1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/codeBuffer.hpp" 26 #include "c1/c1_CodeStubs.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_LIRAssembler.hpp" 29 #include "c1/c1_MacroAssembler.hpp" 30 #include "c1/c1_Runtime1.hpp" 31 #include "classfile/javaClasses.inline.hpp" 32 #include "classfile/vmClasses.hpp" 33 #include "classfile/vmSymbols.hpp" 34 #include "code/codeBlob.hpp" 35 #include "code/compiledIC.hpp" 36 #include "code/scopeDesc.hpp" 37 #include "code/vtableStubs.hpp" 38 #include "compiler/compilationPolicy.hpp" 39 #include "compiler/disassembler.hpp" 40 #include "compiler/oopMap.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/c1/barrierSetC1.hpp" 43 #include "gc/shared/collectedHeap.hpp" 44 #include "interpreter/bytecode.hpp" 45 #include "interpreter/interpreter.hpp" 46 #include "jfr/support/jfrIntrinsics.hpp" 47 #include "logging/log.hpp" 48 #include "memory/oopFactory.hpp" 49 #include "memory/resourceArea.hpp" 50 #include "memory/universe.hpp" 51 #include "oops/access.inline.hpp" 52 #include "oops/flatArrayKlass.hpp" 53 #include "oops/flatArrayOop.inline.hpp" 54 #include "oops/objArrayOop.inline.hpp" 55 #include "oops/objArrayKlass.hpp" 56 #include "oops/oop.inline.hpp" 57 #include "prims/jvmtiExport.hpp" 58 #include "runtime/atomic.hpp" 59 #include "runtime/fieldDescriptor.inline.hpp" 60 #include "runtime/frame.inline.hpp" 61 #include "runtime/handles.inline.hpp" 62 #include "runtime/interfaceSupport.inline.hpp" 63 #include "runtime/javaCalls.hpp" 64 #include "runtime/sharedRuntime.hpp" 65 #include "runtime/stackWatermarkSet.hpp" 66 #include "runtime/stubRoutines.hpp" 67 #include "runtime/vframe.inline.hpp" 68 #include "runtime/vframeArray.hpp" 69 #include "runtime/vm_version.hpp" 70 #include "utilities/copy.hpp" 71 #include "utilities/events.hpp" 72 73 74 // Implementation of StubAssembler 75 76 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) { 77 _name = name; 78 _must_gc_arguments = false; 79 _frame_size = no_frame_size; 80 _num_rt_args = 0; 81 _stub_id = stub_id; 82 } 83 84 85 void StubAssembler::set_info(const char* name, bool must_gc_arguments) { 86 _name = name; 87 _must_gc_arguments = must_gc_arguments; 88 } 89 90 91 void StubAssembler::set_frame_size(int size) { 92 if (_frame_size == no_frame_size) { 93 _frame_size = size; 94 } 95 assert(_frame_size == size, "can't change the frame size"); 96 } 97 98 99 void StubAssembler::set_num_rt_args(int args) { 100 if (_num_rt_args == 0) { 101 _num_rt_args = args; 102 } 103 assert(_num_rt_args == args, "can't change the number of args"); 104 } 105 106 // Implementation of Runtime1 107 108 CodeBlob* Runtime1::_blobs[(int)C1StubId::NUM_STUBIDS]; 109 110 #define C1_BLOB_NAME_DEFINE(name) "C1 Runtime " # name "_blob", 111 const char *Runtime1::_blob_names[] = { 112 C1_STUBS_DO(C1_BLOB_NAME_DEFINE) 113 }; 114 #undef C1_STUB_NAME_DEFINE 115 116 #ifndef PRODUCT 117 // statistics 118 uint Runtime1::_generic_arraycopystub_cnt = 0; 119 uint Runtime1::_arraycopy_slowcase_cnt = 0; 120 uint Runtime1::_arraycopy_checkcast_cnt = 0; 121 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0; 122 uint Runtime1::_new_type_array_slowcase_cnt = 0; 123 uint Runtime1::_new_object_array_slowcase_cnt = 0; 124 uint Runtime1::_new_null_free_array_slowcase_cnt = 0; 125 uint Runtime1::_new_instance_slowcase_cnt = 0; 126 uint Runtime1::_new_multi_array_slowcase_cnt = 0; 127 uint Runtime1::_load_flat_array_slowcase_cnt = 0; 128 uint Runtime1::_store_flat_array_slowcase_cnt = 0; 129 uint Runtime1::_substitutability_check_slowcase_cnt = 0; 130 uint Runtime1::_buffer_inline_args_slowcase_cnt = 0; 131 uint Runtime1::_buffer_inline_args_no_receiver_slowcase_cnt = 0; 132 uint Runtime1::_monitorenter_slowcase_cnt = 0; 133 uint Runtime1::_monitorexit_slowcase_cnt = 0; 134 uint Runtime1::_patch_code_slowcase_cnt = 0; 135 uint Runtime1::_throw_range_check_exception_count = 0; 136 uint Runtime1::_throw_index_exception_count = 0; 137 uint Runtime1::_throw_div0_exception_count = 0; 138 uint Runtime1::_throw_null_pointer_exception_count = 0; 139 uint Runtime1::_throw_class_cast_exception_count = 0; 140 uint Runtime1::_throw_incompatible_class_change_error_count = 0; 141 uint Runtime1::_throw_illegal_monitor_state_exception_count = 0; 142 uint Runtime1::_throw_identity_exception_count = 0; 143 uint Runtime1::_throw_count = 0; 144 145 static uint _byte_arraycopy_stub_cnt = 0; 146 static uint _short_arraycopy_stub_cnt = 0; 147 static uint _int_arraycopy_stub_cnt = 0; 148 static uint _long_arraycopy_stub_cnt = 0; 149 static uint _oop_arraycopy_stub_cnt = 0; 150 151 address Runtime1::arraycopy_count_address(BasicType type) { 152 switch (type) { 153 case T_BOOLEAN: 154 case T_BYTE: return (address)&_byte_arraycopy_stub_cnt; 155 case T_CHAR: 156 case T_SHORT: return (address)&_short_arraycopy_stub_cnt; 157 case T_FLOAT: 158 case T_INT: return (address)&_int_arraycopy_stub_cnt; 159 case T_DOUBLE: 160 case T_LONG: return (address)&_long_arraycopy_stub_cnt; 161 case T_ARRAY: 162 case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt; 163 default: 164 ShouldNotReachHere(); 165 return nullptr; 166 } 167 } 168 169 170 #endif 171 172 // Simple helper to see if the caller of a runtime stub which 173 // entered the VM has been deoptimized 174 175 static bool caller_is_deopted(JavaThread* current) { 176 RegisterMap reg_map(current, 177 RegisterMap::UpdateMap::skip, 178 RegisterMap::ProcessFrames::include, 179 RegisterMap::WalkContinuation::skip); 180 frame runtime_frame = current->last_frame(); 181 frame caller_frame = runtime_frame.sender(®_map); 182 assert(caller_frame.is_compiled_frame(), "must be compiled"); 183 return caller_frame.is_deoptimized_frame(); 184 } 185 186 // Stress deoptimization 187 static void deopt_caller(JavaThread* current) { 188 if (!caller_is_deopted(current)) { 189 RegisterMap reg_map(current, 190 RegisterMap::UpdateMap::skip, 191 RegisterMap::ProcessFrames::include, 192 RegisterMap::WalkContinuation::skip); 193 frame runtime_frame = current->last_frame(); 194 frame caller_frame = runtime_frame.sender(®_map); 195 Deoptimization::deoptimize_frame(current, caller_frame.id()); 196 assert(caller_is_deopted(current), "Must be deoptimized"); 197 } 198 } 199 200 class C1StubIdStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure { 201 private: 202 C1StubId _id; 203 public: 204 C1StubIdStubAssemblerCodeGenClosure(C1StubId id) : _id(id) {} 205 virtual OopMapSet* generate_code(StubAssembler* sasm) { 206 return Runtime1::generate_code_for(_id, sasm); 207 } 208 }; 209 210 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, C1StubId id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) { 211 ResourceMark rm; 212 // create code buffer for code storage 213 CodeBuffer code(buffer_blob); 214 215 OopMapSet* oop_maps; 216 int frame_size; 217 bool must_gc_arguments; 218 219 Compilation::setup_code_buffer(&code, 0); 220 221 // create assembler for code generation 222 StubAssembler* sasm = new StubAssembler(&code, name, (int)id); 223 // generate code for runtime stub 224 oop_maps = cl->generate_code(sasm); 225 assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size, 226 "if stub has an oop map it must have a valid frame size"); 227 assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap"); 228 229 // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned) 230 sasm->align(BytesPerWord); 231 // make sure all code is in code buffer 232 sasm->flush(); 233 234 frame_size = sasm->frame_size(); 235 must_gc_arguments = sasm->must_gc_arguments(); 236 // create blob - distinguish a few special cases 237 CodeBlob* blob = RuntimeStub::new_runtime_stub(name, 238 &code, 239 CodeOffsets::frame_never_safe, 240 frame_size, 241 oop_maps, 242 must_gc_arguments); 243 assert(blob != nullptr, "blob must exist"); 244 return blob; 245 } 246 247 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, C1StubId id) { 248 assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id"); 249 bool expect_oop_map = true; 250 #ifdef ASSERT 251 // Make sure that stubs that need oopmaps have them 252 switch (id) { 253 // These stubs don't need to have an oopmap 254 case C1StubId::dtrace_object_alloc_id: 255 case C1StubId::slow_subtype_check_id: 256 case C1StubId::fpu2long_stub_id: 257 case C1StubId::unwind_exception_id: 258 case C1StubId::counter_overflow_id: 259 expect_oop_map = false; 260 break; 261 default: 262 break; 263 } 264 #endif 265 C1StubIdStubAssemblerCodeGenClosure cl(id); 266 CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl); 267 // install blob 268 _blobs[(int)id] = blob; 269 } 270 271 void Runtime1::initialize(BufferBlob* blob) { 272 // platform-dependent initialization 273 initialize_pd(); 274 // generate stubs 275 int limit = (int)C1StubId::NUM_STUBIDS; 276 for (int id = 0; id < limit; id++) generate_blob_for(blob, (C1StubId)id); 277 // printing 278 #ifndef PRODUCT 279 if (PrintSimpleStubs) { 280 ResourceMark rm; 281 for (int id = 0; id < limit; id++) { 282 _blobs[id]->print(); 283 if (_blobs[id]->oop_maps() != nullptr) { 284 _blobs[id]->oop_maps()->print(); 285 } 286 } 287 } 288 #endif 289 BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1(); 290 bs->generate_c1_runtime_stubs(blob); 291 } 292 293 CodeBlob* Runtime1::blob_for(C1StubId id) { 294 assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id"); 295 return _blobs[(int)id]; 296 } 297 298 299 const char* Runtime1::name_for(C1StubId id) { 300 assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id"); 301 return _blob_names[(int)id]; 302 } 303 304 const char* Runtime1::name_for_address(address entry) { 305 int limit = (int)C1StubId::NUM_STUBIDS; 306 for (int i = 0; i < limit; i++) { 307 C1StubId id = (C1StubId)i; 308 if (entry == entry_for(id)) return name_for(id); 309 } 310 311 #define FUNCTION_CASE(a, f) \ 312 if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f 313 314 FUNCTION_CASE(entry, os::javaTimeMillis); 315 FUNCTION_CASE(entry, os::javaTimeNanos); 316 FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end); 317 FUNCTION_CASE(entry, SharedRuntime::d2f); 318 FUNCTION_CASE(entry, SharedRuntime::d2i); 319 FUNCTION_CASE(entry, SharedRuntime::d2l); 320 FUNCTION_CASE(entry, SharedRuntime::dcos); 321 FUNCTION_CASE(entry, SharedRuntime::dexp); 322 FUNCTION_CASE(entry, SharedRuntime::dlog); 323 FUNCTION_CASE(entry, SharedRuntime::dlog10); 324 FUNCTION_CASE(entry, SharedRuntime::dpow); 325 FUNCTION_CASE(entry, SharedRuntime::drem); 326 FUNCTION_CASE(entry, SharedRuntime::dsin); 327 FUNCTION_CASE(entry, SharedRuntime::dtan); 328 FUNCTION_CASE(entry, SharedRuntime::f2i); 329 FUNCTION_CASE(entry, SharedRuntime::f2l); 330 FUNCTION_CASE(entry, SharedRuntime::frem); 331 FUNCTION_CASE(entry, SharedRuntime::l2d); 332 FUNCTION_CASE(entry, SharedRuntime::l2f); 333 FUNCTION_CASE(entry, SharedRuntime::ldiv); 334 FUNCTION_CASE(entry, SharedRuntime::lmul); 335 FUNCTION_CASE(entry, SharedRuntime::lrem); 336 FUNCTION_CASE(entry, SharedRuntime::lrem); 337 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry); 338 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit); 339 FUNCTION_CASE(entry, is_instance_of); 340 FUNCTION_CASE(entry, trace_block_entry); 341 #ifdef JFR_HAVE_INTRINSICS 342 FUNCTION_CASE(entry, JfrTime::time_function()); 343 #endif 344 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32()); 345 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C()); 346 FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch()); 347 FUNCTION_CASE(entry, StubRoutines::dexp()); 348 FUNCTION_CASE(entry, StubRoutines::dlog()); 349 FUNCTION_CASE(entry, StubRoutines::dlog10()); 350 FUNCTION_CASE(entry, StubRoutines::dpow()); 351 FUNCTION_CASE(entry, StubRoutines::dsin()); 352 FUNCTION_CASE(entry, StubRoutines::dcos()); 353 FUNCTION_CASE(entry, StubRoutines::dtan()); 354 FUNCTION_CASE(entry, StubRoutines::dtanh()); 355 356 #undef FUNCTION_CASE 357 358 // Soft float adds more runtime names. 359 return pd_name_for_address(entry); 360 } 361 362 static void allocate_instance(JavaThread* current, Klass* klass, TRAPS) { 363 #ifndef PRODUCT 364 if (PrintC1Statistics) { 365 Runtime1::_new_instance_slowcase_cnt++; 366 } 367 #endif 368 assert(klass->is_klass(), "not a class"); 369 Handle holder(current, klass->klass_holder()); // keep the klass alive 370 InstanceKlass* h = InstanceKlass::cast(klass); 371 h->check_valid_for_instantiation(true, CHECK); 372 // make sure klass is initialized 373 h->initialize(CHECK); 374 oop obj = nullptr; 375 if (h->is_inline_klass() && InlineKlass::cast(h)->is_empty_inline_type()) { 376 obj = InlineKlass::cast(h)->default_value(); 377 assert(obj != nullptr, "default value must exist"); 378 } else { 379 // allocate instance and return via TLS 380 obj = h->allocate_instance(CHECK); 381 } 382 current->set_vm_result(obj); 383 JRT_END 384 385 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass)) 386 allocate_instance(current, klass, CHECK); 387 JRT_END 388 389 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length)) 390 #ifndef PRODUCT 391 if (PrintC1Statistics) { 392 _new_type_array_slowcase_cnt++; 393 } 394 #endif 395 // Note: no handle for klass needed since they are not used 396 // anymore after new_typeArray() and no GC can happen before. 397 // (This may have to change if this code changes!) 398 assert(klass->is_klass(), "not a class"); 399 BasicType elt_type = TypeArrayKlass::cast(klass)->element_type(); 400 oop obj = oopFactory::new_typeArray(elt_type, length, CHECK); 401 current->set_vm_result(obj); 402 // This is pretty rare but this runtime patch is stressful to deoptimization 403 // if we deoptimize here so force a deopt to stress the path. 404 if (DeoptimizeALot) { 405 deopt_caller(current); 406 } 407 408 JRT_END 409 410 411 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length)) 412 #ifndef PRODUCT 413 if (PrintC1Statistics) { 414 _new_object_array_slowcase_cnt++; 415 } 416 #endif 417 // Note: no handle for klass needed since they are not used 418 // anymore after new_objArray() and no GC can happen before. 419 // (This may have to change if this code changes!) 420 assert(array_klass->is_klass(), "not a class"); 421 Handle holder(current, array_klass->klass_holder()); // keep the klass alive 422 Klass* elem_klass = ArrayKlass::cast(array_klass)->element_klass(); 423 objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK); 424 current->set_vm_result(obj); 425 // This is pretty rare but this runtime patch is stressful to deoptimization 426 // if we deoptimize here so force a deopt to stress the path. 427 if (DeoptimizeALot) { 428 deopt_caller(current); 429 } 430 JRT_END 431 432 433 JRT_ENTRY(void, Runtime1::new_null_free_array(JavaThread* current, Klass* array_klass, jint length)) 434 NOT_PRODUCT(_new_null_free_array_slowcase_cnt++;) 435 436 // Note: no handle for klass needed since they are not used 437 // anymore after new_objArray() and no GC can happen before. 438 // (This may have to change if this code changes!) 439 assert(array_klass->is_klass(), "not a class"); 440 Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive 441 Klass* elem_klass = ArrayKlass::cast(array_klass)->element_klass(); 442 assert(elem_klass->is_inline_klass(), "must be"); 443 InlineKlass* vk = InlineKlass::cast(elem_klass); 444 // Logically creates elements, ensure klass init 445 elem_klass->initialize(CHECK); 446 arrayOop obj= nullptr; 447 // Limitation here, only non-atomic layouts are supported 448 if (UseArrayFlattening && vk->has_non_atomic_layout()) { 449 obj = oopFactory::new_flatArray(elem_klass, length, LayoutKind::NON_ATOMIC_FLAT, CHECK); 450 } else { 451 obj = oopFactory::new_null_free_objArray(elem_klass, length, CHECK); 452 } 453 current->set_vm_result(obj); 454 // This is pretty rare but this runtime patch is stressful to deoptimization 455 // if we deoptimize here so force a deopt to stress the path. 456 if (DeoptimizeALot) { 457 deopt_caller(current); 458 } 459 JRT_END 460 461 462 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims)) 463 #ifndef PRODUCT 464 if (PrintC1Statistics) { 465 _new_multi_array_slowcase_cnt++; 466 } 467 #endif 468 assert(klass->is_klass(), "not a class"); 469 assert(rank >= 1, "rank must be nonzero"); 470 Handle holder(current, klass->klass_holder()); // keep the klass alive 471 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); 472 current->set_vm_result(obj); 473 JRT_END 474 475 476 static void profile_flat_array(JavaThread* current, bool load) { 477 ResourceMark rm(current); 478 vframeStream vfst(current, true); 479 assert(!vfst.at_end(), "Java frame must exist"); 480 // Check if array access profiling is enabled 481 if (vfst.nm()->comp_level() != CompLevel_full_profile || !C1UpdateMethodData) { 482 return; 483 } 484 int bci = vfst.bci(); 485 Method* method = vfst.method(); 486 MethodData* md = method->method_data(); 487 if (md != nullptr) { 488 // Lock to access ProfileData, and ensure lock is not broken by a safepoint 489 MutexLocker ml(md->extra_data_lock(), Mutex::_no_safepoint_check_flag); 490 491 ProfileData* data = md->bci_to_data(bci); 492 assert(data != nullptr, "incorrect profiling entry"); 493 if (data->is_ArrayLoadData()) { 494 assert(load, "should be an array load"); 495 ArrayLoadData* load_data = (ArrayLoadData*) data; 496 load_data->set_flat_array(); 497 } else { 498 assert(data->is_ArrayStoreData(), ""); 499 assert(!load, "should be an array store"); 500 ArrayStoreData* store_data = (ArrayStoreData*) data; 501 store_data->set_flat_array(); 502 } 503 } 504 } 505 506 JRT_ENTRY(void, Runtime1::load_flat_array(JavaThread* current, flatArrayOopDesc* array, int index)) 507 assert(array->klass()->is_flatArray_klass(), "should not be called"); 508 profile_flat_array(current, true); 509 510 NOT_PRODUCT(_load_flat_array_slowcase_cnt++;) 511 assert(array->length() > 0 && index < array->length(), "already checked"); 512 flatArrayHandle vah(current, array); 513 oop obj = array->read_value_from_flat_array(index, CHECK); 514 current->set_vm_result(obj); 515 JRT_END 516 517 518 JRT_ENTRY(void, Runtime1::store_flat_array(JavaThread* current, flatArrayOopDesc* array, int index, oopDesc* value)) 519 if (array->klass()->is_flatArray_klass()) { 520 profile_flat_array(current, false); 521 } 522 523 NOT_PRODUCT(_store_flat_array_slowcase_cnt++;) 524 if (value == nullptr) { 525 assert(array->klass()->is_flatArray_klass() || array->klass()->is_null_free_array_klass(), "should not be called"); 526 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException()); 527 } else { 528 assert(array->klass()->is_flatArray_klass(), "should not be called"); 529 array->write_value_to_flat_array(value, index, CHECK); 530 } 531 JRT_END 532 533 534 JRT_ENTRY(int, Runtime1::substitutability_check(JavaThread* current, oopDesc* left, oopDesc* right)) 535 NOT_PRODUCT(_substitutability_check_slowcase_cnt++;) 536 JavaCallArguments args; 537 args.push_oop(Handle(THREAD, left)); 538 args.push_oop(Handle(THREAD, right)); 539 JavaValue result(T_BOOLEAN); 540 JavaCalls::call_static(&result, 541 vmClasses::ValueObjectMethods_klass(), 542 vmSymbols::isSubstitutable_name(), 543 vmSymbols::object_object_boolean_signature(), 544 &args, CHECK_0); 545 return result.get_jboolean() ? 1 : 0; 546 JRT_END 547 548 549 extern "C" void ps(); 550 551 void Runtime1::buffer_inline_args_impl(JavaThread* current, Method* m, bool allocate_receiver) { 552 JavaThread* THREAD = current; 553 methodHandle method(current, m); // We are inside the verified_entry or verified_inline_ro_entry of this method. 554 oop obj = SharedRuntime::allocate_inline_types_impl(current, method, allocate_receiver, CHECK); 555 current->set_vm_result(obj); 556 } 557 558 JRT_ENTRY(void, Runtime1::buffer_inline_args(JavaThread* current, Method* method)) 559 NOT_PRODUCT(_buffer_inline_args_slowcase_cnt++;) 560 buffer_inline_args_impl(current, method, true); 561 JRT_END 562 563 JRT_ENTRY(void, Runtime1::buffer_inline_args_no_receiver(JavaThread* current, Method* method)) 564 NOT_PRODUCT(_buffer_inline_args_no_receiver_slowcase_cnt++;) 565 buffer_inline_args_impl(current, method, false); 566 JRT_END 567 568 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, C1StubId id)) 569 tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id); 570 JRT_END 571 572 573 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj)) 574 ResourceMark rm(current); 575 const char* klass_name = obj->klass()->external_name(); 576 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name); 577 JRT_END 578 579 580 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method 581 // associated with the top activation record. The inlinee (that is possibly included in the enclosing 582 // method) method is passed as an argument. In order to do that it is embedded in the code as 583 // a constant. 584 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) { 585 nmethod* osr_nm = nullptr; 586 methodHandle method(current, m); 587 588 RegisterMap map(current, 589 RegisterMap::UpdateMap::skip, 590 RegisterMap::ProcessFrames::include, 591 RegisterMap::WalkContinuation::skip); 592 frame fr = current->last_frame().sender(&map); 593 nmethod* nm = (nmethod*) fr.cb(); 594 assert(nm!= nullptr && nm->is_nmethod(), "Sanity check"); 595 methodHandle enclosing_method(current, nm->method()); 596 597 CompLevel level = (CompLevel)nm->comp_level(); 598 int bci = InvocationEntryBci; 599 if (branch_bci != InvocationEntryBci) { 600 // Compute destination bci 601 address pc = method()->code_base() + branch_bci; 602 Bytecodes::Code branch = Bytecodes::code_at(method(), pc); 603 int offset = 0; 604 switch (branch) { 605 case Bytecodes::_if_icmplt: case Bytecodes::_iflt: 606 case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt: 607 case Bytecodes::_if_icmple: case Bytecodes::_ifle: 608 case Bytecodes::_if_icmpge: case Bytecodes::_ifge: 609 case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq: 610 case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne: 611 case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto: 612 offset = (int16_t)Bytes::get_Java_u2(pc + 1); 613 break; 614 case Bytecodes::_goto_w: 615 offset = Bytes::get_Java_u4(pc + 1); 616 break; 617 default: ; 618 } 619 bci = branch_bci + offset; 620 } 621 osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current); 622 return osr_nm; 623 } 624 625 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method)) 626 nmethod* osr_nm; 627 JRT_BLOCK 628 osr_nm = counter_overflow_helper(current, bci, method); 629 if (osr_nm != nullptr) { 630 RegisterMap map(current, 631 RegisterMap::UpdateMap::skip, 632 RegisterMap::ProcessFrames::include, 633 RegisterMap::WalkContinuation::skip); 634 frame fr = current->last_frame().sender(&map); 635 Deoptimization::deoptimize_frame(current, fr.id()); 636 } 637 JRT_BLOCK_END 638 return nullptr; 639 JRT_END 640 641 extern void vm_exit(int code); 642 643 // Enter this method from compiled code handler below. This is where we transition 644 // to VM mode. This is done as a helper routine so that the method called directly 645 // from compiled code does not have to transition to VM. This allows the entry 646 // method to see if the nmethod that we have just looked up a handler for has 647 // been deoptimized while we were in the vm. This simplifies the assembly code 648 // cpu directories. 649 // 650 // We are entering here from exception stub (via the entry method below) 651 // If there is a compiled exception handler in this method, we will continue there; 652 // otherwise we will unwind the stack and continue at the caller of top frame method 653 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to 654 // control the area where we can allow a safepoint. After we exit the safepoint area we can 655 // check to see if the handler we are going to return is now in a nmethod that has 656 // been deoptimized. If that is the case we return the deopt blob 657 // unpack_with_exception entry instead. This makes life for the exception blob easier 658 // because making that same check and diverting is painful from assembly language. 659 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm)) 660 // Reset method handle flag. 661 current->set_is_method_handle_return(false); 662 663 Handle exception(current, ex); 664 665 // This function is called when we are about to throw an exception. Therefore, 666 // we have to poll the stack watermark barrier to make sure that not yet safe 667 // stack frames are made safe before returning into them. 668 if (current->last_frame().cb() == Runtime1::blob_for(C1StubId::handle_exception_from_callee_id)) { 669 // The C1StubId::handle_exception_from_callee_id handler is invoked after the 670 // frame has been unwound. It instead builds its own stub frame, to call the 671 // runtime. But the throwing frame has already been unwound here. 672 StackWatermarkSet::after_unwind(current); 673 } 674 675 nm = CodeCache::find_nmethod(pc); 676 assert(nm != nullptr, "this is not an nmethod"); 677 // Adjust the pc as needed/ 678 if (nm->is_deopt_pc(pc)) { 679 RegisterMap map(current, 680 RegisterMap::UpdateMap::skip, 681 RegisterMap::ProcessFrames::include, 682 RegisterMap::WalkContinuation::skip); 683 frame exception_frame = current->last_frame().sender(&map); 684 // if the frame isn't deopted then pc must not correspond to the caller of last_frame 685 assert(exception_frame.is_deoptimized_frame(), "must be deopted"); 686 pc = exception_frame.pc(); 687 } 688 assert(exception.not_null(), "null exceptions should be handled by throw_exception"); 689 // Check that exception is a subclass of Throwable 690 assert(exception->is_a(vmClasses::Throwable_klass()), 691 "Exception not subclass of Throwable"); 692 693 // debugging support 694 // tracing 695 if (log_is_enabled(Info, exceptions)) { 696 ResourceMark rm; // print_value_string 697 stringStream tempst; 698 assert(nm->method() != nullptr, "Unexpected null method()"); 699 tempst.print("C1 compiled method <%s>\n" 700 " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT, 701 nm->method()->print_value_string(), p2i(pc), p2i(current)); 702 Exceptions::log_exception(exception, tempst.freeze()); 703 } 704 // for AbortVMOnException flag 705 Exceptions::debug_check_abort(exception); 706 707 // Check the stack guard pages and re-enable them if necessary and there is 708 // enough space on the stack to do so. Use fast exceptions only if the guard 709 // pages are enabled. 710 bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed(); 711 712 if (JvmtiExport::can_post_on_exceptions()) { 713 // To ensure correct notification of exception catches and throws 714 // we have to deoptimize here. If we attempted to notify the 715 // catches and throws during this exception lookup it's possible 716 // we could deoptimize on the way out of the VM and end back in 717 // the interpreter at the throw site. This would result in double 718 // notifications since the interpreter would also notify about 719 // these same catches and throws as it unwound the frame. 720 721 RegisterMap reg_map(current, 722 RegisterMap::UpdateMap::include, 723 RegisterMap::ProcessFrames::include, 724 RegisterMap::WalkContinuation::skip); 725 frame stub_frame = current->last_frame(); 726 frame caller_frame = stub_frame.sender(®_map); 727 728 // We don't really want to deoptimize the nmethod itself since we 729 // can actually continue in the exception handler ourselves but I 730 // don't see an easy way to have the desired effect. 731 Deoptimization::deoptimize_frame(current, caller_frame.id()); 732 assert(caller_is_deopted(current), "Must be deoptimized"); 733 734 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 735 } 736 737 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions 738 if (guard_pages_enabled) { 739 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); 740 if (fast_continuation != nullptr) { 741 // Set flag if return address is a method handle call site. 742 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 743 return fast_continuation; 744 } 745 } 746 747 // If the stack guard pages are enabled, check whether there is a handler in 748 // the current method. Otherwise (guard pages disabled), force an unwind and 749 // skip the exception cache update (i.e., just leave continuation as null). 750 address continuation = nullptr; 751 if (guard_pages_enabled) { 752 753 // New exception handling mechanism can support inlined methods 754 // with exception handlers since the mappings are from PC to PC 755 756 // Clear out the exception oop and pc since looking up an 757 // exception handler can cause class loading, which might throw an 758 // exception and those fields are expected to be clear during 759 // normal bytecode execution. 760 current->clear_exception_oop_and_pc(); 761 762 bool recursive_exception = false; 763 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception); 764 // If an exception was thrown during exception dispatch, the exception oop may have changed 765 current->set_exception_oop(exception()); 766 current->set_exception_pc(pc); 767 768 // the exception cache is used only by non-implicit exceptions 769 // Update the exception cache only when there didn't happen 770 // another exception during the computation of the compiled 771 // exception handler. Checking for exception oop equality is not 772 // sufficient because some exceptions are pre-allocated and reused. 773 if (continuation != nullptr && !recursive_exception) { 774 nm->add_handler_for_exception_and_pc(exception, pc, continuation); 775 } 776 } 777 778 current->set_vm_result(exception()); 779 // Set flag if return address is a method handle call site. 780 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 781 782 if (log_is_enabled(Info, exceptions)) { 783 ResourceMark rm; 784 log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT 785 " for exception thrown at PC " PTR_FORMAT, 786 p2i(current), p2i(continuation), p2i(pc)); 787 } 788 789 return continuation; 790 JRT_END 791 792 // Enter this method from compiled code only if there is a Java exception handler 793 // in the method handling the exception. 794 // We are entering here from exception stub. We don't do a normal VM transition here. 795 // We do it in a helper. This is so we can check to see if the nmethod we have just 796 // searched for an exception handler has been deoptimized in the meantime. 797 address Runtime1::exception_handler_for_pc(JavaThread* current) { 798 oop exception = current->exception_oop(); 799 address pc = current->exception_pc(); 800 // Still in Java mode 801 DEBUG_ONLY(NoHandleMark nhm); 802 nmethod* nm = nullptr; 803 address continuation = nullptr; 804 { 805 // Enter VM mode by calling the helper 806 ResetNoHandleMark rnhm; 807 continuation = exception_handler_for_pc_helper(current, exception, pc, nm); 808 } 809 // Back in JAVA, use no oops DON'T safepoint 810 811 // Now check to see if the nmethod we were called from is now deoptimized. 812 // If so we must return to the deopt blob and deoptimize the nmethod 813 if (nm != nullptr && caller_is_deopted(current)) { 814 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 815 } 816 817 assert(continuation != nullptr, "no handler found"); 818 return continuation; 819 } 820 821 822 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a)) 823 #ifndef PRODUCT 824 if (PrintC1Statistics) { 825 _throw_range_check_exception_count++; 826 } 827 #endif 828 const int len = 35; 829 assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message."); 830 char message[2 * jintAsStringSize + len]; 831 os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length()); 832 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message); 833 JRT_END 834 835 836 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index)) 837 #ifndef PRODUCT 838 if (PrintC1Statistics) { 839 _throw_index_exception_count++; 840 } 841 #endif 842 char message[16]; 843 os::snprintf_checked(message, sizeof(message), "%d", index); 844 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message); 845 JRT_END 846 847 848 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current)) 849 #ifndef PRODUCT 850 if (PrintC1Statistics) { 851 _throw_div0_exception_count++; 852 } 853 #endif 854 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 855 JRT_END 856 857 858 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current)) 859 #ifndef PRODUCT 860 if (PrintC1Statistics) { 861 _throw_null_pointer_exception_count++; 862 } 863 #endif 864 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException()); 865 JRT_END 866 867 868 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object)) 869 #ifndef PRODUCT 870 if (PrintC1Statistics) { 871 _throw_class_cast_exception_count++; 872 } 873 #endif 874 ResourceMark rm(current); 875 char* message = SharedRuntime::generate_class_cast_message(current, object->klass()); 876 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message); 877 JRT_END 878 879 880 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current)) 881 #ifndef PRODUCT 882 if (PrintC1Statistics) { 883 _throw_incompatible_class_change_error_count++; 884 } 885 #endif 886 ResourceMark rm(current); 887 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError()); 888 JRT_END 889 890 891 JRT_ENTRY(void, Runtime1::throw_illegal_monitor_state_exception(JavaThread* current)) 892 NOT_PRODUCT(_throw_illegal_monitor_state_exception_count++;) 893 ResourceMark rm(current); 894 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IllegalMonitorStateException()); 895 JRT_END 896 897 JRT_ENTRY(void, Runtime1::throw_identity_exception(JavaThread* current, oopDesc* object)) 898 NOT_PRODUCT(_throw_identity_exception_count++;) 899 ResourceMark rm(current); 900 char* message = SharedRuntime::generate_identity_exception_message(current, object->klass()); 901 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IdentityException(), message); 902 JRT_END 903 904 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock)) 905 #ifndef PRODUCT 906 if (PrintC1Statistics) { 907 _monitorenter_slowcase_cnt++; 908 } 909 #endif 910 if (LockingMode == LM_MONITOR) { 911 lock->set_obj(obj); 912 } 913 assert(obj == lock->obj(), "must match"); 914 SharedRuntime::monitor_enter_helper(obj, lock->lock(), current); 915 JRT_END 916 917 918 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock)) 919 assert(current == JavaThread::current(), "pre-condition"); 920 #ifndef PRODUCT 921 if (PrintC1Statistics) { 922 _monitorexit_slowcase_cnt++; 923 } 924 #endif 925 assert(current->last_Java_sp(), "last_Java_sp must be set"); 926 oop obj = lock->obj(); 927 assert(oopDesc::is_oop(obj), "must be null or an object"); 928 SharedRuntime::monitor_exit_helper(obj, lock->lock(), current); 929 JRT_END 930 931 // Cf. OptoRuntime::deoptimize_caller_frame 932 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request)) 933 // Called from within the owner thread, so no need for safepoint 934 RegisterMap reg_map(current, 935 RegisterMap::UpdateMap::skip, 936 RegisterMap::ProcessFrames::include, 937 RegisterMap::WalkContinuation::skip); 938 frame stub_frame = current->last_frame(); 939 assert(stub_frame.is_runtime_frame(), "Sanity check"); 940 frame caller_frame = stub_frame.sender(®_map); 941 nmethod* nm = caller_frame.cb()->as_nmethod_or_null(); 942 assert(nm != nullptr, "Sanity check"); 943 methodHandle method(current, nm->method()); 944 assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same"); 945 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); 946 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); 947 948 if (action == Deoptimization::Action_make_not_entrant) { 949 if (nm->make_not_entrant()) { 950 if (reason == Deoptimization::Reason_tenured) { 951 MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/); 952 if (trap_mdo != nullptr) { 953 trap_mdo->inc_tenure_traps(); 954 } 955 } 956 } 957 } 958 959 // Deoptimize the caller frame. 960 Deoptimization::deoptimize_frame(current, caller_frame.id()); 961 // Return to the now deoptimized frame. 962 JRT_END 963 964 965 #ifndef DEOPTIMIZE_WHEN_PATCHING 966 967 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) { 968 Bytecode_field field_access(caller, bci); 969 // This can be static or non-static field access 970 Bytecodes::Code code = field_access.code(); 971 972 // We must load class, initialize class and resolve the field 973 fieldDescriptor result; // initialize class if needed 974 constantPoolHandle constants(THREAD, caller->constants()); 975 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL); 976 return result.field_holder(); 977 } 978 979 980 // 981 // This routine patches sites where a class wasn't loaded or 982 // initialized at the time the code was generated. It handles 983 // references to classes, fields and forcing of initialization. Most 984 // of the cases are straightforward and involving simply forcing 985 // resolution of a class, rewriting the instruction stream with the 986 // needed constant and replacing the call in this function with the 987 // patched code. The case for static field is more complicated since 988 // the thread which is in the process of initializing a class can 989 // access it's static fields but other threads can't so the code 990 // either has to deoptimize when this case is detected or execute a 991 // check that the current thread is the initializing thread. The 992 // current 993 // 994 // Patches basically look like this: 995 // 996 // 997 // patch_site: jmp patch stub ;; will be patched 998 // continue: ... 999 // ... 1000 // ... 1001 // ... 1002 // 1003 // They have a stub which looks like this: 1004 // 1005 // ;; patch body 1006 // movl <const>, reg (for class constants) 1007 // <or> movl [reg1 + <const>], reg (for field offsets) 1008 // <or> movl reg, [reg1 + <const>] (for field offsets) 1009 // <being_init offset> <bytes to copy> <bytes to skip> 1010 // patch_stub: call Runtime1::patch_code (through a runtime stub) 1011 // jmp patch_site 1012 // 1013 // 1014 // A normal patch is done by rewriting the patch body, usually a move, 1015 // and then copying it into place over top of the jmp instruction 1016 // being careful to flush caches and doing it in an MP-safe way. The 1017 // constants following the patch body are used to find various pieces 1018 // of the patch relative to the call site for Runtime1::patch_code. 1019 // The case for getstatic and putstatic is more complicated because 1020 // getstatic and putstatic have special semantics when executing while 1021 // the class is being initialized. getstatic/putstatic on a class 1022 // which is being_initialized may be executed by the initializing 1023 // thread but other threads have to block when they execute it. This 1024 // is accomplished in compiled code by executing a test of the current 1025 // thread against the initializing thread of the class. It's emitted 1026 // as boilerplate in their stub which allows the patched code to be 1027 // executed before it's copied back into the main body of the nmethod. 1028 // 1029 // being_init: get_thread(<tmp reg> 1030 // cmpl [reg1 + <init_thread_offset>], <tmp reg> 1031 // jne patch_stub 1032 // movl [reg1 + <const>], reg (for field offsets) <or> 1033 // movl reg, [reg1 + <const>] (for field offsets) 1034 // jmp continue 1035 // <being_init offset> <bytes to copy> <bytes to skip> 1036 // patch_stub: jmp Runtime1::patch_code (through a runtime stub) 1037 // jmp patch_site 1038 // 1039 // If the class is being initialized the patch body is rewritten and 1040 // the patch site is rewritten to jump to being_init, instead of 1041 // patch_stub. Whenever this code is executed it checks the current 1042 // thread against the initializing thread so other threads will enter 1043 // the runtime and end up blocked waiting the class to finish 1044 // initializing inside the calls to resolve_field below. The 1045 // initializing class will continue on it's way. Once the class is 1046 // fully_initialized, the intializing_thread of the class becomes 1047 // null, so the next thread to execute this code will fail the test, 1048 // call into patch_code and complete the patching process by copying 1049 // the patch body back into the main part of the nmethod and resume 1050 // executing. 1051 1052 // NB: 1053 // 1054 // Patchable instruction sequences inherently exhibit race conditions, 1055 // where thread A is patching an instruction at the same time thread B 1056 // is executing it. The algorithms we use ensure that any observation 1057 // that B can make on any intermediate states during A's patching will 1058 // always end up with a correct outcome. This is easiest if there are 1059 // few or no intermediate states. (Some inline caches have two 1060 // related instructions that must be patched in tandem. For those, 1061 // intermediate states seem to be unavoidable, but we will get the 1062 // right answer from all possible observation orders.) 1063 // 1064 // When patching the entry instruction at the head of a method, or a 1065 // linkable call instruction inside of a method, we try very hard to 1066 // use a patch sequence which executes as a single memory transaction. 1067 // This means, in practice, that when thread A patches an instruction, 1068 // it should patch a 32-bit or 64-bit word that somehow overlaps the 1069 // instruction or is contained in it. We believe that memory hardware 1070 // will never break up such a word write, if it is naturally aligned 1071 // for the word being written. We also know that some CPUs work very 1072 // hard to create atomic updates even of naturally unaligned words, 1073 // but we don't want to bet the farm on this always working. 1074 // 1075 // Therefore, if there is any chance of a race condition, we try to 1076 // patch only naturally aligned words, as single, full-word writes. 1077 1078 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, C1StubId stub_id )) 1079 #ifndef PRODUCT 1080 if (PrintC1Statistics) { 1081 _patch_code_slowcase_cnt++; 1082 } 1083 #endif 1084 1085 ResourceMark rm(current); 1086 RegisterMap reg_map(current, 1087 RegisterMap::UpdateMap::skip, 1088 RegisterMap::ProcessFrames::include, 1089 RegisterMap::WalkContinuation::skip); 1090 frame runtime_frame = current->last_frame(); 1091 frame caller_frame = runtime_frame.sender(®_map); 1092 1093 // last java frame on stack 1094 vframeStream vfst(current, true); 1095 assert(!vfst.at_end(), "Java frame must exist"); 1096 1097 methodHandle caller_method(current, vfst.method()); 1098 // Note that caller_method->code() may not be same as caller_code because of OSR's 1099 // Note also that in the presence of inlining it is not guaranteed 1100 // that caller_method() == caller_code->method() 1101 1102 int bci = vfst.bci(); 1103 Bytecodes::Code code = caller_method()->java_code_at(bci); 1104 1105 // this is used by assertions in the access_field_patching_id 1106 BasicType patch_field_type = T_ILLEGAL; 1107 bool deoptimize_for_volatile = false; 1108 bool deoptimize_for_atomic = false; 1109 bool deoptimize_for_null_free = false; 1110 bool deoptimize_for_flat = false; 1111 int patch_field_offset = -1; 1112 Klass* init_klass = nullptr; // klass needed by load_klass_patching code 1113 Klass* load_klass = nullptr; // klass needed by load_klass_patching code 1114 Handle mirror(current, nullptr); // oop needed by load_mirror_patching code 1115 Handle appendix(current, nullptr); // oop needed by appendix_patching code 1116 bool load_klass_or_mirror_patch_id = 1117 (stub_id == C1StubId::load_klass_patching_id || stub_id == C1StubId::load_mirror_patching_id); 1118 1119 if (stub_id == C1StubId::access_field_patching_id) { 1120 1121 Bytecode_field field_access(caller_method, bci); 1122 fieldDescriptor result; // initialize class if needed 1123 Bytecodes::Code code = field_access.code(); 1124 constantPoolHandle constants(current, caller_method->constants()); 1125 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK); 1126 patch_field_offset = result.offset(); 1127 1128 // If we're patching a field which is volatile then at compile it 1129 // must not have been know to be volatile, so the generated code 1130 // isn't correct for a volatile reference. The nmethod has to be 1131 // deoptimized so that the code can be regenerated correctly. 1132 // This check is only needed for access_field_patching since this 1133 // is the path for patching field offsets. load_klass is only 1134 // used for patching references to oops which don't need special 1135 // handling in the volatile case. 1136 1137 deoptimize_for_volatile = result.access_flags().is_volatile(); 1138 1139 // If we are patching a field which should be atomic, then 1140 // the generated code is not correct either, force deoptimizing. 1141 // We need to only cover T_LONG and T_DOUBLE fields, as we can 1142 // break access atomicity only for them. 1143 1144 // Strictly speaking, the deoptimization on 64-bit platforms 1145 // is unnecessary, and T_LONG stores on 32-bit platforms need 1146 // to be handled by special patching code when AlwaysAtomicAccesses 1147 // becomes product feature. At this point, we are still going 1148 // for the deoptimization for consistency against volatile 1149 // accesses. 1150 1151 patch_field_type = result.field_type(); 1152 deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)); 1153 1154 // The field we are patching is null-free. Deoptimize and regenerate 1155 // the compiled code if we patch a putfield/putstatic because it 1156 // does not contain the required null check. 1157 deoptimize_for_null_free = result.is_null_free_inline_type() && (field_access.is_putfield() || field_access.is_putstatic()); 1158 1159 // The field we are patching is flat. Deoptimize and regenerate 1160 // the compiled code which can't handle the layout of the flat 1161 // field because it was unknown at compile time. 1162 deoptimize_for_flat = result.is_flat(); 1163 1164 } else if (load_klass_or_mirror_patch_id) { 1165 Klass* k = nullptr; 1166 switch (code) { 1167 case Bytecodes::_putstatic: 1168 case Bytecodes::_getstatic: 1169 { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK); 1170 init_klass = klass; 1171 mirror = Handle(current, klass->java_mirror()); 1172 } 1173 break; 1174 case Bytecodes::_new: 1175 { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci)); 1176 k = caller_method->constants()->klass_at(bnew.index(), CHECK); 1177 } 1178 break; 1179 case Bytecodes::_multianewarray: 1180 { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci)); 1181 k = caller_method->constants()->klass_at(mna.index(), CHECK); 1182 } 1183 break; 1184 case Bytecodes::_instanceof: 1185 { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci)); 1186 k = caller_method->constants()->klass_at(io.index(), CHECK); 1187 } 1188 break; 1189 case Bytecodes::_checkcast: 1190 { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci)); 1191 k = caller_method->constants()->klass_at(cc.index(), CHECK); 1192 } 1193 break; 1194 case Bytecodes::_anewarray: 1195 { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci)); 1196 Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK); 1197 k = ek->array_klass(CHECK); 1198 } 1199 break; 1200 case Bytecodes::_ldc: 1201 case Bytecodes::_ldc_w: 1202 case Bytecodes::_ldc2_w: 1203 { 1204 Bytecode_loadconstant cc(caller_method, bci); 1205 oop m = cc.resolve_constant(CHECK); 1206 mirror = Handle(current, m); 1207 } 1208 break; 1209 default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id"); 1210 } 1211 load_klass = k; 1212 } else if (stub_id == C1StubId::load_appendix_patching_id) { 1213 Bytecode_invoke bytecode(caller_method, bci); 1214 Bytecodes::Code bc = bytecode.invoke_code(); 1215 1216 CallInfo info; 1217 constantPoolHandle pool(current, caller_method->constants()); 1218 int index = bytecode.index(); 1219 LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK); 1220 switch (bc) { 1221 case Bytecodes::_invokehandle: { 1222 ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info); 1223 appendix = Handle(current, pool->cache()->appendix_if_resolved(entry)); 1224 break; 1225 } 1226 case Bytecodes::_invokedynamic: { 1227 appendix = Handle(current, pool->cache()->set_dynamic_call(info, index)); 1228 break; 1229 } 1230 default: fatal("unexpected bytecode for load_appendix_patching_id"); 1231 } 1232 } else { 1233 ShouldNotReachHere(); 1234 } 1235 1236 if (deoptimize_for_volatile || deoptimize_for_atomic || deoptimize_for_null_free || deoptimize_for_flat) { 1237 // At compile time we assumed the field wasn't volatile/atomic but after 1238 // loading it turns out it was volatile/atomic so we have to throw the 1239 // compiled code out and let it be regenerated. 1240 if (TracePatching) { 1241 if (deoptimize_for_volatile) { 1242 tty->print_cr("Deoptimizing for patching volatile field reference"); 1243 } 1244 if (deoptimize_for_atomic) { 1245 tty->print_cr("Deoptimizing for patching atomic field reference"); 1246 } 1247 if (deoptimize_for_null_free) { 1248 tty->print_cr("Deoptimizing for patching null-free field reference"); 1249 } 1250 if (deoptimize_for_flat) { 1251 tty->print_cr("Deoptimizing for patching flat field reference"); 1252 } 1253 } 1254 1255 // It's possible the nmethod was invalidated in the last 1256 // safepoint, but if it's still alive then make it not_entrant. 1257 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1258 if (nm != nullptr) { 1259 nm->make_not_entrant(); 1260 } 1261 1262 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1263 1264 // Return to the now deoptimized frame. 1265 } 1266 1267 // Now copy code back 1268 1269 { 1270 MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag); 1271 // 1272 // Deoptimization may have happened while we waited for the lock. 1273 // In that case we don't bother to do any patching we just return 1274 // and let the deopt happen 1275 if (!caller_is_deopted(current)) { 1276 NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc()); 1277 address instr_pc = jump->jump_destination(); 1278 NativeInstruction* ni = nativeInstruction_at(instr_pc); 1279 if (ni->is_jump() ) { 1280 // the jump has not been patched yet 1281 // The jump destination is slow case and therefore not part of the stubs 1282 // (stubs are only for StaticCalls) 1283 1284 // format of buffer 1285 // .... 1286 // instr byte 0 <-- copy_buff 1287 // instr byte 1 1288 // .. 1289 // instr byte n-1 1290 // n 1291 // .... <-- call destination 1292 1293 address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset(); 1294 unsigned char* byte_count = (unsigned char*) (stub_location - 1); 1295 unsigned char* byte_skip = (unsigned char*) (stub_location - 2); 1296 unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3); 1297 address copy_buff = stub_location - *byte_skip - *byte_count; 1298 address being_initialized_entry = stub_location - *being_initialized_entry_offset; 1299 if (TracePatching) { 1300 ttyLocker ttyl; 1301 tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT " (%s)", Bytecodes::name(code), bci, 1302 p2i(instr_pc), (stub_id == C1StubId::access_field_patching_id) ? "field" : "klass"); 1303 nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc()); 1304 assert(caller_code != nullptr, "nmethod not found"); 1305 1306 // NOTE we use pc() not original_pc() because we already know they are 1307 // identical otherwise we'd have never entered this block of code 1308 1309 const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc()); 1310 assert(map != nullptr, "null check"); 1311 map->print(); 1312 tty->cr(); 1313 1314 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1315 } 1316 // depending on the code below, do_patch says whether to copy the patch body back into the nmethod 1317 bool do_patch = true; 1318 if (stub_id == C1StubId::access_field_patching_id) { 1319 // The offset may not be correct if the class was not loaded at code generation time. 1320 // Set it now. 1321 NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff); 1322 assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type"); 1323 assert(patch_field_offset >= 0, "illegal offset"); 1324 n_move->add_offset_in_bytes(patch_field_offset); 1325 } else if (load_klass_or_mirror_patch_id) { 1326 // If a getstatic or putstatic is referencing a klass which 1327 // isn't fully initialized, the patch body isn't copied into 1328 // place until initialization is complete. In this case the 1329 // patch site is setup so that any threads besides the 1330 // initializing thread are forced to come into the VM and 1331 // block. 1332 do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) || 1333 InstanceKlass::cast(init_klass)->is_initialized(); 1334 NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc); 1335 if (jump->jump_destination() == being_initialized_entry) { 1336 assert(do_patch == true, "initialization must be complete at this point"); 1337 } else { 1338 // patch the instruction <move reg, klass> 1339 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1340 1341 assert(n_copy->data() == 0 || 1342 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1343 "illegal init value"); 1344 if (stub_id == C1StubId::load_klass_patching_id) { 1345 assert(load_klass != nullptr, "klass not set"); 1346 n_copy->set_data((intx) (load_klass)); 1347 } else { 1348 // Don't need a G1 pre-barrier here since we assert above that data isn't an oop. 1349 n_copy->set_data(cast_from_oop<intx>(mirror())); 1350 } 1351 1352 if (TracePatching) { 1353 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1354 } 1355 } 1356 } else if (stub_id == C1StubId::load_appendix_patching_id) { 1357 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1358 assert(n_copy->data() == 0 || 1359 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1360 "illegal init value"); 1361 n_copy->set_data(cast_from_oop<intx>(appendix())); 1362 1363 if (TracePatching) { 1364 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1365 } 1366 } else { 1367 ShouldNotReachHere(); 1368 } 1369 1370 if (do_patch) { 1371 // replace instructions 1372 // first replace the tail, then the call 1373 #ifdef ARM 1374 if((load_klass_or_mirror_patch_id || 1375 stub_id == C1StubId::load_appendix_patching_id) && 1376 nativeMovConstReg_at(copy_buff)->is_pc_relative()) { 1377 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1378 address addr = nullptr; 1379 assert(nm != nullptr, "invalid nmethod_pc"); 1380 RelocIterator mds(nm, copy_buff, copy_buff + 1); 1381 while (mds.next()) { 1382 if (mds.type() == relocInfo::oop_type) { 1383 assert(stub_id == C1StubId::load_mirror_patching_id || 1384 stub_id == C1StubId::load_appendix_patching_id, "wrong stub id"); 1385 oop_Relocation* r = mds.oop_reloc(); 1386 addr = (address)r->oop_addr(); 1387 break; 1388 } else if (mds.type() == relocInfo::metadata_type) { 1389 assert(stub_id == C1StubId::load_klass_patching_id, "wrong stub id"); 1390 metadata_Relocation* r = mds.metadata_reloc(); 1391 addr = (address)r->metadata_addr(); 1392 break; 1393 } 1394 } 1395 assert(addr != nullptr, "metadata relocation must exist"); 1396 copy_buff -= *byte_count; 1397 NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff); 1398 n_copy2->set_pc_relative_offset(addr, instr_pc); 1399 } 1400 #endif 1401 1402 for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) { 1403 address ptr = copy_buff + i; 1404 int a_byte = (*ptr) & 0xFF; 1405 address dst = instr_pc + i; 1406 *(unsigned char*)dst = (unsigned char) a_byte; 1407 } 1408 ICache::invalidate_range(instr_pc, *byte_count); 1409 NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff); 1410 1411 if (load_klass_or_mirror_patch_id || 1412 stub_id == C1StubId::load_appendix_patching_id) { 1413 relocInfo::relocType rtype = 1414 (stub_id == C1StubId::load_klass_patching_id) ? 1415 relocInfo::metadata_type : 1416 relocInfo::oop_type; 1417 // update relocInfo to metadata 1418 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1419 assert(nm != nullptr, "invalid nmethod_pc"); 1420 1421 // The old patch site is now a move instruction so update 1422 // the reloc info so that it will get updated during 1423 // future GCs. 1424 RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1)); 1425 relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc, 1426 relocInfo::none, rtype); 1427 } 1428 1429 } else { 1430 ICache::invalidate_range(copy_buff, *byte_count); 1431 NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry); 1432 } 1433 } 1434 } 1435 // If we are patching in a non-perm oop, make sure the nmethod 1436 // is on the right list. 1437 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1438 guarantee(nm != nullptr, "only nmethods can contain non-perm oops"); 1439 1440 // Since we've patched some oops in the nmethod, 1441 // (re)register it with the heap. 1442 Universe::heap()->register_nmethod(nm); 1443 } 1444 JRT_END 1445 1446 #else // DEOPTIMIZE_WHEN_PATCHING 1447 1448 static bool is_patching_needed(JavaThread* current, C1StubId stub_id) { 1449 if (stub_id == C1StubId::load_klass_patching_id || 1450 stub_id == C1StubId::load_mirror_patching_id) { 1451 // last java frame on stack 1452 vframeStream vfst(current, true); 1453 assert(!vfst.at_end(), "Java frame must exist"); 1454 1455 methodHandle caller_method(current, vfst.method()); 1456 int bci = vfst.bci(); 1457 Bytecodes::Code code = caller_method()->java_code_at(bci); 1458 1459 switch (code) { 1460 case Bytecodes::_new: 1461 case Bytecodes::_anewarray: 1462 case Bytecodes::_multianewarray: 1463 case Bytecodes::_instanceof: 1464 case Bytecodes::_checkcast: { 1465 Bytecode bc(caller_method(), caller_method->bcp_from(bci)); 1466 constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code)); 1467 if (tag.is_unresolved_klass_in_error()) { 1468 return false; // throws resolution error 1469 } 1470 break; 1471 } 1472 1473 default: break; 1474 } 1475 } 1476 return true; 1477 } 1478 1479 void Runtime1::patch_code(JavaThread* current, C1StubId stub_id) { 1480 #ifndef PRODUCT 1481 if (PrintC1Statistics) { 1482 _patch_code_slowcase_cnt++; 1483 } 1484 #endif 1485 1486 // Enable WXWrite: the function is called by c1 stub as a runtime function 1487 // (see another implementation above). 1488 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 1489 1490 if (TracePatching) { 1491 tty->print_cr("Deoptimizing because patch is needed"); 1492 } 1493 1494 RegisterMap reg_map(current, 1495 RegisterMap::UpdateMap::skip, 1496 RegisterMap::ProcessFrames::include, 1497 RegisterMap::WalkContinuation::skip); 1498 1499 frame runtime_frame = current->last_frame(); 1500 frame caller_frame = runtime_frame.sender(®_map); 1501 assert(caller_frame.is_compiled_frame(), "Wrong frame type"); 1502 1503 if (is_patching_needed(current, stub_id)) { 1504 // Make sure the nmethod is invalidated, i.e. made not entrant. 1505 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1506 if (nm != nullptr) { 1507 nm->make_not_entrant(); 1508 } 1509 } 1510 1511 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1512 // Return to the now deoptimized frame. 1513 postcond(caller_is_deopted(current)); 1514 } 1515 1516 #endif // DEOPTIMIZE_WHEN_PATCHING 1517 1518 // Entry point for compiled code. We want to patch a nmethod. 1519 // We don't do a normal VM transition here because we want to 1520 // know after the patching is complete and any safepoint(s) are taken 1521 // if the calling nmethod was deoptimized. We do this by calling a 1522 // helper method which does the normal VM transition and when it 1523 // completes we can check for deoptimization. This simplifies the 1524 // assembly code in the cpu directories. 1525 // 1526 int Runtime1::move_klass_patching(JavaThread* current) { 1527 // 1528 // NOTE: we are still in Java 1529 // 1530 debug_only(NoHandleMark nhm;) 1531 { 1532 // Enter VM mode 1533 ResetNoHandleMark rnhm; 1534 patch_code(current, C1StubId::load_klass_patching_id); 1535 } 1536 // Back in JAVA, use no oops DON'T safepoint 1537 1538 // Return true if calling code is deoptimized 1539 1540 return caller_is_deopted(current); 1541 } 1542 1543 int Runtime1::move_mirror_patching(JavaThread* current) { 1544 // 1545 // NOTE: we are still in Java 1546 // 1547 debug_only(NoHandleMark nhm;) 1548 { 1549 // Enter VM mode 1550 ResetNoHandleMark rnhm; 1551 patch_code(current, C1StubId::load_mirror_patching_id); 1552 } 1553 // Back in JAVA, use no oops DON'T safepoint 1554 1555 // Return true if calling code is deoptimized 1556 1557 return caller_is_deopted(current); 1558 } 1559 1560 int Runtime1::move_appendix_patching(JavaThread* current) { 1561 // 1562 // NOTE: we are still in Java 1563 // 1564 debug_only(NoHandleMark nhm;) 1565 { 1566 // Enter VM mode 1567 ResetNoHandleMark rnhm; 1568 patch_code(current, C1StubId::load_appendix_patching_id); 1569 } 1570 // Back in JAVA, use no oops DON'T safepoint 1571 1572 // Return true if calling code is deoptimized 1573 1574 return caller_is_deopted(current); 1575 } 1576 1577 // Entry point for compiled code. We want to patch a nmethod. 1578 // We don't do a normal VM transition here because we want to 1579 // know after the patching is complete and any safepoint(s) are taken 1580 // if the calling nmethod was deoptimized. We do this by calling a 1581 // helper method which does the normal VM transition and when it 1582 // completes we can check for deoptimization. This simplifies the 1583 // assembly code in the cpu directories. 1584 // 1585 int Runtime1::access_field_patching(JavaThread* current) { 1586 // 1587 // NOTE: we are still in Java 1588 // 1589 // Handles created in this function will be deleted by the 1590 // HandleMarkCleaner in the transition to the VM. 1591 NoHandleMark nhm; 1592 { 1593 // Enter VM mode 1594 ResetNoHandleMark rnhm; 1595 patch_code(current, C1StubId::access_field_patching_id); 1596 } 1597 // Back in JAVA, use no oops DON'T safepoint 1598 1599 // Return true if calling code is deoptimized 1600 1601 return caller_is_deopted(current); 1602 } 1603 1604 1605 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id)) 1606 // for now we just print out the block id 1607 tty->print("%d ", block_id); 1608 JRT_END 1609 1610 1611 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj)) 1612 // had to return int instead of bool, otherwise there may be a mismatch 1613 // between the C calling convention and the Java one. 1614 // e.g., on x86, GCC may clear only %al when returning a bool false, but 1615 // JVM takes the whole %eax as the return value, which may misinterpret 1616 // the return value as a boolean true. 1617 1618 assert(mirror != nullptr, "should null-check on mirror before calling"); 1619 Klass* k = java_lang_Class::as_Klass(mirror); 1620 return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0; 1621 JRT_END 1622 1623 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current)) 1624 ResourceMark rm; 1625 1626 RegisterMap reg_map(current, 1627 RegisterMap::UpdateMap::skip, 1628 RegisterMap::ProcessFrames::include, 1629 RegisterMap::WalkContinuation::skip); 1630 frame runtime_frame = current->last_frame(); 1631 frame caller_frame = runtime_frame.sender(®_map); 1632 1633 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1634 assert (nm != nullptr, "no more nmethod?"); 1635 nm->make_not_entrant(); 1636 1637 methodHandle m(current, nm->method()); 1638 MethodData* mdo = m->method_data(); 1639 1640 if (mdo == nullptr && !HAS_PENDING_EXCEPTION) { 1641 // Build an MDO. Ignore errors like OutOfMemory; 1642 // that simply means we won't have an MDO to update. 1643 Method::build_profiling_method_data(m, THREAD); 1644 if (HAS_PENDING_EXCEPTION) { 1645 // Only metaspace OOM is expected. No Java code executed. 1646 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1647 CLEAR_PENDING_EXCEPTION; 1648 } 1649 mdo = m->method_data(); 1650 } 1651 1652 if (mdo != nullptr) { 1653 mdo->inc_trap_count(Deoptimization::Reason_none); 1654 } 1655 1656 if (TracePredicateFailedTraps) { 1657 stringStream ss1, ss2; 1658 vframeStream vfst(current); 1659 Method* inlinee = vfst.method(); 1660 inlinee->print_short_name(&ss1); 1661 m->print_short_name(&ss2); 1662 tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc())); 1663 } 1664 1665 1666 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1667 1668 JRT_END 1669 1670 // Check exception if AbortVMOnException flag set 1671 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex)) 1672 ResourceMark rm; 1673 const char* message = nullptr; 1674 if (ex->is_a(vmClasses::Throwable_klass())) { 1675 oop msg = java_lang_Throwable::message(ex); 1676 if (msg != nullptr) { 1677 message = java_lang_String::as_utf8_string(msg); 1678 } 1679 } 1680 Exceptions::debug_check_abort(ex->klass()->external_name(), message); 1681 JRT_END 1682 1683 #ifndef PRODUCT 1684 void Runtime1::print_statistics() { 1685 tty->print_cr("C1 Runtime statistics:"); 1686 tty->print_cr(" _resolve_invoke_virtual_cnt: %u", SharedRuntime::_resolve_virtual_ctr); 1687 tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr); 1688 tty->print_cr(" _resolve_invoke_static_cnt: %u", SharedRuntime::_resolve_static_ctr); 1689 tty->print_cr(" _handle_wrong_method_cnt: %u", SharedRuntime::_wrong_method_ctr); 1690 tty->print_cr(" _ic_miss_cnt: %u", SharedRuntime::_ic_miss_ctr); 1691 tty->print_cr(" _generic_arraycopystub_cnt: %u", _generic_arraycopystub_cnt); 1692 tty->print_cr(" _byte_arraycopy_cnt: %u", _byte_arraycopy_stub_cnt); 1693 tty->print_cr(" _short_arraycopy_cnt: %u", _short_arraycopy_stub_cnt); 1694 tty->print_cr(" _int_arraycopy_cnt: %u", _int_arraycopy_stub_cnt); 1695 tty->print_cr(" _long_arraycopy_cnt: %u", _long_arraycopy_stub_cnt); 1696 tty->print_cr(" _oop_arraycopy_cnt: %u", _oop_arraycopy_stub_cnt); 1697 tty->print_cr(" _arraycopy_slowcase_cnt: %u", _arraycopy_slowcase_cnt); 1698 tty->print_cr(" _arraycopy_checkcast_cnt: %u", _arraycopy_checkcast_cnt); 1699 tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt); 1700 1701 tty->print_cr(" _new_type_array_slowcase_cnt: %u", _new_type_array_slowcase_cnt); 1702 tty->print_cr(" _new_object_array_slowcase_cnt: %u", _new_object_array_slowcase_cnt); 1703 tty->print_cr(" _new_null_free_array_slowcase_cnt: %u", _new_null_free_array_slowcase_cnt); 1704 tty->print_cr(" _new_instance_slowcase_cnt: %u", _new_instance_slowcase_cnt); 1705 tty->print_cr(" _new_multi_array_slowcase_cnt: %u", _new_multi_array_slowcase_cnt); 1706 tty->print_cr(" _load_flat_array_slowcase_cnt: %u", _load_flat_array_slowcase_cnt); 1707 tty->print_cr(" _store_flat_array_slowcase_cnt: %u", _store_flat_array_slowcase_cnt); 1708 tty->print_cr(" _substitutability_check_slowcase_cnt: %u", _substitutability_check_slowcase_cnt); 1709 tty->print_cr(" _buffer_inline_args_slowcase_cnt:%u", _buffer_inline_args_slowcase_cnt); 1710 tty->print_cr(" _buffer_inline_args_no_receiver_slowcase_cnt:%u", _buffer_inline_args_no_receiver_slowcase_cnt); 1711 1712 tty->print_cr(" _monitorenter_slowcase_cnt: %u", _monitorenter_slowcase_cnt); 1713 tty->print_cr(" _monitorexit_slowcase_cnt: %u", _monitorexit_slowcase_cnt); 1714 tty->print_cr(" _patch_code_slowcase_cnt: %u", _patch_code_slowcase_cnt); 1715 1716 tty->print_cr(" _throw_range_check_exception_count: %u:", _throw_range_check_exception_count); 1717 tty->print_cr(" _throw_index_exception_count: %u:", _throw_index_exception_count); 1718 tty->print_cr(" _throw_div0_exception_count: %u:", _throw_div0_exception_count); 1719 tty->print_cr(" _throw_null_pointer_exception_count: %u:", _throw_null_pointer_exception_count); 1720 tty->print_cr(" _throw_class_cast_exception_count: %u:", _throw_class_cast_exception_count); 1721 tty->print_cr(" _throw_incompatible_class_change_error_count: %u:", _throw_incompatible_class_change_error_count); 1722 tty->print_cr(" _throw_illegal_monitor_state_exception_count: %u:", _throw_illegal_monitor_state_exception_count); 1723 tty->print_cr(" _throw_identity_exception_count: %u:", _throw_identity_exception_count); 1724 tty->print_cr(" _throw_count: %u:", _throw_count); 1725 1726 SharedRuntime::print_ic_miss_histogram(); 1727 tty->cr(); 1728 } 1729 #endif // PRODUCT