1 /* 2 * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_C1_C1_VALUESTACK_HPP 26 #define SHARE_C1_C1_VALUESTACK_HPP 27 28 #include "c1/c1_Instruction.hpp" 29 30 class ValueStack: public CompilationResourceObj { 31 public: 32 enum Kind { 33 Parsing, // During abstract interpretation in GraphBuilder 34 CallerState, // Caller state when inlining 35 StateBefore, // Before before execution of instruction 36 StateAfter, // After execution of instruction 37 ExceptionState, // Exception handling of instruction 38 EmptyExceptionState, // Exception handling of instructions not covered by an xhandler 39 BlockBeginState // State of BlockBegin instruction with phi functions of this block 40 }; 41 42 private: 43 IRScope* _scope; // the enclosing scope 44 ValueStack* _caller_state; 45 int _bci; 46 Kind _kind; 47 bool _should_reexecute; 48 49 Values _locals; // the locals 50 Values _stack; // the expression stack 51 Values* _locks; // the monitor stack (holding the locked values) 52 53 Value check(ValueTag tag, Value t) { 54 assert(tag == t->type()->tag() || tag == objectTag && t->type()->tag() == addressTag, "types must correspond"); 55 return t; 56 } 57 58 Value check(ValueTag tag, Value t, Value h) { 59 assert(h == NULL, "hi-word of doubleword value must be NULL"); 60 return check(tag, t); 61 } 62 63 // helper routine 64 static void apply(const Values& list, ValueVisitor* f); 65 66 // for simplified copying 67 ValueStack(ValueStack* copy_from, Kind kind, int bci, bool reexecute); 68 69 int locals_size_for_copy(Kind kind) const; 70 int stack_size_for_copy(Kind kind) const; 71 public: 72 // creation 73 ValueStack(IRScope* scope, ValueStack* caller_state); 74 75 ValueStack* copy() { return new ValueStack(this, _kind, _bci, _should_reexecute); } 76 ValueStack* copy(Kind new_kind, int new_bci) { return new ValueStack(this, new_kind, new_bci, _should_reexecute); } 77 ValueStack* copy_for_parsing() { return new ValueStack(this, Parsing, -99, false); } 78 79 void set_caller_state(ValueStack* s) { 80 assert(kind() == EmptyExceptionState || 81 (Compilation::current()->env()->should_retain_local_variables() && kind() == ExceptionState), 82 "only EmptyExceptionStates can be modified"); 83 _caller_state = s; 84 } 85 86 bool is_same(ValueStack* s); // returns true if this & s's types match (w/o checking locals) 87 88 // accessors 89 IRScope* scope() const { return _scope; } 90 ValueStack* caller_state() const { return _caller_state; } 91 int bci() const { return _bci; } 92 Kind kind() const { return _kind; } 93 bool should_reexecute() const { return _should_reexecute; } 94 void set_should_reexecute(bool reexec) { _should_reexecute = reexec; } 95 96 int locals_size() const { return _locals.length(); } 97 int stack_size() const { return _stack.length(); } 98 int locks_size() const { return _locks == NULL ? 0 : _locks->length(); } 99 bool stack_is_empty() const { return _stack.is_empty(); } 100 bool no_active_locks() const { return _locks == NULL || _locks->is_empty(); } 101 int total_locks_size() const; 102 103 // locals access 104 void clear_locals(); // sets all locals to NULL; 105 106 void invalidate_local(int i) { 107 assert(!_locals.at(i)->type()->is_double_word() || 108 _locals.at(i + 1) == NULL, "hi-word of doubleword value must be NULL"); 109 _locals.at_put(i, NULL); 110 } 111 112 Value local_at(int i) const { 113 Value x = _locals.at(i); 114 assert(x == NULL || !x->type()->is_double_word() || 115 _locals.at(i + 1) == NULL, "hi-word of doubleword value must be NULL"); 116 return x; 117 } 118 119 void store_local(int i, Value x) { 120 // When overwriting local i, check if i - 1 was the start of a 121 // double word local and kill it. 122 if (i > 0) { 123 Value prev = _locals.at(i - 1); 124 if (prev != NULL && prev->type()->is_double_word()) { 125 _locals.at_put(i - 1, NULL); 126 } 127 } 128 129 _locals.at_put(i, x); 130 if (x->type()->is_double_word()) { 131 // hi-word of doubleword value is always NULL 132 _locals.at_put(i + 1, NULL); 133 } 134 } 135 136 // stack access 137 Value stack_at(int i) const { 138 Value x = _stack.at(i); 139 assert(!x->type()->is_double_word() || 140 _stack.at(i + 1) == NULL, "hi-word of doubleword value must be NULL"); 141 return x; 142 } 143 144 Value stack_at_inc(int& i) const { 145 Value x = stack_at(i); 146 i += x->type()->size(); 147 return x; 148 } 149 150 void stack_at_put(int i, Value x) { 151 _stack.at_put(i, x); 152 } 153 154 // pinning support 155 void pin_stack_for_linear_scan(); 156 157 // iteration 158 void values_do(ValueVisitor* f); 159 160 // untyped manipulation (for dup_x1, etc.) 161 void truncate_stack(int size) { _stack.trunc_to(size); } 162 void raw_push(Value t) { _stack.push(t); } 163 Value raw_pop() { return _stack.pop(); } 164 165 // typed manipulation 166 void ipush(Value t) { _stack.push(check(intTag , t)); } 167 void fpush(Value t) { _stack.push(check(floatTag , t)); } 168 void apush(Value t) { _stack.push(check(objectTag , t)); } 169 void rpush(Value t) { _stack.push(check(addressTag, t)); } 170 void lpush(Value t) { _stack.push(check(longTag , t)); _stack.push(NULL); } 171 void dpush(Value t) { _stack.push(check(doubleTag , t)); _stack.push(NULL); } 172 173 void push(ValueType* type, Value t) { 174 switch (type->tag()) { 175 case intTag : ipush(t); return; 176 case longTag : lpush(t); return; 177 case floatTag : fpush(t); return; 178 case doubleTag : dpush(t); return; 179 case objectTag : apush(t); return; 180 case addressTag: rpush(t); return; 181 default : ShouldNotReachHere(); return; 182 } 183 } 184 185 Value ipop() { return check(intTag , _stack.pop()); } 186 Value fpop() { return check(floatTag , _stack.pop()); } 187 Value apop() { return check(objectTag , _stack.pop()); } 188 Value rpop() { return check(addressTag, _stack.pop()); } 189 Value lpop() { Value h = _stack.pop(); return check(longTag , _stack.pop(), h); } 190 Value dpop() { Value h = _stack.pop(); return check(doubleTag, _stack.pop(), h); } 191 192 Value pop(ValueType* type) { 193 switch (type->tag()) { 194 case intTag : return ipop(); 195 case longTag : return lpop(); 196 case floatTag : return fpop(); 197 case doubleTag : return dpop(); 198 case objectTag : return apop(); 199 case addressTag: return rpop(); 200 default : ShouldNotReachHere(); return NULL; 201 } 202 } 203 204 Values* pop_arguments(int argument_size); 205 206 // locks access 207 int lock (Value obj); 208 int unlock(); 209 Value lock_at(int i) const { return _locks->at(i); } 210 211 // SSA form IR support 212 void setup_phi_for_stack(BlockBegin* b, int index); 213 void setup_phi_for_local(BlockBegin* b, int index); 214 215 // debugging 216 void print() PRODUCT_RETURN; 217 void verify() PRODUCT_RETURN; 218 }; 219 220 221 222 // Macro definitions for simple iteration of stack and local values of a ValueStack 223 // The macros can be used like a for-loop. All variables (state, index and value) 224 // must be defined before the loop. 225 // When states are nested because of inlining, the stack of the innermost state 226 // cumulates also the stack of the nested states. In contrast, the locals of all 227 // states must be iterated each. 228 // Use the following code pattern to iterate all stack values and all nested local values: 229 // 230 // ValueStack* state = ... // state that is iterated 231 // int index; // current loop index (overwritten in loop) 232 // Value value; // value at current loop index (overwritten in loop) 233 // 234 // for_each_stack_value(state, index, value { 235 // do something with value and index 236 // } 237 // 238 // for_each_state(state) { 239 // for_each_local_value(state, index, value) { 240 // do something with value and index 241 // } 242 // } 243 // as an invariant, state is NULL now 244 245 246 // construct a unique variable name with the line number where the macro is used 247 #define temp_var3(x) temp__ ## x 248 #define temp_var2(x) temp_var3(x) 249 #define temp_var temp_var2(__LINE__) 250 251 #define for_each_state(state) \ 252 for (; state != NULL; state = state->caller_state()) 253 254 #define for_each_local_value(state, index, value) \ 255 int temp_var = state->locals_size(); \ 256 for (index = 0; \ 257 index < temp_var && (value = state->local_at(index), true); \ 258 index += (value == NULL || value->type()->is_illegal() ? 1 : value->type()->size())) \ 259 if (value != NULL) 260 261 262 #define for_each_stack_value(state, index, value) \ 263 int temp_var = state->stack_size(); \ 264 for (index = 0; \ 265 index < temp_var && (value = state->stack_at(index), true); \ 266 index += value->type()->size()) 267 268 269 #define for_each_lock_value(state, index, value) \ 270 int temp_var = state->locks_size(); \ 271 for (index = 0; \ 272 index < temp_var && (value = state->lock_at(index), true); \ 273 index++) \ 274 if (value != NULL) 275 276 277 // Macro definition for simple iteration of all state values of a ValueStack 278 // Because the code cannot be executed in a single loop, the code must be passed 279 // as a macro parameter. 280 // Use the following code pattern to iterate all stack values and all nested local values: 281 // 282 // ValueStack* state = ... // state that is iterated 283 // for_each_state_value(state, value, 284 // do something with value (note that this is a macro parameter) 285 // ); 286 287 #define for_each_state_value(v_state, v_value, v_code) \ 288 { \ 289 int cur_index; \ 290 ValueStack* cur_state = v_state; \ 291 Value v_value; \ 292 for_each_state(cur_state) { \ 293 { \ 294 for_each_local_value(cur_state, cur_index, v_value) { \ 295 v_code; \ 296 } \ 297 } \ 298 { \ 299 for_each_stack_value(cur_state, cur_index, v_value) { \ 300 v_code; \ 301 } \ 302 } \ 303 } \ 304 } 305 306 307 // Macro definition for simple iteration of all phi functions of a block, i.e all 308 // phi functions of the ValueStack where the block matches. 309 // Use the following code pattern to iterate all phi functions of a block: 310 // 311 // BlockBegin* block = ... // block that is iterated 312 // for_each_phi_function(block, phi, 313 // do something with the phi function phi (note that this is a macro parameter) 314 // ); 315 316 #define for_each_phi_fun(v_block, v_phi, v_code) \ 317 { \ 318 int cur_index; \ 319 ValueStack* cur_state = v_block->state(); \ 320 Value value; \ 321 { \ 322 for_each_stack_value(cur_state, cur_index, value) { \ 323 Phi* v_phi = value->as_Phi(); \ 324 if (v_phi != NULL && v_phi->block() == v_block) { \ 325 v_code; \ 326 } \ 327 } \ 328 } \ 329 { \ 330 for_each_local_value(cur_state, cur_index, value) { \ 331 Phi* v_phi = value->as_Phi(); \ 332 if (v_phi != NULL && v_phi->block() == v_block) { \ 333 v_code; \ 334 } \ 335 } \ 336 } \ 337 } 338 339 #endif // SHARE_C1_C1_VALUESTACK_HPP