1 /*
  2  * Copyright (c) 1999, 2026, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_CI_CIFIELD_HPP
 26 #define SHARE_CI_CIFIELD_HPP
 27 
 28 #include "ci/ciClassList.hpp"
 29 #include "ci/ciConstant.hpp"
 30 #include "ci/ciFlags.hpp"
 31 #include "ci/ciInstance.hpp"
 32 #include "ci/ciUtilities.hpp"
 33 #include "oops/layoutKind.hpp"
 34 
 35 // ciField
 36 //
 37 // This class represents the result of a field lookup in the VM.
 38 // The lookup may not succeed, in which case the information in
 39 // the ciField will be incomplete.
 40 class ciField : public ArenaObj {
 41   CI_PACKAGE_ACCESS
 42   friend class ciEnv;
 43   friend class ciInstanceKlass;
 44 
 45 private:
 46   ciFlags          _flags;
 47   ciInstanceKlass* _holder;
 48   ciInstanceKlass* _original_holder; // For fields nested in flat fields
 49   ciSymbol*        _name;
 50   ciSymbol*        _signature;
 51   ciType*          _type;
 52   int              _offset;
 53   LayoutKind       _layout_kind;
 54   bool             _is_constant;
 55   bool             _is_flat;
 56   bool             _is_null_free;
 57   int              _null_marker_offset;
 58   ciMethod*        _known_to_link_with_put;
 59   ciInstanceKlass* _known_to_link_with_get;
 60   ciConstant       _constant_value;
 61 
 62   ciType* compute_type();
 63   ciType* compute_type_impl();
 64 
 65   ciField(ciInstanceKlass* klass, int index, Bytecodes::Code bc);
 66   ciField(fieldDescriptor* fd);
 67   ciField(ciField* declared_field, ciField* sudfield);
 68   ciField(ciField* declared_field);
 69 
 70   // shared constructor code
 71   void initialize_from(fieldDescriptor* fd);
 72 
 73 public:
 74   ciFlags flags() const { return _flags; }
 75 
 76   // Of which klass is this field a member?
 77   //
 78   // Usage note: the declared holder of a field is the class
 79   // referenced by name in the bytecodes.  The canonical holder
 80   // is the most general class which holds the field.  This
 81   // method returns the canonical holder.  The declared holder
 82   // can be accessed via a method in ciBytecodeStream.
 83   //
 84   // Ex.
 85   //     class A {
 86   //       public int f = 7;
 87   //     }
 88   //     class B extends A {
 89   //       public void test() {
 90   //         System.out.println(f);
 91   //       }
 92   //     }
 93   //
 94   //   A java compiler is permitted to compile the access to
 95   //   field f as:
 96   //
 97   //     getfield B.f
 98   //
 99   //   In that case the declared holder of f would be B and
100   //   the canonical holder of f would be A.
101   ciInstanceKlass* holder() const { return _holder; }
102 
103   // Name of this field?
104   ciSymbol* name() const { return _name; }
105 
106   // Signature of this field?
107   ciSymbol* signature() const { return _signature; }
108 
109   // Of what type is this field?
110   ciType* type() { return (_type == nullptr) ? compute_type() : _type; }
111 
112   // How is this field actually stored in memory?
113   BasicType layout_type() { return type2field[(_type == nullptr) ? T_OBJECT : _type->basic_type()]; }
114 
115   // How big is this field in memory?
116   int size_in_bytes() { return type2aelembytes(layout_type()); }
117 
118   // What is the offset of this field? (Fields are aligned to the byte level.)
119   int offset_in_bytes() const {
120     assert(_offset >= 1, "illegal call to offset()");
121     return _offset;
122   }
123 
124   // Is this field shared?
125   bool is_shared() {
126     // non-static fields of shared holders are cached
127     return _holder->is_shared() && !is_static();
128   }
129 
130   // Is this field a constant?
131   //
132   // Clarification: A field is considered constant if:
133   //   1. The field is both static and final
134   //   2. The field is not one of the special static/final
135   //      non-constant fields.  These are java.lang.System.in
136   //      and java.lang.System.out.  Abomination.
137   //
138   // A field is also considered constant if
139   // - it is marked @Stable and is non-null (or non-zero, if a primitive) or
140   // - it is trusted or
141   // - it is the target field of a CallSite object.
142   //
143   // See ciField::initialize_from() for more details.
144   //
145   // A user should also check the field value (constant_value().is_valid()), since
146   // constant fields of non-initialized classes don't have values yet.
147   bool is_constant() const { return _is_constant; }
148 
149   // Get the constant value of the static field.
150   ciConstant constant_value();
151 
152   bool is_static_constant() {
153     return is_static() && is_constant() && constant_value().is_valid();
154   }
155 
156   // Get the constant value of non-static final field in the given
157   // object.
158   ciConstant constant_value_of(ciObject* object);
159 
160   // Check for link time errors.  Accessing a field from a
161   // certain method via a certain bytecode may or may not be legal.
162   // This call checks to see if an exception may be raised by
163   // an access of this field.
164   //
165   // Usage note: if the same field is accessed multiple times
166   // in the same compilation, will_link will need to be checked
167   // at each point of access.
168   bool will_link(ciMethod* accessing_method,
169                  Bytecodes::Code bc);
170 
171   // Java access flags
172   bool is_public               () const { return flags().is_public(); }
173   bool is_private              () const { return flags().is_private(); }
174   bool is_protected            () const { return flags().is_protected(); }
175   bool is_static               () const { return flags().is_static(); }
176   bool is_final                () const { return flags().is_final(); }
177   bool is_stable               () const { return flags().is_stable(); }
178   bool is_volatile             () const { return flags().is_volatile(); }
179   bool is_transient            () const { return flags().is_transient(); }
180   bool is_strict               () const { return flags().is_strict(); }
181   bool is_flat                 () const { return _is_flat; }
182   bool is_null_free            () const { return _is_null_free; }
183   int null_marker_offset       () const { return _null_marker_offset; }
184 
185   // Whether this field needs to act atomically. Note that it does not actually need accessing
186   // atomically. For example, if there cannot be racy accesses to this field, then it can be
187   // accessed in a non-atomic manner. Unless this field must be in observably immutable memory,
188   // this method must not depend on the fact that the field cannot be accessed racily (e.g. it is a
189   // strict final field), as if the holder object is flattened as a field that is not strict final,
190   // this property is lost.
191   //
192   // A slice of memory is observably immutable if all stores to it must happen before all loads
193   // from it. A typical example is when the memory is a strict field and its immediate holder is
194   // not a field inside another object.
195   //
196   // For example:
197   // value class A {
198   //     int x;
199   //     int y;
200   // }
201   // value class AHolder {
202   //     A v;
203   // }
204   // class AHolderHolder {
205   //     AHolder v;
206   // }
207   // The field AHolder.v is flattened in AHolder, but AHolder cannot be flattened in AHolderHolder
208   // because we cannot access AHolderHolder.v atomically. As a result, we can say that the field is
209   // non-atomic. In this case, AHolder.v has its layout being NULLABLE_NON_ATOMIC_FLAT, this
210   // prevents its holder from being flattened in observably mutable memory.
211   //
212   // Another example:
213   // value class B {
214   //     int v;
215   // }
216   // looselyconsistent value class BHolder {
217   //     B v;
218   //     byte b;
219   // }
220   // class BHolderHolder {
221   //     null-free BHolder v;
222   // }
223   // The field BHolder.v is flattened in BHolder, and BHolder can be flattened further in
224   // BHolderHolder. In this case, while BHolder.v can be accessed in a non-atomic manner if BHolder
225   // is a standalone object, it must still be accessed atomically when it is a subfield in
226   // BHolderHolder.v. As a result, the field BHolder.v must still return true for this method, so
227   // that the compiler knows to access it correctly in all circumstances. Implementation-wise,
228   // BHolder.v has its layout being NULLABLE_ATOMIC_FLAT, which still allows its holder to be
229   // flattened in observably mutable memory.
230   bool is_atomic();
231 
232   // The field is modified outside of instance initializer methods
233   // (or class/initializer methods if the field is static).
234   bool has_initialized_final_update() const { return flags().has_initialized_final_update(); }
235 
236   bool is_call_site_target();
237 
238   bool is_autobox_cache();
239 
240   // Debugging output
241   void print() const;
242   void print_name_on(outputStream* st);
243 };
244 
245 #endif // SHARE_CI_CIFIELD_HPP