1 /*
   2  * Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/javaClasses.inline.hpp"
  34 #include "classfile/vmClasses.hpp"
  35 #include "classfile/vmSymbols.hpp"
  36 #include "code/codeBlob.hpp"
  37 #include "code/compiledIC.hpp"
  38 #include "code/pcDesc.hpp"
  39 #include "code/scopeDesc.hpp"
  40 #include "code/vtableStubs.hpp"
  41 #include "compiler/compilationPolicy.hpp"
  42 #include "compiler/disassembler.hpp"
  43 #include "compiler/oopMap.hpp"
  44 #include "gc/shared/barrierSet.hpp"
  45 #include "gc/shared/c1/barrierSetC1.hpp"
  46 #include "gc/shared/collectedHeap.hpp"
  47 #include "interpreter/bytecode.hpp"
  48 #include "interpreter/interpreter.hpp"
  49 #include "jfr/support/jfrIntrinsics.hpp"
  50 #include "logging/log.hpp"
  51 #include "memory/allocation.inline.hpp"
  52 #include "memory/oopFactory.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "memory/universe.hpp"
  55 #include "oops/access.inline.hpp"
  56 #include "oops/flatArrayKlass.hpp"
  57 #include "oops/flatArrayOop.inline.hpp"
  58 #include "oops/klass.inline.hpp"
  59 #include "oops/objArrayOop.inline.hpp"
  60 #include "oops/objArrayKlass.hpp"
  61 #include "oops/oop.inline.hpp"
  62 #include "prims/jvmtiExport.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/fieldDescriptor.inline.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/interfaceSupport.inline.hpp"
  68 #include "runtime/javaCalls.hpp"
  69 #include "runtime/sharedRuntime.hpp"
  70 #include "runtime/stackWatermarkSet.hpp"
  71 #include "runtime/stubRoutines.hpp"
  72 #include "runtime/threadCritical.hpp"
  73 #include "runtime/vframe.inline.hpp"
  74 #include "runtime/vframeArray.hpp"
  75 #include "runtime/vm_version.hpp"
  76 #include "utilities/copy.hpp"
  77 #include "utilities/events.hpp"
  78 
  79 
  80 // Implementation of StubAssembler
  81 
  82 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  83   _name = name;
  84   _must_gc_arguments = false;
  85   _frame_size = no_frame_size;
  86   _num_rt_args = 0;
  87   _stub_id = stub_id;
  88 }
  89 
  90 
  91 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  92   _name = name;
  93   _must_gc_arguments = must_gc_arguments;
  94 }
  95 
  96 
  97 void StubAssembler::set_frame_size(int size) {
  98   if (_frame_size == no_frame_size) {
  99     _frame_size = size;
 100   }
 101   assert(_frame_size == size, "can't change the frame size");
 102 }
 103 
 104 
 105 void StubAssembler::set_num_rt_args(int args) {
 106   if (_num_rt_args == 0) {
 107     _num_rt_args = args;
 108   }
 109   assert(_num_rt_args == args, "can't change the number of args");
 110 }
 111 
 112 // Implementation of Runtime1
 113 
 114 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 115 const char *Runtime1::_blob_names[] = {
 116   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 117 };
 118 
 119 #ifndef PRODUCT
 120 // statistics
 121 int Runtime1::_generic_arraycopystub_cnt = 0;
 122 int Runtime1::_arraycopy_slowcase_cnt = 0;
 123 int Runtime1::_arraycopy_checkcast_cnt = 0;
 124 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 125 int Runtime1::_new_type_array_slowcase_cnt = 0;
 126 int Runtime1::_new_object_array_slowcase_cnt = 0;
 127 int Runtime1::_new_flat_array_slowcase_cnt = 0;
 128 int Runtime1::_new_instance_slowcase_cnt = 0;
 129 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 130 int Runtime1::_load_flattened_array_slowcase_cnt = 0;
 131 int Runtime1::_store_flattened_array_slowcase_cnt = 0;
 132 int Runtime1::_substitutability_check_slowcase_cnt = 0;
 133 int Runtime1::_buffer_inline_args_slowcase_cnt = 0;
 134 int Runtime1::_buffer_inline_args_no_receiver_slowcase_cnt = 0;
 135 int Runtime1::_monitorenter_slowcase_cnt = 0;
 136 int Runtime1::_monitorexit_slowcase_cnt = 0;
 137 int Runtime1::_patch_code_slowcase_cnt = 0;
 138 int Runtime1::_throw_range_check_exception_count = 0;
 139 int Runtime1::_throw_index_exception_count = 0;
 140 int Runtime1::_throw_div0_exception_count = 0;
 141 int Runtime1::_throw_null_pointer_exception_count = 0;
 142 int Runtime1::_throw_class_cast_exception_count = 0;
 143 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 144 int Runtime1::_throw_illegal_monitor_state_exception_count = 0;
 145 int Runtime1::_throw_count = 0;
 146 
 147 static int _byte_arraycopy_stub_cnt = 0;
 148 static int _short_arraycopy_stub_cnt = 0;
 149 static int _int_arraycopy_stub_cnt = 0;
 150 static int _long_arraycopy_stub_cnt = 0;
 151 static int _oop_arraycopy_stub_cnt = 0;
 152 
 153 address Runtime1::arraycopy_count_address(BasicType type) {
 154   switch (type) {
 155   case T_BOOLEAN:
 156   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 157   case T_CHAR:
 158   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 159   case T_FLOAT:
 160   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 161   case T_DOUBLE:
 162   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 163   case T_ARRAY:
 164   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 165   default:
 166     ShouldNotReachHere();
 167     return NULL;
 168   }
 169 }
 170 
 171 
 172 #endif
 173 
 174 // Simple helper to see if the caller of a runtime stub which
 175 // entered the VM has been deoptimized
 176 
 177 static bool caller_is_deopted(JavaThread* current) {
 178   RegisterMap reg_map(current, false);
 179   frame runtime_frame = current->last_frame();
 180   frame caller_frame = runtime_frame.sender(&reg_map);
 181   assert(caller_frame.is_compiled_frame(), "must be compiled");
 182   return caller_frame.is_deoptimized_frame();
 183 }
 184 
 185 // Stress deoptimization
 186 static void deopt_caller(JavaThread* current) {
 187   if (!caller_is_deopted(current)) {
 188     RegisterMap reg_map(current, false);
 189     frame runtime_frame = current->last_frame();
 190     frame caller_frame = runtime_frame.sender(&reg_map);
 191     Deoptimization::deoptimize_frame(current, caller_frame.id());
 192     assert(caller_is_deopted(current), "Must be deoptimized");
 193   }
 194 }
 195 
 196 class StubIDStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
 197  private:
 198   Runtime1::StubID _id;
 199  public:
 200   StubIDStubAssemblerCodeGenClosure(Runtime1::StubID id) : _id(id) {}
 201   virtual OopMapSet* generate_code(StubAssembler* sasm) {
 202     return Runtime1::generate_code_for(_id, sasm);
 203   }
 204 };
 205 
 206 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, int stub_id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
 207   ResourceMark rm;
 208   // create code buffer for code storage
 209   CodeBuffer code(buffer_blob);
 210 
 211   OopMapSet* oop_maps;
 212   int frame_size;
 213   bool must_gc_arguments;
 214 
 215   Compilation::setup_code_buffer(&code, 0);
 216 
 217   // create assembler for code generation
 218   StubAssembler* sasm = new StubAssembler(&code, name, stub_id);
 219   // generate code for runtime stub
 220   oop_maps = cl->generate_code(sasm);
 221   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 222          "if stub has an oop map it must have a valid frame size");
 223   assert(!expect_oop_map || oop_maps != NULL, "must have an oopmap");
 224 
 225   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 226   sasm->align(BytesPerWord);
 227   // make sure all code is in code buffer
 228   sasm->flush();
 229 
 230   frame_size = sasm->frame_size();
 231   must_gc_arguments = sasm->must_gc_arguments();
 232   // create blob - distinguish a few special cases
 233   CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
 234                                                  &code,
 235                                                  CodeOffsets::frame_never_safe,
 236                                                  frame_size,
 237                                                  oop_maps,
 238                                                  must_gc_arguments);
 239   assert(blob != NULL, "blob must exist");
 240   return blob;
 241 }
 242 
 243 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 244   assert(0 <= id && id < number_of_ids, "illegal stub id");
 245   bool expect_oop_map = true;
 246 #ifdef ASSERT
 247   // Make sure that stubs that need oopmaps have them
 248   switch (id) {
 249     // These stubs don't need to have an oopmap
 250   case dtrace_object_alloc_id:
 251   case slow_subtype_check_id:
 252   case fpu2long_stub_id:
 253   case unwind_exception_id:
 254   case counter_overflow_id:
 255     expect_oop_map = false;
 256     break;
 257   default:
 258     break;
 259   }
 260 #endif
 261   StubIDStubAssemblerCodeGenClosure cl(id);
 262   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 263   // install blob
 264   _blobs[id] = blob;
 265 }
 266 
 267 void Runtime1::initialize(BufferBlob* blob) {
 268   // platform-dependent initialization
 269   initialize_pd();
 270   // generate stubs
 271   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 272   // printing
 273 #ifndef PRODUCT
 274   if (PrintSimpleStubs) {
 275     ResourceMark rm;
 276     for (int id = 0; id < number_of_ids; id++) {
 277       _blobs[id]->print();
 278       if (_blobs[id]->oop_maps() != NULL) {
 279         _blobs[id]->oop_maps()->print();
 280       }
 281     }
 282   }
 283 #endif
 284   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 285   bs->generate_c1_runtime_stubs(blob);
 286 }
 287 
 288 CodeBlob* Runtime1::blob_for(StubID id) {
 289   assert(0 <= id && id < number_of_ids, "illegal stub id");
 290   return _blobs[id];
 291 }
 292 
 293 
 294 const char* Runtime1::name_for(StubID id) {
 295   assert(0 <= id && id < number_of_ids, "illegal stub id");
 296   return _blob_names[id];
 297 }
 298 
 299 const char* Runtime1::name_for_address(address entry) {
 300   for (int id = 0; id < number_of_ids; id++) {
 301     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 302   }
 303 
 304 #define FUNCTION_CASE(a, f) \
 305   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 306 
 307   FUNCTION_CASE(entry, os::javaTimeMillis);
 308   FUNCTION_CASE(entry, os::javaTimeNanos);
 309   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 310   FUNCTION_CASE(entry, SharedRuntime::d2f);
 311   FUNCTION_CASE(entry, SharedRuntime::d2i);
 312   FUNCTION_CASE(entry, SharedRuntime::d2l);
 313   FUNCTION_CASE(entry, SharedRuntime::dcos);
 314   FUNCTION_CASE(entry, SharedRuntime::dexp);
 315   FUNCTION_CASE(entry, SharedRuntime::dlog);
 316   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 317   FUNCTION_CASE(entry, SharedRuntime::dpow);
 318   FUNCTION_CASE(entry, SharedRuntime::drem);
 319   FUNCTION_CASE(entry, SharedRuntime::dsin);
 320   FUNCTION_CASE(entry, SharedRuntime::dtan);
 321   FUNCTION_CASE(entry, SharedRuntime::f2i);
 322   FUNCTION_CASE(entry, SharedRuntime::f2l);
 323   FUNCTION_CASE(entry, SharedRuntime::frem);
 324   FUNCTION_CASE(entry, SharedRuntime::l2d);
 325   FUNCTION_CASE(entry, SharedRuntime::l2f);
 326   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 327   FUNCTION_CASE(entry, SharedRuntime::lmul);
 328   FUNCTION_CASE(entry, SharedRuntime::lrem);
 329   FUNCTION_CASE(entry, SharedRuntime::lrem);
 330   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 331   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 332   FUNCTION_CASE(entry, is_instance_of);
 333   FUNCTION_CASE(entry, trace_block_entry);
 334 #ifdef JFR_HAVE_INTRINSICS
 335   FUNCTION_CASE(entry, JFR_TIME_FUNCTION);
 336 #endif
 337   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 338   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 339   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 340   FUNCTION_CASE(entry, StubRoutines::dexp());
 341   FUNCTION_CASE(entry, StubRoutines::dlog());
 342   FUNCTION_CASE(entry, StubRoutines::dlog10());
 343   FUNCTION_CASE(entry, StubRoutines::dpow());
 344   FUNCTION_CASE(entry, StubRoutines::dsin());
 345   FUNCTION_CASE(entry, StubRoutines::dcos());
 346   FUNCTION_CASE(entry, StubRoutines::dtan());
 347 
 348 #undef FUNCTION_CASE
 349 
 350   // Soft float adds more runtime names.
 351   return pd_name_for_address(entry);
 352 }
 353 
 354 static void allocate_instance(JavaThread* current, Klass* klass, TRAPS) {
 355 #ifndef PRODUCT
 356   if (PrintC1Statistics) {
 357     Runtime1::_new_instance_slowcase_cnt++;
 358   }
 359 #endif
 360   assert(klass->is_klass(), "not a class");
 361   Handle holder(current, klass->klass_holder()); // keep the klass alive
 362   InstanceKlass* h = InstanceKlass::cast(klass);
 363   h->check_valid_for_instantiation(true, CHECK);
 364   // make sure klass is initialized
 365   h->initialize(CHECK);
 366   // allocate instance and return via TLS
 367   oop obj = h->allocate_instance(CHECK);
 368   current->set_vm_result(obj);
 369 JRT_END
 370 
 371 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass))
 372   allocate_instance(current, klass, CHECK);
 373 JRT_END
 374 
 375 // Same as new_instance but throws error for inline klasses
 376 JRT_ENTRY(void, Runtime1::new_instance_no_inline(JavaThread* current, Klass* klass))
 377   if (klass->is_inline_klass()) {
 378     SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_InstantiationError());
 379   } else {
 380     allocate_instance(current, klass, CHECK);
 381   }
 382 JRT_END
 383 
 384 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length))
 385 #ifndef PRODUCT
 386   if (PrintC1Statistics) {
 387     _new_type_array_slowcase_cnt++;
 388   }
 389 #endif
 390   // Note: no handle for klass needed since they are not used
 391   //       anymore after new_typeArray() and no GC can happen before.
 392   //       (This may have to change if this code changes!)
 393   assert(klass->is_klass(), "not a class");
 394   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 395   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 396   current->set_vm_result(obj);
 397   // This is pretty rare but this runtime patch is stressful to deoptimization
 398   // if we deoptimize here so force a deopt to stress the path.
 399   if (DeoptimizeALot) {
 400     deopt_caller(current);
 401   }
 402 
 403 JRT_END
 404 
 405 
 406 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length))
 407 #ifndef PRODUCT
 408   if (PrintC1Statistics) {
 409     _new_object_array_slowcase_cnt++;
 410   }
 411 #endif
 412   // Note: no handle for klass needed since they are not used
 413   //       anymore after new_objArray() and no GC can happen before.
 414   //       (This may have to change if this code changes!)
 415   assert(array_klass->is_klass(), "not a class");
 416   Handle holder(current, array_klass->klass_holder()); // keep the klass alive
 417   Klass* elem_klass = ArrayKlass::cast(array_klass)->element_klass();
 418   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 419   current->set_vm_result(obj);
 420   // This is pretty rare but this runtime patch is stressful to deoptimization
 421   // if we deoptimize here so force a deopt to stress the path.
 422   if (DeoptimizeALot) {
 423     deopt_caller(current);
 424   }
 425 JRT_END
 426 
 427 
 428 JRT_ENTRY(void, Runtime1::new_flat_array(JavaThread* current, Klass* array_klass, jint length))
 429   NOT_PRODUCT(_new_flat_array_slowcase_cnt++;)
 430 
 431   // Note: no handle for klass needed since they are not used
 432   //       anymore after new_objArray() and no GC can happen before.
 433   //       (This may have to change if this code changes!)
 434   assert(array_klass->is_klass(), "not a class");
 435   Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
 436   Klass* elem_klass = ArrayKlass::cast(array_klass)->element_klass();
 437   assert(elem_klass->is_inline_klass(), "must be");
 438   // Logically creates elements, ensure klass init
 439   elem_klass->initialize(CHECK);
 440   arrayOop obj = oopFactory::new_valueArray(elem_klass, length, CHECK);
 441   current->set_vm_result(obj);
 442   // This is pretty rare but this runtime patch is stressful to deoptimization
 443   // if we deoptimize here so force a deopt to stress the path.
 444   if (DeoptimizeALot) {
 445     deopt_caller(current);
 446   }
 447 JRT_END
 448 
 449 
 450 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims))
 451 #ifndef PRODUCT
 452   if (PrintC1Statistics) {
 453     _new_multi_array_slowcase_cnt++;
 454   }
 455 #endif
 456   assert(klass->is_klass(), "not a class");
 457   assert(rank >= 1, "rank must be nonzero");
 458   Handle holder(current, klass->klass_holder()); // keep the klass alive
 459   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 460   current->set_vm_result(obj);
 461 JRT_END
 462 
 463 
 464 static void profile_flat_array(JavaThread* current) {
 465   ResourceMark rm(current);
 466   vframeStream vfst(current, true);
 467   assert(!vfst.at_end(), "Java frame must exist");
 468   // Check if array access profiling is enabled
 469   if (vfst.nm()->comp_level() != CompLevel_full_profile || !C1UpdateMethodData) {
 470     return;
 471   }
 472   int bci = vfst.bci();
 473   Method* method = vfst.method();
 474   MethodData* md = method->method_data();
 475   if (md != NULL) {
 476     ProfileData* data = md->bci_to_data(bci);
 477     assert(data != NULL && data->is_ArrayLoadStoreData(), "incorrect profiling entry");
 478     ArrayLoadStoreData* load_store = (ArrayLoadStoreData*)data;
 479     load_store->set_flat_array();
 480   }
 481 }
 482 
 483 JRT_ENTRY(void, Runtime1::load_flattened_array(JavaThread* current, flatArrayOopDesc* array, int index))
 484   assert(array->klass()->is_flatArray_klass(), "should not be called");
 485   profile_flat_array(current);
 486 
 487   NOT_PRODUCT(_load_flattened_array_slowcase_cnt++;)
 488   assert(array->length() > 0 && index < array->length(), "already checked");
 489   flatArrayHandle vah(current, array);
 490   oop obj = flatArrayOopDesc::value_alloc_copy_from_index(vah, index, CHECK);
 491   current->set_vm_result(obj);
 492 JRT_END
 493 
 494 
 495 JRT_ENTRY(void, Runtime1::store_flattened_array(JavaThread* current, flatArrayOopDesc* array, int index, oopDesc* value))
 496   if (array->klass()->is_flatArray_klass()) {
 497     profile_flat_array(current);
 498   }
 499 
 500   NOT_PRODUCT(_store_flattened_array_slowcase_cnt++;)
 501   if (value == NULL) {
 502     assert(array->klass()->is_flatArray_klass() || array->klass()->is_null_free_array_klass(), "should not be called");
 503     SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException());
 504   } else {
 505     assert(array->klass()->is_flatArray_klass(), "should not be called");
 506     array->value_copy_to_index(value, index);
 507   }
 508 JRT_END
 509 
 510 
 511 JRT_ENTRY(int, Runtime1::substitutability_check(JavaThread* current, oopDesc* left, oopDesc* right))
 512   NOT_PRODUCT(_substitutability_check_slowcase_cnt++;)
 513   JavaCallArguments args;
 514   args.push_oop(Handle(THREAD, left));
 515   args.push_oop(Handle(THREAD, right));
 516   JavaValue result(T_BOOLEAN);
 517   JavaCalls::call_static(&result,
 518                          vmClasses::PrimitiveObjectMethods_klass(),
 519                          vmSymbols::isSubstitutable_name(),
 520                          vmSymbols::object_object_boolean_signature(),
 521                          &args, CHECK_0);
 522   return result.get_jboolean() ? 1 : 0;
 523 JRT_END
 524 
 525 
 526 extern "C" void ps();
 527 
 528 void Runtime1::buffer_inline_args_impl(JavaThread* current, Method* m, bool allocate_receiver) {
 529   JavaThread* THREAD = current;
 530   methodHandle method(current, m); // We are inside the verified_entry or verified_inline_ro_entry of this method.
 531   oop obj = SharedRuntime::allocate_inline_types_impl(current, method, allocate_receiver, CHECK);
 532   current->set_vm_result(obj);
 533 }
 534 
 535 JRT_ENTRY(void, Runtime1::buffer_inline_args(JavaThread* current, Method* method))
 536   NOT_PRODUCT(_buffer_inline_args_slowcase_cnt++;)
 537   buffer_inline_args_impl(current, method, true);
 538 JRT_END
 539 
 540 JRT_ENTRY(void, Runtime1::buffer_inline_args_no_receiver(JavaThread* current, Method* method))
 541   NOT_PRODUCT(_buffer_inline_args_no_receiver_slowcase_cnt++;)
 542   buffer_inline_args_impl(current, method, false);
 543 JRT_END
 544 
 545 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, StubID id))
 546   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 547 JRT_END
 548 
 549 
 550 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj))
 551   ResourceMark rm(current);
 552   const char* klass_name = obj->klass()->external_name();
 553   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 554 JRT_END
 555 
 556 
 557 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 558 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 559 // method) method is passed as an argument. In order to do that it is embedded in the code as
 560 // a constant.
 561 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) {
 562   nmethod* osr_nm = NULL;
 563   methodHandle method(current, m);
 564 
 565   RegisterMap map(current, false);
 566   frame fr =  current->last_frame().sender(&map);
 567   nmethod* nm = (nmethod*) fr.cb();
 568   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 569   methodHandle enclosing_method(current, nm->method());
 570 
 571   CompLevel level = (CompLevel)nm->comp_level();
 572   int bci = InvocationEntryBci;
 573   if (branch_bci != InvocationEntryBci) {
 574     // Compute destination bci
 575     address pc = method()->code_base() + branch_bci;
 576     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 577     int offset = 0;
 578     switch (branch) {
 579       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 580       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 581       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 582       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 583       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 584       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 585       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 586         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 587         break;
 588       case Bytecodes::_goto_w:
 589         offset = Bytes::get_Java_u4(pc + 1);
 590         break;
 591       default: ;
 592     }
 593     bci = branch_bci + offset;
 594   }
 595   osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current);
 596   return osr_nm;
 597 }
 598 
 599 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method))
 600   nmethod* osr_nm;
 601   JRT_BLOCK
 602     osr_nm = counter_overflow_helper(current, bci, method);
 603     if (osr_nm != NULL) {
 604       RegisterMap map(current, false);
 605       frame fr =  current->last_frame().sender(&map);
 606       Deoptimization::deoptimize_frame(current, fr.id());
 607     }
 608   JRT_BLOCK_END
 609   return NULL;
 610 JRT_END
 611 
 612 extern void vm_exit(int code);
 613 
 614 // Enter this method from compiled code handler below. This is where we transition
 615 // to VM mode. This is done as a helper routine so that the method called directly
 616 // from compiled code does not have to transition to VM. This allows the entry
 617 // method to see if the nmethod that we have just looked up a handler for has
 618 // been deoptimized while we were in the vm. This simplifies the assembly code
 619 // cpu directories.
 620 //
 621 // We are entering here from exception stub (via the entry method below)
 622 // If there is a compiled exception handler in this method, we will continue there;
 623 // otherwise we will unwind the stack and continue at the caller of top frame method
 624 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 625 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 626 // check to see if the handler we are going to return is now in a nmethod that has
 627 // been deoptimized. If that is the case we return the deopt blob
 628 // unpack_with_exception entry instead. This makes life for the exception blob easier
 629 // because making that same check and diverting is painful from assembly language.
 630 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
 631   // Reset method handle flag.
 632   current->set_is_method_handle_return(false);
 633 
 634   Handle exception(current, ex);
 635 
 636   // This function is called when we are about to throw an exception. Therefore,
 637   // we have to poll the stack watermark barrier to make sure that not yet safe
 638   // stack frames are made safe before returning into them.
 639   if (current->last_frame().cb() == Runtime1::blob_for(Runtime1::handle_exception_from_callee_id)) {
 640     // The Runtime1::handle_exception_from_callee_id handler is invoked after the
 641     // frame has been unwound. It instead builds its own stub frame, to call the
 642     // runtime. But the throwing frame has already been unwound here.
 643     StackWatermarkSet::after_unwind(current);
 644   }
 645 
 646   nm = CodeCache::find_nmethod(pc);
 647   assert(nm != NULL, "this is not an nmethod");
 648   // Adjust the pc as needed/
 649   if (nm->is_deopt_pc(pc)) {
 650     RegisterMap map(current, false);
 651     frame exception_frame = current->last_frame().sender(&map);
 652     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 653     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 654     pc = exception_frame.pc();
 655   }
 656   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 657   // Check that exception is a subclass of Throwable
 658   assert(exception->is_a(vmClasses::Throwable_klass()),
 659          "Exception not subclass of Throwable");
 660 
 661   // debugging support
 662   // tracing
 663   if (log_is_enabled(Info, exceptions)) {
 664     ResourceMark rm;
 665     stringStream tempst;
 666     assert(nm->method() != NULL, "Unexpected NULL method()");
 667     tempst.print("C1 compiled method <%s>\n"
 668                  " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 669                  nm->method()->print_value_string(), p2i(pc), p2i(current));
 670     Exceptions::log_exception(exception, tempst.as_string());
 671   }
 672   // for AbortVMOnException flag
 673   Exceptions::debug_check_abort(exception);
 674 
 675   // Check the stack guard pages and reenable them if necessary and there is
 676   // enough space on the stack to do so.  Use fast exceptions only if the guard
 677   // pages are enabled.
 678   bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
 679 
 680   if (JvmtiExport::can_post_on_exceptions()) {
 681     // To ensure correct notification of exception catches and throws
 682     // we have to deoptimize here.  If we attempted to notify the
 683     // catches and throws during this exception lookup it's possible
 684     // we could deoptimize on the way out of the VM and end back in
 685     // the interpreter at the throw site.  This would result in double
 686     // notifications since the interpreter would also notify about
 687     // these same catches and throws as it unwound the frame.
 688 
 689     RegisterMap reg_map(current);
 690     frame stub_frame = current->last_frame();
 691     frame caller_frame = stub_frame.sender(&reg_map);
 692 
 693     // We don't really want to deoptimize the nmethod itself since we
 694     // can actually continue in the exception handler ourselves but I
 695     // don't see an easy way to have the desired effect.
 696     Deoptimization::deoptimize_frame(current, caller_frame.id());
 697     assert(caller_is_deopted(current), "Must be deoptimized");
 698 
 699     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 700   }
 701 
 702   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 703   if (guard_pages_enabled) {
 704     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 705     if (fast_continuation != NULL) {
 706       // Set flag if return address is a method handle call site.
 707       current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 708       return fast_continuation;
 709     }
 710   }
 711 
 712   // If the stack guard pages are enabled, check whether there is a handler in
 713   // the current method.  Otherwise (guard pages disabled), force an unwind and
 714   // skip the exception cache update (i.e., just leave continuation==NULL).
 715   address continuation = NULL;
 716   if (guard_pages_enabled) {
 717 
 718     // New exception handling mechanism can support inlined methods
 719     // with exception handlers since the mappings are from PC to PC
 720 
 721     // Clear out the exception oop and pc since looking up an
 722     // exception handler can cause class loading, which might throw an
 723     // exception and those fields are expected to be clear during
 724     // normal bytecode execution.
 725     current->clear_exception_oop_and_pc();
 726 
 727     bool recursive_exception = false;
 728     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 729     // If an exception was thrown during exception dispatch, the exception oop may have changed
 730     current->set_exception_oop(exception());
 731     current->set_exception_pc(pc);
 732 
 733     // the exception cache is used only by non-implicit exceptions
 734     // Update the exception cache only when there didn't happen
 735     // another exception during the computation of the compiled
 736     // exception handler. Checking for exception oop equality is not
 737     // sufficient because some exceptions are pre-allocated and reused.
 738     if (continuation != NULL && !recursive_exception) {
 739       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 740     }
 741   }
 742 
 743   current->set_vm_result(exception());
 744   // Set flag if return address is a method handle call site.
 745   current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 746 
 747   if (log_is_enabled(Info, exceptions)) {
 748     ResourceMark rm;
 749     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 750                          " for exception thrown at PC " PTR_FORMAT,
 751                          p2i(current), p2i(continuation), p2i(pc));
 752   }
 753 
 754   return continuation;
 755 JRT_END
 756 
 757 // Enter this method from compiled code only if there is a Java exception handler
 758 // in the method handling the exception.
 759 // We are entering here from exception stub. We don't do a normal VM transition here.
 760 // We do it in a helper. This is so we can check to see if the nmethod we have just
 761 // searched for an exception handler has been deoptimized in the meantime.
 762 address Runtime1::exception_handler_for_pc(JavaThread* current) {
 763   oop exception = current->exception_oop();
 764   address pc = current->exception_pc();
 765   // Still in Java mode
 766   DEBUG_ONLY(NoHandleMark nhm);
 767   nmethod* nm = NULL;
 768   address continuation = NULL;
 769   {
 770     // Enter VM mode by calling the helper
 771     ResetNoHandleMark rnhm;
 772     continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
 773   }
 774   // Back in JAVA, use no oops DON'T safepoint
 775 
 776   // Now check to see if the nmethod we were called from is now deoptimized.
 777   // If so we must return to the deopt blob and deoptimize the nmethod
 778   if (nm != NULL && caller_is_deopted(current)) {
 779     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 780   }
 781 
 782   assert(continuation != NULL, "no handler found");
 783   return continuation;
 784 }
 785 
 786 
 787 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a))
 788 #ifndef PRODUCT
 789   if (PrintC1Statistics) {
 790     _throw_range_check_exception_count++;
 791   }
 792 #endif
 793   const int len = 35;
 794   assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
 795   char message[2 * jintAsStringSize + len];
 796   sprintf(message, "Index %d out of bounds for length %d", index, a->length());
 797   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 798 JRT_END
 799 
 800 
 801 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index))
 802 #ifndef PRODUCT
 803   if (PrintC1Statistics) {
 804     _throw_index_exception_count++;
 805   }
 806 #endif
 807   char message[16];
 808   sprintf(message, "%d", index);
 809   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 810 JRT_END
 811 
 812 
 813 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current))
 814 #ifndef PRODUCT
 815   if (PrintC1Statistics) {
 816     _throw_div0_exception_count++;
 817   }
 818 #endif
 819   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 820 JRT_END
 821 
 822 
 823 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current))
 824 #ifndef PRODUCT
 825   if (PrintC1Statistics) {
 826     _throw_null_pointer_exception_count++;
 827   }
 828 #endif
 829   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException());
 830 JRT_END
 831 
 832 
 833 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object))
 834 #ifndef PRODUCT
 835   if (PrintC1Statistics) {
 836     _throw_class_cast_exception_count++;
 837   }
 838 #endif
 839   ResourceMark rm(current);
 840   char* message = SharedRuntime::generate_class_cast_message(current, object->klass());
 841   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message);
 842 JRT_END
 843 
 844 
 845 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current))
 846 #ifndef PRODUCT
 847   if (PrintC1Statistics) {
 848     _throw_incompatible_class_change_error_count++;
 849   }
 850 #endif
 851   ResourceMark rm(current);
 852   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError());
 853 JRT_END
 854 
 855 
 856 JRT_ENTRY(void, Runtime1::throw_illegal_monitor_state_exception(JavaThread* current))
 857   NOT_PRODUCT(_throw_illegal_monitor_state_exception_count++;)
 858   ResourceMark rm(current);
 859   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IllegalMonitorStateException());
 860 JRT_END
 861 
 862 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock))
 863 #ifndef PRODUCT
 864   if (PrintC1Statistics) {
 865     _monitorenter_slowcase_cnt++;
 866   }
 867 #endif
 868   if (UseHeavyMonitors) {
 869     lock->set_obj(obj);
 870   }
 871   assert(obj == lock->obj(), "must match");
 872   SharedRuntime::monitor_enter_helper(obj, lock->lock(), current);
 873 JRT_END
 874 
 875 
 876 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock))
 877 #ifndef PRODUCT
 878   if (PrintC1Statistics) {
 879     _monitorexit_slowcase_cnt++;
 880   }
 881 #endif
 882   assert(current->last_Java_sp(), "last_Java_sp must be set");
 883   oop obj = lock->obj();
 884   assert(oopDesc::is_oop(obj), "must be NULL or an object");
 885   SharedRuntime::monitor_exit_helper(obj, lock->lock(), current);
 886 JRT_END
 887 
 888 // Cf. OptoRuntime::deoptimize_caller_frame
 889 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request))
 890   // Called from within the owner thread, so no need for safepoint
 891   RegisterMap reg_map(current, false);
 892   frame stub_frame = current->last_frame();
 893   assert(stub_frame.is_runtime_frame(), "Sanity check");
 894   frame caller_frame = stub_frame.sender(&reg_map);
 895   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 896   assert(nm != NULL, "Sanity check");
 897   methodHandle method(current, nm->method());
 898   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 899   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 900   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 901 
 902   if (action == Deoptimization::Action_make_not_entrant) {
 903     if (nm->make_not_entrant()) {
 904       if (reason == Deoptimization::Reason_tenured) {
 905         MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/);
 906         if (trap_mdo != NULL) {
 907           trap_mdo->inc_tenure_traps();
 908         }
 909       }
 910     }
 911   }
 912 
 913   // Deoptimize the caller frame.
 914   Deoptimization::deoptimize_frame(current, caller_frame.id());
 915   // Return to the now deoptimized frame.
 916 JRT_END
 917 
 918 
 919 #ifndef DEOPTIMIZE_WHEN_PATCHING
 920 
 921 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 922   Bytecode_field field_access(caller, bci);
 923   // This can be static or non-static field access
 924   Bytecodes::Code code       = field_access.code();
 925 
 926   // We must load class, initialize class and resolve the field
 927   fieldDescriptor result; // initialize class if needed
 928   constantPoolHandle constants(THREAD, caller->constants());
 929   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 930   return result.field_holder();
 931 }
 932 
 933 
 934 //
 935 // This routine patches sites where a class wasn't loaded or
 936 // initialized at the time the code was generated.  It handles
 937 // references to classes, fields and forcing of initialization.  Most
 938 // of the cases are straightforward and involving simply forcing
 939 // resolution of a class, rewriting the instruction stream with the
 940 // needed constant and replacing the call in this function with the
 941 // patched code.  The case for static field is more complicated since
 942 // the thread which is in the process of initializing a class can
 943 // access it's static fields but other threads can't so the code
 944 // either has to deoptimize when this case is detected or execute a
 945 // check that the current thread is the initializing thread.  The
 946 // current
 947 //
 948 // Patches basically look like this:
 949 //
 950 //
 951 // patch_site: jmp patch stub     ;; will be patched
 952 // continue:   ...
 953 //             ...
 954 //             ...
 955 //             ...
 956 //
 957 // They have a stub which looks like this:
 958 //
 959 //             ;; patch body
 960 //             movl <const>, reg           (for class constants)
 961 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 962 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 963 //             <being_init offset> <bytes to copy> <bytes to skip>
 964 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 965 //             jmp patch_site
 966 //
 967 //
 968 // A normal patch is done by rewriting the patch body, usually a move,
 969 // and then copying it into place over top of the jmp instruction
 970 // being careful to flush caches and doing it in an MP-safe way.  The
 971 // constants following the patch body are used to find various pieces
 972 // of the patch relative to the call site for Runtime1::patch_code.
 973 // The case for getstatic and putstatic is more complicated because
 974 // getstatic and putstatic have special semantics when executing while
 975 // the class is being initialized.  getstatic/putstatic on a class
 976 // which is being_initialized may be executed by the initializing
 977 // thread but other threads have to block when they execute it.  This
 978 // is accomplished in compiled code by executing a test of the current
 979 // thread against the initializing thread of the class.  It's emitted
 980 // as boilerplate in their stub which allows the patched code to be
 981 // executed before it's copied back into the main body of the nmethod.
 982 //
 983 // being_init: get_thread(<tmp reg>
 984 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 985 //             jne patch_stub
 986 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 987 //             movl reg, [reg1 + <const>]  (for field offsets)
 988 //             jmp continue
 989 //             <being_init offset> <bytes to copy> <bytes to skip>
 990 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 991 //             jmp patch_site
 992 //
 993 // If the class is being initialized the patch body is rewritten and
 994 // the patch site is rewritten to jump to being_init, instead of
 995 // patch_stub.  Whenever this code is executed it checks the current
 996 // thread against the intializing thread so other threads will enter
 997 // the runtime and end up blocked waiting the class to finish
 998 // initializing inside the calls to resolve_field below.  The
 999 // initializing class will continue on it's way.  Once the class is
1000 // fully_initialized, the intializing_thread of the class becomes
1001 // NULL, so the next thread to execute this code will fail the test,
1002 // call into patch_code and complete the patching process by copying
1003 // the patch body back into the main part of the nmethod and resume
1004 // executing.
1005 
1006 // NB:
1007 //
1008 // Patchable instruction sequences inherently exhibit race conditions,
1009 // where thread A is patching an instruction at the same time thread B
1010 // is executing it.  The algorithms we use ensure that any observation
1011 // that B can make on any intermediate states during A's patching will
1012 // always end up with a correct outcome.  This is easiest if there are
1013 // few or no intermediate states.  (Some inline caches have two
1014 // related instructions that must be patched in tandem.  For those,
1015 // intermediate states seem to be unavoidable, but we will get the
1016 // right answer from all possible observation orders.)
1017 //
1018 // When patching the entry instruction at the head of a method, or a
1019 // linkable call instruction inside of a method, we try very hard to
1020 // use a patch sequence which executes as a single memory transaction.
1021 // This means, in practice, that when thread A patches an instruction,
1022 // it should patch a 32-bit or 64-bit word that somehow overlaps the
1023 // instruction or is contained in it.  We believe that memory hardware
1024 // will never break up such a word write, if it is naturally aligned
1025 // for the word being written.  We also know that some CPUs work very
1026 // hard to create atomic updates even of naturally unaligned words,
1027 // but we don't want to bet the farm on this always working.
1028 //
1029 // Therefore, if there is any chance of a race condition, we try to
1030 // patch only naturally aligned words, as single, full-word writes.
1031 
1032 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, Runtime1::StubID stub_id ))
1033 #ifndef PRODUCT
1034   if (PrintC1Statistics) {
1035     _patch_code_slowcase_cnt++;
1036   }
1037 #endif
1038 
1039   ResourceMark rm(current);
1040   RegisterMap reg_map(current, false);
1041   frame runtime_frame = current->last_frame();
1042   frame caller_frame = runtime_frame.sender(&reg_map);
1043 
1044   // last java frame on stack
1045   vframeStream vfst(current, true);
1046   assert(!vfst.at_end(), "Java frame must exist");
1047 
1048   methodHandle caller_method(current, vfst.method());
1049   // Note that caller_method->code() may not be same as caller_code because of OSR's
1050   // Note also that in the presence of inlining it is not guaranteed
1051   // that caller_method() == caller_code->method()
1052 
1053   int bci = vfst.bci();
1054   Bytecodes::Code code = caller_method()->java_code_at(bci);
1055 
1056   // this is used by assertions in the access_field_patching_id
1057   BasicType patch_field_type = T_ILLEGAL;
1058   bool deoptimize_for_volatile = false;
1059   bool deoptimize_for_atomic = false;
1060   int patch_field_offset = -1;
1061   Klass* init_klass = NULL; // klass needed by load_klass_patching code
1062   Klass* load_klass = NULL; // klass needed by load_klass_patching code
1063   Handle mirror(current, NULL);                    // oop needed by load_mirror_patching code
1064   Handle appendix(current, NULL);                  // oop needed by appendix_patching code
1065   bool load_klass_or_mirror_patch_id =
1066     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
1067 
1068   if (stub_id == Runtime1::access_field_patching_id) {
1069 
1070     Bytecode_field field_access(caller_method, bci);
1071     fieldDescriptor result; // initialize class if needed
1072     Bytecodes::Code code = field_access.code();
1073     constantPoolHandle constants(current, caller_method->constants());
1074     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
1075     patch_field_offset = result.offset();
1076     assert(!result.is_inlined(), "Can not patch access to flattened field");
1077 
1078     // If we're patching a field which is volatile then at compile it
1079     // must not have been know to be volatile, so the generated code
1080     // isn't correct for a volatile reference.  The nmethod has to be
1081     // deoptimized so that the code can be regenerated correctly.
1082     // This check is only needed for access_field_patching since this
1083     // is the path for patching field offsets.  load_klass is only
1084     // used for patching references to oops which don't need special
1085     // handling in the volatile case.
1086 
1087     deoptimize_for_volatile = result.access_flags().is_volatile();
1088 
1089     // If we are patching a field which should be atomic, then
1090     // the generated code is not correct either, force deoptimizing.
1091     // We need to only cover T_LONG and T_DOUBLE fields, as we can
1092     // break access atomicity only for them.
1093 
1094     // Strictly speaking, the deoptimization on 64-bit platforms
1095     // is unnecessary, and T_LONG stores on 32-bit platforms need
1096     // to be handled by special patching code when AlwaysAtomicAccesses
1097     // becomes product feature. At this point, we are still going
1098     // for the deoptimization for consistency against volatile
1099     // accesses.
1100 
1101     patch_field_type = result.field_type();
1102     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
1103 
1104   } else if (load_klass_or_mirror_patch_id) {
1105     Klass* k = NULL;
1106     switch (code) {
1107       case Bytecodes::_putstatic:
1108       case Bytecodes::_getstatic:
1109         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
1110           init_klass = klass;
1111           mirror = Handle(current, klass->java_mirror());
1112         }
1113         break;
1114       case Bytecodes::_new:
1115         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
1116           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
1117         }
1118         break;
1119       case Bytecodes::_aconst_init:
1120         { Bytecode_aconst_init baconst_init(caller_method(), caller_method->bcp_from(bci));
1121           k = caller_method->constants()->klass_at(baconst_init.index(), CHECK);
1122         }
1123         break;
1124       case Bytecodes::_multianewarray:
1125         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
1126           k = caller_method->constants()->klass_at(mna.index(), CHECK);
1127           if (k->name()->is_Q_array_signature()) {
1128             // Logically creates elements, ensure klass init
1129             k->initialize(CHECK);
1130           }
1131         }
1132         break;
1133       case Bytecodes::_instanceof:
1134         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
1135           k = caller_method->constants()->klass_at(io.index(), CHECK);
1136         }
1137         break;
1138       case Bytecodes::_checkcast:
1139         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
1140           k = caller_method->constants()->klass_at(cc.index(), CHECK);
1141         }
1142         break;
1143       case Bytecodes::_anewarray:
1144         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
1145           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
1146           k = ek->array_klass(CHECK);
1147         }
1148         break;
1149       case Bytecodes::_ldc:
1150       case Bytecodes::_ldc_w:
1151       case Bytecodes::_ldc2_w:
1152         {
1153           Bytecode_loadconstant cc(caller_method, bci);
1154           oop m = cc.resolve_constant(CHECK);
1155           mirror = Handle(current, m);
1156         }
1157         break;
1158       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
1159     }
1160     load_klass = k;
1161   } else if (stub_id == load_appendix_patching_id) {
1162     Bytecode_invoke bytecode(caller_method, bci);
1163     Bytecodes::Code bc = bytecode.invoke_code();
1164 
1165     CallInfo info;
1166     constantPoolHandle pool(current, caller_method->constants());
1167     int index = bytecode.index();
1168     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
1169     switch (bc) {
1170       case Bytecodes::_invokehandle: {
1171         int cache_index = ConstantPool::decode_cpcache_index(index, true);
1172         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
1173         ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
1174         cpce->set_method_handle(pool, info);
1175         appendix = Handle(current, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
1176         break;
1177       }
1178       case Bytecodes::_invokedynamic: {
1179         ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
1180         cpce->set_dynamic_call(pool, info);
1181         appendix = Handle(current, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
1182         break;
1183       }
1184       default: fatal("unexpected bytecode for load_appendix_patching_id");
1185     }
1186   } else {
1187     ShouldNotReachHere();
1188   }
1189 
1190   if (deoptimize_for_volatile || deoptimize_for_atomic) {
1191     // At compile time we assumed the field wasn't volatile/atomic but after
1192     // loading it turns out it was volatile/atomic so we have to throw the
1193     // compiled code out and let it be regenerated.
1194     if (TracePatching) {
1195       if (deoptimize_for_volatile) {
1196         tty->print_cr("Deoptimizing for patching volatile field reference");
1197       }
1198       if (deoptimize_for_atomic) {
1199         tty->print_cr("Deoptimizing for patching atomic field reference");
1200       }
1201     }
1202 
1203     // It's possible the nmethod was invalidated in the last
1204     // safepoint, but if it's still alive then make it not_entrant.
1205     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1206     if (nm != NULL) {
1207       nm->make_not_entrant();
1208     }
1209 
1210     Deoptimization::deoptimize_frame(current, caller_frame.id());
1211 
1212     // Return to the now deoptimized frame.
1213   }
1214 
1215   // Now copy code back
1216 
1217   {
1218     MutexLocker ml_patch (current, Patching_lock, Mutex::_no_safepoint_check_flag);
1219     //
1220     // Deoptimization may have happened while we waited for the lock.
1221     // In that case we don't bother to do any patching we just return
1222     // and let the deopt happen
1223     if (!caller_is_deopted(current)) {
1224       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1225       address instr_pc = jump->jump_destination();
1226       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1227       if (ni->is_jump() ) {
1228         // the jump has not been patched yet
1229         // The jump destination is slow case and therefore not part of the stubs
1230         // (stubs are only for StaticCalls)
1231 
1232         // format of buffer
1233         //    ....
1234         //    instr byte 0     <-- copy_buff
1235         //    instr byte 1
1236         //    ..
1237         //    instr byte n-1
1238         //      n
1239         //    ....             <-- call destination
1240 
1241         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1242         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1243         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1244         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1245         address copy_buff = stub_location - *byte_skip - *byte_count;
1246         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1247         if (TracePatching) {
1248           ttyLocker ttyl;
1249           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1250                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1251           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1252           assert(caller_code != NULL, "nmethod not found");
1253 
1254           // NOTE we use pc() not original_pc() because we already know they are
1255           // identical otherwise we'd have never entered this block of code
1256 
1257           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1258           assert(map != NULL, "null check");
1259           map->print();
1260           tty->cr();
1261 
1262           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1263         }
1264         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1265         bool do_patch = true;
1266         if (stub_id == Runtime1::access_field_patching_id) {
1267           // The offset may not be correct if the class was not loaded at code generation time.
1268           // Set it now.
1269           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1270           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1271           assert(patch_field_offset >= 0, "illegal offset");
1272           n_move->add_offset_in_bytes(patch_field_offset);
1273         } else if (load_klass_or_mirror_patch_id) {
1274           // If a getstatic or putstatic is referencing a klass which
1275           // isn't fully initialized, the patch body isn't copied into
1276           // place until initialization is complete.  In this case the
1277           // patch site is setup so that any threads besides the
1278           // initializing thread are forced to come into the VM and
1279           // block.
1280           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1281                      InstanceKlass::cast(init_klass)->is_initialized();
1282           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1283           if (jump->jump_destination() == being_initialized_entry) {
1284             assert(do_patch == true, "initialization must be complete at this point");
1285           } else {
1286             // patch the instruction <move reg, klass>
1287             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1288 
1289             assert(n_copy->data() == 0 ||
1290                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1291                    "illegal init value");
1292             if (stub_id == Runtime1::load_klass_patching_id) {
1293               assert(load_klass != NULL, "klass not set");
1294               n_copy->set_data((intx) (load_klass));
1295             } else {
1296               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1297               n_copy->set_data(cast_from_oop<intx>(mirror()));
1298             }
1299 
1300             if (TracePatching) {
1301               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1302             }
1303           }
1304         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1305           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1306           assert(n_copy->data() == 0 ||
1307                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1308                  "illegal init value");
1309           n_copy->set_data(cast_from_oop<intx>(appendix()));
1310 
1311           if (TracePatching) {
1312             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1313           }
1314         } else {
1315           ShouldNotReachHere();
1316         }
1317 
1318         if (do_patch) {
1319           // replace instructions
1320           // first replace the tail, then the call
1321 #ifdef ARM
1322           if((load_klass_or_mirror_patch_id ||
1323               stub_id == Runtime1::load_appendix_patching_id) &&
1324               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1325             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1326             address addr = NULL;
1327             assert(nm != NULL, "invalid nmethod_pc");
1328             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1329             while (mds.next()) {
1330               if (mds.type() == relocInfo::oop_type) {
1331                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1332                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1333                 oop_Relocation* r = mds.oop_reloc();
1334                 addr = (address)r->oop_addr();
1335                 break;
1336               } else if (mds.type() == relocInfo::metadata_type) {
1337                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1338                 metadata_Relocation* r = mds.metadata_reloc();
1339                 addr = (address)r->metadata_addr();
1340                 break;
1341               }
1342             }
1343             assert(addr != NULL, "metadata relocation must exist");
1344             copy_buff -= *byte_count;
1345             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1346             n_copy2->set_pc_relative_offset(addr, instr_pc);
1347           }
1348 #endif
1349 
1350           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1351             address ptr = copy_buff + i;
1352             int a_byte = (*ptr) & 0xFF;
1353             address dst = instr_pc + i;
1354             *(unsigned char*)dst = (unsigned char) a_byte;
1355           }
1356           ICache::invalidate_range(instr_pc, *byte_count);
1357           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1358 
1359           if (load_klass_or_mirror_patch_id ||
1360               stub_id == Runtime1::load_appendix_patching_id) {
1361             relocInfo::relocType rtype =
1362               (stub_id == Runtime1::load_klass_patching_id) ?
1363                                    relocInfo::metadata_type :
1364                                    relocInfo::oop_type;
1365             // update relocInfo to metadata
1366             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1367             assert(nm != NULL, "invalid nmethod_pc");
1368 
1369             // The old patch site is now a move instruction so update
1370             // the reloc info so that it will get updated during
1371             // future GCs.
1372             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1373             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1374                                                      relocInfo::none, rtype);
1375           }
1376 
1377         } else {
1378           ICache::invalidate_range(copy_buff, *byte_count);
1379           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1380         }
1381       }
1382     }
1383   }
1384 
1385   // If we are patching in a non-perm oop, make sure the nmethod
1386   // is on the right list.
1387   {
1388     MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag);
1389     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1390     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1391 
1392     // Since we've patched some oops in the nmethod,
1393     // (re)register it with the heap.
1394     Universe::heap()->register_nmethod(nm);
1395   }
1396 JRT_END
1397 
1398 #else // DEOPTIMIZE_WHEN_PATCHING
1399 
1400 void Runtime1::patch_code(JavaThread* current, Runtime1::StubID stub_id) {
1401 #ifndef PRODUCT
1402   if (PrintC1Statistics) {
1403     _patch_code_slowcase_cnt++;
1404   }
1405 #endif
1406 
1407   // Enable WXWrite: the function is called by c1 stub as a runtime function
1408   // (see another implementation above).
1409   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1410 
1411   if (TracePatching) {
1412     tty->print_cr("Deoptimizing because patch is needed");
1413   }
1414 
1415   RegisterMap reg_map(current, false);
1416 
1417   frame runtime_frame = current->last_frame();
1418   frame caller_frame = runtime_frame.sender(&reg_map);
1419   assert(caller_frame.is_compiled_frame(), "Wrong frame type");
1420 
1421   // Make sure the nmethod is invalidated, i.e. made not entrant.
1422   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1423   if (nm != NULL) {
1424     nm->make_not_entrant();
1425   }
1426 
1427   Deoptimization::deoptimize_frame(current, caller_frame.id());
1428   // Return to the now deoptimized frame.
1429   postcond(caller_is_deopted(current));
1430 }
1431 
1432 #endif // DEOPTIMIZE_WHEN_PATCHING
1433 
1434 // Entry point for compiled code. We want to patch a nmethod.
1435 // We don't do a normal VM transition here because we want to
1436 // know after the patching is complete and any safepoint(s) are taken
1437 // if the calling nmethod was deoptimized. We do this by calling a
1438 // helper method which does the normal VM transition and when it
1439 // completes we can check for deoptimization. This simplifies the
1440 // assembly code in the cpu directories.
1441 //
1442 int Runtime1::move_klass_patching(JavaThread* current) {
1443 //
1444 // NOTE: we are still in Java
1445 //
1446   debug_only(NoHandleMark nhm;)
1447   {
1448     // Enter VM mode
1449     ResetNoHandleMark rnhm;
1450     patch_code(current, load_klass_patching_id);
1451   }
1452   // Back in JAVA, use no oops DON'T safepoint
1453 
1454   // Return true if calling code is deoptimized
1455 
1456   return caller_is_deopted(current);
1457 }
1458 
1459 int Runtime1::move_mirror_patching(JavaThread* current) {
1460 //
1461 // NOTE: we are still in Java
1462 //
1463   debug_only(NoHandleMark nhm;)
1464   {
1465     // Enter VM mode
1466     ResetNoHandleMark rnhm;
1467     patch_code(current, load_mirror_patching_id);
1468   }
1469   // Back in JAVA, use no oops DON'T safepoint
1470 
1471   // Return true if calling code is deoptimized
1472 
1473   return caller_is_deopted(current);
1474 }
1475 
1476 int Runtime1::move_appendix_patching(JavaThread* current) {
1477 //
1478 // NOTE: we are still in Java
1479 //
1480   debug_only(NoHandleMark nhm;)
1481   {
1482     // Enter VM mode
1483     ResetNoHandleMark rnhm;
1484     patch_code(current, load_appendix_patching_id);
1485   }
1486   // Back in JAVA, use no oops DON'T safepoint
1487 
1488   // Return true if calling code is deoptimized
1489 
1490   return caller_is_deopted(current);
1491 }
1492 
1493 // Entry point for compiled code. We want to patch a nmethod.
1494 // We don't do a normal VM transition here because we want to
1495 // know after the patching is complete and any safepoint(s) are taken
1496 // if the calling nmethod was deoptimized. We do this by calling a
1497 // helper method which does the normal VM transition and when it
1498 // completes we can check for deoptimization. This simplifies the
1499 // assembly code in the cpu directories.
1500 //
1501 int Runtime1::access_field_patching(JavaThread* current) {
1502   //
1503   // NOTE: we are still in Java
1504   //
1505   // Handles created in this function will be deleted by the
1506   // HandleMarkCleaner in the transition to the VM.
1507   NoHandleMark nhm;
1508   {
1509     // Enter VM mode
1510     ResetNoHandleMark rnhm;
1511     patch_code(current, access_field_patching_id);
1512   }
1513   // Back in JAVA, use no oops DON'T safepoint
1514 
1515   // Return true if calling code is deoptimized
1516 
1517   return caller_is_deopted(current);
1518 }
1519 
1520 
1521 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1522   // for now we just print out the block id
1523   tty->print("%d ", block_id);
1524 JRT_END
1525 
1526 
1527 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1528   // had to return int instead of bool, otherwise there may be a mismatch
1529   // between the C calling convention and the Java one.
1530   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1531   // JVM takes the whole %eax as the return value, which may misinterpret
1532   // the return value as a boolean true.
1533 
1534   assert(mirror != NULL, "should null-check on mirror before calling");
1535   Klass* k = java_lang_Class::as_Klass(mirror);
1536   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1537 JRT_END
1538 
1539 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current))
1540   ResourceMark rm;
1541 
1542   RegisterMap reg_map(current, false);
1543   frame runtime_frame = current->last_frame();
1544   frame caller_frame = runtime_frame.sender(&reg_map);
1545 
1546   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1547   assert (nm != NULL, "no more nmethod?");
1548   nm->make_not_entrant();
1549 
1550   methodHandle m(current, nm->method());
1551   MethodData* mdo = m->method_data();
1552 
1553   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1554     // Build an MDO.  Ignore errors like OutOfMemory;
1555     // that simply means we won't have an MDO to update.
1556     Method::build_interpreter_method_data(m, THREAD);
1557     if (HAS_PENDING_EXCEPTION) {
1558       // Only metaspace OOM is expected. No Java code executed.
1559       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1560       CLEAR_PENDING_EXCEPTION;
1561     }
1562     mdo = m->method_data();
1563   }
1564 
1565   if (mdo != NULL) {
1566     mdo->inc_trap_count(Deoptimization::Reason_none);
1567   }
1568 
1569   if (TracePredicateFailedTraps) {
1570     stringStream ss1, ss2;
1571     vframeStream vfst(current);
1572     Method* inlinee = vfst.method();
1573     inlinee->print_short_name(&ss1);
1574     m->print_short_name(&ss2);
1575     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1576   }
1577 
1578 
1579   Deoptimization::deoptimize_frame(current, caller_frame.id());
1580 
1581 JRT_END
1582 
1583 #ifndef PRODUCT
1584 void Runtime1::print_statistics() {
1585   tty->print_cr("C1 Runtime statistics:");
1586   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1587   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1588   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1589   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1590   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1591   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1592   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1593   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1594   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1595   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1596   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_stub_cnt);
1597   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1598   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1599   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1600 
1601   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1602   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1603   tty->print_cr(" _new_flat_array_slowcase_cnt:    %d", _new_flat_array_slowcase_cnt);
1604   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1605   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1606   tty->print_cr(" _load_flattened_array_slowcase_cnt:   %d", _load_flattened_array_slowcase_cnt);
1607   tty->print_cr(" _store_flattened_array_slowcase_cnt:  %d", _store_flattened_array_slowcase_cnt);
1608   tty->print_cr(" _substitutability_check_slowcase_cnt: %d", _substitutability_check_slowcase_cnt);
1609   tty->print_cr(" _buffer_inline_args_slowcase_cnt:%d", _buffer_inline_args_slowcase_cnt);
1610   tty->print_cr(" _buffer_inline_args_no_receiver_slowcase_cnt:%d", _buffer_inline_args_no_receiver_slowcase_cnt);
1611 
1612   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1613   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1614   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1615 
1616   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1617   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1618   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1619   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1620   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1621   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1622   tty->print_cr(" _throw_illegal_monitor_state_exception_count:  %d:", _throw_illegal_monitor_state_exception_count);
1623   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1624 
1625   SharedRuntime::print_ic_miss_histogram();
1626   tty->cr();
1627 }
1628 #endif // PRODUCT