1 /*
2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "asm/codeBuffer.hpp"
26 #include "c1/c1_CodeStubs.hpp"
27 #include "c1/c1_Defs.hpp"
28 #include "c1/c1_LIRAssembler.hpp"
29 #include "c1/c1_MacroAssembler.hpp"
30 #include "c1/c1_Runtime1.hpp"
31 #include "classfile/javaClasses.inline.hpp"
32 #include "classfile/vmClasses.hpp"
33 #include "classfile/vmSymbols.hpp"
34 #include "code/aotCodeCache.hpp"
35 #include "code/codeBlob.hpp"
36 #include "code/compiledIC.hpp"
37 #include "code/scopeDesc.hpp"
38 #include "code/vtableStubs.hpp"
39 #include "compiler/compilationPolicy.hpp"
40 #include "compiler/disassembler.hpp"
41 #include "compiler/oopMap.hpp"
42 #include "gc/shared/barrierSet.hpp"
43 #include "gc/shared/c1/barrierSetC1.hpp"
44 #include "gc/shared/collectedHeap.hpp"
45 #include "interpreter/bytecode.hpp"
46 #include "interpreter/interpreter.hpp"
47 #include "jfr/support/jfrIntrinsics.hpp"
48 #include "logging/log.hpp"
49 #include "memory/oopFactory.hpp"
50 #include "memory/resourceArea.hpp"
51 #include "memory/universe.hpp"
52 #include "oops/access.inline.hpp"
53 #include "oops/flatArrayKlass.hpp"
54 #include "oops/flatArrayOop.inline.hpp"
55 #include "oops/objArrayKlass.hpp"
56 #include "oops/objArrayOop.inline.hpp"
57 #include "oops/oop.inline.hpp"
58 #include "prims/jvmtiExport.hpp"
59 #include "runtime/atomicAccess.hpp"
60 #include "runtime/fieldDescriptor.inline.hpp"
61 #include "runtime/frame.inline.hpp"
62 #include "runtime/handles.inline.hpp"
63 #include "runtime/interfaceSupport.inline.hpp"
64 #include "runtime/javaCalls.hpp"
65 #include "runtime/sharedRuntime.hpp"
66 #include "runtime/stackWatermarkSet.hpp"
67 #include "runtime/stubInfo.hpp"
68 #include "runtime/stubRoutines.hpp"
69 #include "runtime/vframe.inline.hpp"
70 #include "runtime/vframeArray.hpp"
71 #include "runtime/vm_version.hpp"
72 #include "utilities/copy.hpp"
73 #include "utilities/events.hpp"
74
75
76 // Implementation of StubAssembler
77
78 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
79 _name = name;
80 _must_gc_arguments = false;
81 _frame_size = no_frame_size;
82 _num_rt_args = 0;
83 _stub_id = stub_id;
84 }
85
86
87 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
88 _name = name;
89 _must_gc_arguments = must_gc_arguments;
90 }
91
92
93 void StubAssembler::set_frame_size(int size) {
94 if (_frame_size == no_frame_size) {
95 _frame_size = size;
96 }
97 assert(_frame_size == size, "can't change the frame size");
98 }
99
100
101 void StubAssembler::set_num_rt_args(int args) {
102 if (_num_rt_args == 0) {
103 _num_rt_args = args;
104 }
105 assert(_num_rt_args == args, "can't change the number of args");
106 }
107
108 // Implementation of Runtime1
109 CodeBlob* Runtime1::_blobs[StubInfo::C1_STUB_COUNT];
110
111 #ifndef PRODUCT
112 // statistics
113 uint Runtime1::_generic_arraycopystub_cnt = 0;
114 uint Runtime1::_arraycopy_slowcase_cnt = 0;
115 uint Runtime1::_arraycopy_checkcast_cnt = 0;
116 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
117 uint Runtime1::_new_type_array_slowcase_cnt = 0;
118 uint Runtime1::_new_object_array_slowcase_cnt = 0;
119 uint Runtime1::_new_null_free_array_slowcase_cnt = 0;
120 uint Runtime1::_new_instance_slowcase_cnt = 0;
121 uint Runtime1::_new_multi_array_slowcase_cnt = 0;
122 uint Runtime1::_load_flat_array_slowcase_cnt = 0;
123 uint Runtime1::_store_flat_array_slowcase_cnt = 0;
124 uint Runtime1::_substitutability_check_slowcase_cnt = 0;
125 uint Runtime1::_buffer_inline_args_slowcase_cnt = 0;
126 uint Runtime1::_buffer_inline_args_no_receiver_slowcase_cnt = 0;
127 uint Runtime1::_monitorenter_slowcase_cnt = 0;
128 uint Runtime1::_monitorexit_slowcase_cnt = 0;
129 uint Runtime1::_patch_code_slowcase_cnt = 0;
130 uint Runtime1::_throw_range_check_exception_count = 0;
131 uint Runtime1::_throw_index_exception_count = 0;
132 uint Runtime1::_throw_div0_exception_count = 0;
133 uint Runtime1::_throw_null_pointer_exception_count = 0;
134 uint Runtime1::_throw_class_cast_exception_count = 0;
135 uint Runtime1::_throw_incompatible_class_change_error_count = 0;
136 uint Runtime1::_throw_illegal_monitor_state_exception_count = 0;
137 uint Runtime1::_throw_identity_exception_count = 0;
138 uint Runtime1::_throw_count = 0;
139
140 static uint _byte_arraycopy_stub_cnt = 0;
141 static uint _short_arraycopy_stub_cnt = 0;
142 static uint _int_arraycopy_stub_cnt = 0;
143 static uint _long_arraycopy_stub_cnt = 0;
144 static uint _oop_arraycopy_stub_cnt = 0;
145
146 address Runtime1::arraycopy_count_address(BasicType type) {
147 switch (type) {
148 case T_BOOLEAN:
149 case T_BYTE: return (address)&_byte_arraycopy_stub_cnt;
150 case T_CHAR:
151 case T_SHORT: return (address)&_short_arraycopy_stub_cnt;
152 case T_FLOAT:
153 case T_INT: return (address)&_int_arraycopy_stub_cnt;
154 case T_DOUBLE:
155 case T_LONG: return (address)&_long_arraycopy_stub_cnt;
156 case T_ARRAY:
157 case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
158 default:
159 ShouldNotReachHere();
160 return nullptr;
161 }
162 }
163
164
165 #endif
166
167 // Simple helper to see if the caller of a runtime stub which
168 // entered the VM has been deoptimized
169
170 static bool caller_is_deopted(JavaThread* current) {
171 RegisterMap reg_map(current,
172 RegisterMap::UpdateMap::skip,
173 RegisterMap::ProcessFrames::include,
174 RegisterMap::WalkContinuation::skip);
175 frame runtime_frame = current->last_frame();
176 frame caller_frame = runtime_frame.sender(®_map);
177 assert(caller_frame.is_compiled_frame(), "must be compiled");
178 return caller_frame.is_deoptimized_frame();
179 }
180
181 // Stress deoptimization
182 static void deopt_caller(JavaThread* current) {
183 if (!caller_is_deopted(current)) {
184 RegisterMap reg_map(current,
185 RegisterMap::UpdateMap::skip,
186 RegisterMap::ProcessFrames::include,
187 RegisterMap::WalkContinuation::skip);
188 frame runtime_frame = current->last_frame();
189 frame caller_frame = runtime_frame.sender(®_map);
190 Deoptimization::deoptimize_frame(current, caller_frame.id());
191 assert(caller_is_deopted(current), "Must be deoptimized");
192 }
193 }
194
195 class C1StubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
196 private:
197 StubId _id;
198 public:
199 C1StubAssemblerCodeGenClosure(StubId id) : _id(id) {
200 assert(StubInfo::is_c1(_id), "not a c1 stub id %s", StubInfo::name(_id));
201 }
202 virtual OopMapSet* generate_code(StubAssembler* sasm) {
203 return Runtime1::generate_code_for(_id, sasm);
204 }
205 };
206
207 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, StubId id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
208 if (id != StubId::NO_STUBID) {
209 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::C1Blob, StubInfo::blob(id));
210 if (blob != nullptr) {
211 return blob;
212 }
213 }
214
215 ResourceMark rm;
216 // create code buffer for code storage
217 CodeBuffer code(buffer_blob);
218
219 OopMapSet* oop_maps;
220 int frame_size;
221 bool must_gc_arguments;
222
223 Compilation::setup_code_buffer(&code, 0);
224
225 // create assembler for code generation
226 StubAssembler* sasm = new StubAssembler(&code, name, (int)id);
227 // generate code for runtime stub
228 oop_maps = cl->generate_code(sasm);
229 assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size,
230 "if stub has an oop map it must have a valid frame size");
231 assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap");
232
233 // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
234 sasm->align(BytesPerWord);
235 // make sure all code is in code buffer
236 sasm->flush();
237
238 frame_size = sasm->frame_size();
239 must_gc_arguments = sasm->must_gc_arguments();
240 // create blob - distinguish a few special cases
241 CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
242 &code,
243 CodeOffsets::frame_never_safe,
244 frame_size,
245 oop_maps,
246 must_gc_arguments,
247 false /* alloc_fail_is_fatal */ );
248 if (blob != nullptr && (int)id >= 0) {
249 AOTCodeCache::store_code_blob(*blob, AOTCodeEntry::C1Blob, StubInfo::blob(id));
250 }
251 return blob;
252 }
253
254 bool Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubId id) {
255 assert(StubInfo::is_c1(id), "not a c1 stub %s", StubInfo::name(id));
256 bool expect_oop_map = true;
257 #ifdef ASSERT
258 // Make sure that stubs that need oopmaps have them
259 switch (id) {
260 // These stubs don't need to have an oopmap
261 case StubId::c1_dtrace_object_alloc_id:
262 case StubId::c1_slow_subtype_check_id:
263 case StubId::c1_fpu2long_stub_id:
264 case StubId::c1_unwind_exception_id:
265 case StubId::c1_counter_overflow_id:
266 case StubId::c1_is_instance_of_id:
267 expect_oop_map = false;
268 break;
269 default:
270 break;
271 }
272 #endif
273 C1StubAssemblerCodeGenClosure cl(id);
274 CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
275 // install blob
276 int idx = StubInfo::c1_offset(id); // will assert on non-c1 id
277 _blobs[idx] = blob;
278 return blob != nullptr;
279 }
280
281 bool Runtime1::initialize(BufferBlob* blob) {
282 // platform-dependent initialization
283 initialize_pd();
284 // iterate blobs in C1 group and generate a single stub per blob
285 StubId id = StubInfo::stub_base(StubGroup::C1);
286 StubId limit = StubInfo::next(StubInfo::stub_max(StubGroup::C1));
287 for (; id != limit; id = StubInfo::next(id)) {
288 if (!generate_blob_for(blob, id)) {
289 return false;
290 }
291 if (id == StubId::c1_forward_exception_id) {
292 // publish early c1 stubs at this point so later stubs can refer to them
293 AOTCodeCache::init_early_c1_table();
294 }
295 }
296 // printing
297 #ifndef PRODUCT
298 if (PrintSimpleStubs) {
299 ResourceMark rm;
300 id = StubInfo::stub_base(StubGroup::C1);
301 for (; id != limit; id = StubInfo::next(id)) {
302 CodeBlob* blob = blob_for(id);
303 blob->print();
304 if (blob->oop_maps() != nullptr) {
305 blob->oop_maps()->print();
306 }
307 }
308 }
309 #endif
310 BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
311 return bs->generate_c1_runtime_stubs(blob);
312 }
313
314 CodeBlob* Runtime1::blob_for(StubId id) {
315 int idx = StubInfo::c1_offset(id); // will assert on non-c1 id
316 return _blobs[idx];
317 }
318
319
320 const char* Runtime1::name_for(StubId id) {
321 return StubInfo::name(id);
322 }
323
324 const char* Runtime1::name_for_address(address entry) {
325 // iterate stubs starting from C1 group base
326 StubId id = StubInfo::stub_base(StubGroup::C1);
327 StubId limit = StubInfo::next(StubInfo::stub_max(StubGroup::C1));
328 for (; id != limit; id = StubInfo::next(id)) {
329 if (entry == entry_for(id)) return StubInfo::name(id);
330 }
331
332 #define FUNCTION_CASE(a, f) \
333 if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f
334
335 FUNCTION_CASE(entry, os::javaTimeMillis);
336 FUNCTION_CASE(entry, os::javaTimeNanos);
337 FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
338 FUNCTION_CASE(entry, SharedRuntime::d2f);
339 FUNCTION_CASE(entry, SharedRuntime::d2i);
340 FUNCTION_CASE(entry, SharedRuntime::d2l);
341 FUNCTION_CASE(entry, SharedRuntime::dcos);
342 FUNCTION_CASE(entry, SharedRuntime::dexp);
343 FUNCTION_CASE(entry, SharedRuntime::dlog);
344 FUNCTION_CASE(entry, SharedRuntime::dlog10);
345 FUNCTION_CASE(entry, SharedRuntime::dpow);
346 FUNCTION_CASE(entry, SharedRuntime::drem);
347 FUNCTION_CASE(entry, SharedRuntime::dsin);
348 FUNCTION_CASE(entry, SharedRuntime::dtan);
349 FUNCTION_CASE(entry, SharedRuntime::f2i);
350 FUNCTION_CASE(entry, SharedRuntime::f2l);
351 FUNCTION_CASE(entry, SharedRuntime::frem);
352 FUNCTION_CASE(entry, SharedRuntime::l2d);
353 FUNCTION_CASE(entry, SharedRuntime::l2f);
354 FUNCTION_CASE(entry, SharedRuntime::ldiv);
355 FUNCTION_CASE(entry, SharedRuntime::lmul);
356 FUNCTION_CASE(entry, SharedRuntime::lrem);
357 FUNCTION_CASE(entry, SharedRuntime::lrem);
358 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
359 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
360 FUNCTION_CASE(entry, is_instance_of);
361 FUNCTION_CASE(entry, trace_block_entry);
362 #ifdef JFR_HAVE_INTRINSICS
363 FUNCTION_CASE(entry, JfrTime::time_function());
364 #endif
365 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
366 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
367 FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
368 FUNCTION_CASE(entry, StubRoutines::dexp());
369 FUNCTION_CASE(entry, StubRoutines::dlog());
370 FUNCTION_CASE(entry, StubRoutines::dlog10());
371 FUNCTION_CASE(entry, StubRoutines::dpow());
372 FUNCTION_CASE(entry, StubRoutines::dsin());
373 FUNCTION_CASE(entry, StubRoutines::dcos());
374 FUNCTION_CASE(entry, StubRoutines::dtan());
375 FUNCTION_CASE(entry, StubRoutines::dsinh());
376 FUNCTION_CASE(entry, StubRoutines::dtanh());
377 FUNCTION_CASE(entry, StubRoutines::dcbrt());
378
379 #undef FUNCTION_CASE
380
381 // Soft float adds more runtime names.
382 return pd_name_for_address(entry);
383 }
384
385 static void allocate_instance(JavaThread* current, Klass* klass, TRAPS) {
386 #ifndef PRODUCT
387 if (PrintC1Statistics) {
388 Runtime1::_new_instance_slowcase_cnt++;
389 }
390 #endif
391 assert(klass->is_klass(), "not a class");
392 Handle holder(current, klass->klass_holder()); // keep the klass alive
393 InstanceKlass* h = InstanceKlass::cast(klass);
394 h->check_valid_for_instantiation(true, CHECK);
395 // make sure klass is initialized
396 h->initialize(CHECK);
397 // allocate instance and return via TLS
398 oop obj = h->allocate_instance(CHECK);
399 current->set_vm_result_oop(obj);
400 JRT_END
401
402 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass))
403 allocate_instance(current, klass, CHECK);
404 JRT_END
405
406 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length))
407 #ifndef PRODUCT
408 if (PrintC1Statistics) {
409 _new_type_array_slowcase_cnt++;
410 }
411 #endif
412 // Note: no handle for klass needed since they are not used
413 // anymore after new_typeArray() and no GC can happen before.
414 // (This may have to change if this code changes!)
415 assert(klass->is_klass(), "not a class");
416 BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
417 oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
418 current->set_vm_result_oop(obj);
419 // This is pretty rare but this runtime patch is stressful to deoptimization
420 // if we deoptimize here so force a deopt to stress the path.
421 if (DeoptimizeALot) {
422 deopt_caller(current);
423 }
424
425 JRT_END
426
427
428 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length))
429 #ifndef PRODUCT
430 if (PrintC1Statistics) {
431 _new_object_array_slowcase_cnt++;
432 }
433 #endif
434 // Note: no handle for klass needed since they are not used
435 // anymore after new_objArray() and no GC can happen before.
436 // (This may have to change if this code changes!)
437 assert(array_klass->is_klass(), "not a class");
438 Handle holder(current, array_klass->klass_holder()); // keep the klass alive
439 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
440 objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
441 current->set_vm_result_oop(obj);
442 // This is pretty rare but this runtime patch is stressful to deoptimization
443 // if we deoptimize here so force a deopt to stress the path.
444 if (DeoptimizeALot) {
445 deopt_caller(current);
446 }
447 JRT_END
448
449
450 JRT_ENTRY(void, Runtime1::new_null_free_array(JavaThread* current, Klass* array_klass, jint length))
451 NOT_PRODUCT(_new_null_free_array_slowcase_cnt++;)
452 // TODO 8350865 This is dead code since 8325660 because null-free arrays can only be created via the factory methods that are not yet implemented in C1. Should probably be fixed by 8265122.
453
454 // Note: no handle for klass needed since they are not used
455 // anymore after new_objArray() and no GC can happen before.
456 // (This may have to change if this code changes!)
457 assert(array_klass->is_klass(), "not a class");
458 Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
459 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
460 assert(elem_klass->is_inline_klass(), "must be");
461 InlineKlass* vk = InlineKlass::cast(elem_klass);
462 // Logically creates elements, ensure klass init
463 elem_klass->initialize(CHECK);
464 arrayOop obj= oopFactory::new_objArray(elem_klass, length, ArrayKlass::ArrayProperties::NULL_RESTRICTED, CHECK);
465 current->set_vm_result_oop(obj);
466 // This is pretty rare but this runtime patch is stressful to deoptimization
467 // if we deoptimize here so force a deopt to stress the path.
468 if (DeoptimizeALot) {
469 deopt_caller(current);
470 }
471 JRT_END
472
473
474 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims))
475 #ifndef PRODUCT
476 if (PrintC1Statistics) {
477 _new_multi_array_slowcase_cnt++;
478 }
479 #endif
480 assert(klass->is_klass(), "not a class");
481 assert(rank >= 1, "rank must be nonzero");
482 Handle holder(current, klass->klass_holder()); // keep the klass alive
483 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
484 current->set_vm_result_oop(obj);
485 JRT_END
486
487
488 static void profile_flat_array(JavaThread* current, bool load, bool null_free) {
489 ResourceMark rm(current);
490 vframeStream vfst(current, true);
491 assert(!vfst.at_end(), "Java frame must exist");
492 // Check if array access profiling is enabled
493 if (vfst.nm()->comp_level() != CompLevel_full_profile || !C1UpdateMethodData) {
494 return;
495 }
496 int bci = vfst.bci();
497 Method* method = vfst.method();
498 MethodData* md = method->method_data();
499 if (md != nullptr) {
500 // Lock to access ProfileData, and ensure lock is not broken by a safepoint
501 MutexLocker ml(md->extra_data_lock(), Mutex::_no_safepoint_check_flag);
502
503 ProfileData* data = md->bci_to_data(bci);
504 assert(data != nullptr, "incorrect profiling entry");
505 if (data->is_ArrayLoadData()) {
506 assert(load, "should be an array load");
507 ArrayLoadData* load_data = (ArrayLoadData*) data;
508 load_data->set_flat_array();
509 if (null_free) {
510 load_data->set_null_free_array();
511 }
512 } else {
513 assert(data->is_ArrayStoreData(), "");
514 assert(!load, "should be an array store");
515 ArrayStoreData* store_data = (ArrayStoreData*) data;
516 store_data->set_flat_array();
517 if (null_free) {
518 store_data->set_null_free_array();
519 }
520 }
521 }
522 }
523
524 JRT_ENTRY(void, Runtime1::load_flat_array(JavaThread* current, flatArrayOopDesc* array, int index))
525 assert(array->klass()->is_flatArray_klass(), "should not be called");
526 profile_flat_array(current, true, array->is_null_free_array());
527
528 NOT_PRODUCT(_load_flat_array_slowcase_cnt++;)
529 assert(array->length() > 0 && index < array->length(), "already checked");
530 flatArrayHandle vah(current, array);
531 oop obj = array->obj_at(index, CHECK);
532 current->set_vm_result_oop(obj);
533 JRT_END
534
535 JRT_ENTRY(void, Runtime1::store_flat_array(JavaThread* current, flatArrayOopDesc* array, int index, oopDesc* value))
536 // TOOD 8350865 We can call here with a non-flat array because of LIR_Assembler::emit_opFlattenedArrayCheck
537 if (array->klass()->is_flatArray_klass()) {
538 profile_flat_array(current, false, array->is_null_free_array());
539 }
540
541 NOT_PRODUCT(_store_flat_array_slowcase_cnt++;)
542 if (value == nullptr && array->is_null_free_array()) {
543 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException());
544 } else {
545 assert(array->klass()->is_flatArray_klass(), "should not be called");
546 array->obj_at_put(index, value, CHECK);
547 }
548 JRT_END
549
550 JRT_ENTRY(int, Runtime1::substitutability_check(JavaThread* current, oopDesc* left, oopDesc* right))
551 NOT_PRODUCT(_substitutability_check_slowcase_cnt++;)
552 JavaCallArguments args;
553 args.push_oop(Handle(THREAD, left));
554 args.push_oop(Handle(THREAD, right));
555 JavaValue result(T_BOOLEAN);
556 JavaCalls::call_static(&result,
557 vmClasses::ValueObjectMethods_klass(),
558 vmSymbols::isSubstitutable_name(),
559 vmSymbols::object_object_boolean_signature(),
560 &args, CHECK_0);
561 return result.get_jboolean() ? 1 : 0;
562 JRT_END
563
564
565 extern "C" void ps();
566
567 void Runtime1::buffer_inline_args_impl(JavaThread* current, Method* m, bool allocate_receiver) {
568 JavaThread* THREAD = current;
569 methodHandle method(current, m); // We are inside the verified_entry or verified_inline_ro_entry of this method.
570 oop obj = SharedRuntime::allocate_inline_types_impl(current, method, allocate_receiver, CHECK);
571 current->set_vm_result_oop(obj);
572 }
573
574 JRT_ENTRY(void, Runtime1::buffer_inline_args(JavaThread* current, Method* method))
575 NOT_PRODUCT(_buffer_inline_args_slowcase_cnt++;)
576 buffer_inline_args_impl(current, method, true);
577 JRT_END
578
579 JRT_ENTRY(void, Runtime1::buffer_inline_args_no_receiver(JavaThread* current, Method* method))
580 NOT_PRODUCT(_buffer_inline_args_no_receiver_slowcase_cnt++;)
581 buffer_inline_args_impl(current, method, false);
582 JRT_END
583
584 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, StubId id))
585 tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id);
586 JRT_END
587
588
589 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj))
590 ResourceMark rm(current);
591 const char* klass_name = obj->klass()->external_name();
592 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name);
593 JRT_END
594
595
596 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
597 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
598 // method) method is passed as an argument. In order to do that it is embedded in the code as
599 // a constant.
600 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) {
601 nmethod* osr_nm = nullptr;
602 methodHandle method(current, m);
603
604 RegisterMap map(current,
605 RegisterMap::UpdateMap::skip,
606 RegisterMap::ProcessFrames::include,
607 RegisterMap::WalkContinuation::skip);
608 frame fr = current->last_frame().sender(&map);
609 nmethod* nm = (nmethod*) fr.cb();
610 assert(nm!= nullptr && nm->is_nmethod(), "Sanity check");
611 methodHandle enclosing_method(current, nm->method());
612
613 CompLevel level = (CompLevel)nm->comp_level();
614 int bci = InvocationEntryBci;
615 if (branch_bci != InvocationEntryBci) {
616 // Compute destination bci
617 address pc = method()->code_base() + branch_bci;
618 Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
619 int offset = 0;
620 switch (branch) {
621 case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
622 case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
623 case Bytecodes::_if_icmple: case Bytecodes::_ifle:
624 case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
625 case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
626 case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
627 case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
628 offset = (int16_t)Bytes::get_Java_u2(pc + 1);
629 break;
630 case Bytecodes::_goto_w:
631 offset = Bytes::get_Java_u4(pc + 1);
632 break;
633 default: ;
634 }
635 bci = branch_bci + offset;
636 }
637 osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current);
638 return osr_nm;
639 }
640
641 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method))
642 nmethod* osr_nm;
643 JRT_BLOCK_NO_ASYNC
644 osr_nm = counter_overflow_helper(current, bci, method);
645 if (osr_nm != nullptr) {
646 RegisterMap map(current,
647 RegisterMap::UpdateMap::skip,
648 RegisterMap::ProcessFrames::include,
649 RegisterMap::WalkContinuation::skip);
650 frame fr = current->last_frame().sender(&map);
651 Deoptimization::deoptimize_frame(current, fr.id());
652 }
653 JRT_BLOCK_END
654 return nullptr;
655 JRT_END
656
657 extern void vm_exit(int code);
658
659 // Enter this method from compiled code handler below. This is where we transition
660 // to VM mode. This is done as a helper routine so that the method called directly
661 // from compiled code does not have to transition to VM. This allows the entry
662 // method to see if the nmethod that we have just looked up a handler for has
663 // been deoptimized while we were in the vm. This simplifies the assembly code
664 // cpu directories.
665 //
666 // We are entering here from exception stub (via the entry method below)
667 // If there is a compiled exception handler in this method, we will continue there;
668 // otherwise we will unwind the stack and continue at the caller of top frame method
669 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
670 // control the area where we can allow a safepoint. After we exit the safepoint area we can
671 // check to see if the handler we are going to return is now in a nmethod that has
672 // been deoptimized. If that is the case we return the deopt blob
673 // unpack_with_exception entry instead. This makes life for the exception blob easier
674 // because making that same check and diverting is painful from assembly language.
675 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
676 Handle exception(current, ex);
677
678 // This function is called when we are about to throw an exception. Therefore,
679 // we have to poll the stack watermark barrier to make sure that not yet safe
680 // stack frames are made safe before returning into them.
681 if (current->last_frame().cb() == Runtime1::blob_for(StubId::c1_handle_exception_from_callee_id)) {
682 // The StubId::c1_handle_exception_from_callee_id handler is invoked after the
683 // frame has been unwound. It instead builds its own stub frame, to call the
684 // runtime. But the throwing frame has already been unwound here.
685 StackWatermarkSet::after_unwind(current);
686 }
687
688 nm = CodeCache::find_nmethod(pc);
689 assert(nm != nullptr, "this is not an nmethod");
690 // Adjust the pc as needed/
691 if (nm->is_deopt_pc(pc)) {
692 RegisterMap map(current,
693 RegisterMap::UpdateMap::skip,
694 RegisterMap::ProcessFrames::include,
695 RegisterMap::WalkContinuation::skip);
696 frame exception_frame = current->last_frame().sender(&map);
697 // if the frame isn't deopted then pc must not correspond to the caller of last_frame
698 assert(exception_frame.is_deoptimized_frame(), "must be deopted");
699 pc = exception_frame.pc();
700 }
701 assert(exception.not_null(), "null exceptions should be handled by throw_exception");
702 // Check that exception is a subclass of Throwable
703 assert(exception->is_a(vmClasses::Throwable_klass()),
704 "Exception not subclass of Throwable");
705
706 // debugging support
707 // tracing
708 if (log_is_enabled(Info, exceptions)) {
709 ResourceMark rm; // print_value_string
710 stringStream tempst;
711 assert(nm->method() != nullptr, "Unexpected null method()");
712 tempst.print("C1 compiled method <%s>\n"
713 " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
714 nm->method()->print_value_string(), p2i(pc), p2i(current));
715 Exceptions::log_exception(exception, tempst.freeze());
716 }
717 // for AbortVMOnException flag
718 Exceptions::debug_check_abort(exception);
719
720 // Check the stack guard pages and re-enable them if necessary and there is
721 // enough space on the stack to do so. Use fast exceptions only if the guard
722 // pages are enabled.
723 bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
724
725 if (JvmtiExport::can_post_on_exceptions()) {
726 // To ensure correct notification of exception catches and throws
727 // we have to deoptimize here. If we attempted to notify the
728 // catches and throws during this exception lookup it's possible
729 // we could deoptimize on the way out of the VM and end back in
730 // the interpreter at the throw site. This would result in double
731 // notifications since the interpreter would also notify about
732 // these same catches and throws as it unwound the frame.
733
734 RegisterMap reg_map(current,
735 RegisterMap::UpdateMap::include,
736 RegisterMap::ProcessFrames::include,
737 RegisterMap::WalkContinuation::skip);
738 frame stub_frame = current->last_frame();
739 frame caller_frame = stub_frame.sender(®_map);
740
741 // We don't really want to deoptimize the nmethod itself since we
742 // can actually continue in the exception handler ourselves but I
743 // don't see an easy way to have the desired effect.
744 Deoptimization::deoptimize_frame(current, caller_frame.id());
745 assert(caller_is_deopted(current), "Must be deoptimized");
746
747 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
748 }
749
750 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
751 if (guard_pages_enabled) {
752 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
753 if (fast_continuation != nullptr) {
754 return fast_continuation;
755 }
756 }
757
758 // If the stack guard pages are enabled, check whether there is a handler in
759 // the current method. Otherwise (guard pages disabled), force an unwind and
760 // skip the exception cache update (i.e., just leave continuation as null).
761 address continuation = nullptr;
762 if (guard_pages_enabled) {
763
764 // New exception handling mechanism can support inlined methods
765 // with exception handlers since the mappings are from PC to PC
766
767 // Clear out the exception oop and pc since looking up an
768 // exception handler can cause class loading, which might throw an
769 // exception and those fields are expected to be clear during
770 // normal bytecode execution.
771 current->clear_exception_oop_and_pc();
772
773 bool recursive_exception = false;
774 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
775 // If an exception was thrown during exception dispatch, the exception oop may have changed
776 current->set_exception_oop(exception());
777 current->set_exception_pc(pc);
778
779 // the exception cache is used only by non-implicit exceptions
780 // Update the exception cache only when there didn't happen
781 // another exception during the computation of the compiled
782 // exception handler. Checking for exception oop equality is not
783 // sufficient because some exceptions are pre-allocated and reused.
784 if (continuation != nullptr && !recursive_exception) {
785 nm->add_handler_for_exception_and_pc(exception, pc, continuation);
786 }
787 }
788
789 current->set_vm_result_oop(exception());
790
791 if (log_is_enabled(Info, exceptions)) {
792 ResourceMark rm;
793 log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
794 " for exception thrown at PC " PTR_FORMAT,
795 p2i(current), p2i(continuation), p2i(pc));
796 }
797
798 return continuation;
799 JRT_END
800
801 // Enter this method from compiled code only if there is a Java exception handler
802 // in the method handling the exception.
803 // We are entering here from exception stub. We don't do a normal VM transition here.
804 // We do it in a helper. This is so we can check to see if the nmethod we have just
805 // searched for an exception handler has been deoptimized in the meantime.
806 address Runtime1::exception_handler_for_pc(JavaThread* current) {
807 oop exception = current->exception_oop();
808 address pc = current->exception_pc();
809 // Still in Java mode
810 DEBUG_ONLY(NoHandleMark nhm);
811 nmethod* nm = nullptr;
812 address continuation = nullptr;
813 {
814 // Enter VM mode by calling the helper
815 ResetNoHandleMark rnhm;
816 continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
817 }
818 // Back in JAVA, use no oops DON'T safepoint
819
820 // Now check to see if the nmethod we were called from is now deoptimized.
821 // If so we must return to the deopt blob and deoptimize the nmethod
822 if (nm != nullptr && caller_is_deopted(current)) {
823 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
824 }
825
826 assert(continuation != nullptr, "no handler found");
827 return continuation;
828 }
829
830
831 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a))
832 #ifndef PRODUCT
833 if (PrintC1Statistics) {
834 _throw_range_check_exception_count++;
835 }
836 #endif
837 const int len = 35;
838 assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
839 char message[2 * jintAsStringSize + len];
840 os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length());
841 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
842 JRT_END
843
844
845 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index))
846 #ifndef PRODUCT
847 if (PrintC1Statistics) {
848 _throw_index_exception_count++;
849 }
850 #endif
851 char message[16];
852 os::snprintf_checked(message, sizeof(message), "%d", index);
853 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
854 JRT_END
855
856
857 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current))
858 #ifndef PRODUCT
859 if (PrintC1Statistics) {
860 _throw_div0_exception_count++;
861 }
862 #endif
863 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
864 JRT_END
865
866
867 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current))
868 #ifndef PRODUCT
869 if (PrintC1Statistics) {
870 _throw_null_pointer_exception_count++;
871 }
872 #endif
873 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException());
874 JRT_END
875
876
877 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object))
878 #ifndef PRODUCT
879 if (PrintC1Statistics) {
880 _throw_class_cast_exception_count++;
881 }
882 #endif
883 ResourceMark rm(current);
884 char* message = SharedRuntime::generate_class_cast_message(current, object->klass());
885 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message);
886 JRT_END
887
888
889 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current))
890 #ifndef PRODUCT
891 if (PrintC1Statistics) {
892 _throw_incompatible_class_change_error_count++;
893 }
894 #endif
895 ResourceMark rm(current);
896 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError());
897 JRT_END
898
899
900 JRT_ENTRY(void, Runtime1::throw_illegal_monitor_state_exception(JavaThread* current))
901 NOT_PRODUCT(_throw_illegal_monitor_state_exception_count++;)
902 ResourceMark rm(current);
903 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IllegalMonitorStateException());
904 JRT_END
905
906 JRT_ENTRY(void, Runtime1::throw_identity_exception(JavaThread* current, oopDesc* object))
907 NOT_PRODUCT(_throw_identity_exception_count++;)
908 ResourceMark rm(current);
909 char* message = SharedRuntime::generate_identity_exception_message(current, object->klass());
910 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IdentityException(), message);
911 JRT_END
912
913 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock))
914 #ifndef PRODUCT
915 if (PrintC1Statistics) {
916 _monitorenter_slowcase_cnt++;
917 }
918 #endif
919 assert(obj == lock->obj(), "must match");
920 SharedRuntime::monitor_enter_helper(obj, lock->lock(), current);
921 JRT_END
922
923
924 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock))
925 assert(current == JavaThread::current(), "pre-condition");
926 #ifndef PRODUCT
927 if (PrintC1Statistics) {
928 _monitorexit_slowcase_cnt++;
929 }
930 #endif
931 assert(current->last_Java_sp(), "last_Java_sp must be set");
932 oop obj = lock->obj();
933 assert(oopDesc::is_oop(obj), "must be null or an object");
934 SharedRuntime::monitor_exit_helper(obj, lock->lock(), current);
935 JRT_END
936
937 // Cf. OptoRuntime::deoptimize_caller_frame
938 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request))
939 // Called from within the owner thread, so no need for safepoint
940 RegisterMap reg_map(current,
941 RegisterMap::UpdateMap::skip,
942 RegisterMap::ProcessFrames::include,
943 RegisterMap::WalkContinuation::skip);
944 frame stub_frame = current->last_frame();
945 assert(stub_frame.is_runtime_frame(), "Sanity check");
946 frame caller_frame = stub_frame.sender(®_map);
947 nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
948 assert(nm != nullptr, "Sanity check");
949 methodHandle method(current, nm->method());
950 assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
951 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
952 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
953
954 if (action == Deoptimization::Action_make_not_entrant) {
955 if (nm->make_not_entrant(nmethod::InvalidationReason::C1_DEOPTIMIZE)) {
956 if (reason == Deoptimization::Reason_tenured) {
957 MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/);
958 if (trap_mdo != nullptr) {
959 trap_mdo->inc_tenure_traps();
960 }
961 }
962 }
963 }
964
965 // Deoptimize the caller frame.
966 Deoptimization::deoptimize_frame(current, caller_frame.id());
967 // Return to the now deoptimized frame.
968 JRT_END
969
970
971 #ifndef DEOPTIMIZE_WHEN_PATCHING
972
973 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
974 Bytecode_field field_access(caller, bci);
975 // This can be static or non-static field access
976 Bytecodes::Code code = field_access.code();
977
978 // We must load class, initialize class and resolve the field
979 fieldDescriptor result; // initialize class if needed
980 constantPoolHandle constants(THREAD, caller->constants());
981 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
982 return result.field_holder();
983 }
984
985
986 //
987 // This routine patches sites where a class wasn't loaded or
988 // initialized at the time the code was generated. It handles
989 // references to classes, fields and forcing of initialization. Most
990 // of the cases are straightforward and involving simply forcing
991 // resolution of a class, rewriting the instruction stream with the
992 // needed constant and replacing the call in this function with the
993 // patched code. The case for static field is more complicated since
994 // the thread which is in the process of initializing a class can
995 // access it's static fields but other threads can't so the code
996 // either has to deoptimize when this case is detected or execute a
997 // check that the current thread is the initializing thread. The
998 // current
999 //
1000 // Patches basically look like this:
1001 //
1002 //
1003 // patch_site: jmp patch stub ;; will be patched
1004 // continue: ...
1005 // ...
1006 // ...
1007 // ...
1008 //
1009 // They have a stub which looks like this:
1010 //
1011 // ;; patch body
1012 // movl <const>, reg (for class constants)
1013 // <or> movl [reg1 + <const>], reg (for field offsets)
1014 // <or> movl reg, [reg1 + <const>] (for field offsets)
1015 // <being_init offset> <bytes to copy> <bytes to skip>
1016 // patch_stub: call Runtime1::patch_code (through a runtime stub)
1017 // jmp patch_site
1018 //
1019 //
1020 // A normal patch is done by rewriting the patch body, usually a move,
1021 // and then copying it into place over top of the jmp instruction
1022 // being careful to flush caches and doing it in an MP-safe way. The
1023 // constants following the patch body are used to find various pieces
1024 // of the patch relative to the call site for Runtime1::patch_code.
1025 // The case for getstatic and putstatic is more complicated because
1026 // getstatic and putstatic have special semantics when executing while
1027 // the class is being initialized. getstatic/putstatic on a class
1028 // which is being_initialized may be executed by the initializing
1029 // thread but other threads have to block when they execute it. This
1030 // is accomplished in compiled code by executing a test of the current
1031 // thread against the initializing thread of the class. It's emitted
1032 // as boilerplate in their stub which allows the patched code to be
1033 // executed before it's copied back into the main body of the nmethod.
1034 //
1035 // being_init: get_thread(<tmp reg>
1036 // cmpl [reg1 + <init_thread_offset>], <tmp reg>
1037 // jne patch_stub
1038 // movl [reg1 + <const>], reg (for field offsets) <or>
1039 // movl reg, [reg1 + <const>] (for field offsets)
1040 // jmp continue
1041 // <being_init offset> <bytes to copy> <bytes to skip>
1042 // patch_stub: jmp Runtime1::patch_code (through a runtime stub)
1043 // jmp patch_site
1044 //
1045 // If the class is being initialized the patch body is rewritten and
1046 // the patch site is rewritten to jump to being_init, instead of
1047 // patch_stub. Whenever this code is executed it checks the current
1048 // thread against the initializing thread so other threads will enter
1049 // the runtime and end up blocked waiting the class to finish
1050 // initializing inside the calls to resolve_field below. The
1051 // initializing class will continue on it's way. Once the class is
1052 // fully_initialized, the intializing_thread of the class becomes
1053 // null, so the next thread to execute this code will fail the test,
1054 // call into patch_code and complete the patching process by copying
1055 // the patch body back into the main part of the nmethod and resume
1056 // executing.
1057
1058 // NB:
1059 //
1060 // Patchable instruction sequences inherently exhibit race conditions,
1061 // where thread A is patching an instruction at the same time thread B
1062 // is executing it. The algorithms we use ensure that any observation
1063 // that B can make on any intermediate states during A's patching will
1064 // always end up with a correct outcome. This is easiest if there are
1065 // few or no intermediate states. (Some inline caches have two
1066 // related instructions that must be patched in tandem. For those,
1067 // intermediate states seem to be unavoidable, but we will get the
1068 // right answer from all possible observation orders.)
1069 //
1070 // When patching the entry instruction at the head of a method, or a
1071 // linkable call instruction inside of a method, we try very hard to
1072 // use a patch sequence which executes as a single memory transaction.
1073 // This means, in practice, that when thread A patches an instruction,
1074 // it should patch a 32-bit or 64-bit word that somehow overlaps the
1075 // instruction or is contained in it. We believe that memory hardware
1076 // will never break up such a word write, if it is naturally aligned
1077 // for the word being written. We also know that some CPUs work very
1078 // hard to create atomic updates even of naturally unaligned words,
1079 // but we don't want to bet the farm on this always working.
1080 //
1081 // Therefore, if there is any chance of a race condition, we try to
1082 // patch only naturally aligned words, as single, full-word writes.
1083
1084 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, StubId stub_id ))
1085 #ifndef PRODUCT
1086 if (PrintC1Statistics) {
1087 _patch_code_slowcase_cnt++;
1088 }
1089 #endif
1090
1091 ResourceMark rm(current);
1092 RegisterMap reg_map(current,
1093 RegisterMap::UpdateMap::skip,
1094 RegisterMap::ProcessFrames::include,
1095 RegisterMap::WalkContinuation::skip);
1096 frame runtime_frame = current->last_frame();
1097 frame caller_frame = runtime_frame.sender(®_map);
1098
1099 // last java frame on stack
1100 vframeStream vfst(current, true);
1101 assert(!vfst.at_end(), "Java frame must exist");
1102
1103 methodHandle caller_method(current, vfst.method());
1104 // Note that caller_method->code() may not be same as caller_code because of OSR's
1105 // Note also that in the presence of inlining it is not guaranteed
1106 // that caller_method() == caller_code->method()
1107
1108 int bci = vfst.bci();
1109 Bytecodes::Code code = caller_method()->java_code_at(bci);
1110
1111 // this is used by assertions in the access_field_patching_id
1112 BasicType patch_field_type = T_ILLEGAL;
1113 bool deoptimize_for_volatile = false;
1114 bool deoptimize_for_atomic = false;
1115 bool deoptimize_for_null_free = false;
1116 bool deoptimize_for_flat = false;
1117 bool deoptimize_for_strict_static = false;
1118 int patch_field_offset = -1;
1119 Klass* init_klass = nullptr; // klass needed by load_klass_patching code
1120 Klass* load_klass = nullptr; // klass needed by load_klass_patching code
1121 Handle mirror(current, nullptr); // oop needed by load_mirror_patching code
1122 Handle appendix(current, nullptr); // oop needed by appendix_patching code
1123 bool load_klass_or_mirror_patch_id =
1124 (stub_id == StubId::c1_load_klass_patching_id || stub_id == StubId::c1_load_mirror_patching_id);
1125
1126 if (stub_id == StubId::c1_access_field_patching_id) {
1127
1128 Bytecode_field field_access(caller_method, bci);
1129 fieldDescriptor result; // initialize class if needed
1130 Bytecodes::Code code = field_access.code();
1131 constantPoolHandle constants(current, caller_method->constants());
1132 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
1133 patch_field_offset = result.offset();
1134
1135 // If we're patching a field which is volatile then at compile it
1136 // must not have been know to be volatile, so the generated code
1137 // isn't correct for a volatile reference. The nmethod has to be
1138 // deoptimized so that the code can be regenerated correctly.
1139 // This check is only needed for access_field_patching since this
1140 // is the path for patching field offsets. load_klass is only
1141 // used for patching references to oops which don't need special
1142 // handling in the volatile case.
1143
1144 deoptimize_for_volatile = result.access_flags().is_volatile();
1145
1146 // If we are patching a field which should be atomic, then
1147 // the generated code is not correct either, force deoptimizing.
1148 // We need to only cover T_LONG and T_DOUBLE fields, as we can
1149 // break access atomicity only for them.
1150
1151 // Strictly speaking, the deoptimization on 64-bit platforms
1152 // is unnecessary, and T_LONG stores on 32-bit platforms need
1153 // to be handled by special patching code when AlwaysAtomicAccesses
1154 // becomes product feature. At this point, we are still going
1155 // for the deoptimization for consistency against volatile
1156 // accesses.
1157
1158 patch_field_type = result.field_type();
1159 deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
1160
1161 // The field we are patching is null-free. Deoptimize and regenerate
1162 // the compiled code if we patch a putfield/putstatic because it
1163 // does not contain the required null check.
1164 deoptimize_for_null_free = result.is_null_free_inline_type() && (field_access.is_putfield() || field_access.is_putstatic());
1165
1166 // The field we are patching is flat. Deoptimize and regenerate
1167 // the compiled code which can't handle the layout of the flat
1168 // field because it was unknown at compile time.
1169 deoptimize_for_flat = result.is_flat();
1170
1171 // Strict statics may require tracking if their class is not fully initialized.
1172 // For now we can bail out of the compiler and let the interpreter handle it.
1173 deoptimize_for_strict_static = result.is_strict_static_unset();
1174 } else if (load_klass_or_mirror_patch_id) {
1175 Klass* k = nullptr;
1176 switch (code) {
1177 case Bytecodes::_putstatic:
1178 case Bytecodes::_getstatic:
1179 { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
1180 init_klass = klass;
1181 mirror = Handle(current, klass->java_mirror());
1182 }
1183 break;
1184 case Bytecodes::_new:
1185 { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
1186 k = caller_method->constants()->klass_at(bnew.index(), CHECK);
1187 }
1188 break;
1189 case Bytecodes::_multianewarray:
1190 { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
1191 k = caller_method->constants()->klass_at(mna.index(), CHECK);
1192 }
1193 break;
1194 case Bytecodes::_instanceof:
1195 { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
1196 k = caller_method->constants()->klass_at(io.index(), CHECK);
1197 }
1198 break;
1199 case Bytecodes::_checkcast:
1200 { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
1201 k = caller_method->constants()->klass_at(cc.index(), CHECK);
1202 }
1203 break;
1204 case Bytecodes::_anewarray:
1205 { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
1206 Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
1207 k = ek->array_klass(CHECK);
1208 if (!k->is_typeArray_klass() && !k->is_refArray_klass() && !k->is_flatArray_klass()) {
1209 k = ObjArrayKlass::cast(k)->klass_with_properties(ArrayKlass::ArrayProperties::DEFAULT, THREAD);
1210 }
1211 if (k->is_flatArray_klass()) {
1212 deoptimize_for_flat = true;
1213 }
1214 }
1215 break;
1216 case Bytecodes::_ldc:
1217 case Bytecodes::_ldc_w:
1218 case Bytecodes::_ldc2_w:
1219 {
1220 Bytecode_loadconstant cc(caller_method, bci);
1221 oop m = cc.resolve_constant(CHECK);
1222 mirror = Handle(current, m);
1223 }
1224 break;
1225 default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
1226 }
1227 load_klass = k;
1228 } else if (stub_id == StubId::c1_load_appendix_patching_id) {
1229 Bytecode_invoke bytecode(caller_method, bci);
1230 Bytecodes::Code bc = bytecode.invoke_code();
1231
1232 CallInfo info;
1233 constantPoolHandle pool(current, caller_method->constants());
1234 int index = bytecode.index();
1235 LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
1236 switch (bc) {
1237 case Bytecodes::_invokehandle: {
1238 ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info);
1239 appendix = Handle(current, pool->cache()->appendix_if_resolved(entry));
1240 break;
1241 }
1242 case Bytecodes::_invokedynamic: {
1243 appendix = Handle(current, pool->cache()->set_dynamic_call(info, index));
1244 break;
1245 }
1246 default: fatal("unexpected bytecode for load_appendix_patching_id");
1247 }
1248 } else {
1249 ShouldNotReachHere();
1250 }
1251
1252 if (deoptimize_for_volatile ||
1253 deoptimize_for_atomic ||
1254 deoptimize_for_null_free ||
1255 deoptimize_for_flat ||
1256 deoptimize_for_strict_static) {
1257 // At compile time we assumed the field wasn't volatile/atomic but after
1258 // loading it turns out it was volatile/atomic so we have to throw the
1259 // compiled code out and let it be regenerated.
1260 if (TracePatching) {
1261 if (deoptimize_for_volatile) {
1262 tty->print_cr("Deoptimizing for patching volatile field reference");
1263 }
1264 if (deoptimize_for_atomic) {
1265 tty->print_cr("Deoptimizing for patching atomic field reference");
1266 }
1267 if (deoptimize_for_null_free) {
1268 tty->print_cr("Deoptimizing for patching null-free field reference");
1269 }
1270 if (deoptimize_for_flat) {
1271 tty->print_cr("Deoptimizing for patching flat field or array reference");
1272 }
1273 if (deoptimize_for_strict_static) {
1274 tty->print_cr("Deoptimizing for patching strict static field reference");
1275 }
1276 }
1277
1278 // It's possible the nmethod was invalidated in the last
1279 // safepoint, but if it's still alive then make it not_entrant.
1280 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1281 if (nm != nullptr) {
1282 nm->make_not_entrant(nmethod::InvalidationReason::C1_CODEPATCH);
1283 }
1284
1285 Deoptimization::deoptimize_frame(current, caller_frame.id());
1286
1287 // Return to the now deoptimized frame.
1288 }
1289
1290 // Now copy code back
1291
1292 {
1293 MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag);
1294 //
1295 // Deoptimization may have happened while we waited for the lock.
1296 // In that case we don't bother to do any patching we just return
1297 // and let the deopt happen
1298 if (!caller_is_deopted(current)) {
1299 NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1300 address instr_pc = jump->jump_destination();
1301 NativeInstruction* ni = nativeInstruction_at(instr_pc);
1302 if (ni->is_jump() ) {
1303 // the jump has not been patched yet
1304 // The jump destination is slow case and therefore not part of the stubs
1305 // (stubs are only for StaticCalls)
1306
1307 // format of buffer
1308 // ....
1309 // instr byte 0 <-- copy_buff
1310 // instr byte 1
1311 // ..
1312 // instr byte n-1
1313 // n
1314 // .... <-- call destination
1315
1316 address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1317 unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1318 unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1319 unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1320 address copy_buff = stub_location - *byte_skip - *byte_count;
1321 address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1322 if (TracePatching) {
1323 ttyLocker ttyl;
1324 tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT " (%s)", Bytecodes::name(code), bci,
1325 p2i(instr_pc), (stub_id == StubId::c1_access_field_patching_id) ? "field" : "klass");
1326 nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1327 assert(caller_code != nullptr, "nmethod not found");
1328
1329 // NOTE we use pc() not original_pc() because we already know they are
1330 // identical otherwise we'd have never entered this block of code
1331
1332 const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1333 assert(map != nullptr, "null check");
1334 map->print();
1335 tty->cr();
1336
1337 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1338 }
1339 // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1340 bool do_patch = true;
1341 if (stub_id == StubId::c1_access_field_patching_id) {
1342 // The offset may not be correct if the class was not loaded at code generation time.
1343 // Set it now.
1344 NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1345 assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1346 assert(patch_field_offset >= 0, "illegal offset");
1347 n_move->add_offset_in_bytes(patch_field_offset);
1348 } else if (load_klass_or_mirror_patch_id) {
1349 // If a getstatic or putstatic is referencing a klass which
1350 // isn't fully initialized, the patch body isn't copied into
1351 // place until initialization is complete. In this case the
1352 // patch site is setup so that any threads besides the
1353 // initializing thread are forced to come into the VM and
1354 // block.
1355 do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1356 InstanceKlass::cast(init_klass)->is_initialized();
1357 NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1358 if (jump->jump_destination() == being_initialized_entry) {
1359 assert(do_patch == true, "initialization must be complete at this point");
1360 } else {
1361 // patch the instruction <move reg, klass>
1362 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1363
1364 assert(n_copy->data() == 0 ||
1365 n_copy->data() == (intptr_t)Universe::non_oop_word(),
1366 "illegal init value");
1367 if (stub_id == StubId::c1_load_klass_patching_id) {
1368 assert(load_klass != nullptr, "klass not set");
1369 n_copy->set_data((intx) (load_klass));
1370 } else {
1371 // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1372 n_copy->set_data(cast_from_oop<intx>(mirror()));
1373 }
1374
1375 if (TracePatching) {
1376 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1377 }
1378 }
1379 } else if (stub_id == StubId::c1_load_appendix_patching_id) {
1380 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1381 assert(n_copy->data() == 0 ||
1382 n_copy->data() == (intptr_t)Universe::non_oop_word(),
1383 "illegal init value");
1384 n_copy->set_data(cast_from_oop<intx>(appendix()));
1385
1386 if (TracePatching) {
1387 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1388 }
1389 } else {
1390 ShouldNotReachHere();
1391 }
1392
1393 if (do_patch) {
1394 // replace instructions
1395 // first replace the tail, then the call
1396 #ifdef ARM
1397 if((load_klass_or_mirror_patch_id ||
1398 stub_id == StubId::c1_load_appendix_patching_id) &&
1399 nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1400 nmethod* nm = CodeCache::find_nmethod(instr_pc);
1401 address addr = nullptr;
1402 assert(nm != nullptr, "invalid nmethod_pc");
1403 RelocIterator mds(nm, copy_buff, copy_buff + 1);
1404 while (mds.next()) {
1405 if (mds.type() == relocInfo::oop_type) {
1406 assert(stub_id == StubId::c1_load_mirror_patching_id ||
1407 stub_id == StubId::c1_load_appendix_patching_id, "wrong stub id");
1408 oop_Relocation* r = mds.oop_reloc();
1409 addr = (address)r->oop_addr();
1410 break;
1411 } else if (mds.type() == relocInfo::metadata_type) {
1412 assert(stub_id == StubId::c1_load_klass_patching_id, "wrong stub id");
1413 metadata_Relocation* r = mds.metadata_reloc();
1414 addr = (address)r->metadata_addr();
1415 break;
1416 }
1417 }
1418 assert(addr != nullptr, "metadata relocation must exist");
1419 copy_buff -= *byte_count;
1420 NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1421 n_copy2->set_pc_relative_offset(addr, instr_pc);
1422 }
1423 #endif
1424
1425 for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1426 address ptr = copy_buff + i;
1427 int a_byte = (*ptr) & 0xFF;
1428 address dst = instr_pc + i;
1429 *(unsigned char*)dst = (unsigned char) a_byte;
1430 }
1431 ICache::invalidate_range(instr_pc, *byte_count);
1432 NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1433
1434 if (load_klass_or_mirror_patch_id ||
1435 stub_id == StubId::c1_load_appendix_patching_id) {
1436 relocInfo::relocType rtype =
1437 (stub_id == StubId::c1_load_klass_patching_id) ?
1438 relocInfo::metadata_type :
1439 relocInfo::oop_type;
1440 // update relocInfo to metadata
1441 nmethod* nm = CodeCache::find_nmethod(instr_pc);
1442 assert(nm != nullptr, "invalid nmethod_pc");
1443
1444 // The old patch site is now a move instruction so update
1445 // the reloc info so that it will get updated during
1446 // future GCs.
1447 RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1448 relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1449 relocInfo::none, rtype);
1450 }
1451
1452 } else {
1453 ICache::invalidate_range(copy_buff, *byte_count);
1454 NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1455 }
1456 }
1457 }
1458 // If we are patching in a non-perm oop, make sure the nmethod
1459 // is on the right list.
1460 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1461 guarantee(nm != nullptr, "only nmethods can contain non-perm oops");
1462
1463 // Since we've patched some oops in the nmethod,
1464 // (re)register it with the heap.
1465 Universe::heap()->register_nmethod(nm);
1466 }
1467 JRT_END
1468
1469 #else // DEOPTIMIZE_WHEN_PATCHING
1470
1471 static bool is_patching_needed(JavaThread* current, StubId stub_id) {
1472 if (stub_id == StubId::c1_load_klass_patching_id ||
1473 stub_id == StubId::c1_load_mirror_patching_id) {
1474 // last java frame on stack
1475 vframeStream vfst(current, true);
1476 assert(!vfst.at_end(), "Java frame must exist");
1477
1478 methodHandle caller_method(current, vfst.method());
1479 int bci = vfst.bci();
1480 Bytecodes::Code code = caller_method()->java_code_at(bci);
1481
1482 switch (code) {
1483 case Bytecodes::_new:
1484 case Bytecodes::_anewarray:
1485 case Bytecodes::_multianewarray:
1486 case Bytecodes::_instanceof:
1487 case Bytecodes::_checkcast: {
1488 Bytecode bc(caller_method(), caller_method->bcp_from(bci));
1489 constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code));
1490 if (tag.is_unresolved_klass_in_error()) {
1491 return false; // throws resolution error
1492 }
1493 break;
1494 }
1495
1496 default: break;
1497 }
1498 }
1499 return true;
1500 }
1501
1502 void Runtime1::patch_code(JavaThread* current, StubId stub_id) {
1503 #ifndef PRODUCT
1504 if (PrintC1Statistics) {
1505 _patch_code_slowcase_cnt++;
1506 }
1507 #endif
1508
1509 // Enable WXWrite: the function is called by c1 stub as a runtime function
1510 // (see another implementation above).
1511 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1512
1513 if (TracePatching) {
1514 tty->print_cr("Deoptimizing because patch is needed");
1515 }
1516
1517 RegisterMap reg_map(current,
1518 RegisterMap::UpdateMap::skip,
1519 RegisterMap::ProcessFrames::include,
1520 RegisterMap::WalkContinuation::skip);
1521
1522 frame runtime_frame = current->last_frame();
1523 frame caller_frame = runtime_frame.sender(®_map);
1524 assert(caller_frame.is_compiled_frame(), "Wrong frame type");
1525
1526 if (is_patching_needed(current, stub_id)) {
1527 // Make sure the nmethod is invalidated, i.e. made not entrant.
1528 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1529 if (nm != nullptr) {
1530 nm->make_not_entrant(nmethod::InvalidationReason::C1_DEOPTIMIZE_FOR_PATCHING);
1531 }
1532 }
1533
1534 Deoptimization::deoptimize_frame(current, caller_frame.id());
1535 // Return to the now deoptimized frame.
1536 postcond(caller_is_deopted(current));
1537 }
1538
1539 #endif // DEOPTIMIZE_WHEN_PATCHING
1540
1541 // Entry point for compiled code. We want to patch a nmethod.
1542 // We don't do a normal VM transition here because we want to
1543 // know after the patching is complete and any safepoint(s) are taken
1544 // if the calling nmethod was deoptimized. We do this by calling a
1545 // helper method which does the normal VM transition and when it
1546 // completes we can check for deoptimization. This simplifies the
1547 // assembly code in the cpu directories.
1548 //
1549 int Runtime1::move_klass_patching(JavaThread* current) {
1550 //
1551 // NOTE: we are still in Java
1552 //
1553 DEBUG_ONLY(NoHandleMark nhm;)
1554 {
1555 // Enter VM mode
1556 ResetNoHandleMark rnhm;
1557 patch_code(current, StubId::c1_load_klass_patching_id);
1558 }
1559 // Back in JAVA, use no oops DON'T safepoint
1560
1561 // Return true if calling code is deoptimized
1562
1563 return caller_is_deopted(current);
1564 }
1565
1566 int Runtime1::move_mirror_patching(JavaThread* current) {
1567 //
1568 // NOTE: we are still in Java
1569 //
1570 DEBUG_ONLY(NoHandleMark nhm;)
1571 {
1572 // Enter VM mode
1573 ResetNoHandleMark rnhm;
1574 patch_code(current, StubId::c1_load_mirror_patching_id);
1575 }
1576 // Back in JAVA, use no oops DON'T safepoint
1577
1578 // Return true if calling code is deoptimized
1579
1580 return caller_is_deopted(current);
1581 }
1582
1583 int Runtime1::move_appendix_patching(JavaThread* current) {
1584 //
1585 // NOTE: we are still in Java
1586 //
1587 DEBUG_ONLY(NoHandleMark nhm;)
1588 {
1589 // Enter VM mode
1590 ResetNoHandleMark rnhm;
1591 patch_code(current, StubId::c1_load_appendix_patching_id);
1592 }
1593 // Back in JAVA, use no oops DON'T safepoint
1594
1595 // Return true if calling code is deoptimized
1596
1597 return caller_is_deopted(current);
1598 }
1599
1600 // Entry point for compiled code. We want to patch a nmethod.
1601 // We don't do a normal VM transition here because we want to
1602 // know after the patching is complete and any safepoint(s) are taken
1603 // if the calling nmethod was deoptimized. We do this by calling a
1604 // helper method which does the normal VM transition and when it
1605 // completes we can check for deoptimization. This simplifies the
1606 // assembly code in the cpu directories.
1607 //
1608 int Runtime1::access_field_patching(JavaThread* current) {
1609 //
1610 // NOTE: we are still in Java
1611 //
1612 // Handles created in this function will be deleted by the
1613 // HandleMarkCleaner in the transition to the VM.
1614 NoHandleMark nhm;
1615 {
1616 // Enter VM mode
1617 ResetNoHandleMark rnhm;
1618 patch_code(current, StubId::c1_access_field_patching_id);
1619 }
1620 // Back in JAVA, use no oops DON'T safepoint
1621
1622 // Return true if calling code is deoptimized
1623
1624 return caller_is_deopted(current);
1625 }
1626
1627
1628 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1629 // for now we just print out the block id
1630 tty->print("%d ", block_id);
1631 JRT_END
1632
1633
1634 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1635 // had to return int instead of bool, otherwise there may be a mismatch
1636 // between the C calling convention and the Java one.
1637 // e.g., on x86, GCC may clear only %al when returning a bool false, but
1638 // JVM takes the whole %eax as the return value, which may misinterpret
1639 // the return value as a boolean true.
1640
1641 assert(mirror != nullptr, "should null-check on mirror before calling");
1642 Klass* k = java_lang_Class::as_Klass(mirror);
1643 return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0;
1644 JRT_END
1645
1646 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current))
1647 ResourceMark rm;
1648
1649 RegisterMap reg_map(current,
1650 RegisterMap::UpdateMap::skip,
1651 RegisterMap::ProcessFrames::include,
1652 RegisterMap::WalkContinuation::skip);
1653 frame runtime_frame = current->last_frame();
1654 frame caller_frame = runtime_frame.sender(®_map);
1655
1656 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1657 assert (nm != nullptr, "no more nmethod?");
1658 nm->make_not_entrant(nmethod::InvalidationReason::C1_PREDICATE_FAILED_TRAP);
1659
1660 methodHandle m(current, nm->method());
1661 MethodData* mdo = m->method_data();
1662
1663 if (mdo == nullptr && !HAS_PENDING_EXCEPTION) {
1664 // Build an MDO. Ignore errors like OutOfMemory;
1665 // that simply means we won't have an MDO to update.
1666 Method::build_profiling_method_data(m, THREAD);
1667 if (HAS_PENDING_EXCEPTION) {
1668 // Only metaspace OOM is expected. No Java code executed.
1669 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1670 CLEAR_PENDING_EXCEPTION;
1671 }
1672 mdo = m->method_data();
1673 }
1674
1675 if (mdo != nullptr) {
1676 mdo->inc_trap_count(Deoptimization::Reason_none);
1677 }
1678
1679 if (TracePredicateFailedTraps) {
1680 stringStream ss1, ss2;
1681 vframeStream vfst(current);
1682 Method* inlinee = vfst.method();
1683 inlinee->print_short_name(&ss1);
1684 m->print_short_name(&ss2);
1685 tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc()));
1686 }
1687
1688
1689 Deoptimization::deoptimize_frame(current, caller_frame.id());
1690
1691 JRT_END
1692
1693 // Check exception if AbortVMOnException flag set
1694 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex))
1695 ResourceMark rm;
1696 const char* message = nullptr;
1697 if (ex->is_a(vmClasses::Throwable_klass())) {
1698 oop msg = java_lang_Throwable::message(ex);
1699 if (msg != nullptr) {
1700 message = java_lang_String::as_utf8_string(msg);
1701 }
1702 }
1703 Exceptions::debug_check_abort(ex->klass()->external_name(), message);
1704 JRT_END
1705
1706 #ifndef PRODUCT
1707 void Runtime1::print_statistics() {
1708 tty->print_cr("C1 Runtime statistics:");
1709 tty->print_cr(" _resolve_invoke_virtual_cnt: %u", SharedRuntime::_resolve_virtual_ctr);
1710 tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr);
1711 tty->print_cr(" _resolve_invoke_static_cnt: %u", SharedRuntime::_resolve_static_ctr);
1712 tty->print_cr(" _handle_wrong_method_cnt: %u", SharedRuntime::_wrong_method_ctr);
1713 tty->print_cr(" _ic_miss_cnt: %u", SharedRuntime::_ic_miss_ctr);
1714 tty->print_cr(" _generic_arraycopystub_cnt: %u", _generic_arraycopystub_cnt);
1715 tty->print_cr(" _byte_arraycopy_cnt: %u", _byte_arraycopy_stub_cnt);
1716 tty->print_cr(" _short_arraycopy_cnt: %u", _short_arraycopy_stub_cnt);
1717 tty->print_cr(" _int_arraycopy_cnt: %u", _int_arraycopy_stub_cnt);
1718 tty->print_cr(" _long_arraycopy_cnt: %u", _long_arraycopy_stub_cnt);
1719 tty->print_cr(" _oop_arraycopy_cnt: %u", _oop_arraycopy_stub_cnt);
1720 tty->print_cr(" _arraycopy_slowcase_cnt: %u", _arraycopy_slowcase_cnt);
1721 tty->print_cr(" _arraycopy_checkcast_cnt: %u", _arraycopy_checkcast_cnt);
1722 tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt);
1723
1724 tty->print_cr(" _new_type_array_slowcase_cnt: %u", _new_type_array_slowcase_cnt);
1725 tty->print_cr(" _new_object_array_slowcase_cnt: %u", _new_object_array_slowcase_cnt);
1726 tty->print_cr(" _new_null_free_array_slowcase_cnt: %u", _new_null_free_array_slowcase_cnt);
1727 tty->print_cr(" _new_instance_slowcase_cnt: %u", _new_instance_slowcase_cnt);
1728 tty->print_cr(" _new_multi_array_slowcase_cnt: %u", _new_multi_array_slowcase_cnt);
1729 tty->print_cr(" _load_flat_array_slowcase_cnt: %u", _load_flat_array_slowcase_cnt);
1730 tty->print_cr(" _store_flat_array_slowcase_cnt: %u", _store_flat_array_slowcase_cnt);
1731 tty->print_cr(" _substitutability_check_slowcase_cnt: %u", _substitutability_check_slowcase_cnt);
1732 tty->print_cr(" _buffer_inline_args_slowcase_cnt:%u", _buffer_inline_args_slowcase_cnt);
1733 tty->print_cr(" _buffer_inline_args_no_receiver_slowcase_cnt:%u", _buffer_inline_args_no_receiver_slowcase_cnt);
1734
1735 tty->print_cr(" _monitorenter_slowcase_cnt: %u", _monitorenter_slowcase_cnt);
1736 tty->print_cr(" _monitorexit_slowcase_cnt: %u", _monitorexit_slowcase_cnt);
1737 tty->print_cr(" _patch_code_slowcase_cnt: %u", _patch_code_slowcase_cnt);
1738
1739 tty->print_cr(" _throw_range_check_exception_count: %u:", _throw_range_check_exception_count);
1740 tty->print_cr(" _throw_index_exception_count: %u:", _throw_index_exception_count);
1741 tty->print_cr(" _throw_div0_exception_count: %u:", _throw_div0_exception_count);
1742 tty->print_cr(" _throw_null_pointer_exception_count: %u:", _throw_null_pointer_exception_count);
1743 tty->print_cr(" _throw_class_cast_exception_count: %u:", _throw_class_cast_exception_count);
1744 tty->print_cr(" _throw_incompatible_class_change_error_count: %u:", _throw_incompatible_class_change_error_count);
1745 tty->print_cr(" _throw_illegal_monitor_state_exception_count: %u:", _throw_illegal_monitor_state_exception_count);
1746 tty->print_cr(" _throw_identity_exception_count: %u:", _throw_identity_exception_count);
1747 tty->print_cr(" _throw_count: %u:", _throw_count);
1748
1749 SharedRuntime::print_ic_miss_histogram();
1750 tty->cr();
1751 }
1752 #endif // PRODUCT