1 /* 2 * Copyright (c) 2001, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_CI_CIMETHODDATA_HPP 26 #define SHARE_CI_CIMETHODDATA_HPP 27 28 #include "ci/ciClassList.hpp" 29 #include "ci/ciKlass.hpp" 30 #include "ci/ciObject.hpp" 31 #include "ci/ciUtilities.hpp" 32 #include "oops/methodData.hpp" 33 #include "oops/oop.hpp" 34 #include "runtime/deoptimization.hpp" 35 36 class ciBitData; 37 class ciCounterData; 38 class ciJumpData; 39 class ciReceiverTypeData; 40 class ciRetData; 41 class ciBranchData; 42 class ciArrayData; 43 class ciMultiBranchData; 44 class ciArgInfoData; 45 class ciCallTypeData; 46 class ciVirtualCallTypeData; 47 class ciParametersTypeData; 48 class ciSpeculativeTrapData; 49 50 typedef ProfileData ciProfileData; 51 52 class ciBitData : public BitData { 53 public: 54 ciBitData(DataLayout* layout) : BitData(layout) {}; 55 }; 56 57 class ciCounterData : public CounterData { 58 public: 59 ciCounterData(DataLayout* layout) : CounterData(layout) {}; 60 }; 61 62 class ciJumpData : public JumpData { 63 public: 64 ciJumpData(DataLayout* layout) : JumpData(layout) {}; 65 }; 66 67 class ciTypeEntries { 68 protected: 69 static intptr_t translate_klass(intptr_t k) { 70 Klass* v = TypeEntries::valid_klass(k); 71 if (v != nullptr) { 72 ciKlass* klass = CURRENT_ENV->get_klass(v); 73 return with_status(klass, k); 74 } 75 return with_status(nullptr, k); 76 } 77 78 public: 79 static ciKlass* valid_ciklass(intptr_t k) { 80 if (!TypeEntries::is_type_none(k) && 81 !TypeEntries::is_type_unknown(k)) { 82 ciKlass* res = (ciKlass*)TypeEntries::klass_part(k); 83 assert(res != nullptr, "invalid"); 84 return res; 85 } else { 86 return nullptr; 87 } 88 } 89 90 static ProfilePtrKind ptr_kind(intptr_t v) { 91 bool maybe_null = TypeEntries::was_null_seen(v); 92 if (!maybe_null) { 93 return ProfileNeverNull; 94 } else if (TypeEntries::is_type_none(v)) { 95 return ProfileAlwaysNull; 96 } else { 97 return ProfileMaybeNull; 98 } 99 } 100 101 static intptr_t with_status(ciKlass* k, intptr_t in) { 102 return TypeEntries::with_status((intptr_t)k, in); 103 } 104 105 #ifndef PRODUCT 106 static void print_ciklass(outputStream* st, intptr_t k); 107 #endif 108 }; 109 110 class ciTypeStackSlotEntries : public TypeStackSlotEntries, ciTypeEntries { 111 public: 112 void translate_type_data_from(const TypeStackSlotEntries* args); 113 114 ciKlass* valid_type(int i) const { 115 return valid_ciklass(type(i)); 116 } 117 118 ProfilePtrKind ptr_kind(int i) const { 119 return ciTypeEntries::ptr_kind(type(i)); 120 } 121 122 #ifndef PRODUCT 123 void print_data_on(outputStream* st) const; 124 #endif 125 }; 126 127 class ciSingleTypeEntry : public SingleTypeEntry, ciTypeEntries { 128 public: 129 void translate_type_data_from(const SingleTypeEntry* ret); 130 131 ciKlass* valid_type() const { 132 return valid_ciklass(type()); 133 } 134 135 ProfilePtrKind ptr_kind() const { 136 return ciTypeEntries::ptr_kind(type()); 137 } 138 139 #ifndef PRODUCT 140 void print_data_on(outputStream* st) const; 141 #endif 142 }; 143 144 class ciCallTypeData : public CallTypeData { 145 public: 146 ciCallTypeData(DataLayout* layout) : CallTypeData(layout) {} 147 148 ciTypeStackSlotEntries* args() const { return (ciTypeStackSlotEntries*)CallTypeData::args(); } 149 ciSingleTypeEntry* ret() const { return (ciSingleTypeEntry*)CallTypeData::ret(); } 150 151 void translate_from(const ProfileData* data) { 152 if (has_arguments()) { 153 args()->translate_type_data_from(data->as_CallTypeData()->args()); 154 } 155 if (has_return()) { 156 ret()->translate_type_data_from(data->as_CallTypeData()->ret()); 157 } 158 } 159 160 intptr_t argument_type(int i) const { 161 assert(has_arguments(), "no arg type profiling data"); 162 return args()->type(i); 163 } 164 165 ciKlass* valid_argument_type(int i) const { 166 assert(has_arguments(), "no arg type profiling data"); 167 return args()->valid_type(i); 168 } 169 170 intptr_t return_type() const { 171 assert(has_return(), "no ret type profiling data"); 172 return ret()->type(); 173 } 174 175 ciKlass* valid_return_type() const { 176 assert(has_return(), "no ret type profiling data"); 177 return ret()->valid_type(); 178 } 179 180 ProfilePtrKind argument_ptr_kind(int i) const { 181 return args()->ptr_kind(i); 182 } 183 184 ProfilePtrKind return_ptr_kind() const { 185 return ret()->ptr_kind(); 186 } 187 188 #ifndef PRODUCT 189 void print_data_on(outputStream* st, const char* extra = nullptr) const; 190 #endif 191 }; 192 193 class ciReceiverTypeData : public ReceiverTypeData { 194 public: 195 ciReceiverTypeData(DataLayout* layout) : ReceiverTypeData(layout) {}; 196 197 void set_receiver(uint row, ciKlass* recv) { 198 assert((uint)row < row_limit(), "oob"); 199 set_intptr_at(receiver0_offset + row * receiver_type_row_cell_count, 200 (intptr_t) recv); 201 } 202 203 ciKlass* receiver(uint row) const { 204 assert((uint)row < row_limit(), "oob"); 205 ciKlass* recv = (ciKlass*)intptr_at(receiver0_offset + row * receiver_type_row_cell_count); 206 assert(recv == nullptr || recv->is_klass(), "wrong type"); 207 return recv; 208 } 209 210 // Copy & translate from oop based ReceiverTypeData 211 virtual void translate_from(const ProfileData* data) { 212 translate_receiver_data_from(data); 213 } 214 void translate_receiver_data_from(const ProfileData* data); 215 #ifndef PRODUCT 216 void print_data_on(outputStream* st, const char* extra = nullptr) const; 217 void print_receiver_data_on(outputStream* st) const; 218 #endif 219 }; 220 221 class ciVirtualCallData : public VirtualCallData { 222 // Fake multiple inheritance... It's a ciReceiverTypeData also. 223 ciReceiverTypeData* rtd_super() const { return (ciReceiverTypeData*) this; } 224 225 public: 226 ciVirtualCallData(DataLayout* layout) : VirtualCallData(layout) {}; 227 228 void set_receiver(uint row, ciKlass* recv) { 229 rtd_super()->set_receiver(row, recv); 230 } 231 232 ciKlass* receiver(uint row) { 233 return rtd_super()->receiver(row); 234 } 235 236 // Copy & translate from oop based VirtualCallData 237 virtual void translate_from(const ProfileData* data) { 238 rtd_super()->translate_receiver_data_from(data); 239 } 240 #ifndef PRODUCT 241 void print_data_on(outputStream* st, const char* extra = nullptr) const; 242 #endif 243 }; 244 245 class ciVirtualCallTypeData : public VirtualCallTypeData { 246 private: 247 // Fake multiple inheritance... It's a ciReceiverTypeData also. 248 ciReceiverTypeData* rtd_super() const { return (ciReceiverTypeData*) this; } 249 public: 250 ciVirtualCallTypeData(DataLayout* layout) : VirtualCallTypeData(layout) {} 251 252 void set_receiver(uint row, ciKlass* recv) { 253 rtd_super()->set_receiver(row, recv); 254 } 255 256 ciKlass* receiver(uint row) const { 257 return rtd_super()->receiver(row); 258 } 259 260 ciTypeStackSlotEntries* args() const { return (ciTypeStackSlotEntries*)VirtualCallTypeData::args(); } 261 ciSingleTypeEntry* ret() const { return (ciSingleTypeEntry*)VirtualCallTypeData::ret(); } 262 263 // Copy & translate from oop based VirtualCallData 264 virtual void translate_from(const ProfileData* data) { 265 rtd_super()->translate_receiver_data_from(data); 266 if (has_arguments()) { 267 args()->translate_type_data_from(data->as_VirtualCallTypeData()->args()); 268 } 269 if (has_return()) { 270 ret()->translate_type_data_from(data->as_VirtualCallTypeData()->ret()); 271 } 272 } 273 274 ciKlass* valid_argument_type(int i) const { 275 assert(has_arguments(), "no arg type profiling data"); 276 return args()->valid_type(i); 277 } 278 279 intptr_t return_type() const { 280 assert(has_return(), "no ret type profiling data"); 281 return ret()->type(); 282 } 283 284 ciKlass* valid_return_type() const { 285 assert(has_return(), "no ret type profiling data"); 286 return ret()->valid_type(); 287 } 288 289 ProfilePtrKind argument_ptr_kind(int i) const { 290 return args()->ptr_kind(i); 291 } 292 293 ProfilePtrKind return_ptr_kind() const { 294 return ret()->ptr_kind(); 295 } 296 297 #ifndef PRODUCT 298 void print_data_on(outputStream* st, const char* extra = nullptr) const; 299 #endif 300 }; 301 302 303 class ciRetData : public RetData { 304 public: 305 ciRetData(DataLayout* layout) : RetData(layout) {}; 306 }; 307 308 class ciBranchData : public BranchData { 309 public: 310 ciBranchData(DataLayout* layout) : BranchData(layout) {}; 311 }; 312 313 class ciMultiBranchData : public MultiBranchData { 314 public: 315 ciMultiBranchData(DataLayout* layout) : MultiBranchData(layout) {}; 316 }; 317 318 class ciArgInfoData : public ArgInfoData { 319 public: 320 ciArgInfoData(DataLayout* layout) : ArgInfoData(layout) {}; 321 }; 322 323 class ciParametersTypeData : public ParametersTypeData { 324 public: 325 ciParametersTypeData(DataLayout* layout) : ParametersTypeData(layout) {} 326 327 virtual void translate_from(const ProfileData* data) { 328 parameters()->translate_type_data_from(data->as_ParametersTypeData()->parameters()); 329 } 330 331 ciTypeStackSlotEntries* parameters() const { return (ciTypeStackSlotEntries*)ParametersTypeData::parameters(); } 332 333 ciKlass* valid_parameter_type(int i) const { 334 return parameters()->valid_type(i); 335 } 336 337 ProfilePtrKind parameter_ptr_kind(int i) const { 338 return parameters()->ptr_kind(i); 339 } 340 341 #ifndef PRODUCT 342 void print_data_on(outputStream* st, const char* extra = nullptr) const; 343 #endif 344 }; 345 346 class ciSpeculativeTrapData : public SpeculativeTrapData { 347 public: 348 ciSpeculativeTrapData(DataLayout* layout) : SpeculativeTrapData(layout) {} 349 350 virtual void translate_from(const ProfileData* data); 351 352 ciMethod* method() const { 353 return (ciMethod*)intptr_at(speculative_trap_method); 354 } 355 356 void set_method(ciMethod* m) { 357 set_intptr_at(speculative_trap_method, (intptr_t)m); 358 } 359 360 #ifndef PRODUCT 361 void print_data_on(outputStream* st, const char* extra = nullptr) const; 362 #endif 363 }; 364 365 class ciArrayLoadStoreData : public ArrayLoadStoreData { 366 public: 367 ciArrayLoadStoreData(DataLayout* layout) : ArrayLoadStoreData(layout) {} 368 369 ciSingleTypeEntry* array() const { return (ciSingleTypeEntry*)ArrayLoadStoreData::array(); } 370 ciSingleTypeEntry* element() const { return (ciSingleTypeEntry*)ArrayLoadStoreData::element(); } 371 372 virtual void translate_from(const ProfileData* data) { 373 array()->translate_type_data_from(data->as_ArrayLoadStoreData()->array()); 374 element()->translate_type_data_from(data->as_ArrayLoadStoreData()->element()); 375 } 376 377 #ifndef PRODUCT 378 void print_data_on(outputStream* st, const char* extra = nullptr) const; 379 #endif 380 }; 381 382 class ciACmpData : public ACmpData { 383 public: 384 ciACmpData(DataLayout* layout) : ACmpData(layout) {} 385 386 ciSingleTypeEntry* left() const { return (ciSingleTypeEntry*)ACmpData::left(); } 387 ciSingleTypeEntry* right() const { return (ciSingleTypeEntry*)ACmpData::right(); } 388 389 virtual void translate_from(const ProfileData* data) { 390 left()->translate_type_data_from(data->as_ACmpData()->left()); 391 right()->translate_type_data_from(data->as_ACmpData()->right()); 392 } 393 394 #ifndef PRODUCT 395 void print_data_on(outputStream* st, const char* extra = nullptr) const; 396 #endif 397 }; 398 399 // ciMethodData 400 // 401 // This class represents a MethodData* in the HotSpot virtual 402 // machine. 403 404 class ciMethodData : public ciMetadata { 405 CI_PACKAGE_ACCESS 406 friend class ciReplay; 407 408 private: 409 // Size in bytes 410 int _data_size; 411 int _extra_data_size; 412 413 // Data entries 414 intptr_t* _data; 415 416 // Cached hint for data_layout_before() 417 int _hint_di; 418 419 // Is data attached? And is it mature? 420 enum { empty_state, immature_state, mature_state }; 421 u_char _state; 422 423 // Set this true if empty extra_data slots are ever witnessed. 424 u_char _saw_free_extra_data; 425 426 // Support for interprocedural escape analysis 427 intx _eflags; // flags on escape information 428 intx _arg_local; // bit set of non-escaping arguments 429 intx _arg_stack; // bit set of stack-allocatable arguments 430 intx _arg_returned; // bit set of returned arguments 431 432 // These counters hold the age of MDO in tiered. In tiered we can have the same method 433 // running at different compilation levels concurrently. So, in order to precisely measure 434 // its maturity we need separate counters. 435 int _invocation_counter; 436 437 // Coherent snapshot of original header. 438 MethodData::CompilerCounters _orig; 439 440 // Area dedicated to parameters. null if no parameter profiling for this method. 441 DataLayout* _parameters; 442 int parameters_size() const { 443 return _parameters == nullptr ? 0 : parameters_type_data()->size_in_bytes(); 444 } 445 446 ciMethodData(MethodData* md = nullptr); 447 448 // Accessors 449 int data_size() const { return _data_size; } 450 int extra_data_size() const { return _extra_data_size; } 451 intptr_t * data() const { return _data; } 452 453 MethodData* get_MethodData() const { 454 return (MethodData*)_metadata; 455 } 456 457 const char* type_string() { return "ciMethodData"; } 458 459 void print_impl(outputStream* st); 460 461 DataLayout* data_layout_at(int data_index) const { 462 assert(data_index % sizeof(intptr_t) == 0, "unaligned"); 463 return (DataLayout*) (((address)_data) + data_index); 464 } 465 466 bool out_of_bounds(int data_index) { 467 return data_index >= data_size(); 468 } 469 470 // hint accessors 471 int hint_di() const { return _hint_di; } 472 void set_hint_di(int di) { 473 assert(!out_of_bounds(di), "hint_di out of bounds"); 474 _hint_di = di; 475 } 476 477 DataLayout* data_layout_before(int bci) { 478 // avoid SEGV on this edge case 479 if (data_size() == 0) 480 return nullptr; 481 DataLayout* layout = data_layout_at(hint_di()); 482 if (layout->bci() <= bci) 483 return layout; 484 return data_layout_at(first_di()); 485 } 486 487 // What is the index of the first data entry? 488 int first_di() { return 0; } 489 490 ciArgInfoData *arg_info() const; 491 492 void prepare_metadata(); 493 void load_remaining_extra_data(); 494 ciProfileData* bci_to_extra_data(int bci, ciMethod* m, bool& two_free_slots); 495 496 void dump_replay_data_type_helper(outputStream* out, int round, int& count, ProfileData* pdata, ByteSize offset, ciKlass* k); 497 template<class T> void dump_replay_data_call_type_helper(outputStream* out, int round, int& count, T* call_type_data); 498 template<class T> void dump_replay_data_receiver_type_helper(outputStream* out, int round, int& count, T* call_type_data); 499 void dump_replay_data_extra_data_helper(outputStream* out, int round, int& count); 500 ciProfileData* data_from(DataLayout* data_layout); 501 502 public: 503 bool is_method_data() const { return true; } 504 505 bool is_empty() { return _state == empty_state; } 506 bool is_mature() { return _state == mature_state; } 507 508 int invocation_count() { return _invocation_counter; } 509 510 #if INCLUDE_RTM_OPT 511 // return cached value 512 int rtm_state() { 513 if (is_empty()) { 514 return NoRTM; 515 } else { 516 return get_MethodData()->rtm_state(); 517 } 518 } 519 #endif 520 521 // Transfer information about the method to MethodData*. 522 // would_profile means we would like to profile this method, 523 // meaning it's not trivial. 524 void set_would_profile(bool p); 525 // Also set the number of loops and blocks in the method. 526 // Again, this is used to determine if a method is trivial. 527 void set_compilation_stats(short loops, short blocks); 528 // If the compiler finds a profiled type that is known statically 529 // for sure, set it in the MethodData 530 void set_argument_type(int bci, int i, ciKlass* k); 531 void set_parameter_type(int i, ciKlass* k); 532 void set_return_type(int bci, ciKlass* k); 533 534 bool load_data(); 535 536 // Convert a dp (data pointer) to a di (data index). 537 int dp_to_di(address dp) { 538 return pointer_delta_as_int(dp, ((address)_data)); 539 } 540 541 // Get the data at an arbitrary (sort of) data index. 542 ciProfileData* data_at(int data_index); 543 544 // Walk through the data in order. 545 ciProfileData* first_data() { return data_at(first_di()); } 546 ciProfileData* next_data(ciProfileData* current); 547 DataLayout* next_data_layout(DataLayout* current); 548 bool is_valid(ciProfileData* current) { return current != nullptr; } 549 bool is_valid(DataLayout* current) { return current != nullptr; } 550 551 DataLayout* extra_data_base() const { return data_layout_at(data_size()); } 552 DataLayout* args_data_limit() const { return data_layout_at(data_size() + extra_data_size() - 553 parameters_size()); } 554 555 // Get the data at an arbitrary bci, or null if there is none. If m 556 // is not null look for a SpeculativeTrapData if any first. 557 ciProfileData* bci_to_data(int bci, ciMethod* m = nullptr); 558 559 uint overflow_trap_count() const { 560 return _orig.overflow_trap_count(); 561 } 562 uint overflow_recompile_count() const { 563 return _orig.overflow_recompile_count(); 564 } 565 uint decompile_count() const { 566 return _orig.decompile_count(); 567 } 568 uint trap_count(int reason) const { 569 return _orig.trap_count(reason); 570 } 571 uint trap_reason_limit() const { return MethodData::trap_reason_limit(); } 572 uint trap_count_limit() const { return MethodData::trap_count_limit(); } 573 574 // Helpful query functions that decode trap_state. 575 int has_trap_at(ciProfileData* data, int reason); 576 int has_trap_at(int bci, ciMethod* m, int reason) { 577 assert((m != nullptr) == Deoptimization::reason_is_speculate(reason), "inconsistent method/reason"); 578 return has_trap_at(bci_to_data(bci, m), reason); 579 } 580 int trap_recompiled_at(ciProfileData* data); 581 int trap_recompiled_at(int bci, ciMethod* m) { 582 return trap_recompiled_at(bci_to_data(bci, m)); 583 } 584 585 void clear_escape_info(); 586 bool has_escape_info(); 587 void update_escape_info(); 588 589 void set_eflag(MethodData::EscapeFlag f); 590 bool eflag_set(MethodData::EscapeFlag f) const; 591 592 void set_arg_local(int i); 593 void set_arg_stack(int i); 594 void set_arg_returned(int i); 595 void set_arg_modified(int arg, uint val); 596 597 bool is_arg_local(int i) const; 598 bool is_arg_stack(int i) const; 599 bool is_arg_returned(int i) const; 600 uint arg_modified(int arg) const; 601 602 ciParametersTypeData* parameters_type_data() const; 603 604 // Code generation helper 605 ByteSize offset_of_slot(ciProfileData* data, ByteSize slot_offset_in_data); 606 int byte_offset_of_slot(ciProfileData* data, ByteSize slot_offset_in_data) { return in_bytes(offset_of_slot(data, slot_offset_in_data)); } 607 608 #ifndef PRODUCT 609 // printing support for method data 610 void print(); 611 void print_data_on(outputStream* st); 612 #endif 613 void dump_replay_data(outputStream* out); 614 }; 615 616 #endif // SHARE_CI_CIMETHODDATA_HPP