1 /*
  2  * Copyright (c) 2023, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "cds/aotReferenceObjSupport.hpp"
 26 #include "cds/archiveHeapWriter.hpp"
 27 #include "cds/cdsConfig.hpp"
 28 #include "cds/filemap.hpp"
 29 #include "cds/heapShared.hpp"
 30 #include "cds/regeneratedClasses.hpp"
 31 #include "classfile/javaClasses.hpp"
 32 #include "classfile/modules.hpp"
 33 #include "classfile/systemDictionary.hpp"
 34 #include "gc/shared/collectedHeap.hpp"
 35 #include "memory/iterator.inline.hpp"
 36 #include "memory/oopFactory.hpp"
 37 #include "memory/universe.hpp"
 38 #include "oops/compressedOops.hpp"
 39 #include "oops/objArrayOop.inline.hpp"
 40 #include "oops/oop.inline.hpp"
 41 #include "oops/oopHandle.inline.hpp"
 42 #include "oops/typeArrayKlass.hpp"
 43 #include "oops/typeArrayOop.hpp"
 44 #include "runtime/java.hpp"
 45 #include "runtime/mutexLocker.hpp"
 46 #include "utilities/bitMap.inline.hpp"
 47 #if INCLUDE_G1GC
 48 #include "gc/g1/g1CollectedHeap.hpp"
 49 #include "gc/g1/g1HeapRegion.hpp"
 50 #endif
 51 
 52 #if INCLUDE_CDS_JAVA_HEAP
 53 
 54 GrowableArrayCHeap<u1, mtClassShared>* ArchiveHeapWriter::_buffer = nullptr;
 55 
 56 // The following are offsets from buffer_bottom()
 57 size_t ArchiveHeapWriter::_buffer_used;
 58 
 59 // Heap root segments
 60 HeapRootSegments ArchiveHeapWriter::_heap_root_segments;
 61 
 62 address ArchiveHeapWriter::_requested_bottom;
 63 address ArchiveHeapWriter::_requested_top;
 64 
 65 GrowableArrayCHeap<ArchiveHeapWriter::NativePointerInfo, mtClassShared>* ArchiveHeapWriter::_native_pointers;
 66 GrowableArrayCHeap<oop, mtClassShared>* ArchiveHeapWriter::_source_objs;
 67 GrowableArrayCHeap<ArchiveHeapWriter::HeapObjOrder, mtClassShared>* ArchiveHeapWriter::_source_objs_order;
 68 
 69 ArchiveHeapWriter::BufferOffsetToSourceObjectTable*
 70   ArchiveHeapWriter::_buffer_offset_to_source_obj_table = nullptr;
 71 
 72 
 73 typedef HashTable<
 74       size_t,    // offset of a filler from ArchiveHeapWriter::buffer_bottom()
 75       size_t,    // size of this filler (in bytes)
 76       127,       // prime number
 77       AnyObj::C_HEAP,
 78       mtClassShared> FillersTable;
 79 static FillersTable* _fillers;
 80 static int _num_native_ptrs = 0;
 81 
 82 void ArchiveHeapWriter::init() {
 83   if (CDSConfig::is_dumping_heap()) {
 84     Universe::heap()->collect(GCCause::_java_lang_system_gc);
 85 
 86     _buffer_offset_to_source_obj_table = new BufferOffsetToSourceObjectTable(/*size (prime)*/36137, /*max size*/1 * M);
 87     _fillers = new FillersTable();
 88     _requested_bottom = nullptr;
 89     _requested_top = nullptr;
 90 
 91     _native_pointers = new GrowableArrayCHeap<NativePointerInfo, mtClassShared>(2048);
 92     _source_objs = new GrowableArrayCHeap<oop, mtClassShared>(10000);
 93 
 94     guarantee(MIN_GC_REGION_ALIGNMENT <= G1HeapRegion::min_region_size_in_words() * HeapWordSize, "must be");
 95   }
 96 }
 97 
 98 void ArchiveHeapWriter::delete_tables_with_raw_oops() {
 99   delete _source_objs;
100   _source_objs = nullptr;
101 }
102 
103 void ArchiveHeapWriter::add_source_obj(oop src_obj) {
104   _source_objs->append(src_obj);
105 }
106 
107 void ArchiveHeapWriter::write(GrowableArrayCHeap<oop, mtClassShared>* roots,
108                               ArchiveHeapInfo* heap_info) {
109   assert(CDSConfig::is_dumping_heap(), "sanity");
110   allocate_buffer();
111   copy_source_objs_to_buffer(roots);
112   set_requested_address(heap_info);
113   relocate_embedded_oops(roots, heap_info);
114 }
115 
116 bool ArchiveHeapWriter::is_too_large_to_archive(oop o) {
117   return is_too_large_to_archive(o->size());
118 }
119 
120 bool ArchiveHeapWriter::is_string_too_large_to_archive(oop string) {
121   typeArrayOop value = java_lang_String::value_no_keepalive(string);
122   return is_too_large_to_archive(value);
123 }
124 
125 bool ArchiveHeapWriter::is_too_large_to_archive(size_t size) {
126   assert(size > 0, "no zero-size object");
127   assert(size * HeapWordSize > size, "no overflow");
128   static_assert(MIN_GC_REGION_ALIGNMENT > 0, "must be positive");
129 
130   size_t byte_size = size * HeapWordSize;
131   if (byte_size > size_t(MIN_GC_REGION_ALIGNMENT)) {
132     return true;
133   } else {
134     return false;
135   }
136 }
137 
138 // Various lookup functions between source_obj, buffered_obj and requested_obj
139 bool ArchiveHeapWriter::is_in_requested_range(oop o) {
140   assert(_requested_bottom != nullptr, "do not call before _requested_bottom is initialized");
141   address a = cast_from_oop<address>(o);
142   return (_requested_bottom <= a && a < _requested_top);
143 }
144 
145 oop ArchiveHeapWriter::requested_obj_from_buffer_offset(size_t offset) {
146   oop req_obj = cast_to_oop(_requested_bottom + offset);
147   assert(is_in_requested_range(req_obj), "must be");
148   return req_obj;
149 }
150 
151 oop ArchiveHeapWriter::source_obj_to_requested_obj(oop src_obj) {
152   assert(CDSConfig::is_dumping_heap(), "dump-time only");
153   HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj);
154   if (p != nullptr) {
155     return requested_obj_from_buffer_offset(p->buffer_offset());
156   } else {
157     return nullptr;
158   }
159 }
160 
161 oop ArchiveHeapWriter::buffered_addr_to_source_obj(address buffered_addr) {
162   OopHandle* oh = _buffer_offset_to_source_obj_table->get(buffered_address_to_offset(buffered_addr));
163   if (oh != nullptr) {
164     return oh->resolve();
165   } else {
166     return nullptr;
167   }
168 }
169 
170 Klass* ArchiveHeapWriter::real_klass_of_buffered_oop(address buffered_addr) {
171   oop p = buffered_addr_to_source_obj(buffered_addr);
172   if (p != nullptr) {
173     return p->klass();
174   } else if (get_filler_size_at(buffered_addr) > 0) {
175     return Universe::fillerArrayKlass();
176   } else {
177     // This is one of the root segments
178     return Universe::objectArrayKlass();
179   }
180 }
181 
182 size_t ArchiveHeapWriter::size_of_buffered_oop(address buffered_addr) {
183   oop p = buffered_addr_to_source_obj(buffered_addr);
184   if (p != nullptr) {
185     return p->size();
186   }
187 
188   size_t nbytes = get_filler_size_at(buffered_addr);
189   if (nbytes > 0) {
190     assert((nbytes % BytesPerWord) == 0, "should be aligned");
191     return nbytes / BytesPerWord;
192   }
193 
194   address hrs = buffer_bottom();
195   for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) {
196     nbytes = _heap_root_segments.size_in_bytes(seg_idx);
197     if (hrs == buffered_addr) {
198       assert((nbytes % BytesPerWord) == 0, "should be aligned");
199       return nbytes / BytesPerWord;
200     }
201     hrs += nbytes;
202   }
203 
204   ShouldNotReachHere();
205   return 0;
206 }
207 
208 address ArchiveHeapWriter::buffered_addr_to_requested_addr(address buffered_addr) {
209   return _requested_bottom + buffered_address_to_offset(buffered_addr);
210 }
211 
212 address ArchiveHeapWriter::requested_address() {
213   assert(_buffer != nullptr, "must be initialized");
214   return _requested_bottom;
215 }
216 
217 void ArchiveHeapWriter::allocate_buffer() {
218   int initial_buffer_size = 100000;
219   _buffer = new GrowableArrayCHeap<u1, mtClassShared>(initial_buffer_size);
220   _buffer_used = 0;
221   ensure_buffer_space(1); // so that buffer_bottom() works
222 }
223 
224 void ArchiveHeapWriter::ensure_buffer_space(size_t min_bytes) {
225   // We usually have very small heaps. If we get a huge one it's probably caused by a bug.
226   guarantee(min_bytes <= max_jint, "we dont support archiving more than 2G of objects");
227   _buffer->at_grow(to_array_index(min_bytes));
228 }
229 
230 objArrayOop ArchiveHeapWriter::allocate_root_segment(size_t offset, int element_count) {
231   HeapWord* mem = offset_to_buffered_address<HeapWord *>(offset);
232   memset(mem, 0, refArrayOopDesc::object_size(element_count));
233 
234   // The initialization code is copied from MemAllocator::finish and ObjArrayAllocator::initialize.
235   if (UseCompactObjectHeaders) {
236     oopDesc::release_set_mark(mem, Universe::objectArrayKlass()->prototype_header());
237   } else {
238     assert(!EnableValhalla || Universe::objectArrayKlass()->prototype_header() == markWord::prototype(), "should be the same");
239     oopDesc::set_mark(mem, markWord::prototype());
240     oopDesc::release_set_klass(mem, Universe::objectArrayKlass());
241   }
242   arrayOopDesc::set_length(mem, element_count);
243   return objArrayOop(cast_to_oop(mem));
244 }
245 
246 void ArchiveHeapWriter::root_segment_at_put(objArrayOop segment, int index, oop root) {
247   // Do not use arrayOop->obj_at_put(i, o) as arrayOop is outside the real heap!
248   if (UseCompressedOops) {
249     *segment->obj_at_addr<narrowOop>(index) = CompressedOops::encode(root);
250   } else {
251     *segment->obj_at_addr<oop>(index) = root;
252   }
253 }
254 
255 void ArchiveHeapWriter::copy_roots_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
256   // Depending on the number of classes we are archiving, a single roots array may be
257   // larger than MIN_GC_REGION_ALIGNMENT. Roots are allocated first in the buffer, which
258   // allows us to chop the large array into a series of "segments". Current layout
259   // starts with zero or more segments exactly fitting MIN_GC_REGION_ALIGNMENT, and end
260   // with a single segment that may be smaller than MIN_GC_REGION_ALIGNMENT.
261   // This is simple and efficient. We do not need filler objects anywhere between the segments,
262   // or immediately after the last segment. This allows starting the object dump immediately
263   // after the roots.
264 
265   assert((_buffer_used % MIN_GC_REGION_ALIGNMENT) == 0,
266          "Pre-condition: Roots start at aligned boundary: %zu", _buffer_used);
267 
268   int max_elem_count = ((MIN_GC_REGION_ALIGNMENT - arrayOopDesc::header_size_in_bytes()) / heapOopSize);
269   assert(refArrayOopDesc::object_size(max_elem_count)*HeapWordSize == MIN_GC_REGION_ALIGNMENT,
270          "Should match exactly");
271 
272   HeapRootSegments segments(_buffer_used,
273                             roots->length(),
274                             MIN_GC_REGION_ALIGNMENT,
275                             max_elem_count);
276 
277   int root_index = 0;
278   for (size_t seg_idx = 0; seg_idx < segments.count(); seg_idx++) {
279     int size_elems = segments.size_in_elems(seg_idx);
280     size_t size_bytes = segments.size_in_bytes(seg_idx);
281 
282     size_t oop_offset = _buffer_used;
283     _buffer_used = oop_offset + size_bytes;
284     ensure_buffer_space(_buffer_used);
285 
286     assert((oop_offset % MIN_GC_REGION_ALIGNMENT) == 0,
287            "Roots segment %zu start is not aligned: %zu",
288            segments.count(), oop_offset);
289 
290     objArrayOop seg_oop = allocate_root_segment(oop_offset, size_elems);
291     for (int i = 0; i < size_elems; i++) {
292       root_segment_at_put(seg_oop, i, roots->at(root_index++));
293     }
294 
295     log_info(aot, heap)("archived obj root segment [%d] = %zu bytes, obj = " PTR_FORMAT,
296                         size_elems, size_bytes, p2i(seg_oop));
297   }
298 
299   assert(root_index == roots->length(), "Post-condition: All roots are handled");
300 
301   _heap_root_segments = segments;
302 }
303 
304 // The goal is to sort the objects in increasing order of:
305 // - objects that have only oop pointers
306 // - objects that have both native and oop pointers
307 // - objects that have only native pointers
308 // - objects that have no pointers
309 static int oop_sorting_rank(oop o) {
310   bool has_oop_ptr, has_native_ptr;
311   HeapShared::get_pointer_info(o, has_oop_ptr, has_native_ptr);
312 
313   if (has_oop_ptr) {
314     if (!has_native_ptr) {
315       return 0;
316     } else {
317       return 1;
318     }
319   } else {
320     if (has_native_ptr) {
321       return 2;
322     } else {
323       return 3;
324     }
325   }
326 }
327 
328 int ArchiveHeapWriter::compare_objs_by_oop_fields(HeapObjOrder* a, HeapObjOrder* b) {
329   int rank_a = a->_rank;
330   int rank_b = b->_rank;
331 
332   if (rank_a != rank_b) {
333     return rank_a - rank_b;
334   } else {
335     // If they are the same rank, sort them by their position in the _source_objs array
336     return a->_index - b->_index;
337   }
338 }
339 
340 void ArchiveHeapWriter::sort_source_objs() {
341   log_info(aot)("sorting heap objects");
342   int len = _source_objs->length();
343   _source_objs_order = new GrowableArrayCHeap<HeapObjOrder, mtClassShared>(len);
344 
345   for (int i = 0; i < len; i++) {
346     oop o = _source_objs->at(i);
347     int rank = oop_sorting_rank(o);
348     HeapObjOrder os = {i, rank};
349     _source_objs_order->append(os);
350   }
351   log_info(aot)("computed ranks");
352   _source_objs_order->sort(compare_objs_by_oop_fields);
353   log_info(aot)("sorting heap objects done");
354 }
355 
356 void ArchiveHeapWriter::copy_source_objs_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
357   // There could be multiple root segments, which we want to be aligned by region.
358   // Putting them ahead of objects makes sure we waste no space.
359   copy_roots_to_buffer(roots);
360 
361   sort_source_objs();
362   for (int i = 0; i < _source_objs_order->length(); i++) {
363     int src_obj_index = _source_objs_order->at(i)._index;
364     oop src_obj = _source_objs->at(src_obj_index);
365     HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj);
366     assert(info != nullptr, "must be");
367     size_t buffer_offset = copy_one_source_obj_to_buffer(src_obj);
368     info->set_buffer_offset(buffer_offset);
369 
370     OopHandle handle(Universe::vm_global(), src_obj);
371     _buffer_offset_to_source_obj_table->put_when_absent(buffer_offset, handle);
372     _buffer_offset_to_source_obj_table->maybe_grow();
373 
374     if (java_lang_Module::is_instance(src_obj)) {
375       Modules::check_archived_module_oop(src_obj);
376     }
377   }
378 
379   log_info(aot)("Size of heap region = %zu bytes, %d objects, %d roots, %d native ptrs",
380                 _buffer_used, _source_objs->length() + 1, roots->length(), _num_native_ptrs);
381 }
382 
383 size_t ArchiveHeapWriter::filler_array_byte_size(int length) {
384   size_t byte_size = refArrayOopDesc::object_size(length) * HeapWordSize;
385   return byte_size;
386 }
387 
388 int ArchiveHeapWriter::filler_array_length(size_t fill_bytes) {
389   assert(is_object_aligned(fill_bytes), "must be");
390   size_t elemSize = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
391 
392   int initial_length = to_array_length(fill_bytes / elemSize);
393   for (int length = initial_length; length >= 0; length --) {
394     size_t array_byte_size = filler_array_byte_size(length);
395     if (array_byte_size == fill_bytes) {
396       return length;
397     }
398   }
399 
400   ShouldNotReachHere();
401   return -1;
402 }
403 
404 HeapWord* ArchiveHeapWriter::init_filler_array_at_buffer_top(int array_length, size_t fill_bytes) {
405   assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
406   Klass* oak = Universe::objectArrayKlass(); // already relocated to point to archived klass
407   HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used);
408   memset(mem, 0, fill_bytes);
409   narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(oak);
410   if (UseCompactObjectHeaders) {
411     oopDesc::release_set_mark(mem, markWord::prototype().set_narrow_klass(nk));
412   } else {
413     oopDesc::set_mark(mem, markWord::prototype());
414     cast_to_oop(mem)->set_narrow_klass(nk);
415   }
416   arrayOopDesc::set_length(mem, array_length);
417   return mem;
418 }
419 
420 void ArchiveHeapWriter::maybe_fill_gc_region_gap(size_t required_byte_size) {
421   // We fill only with arrays (so we don't need to use a single HeapWord filler if the
422   // leftover space is smaller than a zero-sized array object). Therefore, we need to
423   // make sure there's enough space of min_filler_byte_size in the current region after
424   // required_byte_size has been allocated. If not, fill the remainder of the current
425   // region.
426   size_t min_filler_byte_size = filler_array_byte_size(0);
427   size_t new_used = _buffer_used + required_byte_size + min_filler_byte_size;
428 
429   const size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
430   const size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
431 
432   if (cur_min_region_bottom != next_min_region_bottom) {
433     // Make sure that no objects span across MIN_GC_REGION_ALIGNMENT. This way
434     // we can map the region in any region-based collector.
435     assert(next_min_region_bottom > cur_min_region_bottom, "must be");
436     assert(next_min_region_bottom - cur_min_region_bottom == MIN_GC_REGION_ALIGNMENT,
437            "no buffered object can be larger than %d bytes",  MIN_GC_REGION_ALIGNMENT);
438 
439     const size_t filler_end = next_min_region_bottom;
440     const size_t fill_bytes = filler_end - _buffer_used;
441     assert(fill_bytes > 0, "must be");
442     ensure_buffer_space(filler_end);
443 
444     int array_length = filler_array_length(fill_bytes);
445     log_info(aot, heap)("Inserting filler obj array of %d elements (%zu bytes total) @ buffer offset %zu",
446                         array_length, fill_bytes, _buffer_used);
447     HeapWord* filler = init_filler_array_at_buffer_top(array_length, fill_bytes);
448     _buffer_used = filler_end;
449     _fillers->put(buffered_address_to_offset((address)filler), fill_bytes);
450   }
451 }
452 
453 size_t ArchiveHeapWriter::get_filler_size_at(address buffered_addr) {
454   size_t* p = _fillers->get(buffered_address_to_offset(buffered_addr));
455   if (p != nullptr) {
456     assert(*p > 0, "filler must be larger than zero bytes");
457     return *p;
458   } else {
459     return 0; // buffered_addr is not a filler
460   }
461 }
462 
463 template <typename T>
464 void update_buffered_object_field(address buffered_obj, int field_offset, T value) {
465   T* field_addr = cast_to_oop(buffered_obj)->field_addr<T>(field_offset);
466   *field_addr = value;
467 }
468 
469 size_t ArchiveHeapWriter::copy_one_source_obj_to_buffer(oop src_obj) {
470   assert(!is_too_large_to_archive(src_obj), "already checked");
471   size_t byte_size = src_obj->size() * HeapWordSize;
472   assert(byte_size > 0, "no zero-size objects");
473 
474   // For region-based collectors such as G1, the archive heap may be mapped into
475   // multiple regions. We need to make sure that we don't have an object that can possible
476   // span across two regions.
477   maybe_fill_gc_region_gap(byte_size);
478 
479   size_t new_used = _buffer_used + byte_size;
480   assert(new_used > _buffer_used, "no wrap around");
481 
482   size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
483   size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
484   assert(cur_min_region_bottom == next_min_region_bottom, "no object should cross minimal GC region boundaries");
485 
486   ensure_buffer_space(new_used);
487 
488   address from = cast_from_oop<address>(src_obj);
489   address to = offset_to_buffered_address<address>(_buffer_used);
490   assert(is_object_aligned(_buffer_used), "sanity");
491   assert(is_object_aligned(byte_size), "sanity");
492   memcpy(to, from, byte_size);
493 
494   // These native pointers will be restored explicitly at run time.
495   if (java_lang_Module::is_instance(src_obj)) {
496     update_buffered_object_field<ModuleEntry*>(to, java_lang_Module::module_entry_offset(), nullptr);
497   } else if (java_lang_ClassLoader::is_instance(src_obj)) {
498 #ifdef ASSERT
499     // We only archive these loaders
500     if (src_obj != SystemDictionary::java_platform_loader() &&
501         src_obj != SystemDictionary::java_system_loader()) {
502       assert(src_obj->klass()->name()->equals("jdk/internal/loader/ClassLoaders$BootClassLoader"), "must be");
503     }
504 #endif
505     update_buffered_object_field<ClassLoaderData*>(to, java_lang_ClassLoader::loader_data_offset(), nullptr);
506   }
507 
508   size_t buffered_obj_offset = _buffer_used;
509   _buffer_used = new_used;
510 
511   return buffered_obj_offset;
512 }
513 
514 void ArchiveHeapWriter::set_requested_address(ArchiveHeapInfo* info) {
515   assert(!info->is_used(), "only set once");
516 
517   size_t heap_region_byte_size = _buffer_used;
518   assert(heap_region_byte_size > 0, "must archived at least one object!");
519 
520   if (UseCompressedOops) {
521     if (UseG1GC) {
522       address heap_end = (address)G1CollectedHeap::heap()->reserved().end();
523       log_info(aot, heap)("Heap end = %p", heap_end);
524       _requested_bottom = align_down(heap_end - heap_region_byte_size, G1HeapRegion::GrainBytes);
525       _requested_bottom = align_down(_requested_bottom, MIN_GC_REGION_ALIGNMENT);
526       assert(is_aligned(_requested_bottom, G1HeapRegion::GrainBytes), "sanity");
527     } else {
528       _requested_bottom = align_up(CompressedOops::begin(), MIN_GC_REGION_ALIGNMENT);
529     }
530   } else {
531     // We always write the objects as if the heap started at this address. This
532     // makes the contents of the archive heap deterministic.
533     //
534     // Note that at runtime, the heap address is selected by the OS, so the archive
535     // heap will not be mapped at 0x10000000, and the contents need to be patched.
536     _requested_bottom = align_up((address)NOCOOPS_REQUESTED_BASE, MIN_GC_REGION_ALIGNMENT);
537   }
538 
539   assert(is_aligned(_requested_bottom, MIN_GC_REGION_ALIGNMENT), "sanity");
540 
541   _requested_top = _requested_bottom + _buffer_used;
542 
543   info->set_buffer_region(MemRegion(offset_to_buffered_address<HeapWord*>(0),
544                                     offset_to_buffered_address<HeapWord*>(_buffer_used)));
545   info->set_heap_root_segments(_heap_root_segments);
546 }
547 
548 // Oop relocation
549 
550 template <typename T> T* ArchiveHeapWriter::requested_addr_to_buffered_addr(T* p) {
551   assert(is_in_requested_range(cast_to_oop(p)), "must be");
552 
553   address addr = address(p);
554   assert(addr >= _requested_bottom, "must be");
555   size_t offset = addr - _requested_bottom;
556   return offset_to_buffered_address<T*>(offset);
557 }
558 
559 template <typename T> oop ArchiveHeapWriter::load_source_oop_from_buffer(T* buffered_addr) {
560   oop o = load_oop_from_buffer(buffered_addr);
561   assert(!in_buffer(cast_from_oop<address>(o)), "must point to source oop");
562   return o;
563 }
564 
565 template <typename T> void ArchiveHeapWriter::store_requested_oop_in_buffer(T* buffered_addr,
566                                                                             oop request_oop) {
567   assert(is_in_requested_range(request_oop), "must be");
568   store_oop_in_buffer(buffered_addr, request_oop);
569 }
570 
571 inline void ArchiveHeapWriter::store_oop_in_buffer(oop* buffered_addr, oop requested_obj) {
572   *buffered_addr = requested_obj;
573 }
574 
575 inline void ArchiveHeapWriter::store_oop_in_buffer(narrowOop* buffered_addr, oop requested_obj) {
576   narrowOop val = CompressedOops::encode_not_null(requested_obj);
577   *buffered_addr = val;
578 }
579 
580 oop ArchiveHeapWriter::load_oop_from_buffer(oop* buffered_addr) {
581   return *buffered_addr;
582 }
583 
584 oop ArchiveHeapWriter::load_oop_from_buffer(narrowOop* buffered_addr) {
585   return CompressedOops::decode(*buffered_addr);
586 }
587 
588 template <typename T> void ArchiveHeapWriter::relocate_field_in_buffer(T* field_addr_in_buffer, CHeapBitMap* oopmap) {
589   oop source_referent = load_source_oop_from_buffer<T>(field_addr_in_buffer);
590   if (source_referent != nullptr) {
591     if (java_lang_Class::is_instance(source_referent)) {
592       Klass* k = java_lang_Class::as_Klass(source_referent);
593       if (RegeneratedClasses::has_been_regenerated(k)) {
594         source_referent = RegeneratedClasses::get_regenerated_object(k)->java_mirror();
595       }
596       // When the source object points to a "real" mirror, the buffered object should point
597       // to the "scratch" mirror, which has all unarchivable fields scrubbed (to be reinstated
598       // at run time).
599       source_referent = HeapShared::scratch_java_mirror(source_referent);
600       assert(source_referent != nullptr, "must be");
601     }
602     oop request_referent = source_obj_to_requested_obj(source_referent);
603     store_requested_oop_in_buffer<T>(field_addr_in_buffer, request_referent);
604     mark_oop_pointer<T>(field_addr_in_buffer, oopmap);
605   }
606 }
607 
608 template <typename T> void ArchiveHeapWriter::mark_oop_pointer(T* buffered_addr, CHeapBitMap* oopmap) {
609   T* request_p = (T*)(buffered_addr_to_requested_addr((address)buffered_addr));
610   address requested_region_bottom;
611 
612   assert(request_p >= (T*)_requested_bottom, "sanity");
613   assert(request_p <  (T*)_requested_top, "sanity");
614   requested_region_bottom = _requested_bottom;
615 
616   // Mark the pointer in the oopmap
617   T* region_bottom = (T*)requested_region_bottom;
618   assert(request_p >= region_bottom, "must be");
619   BitMap::idx_t idx = request_p - region_bottom;
620   assert(idx < oopmap->size(), "overflow");
621   oopmap->set_bit(idx);
622 }
623 
624 void ArchiveHeapWriter::update_header_for_requested_obj(oop requested_obj, oop src_obj,  Klass* src_klass) {
625   assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
626   narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(src_klass);
627   address buffered_addr = requested_addr_to_buffered_addr(cast_from_oop<address>(requested_obj));
628 
629   oop fake_oop = cast_to_oop(buffered_addr);
630   if (UseCompactObjectHeaders) {
631     fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk));
632   } else {
633     fake_oop->set_narrow_klass(nk);
634   }
635 
636   if (src_obj == nullptr) {
637     return;
638   }
639   // We need to retain the identity_hash, because it may have been used by some hashtables
640   // in the shared heap.
641   if (!src_obj->fast_no_hash_check() && (!(EnableValhalla && src_obj->mark().is_inline_type()))) {
642     intptr_t src_hash = src_obj->identity_hash();
643     if (UseCompactObjectHeaders) {
644       fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk).copy_set_hash(src_hash));
645     } else if (EnableValhalla) {
646       fake_oop->set_mark(src_klass->prototype_header().copy_set_hash(src_hash));
647     } else {
648       fake_oop->set_mark(markWord::prototype().copy_set_hash(src_hash));
649     }
650     assert(fake_oop->mark().is_unlocked(), "sanity");
651 
652     DEBUG_ONLY(intptr_t archived_hash = fake_oop->identity_hash());
653     assert(src_hash == archived_hash, "Different hash codes: original " INTPTR_FORMAT ", archived " INTPTR_FORMAT, src_hash, archived_hash);
654   }
655   // Strip age bits.
656   fake_oop->set_mark(fake_oop->mark().set_age(0));
657 }
658 
659 class ArchiveHeapWriter::EmbeddedOopRelocator: public BasicOopIterateClosure {
660   oop _src_obj;
661   address _buffered_obj;
662   CHeapBitMap* _oopmap;
663   bool _is_java_lang_ref;
664 public:
665   EmbeddedOopRelocator(oop src_obj, address buffered_obj, CHeapBitMap* oopmap) :
666     _src_obj(src_obj), _buffered_obj(buffered_obj), _oopmap(oopmap)
667   {
668     _is_java_lang_ref = AOTReferenceObjSupport::check_if_ref_obj(src_obj);
669   }
670 
671   void do_oop(narrowOop *p) { EmbeddedOopRelocator::do_oop_work(p); }
672   void do_oop(      oop *p) { EmbeddedOopRelocator::do_oop_work(p); }
673 
674 private:
675   template <class T> void do_oop_work(T *p) {
676     int field_offset = pointer_delta_as_int((char*)p, cast_from_oop<char*>(_src_obj));
677     T* field_addr = (T*)(_buffered_obj + field_offset);
678     if (_is_java_lang_ref && AOTReferenceObjSupport::skip_field(field_offset)) {
679       // Do not copy these fields. Set them to null
680       *field_addr = (T)0x0;
681     } else {
682       ArchiveHeapWriter::relocate_field_in_buffer<T>(field_addr, _oopmap);
683     }
684   }
685 };
686 
687 static void log_bitmap_usage(const char* which, BitMap* bitmap, size_t total_bits) {
688   // The whole heap is covered by total_bits, but there are only non-zero bits within [start ... end).
689   size_t start = bitmap->find_first_set_bit(0);
690   size_t end = bitmap->size();
691   log_info(aot)("%s = %7zu ... %7zu (%3zu%% ... %3zu%% = %3zu%%)", which,
692                 start, end,
693                 start * 100 / total_bits,
694                 end * 100 / total_bits,
695                 (end - start) * 100 / total_bits);
696 }
697 
698 // Update all oop fields embedded in the buffered objects
699 void ArchiveHeapWriter::relocate_embedded_oops(GrowableArrayCHeap<oop, mtClassShared>* roots,
700                                                ArchiveHeapInfo* heap_info) {
701   size_t oopmap_unit = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
702   size_t heap_region_byte_size = _buffer_used;
703   heap_info->oopmap()->resize(heap_region_byte_size   / oopmap_unit);
704 
705   for (int i = 0; i < _source_objs_order->length(); i++) {
706     int src_obj_index = _source_objs_order->at(i)._index;
707     oop src_obj = _source_objs->at(src_obj_index);
708     HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj);
709     assert(info != nullptr, "must be");
710     oop requested_obj = requested_obj_from_buffer_offset(info->buffer_offset());
711     update_header_for_requested_obj(requested_obj, src_obj, src_obj->klass());
712     address buffered_obj = offset_to_buffered_address<address>(info->buffer_offset());
713     EmbeddedOopRelocator relocator(src_obj, buffered_obj, heap_info->oopmap());
714     src_obj->oop_iterate(&relocator);
715   };
716 
717   // Relocate HeapShared::roots(), which is created in copy_roots_to_buffer() and
718   // doesn't have a corresponding src_obj, so we can't use EmbeddedOopRelocator on it.
719   for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) {
720     size_t seg_offset = _heap_root_segments.segment_offset(seg_idx);
721 
722     objArrayOop requested_obj = (objArrayOop)requested_obj_from_buffer_offset(seg_offset);
723     update_header_for_requested_obj(requested_obj, nullptr, Universe::objectArrayKlass());
724     address buffered_obj = offset_to_buffered_address<address>(seg_offset);
725     int length = _heap_root_segments.size_in_elems(seg_idx);
726 
727     if (UseCompressedOops) {
728       for (int i = 0; i < length; i++) {
729         narrowOop* addr = (narrowOop*)(buffered_obj + objArrayOopDesc::obj_at_offset<narrowOop>(i));
730         relocate_field_in_buffer<narrowOop>(addr, heap_info->oopmap());
731       }
732     } else {
733       for (int i = 0; i < length; i++) {
734         oop* addr = (oop*)(buffered_obj + objArrayOopDesc::obj_at_offset<oop>(i));
735         relocate_field_in_buffer<oop>(addr, heap_info->oopmap());
736       }
737     }
738   }
739 
740   compute_ptrmap(heap_info);
741 
742   size_t total_bytes = (size_t)_buffer->length();
743   log_bitmap_usage("oopmap", heap_info->oopmap(), total_bytes / (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)));
744   log_bitmap_usage("ptrmap", heap_info->ptrmap(), total_bytes / sizeof(address));
745 }
746 
747 void ArchiveHeapWriter::mark_native_pointer(oop src_obj, int field_offset) {
748   Metadata* ptr = src_obj->metadata_field_acquire(field_offset);
749   if (ptr != nullptr) {
750     NativePointerInfo info;
751     info._src_obj = src_obj;
752     info._field_offset = field_offset;
753     _native_pointers->append(info);
754     HeapShared::set_has_native_pointers(src_obj);
755     _num_native_ptrs ++;
756   }
757 }
758 
759 void ArchiveHeapWriter::compute_ptrmap(ArchiveHeapInfo* heap_info) {
760   int num_non_null_ptrs = 0;
761   Metadata** bottom = (Metadata**) _requested_bottom;
762   Metadata** top = (Metadata**) _requested_top; // exclusive
763   heap_info->ptrmap()->resize(top - bottom);
764 
765   BitMap::idx_t max_idx = 32; // paranoid - don't make it too small
766   for (int i = 0; i < _native_pointers->length(); i++) {
767     NativePointerInfo info = _native_pointers->at(i);
768     oop src_obj = info._src_obj;
769     int field_offset = info._field_offset;
770     HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj);
771     // requested_field_addr = the address of this field in the requested space
772     oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset());
773     Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset);
774     assert(bottom <= requested_field_addr && requested_field_addr < top, "range check");
775 
776     // Mark this field in the bitmap
777     BitMap::idx_t idx = requested_field_addr - bottom;
778     heap_info->ptrmap()->set_bit(idx);
779     num_non_null_ptrs ++;
780     max_idx = MAX2(max_idx, idx);
781 
782     // Set the native pointer to the requested address of the metadata (at runtime, the metadata will have
783     // this address if the RO/RW regions are mapped at the default location).
784 
785     Metadata** buffered_field_addr = requested_addr_to_buffered_addr(requested_field_addr);
786     Metadata* native_ptr = *buffered_field_addr;
787     guarantee(native_ptr != nullptr, "sanity");
788 
789     if (RegeneratedClasses::has_been_regenerated(native_ptr)) {
790       native_ptr = RegeneratedClasses::get_regenerated_object(native_ptr);
791     }
792 
793     guarantee(ArchiveBuilder::current()->has_been_archived((address)native_ptr),
794               "Metadata %p should have been archived", native_ptr);
795 
796     address buffered_native_ptr = ArchiveBuilder::current()->get_buffered_addr((address)native_ptr);
797     address requested_native_ptr = ArchiveBuilder::current()->to_requested(buffered_native_ptr);
798     *buffered_field_addr = (Metadata*)requested_native_ptr;
799   }
800 
801   heap_info->ptrmap()->resize(max_idx + 1);
802   log_info(aot, heap)("calculate_ptrmap: marked %d non-null native pointers for heap region (%zu bits)",
803                       num_non_null_ptrs, size_t(heap_info->ptrmap()->size()));
804 }
805 
806 #endif // INCLUDE_CDS_JAVA_HEAP