1 /*
   2  * Copyright (c) 2023, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/aotMappedHeapLoader.hpp"
  26 #include "cds/aotMappedHeapWriter.hpp"
  27 #include "cds/aotReferenceObjSupport.hpp"
  28 #include "cds/cdsConfig.hpp"
  29 #include "cds/filemap.hpp"
  30 #include "cds/heapShared.inline.hpp"
  31 #include "cds/regeneratedClasses.hpp"
  32 #include "classfile/javaClasses.hpp"
  33 #include "classfile/modules.hpp"
  34 #include "classfile/systemDictionary.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/iterator.inline.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.hpp"
  40 #include "oops/compressedOops.hpp"
  41 #include "oops/objArrayOop.inline.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/oopHandle.inline.hpp"
  44 #include "oops/typeArrayKlass.hpp"
  45 #include "oops/typeArrayOop.hpp"
  46 #include "runtime/java.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "utilities/bitMap.inline.hpp"
  49 #if INCLUDE_G1GC
  50 #include "gc/g1/g1CollectedHeap.hpp"
  51 #include "gc/g1/g1HeapRegion.hpp"
  52 #endif
  53 
  54 #if INCLUDE_CDS_JAVA_HEAP
  55 
  56 GrowableArrayCHeap<u1, mtClassShared>* AOTMappedHeapWriter::_buffer = nullptr;
  57 
  58 bool AOTMappedHeapWriter::_is_writing_deterministic_heap = false;
  59 size_t AOTMappedHeapWriter::_buffer_used;
  60 
  61 // Heap root segments
  62 HeapRootSegments AOTMappedHeapWriter::_heap_root_segments;
  63 
  64 address AOTMappedHeapWriter::_requested_bottom;
  65 address AOTMappedHeapWriter::_requested_top;
  66 
  67 GrowableArrayCHeap<AOTMappedHeapWriter::NativePointerInfo, mtClassShared>* AOTMappedHeapWriter::_native_pointers;
  68 GrowableArrayCHeap<oop, mtClassShared>* AOTMappedHeapWriter::_source_objs;
  69 GrowableArrayCHeap<AOTMappedHeapWriter::HeapObjOrder, mtClassShared>* AOTMappedHeapWriter::_source_objs_order;
  70 
  71 AOTMappedHeapWriter::BufferOffsetToSourceObjectTable*
  72 AOTMappedHeapWriter::_buffer_offset_to_source_obj_table = nullptr;
  73 
  74 DumpedInternedStrings *AOTMappedHeapWriter::_dumped_interned_strings = nullptr;
  75 
  76 typedef HashTable<
  77       size_t,    // offset of a filler from AOTMappedHeapWriter::buffer_bottom()
  78       size_t,    // size of this filler (in bytes)
  79       127,       // prime number
  80       AnyObj::C_HEAP,
  81       mtClassShared> FillersTable;
  82 static FillersTable* _fillers;
  83 static int _num_native_ptrs = 0;
  84 
  85 void AOTMappedHeapWriter::init() {
  86   if (CDSConfig::is_dumping_heap()) {
  87     Universe::heap()->collect(GCCause::_java_lang_system_gc);
  88 
  89     _buffer_offset_to_source_obj_table = new BufferOffsetToSourceObjectTable(/*size (prime)*/36137, /*max size*/1 * M);
  90     _dumped_interned_strings = new (mtClass)DumpedInternedStrings(INITIAL_TABLE_SIZE, MAX_TABLE_SIZE);
  91     _fillers = new FillersTable();
  92     _requested_bottom = nullptr;
  93     _requested_top = nullptr;
  94 
  95     _native_pointers = new GrowableArrayCHeap<NativePointerInfo, mtClassShared>(2048);
  96     _source_objs = new GrowableArrayCHeap<oop, mtClassShared>(10000);
  97 
  98     guarantee(MIN_GC_REGION_ALIGNMENT <= G1HeapRegion::min_region_size_in_words() * HeapWordSize, "must be");
  99 
 100     if (CDSConfig::old_cds_flags_used()) {
 101       // With the old CDS workflow, we can guatantee determninistic output: given
 102       // the same classlist file, we can generate the same static CDS archive.
 103       // To ensure determinism, we always use the same compressed oop encoding
 104       // (zero-based, no shift). See set_requested_address_range().
 105       _is_writing_deterministic_heap = true;
 106     } else {
 107       // Determninistic output is not supported by the new AOT workflow, so
 108       // we don't force the (zero-based, no shift) encoding. This way, it is more
 109       // likely that we can avoid oop relocation in the production run.
 110       _is_writing_deterministic_heap = false;
 111     }
 112   }
 113 }
 114 
 115 // For AOTMappedHeapWriter::narrow_oop_{mode, base, shift}(), see comments
 116 // in AOTMappedHeapWriter::set_requested_address_range(),
 117 CompressedOops::Mode AOTMappedHeapWriter::narrow_oop_mode() {
 118   if (is_writing_deterministic_heap()) {
 119     return CompressedOops::UnscaledNarrowOop;
 120   } else {
 121     return CompressedOops::mode();
 122   }
 123 }
 124 
 125 address AOTMappedHeapWriter::narrow_oop_base() {
 126   if (is_writing_deterministic_heap()) {
 127     return (address)0;
 128   } else {
 129     return CompressedOops::base();
 130   }
 131 }
 132 
 133 int AOTMappedHeapWriter::narrow_oop_shift() {
 134   if (is_writing_deterministic_heap()) {
 135     return 0;
 136   } else {
 137     return CompressedOops::shift();
 138   }
 139 }
 140 
 141 void AOTMappedHeapWriter::delete_tables_with_raw_oops() {
 142   delete _source_objs;
 143   _source_objs = nullptr;
 144 
 145   delete _dumped_interned_strings;
 146   _dumped_interned_strings = nullptr;
 147 }
 148 
 149 void AOTMappedHeapWriter::add_source_obj(oop src_obj) {
 150   _source_objs->append(src_obj);
 151 }
 152 
 153 void AOTMappedHeapWriter::write(GrowableArrayCHeap<oop, mtClassShared>* roots,
 154                                 ArchiveMappedHeapInfo* heap_info) {
 155   assert(CDSConfig::is_dumping_heap(), "sanity");
 156   allocate_buffer();
 157   copy_source_objs_to_buffer(roots);
 158   set_requested_address_range(heap_info);
 159   relocate_embedded_oops(roots, heap_info);
 160 }
 161 
 162 bool AOTMappedHeapWriter::is_too_large_to_archive(oop o) {
 163   return is_too_large_to_archive(o->size());
 164 }
 165 
 166 bool AOTMappedHeapWriter::is_string_too_large_to_archive(oop string) {
 167   typeArrayOop value = java_lang_String::value_no_keepalive(string);
 168   return is_too_large_to_archive(value);
 169 }
 170 
 171 bool AOTMappedHeapWriter::is_too_large_to_archive(size_t size) {
 172   assert(size > 0, "no zero-size object");
 173   assert(size * HeapWordSize > size, "no overflow");
 174   static_assert(MIN_GC_REGION_ALIGNMENT > 0, "must be positive");
 175 
 176   size_t byte_size = size * HeapWordSize;
 177   if (byte_size > size_t(MIN_GC_REGION_ALIGNMENT)) {
 178     return true;
 179   } else {
 180     return false;
 181   }
 182 }
 183 
 184 // Keep track of the contents of the archived interned string table. This table
 185 // is used only by CDSHeapVerifier.
 186 void AOTMappedHeapWriter::add_to_dumped_interned_strings(oop string) {
 187   assert_at_safepoint(); // DumpedInternedStrings uses raw oops
 188   assert(!is_string_too_large_to_archive(string), "must be");
 189   bool created;
 190   _dumped_interned_strings->put_if_absent(string, true, &created);
 191   if (created) {
 192     // Prevent string deduplication from changing the value field to
 193     // something not in the archive.
 194     java_lang_String::set_deduplication_forbidden(string);
 195     _dumped_interned_strings->maybe_grow();
 196   }
 197 }
 198 
 199 bool AOTMappedHeapWriter::is_dumped_interned_string(oop o) {
 200   return _dumped_interned_strings->get(o) != nullptr;
 201 }
 202 
 203 // Various lookup functions between source_obj, buffered_obj and requested_obj
 204 bool AOTMappedHeapWriter::is_in_requested_range(oop o) {
 205   assert(_requested_bottom != nullptr, "do not call before _requested_bottom is initialized");
 206   address a = cast_from_oop<address>(o);
 207   return (_requested_bottom <= a && a < _requested_top);
 208 }
 209 
 210 oop AOTMappedHeapWriter::requested_obj_from_buffer_offset(size_t offset) {
 211   oop req_obj = cast_to_oop(_requested_bottom + offset);
 212   assert(is_in_requested_range(req_obj), "must be");
 213   return req_obj;
 214 }
 215 
 216 oop AOTMappedHeapWriter::source_obj_to_requested_obj(oop src_obj) {
 217   assert(CDSConfig::is_dumping_heap(), "dump-time only");
 218   HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj);
 219   if (p != nullptr) {
 220     return requested_obj_from_buffer_offset(p->buffer_offset());
 221   } else {
 222     return nullptr;
 223   }
 224 }
 225 
 226 oop AOTMappedHeapWriter::buffered_addr_to_source_obj(address buffered_addr) {
 227   OopHandle* oh = _buffer_offset_to_source_obj_table->get(buffered_address_to_offset(buffered_addr));
 228   if (oh != nullptr) {
 229     return oh->resolve();
 230   } else {
 231     return nullptr;
 232   }
 233 }
 234 
 235 Klass* AOTMappedHeapWriter::real_klass_of_buffered_oop(address buffered_addr) {
 236   oop p = buffered_addr_to_source_obj(buffered_addr);
 237   if (p != nullptr) {
 238     return p->klass();
 239   } else if (get_filler_size_at(buffered_addr) > 0) {
 240     return Universe::fillerArrayKlass();
 241   } else {
 242     // This is one of the root segments
 243     return Universe::objectArrayKlass();
 244   }
 245 }
 246 
 247 size_t AOTMappedHeapWriter::size_of_buffered_oop(address buffered_addr) {
 248   oop p = buffered_addr_to_source_obj(buffered_addr);
 249   if (p != nullptr) {
 250     return p->size();
 251   }
 252 
 253   size_t nbytes = get_filler_size_at(buffered_addr);
 254   if (nbytes > 0) {
 255     assert((nbytes % BytesPerWord) == 0, "should be aligned");
 256     return nbytes / BytesPerWord;
 257   }
 258 
 259   address hrs = buffer_bottom();
 260   for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) {
 261     nbytes = _heap_root_segments.size_in_bytes(seg_idx);
 262     if (hrs == buffered_addr) {
 263       assert((nbytes % BytesPerWord) == 0, "should be aligned");
 264       return nbytes / BytesPerWord;
 265     }
 266     hrs += nbytes;
 267   }
 268 
 269   ShouldNotReachHere();
 270   return 0;
 271 }
 272 
 273 address AOTMappedHeapWriter::buffered_addr_to_requested_addr(address buffered_addr) {
 274   return _requested_bottom + buffered_address_to_offset(buffered_addr);
 275 }
 276 
 277 address AOTMappedHeapWriter::requested_address() {
 278   assert(_buffer != nullptr, "must be initialized");
 279   return _requested_bottom;
 280 }
 281 
 282 void AOTMappedHeapWriter::allocate_buffer() {
 283   int initial_buffer_size = 100000;
 284   _buffer = new GrowableArrayCHeap<u1, mtClassShared>(initial_buffer_size);
 285   _buffer_used = 0;
 286   ensure_buffer_space(1); // so that buffer_bottom() works
 287 }
 288 
 289 void AOTMappedHeapWriter::ensure_buffer_space(size_t min_bytes) {
 290   // We usually have very small heaps. If we get a huge one it's probably caused by a bug.
 291   guarantee(min_bytes <= max_jint, "we dont support archiving more than 2G of objects");
 292   _buffer->at_grow(to_array_index(min_bytes));
 293 }
 294 
 295 objArrayOop AOTMappedHeapWriter::allocate_root_segment(size_t offset, int element_count) {
 296   HeapWord* mem = offset_to_buffered_address<HeapWord *>(offset);
 297   memset(mem, 0, refArrayOopDesc::object_size(element_count));
 298 
 299   // The initialization code is copied from MemAllocator::finish and ObjArrayAllocator::initialize.
 300   if (UseCompactObjectHeaders) {
 301     oopDesc::release_set_mark(mem, Universe::objectArrayKlass()->prototype_header());
 302   } else {
 303     assert(!EnableValhalla || Universe::objectArrayKlass()->prototype_header() == markWord::prototype(), "should be the same");
 304     oopDesc::set_mark(mem, markWord::prototype());
 305     oopDesc::release_set_klass(mem, Universe::objectArrayKlass());
 306   }
 307   arrayOopDesc::set_length(mem, element_count);
 308   return objArrayOop(cast_to_oop(mem));
 309 }
 310 
 311 void AOTMappedHeapWriter::root_segment_at_put(objArrayOop segment, int index, oop root) {
 312   // Do not use arrayOop->obj_at_put(i, o) as arrayOop is outside the real heap!
 313   if (UseCompressedOops) {
 314     *segment->obj_at_addr<narrowOop>(index) = CompressedOops::encode(root);
 315   } else {
 316     *segment->obj_at_addr<oop>(index) = root;
 317   }
 318 }
 319 
 320 void AOTMappedHeapWriter::copy_roots_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
 321   // Depending on the number of classes we are archiving, a single roots array may be
 322   // larger than MIN_GC_REGION_ALIGNMENT. Roots are allocated first in the buffer, which
 323   // allows us to chop the large array into a series of "segments". Current layout
 324   // starts with zero or more segments exactly fitting MIN_GC_REGION_ALIGNMENT, and end
 325   // with a single segment that may be smaller than MIN_GC_REGION_ALIGNMENT.
 326   // This is simple and efficient. We do not need filler objects anywhere between the segments,
 327   // or immediately after the last segment. This allows starting the object dump immediately
 328   // after the roots.
 329 
 330   assert((_buffer_used % MIN_GC_REGION_ALIGNMENT) == 0,
 331          "Pre-condition: Roots start at aligned boundary: %zu", _buffer_used);
 332 
 333   int max_elem_count = ((MIN_GC_REGION_ALIGNMENT - arrayOopDesc::header_size_in_bytes()) / heapOopSize);
 334   assert(refArrayOopDesc::object_size(max_elem_count)*HeapWordSize == MIN_GC_REGION_ALIGNMENT,
 335          "Should match exactly");
 336 
 337   HeapRootSegments segments(_buffer_used,
 338                             roots->length(),
 339                             MIN_GC_REGION_ALIGNMENT,
 340                             max_elem_count);
 341 
 342   int root_index = 0;
 343   for (size_t seg_idx = 0; seg_idx < segments.count(); seg_idx++) {
 344     int size_elems = segments.size_in_elems(seg_idx);
 345     size_t size_bytes = segments.size_in_bytes(seg_idx);
 346 
 347     size_t oop_offset = _buffer_used;
 348     _buffer_used = oop_offset + size_bytes;
 349     ensure_buffer_space(_buffer_used);
 350 
 351     assert((oop_offset % MIN_GC_REGION_ALIGNMENT) == 0,
 352            "Roots segment %zu start is not aligned: %zu",
 353            segments.count(), oop_offset);
 354 
 355     objArrayOop seg_oop = allocate_root_segment(oop_offset, size_elems);
 356     for (int i = 0; i < size_elems; i++) {
 357       root_segment_at_put(seg_oop, i, roots->at(root_index++));
 358     }
 359 
 360     log_info(aot, heap)("archived obj root segment [%d] = %zu bytes, obj = " PTR_FORMAT,
 361                         size_elems, size_bytes, p2i(seg_oop));
 362   }
 363 
 364   assert(root_index == roots->length(), "Post-condition: All roots are handled");
 365 
 366   _heap_root_segments = segments;
 367 }
 368 
 369 // The goal is to sort the objects in increasing order of:
 370 // - objects that have only oop pointers
 371 // - objects that have both native and oop pointers
 372 // - objects that have only native pointers
 373 // - objects that have no pointers
 374 static int oop_sorting_rank(oop o) {
 375   bool has_oop_ptr, has_native_ptr;
 376   HeapShared::get_pointer_info(o, has_oop_ptr, has_native_ptr);
 377 
 378   if (has_oop_ptr) {
 379     if (!has_native_ptr) {
 380       return 0;
 381     } else {
 382       return 1;
 383     }
 384   } else {
 385     if (has_native_ptr) {
 386       return 2;
 387     } else {
 388       return 3;
 389     }
 390   }
 391 }
 392 
 393 int AOTMappedHeapWriter::compare_objs_by_oop_fields(HeapObjOrder* a, HeapObjOrder* b) {
 394   int rank_a = a->_rank;
 395   int rank_b = b->_rank;
 396 
 397   if (rank_a != rank_b) {
 398     return rank_a - rank_b;
 399   } else {
 400     // If they are the same rank, sort them by their position in the _source_objs array
 401     return a->_index - b->_index;
 402   }
 403 }
 404 
 405 void AOTMappedHeapWriter::sort_source_objs() {
 406   log_info(aot)("sorting heap objects");
 407   int len = _source_objs->length();
 408   _source_objs_order = new GrowableArrayCHeap<HeapObjOrder, mtClassShared>(len);
 409 
 410   for (int i = 0; i < len; i++) {
 411     oop o = _source_objs->at(i);
 412     int rank = oop_sorting_rank(o);
 413     HeapObjOrder os = {i, rank};
 414     _source_objs_order->append(os);
 415   }
 416   log_info(aot)("computed ranks");
 417   _source_objs_order->sort(compare_objs_by_oop_fields);
 418   log_info(aot)("sorting heap objects done");
 419 }
 420 
 421 void AOTMappedHeapWriter::copy_source_objs_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
 422   // There could be multiple root segments, which we want to be aligned by region.
 423   // Putting them ahead of objects makes sure we waste no space.
 424   copy_roots_to_buffer(roots);
 425 
 426   sort_source_objs();
 427   for (int i = 0; i < _source_objs_order->length(); i++) {
 428     int src_obj_index = _source_objs_order->at(i)._index;
 429     oop src_obj = _source_objs->at(src_obj_index);
 430     HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj);
 431     assert(info != nullptr, "must be");
 432     size_t buffer_offset = copy_one_source_obj_to_buffer(src_obj);
 433     info->set_buffer_offset(buffer_offset);
 434 
 435     OopHandle handle(Universe::vm_global(), src_obj);
 436     _buffer_offset_to_source_obj_table->put_when_absent(buffer_offset, handle);
 437     _buffer_offset_to_source_obj_table->maybe_grow();
 438 
 439     if (java_lang_Module::is_instance(src_obj)) {
 440       Modules::check_archived_module_oop(src_obj);
 441     }
 442   }
 443 
 444   log_info(aot)("Size of heap region = %zu bytes, %d objects, %d roots, %d native ptrs",
 445                 _buffer_used, _source_objs->length() + 1, roots->length(), _num_native_ptrs);
 446 }
 447 
 448 size_t AOTMappedHeapWriter::filler_array_byte_size(int length) {
 449   size_t byte_size = refArrayOopDesc::object_size(length) * HeapWordSize;
 450   return byte_size;
 451 }
 452 
 453 int AOTMappedHeapWriter::filler_array_length(size_t fill_bytes) {
 454   assert(is_object_aligned(fill_bytes), "must be");
 455   size_t elemSize = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
 456 
 457   int initial_length = to_array_length(fill_bytes / elemSize);
 458   for (int length = initial_length; length >= 0; length --) {
 459     size_t array_byte_size = filler_array_byte_size(length);
 460     if (array_byte_size == fill_bytes) {
 461       return length;
 462     }
 463   }
 464 
 465   ShouldNotReachHere();
 466   return -1;
 467 }
 468 
 469 HeapWord* AOTMappedHeapWriter::init_filler_array_at_buffer_top(int array_length, size_t fill_bytes) {
 470   assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
 471   Klass* oak = Universe::objectArrayKlass(); // already relocated to point to archived klass
 472   HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used);
 473   memset(mem, 0, fill_bytes);
 474   narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(oak);
 475   if (UseCompactObjectHeaders) {
 476     oopDesc::release_set_mark(mem, markWord::prototype().set_narrow_klass(nk));
 477   } else {
 478     oopDesc::set_mark(mem, markWord::prototype());
 479     cast_to_oop(mem)->set_narrow_klass(nk);
 480   }
 481   arrayOopDesc::set_length(mem, array_length);
 482   return mem;
 483 }
 484 
 485 void AOTMappedHeapWriter::maybe_fill_gc_region_gap(size_t required_byte_size) {
 486   // We fill only with arrays (so we don't need to use a single HeapWord filler if the
 487   // leftover space is smaller than a zero-sized array object). Therefore, we need to
 488   // make sure there's enough space of min_filler_byte_size in the current region after
 489   // required_byte_size has been allocated. If not, fill the remainder of the current
 490   // region.
 491   size_t min_filler_byte_size = filler_array_byte_size(0);
 492   size_t new_used = _buffer_used + required_byte_size + min_filler_byte_size;
 493 
 494   const size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
 495   const size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
 496 
 497   if (cur_min_region_bottom != next_min_region_bottom) {
 498     // Make sure that no objects span across MIN_GC_REGION_ALIGNMENT. This way
 499     // we can map the region in any region-based collector.
 500     assert(next_min_region_bottom > cur_min_region_bottom, "must be");
 501     assert(next_min_region_bottom - cur_min_region_bottom == MIN_GC_REGION_ALIGNMENT,
 502            "no buffered object can be larger than %d bytes",  MIN_GC_REGION_ALIGNMENT);
 503 
 504     const size_t filler_end = next_min_region_bottom;
 505     const size_t fill_bytes = filler_end - _buffer_used;
 506     assert(fill_bytes > 0, "must be");
 507     ensure_buffer_space(filler_end);
 508 
 509     int array_length = filler_array_length(fill_bytes);
 510     log_info(aot, heap)("Inserting filler obj array of %d elements (%zu bytes total) @ buffer offset %zu",
 511                         array_length, fill_bytes, _buffer_used);
 512     HeapWord* filler = init_filler_array_at_buffer_top(array_length, fill_bytes);
 513     _buffer_used = filler_end;
 514     _fillers->put(buffered_address_to_offset((address)filler), fill_bytes);
 515   }
 516 }
 517 
 518 size_t AOTMappedHeapWriter::get_filler_size_at(address buffered_addr) {
 519   size_t* p = _fillers->get(buffered_address_to_offset(buffered_addr));
 520   if (p != nullptr) {
 521     assert(*p > 0, "filler must be larger than zero bytes");
 522     return *p;
 523   } else {
 524     return 0; // buffered_addr is not a filler
 525   }
 526 }
 527 
 528 template <typename T>
 529 void update_buffered_object_field(address buffered_obj, int field_offset, T value) {
 530   T* field_addr = cast_to_oop(buffered_obj)->field_addr<T>(field_offset);
 531   *field_addr = value;
 532 }
 533 
 534 size_t AOTMappedHeapWriter::copy_one_source_obj_to_buffer(oop src_obj) {
 535   assert(!is_too_large_to_archive(src_obj), "already checked");
 536   size_t byte_size = src_obj->size() * HeapWordSize;
 537   assert(byte_size > 0, "no zero-size objects");
 538 
 539   // For region-based collectors such as G1, the archive heap may be mapped into
 540   // multiple regions. We need to make sure that we don't have an object that can possible
 541   // span across two regions.
 542   maybe_fill_gc_region_gap(byte_size);
 543 
 544   size_t new_used = _buffer_used + byte_size;
 545   assert(new_used > _buffer_used, "no wrap around");
 546 
 547   size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
 548   size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
 549   assert(cur_min_region_bottom == next_min_region_bottom, "no object should cross minimal GC region boundaries");
 550 
 551   ensure_buffer_space(new_used);
 552 
 553   address from = cast_from_oop<address>(src_obj);
 554   address to = offset_to_buffered_address<address>(_buffer_used);
 555   assert(is_object_aligned(_buffer_used), "sanity");
 556   assert(is_object_aligned(byte_size), "sanity");
 557   memcpy(to, from, byte_size);
 558 
 559   // These native pointers will be restored explicitly at run time.
 560   if (java_lang_Module::is_instance(src_obj)) {
 561     update_buffered_object_field<ModuleEntry*>(to, java_lang_Module::module_entry_offset(), nullptr);
 562   } else if (java_lang_ClassLoader::is_instance(src_obj)) {
 563 #ifdef ASSERT
 564     // We only archive these loaders
 565     if (src_obj != SystemDictionary::java_platform_loader() &&
 566         src_obj != SystemDictionary::java_system_loader()) {
 567       assert(src_obj->klass()->name()->equals("jdk/internal/loader/ClassLoaders$BootClassLoader"), "must be");
 568     }
 569 #endif
 570     update_buffered_object_field<ClassLoaderData*>(to, java_lang_ClassLoader::loader_data_offset(), nullptr);
 571   }
 572 
 573   size_t buffered_obj_offset = _buffer_used;
 574   _buffer_used = new_used;
 575 
 576   return buffered_obj_offset;
 577 }
 578 
 579 // Set the range [_requested_bottom, _requested_top), the requested address range of all
 580 // the archived heap objects in the production run.
 581 //
 582 // (1) UseCompressedOops == true && !is_writing_deterministic_heap()
 583 //
 584 //     The archived objects are stored using the COOPS encoding of the assembly phase.
 585 //     We pick a range within the heap used by the assembly phase.
 586 //
 587 //     In the production run, if different COOPS encodings are used:
 588 //         - The heap contents needs to be relocated.
 589 //
 590 // (2) UseCompressedOops == true && is_writing_deterministic_heap()
 591 //
 592 //     We always use zero-based, zero-shift encoding. _requested_top is aligned to 0x10000000.
 593 //
 594 // (3) UseCompressedOops == false:
 595 //
 596 //     In the production run, the heap range is usually picked (randomly) by the OS, so we
 597 //     will almost always need to perform relocation, regardless of how we pick the requested
 598 //     address range.
 599 //
 600 //     So we just hard code it to NOCOOPS_REQUESTED_BASE.
 601 //
 602 void AOTMappedHeapWriter::set_requested_address_range(ArchiveMappedHeapInfo* info) {
 603   assert(!info->is_used(), "only set once");
 604 
 605   size_t heap_region_byte_size = _buffer_used;
 606   assert(heap_region_byte_size > 0, "must archived at least one object!");
 607 
 608   if (UseCompressedOops) {
 609     if (is_writing_deterministic_heap()) {
 610       // Pick a heap range so that requested addresses can be encoded with zero-base/no shift.
 611       // We align the requested bottom to at least 1 MB: if the production run uses G1 with a small
 612       // heap (e.g., -Xmx256m), it's likely that we can map the archived objects at the
 613       // requested location to avoid relocation.
 614       //
 615       // For other collectors or larger heaps, relocation is unavoidable, but is usually
 616       // quite cheap. If you really want to avoid relocation, use the AOT workflow instead.
 617       address heap_end = (address)0x100000000;
 618       size_t alignment = MAX2(MIN_GC_REGION_ALIGNMENT, 1024 * 1024);
 619       if (align_up(heap_region_byte_size, alignment) >= (size_t)heap_end) {
 620         log_error(aot, heap)("cached heap space is too large: %zu bytes", heap_region_byte_size);
 621         AOTMetaspace::unrecoverable_writing_error();
 622       }
 623       _requested_bottom = align_down(heap_end - heap_region_byte_size, alignment);
 624     } else if (UseG1GC) {
 625       // For G1, pick the range at the top of the current heap. If the exact same heap sizes
 626       // are used in the production run, it's likely that we can map the archived objects
 627       // at the requested location to avoid relocation.
 628       address heap_end = (address)G1CollectedHeap::heap()->reserved().end();
 629       log_info(aot, heap)("Heap end = %p", heap_end);
 630       _requested_bottom = align_down(heap_end - heap_region_byte_size, G1HeapRegion::GrainBytes);
 631       _requested_bottom = align_down(_requested_bottom, MIN_GC_REGION_ALIGNMENT);
 632       assert(is_aligned(_requested_bottom, G1HeapRegion::GrainBytes), "sanity");
 633     } else {
 634       _requested_bottom = align_up(CompressedOops::begin(), MIN_GC_REGION_ALIGNMENT);
 635     }
 636   } else {
 637     // We always write the objects as if the heap started at this address. This
 638     // makes the contents of the archive heap deterministic.
 639     //
 640     // Note that at runtime, the heap address is selected by the OS, so the archive
 641     // heap will not be mapped at 0x10000000, and the contents need to be patched.
 642     _requested_bottom = align_up((address)NOCOOPS_REQUESTED_BASE, MIN_GC_REGION_ALIGNMENT);
 643   }
 644 
 645   assert(is_aligned(_requested_bottom, MIN_GC_REGION_ALIGNMENT), "sanity");
 646 
 647   _requested_top = _requested_bottom + _buffer_used;
 648 
 649   info->set_buffer_region(MemRegion(offset_to_buffered_address<HeapWord*>(0),
 650                                     offset_to_buffered_address<HeapWord*>(_buffer_used)));
 651   info->set_root_segments(_heap_root_segments);
 652 }
 653 
 654 // Oop relocation
 655 
 656 template <typename T> T* AOTMappedHeapWriter::requested_addr_to_buffered_addr(T* p) {
 657   assert(is_in_requested_range(cast_to_oop(p)), "must be");
 658 
 659   address addr = address(p);
 660   assert(addr >= _requested_bottom, "must be");
 661   size_t offset = addr - _requested_bottom;
 662   return offset_to_buffered_address<T*>(offset);
 663 }
 664 
 665 template <typename T> oop AOTMappedHeapWriter::load_source_oop_from_buffer(T* buffered_addr) {
 666   oop o = load_oop_from_buffer(buffered_addr);
 667   assert(!in_buffer(cast_from_oop<address>(o)), "must point to source oop");
 668   return o;
 669 }
 670 
 671 template <typename T> void AOTMappedHeapWriter::store_requested_oop_in_buffer(T* buffered_addr,
 672                                                                                    oop request_oop) {
 673   assert(request_oop == nullptr || is_in_requested_range(request_oop), "must be");
 674   store_oop_in_buffer(buffered_addr, request_oop);
 675 }
 676 
 677 inline void AOTMappedHeapWriter::store_oop_in_buffer(oop* buffered_addr, oop requested_obj) {
 678   *buffered_addr = requested_obj;
 679 }
 680 
 681 inline void AOTMappedHeapWriter::store_oop_in_buffer(narrowOop* buffered_addr, oop requested_obj) {
 682   narrowOop val = CompressedOops::encode(requested_obj);
 683   *buffered_addr = val;
 684 }
 685 
 686 oop AOTMappedHeapWriter::load_oop_from_buffer(oop* buffered_addr) {
 687   return *buffered_addr;
 688 }
 689 
 690 oop AOTMappedHeapWriter::load_oop_from_buffer(narrowOop* buffered_addr) {
 691   return CompressedOops::decode(*buffered_addr);
 692 }
 693 
 694 template <typename T> void AOTMappedHeapWriter::relocate_field_in_buffer(T* field_addr_in_buffer, oop source_referent, CHeapBitMap* oopmap) {
 695   oop request_referent = source_obj_to_requested_obj(source_referent);
 696   if (UseCompressedOops && is_writing_deterministic_heap()) {
 697     // We use zero-based, 0-shift encoding, so the narrowOop is just the lower
 698     // 32 bits of request_referent
 699     intptr_t addr = cast_from_oop<intptr_t>(request_referent);
 700     *((narrowOop*)field_addr_in_buffer) = checked_cast<narrowOop>(addr);
 701   } else {
 702     store_requested_oop_in_buffer<T>(field_addr_in_buffer, request_referent);
 703   }
 704   if (request_referent != nullptr) {
 705     mark_oop_pointer<T>(field_addr_in_buffer, oopmap);
 706   }
 707 }
 708 
 709 template <typename T> void AOTMappedHeapWriter::mark_oop_pointer(T* buffered_addr, CHeapBitMap* oopmap) {
 710   T* request_p = (T*)(buffered_addr_to_requested_addr((address)buffered_addr));
 711   address requested_region_bottom;
 712 
 713   assert(request_p >= (T*)_requested_bottom, "sanity");
 714   assert(request_p <  (T*)_requested_top, "sanity");
 715   requested_region_bottom = _requested_bottom;
 716 
 717   // Mark the pointer in the oopmap
 718   T* region_bottom = (T*)requested_region_bottom;
 719   assert(request_p >= region_bottom, "must be");
 720   BitMap::idx_t idx = request_p - region_bottom;
 721   assert(idx < oopmap->size(), "overflow");
 722   oopmap->set_bit(idx);
 723 }
 724 
 725 void AOTMappedHeapWriter::update_header_for_requested_obj(oop requested_obj, oop src_obj,  Klass* src_klass) {
 726   assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
 727   narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(src_klass);
 728   address buffered_addr = requested_addr_to_buffered_addr(cast_from_oop<address>(requested_obj));
 729 
 730   oop fake_oop = cast_to_oop(buffered_addr);
 731   if (UseCompactObjectHeaders) {
 732     fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk));
 733   } else {
 734     fake_oop->set_narrow_klass(nk);
 735   }
 736 
 737   if (src_obj == nullptr) {
 738     return;
 739   }
 740   // We need to retain the identity_hash, because it may have been used by some hashtables
 741   // in the shared heap.
 742   if (!src_obj->fast_no_hash_check() && (!(EnableValhalla && src_obj->mark().is_inline_type()))) {
 743     intptr_t src_hash = src_obj->identity_hash();
 744     if (UseCompactObjectHeaders) {
 745       fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk).copy_set_hash(src_hash));
 746     } else if (EnableValhalla) {
 747       fake_oop->set_mark(src_klass->prototype_header().copy_set_hash(src_hash));
 748     } else {
 749       fake_oop->set_mark(markWord::prototype().copy_set_hash(src_hash));
 750     }
 751     assert(fake_oop->mark().is_unlocked(), "sanity");
 752 
 753     DEBUG_ONLY(intptr_t archived_hash = fake_oop->identity_hash());
 754     assert(src_hash == archived_hash, "Different hash codes: original " INTPTR_FORMAT ", archived " INTPTR_FORMAT, src_hash, archived_hash);
 755   }
 756   // Strip age bits.
 757   fake_oop->set_mark(fake_oop->mark().set_age(0));
 758 }
 759 
 760 class AOTMappedHeapWriter::EmbeddedOopRelocator: public BasicOopIterateClosure {
 761   oop _src_obj;
 762   address _buffered_obj;
 763   CHeapBitMap* _oopmap;
 764   bool _is_java_lang_ref;
 765 public:
 766   EmbeddedOopRelocator(oop src_obj, address buffered_obj, CHeapBitMap* oopmap) :
 767     _src_obj(src_obj), _buffered_obj(buffered_obj), _oopmap(oopmap)
 768   {
 769     _is_java_lang_ref = AOTReferenceObjSupport::check_if_ref_obj(src_obj);
 770   }
 771 
 772   void do_oop(narrowOop *p) { EmbeddedOopRelocator::do_oop_work(p); }
 773   void do_oop(      oop *p) { EmbeddedOopRelocator::do_oop_work(p); }
 774 
 775 private:
 776   template <class T> void do_oop_work(T *p) {
 777     int field_offset = pointer_delta_as_int((char*)p, cast_from_oop<char*>(_src_obj));
 778     T* field_addr = (T*)(_buffered_obj + field_offset);
 779     oop referent = load_source_oop_from_buffer<T>(field_addr);
 780     referent = HeapShared::maybe_remap_referent(_is_java_lang_ref, field_offset, referent);
 781     AOTMappedHeapWriter::relocate_field_in_buffer<T>(field_addr, referent, _oopmap);
 782   }
 783 };
 784 
 785 static void log_bitmap_usage(const char* which, BitMap* bitmap, size_t total_bits) {
 786   // The whole heap is covered by total_bits, but there are only non-zero bits within [start ... end).
 787   size_t start = bitmap->find_first_set_bit(0);
 788   size_t end = bitmap->size();
 789   log_info(aot)("%s = %7zu ... %7zu (%3zu%% ... %3zu%% = %3zu%%)", which,
 790                 start, end,
 791                 start * 100 / total_bits,
 792                 end * 100 / total_bits,
 793                 (end - start) * 100 / total_bits);
 794 }
 795 
 796 // Update all oop fields embedded in the buffered objects
 797 void AOTMappedHeapWriter::relocate_embedded_oops(GrowableArrayCHeap<oop, mtClassShared>* roots,
 798                                                       ArchiveMappedHeapInfo* heap_info) {
 799   size_t oopmap_unit = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
 800   size_t heap_region_byte_size = _buffer_used;
 801   heap_info->oopmap()->resize(heap_region_byte_size   / oopmap_unit);
 802 
 803   for (int i = 0; i < _source_objs_order->length(); i++) {
 804     int src_obj_index = _source_objs_order->at(i)._index;
 805     oop src_obj = _source_objs->at(src_obj_index);
 806     HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj);
 807     assert(info != nullptr, "must be");
 808     oop requested_obj = requested_obj_from_buffer_offset(info->buffer_offset());
 809     update_header_for_requested_obj(requested_obj, src_obj, src_obj->klass());
 810     address buffered_obj = offset_to_buffered_address<address>(info->buffer_offset());
 811     EmbeddedOopRelocator relocator(src_obj, buffered_obj, heap_info->oopmap());
 812     src_obj->oop_iterate(&relocator);
 813     mark_native_pointers(src_obj);
 814   };
 815 
 816   // Relocate HeapShared::roots(), which is created in copy_roots_to_buffer() and
 817   // doesn't have a corresponding src_obj, so we can't use EmbeddedOopRelocator on it.
 818   for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) {
 819     size_t seg_offset = _heap_root_segments.segment_offset(seg_idx);
 820 
 821     objArrayOop requested_obj = (objArrayOop)requested_obj_from_buffer_offset(seg_offset);
 822     update_header_for_requested_obj(requested_obj, nullptr, Universe::objectArrayKlass());
 823     address buffered_obj = offset_to_buffered_address<address>(seg_offset);
 824     int length = _heap_root_segments.size_in_elems(seg_idx);
 825 
 826     size_t elem_size = UseCompressedOops ? sizeof(narrowOop) : sizeof(oop);
 827 
 828     for (int i = 0; i < length; i++) {
 829       // There is no source object; these are native oops - load, translate and
 830       // write back
 831       size_t elem_offset = objArrayOopDesc::base_offset_in_bytes() + elem_size * i;
 832       HeapWord* elem_addr = (HeapWord*)(buffered_obj + elem_offset);
 833       oop obj = NativeAccess<>::oop_load(elem_addr);
 834       obj = HeapShared::maybe_remap_referent(false /* is_reference_field */, elem_offset, obj);
 835       if (UseCompressedOops) {
 836         relocate_field_in_buffer<narrowOop>((narrowOop*)elem_addr, obj, heap_info->oopmap());
 837       } else {
 838         relocate_field_in_buffer<oop>((oop*)elem_addr, obj, heap_info->oopmap());
 839       }
 840     }
 841   }
 842 
 843   compute_ptrmap(heap_info);
 844 
 845   size_t total_bytes = (size_t)_buffer->length();
 846   log_bitmap_usage("oopmap", heap_info->oopmap(), total_bytes / (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)));
 847   log_bitmap_usage("ptrmap", heap_info->ptrmap(), total_bytes / sizeof(address));
 848 }
 849 
 850 void AOTMappedHeapWriter::mark_native_pointer(oop src_obj, int field_offset) {
 851   Metadata* ptr = src_obj->metadata_field_acquire(field_offset);
 852   if (ptr != nullptr) {
 853     NativePointerInfo info;
 854     info._src_obj = src_obj;
 855     info._field_offset = field_offset;
 856     _native_pointers->append(info);
 857     HeapShared::set_has_native_pointers(src_obj);
 858     _num_native_ptrs ++;
 859   }
 860 }
 861 
 862 void AOTMappedHeapWriter::mark_native_pointers(oop orig_obj) {
 863   HeapShared::do_metadata_offsets(orig_obj, [&](int offset) {
 864     mark_native_pointer(orig_obj, offset);
 865   });
 866 }
 867 
 868 void AOTMappedHeapWriter::compute_ptrmap(ArchiveMappedHeapInfo* heap_info) {
 869   int num_non_null_ptrs = 0;
 870   Metadata** bottom = (Metadata**) _requested_bottom;
 871   Metadata** top = (Metadata**) _requested_top; // exclusive
 872   heap_info->ptrmap()->resize(top - bottom);
 873 
 874   BitMap::idx_t max_idx = 32; // paranoid - don't make it too small
 875   for (int i = 0; i < _native_pointers->length(); i++) {
 876     NativePointerInfo info = _native_pointers->at(i);
 877     oop src_obj = info._src_obj;
 878     int field_offset = info._field_offset;
 879     HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj);
 880     // requested_field_addr = the address of this field in the requested space
 881     oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset());
 882     Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset);
 883     assert(bottom <= requested_field_addr && requested_field_addr < top, "range check");
 884 
 885     // Mark this field in the bitmap
 886     BitMap::idx_t idx = requested_field_addr - bottom;
 887     heap_info->ptrmap()->set_bit(idx);
 888     num_non_null_ptrs ++;
 889     max_idx = MAX2(max_idx, idx);
 890 
 891     // Set the native pointer to the requested address of the metadata (at runtime, the metadata will have
 892     // this address if the RO/RW regions are mapped at the default location).
 893 
 894     Metadata** buffered_field_addr = requested_addr_to_buffered_addr(requested_field_addr);
 895     Metadata* native_ptr = *buffered_field_addr;
 896     guarantee(native_ptr != nullptr, "sanity");
 897 
 898     if (RegeneratedClasses::has_been_regenerated(native_ptr)) {
 899       native_ptr = RegeneratedClasses::get_regenerated_object(native_ptr);
 900     }
 901 
 902     guarantee(ArchiveBuilder::current()->has_been_archived((address)native_ptr),
 903               "Metadata %p should have been archived", native_ptr);
 904 
 905     address buffered_native_ptr = ArchiveBuilder::current()->get_buffered_addr((address)native_ptr);
 906     address requested_native_ptr = ArchiveBuilder::current()->to_requested(buffered_native_ptr);
 907     *buffered_field_addr = (Metadata*)requested_native_ptr;
 908   }
 909 
 910   heap_info->ptrmap()->resize(max_idx + 1);
 911   log_info(aot, heap)("calculate_ptrmap: marked %d non-null native pointers for heap region (%zu bits)",
 912                       num_non_null_ptrs, size_t(heap_info->ptrmap()->size()));
 913 }
 914 
 915 AOTMapLogger::OopDataIterator* AOTMappedHeapWriter::oop_iterator(ArchiveMappedHeapInfo* heap_info) {
 916   class MappedWriterOopIterator : public AOTMapLogger::OopDataIterator {
 917   private:
 918     address _current;
 919     address _next;
 920 
 921     address _buffer_start;
 922     address _buffer_end;
 923     uint64_t _buffer_start_narrow_oop;
 924     intptr_t _buffer_to_requested_delta;
 925     int _requested_shift;
 926 
 927     size_t _num_root_segments;
 928     size_t _num_obj_arrays_logged;
 929 
 930   public:
 931     MappedWriterOopIterator(address buffer_start,
 932                             address buffer_end,
 933                             uint64_t buffer_start_narrow_oop,
 934                             intptr_t buffer_to_requested_delta,
 935                             int requested_shift,
 936                             size_t num_root_segments)
 937       : _current(nullptr),
 938         _next(buffer_start),
 939         _buffer_start(buffer_start),
 940         _buffer_end(buffer_end),
 941         _buffer_start_narrow_oop(buffer_start_narrow_oop),
 942         _buffer_to_requested_delta(buffer_to_requested_delta),
 943         _requested_shift(requested_shift),
 944         _num_root_segments(num_root_segments),
 945         _num_obj_arrays_logged(0) {
 946     }
 947 
 948     AOTMapLogger::OopData capture(address buffered_addr) {
 949       oopDesc* raw_oop = (oopDesc*)buffered_addr;
 950       size_t size = size_of_buffered_oop(buffered_addr);
 951       address requested_addr = buffered_addr_to_requested_addr(buffered_addr);
 952       intptr_t target_location = (intptr_t)requested_addr;
 953       uint64_t pd = (uint64_t)(pointer_delta(buffered_addr, _buffer_start, 1));
 954       uint32_t narrow_location = checked_cast<uint32_t>(_buffer_start_narrow_oop + (pd >> _requested_shift));
 955       Klass* klass = real_klass_of_buffered_oop(buffered_addr);
 956 
 957       return { buffered_addr,
 958                requested_addr,
 959                target_location,
 960                narrow_location,
 961                raw_oop,
 962                klass,
 963                size,
 964                false };
 965     }
 966 
 967     bool has_next() override {
 968       return _next < _buffer_end;
 969     }
 970 
 971     AOTMapLogger::OopData next() override {
 972       _current = _next;
 973       AOTMapLogger::OopData result = capture(_current);
 974       if (result._klass->is_objArray_klass()) {
 975         result._is_root_segment = _num_obj_arrays_logged++ < _num_root_segments;
 976       }
 977       _next = _current + result._size * BytesPerWord;
 978       return result;
 979     }
 980 
 981     AOTMapLogger::OopData obj_at(narrowOop* addr) override {
 982       uint64_t n = (uint64_t)(*addr);
 983       if (n == 0) {
 984         return null_data();
 985       } else {
 986         precond(n >= _buffer_start_narrow_oop);
 987         address buffer_addr = _buffer_start + ((n - _buffer_start_narrow_oop) << _requested_shift);
 988         return capture(buffer_addr);
 989       }
 990     }
 991 
 992     AOTMapLogger::OopData obj_at(oop* addr) override {
 993       address requested_value = cast_from_oop<address>(*addr);
 994       if (requested_value == nullptr) {
 995         return null_data();
 996       } else {
 997         address buffer_addr = requested_value - _buffer_to_requested_delta;
 998         return capture(buffer_addr);
 999       }
1000     }
1001 
1002     GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>* roots() override {
1003       return new GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>();
1004     }
1005   };
1006 
1007   MemRegion r = heap_info->buffer_region();
1008   address buffer_start = address(r.start());
1009   address buffer_end = address(r.end());
1010 
1011   address requested_base = UseCompressedOops ? AOTMappedHeapWriter::narrow_oop_base() : (address)AOTMappedHeapWriter::NOCOOPS_REQUESTED_BASE;
1012   address requested_start = UseCompressedOops ? AOTMappedHeapWriter::buffered_addr_to_requested_addr(buffer_start) : requested_base;
1013   int requested_shift = AOTMappedHeapWriter::narrow_oop_shift();
1014   intptr_t buffer_to_requested_delta = requested_start - buffer_start;
1015   uint64_t buffer_start_narrow_oop = 0xdeadbeed;
1016   if (UseCompressedOops) {
1017     buffer_start_narrow_oop = (uint64_t)(pointer_delta(requested_start, requested_base, 1)) >> requested_shift;
1018     assert(buffer_start_narrow_oop < 0xffffffff, "sanity");
1019   }
1020 
1021   return new MappedWriterOopIterator(buffer_start,
1022                                      buffer_end,
1023                                      buffer_start_narrow_oop,
1024                                      buffer_to_requested_delta,
1025                                      requested_shift,
1026                                      heap_info->root_segments().count());
1027 }
1028 
1029 #endif // INCLUDE_CDS_JAVA_HEAP