1 /* 2 * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/codeBuffer.hpp" 27 #include "c1/c1_CodeStubs.hpp" 28 #include "c1/c1_Defs.hpp" 29 #include "c1/c1_FrameMap.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_MacroAssembler.hpp" 32 #include "c1/c1_Runtime1.hpp" 33 #include "classfile/javaClasses.inline.hpp" 34 #include "classfile/vmClasses.hpp" 35 #include "classfile/vmSymbols.hpp" 36 #include "code/codeBlob.hpp" 37 #include "code/compiledIC.hpp" 38 #include "code/pcDesc.hpp" 39 #include "code/scopeDesc.hpp" 40 #include "code/vtableStubs.hpp" 41 #include "compiler/compilationPolicy.hpp" 42 #include "compiler/disassembler.hpp" 43 #include "compiler/oopMap.hpp" 44 #include "gc/shared/barrierSet.hpp" 45 #include "gc/shared/c1/barrierSetC1.hpp" 46 #include "gc/shared/collectedHeap.hpp" 47 #include "interpreter/bytecode.hpp" 48 #include "interpreter/interpreter.hpp" 49 #include "jfr/support/jfrIntrinsics.hpp" 50 #include "logging/log.hpp" 51 #include "memory/allocation.inline.hpp" 52 #include "memory/oopFactory.hpp" 53 #include "memory/resourceArea.hpp" 54 #include "memory/universe.hpp" 55 #include "oops/access.inline.hpp" 56 #include "oops/flatArrayKlass.hpp" 57 #include "oops/flatArrayOop.inline.hpp" 58 #include "oops/klass.inline.hpp" 59 #include "oops/objArrayOop.inline.hpp" 60 #include "oops/objArrayKlass.hpp" 61 #include "oops/oop.inline.hpp" 62 #include "prims/jvmtiExport.hpp" 63 #include "runtime/atomic.hpp" 64 #include "runtime/fieldDescriptor.inline.hpp" 65 #include "runtime/frame.inline.hpp" 66 #include "runtime/handles.inline.hpp" 67 #include "runtime/interfaceSupport.inline.hpp" 68 #include "runtime/javaCalls.hpp" 69 #include "runtime/sharedRuntime.hpp" 70 #include "runtime/stackWatermarkSet.hpp" 71 #include "runtime/stubRoutines.hpp" 72 #include "runtime/threadCritical.hpp" 73 #include "runtime/vframe.inline.hpp" 74 #include "runtime/vframeArray.hpp" 75 #include "runtime/vm_version.hpp" 76 #include "utilities/copy.hpp" 77 #include "utilities/events.hpp" 78 79 80 // Implementation of StubAssembler 81 82 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) { 83 _name = name; 84 _must_gc_arguments = false; 85 _frame_size = no_frame_size; 86 _num_rt_args = 0; 87 _stub_id = stub_id; 88 } 89 90 91 void StubAssembler::set_info(const char* name, bool must_gc_arguments) { 92 _name = name; 93 _must_gc_arguments = must_gc_arguments; 94 } 95 96 97 void StubAssembler::set_frame_size(int size) { 98 if (_frame_size == no_frame_size) { 99 _frame_size = size; 100 } 101 assert(_frame_size == size, "can't change the frame size"); 102 } 103 104 105 void StubAssembler::set_num_rt_args(int args) { 106 if (_num_rt_args == 0) { 107 _num_rt_args = args; 108 } 109 assert(_num_rt_args == args, "can't change the number of args"); 110 } 111 112 // Implementation of Runtime1 113 114 CodeBlob* Runtime1::_blobs[(int)C1StubId::NUM_STUBIDS]; 115 116 #define C1_BLOB_NAME_DEFINE(name) "C1 Runtime " # name "_blob", 117 const char *Runtime1::_blob_names[] = { 118 C1_STUBS_DO(C1_BLOB_NAME_DEFINE) 119 }; 120 #undef C1_STUB_NAME_DEFINE 121 122 #ifndef PRODUCT 123 // statistics 124 uint Runtime1::_generic_arraycopystub_cnt = 0; 125 uint Runtime1::_arraycopy_slowcase_cnt = 0; 126 uint Runtime1::_arraycopy_checkcast_cnt = 0; 127 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0; 128 uint Runtime1::_new_type_array_slowcase_cnt = 0; 129 uint Runtime1::_new_object_array_slowcase_cnt = 0; 130 uint Runtime1::_new_null_free_array_slowcase_cnt = 0; 131 uint Runtime1::_new_instance_slowcase_cnt = 0; 132 uint Runtime1::_new_multi_array_slowcase_cnt = 0; 133 uint Runtime1::_load_flat_array_slowcase_cnt = 0; 134 uint Runtime1::_store_flat_array_slowcase_cnt = 0; 135 uint Runtime1::_substitutability_check_slowcase_cnt = 0; 136 uint Runtime1::_buffer_inline_args_slowcase_cnt = 0; 137 uint Runtime1::_buffer_inline_args_no_receiver_slowcase_cnt = 0; 138 uint Runtime1::_monitorenter_slowcase_cnt = 0; 139 uint Runtime1::_monitorexit_slowcase_cnt = 0; 140 uint Runtime1::_patch_code_slowcase_cnt = 0; 141 uint Runtime1::_throw_range_check_exception_count = 0; 142 uint Runtime1::_throw_index_exception_count = 0; 143 uint Runtime1::_throw_div0_exception_count = 0; 144 uint Runtime1::_throw_null_pointer_exception_count = 0; 145 uint Runtime1::_throw_class_cast_exception_count = 0; 146 uint Runtime1::_throw_incompatible_class_change_error_count = 0; 147 uint Runtime1::_throw_illegal_monitor_state_exception_count = 0; 148 uint Runtime1::_throw_identity_exception_count = 0; 149 uint Runtime1::_throw_count = 0; 150 151 static uint _byte_arraycopy_stub_cnt = 0; 152 static uint _short_arraycopy_stub_cnt = 0; 153 static uint _int_arraycopy_stub_cnt = 0; 154 static uint _long_arraycopy_stub_cnt = 0; 155 static uint _oop_arraycopy_stub_cnt = 0; 156 157 address Runtime1::arraycopy_count_address(BasicType type) { 158 switch (type) { 159 case T_BOOLEAN: 160 case T_BYTE: return (address)&_byte_arraycopy_stub_cnt; 161 case T_CHAR: 162 case T_SHORT: return (address)&_short_arraycopy_stub_cnt; 163 case T_FLOAT: 164 case T_INT: return (address)&_int_arraycopy_stub_cnt; 165 case T_DOUBLE: 166 case T_LONG: return (address)&_long_arraycopy_stub_cnt; 167 case T_ARRAY: 168 case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt; 169 default: 170 ShouldNotReachHere(); 171 return nullptr; 172 } 173 } 174 175 176 #endif 177 178 // Simple helper to see if the caller of a runtime stub which 179 // entered the VM has been deoptimized 180 181 static bool caller_is_deopted(JavaThread* current) { 182 RegisterMap reg_map(current, 183 RegisterMap::UpdateMap::skip, 184 RegisterMap::ProcessFrames::include, 185 RegisterMap::WalkContinuation::skip); 186 frame runtime_frame = current->last_frame(); 187 frame caller_frame = runtime_frame.sender(®_map); 188 assert(caller_frame.is_compiled_frame(), "must be compiled"); 189 return caller_frame.is_deoptimized_frame(); 190 } 191 192 // Stress deoptimization 193 static void deopt_caller(JavaThread* current) { 194 if (!caller_is_deopted(current)) { 195 RegisterMap reg_map(current, 196 RegisterMap::UpdateMap::skip, 197 RegisterMap::ProcessFrames::include, 198 RegisterMap::WalkContinuation::skip); 199 frame runtime_frame = current->last_frame(); 200 frame caller_frame = runtime_frame.sender(®_map); 201 Deoptimization::deoptimize_frame(current, caller_frame.id()); 202 assert(caller_is_deopted(current), "Must be deoptimized"); 203 } 204 } 205 206 class C1StubIdStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure { 207 private: 208 C1StubId _id; 209 public: 210 C1StubIdStubAssemblerCodeGenClosure(C1StubId id) : _id(id) {} 211 virtual OopMapSet* generate_code(StubAssembler* sasm) { 212 return Runtime1::generate_code_for(_id, sasm); 213 } 214 }; 215 216 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, C1StubId id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) { 217 ResourceMark rm; 218 // create code buffer for code storage 219 CodeBuffer code(buffer_blob); 220 221 OopMapSet* oop_maps; 222 int frame_size; 223 bool must_gc_arguments; 224 225 Compilation::setup_code_buffer(&code, 0); 226 227 // create assembler for code generation 228 StubAssembler* sasm = new StubAssembler(&code, name, (int)id); 229 // generate code for runtime stub 230 oop_maps = cl->generate_code(sasm); 231 assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size, 232 "if stub has an oop map it must have a valid frame size"); 233 assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap"); 234 235 // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned) 236 sasm->align(BytesPerWord); 237 // make sure all code is in code buffer 238 sasm->flush(); 239 240 frame_size = sasm->frame_size(); 241 must_gc_arguments = sasm->must_gc_arguments(); 242 // create blob - distinguish a few special cases 243 CodeBlob* blob = RuntimeStub::new_runtime_stub(name, 244 &code, 245 CodeOffsets::frame_never_safe, 246 frame_size, 247 oop_maps, 248 must_gc_arguments); 249 assert(blob != nullptr, "blob must exist"); 250 return blob; 251 } 252 253 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, C1StubId id) { 254 assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id"); 255 bool expect_oop_map = true; 256 #ifdef ASSERT 257 // Make sure that stubs that need oopmaps have them 258 switch (id) { 259 // These stubs don't need to have an oopmap 260 case C1StubId::dtrace_object_alloc_id: 261 case C1StubId::slow_subtype_check_id: 262 case C1StubId::fpu2long_stub_id: 263 case C1StubId::unwind_exception_id: 264 case C1StubId::counter_overflow_id: 265 expect_oop_map = false; 266 break; 267 default: 268 break; 269 } 270 #endif 271 C1StubIdStubAssemblerCodeGenClosure cl(id); 272 CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl); 273 // install blob 274 _blobs[(int)id] = blob; 275 } 276 277 void Runtime1::initialize(BufferBlob* blob) { 278 // platform-dependent initialization 279 initialize_pd(); 280 // generate stubs 281 int limit = (int)C1StubId::NUM_STUBIDS; 282 for (int id = 0; id < limit; id++) generate_blob_for(blob, (C1StubId)id); 283 // printing 284 #ifndef PRODUCT 285 if (PrintSimpleStubs) { 286 ResourceMark rm; 287 for (int id = 0; id < limit; id++) { 288 _blobs[id]->print(); 289 if (_blobs[id]->oop_maps() != nullptr) { 290 _blobs[id]->oop_maps()->print(); 291 } 292 } 293 } 294 #endif 295 BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1(); 296 bs->generate_c1_runtime_stubs(blob); 297 } 298 299 CodeBlob* Runtime1::blob_for(C1StubId id) { 300 assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id"); 301 return _blobs[(int)id]; 302 } 303 304 305 const char* Runtime1::name_for(C1StubId id) { 306 assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id"); 307 return _blob_names[(int)id]; 308 } 309 310 const char* Runtime1::name_for_address(address entry) { 311 int limit = (int)C1StubId::NUM_STUBIDS; 312 for (int i = 0; i < limit; i++) { 313 C1StubId id = (C1StubId)i; 314 if (entry == entry_for(id)) return name_for(id); 315 } 316 317 #define FUNCTION_CASE(a, f) \ 318 if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f 319 320 FUNCTION_CASE(entry, os::javaTimeMillis); 321 FUNCTION_CASE(entry, os::javaTimeNanos); 322 FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end); 323 FUNCTION_CASE(entry, SharedRuntime::d2f); 324 FUNCTION_CASE(entry, SharedRuntime::d2i); 325 FUNCTION_CASE(entry, SharedRuntime::d2l); 326 FUNCTION_CASE(entry, SharedRuntime::dcos); 327 FUNCTION_CASE(entry, SharedRuntime::dexp); 328 FUNCTION_CASE(entry, SharedRuntime::dlog); 329 FUNCTION_CASE(entry, SharedRuntime::dlog10); 330 FUNCTION_CASE(entry, SharedRuntime::dpow); 331 FUNCTION_CASE(entry, SharedRuntime::drem); 332 FUNCTION_CASE(entry, SharedRuntime::dsin); 333 FUNCTION_CASE(entry, SharedRuntime::dtan); 334 FUNCTION_CASE(entry, SharedRuntime::f2i); 335 FUNCTION_CASE(entry, SharedRuntime::f2l); 336 FUNCTION_CASE(entry, SharedRuntime::frem); 337 FUNCTION_CASE(entry, SharedRuntime::l2d); 338 FUNCTION_CASE(entry, SharedRuntime::l2f); 339 FUNCTION_CASE(entry, SharedRuntime::ldiv); 340 FUNCTION_CASE(entry, SharedRuntime::lmul); 341 FUNCTION_CASE(entry, SharedRuntime::lrem); 342 FUNCTION_CASE(entry, SharedRuntime::lrem); 343 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry); 344 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit); 345 FUNCTION_CASE(entry, is_instance_of); 346 FUNCTION_CASE(entry, trace_block_entry); 347 #ifdef JFR_HAVE_INTRINSICS 348 FUNCTION_CASE(entry, JfrTime::time_function()); 349 #endif 350 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32()); 351 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C()); 352 FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch()); 353 FUNCTION_CASE(entry, StubRoutines::dexp()); 354 FUNCTION_CASE(entry, StubRoutines::dlog()); 355 FUNCTION_CASE(entry, StubRoutines::dlog10()); 356 FUNCTION_CASE(entry, StubRoutines::dpow()); 357 FUNCTION_CASE(entry, StubRoutines::dsin()); 358 FUNCTION_CASE(entry, StubRoutines::dcos()); 359 FUNCTION_CASE(entry, StubRoutines::dtan()); 360 FUNCTION_CASE(entry, StubRoutines::dtanh()); 361 362 #undef FUNCTION_CASE 363 364 // Soft float adds more runtime names. 365 return pd_name_for_address(entry); 366 } 367 368 static void allocate_instance(JavaThread* current, Klass* klass, TRAPS) { 369 #ifndef PRODUCT 370 if (PrintC1Statistics) { 371 Runtime1::_new_instance_slowcase_cnt++; 372 } 373 #endif 374 assert(klass->is_klass(), "not a class"); 375 Handle holder(current, klass->klass_holder()); // keep the klass alive 376 InstanceKlass* h = InstanceKlass::cast(klass); 377 h->check_valid_for_instantiation(true, CHECK); 378 // make sure klass is initialized 379 h->initialize(CHECK); 380 oop obj = nullptr; 381 if (h->is_inline_klass() && InlineKlass::cast(h)->is_empty_inline_type()) { 382 obj = InlineKlass::cast(h)->default_value(); 383 assert(obj != nullptr, "default value must exist"); 384 } else { 385 // allocate instance and return via TLS 386 obj = h->allocate_instance(CHECK); 387 } 388 current->set_vm_result(obj); 389 JRT_END 390 391 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass)) 392 allocate_instance(current, klass, CHECK); 393 JRT_END 394 395 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length)) 396 #ifndef PRODUCT 397 if (PrintC1Statistics) { 398 _new_type_array_slowcase_cnt++; 399 } 400 #endif 401 // Note: no handle for klass needed since they are not used 402 // anymore after new_typeArray() and no GC can happen before. 403 // (This may have to change if this code changes!) 404 assert(klass->is_klass(), "not a class"); 405 BasicType elt_type = TypeArrayKlass::cast(klass)->element_type(); 406 oop obj = oopFactory::new_typeArray(elt_type, length, CHECK); 407 current->set_vm_result(obj); 408 // This is pretty rare but this runtime patch is stressful to deoptimization 409 // if we deoptimize here so force a deopt to stress the path. 410 if (DeoptimizeALot) { 411 deopt_caller(current); 412 } 413 414 JRT_END 415 416 417 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length)) 418 #ifndef PRODUCT 419 if (PrintC1Statistics) { 420 _new_object_array_slowcase_cnt++; 421 } 422 #endif 423 // Note: no handle for klass needed since they are not used 424 // anymore after new_objArray() and no GC can happen before. 425 // (This may have to change if this code changes!) 426 assert(array_klass->is_klass(), "not a class"); 427 Handle holder(current, array_klass->klass_holder()); // keep the klass alive 428 Klass* elem_klass = ArrayKlass::cast(array_klass)->element_klass(); 429 objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK); 430 current->set_vm_result(obj); 431 // This is pretty rare but this runtime patch is stressful to deoptimization 432 // if we deoptimize here so force a deopt to stress the path. 433 if (DeoptimizeALot) { 434 deopt_caller(current); 435 } 436 JRT_END 437 438 439 JRT_ENTRY(void, Runtime1::new_null_free_array(JavaThread* current, Klass* array_klass, jint length)) 440 NOT_PRODUCT(_new_null_free_array_slowcase_cnt++;) 441 442 // Note: no handle for klass needed since they are not used 443 // anymore after new_objArray() and no GC can happen before. 444 // (This may have to change if this code changes!) 445 assert(array_klass->is_klass(), "not a class"); 446 Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive 447 Klass* elem_klass = ArrayKlass::cast(array_klass)->element_klass(); 448 assert(elem_klass->is_inline_klass(), "must be"); 449 // Logically creates elements, ensure klass init 450 elem_klass->initialize(CHECK); 451 arrayOop obj = oopFactory::new_valueArray(elem_klass, length, CHECK); 452 current->set_vm_result(obj); 453 // This is pretty rare but this runtime patch is stressful to deoptimization 454 // if we deoptimize here so force a deopt to stress the path. 455 if (DeoptimizeALot) { 456 deopt_caller(current); 457 } 458 JRT_END 459 460 461 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims)) 462 #ifndef PRODUCT 463 if (PrintC1Statistics) { 464 _new_multi_array_slowcase_cnt++; 465 } 466 #endif 467 assert(klass->is_klass(), "not a class"); 468 assert(rank >= 1, "rank must be nonzero"); 469 Handle holder(current, klass->klass_holder()); // keep the klass alive 470 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); 471 current->set_vm_result(obj); 472 JRT_END 473 474 475 static void profile_flat_array(JavaThread* current, bool load) { 476 ResourceMark rm(current); 477 vframeStream vfst(current, true); 478 assert(!vfst.at_end(), "Java frame must exist"); 479 // Check if array access profiling is enabled 480 if (vfst.nm()->comp_level() != CompLevel_full_profile || !C1UpdateMethodData) { 481 return; 482 } 483 int bci = vfst.bci(); 484 Method* method = vfst.method(); 485 MethodData* md = method->method_data(); 486 if (md != nullptr) { 487 // Lock to access ProfileData, and ensure lock is not broken by a safepoint 488 MutexLocker ml(md->extra_data_lock(), Mutex::_no_safepoint_check_flag); 489 490 ProfileData* data = md->bci_to_data(bci); 491 assert(data != nullptr, "incorrect profiling entry"); 492 if (data->is_ArrayLoadData()) { 493 assert(load, "should be an array load"); 494 ArrayLoadData* load_data = (ArrayLoadData*) data; 495 load_data->set_flat_array(); 496 } else { 497 assert(data->is_ArrayStoreData(), ""); 498 assert(!load, "should be an array store"); 499 ArrayStoreData* store_data = (ArrayStoreData*) data; 500 store_data->set_flat_array(); 501 } 502 } 503 } 504 505 JRT_ENTRY(void, Runtime1::load_flat_array(JavaThread* current, flatArrayOopDesc* array, int index)) 506 assert(array->klass()->is_flatArray_klass(), "should not be called"); 507 profile_flat_array(current, true); 508 509 NOT_PRODUCT(_load_flat_array_slowcase_cnt++;) 510 assert(array->length() > 0 && index < array->length(), "already checked"); 511 flatArrayHandle vah(current, array); 512 oop obj = flatArrayOopDesc::value_alloc_copy_from_index(vah, index, CHECK); 513 current->set_vm_result(obj); 514 JRT_END 515 516 517 JRT_ENTRY(void, Runtime1::store_flat_array(JavaThread* current, flatArrayOopDesc* array, int index, oopDesc* value)) 518 if (array->klass()->is_flatArray_klass()) { 519 profile_flat_array(current, false); 520 } 521 522 NOT_PRODUCT(_store_flat_array_slowcase_cnt++;) 523 if (value == nullptr) { 524 assert(array->klass()->is_flatArray_klass() || array->klass()->is_null_free_array_klass(), "should not be called"); 525 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException()); 526 } else { 527 assert(array->klass()->is_flatArray_klass(), "should not be called"); 528 array->value_copy_to_index(value, index, LayoutKind::PAYLOAD); // Non atomic is currently the only layout supported by flat arrays 529 } 530 JRT_END 531 532 533 JRT_ENTRY(int, Runtime1::substitutability_check(JavaThread* current, oopDesc* left, oopDesc* right)) 534 NOT_PRODUCT(_substitutability_check_slowcase_cnt++;) 535 JavaCallArguments args; 536 args.push_oop(Handle(THREAD, left)); 537 args.push_oop(Handle(THREAD, right)); 538 JavaValue result(T_BOOLEAN); 539 JavaCalls::call_static(&result, 540 vmClasses::ValueObjectMethods_klass(), 541 vmSymbols::isSubstitutable_name(), 542 vmSymbols::object_object_boolean_signature(), 543 &args, CHECK_0); 544 return result.get_jboolean() ? 1 : 0; 545 JRT_END 546 547 548 extern "C" void ps(); 549 550 void Runtime1::buffer_inline_args_impl(JavaThread* current, Method* m, bool allocate_receiver) { 551 JavaThread* THREAD = current; 552 methodHandle method(current, m); // We are inside the verified_entry or verified_inline_ro_entry of this method. 553 oop obj = SharedRuntime::allocate_inline_types_impl(current, method, allocate_receiver, CHECK); 554 current->set_vm_result(obj); 555 } 556 557 JRT_ENTRY(void, Runtime1::buffer_inline_args(JavaThread* current, Method* method)) 558 NOT_PRODUCT(_buffer_inline_args_slowcase_cnt++;) 559 buffer_inline_args_impl(current, method, true); 560 JRT_END 561 562 JRT_ENTRY(void, Runtime1::buffer_inline_args_no_receiver(JavaThread* current, Method* method)) 563 NOT_PRODUCT(_buffer_inline_args_no_receiver_slowcase_cnt++;) 564 buffer_inline_args_impl(current, method, false); 565 JRT_END 566 567 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, C1StubId id)) 568 tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id); 569 JRT_END 570 571 572 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj)) 573 ResourceMark rm(current); 574 const char* klass_name = obj->klass()->external_name(); 575 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name); 576 JRT_END 577 578 579 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method 580 // associated with the top activation record. The inlinee (that is possibly included in the enclosing 581 // method) method is passed as an argument. In order to do that it is embedded in the code as 582 // a constant. 583 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) { 584 nmethod* osr_nm = nullptr; 585 methodHandle method(current, m); 586 587 RegisterMap map(current, 588 RegisterMap::UpdateMap::skip, 589 RegisterMap::ProcessFrames::include, 590 RegisterMap::WalkContinuation::skip); 591 frame fr = current->last_frame().sender(&map); 592 nmethod* nm = (nmethod*) fr.cb(); 593 assert(nm!= nullptr && nm->is_nmethod(), "Sanity check"); 594 methodHandle enclosing_method(current, nm->method()); 595 596 CompLevel level = (CompLevel)nm->comp_level(); 597 int bci = InvocationEntryBci; 598 if (branch_bci != InvocationEntryBci) { 599 // Compute destination bci 600 address pc = method()->code_base() + branch_bci; 601 Bytecodes::Code branch = Bytecodes::code_at(method(), pc); 602 int offset = 0; 603 switch (branch) { 604 case Bytecodes::_if_icmplt: case Bytecodes::_iflt: 605 case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt: 606 case Bytecodes::_if_icmple: case Bytecodes::_ifle: 607 case Bytecodes::_if_icmpge: case Bytecodes::_ifge: 608 case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq: 609 case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne: 610 case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto: 611 offset = (int16_t)Bytes::get_Java_u2(pc + 1); 612 break; 613 case Bytecodes::_goto_w: 614 offset = Bytes::get_Java_u4(pc + 1); 615 break; 616 default: ; 617 } 618 bci = branch_bci + offset; 619 } 620 osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current); 621 return osr_nm; 622 } 623 624 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method)) 625 nmethod* osr_nm; 626 JRT_BLOCK 627 osr_nm = counter_overflow_helper(current, bci, method); 628 if (osr_nm != nullptr) { 629 RegisterMap map(current, 630 RegisterMap::UpdateMap::skip, 631 RegisterMap::ProcessFrames::include, 632 RegisterMap::WalkContinuation::skip); 633 frame fr = current->last_frame().sender(&map); 634 Deoptimization::deoptimize_frame(current, fr.id()); 635 } 636 JRT_BLOCK_END 637 return nullptr; 638 JRT_END 639 640 extern void vm_exit(int code); 641 642 // Enter this method from compiled code handler below. This is where we transition 643 // to VM mode. This is done as a helper routine so that the method called directly 644 // from compiled code does not have to transition to VM. This allows the entry 645 // method to see if the nmethod that we have just looked up a handler for has 646 // been deoptimized while we were in the vm. This simplifies the assembly code 647 // cpu directories. 648 // 649 // We are entering here from exception stub (via the entry method below) 650 // If there is a compiled exception handler in this method, we will continue there; 651 // otherwise we will unwind the stack and continue at the caller of top frame method 652 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to 653 // control the area where we can allow a safepoint. After we exit the safepoint area we can 654 // check to see if the handler we are going to return is now in a nmethod that has 655 // been deoptimized. If that is the case we return the deopt blob 656 // unpack_with_exception entry instead. This makes life for the exception blob easier 657 // because making that same check and diverting is painful from assembly language. 658 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm)) 659 // Reset method handle flag. 660 current->set_is_method_handle_return(false); 661 662 Handle exception(current, ex); 663 664 // This function is called when we are about to throw an exception. Therefore, 665 // we have to poll the stack watermark barrier to make sure that not yet safe 666 // stack frames are made safe before returning into them. 667 if (current->last_frame().cb() == Runtime1::blob_for(C1StubId::handle_exception_from_callee_id)) { 668 // The C1StubId::handle_exception_from_callee_id handler is invoked after the 669 // frame has been unwound. It instead builds its own stub frame, to call the 670 // runtime. But the throwing frame has already been unwound here. 671 StackWatermarkSet::after_unwind(current); 672 } 673 674 nm = CodeCache::find_nmethod(pc); 675 assert(nm != nullptr, "this is not an nmethod"); 676 // Adjust the pc as needed/ 677 if (nm->is_deopt_pc(pc)) { 678 RegisterMap map(current, 679 RegisterMap::UpdateMap::skip, 680 RegisterMap::ProcessFrames::include, 681 RegisterMap::WalkContinuation::skip); 682 frame exception_frame = current->last_frame().sender(&map); 683 // if the frame isn't deopted then pc must not correspond to the caller of last_frame 684 assert(exception_frame.is_deoptimized_frame(), "must be deopted"); 685 pc = exception_frame.pc(); 686 } 687 assert(exception.not_null(), "null exceptions should be handled by throw_exception"); 688 // Check that exception is a subclass of Throwable 689 assert(exception->is_a(vmClasses::Throwable_klass()), 690 "Exception not subclass of Throwable"); 691 692 // debugging support 693 // tracing 694 if (log_is_enabled(Info, exceptions)) { 695 ResourceMark rm; // print_value_string 696 stringStream tempst; 697 assert(nm->method() != nullptr, "Unexpected null method()"); 698 tempst.print("C1 compiled method <%s>\n" 699 " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT, 700 nm->method()->print_value_string(), p2i(pc), p2i(current)); 701 Exceptions::log_exception(exception, tempst.freeze()); 702 } 703 // for AbortVMOnException flag 704 Exceptions::debug_check_abort(exception); 705 706 // Check the stack guard pages and re-enable them if necessary and there is 707 // enough space on the stack to do so. Use fast exceptions only if the guard 708 // pages are enabled. 709 bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed(); 710 711 if (JvmtiExport::can_post_on_exceptions()) { 712 // To ensure correct notification of exception catches and throws 713 // we have to deoptimize here. If we attempted to notify the 714 // catches and throws during this exception lookup it's possible 715 // we could deoptimize on the way out of the VM and end back in 716 // the interpreter at the throw site. This would result in double 717 // notifications since the interpreter would also notify about 718 // these same catches and throws as it unwound the frame. 719 720 RegisterMap reg_map(current, 721 RegisterMap::UpdateMap::include, 722 RegisterMap::ProcessFrames::include, 723 RegisterMap::WalkContinuation::skip); 724 frame stub_frame = current->last_frame(); 725 frame caller_frame = stub_frame.sender(®_map); 726 727 // We don't really want to deoptimize the nmethod itself since we 728 // can actually continue in the exception handler ourselves but I 729 // don't see an easy way to have the desired effect. 730 Deoptimization::deoptimize_frame(current, caller_frame.id()); 731 assert(caller_is_deopted(current), "Must be deoptimized"); 732 733 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 734 } 735 736 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions 737 if (guard_pages_enabled) { 738 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); 739 if (fast_continuation != nullptr) { 740 // Set flag if return address is a method handle call site. 741 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 742 return fast_continuation; 743 } 744 } 745 746 // If the stack guard pages are enabled, check whether there is a handler in 747 // the current method. Otherwise (guard pages disabled), force an unwind and 748 // skip the exception cache update (i.e., just leave continuation as null). 749 address continuation = nullptr; 750 if (guard_pages_enabled) { 751 752 // New exception handling mechanism can support inlined methods 753 // with exception handlers since the mappings are from PC to PC 754 755 // Clear out the exception oop and pc since looking up an 756 // exception handler can cause class loading, which might throw an 757 // exception and those fields are expected to be clear during 758 // normal bytecode execution. 759 current->clear_exception_oop_and_pc(); 760 761 bool recursive_exception = false; 762 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception); 763 // If an exception was thrown during exception dispatch, the exception oop may have changed 764 current->set_exception_oop(exception()); 765 current->set_exception_pc(pc); 766 767 // the exception cache is used only by non-implicit exceptions 768 // Update the exception cache only when there didn't happen 769 // another exception during the computation of the compiled 770 // exception handler. Checking for exception oop equality is not 771 // sufficient because some exceptions are pre-allocated and reused. 772 if (continuation != nullptr && !recursive_exception) { 773 nm->add_handler_for_exception_and_pc(exception, pc, continuation); 774 } 775 } 776 777 current->set_vm_result(exception()); 778 // Set flag if return address is a method handle call site. 779 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 780 781 if (log_is_enabled(Info, exceptions)) { 782 ResourceMark rm; 783 log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT 784 " for exception thrown at PC " PTR_FORMAT, 785 p2i(current), p2i(continuation), p2i(pc)); 786 } 787 788 return continuation; 789 JRT_END 790 791 // Enter this method from compiled code only if there is a Java exception handler 792 // in the method handling the exception. 793 // We are entering here from exception stub. We don't do a normal VM transition here. 794 // We do it in a helper. This is so we can check to see if the nmethod we have just 795 // searched for an exception handler has been deoptimized in the meantime. 796 address Runtime1::exception_handler_for_pc(JavaThread* current) { 797 oop exception = current->exception_oop(); 798 address pc = current->exception_pc(); 799 // Still in Java mode 800 DEBUG_ONLY(NoHandleMark nhm); 801 nmethod* nm = nullptr; 802 address continuation = nullptr; 803 { 804 // Enter VM mode by calling the helper 805 ResetNoHandleMark rnhm; 806 continuation = exception_handler_for_pc_helper(current, exception, pc, nm); 807 } 808 // Back in JAVA, use no oops DON'T safepoint 809 810 // Now check to see if the nmethod we were called from is now deoptimized. 811 // If so we must return to the deopt blob and deoptimize the nmethod 812 if (nm != nullptr && caller_is_deopted(current)) { 813 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 814 } 815 816 assert(continuation != nullptr, "no handler found"); 817 return continuation; 818 } 819 820 821 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a)) 822 #ifndef PRODUCT 823 if (PrintC1Statistics) { 824 _throw_range_check_exception_count++; 825 } 826 #endif 827 const int len = 35; 828 assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message."); 829 char message[2 * jintAsStringSize + len]; 830 os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length()); 831 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message); 832 JRT_END 833 834 835 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index)) 836 #ifndef PRODUCT 837 if (PrintC1Statistics) { 838 _throw_index_exception_count++; 839 } 840 #endif 841 char message[16]; 842 os::snprintf_checked(message, sizeof(message), "%d", index); 843 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message); 844 JRT_END 845 846 847 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current)) 848 #ifndef PRODUCT 849 if (PrintC1Statistics) { 850 _throw_div0_exception_count++; 851 } 852 #endif 853 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 854 JRT_END 855 856 857 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current)) 858 #ifndef PRODUCT 859 if (PrintC1Statistics) { 860 _throw_null_pointer_exception_count++; 861 } 862 #endif 863 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException()); 864 JRT_END 865 866 867 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object)) 868 #ifndef PRODUCT 869 if (PrintC1Statistics) { 870 _throw_class_cast_exception_count++; 871 } 872 #endif 873 ResourceMark rm(current); 874 char* message = SharedRuntime::generate_class_cast_message(current, object->klass()); 875 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message); 876 JRT_END 877 878 879 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current)) 880 #ifndef PRODUCT 881 if (PrintC1Statistics) { 882 _throw_incompatible_class_change_error_count++; 883 } 884 #endif 885 ResourceMark rm(current); 886 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError()); 887 JRT_END 888 889 890 JRT_ENTRY(void, Runtime1::throw_illegal_monitor_state_exception(JavaThread* current)) 891 NOT_PRODUCT(_throw_illegal_monitor_state_exception_count++;) 892 ResourceMark rm(current); 893 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IllegalMonitorStateException()); 894 JRT_END 895 896 JRT_ENTRY(void, Runtime1::throw_identity_exception(JavaThread* current, oopDesc* object)) 897 NOT_PRODUCT(_throw_identity_exception_count++;) 898 ResourceMark rm(current); 899 char* message = SharedRuntime::generate_identity_exception_message(current, object->klass()); 900 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IdentityException(), message); 901 JRT_END 902 903 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock)) 904 #ifndef PRODUCT 905 if (PrintC1Statistics) { 906 _monitorenter_slowcase_cnt++; 907 } 908 #endif 909 if (LockingMode == LM_MONITOR) { 910 lock->set_obj(obj); 911 } 912 assert(obj == lock->obj(), "must match"); 913 SharedRuntime::monitor_enter_helper(obj, lock->lock(), current); 914 JRT_END 915 916 917 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock)) 918 assert(current == JavaThread::current(), "pre-condition"); 919 #ifndef PRODUCT 920 if (PrintC1Statistics) { 921 _monitorexit_slowcase_cnt++; 922 } 923 #endif 924 assert(current->last_Java_sp(), "last_Java_sp must be set"); 925 oop obj = lock->obj(); 926 assert(oopDesc::is_oop(obj), "must be null or an object"); 927 SharedRuntime::monitor_exit_helper(obj, lock->lock(), current); 928 JRT_END 929 930 // Cf. OptoRuntime::deoptimize_caller_frame 931 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request)) 932 // Called from within the owner thread, so no need for safepoint 933 RegisterMap reg_map(current, 934 RegisterMap::UpdateMap::skip, 935 RegisterMap::ProcessFrames::include, 936 RegisterMap::WalkContinuation::skip); 937 frame stub_frame = current->last_frame(); 938 assert(stub_frame.is_runtime_frame(), "Sanity check"); 939 frame caller_frame = stub_frame.sender(®_map); 940 nmethod* nm = caller_frame.cb()->as_nmethod_or_null(); 941 assert(nm != nullptr, "Sanity check"); 942 methodHandle method(current, nm->method()); 943 assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same"); 944 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); 945 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); 946 947 if (action == Deoptimization::Action_make_not_entrant) { 948 if (nm->make_not_entrant()) { 949 if (reason == Deoptimization::Reason_tenured) { 950 MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/); 951 if (trap_mdo != nullptr) { 952 trap_mdo->inc_tenure_traps(); 953 } 954 } 955 } 956 } 957 958 // Deoptimize the caller frame. 959 Deoptimization::deoptimize_frame(current, caller_frame.id()); 960 // Return to the now deoptimized frame. 961 JRT_END 962 963 964 #ifndef DEOPTIMIZE_WHEN_PATCHING 965 966 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) { 967 Bytecode_field field_access(caller, bci); 968 // This can be static or non-static field access 969 Bytecodes::Code code = field_access.code(); 970 971 // We must load class, initialize class and resolve the field 972 fieldDescriptor result; // initialize class if needed 973 constantPoolHandle constants(THREAD, caller->constants()); 974 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL); 975 return result.field_holder(); 976 } 977 978 979 // 980 // This routine patches sites where a class wasn't loaded or 981 // initialized at the time the code was generated. It handles 982 // references to classes, fields and forcing of initialization. Most 983 // of the cases are straightforward and involving simply forcing 984 // resolution of a class, rewriting the instruction stream with the 985 // needed constant and replacing the call in this function with the 986 // patched code. The case for static field is more complicated since 987 // the thread which is in the process of initializing a class can 988 // access it's static fields but other threads can't so the code 989 // either has to deoptimize when this case is detected or execute a 990 // check that the current thread is the initializing thread. The 991 // current 992 // 993 // Patches basically look like this: 994 // 995 // 996 // patch_site: jmp patch stub ;; will be patched 997 // continue: ... 998 // ... 999 // ... 1000 // ... 1001 // 1002 // They have a stub which looks like this: 1003 // 1004 // ;; patch body 1005 // movl <const>, reg (for class constants) 1006 // <or> movl [reg1 + <const>], reg (for field offsets) 1007 // <or> movl reg, [reg1 + <const>] (for field offsets) 1008 // <being_init offset> <bytes to copy> <bytes to skip> 1009 // patch_stub: call Runtime1::patch_code (through a runtime stub) 1010 // jmp patch_site 1011 // 1012 // 1013 // A normal patch is done by rewriting the patch body, usually a move, 1014 // and then copying it into place over top of the jmp instruction 1015 // being careful to flush caches and doing it in an MP-safe way. The 1016 // constants following the patch body are used to find various pieces 1017 // of the patch relative to the call site for Runtime1::patch_code. 1018 // The case for getstatic and putstatic is more complicated because 1019 // getstatic and putstatic have special semantics when executing while 1020 // the class is being initialized. getstatic/putstatic on a class 1021 // which is being_initialized may be executed by the initializing 1022 // thread but other threads have to block when they execute it. This 1023 // is accomplished in compiled code by executing a test of the current 1024 // thread against the initializing thread of the class. It's emitted 1025 // as boilerplate in their stub which allows the patched code to be 1026 // executed before it's copied back into the main body of the nmethod. 1027 // 1028 // being_init: get_thread(<tmp reg> 1029 // cmpl [reg1 + <init_thread_offset>], <tmp reg> 1030 // jne patch_stub 1031 // movl [reg1 + <const>], reg (for field offsets) <or> 1032 // movl reg, [reg1 + <const>] (for field offsets) 1033 // jmp continue 1034 // <being_init offset> <bytes to copy> <bytes to skip> 1035 // patch_stub: jmp Runtim1::patch_code (through a runtime stub) 1036 // jmp patch_site 1037 // 1038 // If the class is being initialized the patch body is rewritten and 1039 // the patch site is rewritten to jump to being_init, instead of 1040 // patch_stub. Whenever this code is executed it checks the current 1041 // thread against the initializing thread so other threads will enter 1042 // the runtime and end up blocked waiting the class to finish 1043 // initializing inside the calls to resolve_field below. The 1044 // initializing class will continue on it's way. Once the class is 1045 // fully_initialized, the intializing_thread of the class becomes 1046 // null, so the next thread to execute this code will fail the test, 1047 // call into patch_code and complete the patching process by copying 1048 // the patch body back into the main part of the nmethod and resume 1049 // executing. 1050 1051 // NB: 1052 // 1053 // Patchable instruction sequences inherently exhibit race conditions, 1054 // where thread A is patching an instruction at the same time thread B 1055 // is executing it. The algorithms we use ensure that any observation 1056 // that B can make on any intermediate states during A's patching will 1057 // always end up with a correct outcome. This is easiest if there are 1058 // few or no intermediate states. (Some inline caches have two 1059 // related instructions that must be patched in tandem. For those, 1060 // intermediate states seem to be unavoidable, but we will get the 1061 // right answer from all possible observation orders.) 1062 // 1063 // When patching the entry instruction at the head of a method, or a 1064 // linkable call instruction inside of a method, we try very hard to 1065 // use a patch sequence which executes as a single memory transaction. 1066 // This means, in practice, that when thread A patches an instruction, 1067 // it should patch a 32-bit or 64-bit word that somehow overlaps the 1068 // instruction or is contained in it. We believe that memory hardware 1069 // will never break up such a word write, if it is naturally aligned 1070 // for the word being written. We also know that some CPUs work very 1071 // hard to create atomic updates even of naturally unaligned words, 1072 // but we don't want to bet the farm on this always working. 1073 // 1074 // Therefore, if there is any chance of a race condition, we try to 1075 // patch only naturally aligned words, as single, full-word writes. 1076 1077 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, C1StubId stub_id )) 1078 #ifndef PRODUCT 1079 if (PrintC1Statistics) { 1080 _patch_code_slowcase_cnt++; 1081 } 1082 #endif 1083 1084 ResourceMark rm(current); 1085 RegisterMap reg_map(current, 1086 RegisterMap::UpdateMap::skip, 1087 RegisterMap::ProcessFrames::include, 1088 RegisterMap::WalkContinuation::skip); 1089 frame runtime_frame = current->last_frame(); 1090 frame caller_frame = runtime_frame.sender(®_map); 1091 1092 // last java frame on stack 1093 vframeStream vfst(current, true); 1094 assert(!vfst.at_end(), "Java frame must exist"); 1095 1096 methodHandle caller_method(current, vfst.method()); 1097 // Note that caller_method->code() may not be same as caller_code because of OSR's 1098 // Note also that in the presence of inlining it is not guaranteed 1099 // that caller_method() == caller_code->method() 1100 1101 int bci = vfst.bci(); 1102 Bytecodes::Code code = caller_method()->java_code_at(bci); 1103 1104 // this is used by assertions in the access_field_patching_id 1105 BasicType patch_field_type = T_ILLEGAL; 1106 bool deoptimize_for_volatile = false; 1107 bool deoptimize_for_atomic = false; 1108 bool deoptimize_for_null_free = false; 1109 bool deoptimize_for_flat = false; 1110 int patch_field_offset = -1; 1111 Klass* init_klass = nullptr; // klass needed by load_klass_patching code 1112 Klass* load_klass = nullptr; // klass needed by load_klass_patching code 1113 Handle mirror(current, nullptr); // oop needed by load_mirror_patching code 1114 Handle appendix(current, nullptr); // oop needed by appendix_patching code 1115 bool load_klass_or_mirror_patch_id = 1116 (stub_id == C1StubId::load_klass_patching_id || stub_id == C1StubId::load_mirror_patching_id); 1117 1118 if (stub_id == C1StubId::access_field_patching_id) { 1119 1120 Bytecode_field field_access(caller_method, bci); 1121 fieldDescriptor result; // initialize class if needed 1122 Bytecodes::Code code = field_access.code(); 1123 constantPoolHandle constants(current, caller_method->constants()); 1124 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK); 1125 patch_field_offset = result.offset(); 1126 1127 // If we're patching a field which is volatile then at compile it 1128 // must not have been know to be volatile, so the generated code 1129 // isn't correct for a volatile reference. The nmethod has to be 1130 // deoptimized so that the code can be regenerated correctly. 1131 // This check is only needed for access_field_patching since this 1132 // is the path for patching field offsets. load_klass is only 1133 // used for patching references to oops which don't need special 1134 // handling in the volatile case. 1135 1136 deoptimize_for_volatile = result.access_flags().is_volatile(); 1137 1138 // If we are patching a field which should be atomic, then 1139 // the generated code is not correct either, force deoptimizing. 1140 // We need to only cover T_LONG and T_DOUBLE fields, as we can 1141 // break access atomicity only for them. 1142 1143 // Strictly speaking, the deoptimization on 64-bit platforms 1144 // is unnecessary, and T_LONG stores on 32-bit platforms need 1145 // to be handled by special patching code when AlwaysAtomicAccesses 1146 // becomes product feature. At this point, we are still going 1147 // for the deoptimization for consistency against volatile 1148 // accesses. 1149 1150 patch_field_type = result.field_type(); 1151 deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)); 1152 1153 // The field we are patching is null-free. Deoptimize and regenerate 1154 // the compiled code if we patch a putfield/putstatic because it 1155 // does not contain the required null check. 1156 deoptimize_for_null_free = result.is_null_free_inline_type() && (field_access.is_putfield() || field_access.is_putstatic()); 1157 1158 // The field we are patching is flat. Deoptimize and regenerate 1159 // the compiled code which can't handle the layout of the flat 1160 // field because it was unknown at compile time. 1161 deoptimize_for_flat = result.is_flat(); 1162 1163 } else if (load_klass_or_mirror_patch_id) { 1164 Klass* k = nullptr; 1165 switch (code) { 1166 case Bytecodes::_putstatic: 1167 case Bytecodes::_getstatic: 1168 { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK); 1169 init_klass = klass; 1170 mirror = Handle(current, klass->java_mirror()); 1171 } 1172 break; 1173 case Bytecodes::_new: 1174 { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci)); 1175 k = caller_method->constants()->klass_at(bnew.index(), CHECK); 1176 } 1177 break; 1178 case Bytecodes::_multianewarray: 1179 { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci)); 1180 k = caller_method->constants()->klass_at(mna.index(), CHECK); 1181 } 1182 break; 1183 case Bytecodes::_instanceof: 1184 { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci)); 1185 k = caller_method->constants()->klass_at(io.index(), CHECK); 1186 } 1187 break; 1188 case Bytecodes::_checkcast: 1189 { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci)); 1190 k = caller_method->constants()->klass_at(cc.index(), CHECK); 1191 } 1192 break; 1193 case Bytecodes::_anewarray: 1194 { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci)); 1195 Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK); 1196 k = ek->array_klass(CHECK); 1197 } 1198 break; 1199 case Bytecodes::_ldc: 1200 case Bytecodes::_ldc_w: 1201 case Bytecodes::_ldc2_w: 1202 { 1203 Bytecode_loadconstant cc(caller_method, bci); 1204 oop m = cc.resolve_constant(CHECK); 1205 mirror = Handle(current, m); 1206 } 1207 break; 1208 default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id"); 1209 } 1210 load_klass = k; 1211 } else if (stub_id == C1StubId::load_appendix_patching_id) { 1212 Bytecode_invoke bytecode(caller_method, bci); 1213 Bytecodes::Code bc = bytecode.invoke_code(); 1214 1215 CallInfo info; 1216 constantPoolHandle pool(current, caller_method->constants()); 1217 int index = bytecode.index(); 1218 LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK); 1219 switch (bc) { 1220 case Bytecodes::_invokehandle: { 1221 ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info); 1222 appendix = Handle(current, pool->cache()->appendix_if_resolved(entry)); 1223 break; 1224 } 1225 case Bytecodes::_invokedynamic: { 1226 appendix = Handle(current, pool->cache()->set_dynamic_call(info, index)); 1227 break; 1228 } 1229 default: fatal("unexpected bytecode for load_appendix_patching_id"); 1230 } 1231 } else { 1232 ShouldNotReachHere(); 1233 } 1234 1235 if (deoptimize_for_volatile || deoptimize_for_atomic || deoptimize_for_null_free || deoptimize_for_flat) { 1236 // At compile time we assumed the field wasn't volatile/atomic but after 1237 // loading it turns out it was volatile/atomic so we have to throw the 1238 // compiled code out and let it be regenerated. 1239 if (TracePatching) { 1240 if (deoptimize_for_volatile) { 1241 tty->print_cr("Deoptimizing for patching volatile field reference"); 1242 } 1243 if (deoptimize_for_atomic) { 1244 tty->print_cr("Deoptimizing for patching atomic field reference"); 1245 } 1246 if (deoptimize_for_null_free) { 1247 tty->print_cr("Deoptimizing for patching null-free field reference"); 1248 } 1249 if (deoptimize_for_flat) { 1250 tty->print_cr("Deoptimizing for patching flat field reference"); 1251 } 1252 } 1253 1254 // It's possible the nmethod was invalidated in the last 1255 // safepoint, but if it's still alive then make it not_entrant. 1256 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1257 if (nm != nullptr) { 1258 nm->make_not_entrant(); 1259 } 1260 1261 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1262 1263 // Return to the now deoptimized frame. 1264 } 1265 1266 // Now copy code back 1267 1268 { 1269 MutexLocker ml_patch (current, Patching_lock, Mutex::_no_safepoint_check_flag); 1270 // 1271 // Deoptimization may have happened while we waited for the lock. 1272 // In that case we don't bother to do any patching we just return 1273 // and let the deopt happen 1274 if (!caller_is_deopted(current)) { 1275 NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc()); 1276 address instr_pc = jump->jump_destination(); 1277 NativeInstruction* ni = nativeInstruction_at(instr_pc); 1278 if (ni->is_jump() ) { 1279 // the jump has not been patched yet 1280 // The jump destination is slow case and therefore not part of the stubs 1281 // (stubs are only for StaticCalls) 1282 1283 // format of buffer 1284 // .... 1285 // instr byte 0 <-- copy_buff 1286 // instr byte 1 1287 // .. 1288 // instr byte n-1 1289 // n 1290 // .... <-- call destination 1291 1292 address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset(); 1293 unsigned char* byte_count = (unsigned char*) (stub_location - 1); 1294 unsigned char* byte_skip = (unsigned char*) (stub_location - 2); 1295 unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3); 1296 address copy_buff = stub_location - *byte_skip - *byte_count; 1297 address being_initialized_entry = stub_location - *being_initialized_entry_offset; 1298 if (TracePatching) { 1299 ttyLocker ttyl; 1300 tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT " (%s)", Bytecodes::name(code), bci, 1301 p2i(instr_pc), (stub_id == C1StubId::access_field_patching_id) ? "field" : "klass"); 1302 nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc()); 1303 assert(caller_code != nullptr, "nmethod not found"); 1304 1305 // NOTE we use pc() not original_pc() because we already know they are 1306 // identical otherwise we'd have never entered this block of code 1307 1308 const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc()); 1309 assert(map != nullptr, "null check"); 1310 map->print(); 1311 tty->cr(); 1312 1313 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1314 } 1315 // depending on the code below, do_patch says whether to copy the patch body back into the nmethod 1316 bool do_patch = true; 1317 if (stub_id == C1StubId::access_field_patching_id) { 1318 // The offset may not be correct if the class was not loaded at code generation time. 1319 // Set it now. 1320 NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff); 1321 assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type"); 1322 assert(patch_field_offset >= 0, "illegal offset"); 1323 n_move->add_offset_in_bytes(patch_field_offset); 1324 } else if (load_klass_or_mirror_patch_id) { 1325 // If a getstatic or putstatic is referencing a klass which 1326 // isn't fully initialized, the patch body isn't copied into 1327 // place until initialization is complete. In this case the 1328 // patch site is setup so that any threads besides the 1329 // initializing thread are forced to come into the VM and 1330 // block. 1331 do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) || 1332 InstanceKlass::cast(init_klass)->is_initialized(); 1333 NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc); 1334 if (jump->jump_destination() == being_initialized_entry) { 1335 assert(do_patch == true, "initialization must be complete at this point"); 1336 } else { 1337 // patch the instruction <move reg, klass> 1338 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1339 1340 assert(n_copy->data() == 0 || 1341 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1342 "illegal init value"); 1343 if (stub_id == C1StubId::load_klass_patching_id) { 1344 assert(load_klass != nullptr, "klass not set"); 1345 n_copy->set_data((intx) (load_klass)); 1346 } else { 1347 // Don't need a G1 pre-barrier here since we assert above that data isn't an oop. 1348 n_copy->set_data(cast_from_oop<intx>(mirror())); 1349 } 1350 1351 if (TracePatching) { 1352 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1353 } 1354 } 1355 } else if (stub_id == C1StubId::load_appendix_patching_id) { 1356 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1357 assert(n_copy->data() == 0 || 1358 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1359 "illegal init value"); 1360 n_copy->set_data(cast_from_oop<intx>(appendix())); 1361 1362 if (TracePatching) { 1363 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1364 } 1365 } else { 1366 ShouldNotReachHere(); 1367 } 1368 1369 if (do_patch) { 1370 // replace instructions 1371 // first replace the tail, then the call 1372 #ifdef ARM 1373 if((load_klass_or_mirror_patch_id || 1374 stub_id == C1StubId::load_appendix_patching_id) && 1375 nativeMovConstReg_at(copy_buff)->is_pc_relative()) { 1376 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1377 address addr = nullptr; 1378 assert(nm != nullptr, "invalid nmethod_pc"); 1379 RelocIterator mds(nm, copy_buff, copy_buff + 1); 1380 while (mds.next()) { 1381 if (mds.type() == relocInfo::oop_type) { 1382 assert(stub_id == C1StubId::load_mirror_patching_id || 1383 stub_id == C1StubId::load_appendix_patching_id, "wrong stub id"); 1384 oop_Relocation* r = mds.oop_reloc(); 1385 addr = (address)r->oop_addr(); 1386 break; 1387 } else if (mds.type() == relocInfo::metadata_type) { 1388 assert(stub_id == C1StubId::load_klass_patching_id, "wrong stub id"); 1389 metadata_Relocation* r = mds.metadata_reloc(); 1390 addr = (address)r->metadata_addr(); 1391 break; 1392 } 1393 } 1394 assert(addr != nullptr, "metadata relocation must exist"); 1395 copy_buff -= *byte_count; 1396 NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff); 1397 n_copy2->set_pc_relative_offset(addr, instr_pc); 1398 } 1399 #endif 1400 1401 for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) { 1402 address ptr = copy_buff + i; 1403 int a_byte = (*ptr) & 0xFF; 1404 address dst = instr_pc + i; 1405 *(unsigned char*)dst = (unsigned char) a_byte; 1406 } 1407 ICache::invalidate_range(instr_pc, *byte_count); 1408 NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff); 1409 1410 if (load_klass_or_mirror_patch_id || 1411 stub_id == C1StubId::load_appendix_patching_id) { 1412 relocInfo::relocType rtype = 1413 (stub_id == C1StubId::load_klass_patching_id) ? 1414 relocInfo::metadata_type : 1415 relocInfo::oop_type; 1416 // update relocInfo to metadata 1417 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1418 assert(nm != nullptr, "invalid nmethod_pc"); 1419 1420 // The old patch site is now a move instruction so update 1421 // the reloc info so that it will get updated during 1422 // future GCs. 1423 RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1)); 1424 relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc, 1425 relocInfo::none, rtype); 1426 } 1427 1428 } else { 1429 ICache::invalidate_range(copy_buff, *byte_count); 1430 NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry); 1431 } 1432 } 1433 } 1434 } 1435 1436 // If we are patching in a non-perm oop, make sure the nmethod 1437 // is on the right list. 1438 { 1439 MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag); 1440 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1441 guarantee(nm != nullptr, "only nmethods can contain non-perm oops"); 1442 1443 // Since we've patched some oops in the nmethod, 1444 // (re)register it with the heap. 1445 Universe::heap()->register_nmethod(nm); 1446 } 1447 JRT_END 1448 1449 #else // DEOPTIMIZE_WHEN_PATCHING 1450 1451 static bool is_patching_needed(JavaThread* current, C1StubId stub_id) { 1452 if (stub_id == C1StubId::load_klass_patching_id || 1453 stub_id == C1StubId::load_mirror_patching_id) { 1454 // last java frame on stack 1455 vframeStream vfst(current, true); 1456 assert(!vfst.at_end(), "Java frame must exist"); 1457 1458 methodHandle caller_method(current, vfst.method()); 1459 int bci = vfst.bci(); 1460 Bytecodes::Code code = caller_method()->java_code_at(bci); 1461 1462 switch (code) { 1463 case Bytecodes::_new: 1464 case Bytecodes::_anewarray: 1465 case Bytecodes::_multianewarray: 1466 case Bytecodes::_instanceof: 1467 case Bytecodes::_checkcast: { 1468 Bytecode bc(caller_method(), caller_method->bcp_from(bci)); 1469 constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code)); 1470 if (tag.is_unresolved_klass_in_error()) { 1471 return false; // throws resolution error 1472 } 1473 break; 1474 } 1475 1476 default: break; 1477 } 1478 } 1479 return true; 1480 } 1481 1482 void Runtime1::patch_code(JavaThread* current, C1StubId stub_id) { 1483 #ifndef PRODUCT 1484 if (PrintC1Statistics) { 1485 _patch_code_slowcase_cnt++; 1486 } 1487 #endif 1488 1489 // Enable WXWrite: the function is called by c1 stub as a runtime function 1490 // (see another implementation above). 1491 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 1492 1493 if (TracePatching) { 1494 tty->print_cr("Deoptimizing because patch is needed"); 1495 } 1496 1497 RegisterMap reg_map(current, 1498 RegisterMap::UpdateMap::skip, 1499 RegisterMap::ProcessFrames::include, 1500 RegisterMap::WalkContinuation::skip); 1501 1502 frame runtime_frame = current->last_frame(); 1503 frame caller_frame = runtime_frame.sender(®_map); 1504 assert(caller_frame.is_compiled_frame(), "Wrong frame type"); 1505 1506 if (is_patching_needed(current, stub_id)) { 1507 // Make sure the nmethod is invalidated, i.e. made not entrant. 1508 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1509 if (nm != nullptr) { 1510 nm->make_not_entrant(); 1511 } 1512 } 1513 1514 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1515 // Return to the now deoptimized frame. 1516 postcond(caller_is_deopted(current)); 1517 } 1518 1519 #endif // DEOPTIMIZE_WHEN_PATCHING 1520 1521 // Entry point for compiled code. We want to patch a nmethod. 1522 // We don't do a normal VM transition here because we want to 1523 // know after the patching is complete and any safepoint(s) are taken 1524 // if the calling nmethod was deoptimized. We do this by calling a 1525 // helper method which does the normal VM transition and when it 1526 // completes we can check for deoptimization. This simplifies the 1527 // assembly code in the cpu directories. 1528 // 1529 int Runtime1::move_klass_patching(JavaThread* current) { 1530 // 1531 // NOTE: we are still in Java 1532 // 1533 debug_only(NoHandleMark nhm;) 1534 { 1535 // Enter VM mode 1536 ResetNoHandleMark rnhm; 1537 patch_code(current, C1StubId::load_klass_patching_id); 1538 } 1539 // Back in JAVA, use no oops DON'T safepoint 1540 1541 // Return true if calling code is deoptimized 1542 1543 return caller_is_deopted(current); 1544 } 1545 1546 int Runtime1::move_mirror_patching(JavaThread* current) { 1547 // 1548 // NOTE: we are still in Java 1549 // 1550 debug_only(NoHandleMark nhm;) 1551 { 1552 // Enter VM mode 1553 ResetNoHandleMark rnhm; 1554 patch_code(current, C1StubId::load_mirror_patching_id); 1555 } 1556 // Back in JAVA, use no oops DON'T safepoint 1557 1558 // Return true if calling code is deoptimized 1559 1560 return caller_is_deopted(current); 1561 } 1562 1563 int Runtime1::move_appendix_patching(JavaThread* current) { 1564 // 1565 // NOTE: we are still in Java 1566 // 1567 debug_only(NoHandleMark nhm;) 1568 { 1569 // Enter VM mode 1570 ResetNoHandleMark rnhm; 1571 patch_code(current, C1StubId::load_appendix_patching_id); 1572 } 1573 // Back in JAVA, use no oops DON'T safepoint 1574 1575 // Return true if calling code is deoptimized 1576 1577 return caller_is_deopted(current); 1578 } 1579 1580 // Entry point for compiled code. We want to patch a nmethod. 1581 // We don't do a normal VM transition here because we want to 1582 // know after the patching is complete and any safepoint(s) are taken 1583 // if the calling nmethod was deoptimized. We do this by calling a 1584 // helper method which does the normal VM transition and when it 1585 // completes we can check for deoptimization. This simplifies the 1586 // assembly code in the cpu directories. 1587 // 1588 int Runtime1::access_field_patching(JavaThread* current) { 1589 // 1590 // NOTE: we are still in Java 1591 // 1592 // Handles created in this function will be deleted by the 1593 // HandleMarkCleaner in the transition to the VM. 1594 NoHandleMark nhm; 1595 { 1596 // Enter VM mode 1597 ResetNoHandleMark rnhm; 1598 patch_code(current, C1StubId::access_field_patching_id); 1599 } 1600 // Back in JAVA, use no oops DON'T safepoint 1601 1602 // Return true if calling code is deoptimized 1603 1604 return caller_is_deopted(current); 1605 } 1606 1607 1608 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id)) 1609 // for now we just print out the block id 1610 tty->print("%d ", block_id); 1611 JRT_END 1612 1613 1614 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj)) 1615 // had to return int instead of bool, otherwise there may be a mismatch 1616 // between the C calling convention and the Java one. 1617 // e.g., on x86, GCC may clear only %al when returning a bool false, but 1618 // JVM takes the whole %eax as the return value, which may misinterpret 1619 // the return value as a boolean true. 1620 1621 assert(mirror != nullptr, "should null-check on mirror before calling"); 1622 Klass* k = java_lang_Class::as_Klass(mirror); 1623 return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0; 1624 JRT_END 1625 1626 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current)) 1627 ResourceMark rm; 1628 1629 RegisterMap reg_map(current, 1630 RegisterMap::UpdateMap::skip, 1631 RegisterMap::ProcessFrames::include, 1632 RegisterMap::WalkContinuation::skip); 1633 frame runtime_frame = current->last_frame(); 1634 frame caller_frame = runtime_frame.sender(®_map); 1635 1636 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1637 assert (nm != nullptr, "no more nmethod?"); 1638 nm->make_not_entrant(); 1639 1640 methodHandle m(current, nm->method()); 1641 MethodData* mdo = m->method_data(); 1642 1643 if (mdo == nullptr && !HAS_PENDING_EXCEPTION) { 1644 // Build an MDO. Ignore errors like OutOfMemory; 1645 // that simply means we won't have an MDO to update. 1646 Method::build_profiling_method_data(m, THREAD); 1647 if (HAS_PENDING_EXCEPTION) { 1648 // Only metaspace OOM is expected. No Java code executed. 1649 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1650 CLEAR_PENDING_EXCEPTION; 1651 } 1652 mdo = m->method_data(); 1653 } 1654 1655 if (mdo != nullptr) { 1656 mdo->inc_trap_count(Deoptimization::Reason_none); 1657 } 1658 1659 if (TracePredicateFailedTraps) { 1660 stringStream ss1, ss2; 1661 vframeStream vfst(current); 1662 Method* inlinee = vfst.method(); 1663 inlinee->print_short_name(&ss1); 1664 m->print_short_name(&ss2); 1665 tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc())); 1666 } 1667 1668 1669 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1670 1671 JRT_END 1672 1673 // Check exception if AbortVMOnException flag set 1674 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex)) 1675 ResourceMark rm; 1676 const char* message = nullptr; 1677 if (ex->is_a(vmClasses::Throwable_klass())) { 1678 oop msg = java_lang_Throwable::message(ex); 1679 if (msg != nullptr) { 1680 message = java_lang_String::as_utf8_string(msg); 1681 } 1682 } 1683 Exceptions::debug_check_abort(ex->klass()->external_name(), message); 1684 JRT_END 1685 1686 #ifndef PRODUCT 1687 void Runtime1::print_statistics() { 1688 tty->print_cr("C1 Runtime statistics:"); 1689 tty->print_cr(" _resolve_invoke_virtual_cnt: %u", SharedRuntime::_resolve_virtual_ctr); 1690 tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr); 1691 tty->print_cr(" _resolve_invoke_static_cnt: %u", SharedRuntime::_resolve_static_ctr); 1692 tty->print_cr(" _handle_wrong_method_cnt: %u", SharedRuntime::_wrong_method_ctr); 1693 tty->print_cr(" _ic_miss_cnt: %u", SharedRuntime::_ic_miss_ctr); 1694 tty->print_cr(" _generic_arraycopystub_cnt: %u", _generic_arraycopystub_cnt); 1695 tty->print_cr(" _byte_arraycopy_cnt: %u", _byte_arraycopy_stub_cnt); 1696 tty->print_cr(" _short_arraycopy_cnt: %u", _short_arraycopy_stub_cnt); 1697 tty->print_cr(" _int_arraycopy_cnt: %u", _int_arraycopy_stub_cnt); 1698 tty->print_cr(" _long_arraycopy_cnt: %u", _long_arraycopy_stub_cnt); 1699 tty->print_cr(" _oop_arraycopy_cnt: %u", _oop_arraycopy_stub_cnt); 1700 tty->print_cr(" _arraycopy_slowcase_cnt: %u", _arraycopy_slowcase_cnt); 1701 tty->print_cr(" _arraycopy_checkcast_cnt: %u", _arraycopy_checkcast_cnt); 1702 tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt); 1703 1704 tty->print_cr(" _new_type_array_slowcase_cnt: %u", _new_type_array_slowcase_cnt); 1705 tty->print_cr(" _new_object_array_slowcase_cnt: %u", _new_object_array_slowcase_cnt); 1706 tty->print_cr(" _new_null_free_array_slowcase_cnt: %u", _new_null_free_array_slowcase_cnt); 1707 tty->print_cr(" _new_instance_slowcase_cnt: %u", _new_instance_slowcase_cnt); 1708 tty->print_cr(" _new_multi_array_slowcase_cnt: %u", _new_multi_array_slowcase_cnt); 1709 tty->print_cr(" _load_flat_array_slowcase_cnt: %u", _load_flat_array_slowcase_cnt); 1710 tty->print_cr(" _store_flat_array_slowcase_cnt: %u", _store_flat_array_slowcase_cnt); 1711 tty->print_cr(" _substitutability_check_slowcase_cnt: %u", _substitutability_check_slowcase_cnt); 1712 tty->print_cr(" _buffer_inline_args_slowcase_cnt:%u", _buffer_inline_args_slowcase_cnt); 1713 tty->print_cr(" _buffer_inline_args_no_receiver_slowcase_cnt:%u", _buffer_inline_args_no_receiver_slowcase_cnt); 1714 1715 tty->print_cr(" _monitorenter_slowcase_cnt: %u", _monitorenter_slowcase_cnt); 1716 tty->print_cr(" _monitorexit_slowcase_cnt: %u", _monitorexit_slowcase_cnt); 1717 tty->print_cr(" _patch_code_slowcase_cnt: %u", _patch_code_slowcase_cnt); 1718 1719 tty->print_cr(" _throw_range_check_exception_count: %u:", _throw_range_check_exception_count); 1720 tty->print_cr(" _throw_index_exception_count: %u:", _throw_index_exception_count); 1721 tty->print_cr(" _throw_div0_exception_count: %u:", _throw_div0_exception_count); 1722 tty->print_cr(" _throw_null_pointer_exception_count: %u:", _throw_null_pointer_exception_count); 1723 tty->print_cr(" _throw_class_cast_exception_count: %u:", _throw_class_cast_exception_count); 1724 tty->print_cr(" _throw_incompatible_class_change_error_count: %u:", _throw_incompatible_class_change_error_count); 1725 tty->print_cr(" _throw_illegal_monitor_state_exception_count: %u:", _throw_illegal_monitor_state_exception_count); 1726 tty->print_cr(" _throw_identity_exception_count: %u:", _throw_identity_exception_count); 1727 tty->print_cr(" _throw_count: %u:", _throw_count); 1728 1729 SharedRuntime::print_ic_miss_histogram(); 1730 tty->cr(); 1731 } 1732 #endif // PRODUCT