1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/codeBuffer.hpp" 26 #include "c1/c1_CodeStubs.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_LIRAssembler.hpp" 29 #include "c1/c1_MacroAssembler.hpp" 30 #include "c1/c1_Runtime1.hpp" 31 #include "classfile/javaClasses.inline.hpp" 32 #include "classfile/vmClasses.hpp" 33 #include "classfile/vmSymbols.hpp" 34 #include "code/aotCodeCache.hpp" 35 #include "code/codeBlob.hpp" 36 #include "code/compiledIC.hpp" 37 #include "code/scopeDesc.hpp" 38 #include "code/vtableStubs.hpp" 39 #include "compiler/compilationPolicy.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "compiler/oopMap.hpp" 42 #include "gc/shared/barrierSet.hpp" 43 #include "gc/shared/c1/barrierSetC1.hpp" 44 #include "gc/shared/collectedHeap.hpp" 45 #include "interpreter/bytecode.hpp" 46 #include "interpreter/interpreter.hpp" 47 #include "jfr/support/jfrIntrinsics.hpp" 48 #include "logging/log.hpp" 49 #include "memory/oopFactory.hpp" 50 #include "memory/resourceArea.hpp" 51 #include "memory/universe.hpp" 52 #include "oops/access.inline.hpp" 53 #include "oops/flatArrayKlass.hpp" 54 #include "oops/flatArrayOop.inline.hpp" 55 #include "oops/objArrayKlass.hpp" 56 #include "oops/objArrayOop.inline.hpp" 57 #include "oops/oop.inline.hpp" 58 #include "prims/jvmtiExport.hpp" 59 #include "runtime/atomic.hpp" 60 #include "runtime/fieldDescriptor.inline.hpp" 61 #include "runtime/frame.inline.hpp" 62 #include "runtime/handles.inline.hpp" 63 #include "runtime/interfaceSupport.inline.hpp" 64 #include "runtime/javaCalls.hpp" 65 #include "runtime/sharedRuntime.hpp" 66 #include "runtime/stackWatermarkSet.hpp" 67 #include "runtime/stubRoutines.hpp" 68 #include "runtime/vframe.inline.hpp" 69 #include "runtime/vframeArray.hpp" 70 #include "runtime/vm_version.hpp" 71 #include "utilities/copy.hpp" 72 #include "utilities/events.hpp" 73 74 75 // Implementation of StubAssembler 76 77 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) { 78 _name = name; 79 _must_gc_arguments = false; 80 _frame_size = no_frame_size; 81 _num_rt_args = 0; 82 _stub_id = stub_id; 83 } 84 85 86 void StubAssembler::set_info(const char* name, bool must_gc_arguments) { 87 _name = name; 88 _must_gc_arguments = must_gc_arguments; 89 } 90 91 92 void StubAssembler::set_frame_size(int size) { 93 if (_frame_size == no_frame_size) { 94 _frame_size = size; 95 } 96 assert(_frame_size == size, "can't change the frame size"); 97 } 98 99 100 void StubAssembler::set_num_rt_args(int args) { 101 if (_num_rt_args == 0) { 102 _num_rt_args = args; 103 } 104 assert(_num_rt_args == args, "can't change the number of args"); 105 } 106 107 // Implementation of Runtime1 108 109 CodeBlob* Runtime1::_blobs[(int)C1StubId::NUM_STUBIDS]; 110 111 #define C1_BLOB_NAME_DEFINE(name) "C1 Runtime " # name "_blob", 112 const char *Runtime1::_blob_names[] = { 113 C1_STUBS_DO(C1_BLOB_NAME_DEFINE) 114 }; 115 #undef C1_STUB_NAME_DEFINE 116 117 #ifndef PRODUCT 118 // statistics 119 uint Runtime1::_generic_arraycopystub_cnt = 0; 120 uint Runtime1::_arraycopy_slowcase_cnt = 0; 121 uint Runtime1::_arraycopy_checkcast_cnt = 0; 122 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0; 123 uint Runtime1::_new_type_array_slowcase_cnt = 0; 124 uint Runtime1::_new_object_array_slowcase_cnt = 0; 125 uint Runtime1::_new_null_free_array_slowcase_cnt = 0; 126 uint Runtime1::_new_instance_slowcase_cnt = 0; 127 uint Runtime1::_new_multi_array_slowcase_cnt = 0; 128 uint Runtime1::_load_flat_array_slowcase_cnt = 0; 129 uint Runtime1::_store_flat_array_slowcase_cnt = 0; 130 uint Runtime1::_substitutability_check_slowcase_cnt = 0; 131 uint Runtime1::_buffer_inline_args_slowcase_cnt = 0; 132 uint Runtime1::_buffer_inline_args_no_receiver_slowcase_cnt = 0; 133 uint Runtime1::_monitorenter_slowcase_cnt = 0; 134 uint Runtime1::_monitorexit_slowcase_cnt = 0; 135 uint Runtime1::_patch_code_slowcase_cnt = 0; 136 uint Runtime1::_throw_range_check_exception_count = 0; 137 uint Runtime1::_throw_index_exception_count = 0; 138 uint Runtime1::_throw_div0_exception_count = 0; 139 uint Runtime1::_throw_null_pointer_exception_count = 0; 140 uint Runtime1::_throw_class_cast_exception_count = 0; 141 uint Runtime1::_throw_incompatible_class_change_error_count = 0; 142 uint Runtime1::_throw_illegal_monitor_state_exception_count = 0; 143 uint Runtime1::_throw_identity_exception_count = 0; 144 uint Runtime1::_throw_count = 0; 145 146 static uint _byte_arraycopy_stub_cnt = 0; 147 static uint _short_arraycopy_stub_cnt = 0; 148 static uint _int_arraycopy_stub_cnt = 0; 149 static uint _long_arraycopy_stub_cnt = 0; 150 static uint _oop_arraycopy_stub_cnt = 0; 151 152 address Runtime1::arraycopy_count_address(BasicType type) { 153 switch (type) { 154 case T_BOOLEAN: 155 case T_BYTE: return (address)&_byte_arraycopy_stub_cnt; 156 case T_CHAR: 157 case T_SHORT: return (address)&_short_arraycopy_stub_cnt; 158 case T_FLOAT: 159 case T_INT: return (address)&_int_arraycopy_stub_cnt; 160 case T_DOUBLE: 161 case T_LONG: return (address)&_long_arraycopy_stub_cnt; 162 case T_ARRAY: 163 case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt; 164 default: 165 ShouldNotReachHere(); 166 return nullptr; 167 } 168 } 169 170 171 #endif 172 173 // Simple helper to see if the caller of a runtime stub which 174 // entered the VM has been deoptimized 175 176 static bool caller_is_deopted(JavaThread* current) { 177 RegisterMap reg_map(current, 178 RegisterMap::UpdateMap::skip, 179 RegisterMap::ProcessFrames::include, 180 RegisterMap::WalkContinuation::skip); 181 frame runtime_frame = current->last_frame(); 182 frame caller_frame = runtime_frame.sender(®_map); 183 assert(caller_frame.is_compiled_frame(), "must be compiled"); 184 return caller_frame.is_deoptimized_frame(); 185 } 186 187 // Stress deoptimization 188 static void deopt_caller(JavaThread* current) { 189 if (!caller_is_deopted(current)) { 190 RegisterMap reg_map(current, 191 RegisterMap::UpdateMap::skip, 192 RegisterMap::ProcessFrames::include, 193 RegisterMap::WalkContinuation::skip); 194 frame runtime_frame = current->last_frame(); 195 frame caller_frame = runtime_frame.sender(®_map); 196 Deoptimization::deoptimize_frame(current, caller_frame.id()); 197 assert(caller_is_deopted(current), "Must be deoptimized"); 198 } 199 } 200 201 class C1StubIdStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure { 202 private: 203 C1StubId _id; 204 public: 205 C1StubIdStubAssemblerCodeGenClosure(C1StubId id) : _id(id) {} 206 virtual OopMapSet* generate_code(StubAssembler* sasm) { 207 return Runtime1::generate_code_for(_id, sasm); 208 } 209 }; 210 211 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, C1StubId id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) { 212 if ((int)id >= 0) { 213 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::C1Blob, (uint)id, name, 0, nullptr); 214 if (blob != nullptr) { 215 return blob; 216 } 217 } 218 219 ResourceMark rm; 220 // create code buffer for code storage 221 CodeBuffer code(buffer_blob); 222 223 OopMapSet* oop_maps; 224 int frame_size; 225 bool must_gc_arguments; 226 227 Compilation::setup_code_buffer(&code, 0); 228 229 // create assembler for code generation 230 StubAssembler* sasm = new StubAssembler(&code, name, (int)id); 231 // generate code for runtime stub 232 oop_maps = cl->generate_code(sasm); 233 assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size, 234 "if stub has an oop map it must have a valid frame size"); 235 assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap"); 236 237 // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned) 238 sasm->align(BytesPerWord); 239 // make sure all code is in code buffer 240 sasm->flush(); 241 242 frame_size = sasm->frame_size(); 243 must_gc_arguments = sasm->must_gc_arguments(); 244 // create blob - distinguish a few special cases 245 CodeBlob* blob = RuntimeStub::new_runtime_stub(name, 246 &code, 247 CodeOffsets::frame_never_safe, 248 frame_size, 249 oop_maps, 250 must_gc_arguments, 251 false /* alloc_fail_is_fatal */ ); 252 if (blob != nullptr && (int)id >= 0) { 253 AOTCodeCache::store_code_blob(*blob, AOTCodeEntry::C1Blob, (uint)id, name, 0, nullptr); 254 } 255 return blob; 256 } 257 258 bool Runtime1::generate_blob_for(BufferBlob* buffer_blob, C1StubId id) { 259 assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id"); 260 bool expect_oop_map = true; 261 #ifdef ASSERT 262 // Make sure that stubs that need oopmaps have them 263 switch (id) { 264 // These stubs don't need to have an oopmap 265 case C1StubId::dtrace_object_alloc_id: 266 case C1StubId::slow_subtype_check_id: 267 case C1StubId::fpu2long_stub_id: 268 case C1StubId::unwind_exception_id: 269 case C1StubId::counter_overflow_id: 270 case C1StubId::is_instance_of_id: 271 expect_oop_map = false; 272 break; 273 default: 274 break; 275 } 276 #endif 277 C1StubIdStubAssemblerCodeGenClosure cl(id); 278 CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl); 279 // install blob 280 _blobs[(int)id] = blob; 281 return blob != nullptr; 282 } 283 284 bool Runtime1::initialize(BufferBlob* blob) { 285 // platform-dependent initialization 286 initialize_pd(); 287 // generate stubs 288 int limit = (int)C1StubId::NUM_STUBIDS; 289 for (int id = 0; id <= (int)C1StubId::forward_exception_id; id++) { 290 if (!generate_blob_for(blob, (C1StubId) id)) { 291 return false; 292 } 293 } 294 AOTCodeCache::init_early_c1_table(); 295 for (int id = (int)C1StubId::forward_exception_id+1; id < limit; id++) { 296 if (!generate_blob_for(blob, (C1StubId) id)) { 297 return false; 298 } 299 } 300 // printing 301 #ifndef PRODUCT 302 if (PrintSimpleStubs) { 303 ResourceMark rm; 304 for (int id = 0; id < limit; id++) { 305 _blobs[id]->print(); 306 if (_blobs[id]->oop_maps() != nullptr) { 307 _blobs[id]->oop_maps()->print(); 308 } 309 } 310 } 311 #endif 312 BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1(); 313 return bs->generate_c1_runtime_stubs(blob); 314 } 315 316 CodeBlob* Runtime1::blob_for(C1StubId id) { 317 assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id"); 318 return _blobs[(int)id]; 319 } 320 321 322 const char* Runtime1::name_for(C1StubId id) { 323 assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id"); 324 return _blob_names[(int)id]; 325 } 326 327 const char* Runtime1::name_for_address(address entry) { 328 int limit = (int)C1StubId::NUM_STUBIDS; 329 for (int i = 0; i < limit; i++) { 330 C1StubId id = (C1StubId)i; 331 if (entry == entry_for(id)) return name_for(id); 332 } 333 334 #define FUNCTION_CASE(a, f) \ 335 if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f 336 337 FUNCTION_CASE(entry, os::javaTimeMillis); 338 FUNCTION_CASE(entry, os::javaTimeNanos); 339 FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end); 340 FUNCTION_CASE(entry, SharedRuntime::d2f); 341 FUNCTION_CASE(entry, SharedRuntime::d2i); 342 FUNCTION_CASE(entry, SharedRuntime::d2l); 343 FUNCTION_CASE(entry, SharedRuntime::dcos); 344 FUNCTION_CASE(entry, SharedRuntime::dexp); 345 FUNCTION_CASE(entry, SharedRuntime::dlog); 346 FUNCTION_CASE(entry, SharedRuntime::dlog10); 347 FUNCTION_CASE(entry, SharedRuntime::dpow); 348 FUNCTION_CASE(entry, SharedRuntime::drem); 349 FUNCTION_CASE(entry, SharedRuntime::dsin); 350 FUNCTION_CASE(entry, SharedRuntime::dtan); 351 FUNCTION_CASE(entry, SharedRuntime::f2i); 352 FUNCTION_CASE(entry, SharedRuntime::f2l); 353 FUNCTION_CASE(entry, SharedRuntime::frem); 354 FUNCTION_CASE(entry, SharedRuntime::l2d); 355 FUNCTION_CASE(entry, SharedRuntime::l2f); 356 FUNCTION_CASE(entry, SharedRuntime::ldiv); 357 FUNCTION_CASE(entry, SharedRuntime::lmul); 358 FUNCTION_CASE(entry, SharedRuntime::lrem); 359 FUNCTION_CASE(entry, SharedRuntime::lrem); 360 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry); 361 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit); 362 FUNCTION_CASE(entry, is_instance_of); 363 FUNCTION_CASE(entry, trace_block_entry); 364 #ifdef JFR_HAVE_INTRINSICS 365 FUNCTION_CASE(entry, JfrTime::time_function()); 366 #endif 367 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32()); 368 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C()); 369 FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch()); 370 FUNCTION_CASE(entry, StubRoutines::dexp()); 371 FUNCTION_CASE(entry, StubRoutines::dlog()); 372 FUNCTION_CASE(entry, StubRoutines::dlog10()); 373 FUNCTION_CASE(entry, StubRoutines::dpow()); 374 FUNCTION_CASE(entry, StubRoutines::dsin()); 375 FUNCTION_CASE(entry, StubRoutines::dcos()); 376 FUNCTION_CASE(entry, StubRoutines::dtan()); 377 FUNCTION_CASE(entry, StubRoutines::dtanh()); 378 379 #undef FUNCTION_CASE 380 381 // Soft float adds more runtime names. 382 return pd_name_for_address(entry); 383 } 384 385 static void allocate_instance(JavaThread* current, Klass* klass, TRAPS) { 386 #ifndef PRODUCT 387 if (PrintC1Statistics) { 388 Runtime1::_new_instance_slowcase_cnt++; 389 } 390 #endif 391 assert(klass->is_klass(), "not a class"); 392 Handle holder(current, klass->klass_holder()); // keep the klass alive 393 InstanceKlass* h = InstanceKlass::cast(klass); 394 h->check_valid_for_instantiation(true, CHECK); 395 // make sure klass is initialized 396 h->initialize(CHECK); 397 // allocate instance and return via TLS 398 oop obj = h->allocate_instance(CHECK); 399 current->set_vm_result_oop(obj); 400 JRT_END 401 402 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass)) 403 allocate_instance(current, klass, CHECK); 404 JRT_END 405 406 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length)) 407 #ifndef PRODUCT 408 if (PrintC1Statistics) { 409 _new_type_array_slowcase_cnt++; 410 } 411 #endif 412 // Note: no handle for klass needed since they are not used 413 // anymore after new_typeArray() and no GC can happen before. 414 // (This may have to change if this code changes!) 415 assert(klass->is_klass(), "not a class"); 416 BasicType elt_type = TypeArrayKlass::cast(klass)->element_type(); 417 oop obj = oopFactory::new_typeArray(elt_type, length, CHECK); 418 current->set_vm_result_oop(obj); 419 // This is pretty rare but this runtime patch is stressful to deoptimization 420 // if we deoptimize here so force a deopt to stress the path. 421 if (DeoptimizeALot) { 422 deopt_caller(current); 423 } 424 425 JRT_END 426 427 428 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length)) 429 #ifndef PRODUCT 430 if (PrintC1Statistics) { 431 _new_object_array_slowcase_cnt++; 432 } 433 #endif 434 // Note: no handle for klass needed since they are not used 435 // anymore after new_objArray() and no GC can happen before. 436 // (This may have to change if this code changes!) 437 assert(array_klass->is_klass(), "not a class"); 438 Handle holder(current, array_klass->klass_holder()); // keep the klass alive 439 Klass* elem_klass = ArrayKlass::cast(array_klass)->element_klass(); 440 objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK); 441 current->set_vm_result_oop(obj); 442 // This is pretty rare but this runtime patch is stressful to deoptimization 443 // if we deoptimize here so force a deopt to stress the path. 444 if (DeoptimizeALot) { 445 deopt_caller(current); 446 } 447 JRT_END 448 449 450 JRT_ENTRY(void, Runtime1::new_null_free_array(JavaThread* current, Klass* array_klass, jint length)) 451 NOT_PRODUCT(_new_null_free_array_slowcase_cnt++;) 452 // TODO 8350865 This is dead code since 8325660 because null-free arrays can only be created via the factory methods that are not yet implemented in C1. Should probably be fixed by 8265122. 453 454 // Note: no handle for klass needed since they are not used 455 // anymore after new_objArray() and no GC can happen before. 456 // (This may have to change if this code changes!) 457 assert(array_klass->is_klass(), "not a class"); 458 Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive 459 Klass* elem_klass = ArrayKlass::cast(array_klass)->element_klass(); 460 assert(elem_klass->is_inline_klass(), "must be"); 461 InlineKlass* vk = InlineKlass::cast(elem_klass); 462 // Logically creates elements, ensure klass init 463 elem_klass->initialize(CHECK); 464 arrayOop obj= nullptr; 465 if (UseArrayFlattening && vk->has_non_atomic_layout()) { 466 obj = oopFactory::new_flatArray(elem_klass, length, LayoutKind::NON_ATOMIC_FLAT, CHECK); 467 } else { 468 obj = oopFactory::new_null_free_objArray(elem_klass, length, CHECK); 469 } 470 current->set_vm_result_oop(obj); 471 // This is pretty rare but this runtime patch is stressful to deoptimization 472 // if we deoptimize here so force a deopt to stress the path. 473 if (DeoptimizeALot) { 474 deopt_caller(current); 475 } 476 JRT_END 477 478 479 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims)) 480 #ifndef PRODUCT 481 if (PrintC1Statistics) { 482 _new_multi_array_slowcase_cnt++; 483 } 484 #endif 485 assert(klass->is_klass(), "not a class"); 486 assert(rank >= 1, "rank must be nonzero"); 487 Handle holder(current, klass->klass_holder()); // keep the klass alive 488 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); 489 current->set_vm_result_oop(obj); 490 JRT_END 491 492 493 static void profile_flat_array(JavaThread* current, bool load, bool null_free) { 494 ResourceMark rm(current); 495 vframeStream vfst(current, true); 496 assert(!vfst.at_end(), "Java frame must exist"); 497 // Check if array access profiling is enabled 498 if (vfst.nm()->comp_level() != CompLevel_full_profile || !C1UpdateMethodData) { 499 return; 500 } 501 int bci = vfst.bci(); 502 Method* method = vfst.method(); 503 MethodData* md = method->method_data(); 504 if (md != nullptr) { 505 // Lock to access ProfileData, and ensure lock is not broken by a safepoint 506 MutexLocker ml(md->extra_data_lock(), Mutex::_no_safepoint_check_flag); 507 508 ProfileData* data = md->bci_to_data(bci); 509 assert(data != nullptr, "incorrect profiling entry"); 510 if (data->is_ArrayLoadData()) { 511 assert(load, "should be an array load"); 512 ArrayLoadData* load_data = (ArrayLoadData*) data; 513 load_data->set_flat_array(); 514 if (null_free) { 515 load_data->set_null_free_array(); 516 } 517 } else { 518 assert(data->is_ArrayStoreData(), ""); 519 assert(!load, "should be an array store"); 520 ArrayStoreData* store_data = (ArrayStoreData*) data; 521 store_data->set_flat_array(); 522 if (null_free) { 523 store_data->set_null_free_array(); 524 } 525 } 526 } 527 } 528 529 JRT_ENTRY(void, Runtime1::load_flat_array(JavaThread* current, flatArrayOopDesc* array, int index)) 530 assert(array->klass()->is_flatArray_klass(), "should not be called"); 531 profile_flat_array(current, true, array->is_null_free_array()); 532 533 NOT_PRODUCT(_load_flat_array_slowcase_cnt++;) 534 assert(array->length() > 0 && index < array->length(), "already checked"); 535 flatArrayHandle vah(current, array); 536 oop obj = array->read_value_from_flat_array(index, CHECK); 537 current->set_vm_result_oop(obj); 538 JRT_END 539 540 JRT_ENTRY(void, Runtime1::store_flat_array(JavaThread* current, flatArrayOopDesc* array, int index, oopDesc* value)) 541 // TOOD 8350865 We can call here with a non-flat array because of LIR_Assembler::emit_opFlattenedArrayCheck 542 if (array->klass()->is_flatArray_klass()) { 543 profile_flat_array(current, false, array->is_null_free_array()); 544 } 545 546 NOT_PRODUCT(_store_flat_array_slowcase_cnt++;) 547 if (value == nullptr && array->is_null_free_array()) { 548 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException()); 549 } else { 550 assert(array->klass()->is_flatArray_klass(), "should not be called"); 551 array->write_value_to_flat_array(value, index, CHECK); 552 } 553 JRT_END 554 555 JRT_ENTRY(int, Runtime1::substitutability_check(JavaThread* current, oopDesc* left, oopDesc* right)) 556 NOT_PRODUCT(_substitutability_check_slowcase_cnt++;) 557 JavaCallArguments args; 558 args.push_oop(Handle(THREAD, left)); 559 args.push_oop(Handle(THREAD, right)); 560 JavaValue result(T_BOOLEAN); 561 JavaCalls::call_static(&result, 562 vmClasses::ValueObjectMethods_klass(), 563 vmSymbols::isSubstitutable_name(), 564 vmSymbols::object_object_boolean_signature(), 565 &args, CHECK_0); 566 return result.get_jboolean() ? 1 : 0; 567 JRT_END 568 569 570 extern "C" void ps(); 571 572 void Runtime1::buffer_inline_args_impl(JavaThread* current, Method* m, bool allocate_receiver) { 573 JavaThread* THREAD = current; 574 methodHandle method(current, m); // We are inside the verified_entry or verified_inline_ro_entry of this method. 575 oop obj = SharedRuntime::allocate_inline_types_impl(current, method, allocate_receiver, CHECK); 576 current->set_vm_result_oop(obj); 577 } 578 579 JRT_ENTRY(void, Runtime1::buffer_inline_args(JavaThread* current, Method* method)) 580 NOT_PRODUCT(_buffer_inline_args_slowcase_cnt++;) 581 buffer_inline_args_impl(current, method, true); 582 JRT_END 583 584 JRT_ENTRY(void, Runtime1::buffer_inline_args_no_receiver(JavaThread* current, Method* method)) 585 NOT_PRODUCT(_buffer_inline_args_no_receiver_slowcase_cnt++;) 586 buffer_inline_args_impl(current, method, false); 587 JRT_END 588 589 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, C1StubId id)) 590 tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id); 591 JRT_END 592 593 594 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj)) 595 ResourceMark rm(current); 596 const char* klass_name = obj->klass()->external_name(); 597 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name); 598 JRT_END 599 600 601 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method 602 // associated with the top activation record. The inlinee (that is possibly included in the enclosing 603 // method) method is passed as an argument. In order to do that it is embedded in the code as 604 // a constant. 605 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) { 606 nmethod* osr_nm = nullptr; 607 methodHandle method(current, m); 608 609 RegisterMap map(current, 610 RegisterMap::UpdateMap::skip, 611 RegisterMap::ProcessFrames::include, 612 RegisterMap::WalkContinuation::skip); 613 frame fr = current->last_frame().sender(&map); 614 nmethod* nm = (nmethod*) fr.cb(); 615 assert(nm!= nullptr && nm->is_nmethod(), "Sanity check"); 616 methodHandle enclosing_method(current, nm->method()); 617 618 CompLevel level = (CompLevel)nm->comp_level(); 619 int bci = InvocationEntryBci; 620 if (branch_bci != InvocationEntryBci) { 621 // Compute destination bci 622 address pc = method()->code_base() + branch_bci; 623 Bytecodes::Code branch = Bytecodes::code_at(method(), pc); 624 int offset = 0; 625 switch (branch) { 626 case Bytecodes::_if_icmplt: case Bytecodes::_iflt: 627 case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt: 628 case Bytecodes::_if_icmple: case Bytecodes::_ifle: 629 case Bytecodes::_if_icmpge: case Bytecodes::_ifge: 630 case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq: 631 case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne: 632 case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto: 633 offset = (int16_t)Bytes::get_Java_u2(pc + 1); 634 break; 635 case Bytecodes::_goto_w: 636 offset = Bytes::get_Java_u4(pc + 1); 637 break; 638 default: ; 639 } 640 bci = branch_bci + offset; 641 } 642 osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current); 643 return osr_nm; 644 } 645 646 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method)) 647 nmethod* osr_nm; 648 JRT_BLOCK 649 osr_nm = counter_overflow_helper(current, bci, method); 650 if (osr_nm != nullptr) { 651 RegisterMap map(current, 652 RegisterMap::UpdateMap::skip, 653 RegisterMap::ProcessFrames::include, 654 RegisterMap::WalkContinuation::skip); 655 frame fr = current->last_frame().sender(&map); 656 Deoptimization::deoptimize_frame(current, fr.id()); 657 } 658 JRT_BLOCK_END 659 return nullptr; 660 JRT_END 661 662 extern void vm_exit(int code); 663 664 // Enter this method from compiled code handler below. This is where we transition 665 // to VM mode. This is done as a helper routine so that the method called directly 666 // from compiled code does not have to transition to VM. This allows the entry 667 // method to see if the nmethod that we have just looked up a handler for has 668 // been deoptimized while we were in the vm. This simplifies the assembly code 669 // cpu directories. 670 // 671 // We are entering here from exception stub (via the entry method below) 672 // If there is a compiled exception handler in this method, we will continue there; 673 // otherwise we will unwind the stack and continue at the caller of top frame method 674 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to 675 // control the area where we can allow a safepoint. After we exit the safepoint area we can 676 // check to see if the handler we are going to return is now in a nmethod that has 677 // been deoptimized. If that is the case we return the deopt blob 678 // unpack_with_exception entry instead. This makes life for the exception blob easier 679 // because making that same check and diverting is painful from assembly language. 680 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm)) 681 // Reset method handle flag. 682 current->set_is_method_handle_return(false); 683 684 Handle exception(current, ex); 685 686 // This function is called when we are about to throw an exception. Therefore, 687 // we have to poll the stack watermark barrier to make sure that not yet safe 688 // stack frames are made safe before returning into them. 689 if (current->last_frame().cb() == Runtime1::blob_for(C1StubId::handle_exception_from_callee_id)) { 690 // The C1StubId::handle_exception_from_callee_id handler is invoked after the 691 // frame has been unwound. It instead builds its own stub frame, to call the 692 // runtime. But the throwing frame has already been unwound here. 693 StackWatermarkSet::after_unwind(current); 694 } 695 696 nm = CodeCache::find_nmethod(pc); 697 assert(nm != nullptr, "this is not an nmethod"); 698 // Adjust the pc as needed/ 699 if (nm->is_deopt_pc(pc)) { 700 RegisterMap map(current, 701 RegisterMap::UpdateMap::skip, 702 RegisterMap::ProcessFrames::include, 703 RegisterMap::WalkContinuation::skip); 704 frame exception_frame = current->last_frame().sender(&map); 705 // if the frame isn't deopted then pc must not correspond to the caller of last_frame 706 assert(exception_frame.is_deoptimized_frame(), "must be deopted"); 707 pc = exception_frame.pc(); 708 } 709 assert(exception.not_null(), "null exceptions should be handled by throw_exception"); 710 // Check that exception is a subclass of Throwable 711 assert(exception->is_a(vmClasses::Throwable_klass()), 712 "Exception not subclass of Throwable"); 713 714 // debugging support 715 // tracing 716 if (log_is_enabled(Info, exceptions)) { 717 ResourceMark rm; // print_value_string 718 stringStream tempst; 719 assert(nm->method() != nullptr, "Unexpected null method()"); 720 tempst.print("C1 compiled method <%s>\n" 721 " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT, 722 nm->method()->print_value_string(), p2i(pc), p2i(current)); 723 Exceptions::log_exception(exception, tempst.freeze()); 724 } 725 // for AbortVMOnException flag 726 Exceptions::debug_check_abort(exception); 727 728 // Check the stack guard pages and re-enable them if necessary and there is 729 // enough space on the stack to do so. Use fast exceptions only if the guard 730 // pages are enabled. 731 bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed(); 732 733 if (JvmtiExport::can_post_on_exceptions()) { 734 // To ensure correct notification of exception catches and throws 735 // we have to deoptimize here. If we attempted to notify the 736 // catches and throws during this exception lookup it's possible 737 // we could deoptimize on the way out of the VM and end back in 738 // the interpreter at the throw site. This would result in double 739 // notifications since the interpreter would also notify about 740 // these same catches and throws as it unwound the frame. 741 742 RegisterMap reg_map(current, 743 RegisterMap::UpdateMap::include, 744 RegisterMap::ProcessFrames::include, 745 RegisterMap::WalkContinuation::skip); 746 frame stub_frame = current->last_frame(); 747 frame caller_frame = stub_frame.sender(®_map); 748 749 // We don't really want to deoptimize the nmethod itself since we 750 // can actually continue in the exception handler ourselves but I 751 // don't see an easy way to have the desired effect. 752 Deoptimization::deoptimize_frame(current, caller_frame.id()); 753 assert(caller_is_deopted(current), "Must be deoptimized"); 754 755 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 756 } 757 758 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions 759 if (guard_pages_enabled) { 760 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); 761 if (fast_continuation != nullptr) { 762 // Set flag if return address is a method handle call site. 763 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 764 return fast_continuation; 765 } 766 } 767 768 // If the stack guard pages are enabled, check whether there is a handler in 769 // the current method. Otherwise (guard pages disabled), force an unwind and 770 // skip the exception cache update (i.e., just leave continuation as null). 771 address continuation = nullptr; 772 if (guard_pages_enabled) { 773 774 // New exception handling mechanism can support inlined methods 775 // with exception handlers since the mappings are from PC to PC 776 777 // Clear out the exception oop and pc since looking up an 778 // exception handler can cause class loading, which might throw an 779 // exception and those fields are expected to be clear during 780 // normal bytecode execution. 781 current->clear_exception_oop_and_pc(); 782 783 bool recursive_exception = false; 784 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception); 785 // If an exception was thrown during exception dispatch, the exception oop may have changed 786 current->set_exception_oop(exception()); 787 current->set_exception_pc(pc); 788 789 // the exception cache is used only by non-implicit exceptions 790 // Update the exception cache only when there didn't happen 791 // another exception during the computation of the compiled 792 // exception handler. Checking for exception oop equality is not 793 // sufficient because some exceptions are pre-allocated and reused. 794 if (continuation != nullptr && !recursive_exception) { 795 nm->add_handler_for_exception_and_pc(exception, pc, continuation); 796 } 797 } 798 799 current->set_vm_result_oop(exception()); 800 // Set flag if return address is a method handle call site. 801 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 802 803 if (log_is_enabled(Info, exceptions)) { 804 ResourceMark rm; 805 log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT 806 " for exception thrown at PC " PTR_FORMAT, 807 p2i(current), p2i(continuation), p2i(pc)); 808 } 809 810 return continuation; 811 JRT_END 812 813 // Enter this method from compiled code only if there is a Java exception handler 814 // in the method handling the exception. 815 // We are entering here from exception stub. We don't do a normal VM transition here. 816 // We do it in a helper. This is so we can check to see if the nmethod we have just 817 // searched for an exception handler has been deoptimized in the meantime. 818 address Runtime1::exception_handler_for_pc(JavaThread* current) { 819 oop exception = current->exception_oop(); 820 address pc = current->exception_pc(); 821 // Still in Java mode 822 DEBUG_ONLY(NoHandleMark nhm); 823 nmethod* nm = nullptr; 824 address continuation = nullptr; 825 { 826 // Enter VM mode by calling the helper 827 ResetNoHandleMark rnhm; 828 continuation = exception_handler_for_pc_helper(current, exception, pc, nm); 829 } 830 // Back in JAVA, use no oops DON'T safepoint 831 832 // Now check to see if the nmethod we were called from is now deoptimized. 833 // If so we must return to the deopt blob and deoptimize the nmethod 834 if (nm != nullptr && caller_is_deopted(current)) { 835 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 836 } 837 838 assert(continuation != nullptr, "no handler found"); 839 return continuation; 840 } 841 842 843 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a)) 844 #ifndef PRODUCT 845 if (PrintC1Statistics) { 846 _throw_range_check_exception_count++; 847 } 848 #endif 849 const int len = 35; 850 assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message."); 851 char message[2 * jintAsStringSize + len]; 852 os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length()); 853 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message); 854 JRT_END 855 856 857 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index)) 858 #ifndef PRODUCT 859 if (PrintC1Statistics) { 860 _throw_index_exception_count++; 861 } 862 #endif 863 char message[16]; 864 os::snprintf_checked(message, sizeof(message), "%d", index); 865 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message); 866 JRT_END 867 868 869 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current)) 870 #ifndef PRODUCT 871 if (PrintC1Statistics) { 872 _throw_div0_exception_count++; 873 } 874 #endif 875 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 876 JRT_END 877 878 879 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current)) 880 #ifndef PRODUCT 881 if (PrintC1Statistics) { 882 _throw_null_pointer_exception_count++; 883 } 884 #endif 885 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException()); 886 JRT_END 887 888 889 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object)) 890 #ifndef PRODUCT 891 if (PrintC1Statistics) { 892 _throw_class_cast_exception_count++; 893 } 894 #endif 895 ResourceMark rm(current); 896 char* message = SharedRuntime::generate_class_cast_message(current, object->klass()); 897 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message); 898 JRT_END 899 900 901 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current)) 902 #ifndef PRODUCT 903 if (PrintC1Statistics) { 904 _throw_incompatible_class_change_error_count++; 905 } 906 #endif 907 ResourceMark rm(current); 908 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError()); 909 JRT_END 910 911 912 JRT_ENTRY(void, Runtime1::throw_illegal_monitor_state_exception(JavaThread* current)) 913 NOT_PRODUCT(_throw_illegal_monitor_state_exception_count++;) 914 ResourceMark rm(current); 915 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IllegalMonitorStateException()); 916 JRT_END 917 918 JRT_ENTRY(void, Runtime1::throw_identity_exception(JavaThread* current, oopDesc* object)) 919 NOT_PRODUCT(_throw_identity_exception_count++;) 920 ResourceMark rm(current); 921 char* message = SharedRuntime::generate_identity_exception_message(current, object->klass()); 922 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IdentityException(), message); 923 JRT_END 924 925 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock)) 926 #ifndef PRODUCT 927 if (PrintC1Statistics) { 928 _monitorenter_slowcase_cnt++; 929 } 930 #endif 931 if (LockingMode == LM_MONITOR) { 932 lock->set_obj(obj); 933 } 934 assert(obj == lock->obj(), "must match"); 935 SharedRuntime::monitor_enter_helper(obj, lock->lock(), current); 936 JRT_END 937 938 939 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock)) 940 assert(current == JavaThread::current(), "pre-condition"); 941 #ifndef PRODUCT 942 if (PrintC1Statistics) { 943 _monitorexit_slowcase_cnt++; 944 } 945 #endif 946 assert(current->last_Java_sp(), "last_Java_sp must be set"); 947 oop obj = lock->obj(); 948 assert(oopDesc::is_oop(obj), "must be null or an object"); 949 SharedRuntime::monitor_exit_helper(obj, lock->lock(), current); 950 JRT_END 951 952 // Cf. OptoRuntime::deoptimize_caller_frame 953 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request)) 954 // Called from within the owner thread, so no need for safepoint 955 RegisterMap reg_map(current, 956 RegisterMap::UpdateMap::skip, 957 RegisterMap::ProcessFrames::include, 958 RegisterMap::WalkContinuation::skip); 959 frame stub_frame = current->last_frame(); 960 assert(stub_frame.is_runtime_frame(), "Sanity check"); 961 frame caller_frame = stub_frame.sender(®_map); 962 nmethod* nm = caller_frame.cb()->as_nmethod_or_null(); 963 assert(nm != nullptr, "Sanity check"); 964 methodHandle method(current, nm->method()); 965 assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same"); 966 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); 967 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); 968 969 if (action == Deoptimization::Action_make_not_entrant) { 970 if (nm->make_not_entrant("C1 deoptimize")) { 971 if (reason == Deoptimization::Reason_tenured) { 972 MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/); 973 if (trap_mdo != nullptr) { 974 trap_mdo->inc_tenure_traps(); 975 } 976 } 977 } 978 } 979 980 // Deoptimize the caller frame. 981 Deoptimization::deoptimize_frame(current, caller_frame.id()); 982 // Return to the now deoptimized frame. 983 JRT_END 984 985 986 #ifndef DEOPTIMIZE_WHEN_PATCHING 987 988 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) { 989 Bytecode_field field_access(caller, bci); 990 // This can be static or non-static field access 991 Bytecodes::Code code = field_access.code(); 992 993 // We must load class, initialize class and resolve the field 994 fieldDescriptor result; // initialize class if needed 995 constantPoolHandle constants(THREAD, caller->constants()); 996 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL); 997 return result.field_holder(); 998 } 999 1000 1001 // 1002 // This routine patches sites where a class wasn't loaded or 1003 // initialized at the time the code was generated. It handles 1004 // references to classes, fields and forcing of initialization. Most 1005 // of the cases are straightforward and involving simply forcing 1006 // resolution of a class, rewriting the instruction stream with the 1007 // needed constant and replacing the call in this function with the 1008 // patched code. The case for static field is more complicated since 1009 // the thread which is in the process of initializing a class can 1010 // access it's static fields but other threads can't so the code 1011 // either has to deoptimize when this case is detected or execute a 1012 // check that the current thread is the initializing thread. The 1013 // current 1014 // 1015 // Patches basically look like this: 1016 // 1017 // 1018 // patch_site: jmp patch stub ;; will be patched 1019 // continue: ... 1020 // ... 1021 // ... 1022 // ... 1023 // 1024 // They have a stub which looks like this: 1025 // 1026 // ;; patch body 1027 // movl <const>, reg (for class constants) 1028 // <or> movl [reg1 + <const>], reg (for field offsets) 1029 // <or> movl reg, [reg1 + <const>] (for field offsets) 1030 // <being_init offset> <bytes to copy> <bytes to skip> 1031 // patch_stub: call Runtime1::patch_code (through a runtime stub) 1032 // jmp patch_site 1033 // 1034 // 1035 // A normal patch is done by rewriting the patch body, usually a move, 1036 // and then copying it into place over top of the jmp instruction 1037 // being careful to flush caches and doing it in an MP-safe way. The 1038 // constants following the patch body are used to find various pieces 1039 // of the patch relative to the call site for Runtime1::patch_code. 1040 // The case for getstatic and putstatic is more complicated because 1041 // getstatic and putstatic have special semantics when executing while 1042 // the class is being initialized. getstatic/putstatic on a class 1043 // which is being_initialized may be executed by the initializing 1044 // thread but other threads have to block when they execute it. This 1045 // is accomplished in compiled code by executing a test of the current 1046 // thread against the initializing thread of the class. It's emitted 1047 // as boilerplate in their stub which allows the patched code to be 1048 // executed before it's copied back into the main body of the nmethod. 1049 // 1050 // being_init: get_thread(<tmp reg> 1051 // cmpl [reg1 + <init_thread_offset>], <tmp reg> 1052 // jne patch_stub 1053 // movl [reg1 + <const>], reg (for field offsets) <or> 1054 // movl reg, [reg1 + <const>] (for field offsets) 1055 // jmp continue 1056 // <being_init offset> <bytes to copy> <bytes to skip> 1057 // patch_stub: jmp Runtime1::patch_code (through a runtime stub) 1058 // jmp patch_site 1059 // 1060 // If the class is being initialized the patch body is rewritten and 1061 // the patch site is rewritten to jump to being_init, instead of 1062 // patch_stub. Whenever this code is executed it checks the current 1063 // thread against the initializing thread so other threads will enter 1064 // the runtime and end up blocked waiting the class to finish 1065 // initializing inside the calls to resolve_field below. The 1066 // initializing class will continue on it's way. Once the class is 1067 // fully_initialized, the intializing_thread of the class becomes 1068 // null, so the next thread to execute this code will fail the test, 1069 // call into patch_code and complete the patching process by copying 1070 // the patch body back into the main part of the nmethod and resume 1071 // executing. 1072 1073 // NB: 1074 // 1075 // Patchable instruction sequences inherently exhibit race conditions, 1076 // where thread A is patching an instruction at the same time thread B 1077 // is executing it. The algorithms we use ensure that any observation 1078 // that B can make on any intermediate states during A's patching will 1079 // always end up with a correct outcome. This is easiest if there are 1080 // few or no intermediate states. (Some inline caches have two 1081 // related instructions that must be patched in tandem. For those, 1082 // intermediate states seem to be unavoidable, but we will get the 1083 // right answer from all possible observation orders.) 1084 // 1085 // When patching the entry instruction at the head of a method, or a 1086 // linkable call instruction inside of a method, we try very hard to 1087 // use a patch sequence which executes as a single memory transaction. 1088 // This means, in practice, that when thread A patches an instruction, 1089 // it should patch a 32-bit or 64-bit word that somehow overlaps the 1090 // instruction or is contained in it. We believe that memory hardware 1091 // will never break up such a word write, if it is naturally aligned 1092 // for the word being written. We also know that some CPUs work very 1093 // hard to create atomic updates even of naturally unaligned words, 1094 // but we don't want to bet the farm on this always working. 1095 // 1096 // Therefore, if there is any chance of a race condition, we try to 1097 // patch only naturally aligned words, as single, full-word writes. 1098 1099 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, C1StubId stub_id )) 1100 #ifndef PRODUCT 1101 if (PrintC1Statistics) { 1102 _patch_code_slowcase_cnt++; 1103 } 1104 #endif 1105 1106 ResourceMark rm(current); 1107 RegisterMap reg_map(current, 1108 RegisterMap::UpdateMap::skip, 1109 RegisterMap::ProcessFrames::include, 1110 RegisterMap::WalkContinuation::skip); 1111 frame runtime_frame = current->last_frame(); 1112 frame caller_frame = runtime_frame.sender(®_map); 1113 1114 // last java frame on stack 1115 vframeStream vfst(current, true); 1116 assert(!vfst.at_end(), "Java frame must exist"); 1117 1118 methodHandle caller_method(current, vfst.method()); 1119 // Note that caller_method->code() may not be same as caller_code because of OSR's 1120 // Note also that in the presence of inlining it is not guaranteed 1121 // that caller_method() == caller_code->method() 1122 1123 int bci = vfst.bci(); 1124 Bytecodes::Code code = caller_method()->java_code_at(bci); 1125 1126 // this is used by assertions in the access_field_patching_id 1127 BasicType patch_field_type = T_ILLEGAL; 1128 bool deoptimize_for_volatile = false; 1129 bool deoptimize_for_atomic = false; 1130 bool deoptimize_for_null_free = false; 1131 bool deoptimize_for_flat = false; 1132 bool deoptimize_for_strict_static = false; 1133 int patch_field_offset = -1; 1134 Klass* init_klass = nullptr; // klass needed by load_klass_patching code 1135 Klass* load_klass = nullptr; // klass needed by load_klass_patching code 1136 Handle mirror(current, nullptr); // oop needed by load_mirror_patching code 1137 Handle appendix(current, nullptr); // oop needed by appendix_patching code 1138 bool load_klass_or_mirror_patch_id = 1139 (stub_id == C1StubId::load_klass_patching_id || stub_id == C1StubId::load_mirror_patching_id); 1140 1141 if (stub_id == C1StubId::access_field_patching_id) { 1142 1143 Bytecode_field field_access(caller_method, bci); 1144 fieldDescriptor result; // initialize class if needed 1145 Bytecodes::Code code = field_access.code(); 1146 constantPoolHandle constants(current, caller_method->constants()); 1147 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK); 1148 patch_field_offset = result.offset(); 1149 1150 // If we're patching a field which is volatile then at compile it 1151 // must not have been know to be volatile, so the generated code 1152 // isn't correct for a volatile reference. The nmethod has to be 1153 // deoptimized so that the code can be regenerated correctly. 1154 // This check is only needed for access_field_patching since this 1155 // is the path for patching field offsets. load_klass is only 1156 // used for patching references to oops which don't need special 1157 // handling in the volatile case. 1158 1159 deoptimize_for_volatile = result.access_flags().is_volatile(); 1160 1161 // If we are patching a field which should be atomic, then 1162 // the generated code is not correct either, force deoptimizing. 1163 // We need to only cover T_LONG and T_DOUBLE fields, as we can 1164 // break access atomicity only for them. 1165 1166 // Strictly speaking, the deoptimization on 64-bit platforms 1167 // is unnecessary, and T_LONG stores on 32-bit platforms need 1168 // to be handled by special patching code when AlwaysAtomicAccesses 1169 // becomes product feature. At this point, we are still going 1170 // for the deoptimization for consistency against volatile 1171 // accesses. 1172 1173 patch_field_type = result.field_type(); 1174 deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)); 1175 1176 // The field we are patching is null-free. Deoptimize and regenerate 1177 // the compiled code if we patch a putfield/putstatic because it 1178 // does not contain the required null check. 1179 deoptimize_for_null_free = result.is_null_free_inline_type() && (field_access.is_putfield() || field_access.is_putstatic()); 1180 1181 // The field we are patching is flat. Deoptimize and regenerate 1182 // the compiled code which can't handle the layout of the flat 1183 // field because it was unknown at compile time. 1184 deoptimize_for_flat = result.is_flat(); 1185 1186 // Strict statics may require tracking if their class is not fully initialized. 1187 // For now we can bail out of the compiler and let the interpreter handle it. 1188 deoptimize_for_strict_static = result.is_strict_static_unset(); 1189 } else if (load_klass_or_mirror_patch_id) { 1190 Klass* k = nullptr; 1191 switch (code) { 1192 case Bytecodes::_putstatic: 1193 case Bytecodes::_getstatic: 1194 { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK); 1195 init_klass = klass; 1196 mirror = Handle(current, klass->java_mirror()); 1197 } 1198 break; 1199 case Bytecodes::_new: 1200 { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci)); 1201 k = caller_method->constants()->klass_at(bnew.index(), CHECK); 1202 } 1203 break; 1204 case Bytecodes::_multianewarray: 1205 { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci)); 1206 k = caller_method->constants()->klass_at(mna.index(), CHECK); 1207 } 1208 break; 1209 case Bytecodes::_instanceof: 1210 { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci)); 1211 k = caller_method->constants()->klass_at(io.index(), CHECK); 1212 } 1213 break; 1214 case Bytecodes::_checkcast: 1215 { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci)); 1216 k = caller_method->constants()->klass_at(cc.index(), CHECK); 1217 } 1218 break; 1219 case Bytecodes::_anewarray: 1220 { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci)); 1221 Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK); 1222 k = ek->array_klass(CHECK); 1223 } 1224 break; 1225 case Bytecodes::_ldc: 1226 case Bytecodes::_ldc_w: 1227 case Bytecodes::_ldc2_w: 1228 { 1229 Bytecode_loadconstant cc(caller_method, bci); 1230 oop m = cc.resolve_constant(CHECK); 1231 mirror = Handle(current, m); 1232 } 1233 break; 1234 default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id"); 1235 } 1236 load_klass = k; 1237 } else if (stub_id == C1StubId::load_appendix_patching_id) { 1238 Bytecode_invoke bytecode(caller_method, bci); 1239 Bytecodes::Code bc = bytecode.invoke_code(); 1240 1241 CallInfo info; 1242 constantPoolHandle pool(current, caller_method->constants()); 1243 int index = bytecode.index(); 1244 LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK); 1245 switch (bc) { 1246 case Bytecodes::_invokehandle: { 1247 ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info); 1248 appendix = Handle(current, pool->cache()->appendix_if_resolved(entry)); 1249 break; 1250 } 1251 case Bytecodes::_invokedynamic: { 1252 appendix = Handle(current, pool->cache()->set_dynamic_call(info, index)); 1253 break; 1254 } 1255 default: fatal("unexpected bytecode for load_appendix_patching_id"); 1256 } 1257 } else { 1258 ShouldNotReachHere(); 1259 } 1260 1261 if (deoptimize_for_volatile || 1262 deoptimize_for_atomic || 1263 deoptimize_for_null_free || 1264 deoptimize_for_flat || 1265 deoptimize_for_strict_static) { 1266 // At compile time we assumed the field wasn't volatile/atomic but after 1267 // loading it turns out it was volatile/atomic so we have to throw the 1268 // compiled code out and let it be regenerated. 1269 if (TracePatching) { 1270 if (deoptimize_for_volatile) { 1271 tty->print_cr("Deoptimizing for patching volatile field reference"); 1272 } 1273 if (deoptimize_for_atomic) { 1274 tty->print_cr("Deoptimizing for patching atomic field reference"); 1275 } 1276 if (deoptimize_for_null_free) { 1277 tty->print_cr("Deoptimizing for patching null-free field reference"); 1278 } 1279 if (deoptimize_for_flat) { 1280 tty->print_cr("Deoptimizing for patching flat field reference"); 1281 } 1282 if (deoptimize_for_strict_static) { 1283 tty->print_cr("Deoptimizing for patching strict static field reference"); 1284 } 1285 } 1286 1287 // It's possible the nmethod was invalidated in the last 1288 // safepoint, but if it's still alive then make it not_entrant. 1289 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1290 if (nm != nullptr) { 1291 nm->make_not_entrant("C1 code patch"); 1292 } 1293 1294 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1295 1296 // Return to the now deoptimized frame. 1297 } 1298 1299 // Now copy code back 1300 1301 { 1302 MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag); 1303 // 1304 // Deoptimization may have happened while we waited for the lock. 1305 // In that case we don't bother to do any patching we just return 1306 // and let the deopt happen 1307 if (!caller_is_deopted(current)) { 1308 NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc()); 1309 address instr_pc = jump->jump_destination(); 1310 NativeInstruction* ni = nativeInstruction_at(instr_pc); 1311 if (ni->is_jump() ) { 1312 // the jump has not been patched yet 1313 // The jump destination is slow case and therefore not part of the stubs 1314 // (stubs are only for StaticCalls) 1315 1316 // format of buffer 1317 // .... 1318 // instr byte 0 <-- copy_buff 1319 // instr byte 1 1320 // .. 1321 // instr byte n-1 1322 // n 1323 // .... <-- call destination 1324 1325 address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset(); 1326 unsigned char* byte_count = (unsigned char*) (stub_location - 1); 1327 unsigned char* byte_skip = (unsigned char*) (stub_location - 2); 1328 unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3); 1329 address copy_buff = stub_location - *byte_skip - *byte_count; 1330 address being_initialized_entry = stub_location - *being_initialized_entry_offset; 1331 if (TracePatching) { 1332 ttyLocker ttyl; 1333 tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT " (%s)", Bytecodes::name(code), bci, 1334 p2i(instr_pc), (stub_id == C1StubId::access_field_patching_id) ? "field" : "klass"); 1335 nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc()); 1336 assert(caller_code != nullptr, "nmethod not found"); 1337 1338 // NOTE we use pc() not original_pc() because we already know they are 1339 // identical otherwise we'd have never entered this block of code 1340 1341 const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc()); 1342 assert(map != nullptr, "null check"); 1343 map->print(); 1344 tty->cr(); 1345 1346 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1347 } 1348 // depending on the code below, do_patch says whether to copy the patch body back into the nmethod 1349 bool do_patch = true; 1350 if (stub_id == C1StubId::access_field_patching_id) { 1351 // The offset may not be correct if the class was not loaded at code generation time. 1352 // Set it now. 1353 NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff); 1354 assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type"); 1355 assert(patch_field_offset >= 0, "illegal offset"); 1356 n_move->add_offset_in_bytes(patch_field_offset); 1357 } else if (load_klass_or_mirror_patch_id) { 1358 // If a getstatic or putstatic is referencing a klass which 1359 // isn't fully initialized, the patch body isn't copied into 1360 // place until initialization is complete. In this case the 1361 // patch site is setup so that any threads besides the 1362 // initializing thread are forced to come into the VM and 1363 // block. 1364 do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) || 1365 InstanceKlass::cast(init_klass)->is_initialized(); 1366 NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc); 1367 if (jump->jump_destination() == being_initialized_entry) { 1368 assert(do_patch == true, "initialization must be complete at this point"); 1369 } else { 1370 // patch the instruction <move reg, klass> 1371 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1372 1373 assert(n_copy->data() == 0 || 1374 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1375 "illegal init value"); 1376 if (stub_id == C1StubId::load_klass_patching_id) { 1377 assert(load_klass != nullptr, "klass not set"); 1378 n_copy->set_data((intx) (load_klass)); 1379 } else { 1380 // Don't need a G1 pre-barrier here since we assert above that data isn't an oop. 1381 n_copy->set_data(cast_from_oop<intx>(mirror())); 1382 } 1383 1384 if (TracePatching) { 1385 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1386 } 1387 } 1388 } else if (stub_id == C1StubId::load_appendix_patching_id) { 1389 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1390 assert(n_copy->data() == 0 || 1391 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1392 "illegal init value"); 1393 n_copy->set_data(cast_from_oop<intx>(appendix())); 1394 1395 if (TracePatching) { 1396 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1397 } 1398 } else { 1399 ShouldNotReachHere(); 1400 } 1401 1402 if (do_patch) { 1403 // replace instructions 1404 // first replace the tail, then the call 1405 #ifdef ARM 1406 if((load_klass_or_mirror_patch_id || 1407 stub_id == C1StubId::load_appendix_patching_id) && 1408 nativeMovConstReg_at(copy_buff)->is_pc_relative()) { 1409 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1410 address addr = nullptr; 1411 assert(nm != nullptr, "invalid nmethod_pc"); 1412 RelocIterator mds(nm, copy_buff, copy_buff + 1); 1413 while (mds.next()) { 1414 if (mds.type() == relocInfo::oop_type) { 1415 assert(stub_id == C1StubId::load_mirror_patching_id || 1416 stub_id == C1StubId::load_appendix_patching_id, "wrong stub id"); 1417 oop_Relocation* r = mds.oop_reloc(); 1418 addr = (address)r->oop_addr(); 1419 break; 1420 } else if (mds.type() == relocInfo::metadata_type) { 1421 assert(stub_id == C1StubId::load_klass_patching_id, "wrong stub id"); 1422 metadata_Relocation* r = mds.metadata_reloc(); 1423 addr = (address)r->metadata_addr(); 1424 break; 1425 } 1426 } 1427 assert(addr != nullptr, "metadata relocation must exist"); 1428 copy_buff -= *byte_count; 1429 NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff); 1430 n_copy2->set_pc_relative_offset(addr, instr_pc); 1431 } 1432 #endif 1433 1434 for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) { 1435 address ptr = copy_buff + i; 1436 int a_byte = (*ptr) & 0xFF; 1437 address dst = instr_pc + i; 1438 *(unsigned char*)dst = (unsigned char) a_byte; 1439 } 1440 ICache::invalidate_range(instr_pc, *byte_count); 1441 NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff); 1442 1443 if (load_klass_or_mirror_patch_id || 1444 stub_id == C1StubId::load_appendix_patching_id) { 1445 relocInfo::relocType rtype = 1446 (stub_id == C1StubId::load_klass_patching_id) ? 1447 relocInfo::metadata_type : 1448 relocInfo::oop_type; 1449 // update relocInfo to metadata 1450 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1451 assert(nm != nullptr, "invalid nmethod_pc"); 1452 1453 // The old patch site is now a move instruction so update 1454 // the reloc info so that it will get updated during 1455 // future GCs. 1456 RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1)); 1457 relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc, 1458 relocInfo::none, rtype); 1459 } 1460 1461 } else { 1462 ICache::invalidate_range(copy_buff, *byte_count); 1463 NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry); 1464 } 1465 } 1466 } 1467 // If we are patching in a non-perm oop, make sure the nmethod 1468 // is on the right list. 1469 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1470 guarantee(nm != nullptr, "only nmethods can contain non-perm oops"); 1471 1472 // Since we've patched some oops in the nmethod, 1473 // (re)register it with the heap. 1474 Universe::heap()->register_nmethod(nm); 1475 } 1476 JRT_END 1477 1478 #else // DEOPTIMIZE_WHEN_PATCHING 1479 1480 static bool is_patching_needed(JavaThread* current, C1StubId stub_id) { 1481 if (stub_id == C1StubId::load_klass_patching_id || 1482 stub_id == C1StubId::load_mirror_patching_id) { 1483 // last java frame on stack 1484 vframeStream vfst(current, true); 1485 assert(!vfst.at_end(), "Java frame must exist"); 1486 1487 methodHandle caller_method(current, vfst.method()); 1488 int bci = vfst.bci(); 1489 Bytecodes::Code code = caller_method()->java_code_at(bci); 1490 1491 switch (code) { 1492 case Bytecodes::_new: 1493 case Bytecodes::_anewarray: 1494 case Bytecodes::_multianewarray: 1495 case Bytecodes::_instanceof: 1496 case Bytecodes::_checkcast: { 1497 Bytecode bc(caller_method(), caller_method->bcp_from(bci)); 1498 constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code)); 1499 if (tag.is_unresolved_klass_in_error()) { 1500 return false; // throws resolution error 1501 } 1502 break; 1503 } 1504 1505 default: break; 1506 } 1507 } 1508 return true; 1509 } 1510 1511 void Runtime1::patch_code(JavaThread* current, C1StubId stub_id) { 1512 #ifndef PRODUCT 1513 if (PrintC1Statistics) { 1514 _patch_code_slowcase_cnt++; 1515 } 1516 #endif 1517 1518 // Enable WXWrite: the function is called by c1 stub as a runtime function 1519 // (see another implementation above). 1520 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 1521 1522 if (TracePatching) { 1523 tty->print_cr("Deoptimizing because patch is needed"); 1524 } 1525 1526 RegisterMap reg_map(current, 1527 RegisterMap::UpdateMap::skip, 1528 RegisterMap::ProcessFrames::include, 1529 RegisterMap::WalkContinuation::skip); 1530 1531 frame runtime_frame = current->last_frame(); 1532 frame caller_frame = runtime_frame.sender(®_map); 1533 assert(caller_frame.is_compiled_frame(), "Wrong frame type"); 1534 1535 if (is_patching_needed(current, stub_id)) { 1536 // Make sure the nmethod is invalidated, i.e. made not entrant. 1537 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1538 if (nm != nullptr) { 1539 nm->make_not_entrant("C1 deoptimize for patching"); 1540 } 1541 } 1542 1543 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1544 // Return to the now deoptimized frame. 1545 postcond(caller_is_deopted(current)); 1546 } 1547 1548 #endif // DEOPTIMIZE_WHEN_PATCHING 1549 1550 // Entry point for compiled code. We want to patch a nmethod. 1551 // We don't do a normal VM transition here because we want to 1552 // know after the patching is complete and any safepoint(s) are taken 1553 // if the calling nmethod was deoptimized. We do this by calling a 1554 // helper method which does the normal VM transition and when it 1555 // completes we can check for deoptimization. This simplifies the 1556 // assembly code in the cpu directories. 1557 // 1558 int Runtime1::move_klass_patching(JavaThread* current) { 1559 // 1560 // NOTE: we are still in Java 1561 // 1562 DEBUG_ONLY(NoHandleMark nhm;) 1563 { 1564 // Enter VM mode 1565 ResetNoHandleMark rnhm; 1566 patch_code(current, C1StubId::load_klass_patching_id); 1567 } 1568 // Back in JAVA, use no oops DON'T safepoint 1569 1570 // Return true if calling code is deoptimized 1571 1572 return caller_is_deopted(current); 1573 } 1574 1575 int Runtime1::move_mirror_patching(JavaThread* current) { 1576 // 1577 // NOTE: we are still in Java 1578 // 1579 DEBUG_ONLY(NoHandleMark nhm;) 1580 { 1581 // Enter VM mode 1582 ResetNoHandleMark rnhm; 1583 patch_code(current, C1StubId::load_mirror_patching_id); 1584 } 1585 // Back in JAVA, use no oops DON'T safepoint 1586 1587 // Return true if calling code is deoptimized 1588 1589 return caller_is_deopted(current); 1590 } 1591 1592 int Runtime1::move_appendix_patching(JavaThread* current) { 1593 // 1594 // NOTE: we are still in Java 1595 // 1596 DEBUG_ONLY(NoHandleMark nhm;) 1597 { 1598 // Enter VM mode 1599 ResetNoHandleMark rnhm; 1600 patch_code(current, C1StubId::load_appendix_patching_id); 1601 } 1602 // Back in JAVA, use no oops DON'T safepoint 1603 1604 // Return true if calling code is deoptimized 1605 1606 return caller_is_deopted(current); 1607 } 1608 1609 // Entry point for compiled code. We want to patch a nmethod. 1610 // We don't do a normal VM transition here because we want to 1611 // know after the patching is complete and any safepoint(s) are taken 1612 // if the calling nmethod was deoptimized. We do this by calling a 1613 // helper method which does the normal VM transition and when it 1614 // completes we can check for deoptimization. This simplifies the 1615 // assembly code in the cpu directories. 1616 // 1617 int Runtime1::access_field_patching(JavaThread* current) { 1618 // 1619 // NOTE: we are still in Java 1620 // 1621 // Handles created in this function will be deleted by the 1622 // HandleMarkCleaner in the transition to the VM. 1623 NoHandleMark nhm; 1624 { 1625 // Enter VM mode 1626 ResetNoHandleMark rnhm; 1627 patch_code(current, C1StubId::access_field_patching_id); 1628 } 1629 // Back in JAVA, use no oops DON'T safepoint 1630 1631 // Return true if calling code is deoptimized 1632 1633 return caller_is_deopted(current); 1634 } 1635 1636 1637 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id)) 1638 // for now we just print out the block id 1639 tty->print("%d ", block_id); 1640 JRT_END 1641 1642 1643 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj)) 1644 // had to return int instead of bool, otherwise there may be a mismatch 1645 // between the C calling convention and the Java one. 1646 // e.g., on x86, GCC may clear only %al when returning a bool false, but 1647 // JVM takes the whole %eax as the return value, which may misinterpret 1648 // the return value as a boolean true. 1649 1650 assert(mirror != nullptr, "should null-check on mirror before calling"); 1651 Klass* k = java_lang_Class::as_Klass(mirror); 1652 return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0; 1653 JRT_END 1654 1655 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current)) 1656 ResourceMark rm; 1657 1658 RegisterMap reg_map(current, 1659 RegisterMap::UpdateMap::skip, 1660 RegisterMap::ProcessFrames::include, 1661 RegisterMap::WalkContinuation::skip); 1662 frame runtime_frame = current->last_frame(); 1663 frame caller_frame = runtime_frame.sender(®_map); 1664 1665 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1666 assert (nm != nullptr, "no more nmethod?"); 1667 nm->make_not_entrant("C1 predicate failed trap"); 1668 1669 methodHandle m(current, nm->method()); 1670 MethodData* mdo = m->method_data(); 1671 1672 if (mdo == nullptr && !HAS_PENDING_EXCEPTION) { 1673 // Build an MDO. Ignore errors like OutOfMemory; 1674 // that simply means we won't have an MDO to update. 1675 Method::build_profiling_method_data(m, THREAD); 1676 if (HAS_PENDING_EXCEPTION) { 1677 // Only metaspace OOM is expected. No Java code executed. 1678 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1679 CLEAR_PENDING_EXCEPTION; 1680 } 1681 mdo = m->method_data(); 1682 } 1683 1684 if (mdo != nullptr) { 1685 mdo->inc_trap_count(Deoptimization::Reason_none); 1686 } 1687 1688 if (TracePredicateFailedTraps) { 1689 stringStream ss1, ss2; 1690 vframeStream vfst(current); 1691 Method* inlinee = vfst.method(); 1692 inlinee->print_short_name(&ss1); 1693 m->print_short_name(&ss2); 1694 tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc())); 1695 } 1696 1697 1698 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1699 1700 JRT_END 1701 1702 // Check exception if AbortVMOnException flag set 1703 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex)) 1704 ResourceMark rm; 1705 const char* message = nullptr; 1706 if (ex->is_a(vmClasses::Throwable_klass())) { 1707 oop msg = java_lang_Throwable::message(ex); 1708 if (msg != nullptr) { 1709 message = java_lang_String::as_utf8_string(msg); 1710 } 1711 } 1712 Exceptions::debug_check_abort(ex->klass()->external_name(), message); 1713 JRT_END 1714 1715 #ifndef PRODUCT 1716 void Runtime1::print_statistics() { 1717 tty->print_cr("C1 Runtime statistics:"); 1718 tty->print_cr(" _resolve_invoke_virtual_cnt: %u", SharedRuntime::_resolve_virtual_ctr); 1719 tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr); 1720 tty->print_cr(" _resolve_invoke_static_cnt: %u", SharedRuntime::_resolve_static_ctr); 1721 tty->print_cr(" _handle_wrong_method_cnt: %u", SharedRuntime::_wrong_method_ctr); 1722 tty->print_cr(" _ic_miss_cnt: %u", SharedRuntime::_ic_miss_ctr); 1723 tty->print_cr(" _generic_arraycopystub_cnt: %u", _generic_arraycopystub_cnt); 1724 tty->print_cr(" _byte_arraycopy_cnt: %u", _byte_arraycopy_stub_cnt); 1725 tty->print_cr(" _short_arraycopy_cnt: %u", _short_arraycopy_stub_cnt); 1726 tty->print_cr(" _int_arraycopy_cnt: %u", _int_arraycopy_stub_cnt); 1727 tty->print_cr(" _long_arraycopy_cnt: %u", _long_arraycopy_stub_cnt); 1728 tty->print_cr(" _oop_arraycopy_cnt: %u", _oop_arraycopy_stub_cnt); 1729 tty->print_cr(" _arraycopy_slowcase_cnt: %u", _arraycopy_slowcase_cnt); 1730 tty->print_cr(" _arraycopy_checkcast_cnt: %u", _arraycopy_checkcast_cnt); 1731 tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt); 1732 1733 tty->print_cr(" _new_type_array_slowcase_cnt: %u", _new_type_array_slowcase_cnt); 1734 tty->print_cr(" _new_object_array_slowcase_cnt: %u", _new_object_array_slowcase_cnt); 1735 tty->print_cr(" _new_null_free_array_slowcase_cnt: %u", _new_null_free_array_slowcase_cnt); 1736 tty->print_cr(" _new_instance_slowcase_cnt: %u", _new_instance_slowcase_cnt); 1737 tty->print_cr(" _new_multi_array_slowcase_cnt: %u", _new_multi_array_slowcase_cnt); 1738 tty->print_cr(" _load_flat_array_slowcase_cnt: %u", _load_flat_array_slowcase_cnt); 1739 tty->print_cr(" _store_flat_array_slowcase_cnt: %u", _store_flat_array_slowcase_cnt); 1740 tty->print_cr(" _substitutability_check_slowcase_cnt: %u", _substitutability_check_slowcase_cnt); 1741 tty->print_cr(" _buffer_inline_args_slowcase_cnt:%u", _buffer_inline_args_slowcase_cnt); 1742 tty->print_cr(" _buffer_inline_args_no_receiver_slowcase_cnt:%u", _buffer_inline_args_no_receiver_slowcase_cnt); 1743 1744 tty->print_cr(" _monitorenter_slowcase_cnt: %u", _monitorenter_slowcase_cnt); 1745 tty->print_cr(" _monitorexit_slowcase_cnt: %u", _monitorexit_slowcase_cnt); 1746 tty->print_cr(" _patch_code_slowcase_cnt: %u", _patch_code_slowcase_cnt); 1747 1748 tty->print_cr(" _throw_range_check_exception_count: %u:", _throw_range_check_exception_count); 1749 tty->print_cr(" _throw_index_exception_count: %u:", _throw_index_exception_count); 1750 tty->print_cr(" _throw_div0_exception_count: %u:", _throw_div0_exception_count); 1751 tty->print_cr(" _throw_null_pointer_exception_count: %u:", _throw_null_pointer_exception_count); 1752 tty->print_cr(" _throw_class_cast_exception_count: %u:", _throw_class_cast_exception_count); 1753 tty->print_cr(" _throw_incompatible_class_change_error_count: %u:", _throw_incompatible_class_change_error_count); 1754 tty->print_cr(" _throw_illegal_monitor_state_exception_count: %u:", _throw_illegal_monitor_state_exception_count); 1755 tty->print_cr(" _throw_identity_exception_count: %u:", _throw_identity_exception_count); 1756 tty->print_cr(" _throw_count: %u:", _throw_count); 1757 1758 SharedRuntime::print_ic_miss_histogram(); 1759 tty->cr(); 1760 } 1761 #endif // PRODUCT