tty->print_cr(" _arraycopy_slowcase_cnt: %u", _arraycopy_slowcase_cnt); 1732 tty->print_cr(" _arraycopy_checkcast_cnt: %u", _arraycopy_checkcast_cnt); 1733 tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt); 1734 1735 tty->print_cr(" _new_type_array_slowcase_cnt: %u", _new_type_array_slowcase_cnt); 1736 tty->print_cr(" _new_object_array_slowcase_cnt: %u", _new_object_array_slowcase_cnt); 1737 tty->print_cr(" _new_null_free_array_slowcase_cnt: %u", _new_null_free_array_slowcase_cnt); 1738 tty->print_cr(" _new_instance_slowcase_cnt: %u", _new_instance_slowcase_cnt); 1739 tty->print_cr(" _new_multi_array_slowcase_cnt: %u", _new_multi_array_slowcase_cnt); 1740 tty->print_cr(" _load_flat_array_slowcase_cnt: %u", _load_flat_array_slowcase_cnt); 1741 tty->print_cr(" _store_flat_array_slowcase_cnt: %u", _store_flat_array_slowcase_cnt); 1742 tty->print_cr(" _substitutability_check_slowcase_cnt: %u", _substitutability_check_slowcase_cnt); 1743 tty->print_cr(" _buffer_inline_args_slowcase_cnt:%u", _buffer_inline_args_slowcase_cnt); 1744 tty->print_cr(" _buffer_inline_args_no_receiver_slowcase_cnt:%u", _buffer_inline_args_no_receiver_slowcase_cnt); 1745 1746 tty->print_cr(" _monitorenter_slowcase_cnt: %u", _monitorenter_slowcase_cnt); 1747 tty->print_cr(" _monitorexit_slowcase_cnt: %u", _monitorexit_slowcase_cnt); 1748 tty->print_cr(" _patch_code_slowcase_cnt: %u", _patch_code_slowcase_cnt); 1749 1750 tty->print_cr(" _throw_range_check_exception_count: %u:", _throw_range_check_exception_count); 1751 tty->print_cr(" _throw_index_exception_count: %u:", _throw_index_exception_count); 1752 tty->print_cr(" _throw_div0_exception_count: %u:", _throw_div0_exception_count); 1753 tty->print_cr(" _throw_null_pointer_exception_count: %u:", _throw_null_pointer_exception_count); 1754 tty->print_cr(" _throw_class_cast_exception_count: %u:", _throw_class_cast_exception_count); 1755 tty->print_cr(" _throw_incompatible_class_change_error_count: %u:", _throw_incompatible_class_change_error_count); 1756 tty->print_cr(" _throw_illegal_monitor_state_exception_count: %u:", _throw_illegal_monitor_state_exception_count); 1757 tty->print_cr(" _throw_identity_exception_count: %u:", _throw_identity_exception_count); 1758 tty->print_cr(" _throw_count: %u:", _throw_count); 1759 1760 SharedRuntime::print_ic_miss_histogram(); 1761 tty->cr(); 1762 } 1763 #endif // PRODUCT