1 /*
   2  * Copyright (c) 2023, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/aotMappedHeapLoader.hpp"
  26 #include "cds/aotMappedHeapWriter.hpp"
  27 #include "cds/aotReferenceObjSupport.hpp"
  28 #include "cds/cdsConfig.hpp"
  29 #include "cds/filemap.hpp"
  30 #include "cds/heapShared.inline.hpp"
  31 #include "cds/regeneratedClasses.hpp"
  32 #include "classfile/javaClasses.hpp"
  33 #include "classfile/modules.hpp"
  34 #include "classfile/systemDictionary.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/iterator.inline.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.hpp"
  40 #include "oops/compressedOops.hpp"
  41 #include "oops/objArrayOop.inline.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/oopHandle.inline.hpp"
  44 #include "oops/typeArrayKlass.hpp"
  45 #include "oops/typeArrayOop.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/mutexLocker.hpp"
  49 #include "utilities/bitMap.inline.hpp"
  50 #if INCLUDE_G1GC
  51 #include "gc/g1/g1CollectedHeap.hpp"
  52 #include "gc/g1/g1HeapRegion.hpp"
  53 #endif
  54 
  55 #if INCLUDE_CDS_JAVA_HEAP
  56 
  57 GrowableArrayCHeap<u1, mtClassShared>* AOTMappedHeapWriter::_buffer = nullptr;
  58 
  59 bool AOTMappedHeapWriter::_is_writing_deterministic_heap = false;
  60 size_t AOTMappedHeapWriter::_buffer_used;
  61 
  62 // Heap root segments
  63 HeapRootSegments AOTMappedHeapWriter::_heap_root_segments;
  64 
  65 address AOTMappedHeapWriter::_requested_bottom;
  66 address AOTMappedHeapWriter::_requested_top;
  67 
  68 GrowableArrayCHeap<AOTMappedHeapWriter::NativePointerInfo, mtClassShared>* AOTMappedHeapWriter::_native_pointers;
  69 GrowableArrayCHeap<oop, mtClassShared>* AOTMappedHeapWriter::_source_objs;
  70 GrowableArrayCHeap<AOTMappedHeapWriter::HeapObjOrder, mtClassShared>* AOTMappedHeapWriter::_source_objs_order;
  71 
  72 AOTMappedHeapWriter::BufferOffsetToSourceObjectTable*
  73 AOTMappedHeapWriter::_buffer_offset_to_source_obj_table = nullptr;
  74 
  75 DumpedInternedStrings *AOTMappedHeapWriter::_dumped_interned_strings = nullptr;
  76 
  77 typedef HashTable<
  78       size_t,    // offset of a filler from AOTMappedHeapWriter::buffer_bottom()
  79       size_t,    // size of this filler (in bytes)
  80       127,       // prime number
  81       AnyObj::C_HEAP,
  82       mtClassShared> FillersTable;
  83 static FillersTable* _fillers;
  84 static int _num_native_ptrs = 0;
  85 
  86 void AOTMappedHeapWriter::init() {
  87   if (CDSConfig::is_dumping_heap()) {
  88     Universe::heap()->collect(GCCause::_java_lang_system_gc);
  89 
  90     _buffer_offset_to_source_obj_table = new (mtClassShared) BufferOffsetToSourceObjectTable(/*size (prime)*/36137, /*max size*/1 * M);
  91     _dumped_interned_strings = new (mtClass)DumpedInternedStrings(INITIAL_TABLE_SIZE, MAX_TABLE_SIZE);
  92     _fillers = new (mtClassShared) FillersTable();
  93     _requested_bottom = nullptr;
  94     _requested_top = nullptr;
  95 
  96     _native_pointers = new GrowableArrayCHeap<NativePointerInfo, mtClassShared>(2048);
  97     _source_objs = new GrowableArrayCHeap<oop, mtClassShared>(10000);
  98 
  99     guarantee(MIN_GC_REGION_ALIGNMENT <= G1HeapRegion::min_region_size_in_words() * HeapWordSize, "must be");
 100 
 101     if (CDSConfig::old_cds_flags_used()) {
 102       // With the old CDS workflow, we can guatantee determninistic output: given
 103       // the same classlist file, we can generate the same static CDS archive.
 104       // To ensure determinism, we always use the same compressed oop encoding
 105       // (zero-based, no shift). See set_requested_address_range().
 106       _is_writing_deterministic_heap = true;
 107     } else {
 108       // Determninistic output is not supported by the new AOT workflow, so
 109       // we don't force the (zero-based, no shift) encoding. This way, it is more
 110       // likely that we can avoid oop relocation in the production run.
 111       _is_writing_deterministic_heap = false;
 112     }
 113   }
 114 }
 115 
 116 // For AOTMappedHeapWriter::narrow_oop_{mode, base, shift}(), see comments
 117 // in AOTMappedHeapWriter::set_requested_address_range(),
 118 CompressedOops::Mode AOTMappedHeapWriter::narrow_oop_mode() {
 119   if (is_writing_deterministic_heap()) {
 120     return CompressedOops::UnscaledNarrowOop;
 121   } else {
 122     return CompressedOops::mode();
 123   }
 124 }
 125 
 126 address AOTMappedHeapWriter::narrow_oop_base() {
 127   if (is_writing_deterministic_heap()) {
 128     return (address)0;
 129   } else {
 130     return CompressedOops::base();
 131   }
 132 }
 133 
 134 int AOTMappedHeapWriter::narrow_oop_shift() {
 135   if (is_writing_deterministic_heap()) {
 136     return 0;
 137   } else {
 138     return CompressedOops::shift();
 139   }
 140 }
 141 
 142 void AOTMappedHeapWriter::delete_tables_with_raw_oops() {
 143   delete _source_objs;
 144   _source_objs = nullptr;
 145 
 146   delete _dumped_interned_strings;
 147   _dumped_interned_strings = nullptr;
 148 }
 149 
 150 void AOTMappedHeapWriter::add_source_obj(oop src_obj) {
 151   _source_objs->append(src_obj);
 152 }
 153 
 154 void AOTMappedHeapWriter::write(GrowableArrayCHeap<oop, mtClassShared>* roots,
 155                                 ArchiveMappedHeapInfo* heap_info) {
 156   assert(CDSConfig::is_dumping_heap(), "sanity");
 157   allocate_buffer();
 158   copy_source_objs_to_buffer(roots);
 159   set_requested_address_range(heap_info);
 160   relocate_embedded_oops(roots, heap_info);
 161 }
 162 
 163 bool AOTMappedHeapWriter::is_too_large_to_archive(oop o) {
 164   return is_too_large_to_archive(o->size());
 165 }
 166 
 167 bool AOTMappedHeapWriter::is_string_too_large_to_archive(oop string) {
 168   typeArrayOop value = java_lang_String::value_no_keepalive(string);
 169   return is_too_large_to_archive(value);
 170 }
 171 
 172 bool AOTMappedHeapWriter::is_too_large_to_archive(size_t size) {
 173   assert(size > 0, "no zero-size object");
 174   assert(size * HeapWordSize > size, "no overflow");
 175   static_assert(MIN_GC_REGION_ALIGNMENT > 0, "must be positive");
 176 
 177   size_t byte_size = size * HeapWordSize;
 178   if (byte_size > size_t(MIN_GC_REGION_ALIGNMENT)) {
 179     return true;
 180   } else {
 181     return false;
 182   }
 183 }
 184 
 185 // Keep track of the contents of the archived interned string table. This table
 186 // is used only by CDSHeapVerifier.
 187 void AOTMappedHeapWriter::add_to_dumped_interned_strings(oop string) {
 188   assert_at_safepoint(); // DumpedInternedStrings uses raw oops
 189   assert(!is_string_too_large_to_archive(string), "must be");
 190   bool created;
 191   _dumped_interned_strings->put_if_absent(string, true, &created);
 192   if (created) {
 193     // Prevent string deduplication from changing the value field to
 194     // something not in the archive.
 195     java_lang_String::set_deduplication_forbidden(string);
 196     _dumped_interned_strings->maybe_grow();
 197   }
 198 }
 199 
 200 bool AOTMappedHeapWriter::is_dumped_interned_string(oop o) {
 201   return _dumped_interned_strings->get(o) != nullptr;
 202 }
 203 
 204 // Various lookup functions between source_obj, buffered_obj and requested_obj
 205 bool AOTMappedHeapWriter::is_in_requested_range(oop o) {
 206   assert(_requested_bottom != nullptr, "do not call before _requested_bottom is initialized");
 207   address a = cast_from_oop<address>(o);
 208   return (_requested_bottom <= a && a < _requested_top);
 209 }
 210 
 211 oop AOTMappedHeapWriter::requested_obj_from_buffer_offset(size_t offset) {
 212   oop req_obj = cast_to_oop(_requested_bottom + offset);
 213   assert(is_in_requested_range(req_obj), "must be");
 214   return req_obj;
 215 }
 216 
 217 oop AOTMappedHeapWriter::source_obj_to_requested_obj(oop src_obj) {
 218   assert(CDSConfig::is_dumping_heap(), "dump-time only");
 219   HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj);
 220   if (p != nullptr) {
 221     return requested_obj_from_buffer_offset(p->buffer_offset());
 222   } else {
 223     return nullptr;
 224   }
 225 }
 226 
 227 oop AOTMappedHeapWriter::buffered_addr_to_source_obj(address buffered_addr) {
 228   OopHandle* oh = _buffer_offset_to_source_obj_table->get(buffered_address_to_offset(buffered_addr));
 229   if (oh != nullptr) {
 230     return oh->resolve();
 231   } else {
 232     return nullptr;
 233   }
 234 }
 235 
 236 Klass* AOTMappedHeapWriter::real_klass_of_buffered_oop(address buffered_addr) {
 237   oop p = buffered_addr_to_source_obj(buffered_addr);
 238   if (p != nullptr) {
 239     return p->klass();
 240   } else if (get_filler_size_at(buffered_addr) > 0) {
 241     return Universe::fillerArrayKlass();
 242   } else {
 243     // This is one of the root segments
 244     return Universe::objectArrayKlass();
 245   }
 246 }
 247 
 248 size_t AOTMappedHeapWriter::size_of_buffered_oop(address buffered_addr) {
 249   oop p = buffered_addr_to_source_obj(buffered_addr);
 250   if (p != nullptr) {
 251     return p->size();
 252   }
 253 
 254   size_t nbytes = get_filler_size_at(buffered_addr);
 255   if (nbytes > 0) {
 256     assert((nbytes % BytesPerWord) == 0, "should be aligned");
 257     return nbytes / BytesPerWord;
 258   }
 259 
 260   address hrs = buffer_bottom();
 261   for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) {
 262     nbytes = _heap_root_segments.size_in_bytes(seg_idx);
 263     if (hrs == buffered_addr) {
 264       assert((nbytes % BytesPerWord) == 0, "should be aligned");
 265       return nbytes / BytesPerWord;
 266     }
 267     hrs += nbytes;
 268   }
 269 
 270   ShouldNotReachHere();
 271   return 0;
 272 }
 273 
 274 address AOTMappedHeapWriter::buffered_addr_to_requested_addr(address buffered_addr) {
 275   return _requested_bottom + buffered_address_to_offset(buffered_addr);
 276 }
 277 
 278 address AOTMappedHeapWriter::requested_address() {
 279   assert(_buffer != nullptr, "must be initialized");
 280   return _requested_bottom;
 281 }
 282 
 283 void AOTMappedHeapWriter::allocate_buffer() {
 284   int initial_buffer_size = 100000;
 285   _buffer = new GrowableArrayCHeap<u1, mtClassShared>(initial_buffer_size);
 286   _buffer_used = 0;
 287   ensure_buffer_space(1); // so that buffer_bottom() works
 288 }
 289 
 290 void AOTMappedHeapWriter::ensure_buffer_space(size_t min_bytes) {
 291   // We usually have very small heaps. If we get a huge one it's probably caused by a bug.
 292   guarantee(min_bytes <= max_jint, "we dont support archiving more than 2G of objects");
 293   _buffer->at_grow(to_array_index(min_bytes));
 294 }
 295 
 296 objArrayOop AOTMappedHeapWriter::allocate_root_segment(size_t offset, int element_count) {
 297   HeapWord* mem = offset_to_buffered_address<HeapWord *>(offset);
 298   memset(mem, 0, refArrayOopDesc::object_size(element_count));
 299 
 300   // The initialization code is copied from MemAllocator::finish and ObjArrayAllocator::initialize.
 301   if (UseCompactObjectHeaders) {
 302     oopDesc::release_set_mark(mem, Universe::objectArrayKlass()->prototype_header());
 303   } else {
 304     assert(!Arguments::is_valhalla_enabled() || Universe::objectArrayKlass()->prototype_header() == markWord::prototype(), "should be the same");
 305     oopDesc::set_mark(mem, markWord::prototype());
 306     oopDesc::release_set_klass(mem, Universe::objectArrayKlass());
 307   }
 308   arrayOopDesc::set_length(mem, element_count);
 309   return objArrayOop(cast_to_oop(mem));
 310 }
 311 
 312 void AOTMappedHeapWriter::root_segment_at_put(objArrayOop segment, int index, oop root) {
 313   // Do not use arrayOop->obj_at_put(i, o) as arrayOop is outside the real heap!
 314   if (UseCompressedOops) {
 315     *segment->obj_at_addr<narrowOop>(index) = CompressedOops::encode(root);
 316   } else {
 317     *segment->obj_at_addr<oop>(index) = root;
 318   }
 319 }
 320 
 321 void AOTMappedHeapWriter::copy_roots_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
 322   // Depending on the number of classes we are archiving, a single roots array may be
 323   // larger than MIN_GC_REGION_ALIGNMENT. Roots are allocated first in the buffer, which
 324   // allows us to chop the large array into a series of "segments". Current layout
 325   // starts with zero or more segments exactly fitting MIN_GC_REGION_ALIGNMENT, and end
 326   // with a single segment that may be smaller than MIN_GC_REGION_ALIGNMENT.
 327   // This is simple and efficient. We do not need filler objects anywhere between the segments,
 328   // or immediately after the last segment. This allows starting the object dump immediately
 329   // after the roots.
 330 
 331   assert((_buffer_used % MIN_GC_REGION_ALIGNMENT) == 0,
 332          "Pre-condition: Roots start at aligned boundary: %zu", _buffer_used);
 333 
 334   int max_elem_count = ((MIN_GC_REGION_ALIGNMENT - arrayOopDesc::header_size_in_bytes()) / heapOopSize);
 335   assert(refArrayOopDesc::object_size(max_elem_count)*HeapWordSize == MIN_GC_REGION_ALIGNMENT,
 336          "Should match exactly");
 337 
 338   HeapRootSegments segments(_buffer_used,
 339                             roots->length(),
 340                             MIN_GC_REGION_ALIGNMENT,
 341                             max_elem_count);
 342 
 343   int root_index = 0;
 344   for (size_t seg_idx = 0; seg_idx < segments.count(); seg_idx++) {
 345     int size_elems = segments.size_in_elems(seg_idx);
 346     size_t size_bytes = segments.size_in_bytes(seg_idx);
 347 
 348     size_t oop_offset = _buffer_used;
 349     _buffer_used = oop_offset + size_bytes;
 350     ensure_buffer_space(_buffer_used);
 351 
 352     assert((oop_offset % MIN_GC_REGION_ALIGNMENT) == 0,
 353            "Roots segment %zu start is not aligned: %zu",
 354            segments.count(), oop_offset);
 355 
 356     objArrayOop seg_oop = allocate_root_segment(oop_offset, size_elems);
 357     for (int i = 0; i < size_elems; i++) {
 358       root_segment_at_put(seg_oop, i, roots->at(root_index++));
 359     }
 360 
 361     log_info(aot, heap)("archived obj root segment [%d] = %zu bytes, obj = " PTR_FORMAT,
 362                         size_elems, size_bytes, p2i(seg_oop));
 363   }
 364 
 365   assert(root_index == roots->length(), "Post-condition: All roots are handled");
 366 
 367   _heap_root_segments = segments;
 368 }
 369 
 370 // The goal is to sort the objects in increasing order of:
 371 // - objects that have only oop pointers
 372 // - objects that have both native and oop pointers
 373 // - objects that have only native pointers
 374 // - objects that have no pointers
 375 static int oop_sorting_rank(oop o) {
 376   bool has_oop_ptr, has_native_ptr;
 377   HeapShared::get_pointer_info(o, has_oop_ptr, has_native_ptr);
 378 
 379   if (has_oop_ptr) {
 380     if (!has_native_ptr) {
 381       return 0;
 382     } else {
 383       return 1;
 384     }
 385   } else {
 386     if (has_native_ptr) {
 387       return 2;
 388     } else {
 389       return 3;
 390     }
 391   }
 392 }
 393 
 394 int AOTMappedHeapWriter::compare_objs_by_oop_fields(HeapObjOrder* a, HeapObjOrder* b) {
 395   int rank_a = a->_rank;
 396   int rank_b = b->_rank;
 397 
 398   if (rank_a != rank_b) {
 399     return rank_a - rank_b;
 400   } else {
 401     // If they are the same rank, sort them by their position in the _source_objs array
 402     return a->_index - b->_index;
 403   }
 404 }
 405 
 406 void AOTMappedHeapWriter::sort_source_objs() {
 407   log_info(aot)("sorting heap objects");
 408   int len = _source_objs->length();
 409   _source_objs_order = new GrowableArrayCHeap<HeapObjOrder, mtClassShared>(len);
 410 
 411   for (int i = 0; i < len; i++) {
 412     oop o = _source_objs->at(i);
 413     int rank = oop_sorting_rank(o);
 414     HeapObjOrder os = {i, rank};
 415     _source_objs_order->append(os);
 416   }
 417   log_info(aot)("computed ranks");
 418   _source_objs_order->sort(compare_objs_by_oop_fields);
 419   log_info(aot)("sorting heap objects done");
 420 }
 421 
 422 void AOTMappedHeapWriter::copy_source_objs_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
 423   // There could be multiple root segments, which we want to be aligned by region.
 424   // Putting them ahead of objects makes sure we waste no space.
 425   copy_roots_to_buffer(roots);
 426 
 427   sort_source_objs();
 428   for (int i = 0; i < _source_objs_order->length(); i++) {
 429     int src_obj_index = _source_objs_order->at(i)._index;
 430     oop src_obj = _source_objs->at(src_obj_index);
 431     HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj);
 432     assert(info != nullptr, "must be");
 433     size_t buffer_offset = copy_one_source_obj_to_buffer(src_obj);
 434     info->set_buffer_offset(buffer_offset);
 435 
 436     OopHandle handle(Universe::vm_global(), src_obj);
 437     _buffer_offset_to_source_obj_table->put_when_absent(buffer_offset, handle);
 438     _buffer_offset_to_source_obj_table->maybe_grow();
 439 
 440     if (java_lang_Module::is_instance(src_obj)) {
 441       Modules::check_archived_module_oop(src_obj);
 442     }
 443   }
 444 
 445   log_info(aot)("Size of heap region = %zu bytes, %d objects, %d roots, %d native ptrs",
 446                 _buffer_used, _source_objs->length() + 1, roots->length(), _num_native_ptrs);
 447 }
 448 
 449 size_t AOTMappedHeapWriter::filler_array_byte_size(int length) {
 450   size_t byte_size = refArrayOopDesc::object_size(length) * HeapWordSize;
 451   return byte_size;
 452 }
 453 
 454 int AOTMappedHeapWriter::filler_array_length(size_t fill_bytes) {
 455   assert(is_object_aligned(fill_bytes), "must be");
 456   size_t elemSize = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
 457 
 458   int initial_length = to_array_length(fill_bytes / elemSize);
 459   for (int length = initial_length; length >= 0; length --) {
 460     size_t array_byte_size = filler_array_byte_size(length);
 461     if (array_byte_size == fill_bytes) {
 462       return length;
 463     }
 464   }
 465 
 466   ShouldNotReachHere();
 467   return -1;
 468 }
 469 
 470 HeapWord* AOTMappedHeapWriter::init_filler_array_at_buffer_top(int array_length, size_t fill_bytes) {
 471   assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
 472   Klass* oak = Universe::objectArrayKlass(); // already relocated to point to archived klass
 473   HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used);
 474   memset(mem, 0, fill_bytes);
 475   narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(oak);
 476   if (UseCompactObjectHeaders) {
 477     oopDesc::release_set_mark(mem, markWord::prototype().set_narrow_klass(nk));
 478   } else {
 479     assert(!Arguments::is_valhalla_enabled() || Universe::objectArrayKlass()->prototype_header() == markWord::prototype(), "should be the same");
 480     oopDesc::set_mark(mem, markWord::prototype());
 481     cast_to_oop(mem)->set_narrow_klass(nk);
 482   }
 483   arrayOopDesc::set_length(mem, array_length);
 484   return mem;
 485 }
 486 
 487 void AOTMappedHeapWriter::maybe_fill_gc_region_gap(size_t required_byte_size) {
 488   // We fill only with arrays (so we don't need to use a single HeapWord filler if the
 489   // leftover space is smaller than a zero-sized array object). Therefore, we need to
 490   // make sure there's enough space of min_filler_byte_size in the current region after
 491   // required_byte_size has been allocated. If not, fill the remainder of the current
 492   // region.
 493   size_t min_filler_byte_size = filler_array_byte_size(0);
 494   size_t new_used = _buffer_used + required_byte_size + min_filler_byte_size;
 495 
 496   const size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
 497   const size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
 498 
 499   if (cur_min_region_bottom != next_min_region_bottom) {
 500     // Make sure that no objects span across MIN_GC_REGION_ALIGNMENT. This way
 501     // we can map the region in any region-based collector.
 502     assert(next_min_region_bottom > cur_min_region_bottom, "must be");
 503     assert(next_min_region_bottom - cur_min_region_bottom == MIN_GC_REGION_ALIGNMENT,
 504            "no buffered object can be larger than %d bytes",  MIN_GC_REGION_ALIGNMENT);
 505 
 506     const size_t filler_end = next_min_region_bottom;
 507     const size_t fill_bytes = filler_end - _buffer_used;
 508     assert(fill_bytes > 0, "must be");
 509     ensure_buffer_space(filler_end);
 510 
 511     int array_length = filler_array_length(fill_bytes);
 512     log_info(aot, heap)("Inserting filler obj array of %d elements (%zu bytes total) @ buffer offset %zu",
 513                         array_length, fill_bytes, _buffer_used);
 514     HeapWord* filler = init_filler_array_at_buffer_top(array_length, fill_bytes);
 515     _buffer_used = filler_end;
 516     _fillers->put(buffered_address_to_offset((address)filler), fill_bytes);
 517   }
 518 }
 519 
 520 size_t AOTMappedHeapWriter::get_filler_size_at(address buffered_addr) {
 521   size_t* p = _fillers->get(buffered_address_to_offset(buffered_addr));
 522   if (p != nullptr) {
 523     assert(*p > 0, "filler must be larger than zero bytes");
 524     return *p;
 525   } else {
 526     return 0; // buffered_addr is not a filler
 527   }
 528 }
 529 
 530 template <typename T>
 531 void update_buffered_object_field(address buffered_obj, int field_offset, T value) {
 532   T* field_addr = cast_to_oop(buffered_obj)->field_addr<T>(field_offset);
 533   *field_addr = value;
 534 }
 535 
 536 size_t AOTMappedHeapWriter::copy_one_source_obj_to_buffer(oop src_obj) {
 537   assert(!is_too_large_to_archive(src_obj), "already checked");
 538   size_t byte_size = src_obj->size() * HeapWordSize;
 539   assert(byte_size > 0, "no zero-size objects");
 540 
 541   // For region-based collectors such as G1, the archive heap may be mapped into
 542   // multiple regions. We need to make sure that we don't have an object that can possible
 543   // span across two regions.
 544   maybe_fill_gc_region_gap(byte_size);
 545 
 546   size_t new_used = _buffer_used + byte_size;
 547   assert(new_used > _buffer_used, "no wrap around");
 548 
 549   size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
 550   size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
 551   assert(cur_min_region_bottom == next_min_region_bottom, "no object should cross minimal GC region boundaries");
 552 
 553   ensure_buffer_space(new_used);
 554 
 555   address from = cast_from_oop<address>(src_obj);
 556   address to = offset_to_buffered_address<address>(_buffer_used);
 557   assert(is_object_aligned(_buffer_used), "sanity");
 558   assert(is_object_aligned(byte_size), "sanity");
 559   memcpy(to, from, byte_size);
 560 
 561   // These native pointers will be restored explicitly at run time.
 562   if (java_lang_Module::is_instance(src_obj)) {
 563     update_buffered_object_field<ModuleEntry*>(to, java_lang_Module::module_entry_offset(), nullptr);
 564   } else if (java_lang_ClassLoader::is_instance(src_obj)) {
 565 #ifdef ASSERT
 566     // We only archive these loaders
 567     if (src_obj != SystemDictionary::java_platform_loader() &&
 568         src_obj != SystemDictionary::java_system_loader()) {
 569       assert(src_obj->klass()->name()->equals("jdk/internal/loader/ClassLoaders$BootClassLoader"), "must be");
 570     }
 571 #endif
 572     update_buffered_object_field<ClassLoaderData*>(to, java_lang_ClassLoader::loader_data_offset(), nullptr);
 573   }
 574 
 575   size_t buffered_obj_offset = _buffer_used;
 576   _buffer_used = new_used;
 577 
 578   return buffered_obj_offset;
 579 }
 580 
 581 // Set the range [_requested_bottom, _requested_top), the requested address range of all
 582 // the archived heap objects in the production run.
 583 //
 584 // (1) UseCompressedOops == true && !is_writing_deterministic_heap()
 585 //
 586 //     The archived objects are stored using the COOPS encoding of the assembly phase.
 587 //     We pick a range within the heap used by the assembly phase.
 588 //
 589 //     In the production run, if different COOPS encodings are used:
 590 //         - The heap contents needs to be relocated.
 591 //
 592 // (2) UseCompressedOops == true && is_writing_deterministic_heap()
 593 //
 594 //     We always use zero-based, zero-shift encoding. _requested_top is aligned to 0x10000000.
 595 //
 596 // (3) UseCompressedOops == false:
 597 //
 598 //     In the production run, the heap range is usually picked (randomly) by the OS, so we
 599 //     will almost always need to perform relocation, regardless of how we pick the requested
 600 //     address range.
 601 //
 602 //     So we just hard code it to NOCOOPS_REQUESTED_BASE.
 603 //
 604 void AOTMappedHeapWriter::set_requested_address_range(ArchiveMappedHeapInfo* info) {
 605   assert(!info->is_used(), "only set once");
 606 
 607   size_t heap_region_byte_size = _buffer_used;
 608   assert(heap_region_byte_size > 0, "must archived at least one object!");
 609 
 610   if (UseCompressedOops) {
 611     if (is_writing_deterministic_heap()) {
 612       // Pick a heap range so that requested addresses can be encoded with zero-base/no shift.
 613       // We align the requested bottom to at least 1 MB: if the production run uses G1 with a small
 614       // heap (e.g., -Xmx256m), it's likely that we can map the archived objects at the
 615       // requested location to avoid relocation.
 616       //
 617       // For other collectors or larger heaps, relocation is unavoidable, but is usually
 618       // quite cheap. If you really want to avoid relocation, use the AOT workflow instead.
 619       address heap_end = (address)0x100000000;
 620       size_t alignment = MAX2(MIN_GC_REGION_ALIGNMENT, 1024 * 1024);
 621       if (align_up(heap_region_byte_size, alignment) >= (size_t)heap_end) {
 622         log_error(aot, heap)("cached heap space is too large: %zu bytes", heap_region_byte_size);
 623         AOTMetaspace::unrecoverable_writing_error();
 624       }
 625       _requested_bottom = align_down(heap_end - heap_region_byte_size, alignment);
 626     } else if (UseG1GC) {
 627       // For G1, pick the range at the top of the current heap. If the exact same heap sizes
 628       // are used in the production run, it's likely that we can map the archived objects
 629       // at the requested location to avoid relocation.
 630       address heap_end = (address)G1CollectedHeap::heap()->reserved().end();
 631       log_info(aot, heap)("Heap end = %p", heap_end);
 632       _requested_bottom = align_down(heap_end - heap_region_byte_size, G1HeapRegion::GrainBytes);
 633       _requested_bottom = align_down(_requested_bottom, MIN_GC_REGION_ALIGNMENT);
 634       assert(is_aligned(_requested_bottom, G1HeapRegion::GrainBytes), "sanity");
 635     } else {
 636       _requested_bottom = align_up(CompressedOops::begin(), MIN_GC_REGION_ALIGNMENT);
 637     }
 638   } else {
 639     // We always write the objects as if the heap started at this address. This
 640     // makes the contents of the archive heap deterministic.
 641     //
 642     // Note that at runtime, the heap address is selected by the OS, so the archive
 643     // heap will not be mapped at 0x10000000, and the contents need to be patched.
 644     _requested_bottom = align_up((address)NOCOOPS_REQUESTED_BASE, MIN_GC_REGION_ALIGNMENT);
 645   }
 646 
 647   assert(is_aligned(_requested_bottom, MIN_GC_REGION_ALIGNMENT), "sanity");
 648 
 649   _requested_top = _requested_bottom + _buffer_used;
 650 
 651   info->set_buffer_region(MemRegion(offset_to_buffered_address<HeapWord*>(0),
 652                                     offset_to_buffered_address<HeapWord*>(_buffer_used)));
 653   info->set_root_segments(_heap_root_segments);
 654 }
 655 
 656 // Oop relocation
 657 
 658 template <typename T> T* AOTMappedHeapWriter::requested_addr_to_buffered_addr(T* p) {
 659   assert(is_in_requested_range(cast_to_oop(p)), "must be");
 660 
 661   address addr = address(p);
 662   assert(addr >= _requested_bottom, "must be");
 663   size_t offset = addr - _requested_bottom;
 664   return offset_to_buffered_address<T*>(offset);
 665 }
 666 
 667 template <typename T> oop AOTMappedHeapWriter::load_source_oop_from_buffer(T* buffered_addr) {
 668   oop o = load_oop_from_buffer(buffered_addr);
 669   assert(!in_buffer(cast_from_oop<address>(o)), "must point to source oop");
 670   return o;
 671 }
 672 
 673 template <typename T> void AOTMappedHeapWriter::store_requested_oop_in_buffer(T* buffered_addr,
 674                                                                                    oop request_oop) {
 675   assert(request_oop == nullptr || is_in_requested_range(request_oop), "must be");
 676   store_oop_in_buffer(buffered_addr, request_oop);
 677 }
 678 
 679 inline void AOTMappedHeapWriter::store_oop_in_buffer(oop* buffered_addr, oop requested_obj) {
 680   *buffered_addr = requested_obj;
 681 }
 682 
 683 inline void AOTMappedHeapWriter::store_oop_in_buffer(narrowOop* buffered_addr, oop requested_obj) {
 684   narrowOop val = CompressedOops::encode(requested_obj);
 685   *buffered_addr = val;
 686 }
 687 
 688 oop AOTMappedHeapWriter::load_oop_from_buffer(oop* buffered_addr) {
 689   return *buffered_addr;
 690 }
 691 
 692 oop AOTMappedHeapWriter::load_oop_from_buffer(narrowOop* buffered_addr) {
 693   return CompressedOops::decode(*buffered_addr);
 694 }
 695 
 696 template <typename T> void AOTMappedHeapWriter::relocate_field_in_buffer(T* field_addr_in_buffer, oop source_referent, CHeapBitMap* oopmap) {
 697   oop request_referent = source_obj_to_requested_obj(source_referent);
 698   if (UseCompressedOops && is_writing_deterministic_heap()) {
 699     // We use zero-based, 0-shift encoding, so the narrowOop is just the lower
 700     // 32 bits of request_referent
 701     intptr_t addr = cast_from_oop<intptr_t>(request_referent);
 702     *((narrowOop*)field_addr_in_buffer) = checked_cast<narrowOop>(addr);
 703   } else {
 704     store_requested_oop_in_buffer<T>(field_addr_in_buffer, request_referent);
 705   }
 706   if (request_referent != nullptr) {
 707     mark_oop_pointer<T>(field_addr_in_buffer, oopmap);
 708   }
 709 }
 710 
 711 template <typename T> void AOTMappedHeapWriter::mark_oop_pointer(T* buffered_addr, CHeapBitMap* oopmap) {
 712   T* request_p = (T*)(buffered_addr_to_requested_addr((address)buffered_addr));
 713   address requested_region_bottom;
 714 
 715   assert(request_p >= (T*)_requested_bottom, "sanity");
 716   assert(request_p <  (T*)_requested_top, "sanity");
 717   requested_region_bottom = _requested_bottom;
 718 
 719   // Mark the pointer in the oopmap
 720   T* region_bottom = (T*)requested_region_bottom;
 721   assert(request_p >= region_bottom, "must be");
 722   BitMap::idx_t idx = request_p - region_bottom;
 723   assert(idx < oopmap->size(), "overflow");
 724   oopmap->set_bit(idx);
 725 }
 726 
 727 void AOTMappedHeapWriter::update_header_for_requested_obj(oop requested_obj, oop src_obj,  Klass* src_klass) {
 728   assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
 729   narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(src_klass);
 730   address buffered_addr = requested_addr_to_buffered_addr(cast_from_oop<address>(requested_obj));
 731 
 732   oop fake_oop = cast_to_oop(buffered_addr);
 733   if (UseCompactObjectHeaders) {
 734     markWord prototype_header = src_klass->prototype_header().set_narrow_klass(nk);
 735     fake_oop->set_mark(prototype_header);
 736   } else {
 737     fake_oop->set_narrow_klass(nk);
 738   }
 739 
 740   if (src_obj == nullptr) {
 741     return;
 742   }
 743   // We need to retain the identity_hash, because it may have been used by some hashtables
 744   // in the shared heap.
 745   if (!src_obj->fast_no_hash_check() && (!(Arguments::is_valhalla_enabled() && src_obj->mark().is_inline_type()))) {
 746     intptr_t src_hash = src_obj->identity_hash();
 747     if (UseCompactObjectHeaders) {
 748       fake_oop->set_mark(fake_oop->mark().copy_set_hash(src_hash));
 749     } else if (Arguments::is_valhalla_enabled()) {
 750       fake_oop->set_mark(src_klass->prototype_header().copy_set_hash(src_hash));
 751     } else {
 752       fake_oop->set_mark(markWord::prototype().copy_set_hash(src_hash));
 753     }
 754     assert(fake_oop->mark().is_unlocked(), "sanity");
 755 
 756     DEBUG_ONLY(intptr_t archived_hash = fake_oop->identity_hash());
 757     assert(src_hash == archived_hash, "Different hash codes: original " INTPTR_FORMAT ", archived " INTPTR_FORMAT, src_hash, archived_hash);
 758   }
 759   // Strip age bits.
 760   fake_oop->set_mark(fake_oop->mark().set_age(0));
 761 }
 762 
 763 class AOTMappedHeapWriter::EmbeddedOopRelocator: public BasicOopIterateClosure {
 764   oop _src_obj;
 765   address _buffered_obj;
 766   CHeapBitMap* _oopmap;
 767   bool _is_java_lang_ref;
 768 public:
 769   EmbeddedOopRelocator(oop src_obj, address buffered_obj, CHeapBitMap* oopmap) :
 770     _src_obj(src_obj), _buffered_obj(buffered_obj), _oopmap(oopmap)
 771   {
 772     _is_java_lang_ref = AOTReferenceObjSupport::check_if_ref_obj(src_obj);
 773   }
 774 
 775   void do_oop(narrowOop *p) { EmbeddedOopRelocator::do_oop_work(p); }
 776   void do_oop(      oop *p) { EmbeddedOopRelocator::do_oop_work(p); }
 777 
 778 private:
 779   template <class T> void do_oop_work(T *p) {
 780     int field_offset = pointer_delta_as_int((char*)p, cast_from_oop<char*>(_src_obj));
 781     T* field_addr = (T*)(_buffered_obj + field_offset);
 782     oop referent = load_source_oop_from_buffer<T>(field_addr);
 783     referent = HeapShared::maybe_remap_referent(_is_java_lang_ref, field_offset, referent);
 784     AOTMappedHeapWriter::relocate_field_in_buffer<T>(field_addr, referent, _oopmap);
 785   }
 786 };
 787 
 788 static void log_bitmap_usage(const char* which, BitMap* bitmap, size_t total_bits) {
 789   // The whole heap is covered by total_bits, but there are only non-zero bits within [start ... end).
 790   size_t start = bitmap->find_first_set_bit(0);
 791   size_t end = bitmap->size();
 792   log_info(aot)("%s = %7zu ... %7zu (%3zu%% ... %3zu%% = %3zu%%)", which,
 793                 start, end,
 794                 start * 100 / total_bits,
 795                 end * 100 / total_bits,
 796                 (end - start) * 100 / total_bits);
 797 }
 798 
 799 // Update all oop fields embedded in the buffered objects
 800 void AOTMappedHeapWriter::relocate_embedded_oops(GrowableArrayCHeap<oop, mtClassShared>* roots,
 801                                                       ArchiveMappedHeapInfo* heap_info) {
 802   size_t oopmap_unit = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
 803   size_t heap_region_byte_size = _buffer_used;
 804   heap_info->oopmap()->resize(heap_region_byte_size   / oopmap_unit);
 805 
 806   for (int i = 0; i < _source_objs_order->length(); i++) {
 807     int src_obj_index = _source_objs_order->at(i)._index;
 808     oop src_obj = _source_objs->at(src_obj_index);
 809     HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj);
 810     assert(info != nullptr, "must be");
 811     oop requested_obj = requested_obj_from_buffer_offset(info->buffer_offset());
 812     update_header_for_requested_obj(requested_obj, src_obj, src_obj->klass());
 813     address buffered_obj = offset_to_buffered_address<address>(info->buffer_offset());
 814     EmbeddedOopRelocator relocator(src_obj, buffered_obj, heap_info->oopmap());
 815     src_obj->oop_iterate(&relocator);
 816     mark_native_pointers(src_obj);
 817   };
 818 
 819   // Relocate HeapShared::roots(), which is created in copy_roots_to_buffer() and
 820   // doesn't have a corresponding src_obj, so we can't use EmbeddedOopRelocator on it.
 821   for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) {
 822     size_t seg_offset = _heap_root_segments.segment_offset(seg_idx);
 823 
 824     objArrayOop requested_obj = (objArrayOop)requested_obj_from_buffer_offset(seg_offset);
 825     update_header_for_requested_obj(requested_obj, nullptr, Universe::objectArrayKlass());
 826     address buffered_obj = offset_to_buffered_address<address>(seg_offset);
 827     int length = _heap_root_segments.size_in_elems(seg_idx);
 828 
 829     size_t elem_size = UseCompressedOops ? sizeof(narrowOop) : sizeof(oop);
 830 
 831     for (int i = 0; i < length; i++) {
 832       // There is no source object; these are native oops - load, translate and
 833       // write back
 834       size_t elem_offset = objArrayOopDesc::base_offset_in_bytes() + elem_size * i;
 835       HeapWord* elem_addr = (HeapWord*)(buffered_obj + elem_offset);
 836       oop obj = NativeAccess<>::oop_load(elem_addr);
 837       obj = HeapShared::maybe_remap_referent(false /* is_reference_field */, elem_offset, obj);
 838       if (UseCompressedOops) {
 839         relocate_field_in_buffer<narrowOop>((narrowOop*)elem_addr, obj, heap_info->oopmap());
 840       } else {
 841         relocate_field_in_buffer<oop>((oop*)elem_addr, obj, heap_info->oopmap());
 842       }
 843     }
 844   }
 845 
 846   compute_ptrmap(heap_info);
 847 
 848   size_t total_bytes = (size_t)_buffer->length();
 849   log_bitmap_usage("oopmap", heap_info->oopmap(), total_bytes / (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)));
 850   log_bitmap_usage("ptrmap", heap_info->ptrmap(), total_bytes / sizeof(address));
 851 }
 852 
 853 void AOTMappedHeapWriter::mark_native_pointer(oop src_obj, int field_offset) {
 854   Metadata* ptr = src_obj->metadata_field_acquire(field_offset);
 855   if (ptr != nullptr) {
 856     NativePointerInfo info;
 857     info._src_obj = src_obj;
 858     info._field_offset = field_offset;
 859     _native_pointers->append(info);
 860     HeapShared::set_has_native_pointers(src_obj);
 861     _num_native_ptrs ++;
 862   }
 863 }
 864 
 865 void AOTMappedHeapWriter::mark_native_pointers(oop orig_obj) {
 866   HeapShared::do_metadata_offsets(orig_obj, [&](int offset) {
 867     mark_native_pointer(orig_obj, offset);
 868   });
 869 }
 870 
 871 void AOTMappedHeapWriter::compute_ptrmap(ArchiveMappedHeapInfo* heap_info) {
 872   int num_non_null_ptrs = 0;
 873   Metadata** bottom = (Metadata**) _requested_bottom;
 874   Metadata** top = (Metadata**) _requested_top; // exclusive
 875   heap_info->ptrmap()->resize(top - bottom);
 876 
 877   BitMap::idx_t max_idx = 32; // paranoid - don't make it too small
 878   for (int i = 0; i < _native_pointers->length(); i++) {
 879     NativePointerInfo info = _native_pointers->at(i);
 880     oop src_obj = info._src_obj;
 881     int field_offset = info._field_offset;
 882     HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj);
 883     // requested_field_addr = the address of this field in the requested space
 884     oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset());
 885     Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset);
 886     assert(bottom <= requested_field_addr && requested_field_addr < top, "range check");
 887 
 888     // Mark this field in the bitmap
 889     BitMap::idx_t idx = requested_field_addr - bottom;
 890     heap_info->ptrmap()->set_bit(idx);
 891     num_non_null_ptrs ++;
 892     max_idx = MAX2(max_idx, idx);
 893 
 894     // Set the native pointer to the requested address of the metadata (at runtime, the metadata will have
 895     // this address if the RO/RW regions are mapped at the default location).
 896 
 897     Metadata** buffered_field_addr = requested_addr_to_buffered_addr(requested_field_addr);
 898     Metadata* native_ptr = *buffered_field_addr;
 899     guarantee(native_ptr != nullptr, "sanity");
 900 
 901     if (RegeneratedClasses::has_been_regenerated(native_ptr)) {
 902       native_ptr = RegeneratedClasses::get_regenerated_object(native_ptr);
 903     }
 904 
 905     guarantee(ArchiveBuilder::current()->has_been_archived((address)native_ptr),
 906               "Metadata %p should have been archived", native_ptr);
 907 
 908     address buffered_native_ptr = ArchiveBuilder::current()->get_buffered_addr((address)native_ptr);
 909     address requested_native_ptr = ArchiveBuilder::current()->to_requested(buffered_native_ptr);
 910     *buffered_field_addr = (Metadata*)requested_native_ptr;
 911   }
 912 
 913   heap_info->ptrmap()->resize(max_idx + 1);
 914   log_info(aot, heap)("calculate_ptrmap: marked %d non-null native pointers for heap region (%zu bits)",
 915                       num_non_null_ptrs, size_t(heap_info->ptrmap()->size()));
 916 }
 917 
 918 AOTMapLogger::OopDataIterator* AOTMappedHeapWriter::oop_iterator(ArchiveMappedHeapInfo* heap_info) {
 919   class MappedWriterOopIterator : public AOTMapLogger::OopDataIterator {
 920   private:
 921     address _current;
 922     address _next;
 923 
 924     address _buffer_start;
 925     address _buffer_end;
 926     uint64_t _buffer_start_narrow_oop;
 927     intptr_t _buffer_to_requested_delta;
 928     int _requested_shift;
 929 
 930     size_t _num_root_segments;
 931     size_t _num_obj_arrays_logged;
 932 
 933   public:
 934     MappedWriterOopIterator(address buffer_start,
 935                             address buffer_end,
 936                             uint64_t buffer_start_narrow_oop,
 937                             intptr_t buffer_to_requested_delta,
 938                             int requested_shift,
 939                             size_t num_root_segments)
 940       : _current(nullptr),
 941         _next(buffer_start),
 942         _buffer_start(buffer_start),
 943         _buffer_end(buffer_end),
 944         _buffer_start_narrow_oop(buffer_start_narrow_oop),
 945         _buffer_to_requested_delta(buffer_to_requested_delta),
 946         _requested_shift(requested_shift),
 947         _num_root_segments(num_root_segments),
 948         _num_obj_arrays_logged(0) {
 949     }
 950 
 951     AOTMapLogger::OopData capture(address buffered_addr) {
 952       oopDesc* raw_oop = (oopDesc*)buffered_addr;
 953       size_t size = size_of_buffered_oop(buffered_addr);
 954       address requested_addr = buffered_addr_to_requested_addr(buffered_addr);
 955       intptr_t target_location = (intptr_t)requested_addr;
 956       uint64_t pd = (uint64_t)(pointer_delta(buffered_addr, _buffer_start, 1));
 957       uint32_t narrow_location = checked_cast<uint32_t>(_buffer_start_narrow_oop + (pd >> _requested_shift));
 958       Klass* klass = real_klass_of_buffered_oop(buffered_addr);
 959 
 960       return { buffered_addr,
 961                requested_addr,
 962                target_location,
 963                narrow_location,
 964                raw_oop,
 965                klass,
 966                size,
 967                false };
 968     }
 969 
 970     bool has_next() override {
 971       return _next < _buffer_end;
 972     }
 973 
 974     AOTMapLogger::OopData next() override {
 975       _current = _next;
 976       AOTMapLogger::OopData result = capture(_current);
 977       if (result._klass->is_objArray_klass()) {
 978         result._is_root_segment = _num_obj_arrays_logged++ < _num_root_segments;
 979       }
 980       _next = _current + result._size * BytesPerWord;
 981       return result;
 982     }
 983 
 984     AOTMapLogger::OopData obj_at(narrowOop* addr) override {
 985       uint64_t n = (uint64_t)(*addr);
 986       if (n == 0) {
 987         return null_data();
 988       } else {
 989         precond(n >= _buffer_start_narrow_oop);
 990         address buffer_addr = _buffer_start + ((n - _buffer_start_narrow_oop) << _requested_shift);
 991         return capture(buffer_addr);
 992       }
 993     }
 994 
 995     AOTMapLogger::OopData obj_at(oop* addr) override {
 996       address requested_value = cast_from_oop<address>(*addr);
 997       if (requested_value == nullptr) {
 998         return null_data();
 999       } else {
1000         address buffer_addr = requested_value - _buffer_to_requested_delta;
1001         return capture(buffer_addr);
1002       }
1003     }
1004 
1005     GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>* roots() override {
1006       return new GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>();
1007     }
1008   };
1009 
1010   MemRegion r = heap_info->buffer_region();
1011   address buffer_start = address(r.start());
1012   address buffer_end = address(r.end());
1013 
1014   address requested_base = UseCompressedOops ? AOTMappedHeapWriter::narrow_oop_base() : (address)AOTMappedHeapWriter::NOCOOPS_REQUESTED_BASE;
1015   address requested_start = UseCompressedOops ? AOTMappedHeapWriter::buffered_addr_to_requested_addr(buffer_start) : requested_base;
1016   int requested_shift = AOTMappedHeapWriter::narrow_oop_shift();
1017   intptr_t buffer_to_requested_delta = requested_start - buffer_start;
1018   uint64_t buffer_start_narrow_oop = 0xdeadbeed;
1019   if (UseCompressedOops) {
1020     buffer_start_narrow_oop = (uint64_t)(pointer_delta(requested_start, requested_base, 1)) >> requested_shift;
1021     assert(buffer_start_narrow_oop < 0xffffffff, "sanity");
1022   }
1023 
1024   return new MappedWriterOopIterator(buffer_start,
1025                                      buffer_end,
1026                                      buffer_start_narrow_oop,
1027                                      buffer_to_requested_delta,
1028                                      requested_shift,
1029                                      heap_info->root_segments().count());
1030 }
1031 
1032 #endif // INCLUDE_CDS_JAVA_HEAP