1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/codeBuffer.hpp" 26 #include "c1/c1_CodeStubs.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_LIRAssembler.hpp" 29 #include "c1/c1_MacroAssembler.hpp" 30 #include "c1/c1_Runtime1.hpp" 31 #include "classfile/javaClasses.inline.hpp" 32 #include "classfile/vmClasses.hpp" 33 #include "classfile/vmSymbols.hpp" 34 #include "code/aotCodeCache.hpp" 35 #include "code/codeBlob.hpp" 36 #include "code/compiledIC.hpp" 37 #include "code/scopeDesc.hpp" 38 #include "code/vtableStubs.hpp" 39 #include "compiler/compilationPolicy.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "compiler/oopMap.hpp" 42 #include "gc/shared/barrierSet.hpp" 43 #include "gc/shared/c1/barrierSetC1.hpp" 44 #include "gc/shared/collectedHeap.hpp" 45 #include "interpreter/bytecode.hpp" 46 #include "interpreter/interpreter.hpp" 47 #include "jfr/support/jfrIntrinsics.hpp" 48 #include "logging/log.hpp" 49 #include "memory/oopFactory.hpp" 50 #include "memory/resourceArea.hpp" 51 #include "memory/universe.hpp" 52 #include "oops/access.inline.hpp" 53 #include "oops/flatArrayKlass.hpp" 54 #include "oops/flatArrayOop.inline.hpp" 55 #include "oops/objArrayKlass.hpp" 56 #include "oops/objArrayOop.inline.hpp" 57 #include "oops/oop.inline.hpp" 58 #include "prims/jvmtiExport.hpp" 59 #include "runtime/atomic.hpp" 60 #include "runtime/fieldDescriptor.inline.hpp" 61 #include "runtime/frame.inline.hpp" 62 #include "runtime/handles.inline.hpp" 63 #include "runtime/interfaceSupport.inline.hpp" 64 #include "runtime/javaCalls.hpp" 65 #include "runtime/sharedRuntime.hpp" 66 #include "runtime/stackWatermarkSet.hpp" 67 #include "runtime/stubInfo.hpp" 68 #include "runtime/stubRoutines.hpp" 69 #include "runtime/vframe.inline.hpp" 70 #include "runtime/vframeArray.hpp" 71 #include "runtime/vm_version.hpp" 72 #include "utilities/copy.hpp" 73 #include "utilities/events.hpp" 74 75 76 // Implementation of StubAssembler 77 78 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) { 79 _name = name; 80 _must_gc_arguments = false; 81 _frame_size = no_frame_size; 82 _num_rt_args = 0; 83 _stub_id = stub_id; 84 } 85 86 87 void StubAssembler::set_info(const char* name, bool must_gc_arguments) { 88 _name = name; 89 _must_gc_arguments = must_gc_arguments; 90 } 91 92 93 void StubAssembler::set_frame_size(int size) { 94 if (_frame_size == no_frame_size) { 95 _frame_size = size; 96 } 97 assert(_frame_size == size, "can't change the frame size"); 98 } 99 100 101 void StubAssembler::set_num_rt_args(int args) { 102 if (_num_rt_args == 0) { 103 _num_rt_args = args; 104 } 105 assert(_num_rt_args == args, "can't change the number of args"); 106 } 107 108 // Implementation of Runtime1 109 CodeBlob* Runtime1::_blobs[StubInfo::C1_STUB_COUNT]; 110 111 #ifndef PRODUCT 112 // statistics 113 uint Runtime1::_generic_arraycopystub_cnt = 0; 114 uint Runtime1::_arraycopy_slowcase_cnt = 0; 115 uint Runtime1::_arraycopy_checkcast_cnt = 0; 116 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0; 117 uint Runtime1::_new_type_array_slowcase_cnt = 0; 118 uint Runtime1::_new_object_array_slowcase_cnt = 0; 119 uint Runtime1::_new_null_free_array_slowcase_cnt = 0; 120 uint Runtime1::_new_instance_slowcase_cnt = 0; 121 uint Runtime1::_new_multi_array_slowcase_cnt = 0; 122 uint Runtime1::_load_flat_array_slowcase_cnt = 0; 123 uint Runtime1::_store_flat_array_slowcase_cnt = 0; 124 uint Runtime1::_substitutability_check_slowcase_cnt = 0; 125 uint Runtime1::_buffer_inline_args_slowcase_cnt = 0; 126 uint Runtime1::_buffer_inline_args_no_receiver_slowcase_cnt = 0; 127 uint Runtime1::_monitorenter_slowcase_cnt = 0; 128 uint Runtime1::_monitorexit_slowcase_cnt = 0; 129 uint Runtime1::_patch_code_slowcase_cnt = 0; 130 uint Runtime1::_throw_range_check_exception_count = 0; 131 uint Runtime1::_throw_index_exception_count = 0; 132 uint Runtime1::_throw_div0_exception_count = 0; 133 uint Runtime1::_throw_null_pointer_exception_count = 0; 134 uint Runtime1::_throw_class_cast_exception_count = 0; 135 uint Runtime1::_throw_incompatible_class_change_error_count = 0; 136 uint Runtime1::_throw_illegal_monitor_state_exception_count = 0; 137 uint Runtime1::_throw_identity_exception_count = 0; 138 uint Runtime1::_throw_count = 0; 139 140 static uint _byte_arraycopy_stub_cnt = 0; 141 static uint _short_arraycopy_stub_cnt = 0; 142 static uint _int_arraycopy_stub_cnt = 0; 143 static uint _long_arraycopy_stub_cnt = 0; 144 static uint _oop_arraycopy_stub_cnt = 0; 145 146 address Runtime1::arraycopy_count_address(BasicType type) { 147 switch (type) { 148 case T_BOOLEAN: 149 case T_BYTE: return (address)&_byte_arraycopy_stub_cnt; 150 case T_CHAR: 151 case T_SHORT: return (address)&_short_arraycopy_stub_cnt; 152 case T_FLOAT: 153 case T_INT: return (address)&_int_arraycopy_stub_cnt; 154 case T_DOUBLE: 155 case T_LONG: return (address)&_long_arraycopy_stub_cnt; 156 case T_ARRAY: 157 case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt; 158 default: 159 ShouldNotReachHere(); 160 return nullptr; 161 } 162 } 163 164 165 #endif 166 167 // Simple helper to see if the caller of a runtime stub which 168 // entered the VM has been deoptimized 169 170 static bool caller_is_deopted(JavaThread* current) { 171 RegisterMap reg_map(current, 172 RegisterMap::UpdateMap::skip, 173 RegisterMap::ProcessFrames::include, 174 RegisterMap::WalkContinuation::skip); 175 frame runtime_frame = current->last_frame(); 176 frame caller_frame = runtime_frame.sender(®_map); 177 assert(caller_frame.is_compiled_frame(), "must be compiled"); 178 return caller_frame.is_deoptimized_frame(); 179 } 180 181 // Stress deoptimization 182 static void deopt_caller(JavaThread* current) { 183 if (!caller_is_deopted(current)) { 184 RegisterMap reg_map(current, 185 RegisterMap::UpdateMap::skip, 186 RegisterMap::ProcessFrames::include, 187 RegisterMap::WalkContinuation::skip); 188 frame runtime_frame = current->last_frame(); 189 frame caller_frame = runtime_frame.sender(®_map); 190 Deoptimization::deoptimize_frame(current, caller_frame.id()); 191 assert(caller_is_deopted(current), "Must be deoptimized"); 192 } 193 } 194 195 class C1StubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure { 196 private: 197 StubId _id; 198 public: 199 C1StubAssemblerCodeGenClosure(StubId id) : _id(id) { 200 assert(StubInfo::is_c1(_id), "not a c1 stub id %s", StubInfo::name(_id)); 201 } 202 virtual OopMapSet* generate_code(StubAssembler* sasm) { 203 return Runtime1::generate_code_for(_id, sasm); 204 } 205 }; 206 207 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, StubId id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) { 208 if (id != StubId::NO_STUBID) { 209 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::C1Blob, StubInfo::blob(id)); 210 if (blob != nullptr) { 211 return blob; 212 } 213 } 214 215 ResourceMark rm; 216 // create code buffer for code storage 217 CodeBuffer code(buffer_blob); 218 219 OopMapSet* oop_maps; 220 int frame_size; 221 bool must_gc_arguments; 222 223 Compilation::setup_code_buffer(&code, 0); 224 225 // create assembler for code generation 226 StubAssembler* sasm = new StubAssembler(&code, name, (int)id); 227 // generate code for runtime stub 228 oop_maps = cl->generate_code(sasm); 229 assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size, 230 "if stub has an oop map it must have a valid frame size"); 231 assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap"); 232 233 // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned) 234 sasm->align(BytesPerWord); 235 // make sure all code is in code buffer 236 sasm->flush(); 237 238 frame_size = sasm->frame_size(); 239 must_gc_arguments = sasm->must_gc_arguments(); 240 // create blob - distinguish a few special cases 241 CodeBlob* blob = RuntimeStub::new_runtime_stub(name, 242 &code, 243 CodeOffsets::frame_never_safe, 244 frame_size, 245 oop_maps, 246 must_gc_arguments, 247 false /* alloc_fail_is_fatal */ ); 248 if (blob != nullptr && (int)id >= 0) { 249 AOTCodeCache::store_code_blob(*blob, AOTCodeEntry::C1Blob, StubInfo::blob(id)); 250 } 251 return blob; 252 } 253 254 bool Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubId id) { 255 assert(StubInfo::is_c1(id), "not a c1 stub %s", StubInfo::name(id)); 256 bool expect_oop_map = true; 257 #ifdef ASSERT 258 // Make sure that stubs that need oopmaps have them 259 switch (id) { 260 // These stubs don't need to have an oopmap 261 case StubId::c1_dtrace_object_alloc_id: 262 case StubId::c1_slow_subtype_check_id: 263 case StubId::c1_fpu2long_stub_id: 264 case StubId::c1_unwind_exception_id: 265 case StubId::c1_counter_overflow_id: 266 case StubId::c1_is_instance_of_id: 267 expect_oop_map = false; 268 break; 269 default: 270 break; 271 } 272 #endif 273 C1StubAssemblerCodeGenClosure cl(id); 274 CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl); 275 // install blob 276 int idx = StubInfo::c1_offset(id); // will assert on non-c1 id 277 _blobs[idx] = blob; 278 return blob != nullptr; 279 } 280 281 bool Runtime1::initialize(BufferBlob* blob) { 282 // platform-dependent initialization 283 initialize_pd(); 284 // iterate blobs in C1 group and generate a single stub per blob 285 StubId id = StubInfo::stub_base(StubGroup::C1); 286 StubId limit = StubInfo::next(StubInfo::stub_max(StubGroup::C1)); 287 for (; id != limit; id = StubInfo::next(id)) { 288 if (!generate_blob_for(blob, id)) { 289 return false; 290 } 291 if (id == StubId::c1_forward_exception_id) { 292 // publish early c1 stubs at this point so later stubs can refer to them 293 AOTCodeCache::init_early_c1_table(); 294 } 295 } 296 // printing 297 #ifndef PRODUCT 298 if (PrintSimpleStubs) { 299 ResourceMark rm; 300 id = StubInfo::stub_base(StubGroup::C1); 301 for (; id != limit; id = StubInfo::next(id)) { 302 CodeBlob* blob = blob_for(id); 303 blob->print(); 304 if (blob->oop_maps() != nullptr) { 305 blob->oop_maps()->print(); 306 } 307 } 308 } 309 #endif 310 BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1(); 311 return bs->generate_c1_runtime_stubs(blob); 312 } 313 314 CodeBlob* Runtime1::blob_for(StubId id) { 315 int idx = StubInfo::c1_offset(id); // will assert on non-c1 id 316 return _blobs[idx]; 317 } 318 319 320 const char* Runtime1::name_for(StubId id) { 321 return StubInfo::name(id); 322 } 323 324 const char* Runtime1::name_for_address(address entry) { 325 // iterate stubs starting from C1 group base 326 StubId id = StubInfo::stub_base(StubGroup::C1); 327 StubId limit = StubInfo::next(StubInfo::stub_max(StubGroup::C1)); 328 for (; id != limit; id = StubInfo::next(id)) { 329 if (entry == entry_for(id)) return StubInfo::name(id); 330 } 331 332 #define FUNCTION_CASE(a, f) \ 333 if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f 334 335 FUNCTION_CASE(entry, os::javaTimeMillis); 336 FUNCTION_CASE(entry, os::javaTimeNanos); 337 FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end); 338 FUNCTION_CASE(entry, SharedRuntime::d2f); 339 FUNCTION_CASE(entry, SharedRuntime::d2i); 340 FUNCTION_CASE(entry, SharedRuntime::d2l); 341 FUNCTION_CASE(entry, SharedRuntime::dcos); 342 FUNCTION_CASE(entry, SharedRuntime::dexp); 343 FUNCTION_CASE(entry, SharedRuntime::dlog); 344 FUNCTION_CASE(entry, SharedRuntime::dlog10); 345 FUNCTION_CASE(entry, SharedRuntime::dpow); 346 FUNCTION_CASE(entry, SharedRuntime::drem); 347 FUNCTION_CASE(entry, SharedRuntime::dsin); 348 FUNCTION_CASE(entry, SharedRuntime::dtan); 349 FUNCTION_CASE(entry, SharedRuntime::f2i); 350 FUNCTION_CASE(entry, SharedRuntime::f2l); 351 FUNCTION_CASE(entry, SharedRuntime::frem); 352 FUNCTION_CASE(entry, SharedRuntime::l2d); 353 FUNCTION_CASE(entry, SharedRuntime::l2f); 354 FUNCTION_CASE(entry, SharedRuntime::ldiv); 355 FUNCTION_CASE(entry, SharedRuntime::lmul); 356 FUNCTION_CASE(entry, SharedRuntime::lrem); 357 FUNCTION_CASE(entry, SharedRuntime::lrem); 358 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry); 359 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit); 360 FUNCTION_CASE(entry, is_instance_of); 361 FUNCTION_CASE(entry, trace_block_entry); 362 #ifdef JFR_HAVE_INTRINSICS 363 FUNCTION_CASE(entry, JfrTime::time_function()); 364 #endif 365 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32()); 366 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C()); 367 FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch()); 368 FUNCTION_CASE(entry, StubRoutines::dexp()); 369 FUNCTION_CASE(entry, StubRoutines::dlog()); 370 FUNCTION_CASE(entry, StubRoutines::dlog10()); 371 FUNCTION_CASE(entry, StubRoutines::dpow()); 372 FUNCTION_CASE(entry, StubRoutines::dsin()); 373 FUNCTION_CASE(entry, StubRoutines::dcos()); 374 FUNCTION_CASE(entry, StubRoutines::dtan()); 375 FUNCTION_CASE(entry, StubRoutines::dsinh()); 376 FUNCTION_CASE(entry, StubRoutines::dtanh()); 377 FUNCTION_CASE(entry, StubRoutines::dcbrt()); 378 379 #undef FUNCTION_CASE 380 381 // Soft float adds more runtime names. 382 return pd_name_for_address(entry); 383 } 384 385 static void allocate_instance(JavaThread* current, Klass* klass, TRAPS) { 386 #ifndef PRODUCT 387 if (PrintC1Statistics) { 388 Runtime1::_new_instance_slowcase_cnt++; 389 } 390 #endif 391 assert(klass->is_klass(), "not a class"); 392 Handle holder(current, klass->klass_holder()); // keep the klass alive 393 InstanceKlass* h = InstanceKlass::cast(klass); 394 h->check_valid_for_instantiation(true, CHECK); 395 // make sure klass is initialized 396 h->initialize(CHECK); 397 // allocate instance and return via TLS 398 oop obj = h->allocate_instance(CHECK); 399 current->set_vm_result_oop(obj); 400 JRT_END 401 402 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass)) 403 allocate_instance(current, klass, CHECK); 404 JRT_END 405 406 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length)) 407 #ifndef PRODUCT 408 if (PrintC1Statistics) { 409 _new_type_array_slowcase_cnt++; 410 } 411 #endif 412 // Note: no handle for klass needed since they are not used 413 // anymore after new_typeArray() and no GC can happen before. 414 // (This may have to change if this code changes!) 415 assert(klass->is_klass(), "not a class"); 416 BasicType elt_type = TypeArrayKlass::cast(klass)->element_type(); 417 oop obj = oopFactory::new_typeArray(elt_type, length, CHECK); 418 current->set_vm_result_oop(obj); 419 // This is pretty rare but this runtime patch is stressful to deoptimization 420 // if we deoptimize here so force a deopt to stress the path. 421 if (DeoptimizeALot) { 422 deopt_caller(current); 423 } 424 425 JRT_END 426 427 428 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length)) 429 #ifndef PRODUCT 430 if (PrintC1Statistics) { 431 _new_object_array_slowcase_cnt++; 432 } 433 #endif 434 // Note: no handle for klass needed since they are not used 435 // anymore after new_objArray() and no GC can happen before. 436 // (This may have to change if this code changes!) 437 assert(array_klass->is_klass(), "not a class"); 438 Handle holder(current, array_klass->klass_holder()); // keep the klass alive 439 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); 440 objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK); 441 current->set_vm_result_oop(obj); 442 // This is pretty rare but this runtime patch is stressful to deoptimization 443 // if we deoptimize here so force a deopt to stress the path. 444 if (DeoptimizeALot) { 445 deopt_caller(current); 446 } 447 JRT_END 448 449 450 JRT_ENTRY(void, Runtime1::new_null_free_array(JavaThread* current, Klass* array_klass, jint length)) 451 NOT_PRODUCT(_new_null_free_array_slowcase_cnt++;) 452 // TODO 8350865 This is dead code since 8325660 because null-free arrays can only be created via the factory methods that are not yet implemented in C1. Should probably be fixed by 8265122. 453 454 // Note: no handle for klass needed since they are not used 455 // anymore after new_objArray() and no GC can happen before. 456 // (This may have to change if this code changes!) 457 assert(array_klass->is_klass(), "not a class"); 458 Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive 459 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); 460 assert(elem_klass->is_inline_klass(), "must be"); 461 InlineKlass* vk = InlineKlass::cast(elem_klass); 462 // Logically creates elements, ensure klass init 463 elem_klass->initialize(CHECK); 464 arrayOop obj= oopFactory::new_objArray(elem_klass, length, ArrayKlass::ArrayProperties::NULL_RESTRICTED, CHECK); 465 current->set_vm_result_oop(obj); 466 // This is pretty rare but this runtime patch is stressful to deoptimization 467 // if we deoptimize here so force a deopt to stress the path. 468 if (DeoptimizeALot) { 469 deopt_caller(current); 470 } 471 JRT_END 472 473 474 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims)) 475 #ifndef PRODUCT 476 if (PrintC1Statistics) { 477 _new_multi_array_slowcase_cnt++; 478 } 479 #endif 480 assert(klass->is_klass(), "not a class"); 481 assert(rank >= 1, "rank must be nonzero"); 482 Handle holder(current, klass->klass_holder()); // keep the klass alive 483 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); 484 current->set_vm_result_oop(obj); 485 JRT_END 486 487 488 static void profile_flat_array(JavaThread* current, bool load, bool null_free) { 489 ResourceMark rm(current); 490 vframeStream vfst(current, true); 491 assert(!vfst.at_end(), "Java frame must exist"); 492 // Check if array access profiling is enabled 493 if (vfst.nm()->comp_level() != CompLevel_full_profile || !C1UpdateMethodData) { 494 return; 495 } 496 int bci = vfst.bci(); 497 Method* method = vfst.method(); 498 MethodData* md = method->method_data(); 499 if (md != nullptr) { 500 // Lock to access ProfileData, and ensure lock is not broken by a safepoint 501 MutexLocker ml(md->extra_data_lock(), Mutex::_no_safepoint_check_flag); 502 503 ProfileData* data = md->bci_to_data(bci); 504 assert(data != nullptr, "incorrect profiling entry"); 505 if (data->is_ArrayLoadData()) { 506 assert(load, "should be an array load"); 507 ArrayLoadData* load_data = (ArrayLoadData*) data; 508 load_data->set_flat_array(); 509 if (null_free) { 510 load_data->set_null_free_array(); 511 } 512 } else { 513 assert(data->is_ArrayStoreData(), ""); 514 assert(!load, "should be an array store"); 515 ArrayStoreData* store_data = (ArrayStoreData*) data; 516 store_data->set_flat_array(); 517 if (null_free) { 518 store_data->set_null_free_array(); 519 } 520 } 521 } 522 } 523 524 JRT_ENTRY(void, Runtime1::load_flat_array(JavaThread* current, flatArrayOopDesc* array, int index)) 525 assert(array->klass()->is_flatArray_klass(), "should not be called"); 526 profile_flat_array(current, true, array->is_null_free_array()); 527 528 NOT_PRODUCT(_load_flat_array_slowcase_cnt++;) 529 assert(array->length() > 0 && index < array->length(), "already checked"); 530 flatArrayHandle vah(current, array); 531 oop obj = array->obj_at(index, CHECK); 532 current->set_vm_result_oop(obj); 533 JRT_END 534 535 JRT_ENTRY(void, Runtime1::store_flat_array(JavaThread* current, flatArrayOopDesc* array, int index, oopDesc* value)) 536 // TOOD 8350865 We can call here with a non-flat array because of LIR_Assembler::emit_opFlattenedArrayCheck 537 if (array->klass()->is_flatArray_klass()) { 538 profile_flat_array(current, false, array->is_null_free_array()); 539 } 540 541 NOT_PRODUCT(_store_flat_array_slowcase_cnt++;) 542 if (value == nullptr && array->is_null_free_array()) { 543 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException()); 544 } else { 545 assert(array->klass()->is_flatArray_klass(), "should not be called"); 546 array->obj_at_put(index, value, CHECK); 547 } 548 JRT_END 549 550 JRT_ENTRY(int, Runtime1::substitutability_check(JavaThread* current, oopDesc* left, oopDesc* right)) 551 NOT_PRODUCT(_substitutability_check_slowcase_cnt++;) 552 JavaCallArguments args; 553 args.push_oop(Handle(THREAD, left)); 554 args.push_oop(Handle(THREAD, right)); 555 JavaValue result(T_BOOLEAN); 556 JavaCalls::call_static(&result, 557 vmClasses::ValueObjectMethods_klass(), 558 vmSymbols::isSubstitutable_name(), 559 vmSymbols::object_object_boolean_signature(), 560 &args, CHECK_0); 561 return result.get_jboolean() ? 1 : 0; 562 JRT_END 563 564 565 extern "C" void ps(); 566 567 void Runtime1::buffer_inline_args_impl(JavaThread* current, Method* m, bool allocate_receiver) { 568 JavaThread* THREAD = current; 569 methodHandle method(current, m); // We are inside the verified_entry or verified_inline_ro_entry of this method. 570 oop obj = SharedRuntime::allocate_inline_types_impl(current, method, allocate_receiver, CHECK); 571 current->set_vm_result_oop(obj); 572 } 573 574 JRT_ENTRY(void, Runtime1::buffer_inline_args(JavaThread* current, Method* method)) 575 NOT_PRODUCT(_buffer_inline_args_slowcase_cnt++;) 576 buffer_inline_args_impl(current, method, true); 577 JRT_END 578 579 JRT_ENTRY(void, Runtime1::buffer_inline_args_no_receiver(JavaThread* current, Method* method)) 580 NOT_PRODUCT(_buffer_inline_args_no_receiver_slowcase_cnt++;) 581 buffer_inline_args_impl(current, method, false); 582 JRT_END 583 584 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, StubId id)) 585 tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id); 586 JRT_END 587 588 589 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj)) 590 ResourceMark rm(current); 591 const char* klass_name = obj->klass()->external_name(); 592 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name); 593 JRT_END 594 595 596 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method 597 // associated with the top activation record. The inlinee (that is possibly included in the enclosing 598 // method) method is passed as an argument. In order to do that it is embedded in the code as 599 // a constant. 600 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) { 601 nmethod* osr_nm = nullptr; 602 methodHandle method(current, m); 603 604 RegisterMap map(current, 605 RegisterMap::UpdateMap::skip, 606 RegisterMap::ProcessFrames::include, 607 RegisterMap::WalkContinuation::skip); 608 frame fr = current->last_frame().sender(&map); 609 nmethod* nm = (nmethod*) fr.cb(); 610 assert(nm!= nullptr && nm->is_nmethod(), "Sanity check"); 611 methodHandle enclosing_method(current, nm->method()); 612 613 CompLevel level = (CompLevel)nm->comp_level(); 614 int bci = InvocationEntryBci; 615 if (branch_bci != InvocationEntryBci) { 616 // Compute destination bci 617 address pc = method()->code_base() + branch_bci; 618 Bytecodes::Code branch = Bytecodes::code_at(method(), pc); 619 int offset = 0; 620 switch (branch) { 621 case Bytecodes::_if_icmplt: case Bytecodes::_iflt: 622 case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt: 623 case Bytecodes::_if_icmple: case Bytecodes::_ifle: 624 case Bytecodes::_if_icmpge: case Bytecodes::_ifge: 625 case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq: 626 case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne: 627 case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto: 628 offset = (int16_t)Bytes::get_Java_u2(pc + 1); 629 break; 630 case Bytecodes::_goto_w: 631 offset = Bytes::get_Java_u4(pc + 1); 632 break; 633 default: ; 634 } 635 bci = branch_bci + offset; 636 } 637 osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current); 638 return osr_nm; 639 } 640 641 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method)) 642 nmethod* osr_nm; 643 JRT_BLOCK_NO_ASYNC 644 osr_nm = counter_overflow_helper(current, bci, method); 645 if (osr_nm != nullptr) { 646 RegisterMap map(current, 647 RegisterMap::UpdateMap::skip, 648 RegisterMap::ProcessFrames::include, 649 RegisterMap::WalkContinuation::skip); 650 frame fr = current->last_frame().sender(&map); 651 Deoptimization::deoptimize_frame(current, fr.id()); 652 } 653 JRT_BLOCK_END 654 return nullptr; 655 JRT_END 656 657 extern void vm_exit(int code); 658 659 // Enter this method from compiled code handler below. This is where we transition 660 // to VM mode. This is done as a helper routine so that the method called directly 661 // from compiled code does not have to transition to VM. This allows the entry 662 // method to see if the nmethod that we have just looked up a handler for has 663 // been deoptimized while we were in the vm. This simplifies the assembly code 664 // cpu directories. 665 // 666 // We are entering here from exception stub (via the entry method below) 667 // If there is a compiled exception handler in this method, we will continue there; 668 // otherwise we will unwind the stack and continue at the caller of top frame method 669 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to 670 // control the area where we can allow a safepoint. After we exit the safepoint area we can 671 // check to see if the handler we are going to return is now in a nmethod that has 672 // been deoptimized. If that is the case we return the deopt blob 673 // unpack_with_exception entry instead. This makes life for the exception blob easier 674 // because making that same check and diverting is painful from assembly language. 675 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm)) 676 // Reset method handle flag. 677 current->set_is_method_handle_return(false); 678 679 Handle exception(current, ex); 680 681 // This function is called when we are about to throw an exception. Therefore, 682 // we have to poll the stack watermark barrier to make sure that not yet safe 683 // stack frames are made safe before returning into them. 684 if (current->last_frame().cb() == Runtime1::blob_for(StubId::c1_handle_exception_from_callee_id)) { 685 // The StubId::c1_handle_exception_from_callee_id handler is invoked after the 686 // frame has been unwound. It instead builds its own stub frame, to call the 687 // runtime. But the throwing frame has already been unwound here. 688 StackWatermarkSet::after_unwind(current); 689 } 690 691 nm = CodeCache::find_nmethod(pc); 692 assert(nm != nullptr, "this is not an nmethod"); 693 // Adjust the pc as needed/ 694 if (nm->is_deopt_pc(pc)) { 695 RegisterMap map(current, 696 RegisterMap::UpdateMap::skip, 697 RegisterMap::ProcessFrames::include, 698 RegisterMap::WalkContinuation::skip); 699 frame exception_frame = current->last_frame().sender(&map); 700 // if the frame isn't deopted then pc must not correspond to the caller of last_frame 701 assert(exception_frame.is_deoptimized_frame(), "must be deopted"); 702 pc = exception_frame.pc(); 703 } 704 assert(exception.not_null(), "null exceptions should be handled by throw_exception"); 705 // Check that exception is a subclass of Throwable 706 assert(exception->is_a(vmClasses::Throwable_klass()), 707 "Exception not subclass of Throwable"); 708 709 // debugging support 710 // tracing 711 if (log_is_enabled(Info, exceptions)) { 712 ResourceMark rm; // print_value_string 713 stringStream tempst; 714 assert(nm->method() != nullptr, "Unexpected null method()"); 715 tempst.print("C1 compiled method <%s>\n" 716 " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT, 717 nm->method()->print_value_string(), p2i(pc), p2i(current)); 718 Exceptions::log_exception(exception, tempst.freeze()); 719 } 720 // for AbortVMOnException flag 721 Exceptions::debug_check_abort(exception); 722 723 // Check the stack guard pages and re-enable them if necessary and there is 724 // enough space on the stack to do so. Use fast exceptions only if the guard 725 // pages are enabled. 726 bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed(); 727 728 if (JvmtiExport::can_post_on_exceptions()) { 729 // To ensure correct notification of exception catches and throws 730 // we have to deoptimize here. If we attempted to notify the 731 // catches and throws during this exception lookup it's possible 732 // we could deoptimize on the way out of the VM and end back in 733 // the interpreter at the throw site. This would result in double 734 // notifications since the interpreter would also notify about 735 // these same catches and throws as it unwound the frame. 736 737 RegisterMap reg_map(current, 738 RegisterMap::UpdateMap::include, 739 RegisterMap::ProcessFrames::include, 740 RegisterMap::WalkContinuation::skip); 741 frame stub_frame = current->last_frame(); 742 frame caller_frame = stub_frame.sender(®_map); 743 744 // We don't really want to deoptimize the nmethod itself since we 745 // can actually continue in the exception handler ourselves but I 746 // don't see an easy way to have the desired effect. 747 Deoptimization::deoptimize_frame(current, caller_frame.id()); 748 assert(caller_is_deopted(current), "Must be deoptimized"); 749 750 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 751 } 752 753 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions 754 if (guard_pages_enabled) { 755 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); 756 if (fast_continuation != nullptr) { 757 // Set flag if return address is a method handle call site. 758 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 759 return fast_continuation; 760 } 761 } 762 763 // If the stack guard pages are enabled, check whether there is a handler in 764 // the current method. Otherwise (guard pages disabled), force an unwind and 765 // skip the exception cache update (i.e., just leave continuation as null). 766 address continuation = nullptr; 767 if (guard_pages_enabled) { 768 769 // New exception handling mechanism can support inlined methods 770 // with exception handlers since the mappings are from PC to PC 771 772 // Clear out the exception oop and pc since looking up an 773 // exception handler can cause class loading, which might throw an 774 // exception and those fields are expected to be clear during 775 // normal bytecode execution. 776 current->clear_exception_oop_and_pc(); 777 778 bool recursive_exception = false; 779 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception); 780 // If an exception was thrown during exception dispatch, the exception oop may have changed 781 current->set_exception_oop(exception()); 782 current->set_exception_pc(pc); 783 784 // the exception cache is used only by non-implicit exceptions 785 // Update the exception cache only when there didn't happen 786 // another exception during the computation of the compiled 787 // exception handler. Checking for exception oop equality is not 788 // sufficient because some exceptions are pre-allocated and reused. 789 if (continuation != nullptr && !recursive_exception) { 790 nm->add_handler_for_exception_and_pc(exception, pc, continuation); 791 } 792 } 793 794 current->set_vm_result_oop(exception()); 795 // Set flag if return address is a method handle call site. 796 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 797 798 if (log_is_enabled(Info, exceptions)) { 799 ResourceMark rm; 800 log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT 801 " for exception thrown at PC " PTR_FORMAT, 802 p2i(current), p2i(continuation), p2i(pc)); 803 } 804 805 return continuation; 806 JRT_END 807 808 // Enter this method from compiled code only if there is a Java exception handler 809 // in the method handling the exception. 810 // We are entering here from exception stub. We don't do a normal VM transition here. 811 // We do it in a helper. This is so we can check to see if the nmethod we have just 812 // searched for an exception handler has been deoptimized in the meantime. 813 address Runtime1::exception_handler_for_pc(JavaThread* current) { 814 oop exception = current->exception_oop(); 815 address pc = current->exception_pc(); 816 // Still in Java mode 817 DEBUG_ONLY(NoHandleMark nhm); 818 nmethod* nm = nullptr; 819 address continuation = nullptr; 820 { 821 // Enter VM mode by calling the helper 822 ResetNoHandleMark rnhm; 823 continuation = exception_handler_for_pc_helper(current, exception, pc, nm); 824 } 825 // Back in JAVA, use no oops DON'T safepoint 826 827 // Now check to see if the nmethod we were called from is now deoptimized. 828 // If so we must return to the deopt blob and deoptimize the nmethod 829 if (nm != nullptr && caller_is_deopted(current)) { 830 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 831 } 832 833 assert(continuation != nullptr, "no handler found"); 834 return continuation; 835 } 836 837 838 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a)) 839 #ifndef PRODUCT 840 if (PrintC1Statistics) { 841 _throw_range_check_exception_count++; 842 } 843 #endif 844 const int len = 35; 845 assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message."); 846 char message[2 * jintAsStringSize + len]; 847 os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length()); 848 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message); 849 JRT_END 850 851 852 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index)) 853 #ifndef PRODUCT 854 if (PrintC1Statistics) { 855 _throw_index_exception_count++; 856 } 857 #endif 858 char message[16]; 859 os::snprintf_checked(message, sizeof(message), "%d", index); 860 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message); 861 JRT_END 862 863 864 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current)) 865 #ifndef PRODUCT 866 if (PrintC1Statistics) { 867 _throw_div0_exception_count++; 868 } 869 #endif 870 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 871 JRT_END 872 873 874 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current)) 875 #ifndef PRODUCT 876 if (PrintC1Statistics) { 877 _throw_null_pointer_exception_count++; 878 } 879 #endif 880 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException()); 881 JRT_END 882 883 884 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object)) 885 #ifndef PRODUCT 886 if (PrintC1Statistics) { 887 _throw_class_cast_exception_count++; 888 } 889 #endif 890 ResourceMark rm(current); 891 char* message = SharedRuntime::generate_class_cast_message(current, object->klass()); 892 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message); 893 JRT_END 894 895 896 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current)) 897 #ifndef PRODUCT 898 if (PrintC1Statistics) { 899 _throw_incompatible_class_change_error_count++; 900 } 901 #endif 902 ResourceMark rm(current); 903 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError()); 904 JRT_END 905 906 907 JRT_ENTRY(void, Runtime1::throw_illegal_monitor_state_exception(JavaThread* current)) 908 NOT_PRODUCT(_throw_illegal_monitor_state_exception_count++;) 909 ResourceMark rm(current); 910 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IllegalMonitorStateException()); 911 JRT_END 912 913 JRT_ENTRY(void, Runtime1::throw_identity_exception(JavaThread* current, oopDesc* object)) 914 NOT_PRODUCT(_throw_identity_exception_count++;) 915 ResourceMark rm(current); 916 char* message = SharedRuntime::generate_identity_exception_message(current, object->klass()); 917 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IdentityException(), message); 918 JRT_END 919 920 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock)) 921 #ifndef PRODUCT 922 if (PrintC1Statistics) { 923 _monitorenter_slowcase_cnt++; 924 } 925 #endif 926 if (LockingMode == LM_MONITOR) { 927 lock->set_obj(obj); 928 } 929 assert(obj == lock->obj(), "must match"); 930 SharedRuntime::monitor_enter_helper(obj, lock->lock(), current); 931 JRT_END 932 933 934 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock)) 935 assert(current == JavaThread::current(), "pre-condition"); 936 #ifndef PRODUCT 937 if (PrintC1Statistics) { 938 _monitorexit_slowcase_cnt++; 939 } 940 #endif 941 assert(current->last_Java_sp(), "last_Java_sp must be set"); 942 oop obj = lock->obj(); 943 assert(oopDesc::is_oop(obj), "must be null or an object"); 944 SharedRuntime::monitor_exit_helper(obj, lock->lock(), current); 945 JRT_END 946 947 // Cf. OptoRuntime::deoptimize_caller_frame 948 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request)) 949 // Called from within the owner thread, so no need for safepoint 950 RegisterMap reg_map(current, 951 RegisterMap::UpdateMap::skip, 952 RegisterMap::ProcessFrames::include, 953 RegisterMap::WalkContinuation::skip); 954 frame stub_frame = current->last_frame(); 955 assert(stub_frame.is_runtime_frame(), "Sanity check"); 956 frame caller_frame = stub_frame.sender(®_map); 957 nmethod* nm = caller_frame.cb()->as_nmethod_or_null(); 958 assert(nm != nullptr, "Sanity check"); 959 methodHandle method(current, nm->method()); 960 assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same"); 961 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); 962 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); 963 964 if (action == Deoptimization::Action_make_not_entrant) { 965 if (nm->make_not_entrant(nmethod::InvalidationReason::C1_DEOPTIMIZE)) { 966 if (reason == Deoptimization::Reason_tenured) { 967 MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/); 968 if (trap_mdo != nullptr) { 969 trap_mdo->inc_tenure_traps(); 970 } 971 } 972 } 973 } 974 975 // Deoptimize the caller frame. 976 Deoptimization::deoptimize_frame(current, caller_frame.id()); 977 // Return to the now deoptimized frame. 978 JRT_END 979 980 981 #ifndef DEOPTIMIZE_WHEN_PATCHING 982 983 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) { 984 Bytecode_field field_access(caller, bci); 985 // This can be static or non-static field access 986 Bytecodes::Code code = field_access.code(); 987 988 // We must load class, initialize class and resolve the field 989 fieldDescriptor result; // initialize class if needed 990 constantPoolHandle constants(THREAD, caller->constants()); 991 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL); 992 return result.field_holder(); 993 } 994 995 996 // 997 // This routine patches sites where a class wasn't loaded or 998 // initialized at the time the code was generated. It handles 999 // references to classes, fields and forcing of initialization. Most 1000 // of the cases are straightforward and involving simply forcing 1001 // resolution of a class, rewriting the instruction stream with the 1002 // needed constant and replacing the call in this function with the 1003 // patched code. The case for static field is more complicated since 1004 // the thread which is in the process of initializing a class can 1005 // access it's static fields but other threads can't so the code 1006 // either has to deoptimize when this case is detected or execute a 1007 // check that the current thread is the initializing thread. The 1008 // current 1009 // 1010 // Patches basically look like this: 1011 // 1012 // 1013 // patch_site: jmp patch stub ;; will be patched 1014 // continue: ... 1015 // ... 1016 // ... 1017 // ... 1018 // 1019 // They have a stub which looks like this: 1020 // 1021 // ;; patch body 1022 // movl <const>, reg (for class constants) 1023 // <or> movl [reg1 + <const>], reg (for field offsets) 1024 // <or> movl reg, [reg1 + <const>] (for field offsets) 1025 // <being_init offset> <bytes to copy> <bytes to skip> 1026 // patch_stub: call Runtime1::patch_code (through a runtime stub) 1027 // jmp patch_site 1028 // 1029 // 1030 // A normal patch is done by rewriting the patch body, usually a move, 1031 // and then copying it into place over top of the jmp instruction 1032 // being careful to flush caches and doing it in an MP-safe way. The 1033 // constants following the patch body are used to find various pieces 1034 // of the patch relative to the call site for Runtime1::patch_code. 1035 // The case for getstatic and putstatic is more complicated because 1036 // getstatic and putstatic have special semantics when executing while 1037 // the class is being initialized. getstatic/putstatic on a class 1038 // which is being_initialized may be executed by the initializing 1039 // thread but other threads have to block when they execute it. This 1040 // is accomplished in compiled code by executing a test of the current 1041 // thread against the initializing thread of the class. It's emitted 1042 // as boilerplate in their stub which allows the patched code to be 1043 // executed before it's copied back into the main body of the nmethod. 1044 // 1045 // being_init: get_thread(<tmp reg> 1046 // cmpl [reg1 + <init_thread_offset>], <tmp reg> 1047 // jne patch_stub 1048 // movl [reg1 + <const>], reg (for field offsets) <or> 1049 // movl reg, [reg1 + <const>] (for field offsets) 1050 // jmp continue 1051 // <being_init offset> <bytes to copy> <bytes to skip> 1052 // patch_stub: jmp Runtime1::patch_code (through a runtime stub) 1053 // jmp patch_site 1054 // 1055 // If the class is being initialized the patch body is rewritten and 1056 // the patch site is rewritten to jump to being_init, instead of 1057 // patch_stub. Whenever this code is executed it checks the current 1058 // thread against the initializing thread so other threads will enter 1059 // the runtime and end up blocked waiting the class to finish 1060 // initializing inside the calls to resolve_field below. The 1061 // initializing class will continue on it's way. Once the class is 1062 // fully_initialized, the intializing_thread of the class becomes 1063 // null, so the next thread to execute this code will fail the test, 1064 // call into patch_code and complete the patching process by copying 1065 // the patch body back into the main part of the nmethod and resume 1066 // executing. 1067 1068 // NB: 1069 // 1070 // Patchable instruction sequences inherently exhibit race conditions, 1071 // where thread A is patching an instruction at the same time thread B 1072 // is executing it. The algorithms we use ensure that any observation 1073 // that B can make on any intermediate states during A's patching will 1074 // always end up with a correct outcome. This is easiest if there are 1075 // few or no intermediate states. (Some inline caches have two 1076 // related instructions that must be patched in tandem. For those, 1077 // intermediate states seem to be unavoidable, but we will get the 1078 // right answer from all possible observation orders.) 1079 // 1080 // When patching the entry instruction at the head of a method, or a 1081 // linkable call instruction inside of a method, we try very hard to 1082 // use a patch sequence which executes as a single memory transaction. 1083 // This means, in practice, that when thread A patches an instruction, 1084 // it should patch a 32-bit or 64-bit word that somehow overlaps the 1085 // instruction or is contained in it. We believe that memory hardware 1086 // will never break up such a word write, if it is naturally aligned 1087 // for the word being written. We also know that some CPUs work very 1088 // hard to create atomic updates even of naturally unaligned words, 1089 // but we don't want to bet the farm on this always working. 1090 // 1091 // Therefore, if there is any chance of a race condition, we try to 1092 // patch only naturally aligned words, as single, full-word writes. 1093 1094 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, StubId stub_id )) 1095 #ifndef PRODUCT 1096 if (PrintC1Statistics) { 1097 _patch_code_slowcase_cnt++; 1098 } 1099 #endif 1100 1101 ResourceMark rm(current); 1102 RegisterMap reg_map(current, 1103 RegisterMap::UpdateMap::skip, 1104 RegisterMap::ProcessFrames::include, 1105 RegisterMap::WalkContinuation::skip); 1106 frame runtime_frame = current->last_frame(); 1107 frame caller_frame = runtime_frame.sender(®_map); 1108 1109 // last java frame on stack 1110 vframeStream vfst(current, true); 1111 assert(!vfst.at_end(), "Java frame must exist"); 1112 1113 methodHandle caller_method(current, vfst.method()); 1114 // Note that caller_method->code() may not be same as caller_code because of OSR's 1115 // Note also that in the presence of inlining it is not guaranteed 1116 // that caller_method() == caller_code->method() 1117 1118 int bci = vfst.bci(); 1119 Bytecodes::Code code = caller_method()->java_code_at(bci); 1120 1121 // this is used by assertions in the access_field_patching_id 1122 BasicType patch_field_type = T_ILLEGAL; 1123 bool deoptimize_for_volatile = false; 1124 bool deoptimize_for_atomic = false; 1125 bool deoptimize_for_null_free = false; 1126 bool deoptimize_for_flat = false; 1127 bool deoptimize_for_strict_static = false; 1128 int patch_field_offset = -1; 1129 Klass* init_klass = nullptr; // klass needed by load_klass_patching code 1130 Klass* load_klass = nullptr; // klass needed by load_klass_patching code 1131 Handle mirror(current, nullptr); // oop needed by load_mirror_patching code 1132 Handle appendix(current, nullptr); // oop needed by appendix_patching code 1133 bool load_klass_or_mirror_patch_id = 1134 (stub_id == StubId::c1_load_klass_patching_id || stub_id == StubId::c1_load_mirror_patching_id); 1135 1136 if (stub_id == StubId::c1_access_field_patching_id) { 1137 1138 Bytecode_field field_access(caller_method, bci); 1139 fieldDescriptor result; // initialize class if needed 1140 Bytecodes::Code code = field_access.code(); 1141 constantPoolHandle constants(current, caller_method->constants()); 1142 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK); 1143 patch_field_offset = result.offset(); 1144 1145 // If we're patching a field which is volatile then at compile it 1146 // must not have been know to be volatile, so the generated code 1147 // isn't correct for a volatile reference. The nmethod has to be 1148 // deoptimized so that the code can be regenerated correctly. 1149 // This check is only needed for access_field_patching since this 1150 // is the path for patching field offsets. load_klass is only 1151 // used for patching references to oops which don't need special 1152 // handling in the volatile case. 1153 1154 deoptimize_for_volatile = result.access_flags().is_volatile(); 1155 1156 // If we are patching a field which should be atomic, then 1157 // the generated code is not correct either, force deoptimizing. 1158 // We need to only cover T_LONG and T_DOUBLE fields, as we can 1159 // break access atomicity only for them. 1160 1161 // Strictly speaking, the deoptimization on 64-bit platforms 1162 // is unnecessary, and T_LONG stores on 32-bit platforms need 1163 // to be handled by special patching code when AlwaysAtomicAccesses 1164 // becomes product feature. At this point, we are still going 1165 // for the deoptimization for consistency against volatile 1166 // accesses. 1167 1168 patch_field_type = result.field_type(); 1169 deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)); 1170 1171 // The field we are patching is null-free. Deoptimize and regenerate 1172 // the compiled code if we patch a putfield/putstatic because it 1173 // does not contain the required null check. 1174 deoptimize_for_null_free = result.is_null_free_inline_type() && (field_access.is_putfield() || field_access.is_putstatic()); 1175 1176 // The field we are patching is flat. Deoptimize and regenerate 1177 // the compiled code which can't handle the layout of the flat 1178 // field because it was unknown at compile time. 1179 deoptimize_for_flat = result.is_flat(); 1180 1181 // Strict statics may require tracking if their class is not fully initialized. 1182 // For now we can bail out of the compiler and let the interpreter handle it. 1183 deoptimize_for_strict_static = result.is_strict_static_unset(); 1184 } else if (load_klass_or_mirror_patch_id) { 1185 Klass* k = nullptr; 1186 switch (code) { 1187 case Bytecodes::_putstatic: 1188 case Bytecodes::_getstatic: 1189 { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK); 1190 init_klass = klass; 1191 mirror = Handle(current, klass->java_mirror()); 1192 } 1193 break; 1194 case Bytecodes::_new: 1195 { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci)); 1196 k = caller_method->constants()->klass_at(bnew.index(), CHECK); 1197 } 1198 break; 1199 case Bytecodes::_multianewarray: 1200 { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci)); 1201 k = caller_method->constants()->klass_at(mna.index(), CHECK); 1202 } 1203 break; 1204 case Bytecodes::_instanceof: 1205 { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci)); 1206 k = caller_method->constants()->klass_at(io.index(), CHECK); 1207 } 1208 break; 1209 case Bytecodes::_checkcast: 1210 { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci)); 1211 k = caller_method->constants()->klass_at(cc.index(), CHECK); 1212 } 1213 break; 1214 case Bytecodes::_anewarray: 1215 { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci)); 1216 Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK); 1217 k = ek->array_klass(CHECK); 1218 if (!k->is_typeArray_klass() && !k->is_refArray_klass() && !k->is_flatArray_klass()) { 1219 k = ObjArrayKlass::cast(k)->klass_with_properties(ArrayKlass::ArrayProperties::DEFAULT, THREAD); 1220 } 1221 if (k->is_flatArray_klass()) { 1222 deoptimize_for_flat = true; 1223 } 1224 } 1225 break; 1226 case Bytecodes::_ldc: 1227 case Bytecodes::_ldc_w: 1228 case Bytecodes::_ldc2_w: 1229 { 1230 Bytecode_loadconstant cc(caller_method, bci); 1231 oop m = cc.resolve_constant(CHECK); 1232 mirror = Handle(current, m); 1233 } 1234 break; 1235 default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id"); 1236 } 1237 load_klass = k; 1238 } else if (stub_id == StubId::c1_load_appendix_patching_id) { 1239 Bytecode_invoke bytecode(caller_method, bci); 1240 Bytecodes::Code bc = bytecode.invoke_code(); 1241 1242 CallInfo info; 1243 constantPoolHandle pool(current, caller_method->constants()); 1244 int index = bytecode.index(); 1245 LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK); 1246 switch (bc) { 1247 case Bytecodes::_invokehandle: { 1248 ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info); 1249 appendix = Handle(current, pool->cache()->appendix_if_resolved(entry)); 1250 break; 1251 } 1252 case Bytecodes::_invokedynamic: { 1253 appendix = Handle(current, pool->cache()->set_dynamic_call(info, index)); 1254 break; 1255 } 1256 default: fatal("unexpected bytecode for load_appendix_patching_id"); 1257 } 1258 } else { 1259 ShouldNotReachHere(); 1260 } 1261 1262 if (deoptimize_for_volatile || 1263 deoptimize_for_atomic || 1264 deoptimize_for_null_free || 1265 deoptimize_for_flat || 1266 deoptimize_for_strict_static) { 1267 // At compile time we assumed the field wasn't volatile/atomic but after 1268 // loading it turns out it was volatile/atomic so we have to throw the 1269 // compiled code out and let it be regenerated. 1270 if (TracePatching) { 1271 if (deoptimize_for_volatile) { 1272 tty->print_cr("Deoptimizing for patching volatile field reference"); 1273 } 1274 if (deoptimize_for_atomic) { 1275 tty->print_cr("Deoptimizing for patching atomic field reference"); 1276 } 1277 if (deoptimize_for_null_free) { 1278 tty->print_cr("Deoptimizing for patching null-free field reference"); 1279 } 1280 if (deoptimize_for_flat) { 1281 tty->print_cr("Deoptimizing for patching flat field or array reference"); 1282 } 1283 if (deoptimize_for_strict_static) { 1284 tty->print_cr("Deoptimizing for patching strict static field reference"); 1285 } 1286 } 1287 1288 // It's possible the nmethod was invalidated in the last 1289 // safepoint, but if it's still alive then make it not_entrant. 1290 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1291 if (nm != nullptr) { 1292 nm->make_not_entrant(nmethod::InvalidationReason::C1_CODEPATCH); 1293 } 1294 1295 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1296 1297 // Return to the now deoptimized frame. 1298 } 1299 1300 // Now copy code back 1301 1302 { 1303 MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag); 1304 // 1305 // Deoptimization may have happened while we waited for the lock. 1306 // In that case we don't bother to do any patching we just return 1307 // and let the deopt happen 1308 if (!caller_is_deopted(current)) { 1309 NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc()); 1310 address instr_pc = jump->jump_destination(); 1311 NativeInstruction* ni = nativeInstruction_at(instr_pc); 1312 if (ni->is_jump() ) { 1313 // the jump has not been patched yet 1314 // The jump destination is slow case and therefore not part of the stubs 1315 // (stubs are only for StaticCalls) 1316 1317 // format of buffer 1318 // .... 1319 // instr byte 0 <-- copy_buff 1320 // instr byte 1 1321 // .. 1322 // instr byte n-1 1323 // n 1324 // .... <-- call destination 1325 1326 address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset(); 1327 unsigned char* byte_count = (unsigned char*) (stub_location - 1); 1328 unsigned char* byte_skip = (unsigned char*) (stub_location - 2); 1329 unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3); 1330 address copy_buff = stub_location - *byte_skip - *byte_count; 1331 address being_initialized_entry = stub_location - *being_initialized_entry_offset; 1332 if (TracePatching) { 1333 ttyLocker ttyl; 1334 tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT " (%s)", Bytecodes::name(code), bci, 1335 p2i(instr_pc), (stub_id == StubId::c1_access_field_patching_id) ? "field" : "klass"); 1336 nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc()); 1337 assert(caller_code != nullptr, "nmethod not found"); 1338 1339 // NOTE we use pc() not original_pc() because we already know they are 1340 // identical otherwise we'd have never entered this block of code 1341 1342 const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc()); 1343 assert(map != nullptr, "null check"); 1344 map->print(); 1345 tty->cr(); 1346 1347 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1348 } 1349 // depending on the code below, do_patch says whether to copy the patch body back into the nmethod 1350 bool do_patch = true; 1351 if (stub_id == StubId::c1_access_field_patching_id) { 1352 // The offset may not be correct if the class was not loaded at code generation time. 1353 // Set it now. 1354 NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff); 1355 assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type"); 1356 assert(patch_field_offset >= 0, "illegal offset"); 1357 n_move->add_offset_in_bytes(patch_field_offset); 1358 } else if (load_klass_or_mirror_patch_id) { 1359 // If a getstatic or putstatic is referencing a klass which 1360 // isn't fully initialized, the patch body isn't copied into 1361 // place until initialization is complete. In this case the 1362 // patch site is setup so that any threads besides the 1363 // initializing thread are forced to come into the VM and 1364 // block. 1365 do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) || 1366 InstanceKlass::cast(init_klass)->is_initialized(); 1367 NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc); 1368 if (jump->jump_destination() == being_initialized_entry) { 1369 assert(do_patch == true, "initialization must be complete at this point"); 1370 } else { 1371 // patch the instruction <move reg, klass> 1372 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1373 1374 assert(n_copy->data() == 0 || 1375 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1376 "illegal init value"); 1377 if (stub_id == StubId::c1_load_klass_patching_id) { 1378 assert(load_klass != nullptr, "klass not set"); 1379 n_copy->set_data((intx) (load_klass)); 1380 } else { 1381 // Don't need a G1 pre-barrier here since we assert above that data isn't an oop. 1382 n_copy->set_data(cast_from_oop<intx>(mirror())); 1383 } 1384 1385 if (TracePatching) { 1386 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1387 } 1388 } 1389 } else if (stub_id == StubId::c1_load_appendix_patching_id) { 1390 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1391 assert(n_copy->data() == 0 || 1392 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1393 "illegal init value"); 1394 n_copy->set_data(cast_from_oop<intx>(appendix())); 1395 1396 if (TracePatching) { 1397 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1398 } 1399 } else { 1400 ShouldNotReachHere(); 1401 } 1402 1403 if (do_patch) { 1404 // replace instructions 1405 // first replace the tail, then the call 1406 #ifdef ARM 1407 if((load_klass_or_mirror_patch_id || 1408 stub_id == StubId::c1_load_appendix_patching_id) && 1409 nativeMovConstReg_at(copy_buff)->is_pc_relative()) { 1410 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1411 address addr = nullptr; 1412 assert(nm != nullptr, "invalid nmethod_pc"); 1413 RelocIterator mds(nm, copy_buff, copy_buff + 1); 1414 while (mds.next()) { 1415 if (mds.type() == relocInfo::oop_type) { 1416 assert(stub_id == StubId::c1_load_mirror_patching_id || 1417 stub_id == StubId::c1_load_appendix_patching_id, "wrong stub id"); 1418 oop_Relocation* r = mds.oop_reloc(); 1419 addr = (address)r->oop_addr(); 1420 break; 1421 } else if (mds.type() == relocInfo::metadata_type) { 1422 assert(stub_id == StubId::c1_load_klass_patching_id, "wrong stub id"); 1423 metadata_Relocation* r = mds.metadata_reloc(); 1424 addr = (address)r->metadata_addr(); 1425 break; 1426 } 1427 } 1428 assert(addr != nullptr, "metadata relocation must exist"); 1429 copy_buff -= *byte_count; 1430 NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff); 1431 n_copy2->set_pc_relative_offset(addr, instr_pc); 1432 } 1433 #endif 1434 1435 for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) { 1436 address ptr = copy_buff + i; 1437 int a_byte = (*ptr) & 0xFF; 1438 address dst = instr_pc + i; 1439 *(unsigned char*)dst = (unsigned char) a_byte; 1440 } 1441 ICache::invalidate_range(instr_pc, *byte_count); 1442 NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff); 1443 1444 if (load_klass_or_mirror_patch_id || 1445 stub_id == StubId::c1_load_appendix_patching_id) { 1446 relocInfo::relocType rtype = 1447 (stub_id == StubId::c1_load_klass_patching_id) ? 1448 relocInfo::metadata_type : 1449 relocInfo::oop_type; 1450 // update relocInfo to metadata 1451 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1452 assert(nm != nullptr, "invalid nmethod_pc"); 1453 1454 // The old patch site is now a move instruction so update 1455 // the reloc info so that it will get updated during 1456 // future GCs. 1457 RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1)); 1458 relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc, 1459 relocInfo::none, rtype); 1460 } 1461 1462 } else { 1463 ICache::invalidate_range(copy_buff, *byte_count); 1464 NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry); 1465 } 1466 } 1467 } 1468 // If we are patching in a non-perm oop, make sure the nmethod 1469 // is on the right list. 1470 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1471 guarantee(nm != nullptr, "only nmethods can contain non-perm oops"); 1472 1473 // Since we've patched some oops in the nmethod, 1474 // (re)register it with the heap. 1475 Universe::heap()->register_nmethod(nm); 1476 } 1477 JRT_END 1478 1479 #else // DEOPTIMIZE_WHEN_PATCHING 1480 1481 static bool is_patching_needed(JavaThread* current, StubId stub_id) { 1482 if (stub_id == StubId::c1_load_klass_patching_id || 1483 stub_id == StubId::c1_load_mirror_patching_id) { 1484 // last java frame on stack 1485 vframeStream vfst(current, true); 1486 assert(!vfst.at_end(), "Java frame must exist"); 1487 1488 methodHandle caller_method(current, vfst.method()); 1489 int bci = vfst.bci(); 1490 Bytecodes::Code code = caller_method()->java_code_at(bci); 1491 1492 switch (code) { 1493 case Bytecodes::_new: 1494 case Bytecodes::_anewarray: 1495 case Bytecodes::_multianewarray: 1496 case Bytecodes::_instanceof: 1497 case Bytecodes::_checkcast: { 1498 Bytecode bc(caller_method(), caller_method->bcp_from(bci)); 1499 constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code)); 1500 if (tag.is_unresolved_klass_in_error()) { 1501 return false; // throws resolution error 1502 } 1503 break; 1504 } 1505 1506 default: break; 1507 } 1508 } 1509 return true; 1510 } 1511 1512 void Runtime1::patch_code(JavaThread* current, StubId stub_id) { 1513 #ifndef PRODUCT 1514 if (PrintC1Statistics) { 1515 _patch_code_slowcase_cnt++; 1516 } 1517 #endif 1518 1519 // Enable WXWrite: the function is called by c1 stub as a runtime function 1520 // (see another implementation above). 1521 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 1522 1523 if (TracePatching) { 1524 tty->print_cr("Deoptimizing because patch is needed"); 1525 } 1526 1527 RegisterMap reg_map(current, 1528 RegisterMap::UpdateMap::skip, 1529 RegisterMap::ProcessFrames::include, 1530 RegisterMap::WalkContinuation::skip); 1531 1532 frame runtime_frame = current->last_frame(); 1533 frame caller_frame = runtime_frame.sender(®_map); 1534 assert(caller_frame.is_compiled_frame(), "Wrong frame type"); 1535 1536 if (is_patching_needed(current, stub_id)) { 1537 // Make sure the nmethod is invalidated, i.e. made not entrant. 1538 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1539 if (nm != nullptr) { 1540 nm->make_not_entrant(nmethod::InvalidationReason::C1_DEOPTIMIZE_FOR_PATCHING); 1541 } 1542 } 1543 1544 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1545 // Return to the now deoptimized frame. 1546 postcond(caller_is_deopted(current)); 1547 } 1548 1549 #endif // DEOPTIMIZE_WHEN_PATCHING 1550 1551 // Entry point for compiled code. We want to patch a nmethod. 1552 // We don't do a normal VM transition here because we want to 1553 // know after the patching is complete and any safepoint(s) are taken 1554 // if the calling nmethod was deoptimized. We do this by calling a 1555 // helper method which does the normal VM transition and when it 1556 // completes we can check for deoptimization. This simplifies the 1557 // assembly code in the cpu directories. 1558 // 1559 int Runtime1::move_klass_patching(JavaThread* current) { 1560 // 1561 // NOTE: we are still in Java 1562 // 1563 DEBUG_ONLY(NoHandleMark nhm;) 1564 { 1565 // Enter VM mode 1566 ResetNoHandleMark rnhm; 1567 patch_code(current, StubId::c1_load_klass_patching_id); 1568 } 1569 // Back in JAVA, use no oops DON'T safepoint 1570 1571 // Return true if calling code is deoptimized 1572 1573 return caller_is_deopted(current); 1574 } 1575 1576 int Runtime1::move_mirror_patching(JavaThread* current) { 1577 // 1578 // NOTE: we are still in Java 1579 // 1580 DEBUG_ONLY(NoHandleMark nhm;) 1581 { 1582 // Enter VM mode 1583 ResetNoHandleMark rnhm; 1584 patch_code(current, StubId::c1_load_mirror_patching_id); 1585 } 1586 // Back in JAVA, use no oops DON'T safepoint 1587 1588 // Return true if calling code is deoptimized 1589 1590 return caller_is_deopted(current); 1591 } 1592 1593 int Runtime1::move_appendix_patching(JavaThread* current) { 1594 // 1595 // NOTE: we are still in Java 1596 // 1597 DEBUG_ONLY(NoHandleMark nhm;) 1598 { 1599 // Enter VM mode 1600 ResetNoHandleMark rnhm; 1601 patch_code(current, StubId::c1_load_appendix_patching_id); 1602 } 1603 // Back in JAVA, use no oops DON'T safepoint 1604 1605 // Return true if calling code is deoptimized 1606 1607 return caller_is_deopted(current); 1608 } 1609 1610 // Entry point for compiled code. We want to patch a nmethod. 1611 // We don't do a normal VM transition here because we want to 1612 // know after the patching is complete and any safepoint(s) are taken 1613 // if the calling nmethod was deoptimized. We do this by calling a 1614 // helper method which does the normal VM transition and when it 1615 // completes we can check for deoptimization. This simplifies the 1616 // assembly code in the cpu directories. 1617 // 1618 int Runtime1::access_field_patching(JavaThread* current) { 1619 // 1620 // NOTE: we are still in Java 1621 // 1622 // Handles created in this function will be deleted by the 1623 // HandleMarkCleaner in the transition to the VM. 1624 NoHandleMark nhm; 1625 { 1626 // Enter VM mode 1627 ResetNoHandleMark rnhm; 1628 patch_code(current, StubId::c1_access_field_patching_id); 1629 } 1630 // Back in JAVA, use no oops DON'T safepoint 1631 1632 // Return true if calling code is deoptimized 1633 1634 return caller_is_deopted(current); 1635 } 1636 1637 1638 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id)) 1639 // for now we just print out the block id 1640 tty->print("%d ", block_id); 1641 JRT_END 1642 1643 1644 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj)) 1645 // had to return int instead of bool, otherwise there may be a mismatch 1646 // between the C calling convention and the Java one. 1647 // e.g., on x86, GCC may clear only %al when returning a bool false, but 1648 // JVM takes the whole %eax as the return value, which may misinterpret 1649 // the return value as a boolean true. 1650 1651 assert(mirror != nullptr, "should null-check on mirror before calling"); 1652 Klass* k = java_lang_Class::as_Klass(mirror); 1653 return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0; 1654 JRT_END 1655 1656 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current)) 1657 ResourceMark rm; 1658 1659 RegisterMap reg_map(current, 1660 RegisterMap::UpdateMap::skip, 1661 RegisterMap::ProcessFrames::include, 1662 RegisterMap::WalkContinuation::skip); 1663 frame runtime_frame = current->last_frame(); 1664 frame caller_frame = runtime_frame.sender(®_map); 1665 1666 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1667 assert (nm != nullptr, "no more nmethod?"); 1668 nm->make_not_entrant(nmethod::InvalidationReason::C1_PREDICATE_FAILED_TRAP); 1669 1670 methodHandle m(current, nm->method()); 1671 MethodData* mdo = m->method_data(); 1672 1673 if (mdo == nullptr && !HAS_PENDING_EXCEPTION) { 1674 // Build an MDO. Ignore errors like OutOfMemory; 1675 // that simply means we won't have an MDO to update. 1676 Method::build_profiling_method_data(m, THREAD); 1677 if (HAS_PENDING_EXCEPTION) { 1678 // Only metaspace OOM is expected. No Java code executed. 1679 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1680 CLEAR_PENDING_EXCEPTION; 1681 } 1682 mdo = m->method_data(); 1683 } 1684 1685 if (mdo != nullptr) { 1686 mdo->inc_trap_count(Deoptimization::Reason_none); 1687 } 1688 1689 if (TracePredicateFailedTraps) { 1690 stringStream ss1, ss2; 1691 vframeStream vfst(current); 1692 Method* inlinee = vfst.method(); 1693 inlinee->print_short_name(&ss1); 1694 m->print_short_name(&ss2); 1695 tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc())); 1696 } 1697 1698 1699 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1700 1701 JRT_END 1702 1703 // Check exception if AbortVMOnException flag set 1704 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex)) 1705 ResourceMark rm; 1706 const char* message = nullptr; 1707 if (ex->is_a(vmClasses::Throwable_klass())) { 1708 oop msg = java_lang_Throwable::message(ex); 1709 if (msg != nullptr) { 1710 message = java_lang_String::as_utf8_string(msg); 1711 } 1712 } 1713 Exceptions::debug_check_abort(ex->klass()->external_name(), message); 1714 JRT_END 1715 1716 #ifndef PRODUCT 1717 void Runtime1::print_statistics() { 1718 tty->print_cr("C1 Runtime statistics:"); 1719 tty->print_cr(" _resolve_invoke_virtual_cnt: %u", SharedRuntime::_resolve_virtual_ctr); 1720 tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr); 1721 tty->print_cr(" _resolve_invoke_static_cnt: %u", SharedRuntime::_resolve_static_ctr); 1722 tty->print_cr(" _handle_wrong_method_cnt: %u", SharedRuntime::_wrong_method_ctr); 1723 tty->print_cr(" _ic_miss_cnt: %u", SharedRuntime::_ic_miss_ctr); 1724 tty->print_cr(" _generic_arraycopystub_cnt: %u", _generic_arraycopystub_cnt); 1725 tty->print_cr(" _byte_arraycopy_cnt: %u", _byte_arraycopy_stub_cnt); 1726 tty->print_cr(" _short_arraycopy_cnt: %u", _short_arraycopy_stub_cnt); 1727 tty->print_cr(" _int_arraycopy_cnt: %u", _int_arraycopy_stub_cnt); 1728 tty->print_cr(" _long_arraycopy_cnt: %u", _long_arraycopy_stub_cnt); 1729 tty->print_cr(" _oop_arraycopy_cnt: %u", _oop_arraycopy_stub_cnt); 1730 tty->print_cr(" _arraycopy_slowcase_cnt: %u", _arraycopy_slowcase_cnt); 1731 tty->print_cr(" _arraycopy_checkcast_cnt: %u", _arraycopy_checkcast_cnt); 1732 tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt); 1733 1734 tty->print_cr(" _new_type_array_slowcase_cnt: %u", _new_type_array_slowcase_cnt); 1735 tty->print_cr(" _new_object_array_slowcase_cnt: %u", _new_object_array_slowcase_cnt); 1736 tty->print_cr(" _new_null_free_array_slowcase_cnt: %u", _new_null_free_array_slowcase_cnt); 1737 tty->print_cr(" _new_instance_slowcase_cnt: %u", _new_instance_slowcase_cnt); 1738 tty->print_cr(" _new_multi_array_slowcase_cnt: %u", _new_multi_array_slowcase_cnt); 1739 tty->print_cr(" _load_flat_array_slowcase_cnt: %u", _load_flat_array_slowcase_cnt); 1740 tty->print_cr(" _store_flat_array_slowcase_cnt: %u", _store_flat_array_slowcase_cnt); 1741 tty->print_cr(" _substitutability_check_slowcase_cnt: %u", _substitutability_check_slowcase_cnt); 1742 tty->print_cr(" _buffer_inline_args_slowcase_cnt:%u", _buffer_inline_args_slowcase_cnt); 1743 tty->print_cr(" _buffer_inline_args_no_receiver_slowcase_cnt:%u", _buffer_inline_args_no_receiver_slowcase_cnt); 1744 1745 tty->print_cr(" _monitorenter_slowcase_cnt: %u", _monitorenter_slowcase_cnt); 1746 tty->print_cr(" _monitorexit_slowcase_cnt: %u", _monitorexit_slowcase_cnt); 1747 tty->print_cr(" _patch_code_slowcase_cnt: %u", _patch_code_slowcase_cnt); 1748 1749 tty->print_cr(" _throw_range_check_exception_count: %u:", _throw_range_check_exception_count); 1750 tty->print_cr(" _throw_index_exception_count: %u:", _throw_index_exception_count); 1751 tty->print_cr(" _throw_div0_exception_count: %u:", _throw_div0_exception_count); 1752 tty->print_cr(" _throw_null_pointer_exception_count: %u:", _throw_null_pointer_exception_count); 1753 tty->print_cr(" _throw_class_cast_exception_count: %u:", _throw_class_cast_exception_count); 1754 tty->print_cr(" _throw_incompatible_class_change_error_count: %u:", _throw_incompatible_class_change_error_count); 1755 tty->print_cr(" _throw_illegal_monitor_state_exception_count: %u:", _throw_illegal_monitor_state_exception_count); 1756 tty->print_cr(" _throw_identity_exception_count: %u:", _throw_identity_exception_count); 1757 tty->print_cr(" _throw_count: %u:", _throw_count); 1758 1759 SharedRuntime::print_ic_miss_histogram(); 1760 tty->cr(); 1761 } 1762 #endif // PRODUCT