1 /* 2 * Copyright (c) 2000, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciConstant.hpp" 27 #include "ci/ciField.hpp" 28 #include "ci/ciMethod.hpp" 29 #include "ci/ciMethodData.hpp" 30 #include "ci/ciObjArrayKlass.hpp" 31 #include "ci/ciStreams.hpp" 32 #include "ci/ciTypeArrayKlass.hpp" 33 #include "ci/ciTypeFlow.hpp" 34 #include "compiler/compileLog.hpp" 35 #include "interpreter/bytecode.hpp" 36 #include "interpreter/bytecodes.hpp" 37 #include "memory/allocation.inline.hpp" 38 #include "memory/resourceArea.hpp" 39 #include "oops/oop.inline.hpp" 40 #include "opto/compile.hpp" 41 #include "opto/node.hpp" 42 #include "runtime/deoptimization.hpp" 43 #include "utilities/growableArray.hpp" 44 45 // ciTypeFlow::JsrSet 46 // 47 // A JsrSet represents some set of JsrRecords. This class 48 // is used to record a set of all jsr routines which we permit 49 // execution to return (ret) from. 50 // 51 // During abstract interpretation, JsrSets are used to determine 52 // whether two paths which reach a given block are unique, and 53 // should be cloned apart, or are compatible, and should merge 54 // together. 55 56 // ------------------------------------------------------------------ 57 // ciTypeFlow::JsrSet::JsrSet 58 59 // Allocate growable array storage in Arena. 60 ciTypeFlow::JsrSet::JsrSet(Arena* arena, int default_len) : _set(arena, default_len, 0, nullptr) { 61 assert(arena != nullptr, "invariant"); 62 } 63 64 // Allocate growable array storage in current ResourceArea. 65 ciTypeFlow::JsrSet::JsrSet(int default_len) : _set(default_len, 0, nullptr) {} 66 67 // ------------------------------------------------------------------ 68 // ciTypeFlow::JsrSet::copy_into 69 void ciTypeFlow::JsrSet::copy_into(JsrSet* jsrs) { 70 int len = size(); 71 jsrs->_set.clear(); 72 for (int i = 0; i < len; i++) { 73 jsrs->_set.append(_set.at(i)); 74 } 75 } 76 77 // ------------------------------------------------------------------ 78 // ciTypeFlow::JsrSet::is_compatible_with 79 // 80 // !!!! MISGIVINGS ABOUT THIS... disregard 81 // 82 // Is this JsrSet compatible with some other JsrSet? 83 // 84 // In set-theoretic terms, a JsrSet can be viewed as a partial function 85 // from entry addresses to return addresses. Two JsrSets A and B are 86 // compatible iff 87 // 88 // For any x, 89 // A(x) defined and B(x) defined implies A(x) == B(x) 90 // 91 // Less formally, two JsrSets are compatible when they have identical 92 // return addresses for any entry addresses they share in common. 93 bool ciTypeFlow::JsrSet::is_compatible_with(JsrSet* other) { 94 // Walk through both sets in parallel. If the same entry address 95 // appears in both sets, then the return address must match for 96 // the sets to be compatible. 97 int size1 = size(); 98 int size2 = other->size(); 99 100 // Special case. If nothing is on the jsr stack, then there can 101 // be no ret. 102 if (size2 == 0) { 103 return true; 104 } else if (size1 != size2) { 105 return false; 106 } else { 107 for (int i = 0; i < size1; i++) { 108 JsrRecord* record1 = record_at(i); 109 JsrRecord* record2 = other->record_at(i); 110 if (record1->entry_address() != record2->entry_address() || 111 record1->return_address() != record2->return_address()) { 112 return false; 113 } 114 } 115 return true; 116 } 117 118 #if 0 119 int pos1 = 0; 120 int pos2 = 0; 121 int size1 = size(); 122 int size2 = other->size(); 123 while (pos1 < size1 && pos2 < size2) { 124 JsrRecord* record1 = record_at(pos1); 125 JsrRecord* record2 = other->record_at(pos2); 126 int entry1 = record1->entry_address(); 127 int entry2 = record2->entry_address(); 128 if (entry1 < entry2) { 129 pos1++; 130 } else if (entry1 > entry2) { 131 pos2++; 132 } else { 133 if (record1->return_address() == record2->return_address()) { 134 pos1++; 135 pos2++; 136 } else { 137 // These two JsrSets are incompatible. 138 return false; 139 } 140 } 141 } 142 // The two JsrSets agree. 143 return true; 144 #endif 145 } 146 147 // ------------------------------------------------------------------ 148 // ciTypeFlow::JsrSet::insert_jsr_record 149 // 150 // Insert the given JsrRecord into the JsrSet, maintaining the order 151 // of the set and replacing any element with the same entry address. 152 void ciTypeFlow::JsrSet::insert_jsr_record(JsrRecord* record) { 153 int len = size(); 154 int entry = record->entry_address(); 155 int pos = 0; 156 for ( ; pos < len; pos++) { 157 JsrRecord* current = record_at(pos); 158 if (entry == current->entry_address()) { 159 // Stomp over this entry. 160 _set.at_put(pos, record); 161 assert(size() == len, "must be same size"); 162 return; 163 } else if (entry < current->entry_address()) { 164 break; 165 } 166 } 167 168 // Insert the record into the list. 169 JsrRecord* swap = record; 170 JsrRecord* temp = nullptr; 171 for ( ; pos < len; pos++) { 172 temp = _set.at(pos); 173 _set.at_put(pos, swap); 174 swap = temp; 175 } 176 _set.append(swap); 177 assert(size() == len+1, "must be larger"); 178 } 179 180 // ------------------------------------------------------------------ 181 // ciTypeFlow::JsrSet::remove_jsr_record 182 // 183 // Remove the JsrRecord with the given return address from the JsrSet. 184 void ciTypeFlow::JsrSet::remove_jsr_record(int return_address) { 185 int len = size(); 186 for (int i = 0; i < len; i++) { 187 if (record_at(i)->return_address() == return_address) { 188 // We have found the proper entry. Remove it from the 189 // JsrSet and exit. 190 for (int j = i + 1; j < len ; j++) { 191 _set.at_put(j - 1, _set.at(j)); 192 } 193 _set.trunc_to(len - 1); 194 assert(size() == len-1, "must be smaller"); 195 return; 196 } 197 } 198 assert(false, "verify: returning from invalid subroutine"); 199 } 200 201 // ------------------------------------------------------------------ 202 // ciTypeFlow::JsrSet::apply_control 203 // 204 // Apply the effect of a control-flow bytecode on the JsrSet. The 205 // only bytecodes that modify the JsrSet are jsr and ret. 206 void ciTypeFlow::JsrSet::apply_control(ciTypeFlow* analyzer, 207 ciBytecodeStream* str, 208 ciTypeFlow::StateVector* state) { 209 Bytecodes::Code code = str->cur_bc(); 210 if (code == Bytecodes::_jsr) { 211 JsrRecord* record = 212 analyzer->make_jsr_record(str->get_dest(), str->next_bci()); 213 insert_jsr_record(record); 214 } else if (code == Bytecodes::_jsr_w) { 215 JsrRecord* record = 216 analyzer->make_jsr_record(str->get_far_dest(), str->next_bci()); 217 insert_jsr_record(record); 218 } else if (code == Bytecodes::_ret) { 219 Cell local = state->local(str->get_index()); 220 ciType* return_address = state->type_at(local); 221 assert(return_address->is_return_address(), "verify: wrong type"); 222 if (size() == 0) { 223 // Ret-state underflow: Hit a ret w/o any previous jsrs. Bail out. 224 // This can happen when a loop is inside a finally clause (4614060). 225 analyzer->record_failure("OSR in finally clause"); 226 return; 227 } 228 remove_jsr_record(return_address->as_return_address()->bci()); 229 } 230 } 231 232 #ifndef PRODUCT 233 // ------------------------------------------------------------------ 234 // ciTypeFlow::JsrSet::print_on 235 void ciTypeFlow::JsrSet::print_on(outputStream* st) const { 236 st->print("{ "); 237 int num_elements = size(); 238 if (num_elements > 0) { 239 int i = 0; 240 for( ; i < num_elements - 1; i++) { 241 _set.at(i)->print_on(st); 242 st->print(", "); 243 } 244 _set.at(i)->print_on(st); 245 st->print(" "); 246 } 247 st->print("}"); 248 } 249 #endif 250 251 // ciTypeFlow::StateVector 252 // 253 // A StateVector summarizes the type information at some point in 254 // the program. 255 256 // ------------------------------------------------------------------ 257 // ciTypeFlow::StateVector::type_meet 258 // 259 // Meet two types. 260 // 261 // The semi-lattice of types use by this analysis are modeled on those 262 // of the verifier. The lattice is as follows: 263 // 264 // top_type() >= all non-extremal types >= bottom_type 265 // and 266 // Every primitive type is comparable only with itself. The meet of 267 // reference types is determined by their kind: instance class, 268 // interface, or array class. The meet of two types of the same 269 // kind is their least common ancestor. The meet of two types of 270 // different kinds is always java.lang.Object. 271 ciType* ciTypeFlow::StateVector::type_meet_internal(ciType* t1, ciType* t2, ciTypeFlow* analyzer) { 272 assert(t1 != t2, "checked in caller"); 273 if (t1->equals(top_type())) { 274 return t2; 275 } else if (t2->equals(top_type())) { 276 return t1; 277 } else if (t1->is_primitive_type() || t2->is_primitive_type()) { 278 // Special case null_type. null_type meet any reference type T 279 // is T. null_type meet null_type is null_type. 280 if (t1->equals(null_type())) { 281 if (!t2->is_primitive_type() || t2->equals(null_type())) { 282 return t2; 283 } 284 } else if (t2->equals(null_type())) { 285 if (!t1->is_primitive_type()) { 286 return t1; 287 } 288 } 289 290 // At least one of the two types is a non-top primitive type. 291 // The other type is not equal to it. Fall to bottom. 292 return bottom_type(); 293 } else { 294 // Both types are non-top non-primitive types. That is, 295 // both types are either instanceKlasses or arrayKlasses. 296 ciKlass* object_klass = analyzer->env()->Object_klass(); 297 ciKlass* k1 = t1->as_klass(); 298 ciKlass* k2 = t2->as_klass(); 299 if (k1->equals(object_klass) || k2->equals(object_klass)) { 300 return object_klass; 301 } else if (!k1->is_loaded() || !k2->is_loaded()) { 302 // Unloaded classes fall to java.lang.Object at a merge. 303 return object_klass; 304 } else if (k1->is_interface() != k2->is_interface()) { 305 // When an interface meets a non-interface, we get Object; 306 // This is what the verifier does. 307 return object_klass; 308 } else if (k1->is_array_klass() || k2->is_array_klass()) { 309 // When an array meets a non-array, we get Object. 310 // When objArray meets typeArray, we also get Object. 311 // And when typeArray meets different typeArray, we again get Object. 312 // But when objArray meets objArray, we look carefully at element types. 313 if (k1->is_obj_array_klass() && k2->is_obj_array_klass()) { 314 // Meet the element types, then construct the corresponding array type. 315 ciKlass* elem1 = k1->as_obj_array_klass()->element_klass(); 316 ciKlass* elem2 = k2->as_obj_array_klass()->element_klass(); 317 ciKlass* elem = type_meet_internal(elem1, elem2, analyzer)->as_klass(); 318 // Do an easy shortcut if one type is a super of the other. 319 if (elem == elem1) { 320 assert(k1 == ciObjArrayKlass::make(elem), "shortcut is OK"); 321 return k1; 322 } else if (elem == elem2) { 323 assert(k2 == ciObjArrayKlass::make(elem), "shortcut is OK"); 324 return k2; 325 } else { 326 return ciObjArrayKlass::make(elem); 327 } 328 } else { 329 return object_klass; 330 } 331 } else { 332 // Must be two plain old instance klasses. 333 assert(k1->is_instance_klass(), "previous cases handle non-instances"); 334 assert(k2->is_instance_klass(), "previous cases handle non-instances"); 335 return k1->least_common_ancestor(k2); 336 } 337 } 338 } 339 340 341 // ------------------------------------------------------------------ 342 // ciTypeFlow::StateVector::StateVector 343 // 344 // Build a new state vector 345 ciTypeFlow::StateVector::StateVector(ciTypeFlow* analyzer) { 346 _outer = analyzer; 347 _stack_size = -1; 348 _monitor_count = -1; 349 // Allocate the _types array 350 int max_cells = analyzer->max_cells(); 351 _types = (ciType**)analyzer->arena()->Amalloc(sizeof(ciType*) * max_cells); 352 for (int i=0; i<max_cells; i++) { 353 _types[i] = top_type(); 354 } 355 _trap_bci = -1; 356 _trap_index = 0; 357 _def_locals.clear(); 358 } 359 360 361 // ------------------------------------------------------------------ 362 // ciTypeFlow::get_start_state 363 // 364 // Set this vector to the method entry state. 365 const ciTypeFlow::StateVector* ciTypeFlow::get_start_state() { 366 StateVector* state = new StateVector(this); 367 if (is_osr_flow()) { 368 ciTypeFlow* non_osr_flow = method()->get_flow_analysis(); 369 if (non_osr_flow->failing()) { 370 record_failure(non_osr_flow->failure_reason()); 371 return nullptr; 372 } 373 JsrSet* jsrs = new JsrSet(4); 374 Block* non_osr_block = non_osr_flow->existing_block_at(start_bci(), jsrs); 375 if (non_osr_block == nullptr) { 376 record_failure("cannot reach OSR point"); 377 return nullptr; 378 } 379 // load up the non-OSR state at this point 380 non_osr_block->copy_state_into(state); 381 int non_osr_start = non_osr_block->start(); 382 if (non_osr_start != start_bci()) { 383 // must flow forward from it 384 if (CITraceTypeFlow) { 385 tty->print_cr(">> Interpreting pre-OSR block %d:", non_osr_start); 386 } 387 Block* block = block_at(non_osr_start, jsrs); 388 assert(block->limit() == start_bci(), "must flow forward to start"); 389 flow_block(block, state, jsrs); 390 } 391 return state; 392 // Note: The code below would be an incorrect for an OSR flow, 393 // even if it were possible for an OSR entry point to be at bci zero. 394 } 395 // "Push" the method signature into the first few locals. 396 state->set_stack_size(-max_locals()); 397 if (!method()->is_static()) { 398 state->push(method()->holder()); 399 assert(state->tos() == state->local(0), ""); 400 } 401 for (ciSignatureStream str(method()->signature()); 402 !str.at_return_type(); 403 str.next()) { 404 state->push_translate(str.type()); 405 } 406 // Set the rest of the locals to bottom. 407 assert(state->stack_size() <= 0, "stack size should not be strictly positive"); 408 while (state->stack_size() < 0) { 409 state->push(state->bottom_type()); 410 } 411 // Lock an object, if necessary. 412 state->set_monitor_count(method()->is_synchronized() ? 1 : 0); 413 return state; 414 } 415 416 // ------------------------------------------------------------------ 417 // ciTypeFlow::StateVector::copy_into 418 // 419 // Copy our value into some other StateVector 420 void ciTypeFlow::StateVector::copy_into(ciTypeFlow::StateVector* copy) 421 const { 422 copy->set_stack_size(stack_size()); 423 copy->set_monitor_count(monitor_count()); 424 Cell limit = limit_cell(); 425 for (Cell c = start_cell(); c < limit; c = next_cell(c)) { 426 copy->set_type_at(c, type_at(c)); 427 } 428 } 429 430 // ------------------------------------------------------------------ 431 // ciTypeFlow::StateVector::meet 432 // 433 // Meets this StateVector with another, destructively modifying this 434 // one. Returns true if any modification takes place. 435 bool ciTypeFlow::StateVector::meet(const ciTypeFlow::StateVector* incoming) { 436 if (monitor_count() == -1) { 437 set_monitor_count(incoming->monitor_count()); 438 } 439 assert(monitor_count() == incoming->monitor_count(), "monitors must match"); 440 441 if (stack_size() == -1) { 442 set_stack_size(incoming->stack_size()); 443 Cell limit = limit_cell(); 444 #ifdef ASSERT 445 { for (Cell c = start_cell(); c < limit; c = next_cell(c)) { 446 assert(type_at(c) == top_type(), ""); 447 } } 448 #endif 449 // Make a simple copy of the incoming state. 450 for (Cell c = start_cell(); c < limit; c = next_cell(c)) { 451 set_type_at(c, incoming->type_at(c)); 452 } 453 return true; // it is always different the first time 454 } 455 #ifdef ASSERT 456 if (stack_size() != incoming->stack_size()) { 457 _outer->method()->print_codes(); 458 tty->print_cr("!!!! Stack size conflict"); 459 tty->print_cr("Current state:"); 460 print_on(tty); 461 tty->print_cr("Incoming state:"); 462 ((StateVector*)incoming)->print_on(tty); 463 } 464 #endif 465 assert(stack_size() == incoming->stack_size(), "sanity"); 466 467 bool different = false; 468 Cell limit = limit_cell(); 469 for (Cell c = start_cell(); c < limit; c = next_cell(c)) { 470 ciType* t1 = type_at(c); 471 ciType* t2 = incoming->type_at(c); 472 if (!t1->equals(t2)) { 473 ciType* new_type = type_meet(t1, t2); 474 if (!t1->equals(new_type)) { 475 set_type_at(c, new_type); 476 different = true; 477 } 478 } 479 } 480 return different; 481 } 482 483 // ------------------------------------------------------------------ 484 // ciTypeFlow::StateVector::meet_exception 485 // 486 // Meets this StateVector with another, destructively modifying this 487 // one. The incoming state is coming via an exception. Returns true 488 // if any modification takes place. 489 bool ciTypeFlow::StateVector::meet_exception(ciInstanceKlass* exc, 490 const ciTypeFlow::StateVector* incoming) { 491 if (monitor_count() == -1) { 492 set_monitor_count(incoming->monitor_count()); 493 } 494 assert(monitor_count() == incoming->monitor_count(), "monitors must match"); 495 496 if (stack_size() == -1) { 497 set_stack_size(1); 498 } 499 500 assert(stack_size() == 1, "must have one-element stack"); 501 502 bool different = false; 503 504 // Meet locals from incoming array. 505 Cell limit = local(_outer->max_locals()-1); 506 for (Cell c = start_cell(); c <= limit; c = next_cell(c)) { 507 ciType* t1 = type_at(c); 508 ciType* t2 = incoming->type_at(c); 509 if (!t1->equals(t2)) { 510 ciType* new_type = type_meet(t1, t2); 511 if (!t1->equals(new_type)) { 512 set_type_at(c, new_type); 513 different = true; 514 } 515 } 516 } 517 518 // Handle stack separately. When an exception occurs, the 519 // only stack entry is the exception instance. 520 ciType* tos_type = type_at_tos(); 521 if (!tos_type->equals(exc)) { 522 ciType* new_type = type_meet(tos_type, exc); 523 if (!tos_type->equals(new_type)) { 524 set_type_at_tos(new_type); 525 different = true; 526 } 527 } 528 529 return different; 530 } 531 532 // ------------------------------------------------------------------ 533 // ciTypeFlow::StateVector::push_translate 534 void ciTypeFlow::StateVector::push_translate(ciType* type) { 535 BasicType basic_type = type->basic_type(); 536 if (basic_type == T_BOOLEAN || basic_type == T_CHAR || 537 basic_type == T_BYTE || basic_type == T_SHORT) { 538 push_int(); 539 } else { 540 push(type); 541 if (type->is_two_word()) { 542 push(half_type(type)); 543 } 544 } 545 } 546 547 // ------------------------------------------------------------------ 548 // ciTypeFlow::StateVector::do_aaload 549 void ciTypeFlow::StateVector::do_aaload(ciBytecodeStream* str) { 550 pop_int(); 551 ciObjArrayKlass* array_klass = pop_objArray(); 552 if (array_klass == nullptr) { 553 // Did aaload on a null reference; push a null and ignore the exception. 554 // This instruction will never continue normally. All we have to do 555 // is report a value that will meet correctly with any downstream 556 // reference types on paths that will truly be executed. This null type 557 // meets with any reference type to yield that same reference type. 558 // (The compiler will generate an unconditional exception here.) 559 push(null_type()); 560 return; 561 } 562 if (!array_klass->is_loaded()) { 563 // Only fails for some -Xcomp runs 564 trap(str, array_klass, 565 Deoptimization::make_trap_request 566 (Deoptimization::Reason_unloaded, 567 Deoptimization::Action_reinterpret)); 568 return; 569 } 570 ciKlass* element_klass = array_klass->element_klass(); 571 if (!element_klass->is_loaded() && element_klass->is_instance_klass()) { 572 Untested("unloaded array element class in ciTypeFlow"); 573 trap(str, element_klass, 574 Deoptimization::make_trap_request 575 (Deoptimization::Reason_unloaded, 576 Deoptimization::Action_reinterpret)); 577 } else { 578 push_object(element_klass); 579 } 580 } 581 582 583 // ------------------------------------------------------------------ 584 // ciTypeFlow::StateVector::do_checkcast 585 void ciTypeFlow::StateVector::do_checkcast(ciBytecodeStream* str) { 586 bool will_link; 587 ciKlass* klass = str->get_klass(will_link); 588 if (!will_link) { 589 // VM's interpreter will not load 'klass' if object is null. 590 // Type flow after this block may still be needed in two situations: 591 // 1) C2 uses do_null_assert() and continues compilation for later blocks 592 // 2) C2 does an OSR compile in a later block (see bug 4778368). 593 pop_object(); 594 do_null_assert(klass); 595 } else { 596 pop_object(); 597 push_object(klass); 598 } 599 } 600 601 // ------------------------------------------------------------------ 602 // ciTypeFlow::StateVector::do_getfield 603 void ciTypeFlow::StateVector::do_getfield(ciBytecodeStream* str) { 604 // could add assert here for type of object. 605 pop_object(); 606 do_getstatic(str); 607 } 608 609 // ------------------------------------------------------------------ 610 // ciTypeFlow::StateVector::do_getstatic 611 void ciTypeFlow::StateVector::do_getstatic(ciBytecodeStream* str) { 612 bool will_link; 613 ciField* field = str->get_field(will_link); 614 if (!will_link) { 615 trap(str, field->holder(), str->get_field_holder_index()); 616 } else { 617 ciType* field_type = field->type(); 618 if (!field_type->is_loaded()) { 619 // Normally, we need the field's type to be loaded if we are to 620 // do anything interesting with its value. 621 // We used to do this: trap(str, str->get_field_signature_index()); 622 // 623 // There is one good reason not to trap here. Execution can 624 // get past this "getfield" or "getstatic" if the value of 625 // the field is null. As long as the value is null, the class 626 // does not need to be loaded! The compiler must assume that 627 // the value of the unloaded class reference is null; if the code 628 // ever sees a non-null value, loading has occurred. 629 // 630 // This actually happens often enough to be annoying. If the 631 // compiler throws an uncommon trap at this bytecode, you can 632 // get an endless loop of recompilations, when all the code 633 // needs to do is load a series of null values. Also, a trap 634 // here can make an OSR entry point unreachable, triggering the 635 // assert on non_osr_block in ciTypeFlow::get_start_state. 636 // (See bug 4379915.) 637 do_null_assert(field_type->as_klass()); 638 } else { 639 push_translate(field_type); 640 } 641 } 642 } 643 644 // ------------------------------------------------------------------ 645 // ciTypeFlow::StateVector::do_invoke 646 void ciTypeFlow::StateVector::do_invoke(ciBytecodeStream* str, 647 bool has_receiver) { 648 bool will_link; 649 ciSignature* declared_signature = nullptr; 650 ciMethod* callee = str->get_method(will_link, &declared_signature); 651 assert(declared_signature != nullptr, "cannot be null"); 652 if (!will_link) { 653 // We weren't able to find the method. 654 if (str->cur_bc() == Bytecodes::_invokedynamic) { 655 trap(str, nullptr, 656 Deoptimization::make_trap_request 657 (Deoptimization::Reason_uninitialized, 658 Deoptimization::Action_reinterpret)); 659 } else { 660 ciKlass* unloaded_holder = callee->holder(); 661 trap(str, unloaded_holder, str->get_method_holder_index()); 662 } 663 } else { 664 // We are using the declared signature here because it might be 665 // different from the callee signature (Cf. invokedynamic and 666 // invokehandle). 667 ciSignatureStream sigstr(declared_signature); 668 const int arg_size = declared_signature->size(); 669 const int stack_base = stack_size() - arg_size; 670 int i = 0; 671 for( ; !sigstr.at_return_type(); sigstr.next()) { 672 ciType* type = sigstr.type(); 673 ciType* stack_type = type_at(stack(stack_base + i++)); 674 // Do I want to check this type? 675 // assert(stack_type->is_subtype_of(type), "bad type for field value"); 676 if (type->is_two_word()) { 677 ciType* stack_type2 = type_at(stack(stack_base + i++)); 678 assert(stack_type2->equals(half_type(type)), "must be 2nd half"); 679 } 680 } 681 assert(arg_size == i, "must match"); 682 for (int j = 0; j < arg_size; j++) { 683 pop(); 684 } 685 if (has_receiver) { 686 // Check this? 687 pop_object(); 688 } 689 assert(!sigstr.is_done(), "must have return type"); 690 ciType* return_type = sigstr.type(); 691 if (!return_type->is_void()) { 692 if (!return_type->is_loaded()) { 693 // As in do_getstatic(), generally speaking, we need the return type to 694 // be loaded if we are to do anything interesting with its value. 695 // We used to do this: trap(str, str->get_method_signature_index()); 696 // 697 // We do not trap here since execution can get past this invoke if 698 // the return value is null. As long as the value is null, the class 699 // does not need to be loaded! The compiler must assume that 700 // the value of the unloaded class reference is null; if the code 701 // ever sees a non-null value, loading has occurred. 702 // 703 // See do_getstatic() for similar explanation, as well as bug 4684993. 704 do_null_assert(return_type->as_klass()); 705 } else { 706 push_translate(return_type); 707 } 708 } 709 } 710 } 711 712 // ------------------------------------------------------------------ 713 // ciTypeFlow::StateVector::do_jsr 714 void ciTypeFlow::StateVector::do_jsr(ciBytecodeStream* str) { 715 push(ciReturnAddress::make(str->next_bci())); 716 } 717 718 // ------------------------------------------------------------------ 719 // ciTypeFlow::StateVector::do_ldc 720 void ciTypeFlow::StateVector::do_ldc(ciBytecodeStream* str) { 721 if (str->is_in_error()) { 722 trap(str, nullptr, Deoptimization::make_trap_request(Deoptimization::Reason_unhandled, 723 Deoptimization::Action_none)); 724 return; 725 } 726 ciConstant con = str->get_constant(); 727 if (con.is_valid()) { 728 int cp_index = str->get_constant_pool_index(); 729 BasicType basic_type = str->get_basic_type_for_constant_at(cp_index); 730 if (is_reference_type(basic_type)) { 731 ciObject* obj = con.as_object(); 732 if (obj->is_null_object()) { 733 push_null(); 734 } else { 735 assert(obj->is_instance() || obj->is_array(), "must be java_mirror of klass"); 736 push_object(obj->klass()); 737 } 738 } else { 739 assert(basic_type == con.basic_type() || con.basic_type() == T_OBJECT, 740 "not a boxed form: %s vs %s", type2name(basic_type), type2name(con.basic_type())); 741 push_translate(ciType::make(basic_type)); 742 } 743 } else { 744 // OutOfMemoryError in the CI while loading a String constant. 745 push_null(); 746 outer()->record_failure("ldc did not link"); 747 } 748 } 749 750 // ------------------------------------------------------------------ 751 // ciTypeFlow::StateVector::do_multianewarray 752 void ciTypeFlow::StateVector::do_multianewarray(ciBytecodeStream* str) { 753 int dimensions = str->get_dimensions(); 754 bool will_link; 755 ciArrayKlass* array_klass = str->get_klass(will_link)->as_array_klass(); 756 if (!will_link) { 757 trap(str, array_klass, str->get_klass_index()); 758 } else { 759 for (int i = 0; i < dimensions; i++) { 760 pop_int(); 761 } 762 push_object(array_klass); 763 } 764 } 765 766 // ------------------------------------------------------------------ 767 // ciTypeFlow::StateVector::do_new 768 void ciTypeFlow::StateVector::do_new(ciBytecodeStream* str) { 769 bool will_link; 770 ciKlass* klass = str->get_klass(will_link); 771 if (!will_link || str->is_unresolved_klass()) { 772 trap(str, klass, str->get_klass_index()); 773 } else { 774 push_object(klass); 775 } 776 } 777 778 // ------------------------------------------------------------------ 779 // ciTypeFlow::StateVector::do_newarray 780 void ciTypeFlow::StateVector::do_newarray(ciBytecodeStream* str) { 781 pop_int(); 782 ciKlass* klass = ciTypeArrayKlass::make((BasicType)str->get_index()); 783 push_object(klass); 784 } 785 786 // ------------------------------------------------------------------ 787 // ciTypeFlow::StateVector::do_putfield 788 void ciTypeFlow::StateVector::do_putfield(ciBytecodeStream* str) { 789 do_putstatic(str); 790 if (_trap_bci != -1) return; // unloaded field holder, etc. 791 // could add assert here for type of object. 792 pop_object(); 793 } 794 795 // ------------------------------------------------------------------ 796 // ciTypeFlow::StateVector::do_putstatic 797 void ciTypeFlow::StateVector::do_putstatic(ciBytecodeStream* str) { 798 bool will_link; 799 ciField* field = str->get_field(will_link); 800 if (!will_link) { 801 trap(str, field->holder(), str->get_field_holder_index()); 802 } else { 803 ciType* field_type = field->type(); 804 ciType* type = pop_value(); 805 // Do I want to check this type? 806 // assert(type->is_subtype_of(field_type), "bad type for field value"); 807 if (field_type->is_two_word()) { 808 ciType* type2 = pop_value(); 809 assert(type2->is_two_word(), "must be 2nd half"); 810 assert(type == half_type(type2), "must be 2nd half"); 811 } 812 } 813 } 814 815 // ------------------------------------------------------------------ 816 // ciTypeFlow::StateVector::do_ret 817 void ciTypeFlow::StateVector::do_ret(ciBytecodeStream* str) { 818 Cell index = local(str->get_index()); 819 820 ciType* address = type_at(index); 821 assert(address->is_return_address(), "bad return address"); 822 set_type_at(index, bottom_type()); 823 } 824 825 // ------------------------------------------------------------------ 826 // ciTypeFlow::StateVector::trap 827 // 828 // Stop interpretation of this path with a trap. 829 void ciTypeFlow::StateVector::trap(ciBytecodeStream* str, ciKlass* klass, int index) { 830 _trap_bci = str->cur_bci(); 831 _trap_index = index; 832 833 // Log information about this trap: 834 CompileLog* log = outer()->env()->log(); 835 if (log != nullptr) { 836 int mid = log->identify(outer()->method()); 837 int kid = (klass == nullptr)? -1: log->identify(klass); 838 log->begin_elem("uncommon_trap method='%d' bci='%d'", mid, str->cur_bci()); 839 char buf[100]; 840 log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf), 841 index)); 842 if (kid >= 0) 843 log->print(" klass='%d'", kid); 844 log->end_elem(); 845 } 846 } 847 848 // ------------------------------------------------------------------ 849 // ciTypeFlow::StateVector::do_null_assert 850 // Corresponds to graphKit::do_null_assert. 851 void ciTypeFlow::StateVector::do_null_assert(ciKlass* unloaded_klass) { 852 if (unloaded_klass->is_loaded()) { 853 // We failed to link, but we can still compute with this class, 854 // since it is loaded somewhere. The compiler will uncommon_trap 855 // if the object is not null, but the typeflow pass can not assume 856 // that the object will be null, otherwise it may incorrectly tell 857 // the parser that an object is known to be null. 4761344, 4807707 858 push_object(unloaded_klass); 859 } else { 860 // The class is not loaded anywhere. It is safe to model the 861 // null in the typestates, because we can compile in a null check 862 // which will deoptimize us if someone manages to load the 863 // class later. 864 push_null(); 865 } 866 } 867 868 869 // ------------------------------------------------------------------ 870 // ciTypeFlow::StateVector::apply_one_bytecode 871 // 872 // Apply the effect of one bytecode to this StateVector 873 bool ciTypeFlow::StateVector::apply_one_bytecode(ciBytecodeStream* str) { 874 _trap_bci = -1; 875 _trap_index = 0; 876 877 if (CITraceTypeFlow) { 878 tty->print_cr(">> Interpreting bytecode %d:%s", str->cur_bci(), 879 Bytecodes::name(str->cur_bc())); 880 } 881 882 switch(str->cur_bc()) { 883 case Bytecodes::_aaload: do_aaload(str); break; 884 885 case Bytecodes::_aastore: 886 { 887 pop_object(); 888 pop_int(); 889 pop_objArray(); 890 break; 891 } 892 case Bytecodes::_aconst_null: 893 { 894 push_null(); 895 break; 896 } 897 case Bytecodes::_aload: load_local_object(str->get_index()); break; 898 case Bytecodes::_aload_0: load_local_object(0); break; 899 case Bytecodes::_aload_1: load_local_object(1); break; 900 case Bytecodes::_aload_2: load_local_object(2); break; 901 case Bytecodes::_aload_3: load_local_object(3); break; 902 903 case Bytecodes::_anewarray: 904 { 905 pop_int(); 906 bool will_link; 907 ciKlass* element_klass = str->get_klass(will_link); 908 if (!will_link) { 909 trap(str, element_klass, str->get_klass_index()); 910 } else { 911 push_object(ciObjArrayKlass::make(element_klass)); 912 } 913 break; 914 } 915 case Bytecodes::_areturn: 916 case Bytecodes::_ifnonnull: 917 case Bytecodes::_ifnull: 918 { 919 pop_object(); 920 break; 921 } 922 case Bytecodes::_monitorenter: 923 { 924 pop_object(); 925 set_monitor_count(monitor_count() + 1); 926 break; 927 } 928 case Bytecodes::_monitorexit: 929 { 930 pop_object(); 931 assert(monitor_count() > 0, "must be a monitor to exit from"); 932 set_monitor_count(monitor_count() - 1); 933 break; 934 } 935 case Bytecodes::_arraylength: 936 { 937 pop_array(); 938 push_int(); 939 break; 940 } 941 case Bytecodes::_astore: store_local_object(str->get_index()); break; 942 case Bytecodes::_astore_0: store_local_object(0); break; 943 case Bytecodes::_astore_1: store_local_object(1); break; 944 case Bytecodes::_astore_2: store_local_object(2); break; 945 case Bytecodes::_astore_3: store_local_object(3); break; 946 947 case Bytecodes::_athrow: 948 { 949 NEEDS_CLEANUP; 950 pop_object(); 951 break; 952 } 953 case Bytecodes::_baload: 954 case Bytecodes::_caload: 955 case Bytecodes::_iaload: 956 case Bytecodes::_saload: 957 { 958 pop_int(); 959 ciTypeArrayKlass* array_klass = pop_typeArray(); 960 // Put assert here for right type? 961 push_int(); 962 break; 963 } 964 case Bytecodes::_bastore: 965 case Bytecodes::_castore: 966 case Bytecodes::_iastore: 967 case Bytecodes::_sastore: 968 { 969 pop_int(); 970 pop_int(); 971 pop_typeArray(); 972 // assert here? 973 break; 974 } 975 case Bytecodes::_bipush: 976 case Bytecodes::_iconst_m1: 977 case Bytecodes::_iconst_0: 978 case Bytecodes::_iconst_1: 979 case Bytecodes::_iconst_2: 980 case Bytecodes::_iconst_3: 981 case Bytecodes::_iconst_4: 982 case Bytecodes::_iconst_5: 983 case Bytecodes::_sipush: 984 { 985 push_int(); 986 break; 987 } 988 case Bytecodes::_checkcast: do_checkcast(str); break; 989 990 case Bytecodes::_d2f: 991 { 992 pop_double(); 993 push_float(); 994 break; 995 } 996 case Bytecodes::_d2i: 997 { 998 pop_double(); 999 push_int(); 1000 break; 1001 } 1002 case Bytecodes::_d2l: 1003 { 1004 pop_double(); 1005 push_long(); 1006 break; 1007 } 1008 case Bytecodes::_dadd: 1009 case Bytecodes::_ddiv: 1010 case Bytecodes::_dmul: 1011 case Bytecodes::_drem: 1012 case Bytecodes::_dsub: 1013 { 1014 pop_double(); 1015 pop_double(); 1016 push_double(); 1017 break; 1018 } 1019 case Bytecodes::_daload: 1020 { 1021 pop_int(); 1022 ciTypeArrayKlass* array_klass = pop_typeArray(); 1023 // Put assert here for right type? 1024 push_double(); 1025 break; 1026 } 1027 case Bytecodes::_dastore: 1028 { 1029 pop_double(); 1030 pop_int(); 1031 pop_typeArray(); 1032 // assert here? 1033 break; 1034 } 1035 case Bytecodes::_dcmpg: 1036 case Bytecodes::_dcmpl: 1037 { 1038 pop_double(); 1039 pop_double(); 1040 push_int(); 1041 break; 1042 } 1043 case Bytecodes::_dconst_0: 1044 case Bytecodes::_dconst_1: 1045 { 1046 push_double(); 1047 break; 1048 } 1049 case Bytecodes::_dload: load_local_double(str->get_index()); break; 1050 case Bytecodes::_dload_0: load_local_double(0); break; 1051 case Bytecodes::_dload_1: load_local_double(1); break; 1052 case Bytecodes::_dload_2: load_local_double(2); break; 1053 case Bytecodes::_dload_3: load_local_double(3); break; 1054 1055 case Bytecodes::_dneg: 1056 { 1057 pop_double(); 1058 push_double(); 1059 break; 1060 } 1061 case Bytecodes::_dreturn: 1062 { 1063 pop_double(); 1064 break; 1065 } 1066 case Bytecodes::_dstore: store_local_double(str->get_index()); break; 1067 case Bytecodes::_dstore_0: store_local_double(0); break; 1068 case Bytecodes::_dstore_1: store_local_double(1); break; 1069 case Bytecodes::_dstore_2: store_local_double(2); break; 1070 case Bytecodes::_dstore_3: store_local_double(3); break; 1071 1072 case Bytecodes::_dup: 1073 { 1074 push(type_at_tos()); 1075 break; 1076 } 1077 case Bytecodes::_dup_x1: 1078 { 1079 ciType* value1 = pop_value(); 1080 ciType* value2 = pop_value(); 1081 push(value1); 1082 push(value2); 1083 push(value1); 1084 break; 1085 } 1086 case Bytecodes::_dup_x2: 1087 { 1088 ciType* value1 = pop_value(); 1089 ciType* value2 = pop_value(); 1090 ciType* value3 = pop_value(); 1091 push(value1); 1092 push(value3); 1093 push(value2); 1094 push(value1); 1095 break; 1096 } 1097 case Bytecodes::_dup2: 1098 { 1099 ciType* value1 = pop_value(); 1100 ciType* value2 = pop_value(); 1101 push(value2); 1102 push(value1); 1103 push(value2); 1104 push(value1); 1105 break; 1106 } 1107 case Bytecodes::_dup2_x1: 1108 { 1109 ciType* value1 = pop_value(); 1110 ciType* value2 = pop_value(); 1111 ciType* value3 = pop_value(); 1112 push(value2); 1113 push(value1); 1114 push(value3); 1115 push(value2); 1116 push(value1); 1117 break; 1118 } 1119 case Bytecodes::_dup2_x2: 1120 { 1121 ciType* value1 = pop_value(); 1122 ciType* value2 = pop_value(); 1123 ciType* value3 = pop_value(); 1124 ciType* value4 = pop_value(); 1125 push(value2); 1126 push(value1); 1127 push(value4); 1128 push(value3); 1129 push(value2); 1130 push(value1); 1131 break; 1132 } 1133 case Bytecodes::_f2d: 1134 { 1135 pop_float(); 1136 push_double(); 1137 break; 1138 } 1139 case Bytecodes::_f2i: 1140 { 1141 pop_float(); 1142 push_int(); 1143 break; 1144 } 1145 case Bytecodes::_f2l: 1146 { 1147 pop_float(); 1148 push_long(); 1149 break; 1150 } 1151 case Bytecodes::_fadd: 1152 case Bytecodes::_fdiv: 1153 case Bytecodes::_fmul: 1154 case Bytecodes::_frem: 1155 case Bytecodes::_fsub: 1156 { 1157 pop_float(); 1158 pop_float(); 1159 push_float(); 1160 break; 1161 } 1162 case Bytecodes::_faload: 1163 { 1164 pop_int(); 1165 ciTypeArrayKlass* array_klass = pop_typeArray(); 1166 // Put assert here. 1167 push_float(); 1168 break; 1169 } 1170 case Bytecodes::_fastore: 1171 { 1172 pop_float(); 1173 pop_int(); 1174 ciTypeArrayKlass* array_klass = pop_typeArray(); 1175 // Put assert here. 1176 break; 1177 } 1178 case Bytecodes::_fcmpg: 1179 case Bytecodes::_fcmpl: 1180 { 1181 pop_float(); 1182 pop_float(); 1183 push_int(); 1184 break; 1185 } 1186 case Bytecodes::_fconst_0: 1187 case Bytecodes::_fconst_1: 1188 case Bytecodes::_fconst_2: 1189 { 1190 push_float(); 1191 break; 1192 } 1193 case Bytecodes::_fload: load_local_float(str->get_index()); break; 1194 case Bytecodes::_fload_0: load_local_float(0); break; 1195 case Bytecodes::_fload_1: load_local_float(1); break; 1196 case Bytecodes::_fload_2: load_local_float(2); break; 1197 case Bytecodes::_fload_3: load_local_float(3); break; 1198 1199 case Bytecodes::_fneg: 1200 { 1201 pop_float(); 1202 push_float(); 1203 break; 1204 } 1205 case Bytecodes::_freturn: 1206 { 1207 pop_float(); 1208 break; 1209 } 1210 case Bytecodes::_fstore: store_local_float(str->get_index()); break; 1211 case Bytecodes::_fstore_0: store_local_float(0); break; 1212 case Bytecodes::_fstore_1: store_local_float(1); break; 1213 case Bytecodes::_fstore_2: store_local_float(2); break; 1214 case Bytecodes::_fstore_3: store_local_float(3); break; 1215 1216 case Bytecodes::_getfield: do_getfield(str); break; 1217 case Bytecodes::_getstatic: do_getstatic(str); break; 1218 1219 case Bytecodes::_goto: 1220 case Bytecodes::_goto_w: 1221 case Bytecodes::_nop: 1222 case Bytecodes::_return: 1223 { 1224 // do nothing. 1225 break; 1226 } 1227 case Bytecodes::_i2b: 1228 case Bytecodes::_i2c: 1229 case Bytecodes::_i2s: 1230 case Bytecodes::_ineg: 1231 { 1232 pop_int(); 1233 push_int(); 1234 break; 1235 } 1236 case Bytecodes::_i2d: 1237 { 1238 pop_int(); 1239 push_double(); 1240 break; 1241 } 1242 case Bytecodes::_i2f: 1243 { 1244 pop_int(); 1245 push_float(); 1246 break; 1247 } 1248 case Bytecodes::_i2l: 1249 { 1250 pop_int(); 1251 push_long(); 1252 break; 1253 } 1254 case Bytecodes::_iadd: 1255 case Bytecodes::_iand: 1256 case Bytecodes::_idiv: 1257 case Bytecodes::_imul: 1258 case Bytecodes::_ior: 1259 case Bytecodes::_irem: 1260 case Bytecodes::_ishl: 1261 case Bytecodes::_ishr: 1262 case Bytecodes::_isub: 1263 case Bytecodes::_iushr: 1264 case Bytecodes::_ixor: 1265 { 1266 pop_int(); 1267 pop_int(); 1268 push_int(); 1269 break; 1270 } 1271 case Bytecodes::_if_acmpeq: 1272 case Bytecodes::_if_acmpne: 1273 { 1274 pop_object(); 1275 pop_object(); 1276 break; 1277 } 1278 case Bytecodes::_if_icmpeq: 1279 case Bytecodes::_if_icmpge: 1280 case Bytecodes::_if_icmpgt: 1281 case Bytecodes::_if_icmple: 1282 case Bytecodes::_if_icmplt: 1283 case Bytecodes::_if_icmpne: 1284 { 1285 pop_int(); 1286 pop_int(); 1287 break; 1288 } 1289 case Bytecodes::_ifeq: 1290 case Bytecodes::_ifle: 1291 case Bytecodes::_iflt: 1292 case Bytecodes::_ifge: 1293 case Bytecodes::_ifgt: 1294 case Bytecodes::_ifne: 1295 case Bytecodes::_ireturn: 1296 case Bytecodes::_lookupswitch: 1297 case Bytecodes::_tableswitch: 1298 { 1299 pop_int(); 1300 break; 1301 } 1302 case Bytecodes::_iinc: 1303 { 1304 int lnum = str->get_index(); 1305 check_int(local(lnum)); 1306 store_to_local(lnum); 1307 break; 1308 } 1309 case Bytecodes::_iload: load_local_int(str->get_index()); break; 1310 case Bytecodes::_iload_0: load_local_int(0); break; 1311 case Bytecodes::_iload_1: load_local_int(1); break; 1312 case Bytecodes::_iload_2: load_local_int(2); break; 1313 case Bytecodes::_iload_3: load_local_int(3); break; 1314 1315 case Bytecodes::_instanceof: 1316 { 1317 // Check for uncommon trap: 1318 do_checkcast(str); 1319 pop_object(); 1320 push_int(); 1321 break; 1322 } 1323 case Bytecodes::_invokeinterface: do_invoke(str, true); break; 1324 case Bytecodes::_invokespecial: do_invoke(str, true); break; 1325 case Bytecodes::_invokestatic: do_invoke(str, false); break; 1326 case Bytecodes::_invokevirtual: do_invoke(str, true); break; 1327 case Bytecodes::_invokedynamic: do_invoke(str, false); break; 1328 1329 case Bytecodes::_istore: store_local_int(str->get_index()); break; 1330 case Bytecodes::_istore_0: store_local_int(0); break; 1331 case Bytecodes::_istore_1: store_local_int(1); break; 1332 case Bytecodes::_istore_2: store_local_int(2); break; 1333 case Bytecodes::_istore_3: store_local_int(3); break; 1334 1335 case Bytecodes::_jsr: 1336 case Bytecodes::_jsr_w: do_jsr(str); break; 1337 1338 case Bytecodes::_l2d: 1339 { 1340 pop_long(); 1341 push_double(); 1342 break; 1343 } 1344 case Bytecodes::_l2f: 1345 { 1346 pop_long(); 1347 push_float(); 1348 break; 1349 } 1350 case Bytecodes::_l2i: 1351 { 1352 pop_long(); 1353 push_int(); 1354 break; 1355 } 1356 case Bytecodes::_ladd: 1357 case Bytecodes::_land: 1358 case Bytecodes::_ldiv: 1359 case Bytecodes::_lmul: 1360 case Bytecodes::_lor: 1361 case Bytecodes::_lrem: 1362 case Bytecodes::_lsub: 1363 case Bytecodes::_lxor: 1364 { 1365 pop_long(); 1366 pop_long(); 1367 push_long(); 1368 break; 1369 } 1370 case Bytecodes::_laload: 1371 { 1372 pop_int(); 1373 ciTypeArrayKlass* array_klass = pop_typeArray(); 1374 // Put assert here for right type? 1375 push_long(); 1376 break; 1377 } 1378 case Bytecodes::_lastore: 1379 { 1380 pop_long(); 1381 pop_int(); 1382 pop_typeArray(); 1383 // assert here? 1384 break; 1385 } 1386 case Bytecodes::_lcmp: 1387 { 1388 pop_long(); 1389 pop_long(); 1390 push_int(); 1391 break; 1392 } 1393 case Bytecodes::_lconst_0: 1394 case Bytecodes::_lconst_1: 1395 { 1396 push_long(); 1397 break; 1398 } 1399 case Bytecodes::_ldc: 1400 case Bytecodes::_ldc_w: 1401 case Bytecodes::_ldc2_w: 1402 { 1403 do_ldc(str); 1404 break; 1405 } 1406 1407 case Bytecodes::_lload: load_local_long(str->get_index()); break; 1408 case Bytecodes::_lload_0: load_local_long(0); break; 1409 case Bytecodes::_lload_1: load_local_long(1); break; 1410 case Bytecodes::_lload_2: load_local_long(2); break; 1411 case Bytecodes::_lload_3: load_local_long(3); break; 1412 1413 case Bytecodes::_lneg: 1414 { 1415 pop_long(); 1416 push_long(); 1417 break; 1418 } 1419 case Bytecodes::_lreturn: 1420 { 1421 pop_long(); 1422 break; 1423 } 1424 case Bytecodes::_lshl: 1425 case Bytecodes::_lshr: 1426 case Bytecodes::_lushr: 1427 { 1428 pop_int(); 1429 pop_long(); 1430 push_long(); 1431 break; 1432 } 1433 case Bytecodes::_lstore: store_local_long(str->get_index()); break; 1434 case Bytecodes::_lstore_0: store_local_long(0); break; 1435 case Bytecodes::_lstore_1: store_local_long(1); break; 1436 case Bytecodes::_lstore_2: store_local_long(2); break; 1437 case Bytecodes::_lstore_3: store_local_long(3); break; 1438 1439 case Bytecodes::_multianewarray: do_multianewarray(str); break; 1440 1441 case Bytecodes::_new: do_new(str); break; 1442 1443 case Bytecodes::_newarray: do_newarray(str); break; 1444 1445 case Bytecodes::_pop: 1446 { 1447 pop(); 1448 break; 1449 } 1450 case Bytecodes::_pop2: 1451 { 1452 pop(); 1453 pop(); 1454 break; 1455 } 1456 1457 case Bytecodes::_putfield: do_putfield(str); break; 1458 case Bytecodes::_putstatic: do_putstatic(str); break; 1459 1460 case Bytecodes::_ret: do_ret(str); break; 1461 1462 case Bytecodes::_swap: 1463 { 1464 ciType* value1 = pop_value(); 1465 ciType* value2 = pop_value(); 1466 push(value1); 1467 push(value2); 1468 break; 1469 } 1470 case Bytecodes::_wide: 1471 default: 1472 { 1473 // The iterator should skip this. 1474 ShouldNotReachHere(); 1475 break; 1476 } 1477 } 1478 1479 if (CITraceTypeFlow) { 1480 print_on(tty); 1481 } 1482 1483 return (_trap_bci != -1); 1484 } 1485 1486 #ifndef PRODUCT 1487 // ------------------------------------------------------------------ 1488 // ciTypeFlow::StateVector::print_cell_on 1489 void ciTypeFlow::StateVector::print_cell_on(outputStream* st, Cell c) const { 1490 ciType* type = type_at(c); 1491 if (type == top_type()) { 1492 st->print("top"); 1493 } else if (type == bottom_type()) { 1494 st->print("bottom"); 1495 } else if (type == null_type()) { 1496 st->print("null"); 1497 } else if (type == long2_type()) { 1498 st->print("long2"); 1499 } else if (type == double2_type()) { 1500 st->print("double2"); 1501 } else if (is_int(type)) { 1502 st->print("int"); 1503 } else if (is_long(type)) { 1504 st->print("long"); 1505 } else if (is_float(type)) { 1506 st->print("float"); 1507 } else if (is_double(type)) { 1508 st->print("double"); 1509 } else if (type->is_return_address()) { 1510 st->print("address(%d)", type->as_return_address()->bci()); 1511 } else { 1512 if (type->is_klass()) { 1513 type->as_klass()->name()->print_symbol_on(st); 1514 } else { 1515 st->print("UNEXPECTED TYPE"); 1516 type->print(); 1517 } 1518 } 1519 } 1520 1521 // ------------------------------------------------------------------ 1522 // ciTypeFlow::StateVector::print_on 1523 void ciTypeFlow::StateVector::print_on(outputStream* st) const { 1524 int num_locals = _outer->max_locals(); 1525 int num_stack = stack_size(); 1526 int num_monitors = monitor_count(); 1527 st->print_cr(" State : locals %d, stack %d, monitors %d", num_locals, num_stack, num_monitors); 1528 if (num_stack >= 0) { 1529 int i; 1530 for (i = 0; i < num_locals; i++) { 1531 st->print(" local %2d : ", i); 1532 print_cell_on(st, local(i)); 1533 st->cr(); 1534 } 1535 for (i = 0; i < num_stack; i++) { 1536 st->print(" stack %2d : ", i); 1537 print_cell_on(st, stack(i)); 1538 st->cr(); 1539 } 1540 } 1541 } 1542 #endif 1543 1544 1545 // ------------------------------------------------------------------ 1546 // ciTypeFlow::SuccIter::next 1547 // 1548 void ciTypeFlow::SuccIter::next() { 1549 int succ_ct = _pred->successors()->length(); 1550 int next = _index + 1; 1551 if (next < succ_ct) { 1552 _index = next; 1553 _succ = _pred->successors()->at(next); 1554 return; 1555 } 1556 for (int i = next - succ_ct; i < _pred->exceptions()->length(); i++) { 1557 // Do not compile any code for unloaded exception types. 1558 // Following compiler passes are responsible for doing this also. 1559 ciInstanceKlass* exception_klass = _pred->exc_klasses()->at(i); 1560 if (exception_klass->is_loaded()) { 1561 _index = next; 1562 _succ = _pred->exceptions()->at(i); 1563 return; 1564 } 1565 next++; 1566 } 1567 _index = -1; 1568 _succ = nullptr; 1569 } 1570 1571 // ------------------------------------------------------------------ 1572 // ciTypeFlow::SuccIter::set_succ 1573 // 1574 void ciTypeFlow::SuccIter::set_succ(Block* succ) { 1575 int succ_ct = _pred->successors()->length(); 1576 if (_index < succ_ct) { 1577 _pred->successors()->at_put(_index, succ); 1578 } else { 1579 int idx = _index - succ_ct; 1580 _pred->exceptions()->at_put(idx, succ); 1581 } 1582 } 1583 1584 // ciTypeFlow::Block 1585 // 1586 // A basic block. 1587 1588 // ------------------------------------------------------------------ 1589 // ciTypeFlow::Block::Block 1590 ciTypeFlow::Block::Block(ciTypeFlow* outer, 1591 ciBlock *ciblk, 1592 ciTypeFlow::JsrSet* jsrs) : _predecessors(outer->arena(), 1, 0, nullptr) { 1593 _ciblock = ciblk; 1594 _exceptions = nullptr; 1595 _exc_klasses = nullptr; 1596 _successors = nullptr; 1597 _state = new (outer->arena()) StateVector(outer); 1598 JsrSet* new_jsrs = 1599 new (outer->arena()) JsrSet(outer->arena(), jsrs->size()); 1600 jsrs->copy_into(new_jsrs); 1601 _jsrs = new_jsrs; 1602 _next = nullptr; 1603 _on_work_list = false; 1604 _backedge_copy = false; 1605 _has_monitorenter = false; 1606 _trap_bci = -1; 1607 _trap_index = 0; 1608 df_init(); 1609 1610 if (CITraceTypeFlow) { 1611 tty->print_cr(">> Created new block"); 1612 print_on(tty); 1613 } 1614 1615 assert(this->outer() == outer, "outer link set up"); 1616 assert(!outer->have_block_count(), "must not have mapped blocks yet"); 1617 } 1618 1619 // ------------------------------------------------------------------ 1620 // ciTypeFlow::Block::df_init 1621 void ciTypeFlow::Block::df_init() { 1622 _pre_order = -1; assert(!has_pre_order(), ""); 1623 _post_order = -1; assert(!has_post_order(), ""); 1624 _loop = nullptr; 1625 _irreducible_loop_head = false; 1626 _irreducible_loop_secondary_entry = false; 1627 _rpo_next = nullptr; 1628 } 1629 1630 // ------------------------------------------------------------------ 1631 // ciTypeFlow::Block::successors 1632 // 1633 // Get the successors for this Block. 1634 GrowableArray<ciTypeFlow::Block*>* 1635 ciTypeFlow::Block::successors(ciBytecodeStream* str, 1636 ciTypeFlow::StateVector* state, 1637 ciTypeFlow::JsrSet* jsrs) { 1638 if (_successors == nullptr) { 1639 if (CITraceTypeFlow) { 1640 tty->print(">> Computing successors for block "); 1641 print_value_on(tty); 1642 tty->cr(); 1643 } 1644 1645 ciTypeFlow* analyzer = outer(); 1646 Arena* arena = analyzer->arena(); 1647 Block* block = nullptr; 1648 bool has_successor = !has_trap() && 1649 (control() != ciBlock::fall_through_bci || limit() < analyzer->code_size()); 1650 if (!has_successor) { 1651 _successors = 1652 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1653 // No successors 1654 } else if (control() == ciBlock::fall_through_bci) { 1655 assert(str->cur_bci() == limit(), "bad block end"); 1656 // This block simply falls through to the next. 1657 _successors = 1658 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1659 1660 Block* block = analyzer->block_at(limit(), _jsrs); 1661 assert(_successors->length() == FALL_THROUGH, ""); 1662 _successors->append(block); 1663 } else { 1664 int current_bci = str->cur_bci(); 1665 int next_bci = str->next_bci(); 1666 int branch_bci = -1; 1667 Block* target = nullptr; 1668 assert(str->next_bci() == limit(), "bad block end"); 1669 // This block is not a simple fall-though. Interpret 1670 // the current bytecode to find our successors. 1671 switch (str->cur_bc()) { 1672 case Bytecodes::_ifeq: case Bytecodes::_ifne: 1673 case Bytecodes::_iflt: case Bytecodes::_ifge: 1674 case Bytecodes::_ifgt: case Bytecodes::_ifle: 1675 case Bytecodes::_if_icmpeq: case Bytecodes::_if_icmpne: 1676 case Bytecodes::_if_icmplt: case Bytecodes::_if_icmpge: 1677 case Bytecodes::_if_icmpgt: case Bytecodes::_if_icmple: 1678 case Bytecodes::_if_acmpeq: case Bytecodes::_if_acmpne: 1679 case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: 1680 // Our successors are the branch target and the next bci. 1681 branch_bci = str->get_dest(); 1682 _successors = 1683 new (arena) GrowableArray<Block*>(arena, 2, 0, nullptr); 1684 assert(_successors->length() == IF_NOT_TAKEN, ""); 1685 _successors->append(analyzer->block_at(next_bci, jsrs)); 1686 assert(_successors->length() == IF_TAKEN, ""); 1687 _successors->append(analyzer->block_at(branch_bci, jsrs)); 1688 break; 1689 1690 case Bytecodes::_goto: 1691 branch_bci = str->get_dest(); 1692 _successors = 1693 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1694 assert(_successors->length() == GOTO_TARGET, ""); 1695 _successors->append(analyzer->block_at(branch_bci, jsrs)); 1696 break; 1697 1698 case Bytecodes::_jsr: 1699 branch_bci = str->get_dest(); 1700 _successors = 1701 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1702 assert(_successors->length() == GOTO_TARGET, ""); 1703 _successors->append(analyzer->block_at(branch_bci, jsrs)); 1704 break; 1705 1706 case Bytecodes::_goto_w: 1707 case Bytecodes::_jsr_w: 1708 _successors = 1709 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1710 assert(_successors->length() == GOTO_TARGET, ""); 1711 _successors->append(analyzer->block_at(str->get_far_dest(), jsrs)); 1712 break; 1713 1714 case Bytecodes::_tableswitch: { 1715 Bytecode_tableswitch tableswitch(str); 1716 1717 int len = tableswitch.length(); 1718 _successors = 1719 new (arena) GrowableArray<Block*>(arena, len+1, 0, nullptr); 1720 int bci = current_bci + tableswitch.default_offset(); 1721 Block* block = analyzer->block_at(bci, jsrs); 1722 assert(_successors->length() == SWITCH_DEFAULT, ""); 1723 _successors->append(block); 1724 while (--len >= 0) { 1725 int bci = current_bci + tableswitch.dest_offset_at(len); 1726 block = analyzer->block_at(bci, jsrs); 1727 assert(_successors->length() >= SWITCH_CASES, ""); 1728 _successors->append_if_missing(block); 1729 } 1730 break; 1731 } 1732 1733 case Bytecodes::_lookupswitch: { 1734 Bytecode_lookupswitch lookupswitch(str); 1735 1736 int npairs = lookupswitch.number_of_pairs(); 1737 _successors = 1738 new (arena) GrowableArray<Block*>(arena, npairs+1, 0, nullptr); 1739 int bci = current_bci + lookupswitch.default_offset(); 1740 Block* block = analyzer->block_at(bci, jsrs); 1741 assert(_successors->length() == SWITCH_DEFAULT, ""); 1742 _successors->append(block); 1743 while(--npairs >= 0) { 1744 LookupswitchPair pair = lookupswitch.pair_at(npairs); 1745 int bci = current_bci + pair.offset(); 1746 Block* block = analyzer->block_at(bci, jsrs); 1747 assert(_successors->length() >= SWITCH_CASES, ""); 1748 _successors->append_if_missing(block); 1749 } 1750 break; 1751 } 1752 1753 case Bytecodes::_athrow: case Bytecodes::_ireturn: 1754 case Bytecodes::_lreturn: case Bytecodes::_freturn: 1755 case Bytecodes::_dreturn: case Bytecodes::_areturn: 1756 case Bytecodes::_return: 1757 _successors = 1758 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1759 // No successors 1760 break; 1761 1762 case Bytecodes::_ret: { 1763 _successors = 1764 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1765 1766 Cell local = state->local(str->get_index()); 1767 ciType* return_address = state->type_at(local); 1768 assert(return_address->is_return_address(), "verify: wrong type"); 1769 int bci = return_address->as_return_address()->bci(); 1770 assert(_successors->length() == GOTO_TARGET, ""); 1771 _successors->append(analyzer->block_at(bci, jsrs)); 1772 break; 1773 } 1774 1775 case Bytecodes::_wide: 1776 default: 1777 ShouldNotReachHere(); 1778 break; 1779 } 1780 } 1781 1782 // Set predecessor information 1783 for (int i = 0; i < _successors->length(); i++) { 1784 Block* block = _successors->at(i); 1785 block->predecessors()->append(this); 1786 } 1787 } 1788 return _successors; 1789 } 1790 1791 // ------------------------------------------------------------------ 1792 // ciTypeFlow::Block:compute_exceptions 1793 // 1794 // Compute the exceptional successors and types for this Block. 1795 void ciTypeFlow::Block::compute_exceptions() { 1796 assert(_exceptions == nullptr && _exc_klasses == nullptr, "repeat"); 1797 1798 if (CITraceTypeFlow) { 1799 tty->print(">> Computing exceptions for block "); 1800 print_value_on(tty); 1801 tty->cr(); 1802 } 1803 1804 ciTypeFlow* analyzer = outer(); 1805 Arena* arena = analyzer->arena(); 1806 1807 // Any bci in the block will do. 1808 ciExceptionHandlerStream str(analyzer->method(), start()); 1809 1810 // Allocate our growable arrays. 1811 int exc_count = str.count(); 1812 _exceptions = new (arena) GrowableArray<Block*>(arena, exc_count, 0, nullptr); 1813 _exc_klasses = new (arena) GrowableArray<ciInstanceKlass*>(arena, exc_count, 1814 0, nullptr); 1815 1816 for ( ; !str.is_done(); str.next()) { 1817 ciExceptionHandler* handler = str.handler(); 1818 int bci = handler->handler_bci(); 1819 ciInstanceKlass* klass = nullptr; 1820 if (bci == -1) { 1821 // There is no catch all. It is possible to exit the method. 1822 break; 1823 } 1824 if (handler->is_catch_all()) { 1825 klass = analyzer->env()->Throwable_klass(); 1826 } else { 1827 klass = handler->catch_klass(); 1828 } 1829 Block* block = analyzer->block_at(bci, _jsrs); 1830 _exceptions->append(block); 1831 block->predecessors()->append(this); 1832 _exc_klasses->append(klass); 1833 } 1834 } 1835 1836 // ------------------------------------------------------------------ 1837 // ciTypeFlow::Block::set_backedge_copy 1838 // Use this only to make a pre-existing public block into a backedge copy. 1839 void ciTypeFlow::Block::set_backedge_copy(bool z) { 1840 assert(z || (z == is_backedge_copy()), "cannot make a backedge copy public"); 1841 _backedge_copy = z; 1842 } 1843 1844 // Analogous to PhaseIdealLoop::is_in_irreducible_loop 1845 bool ciTypeFlow::Block::is_in_irreducible_loop() const { 1846 if (!outer()->has_irreducible_entry()) { 1847 return false; // No irreducible loop in method. 1848 } 1849 Loop* lp = loop(); // Innermost loop containing block. 1850 if (lp == nullptr) { 1851 assert(!is_post_visited(), "must have enclosing loop once post-visited"); 1852 return false; // Not yet processed, so we do not know, yet. 1853 } 1854 // Walk all the way up the loop-tree, search for an irreducible loop. 1855 do { 1856 if (lp->is_irreducible()) { 1857 return true; // We are in irreducible loop. 1858 } 1859 if (lp->head()->pre_order() == 0) { 1860 return false; // Found root loop, terminate. 1861 } 1862 lp = lp->parent(); 1863 } while (lp != nullptr); 1864 // We have "lp->parent() == nullptr", which happens only for infinite loops, 1865 // where no parent is attached to the loop. We did not find any irreducible 1866 // loop from this block out to lp. Thus lp only has one entry, and no exit 1867 // (it is infinite and reducible). We can always rewrite an infinite loop 1868 // that is nested inside other loops: 1869 // while(condition) { infinite_loop; } 1870 // with an equivalent program where the infinite loop is an outermost loop 1871 // that is not nested in any loop: 1872 // while(condition) { break; } infinite_loop; 1873 // Thus, we can understand lp as an outermost loop, and can terminate and 1874 // conclude: this block is in no irreducible loop. 1875 return false; 1876 } 1877 1878 // ------------------------------------------------------------------ 1879 // ciTypeFlow::Block::is_clonable_exit 1880 // 1881 // At most 2 normal successors, one of which continues looping, 1882 // and all exceptional successors must exit. 1883 bool ciTypeFlow::Block::is_clonable_exit(ciTypeFlow::Loop* lp) { 1884 int normal_cnt = 0; 1885 int in_loop_cnt = 0; 1886 for (SuccIter iter(this); !iter.done(); iter.next()) { 1887 Block* succ = iter.succ(); 1888 if (iter.is_normal_ctrl()) { 1889 if (++normal_cnt > 2) return false; 1890 if (lp->contains(succ->loop())) { 1891 if (++in_loop_cnt > 1) return false; 1892 } 1893 } else { 1894 if (lp->contains(succ->loop())) return false; 1895 } 1896 } 1897 return in_loop_cnt == 1; 1898 } 1899 1900 // ------------------------------------------------------------------ 1901 // ciTypeFlow::Block::looping_succ 1902 // 1903 ciTypeFlow::Block* ciTypeFlow::Block::looping_succ(ciTypeFlow::Loop* lp) { 1904 assert(successors()->length() <= 2, "at most 2 normal successors"); 1905 for (SuccIter iter(this); !iter.done(); iter.next()) { 1906 Block* succ = iter.succ(); 1907 if (lp->contains(succ->loop())) { 1908 return succ; 1909 } 1910 } 1911 return nullptr; 1912 } 1913 1914 #ifndef PRODUCT 1915 // ------------------------------------------------------------------ 1916 // ciTypeFlow::Block::print_value_on 1917 void ciTypeFlow::Block::print_value_on(outputStream* st) const { 1918 if (has_pre_order()) st->print("#%-2d ", pre_order()); 1919 if (has_rpo()) st->print("rpo#%-2d ", rpo()); 1920 st->print("[%d - %d)", start(), limit()); 1921 if (is_loop_head()) st->print(" lphd"); 1922 if (is_in_irreducible_loop()) st->print(" in_irred"); 1923 if (is_irreducible_loop_head()) st->print(" irred_head"); 1924 if (is_irreducible_loop_secondary_entry()) st->print(" irred_entry"); 1925 if (_jsrs->size() > 0) { st->print("/"); _jsrs->print_on(st); } 1926 if (is_backedge_copy()) st->print("/backedge_copy"); 1927 } 1928 1929 // ------------------------------------------------------------------ 1930 // ciTypeFlow::Block::print_on 1931 void ciTypeFlow::Block::print_on(outputStream* st) const { 1932 if ((Verbose || WizardMode) && (limit() >= 0)) { 1933 // Don't print 'dummy' blocks (i.e. blocks with limit() '-1') 1934 outer()->method()->print_codes_on(start(), limit(), st); 1935 } 1936 st->print_cr(" ==================================================== "); 1937 st->print (" "); 1938 print_value_on(st); 1939 st->print(" Stored locals: "); def_locals()->print_on(st, outer()->method()->max_locals()); tty->cr(); 1940 if (loop() && loop()->parent() != nullptr) { 1941 st->print(" loops:"); 1942 Loop* lp = loop(); 1943 do { 1944 st->print(" %d<-%d", lp->head()->pre_order(),lp->tail()->pre_order()); 1945 if (lp->is_irreducible()) st->print("(ir)"); 1946 lp = lp->parent(); 1947 } while (lp->parent() != nullptr); 1948 } 1949 st->cr(); 1950 _state->print_on(st); 1951 if (_successors == nullptr) { 1952 st->print_cr(" No successor information"); 1953 } else { 1954 int num_successors = _successors->length(); 1955 st->print_cr(" Successors : %d", num_successors); 1956 for (int i = 0; i < num_successors; i++) { 1957 Block* successor = _successors->at(i); 1958 st->print(" "); 1959 successor->print_value_on(st); 1960 st->cr(); 1961 } 1962 } 1963 if (_predecessors.is_empty()) { 1964 st->print_cr(" No predecessor information"); 1965 } else { 1966 int num_predecessors = _predecessors.length(); 1967 st->print_cr(" Predecessors : %d", num_predecessors); 1968 for (int i = 0; i < num_predecessors; i++) { 1969 Block* predecessor = _predecessors.at(i); 1970 st->print(" "); 1971 predecessor->print_value_on(st); 1972 st->cr(); 1973 } 1974 } 1975 if (_exceptions == nullptr) { 1976 st->print_cr(" No exception information"); 1977 } else { 1978 int num_exceptions = _exceptions->length(); 1979 st->print_cr(" Exceptions : %d", num_exceptions); 1980 for (int i = 0; i < num_exceptions; i++) { 1981 Block* exc_succ = _exceptions->at(i); 1982 ciInstanceKlass* exc_klass = _exc_klasses->at(i); 1983 st->print(" "); 1984 exc_succ->print_value_on(st); 1985 st->print(" -- "); 1986 exc_klass->name()->print_symbol_on(st); 1987 st->cr(); 1988 } 1989 } 1990 if (has_trap()) { 1991 st->print_cr(" Traps on %d with trap index %d", trap_bci(), trap_index()); 1992 } 1993 st->print_cr(" ==================================================== "); 1994 } 1995 #endif 1996 1997 #ifndef PRODUCT 1998 // ------------------------------------------------------------------ 1999 // ciTypeFlow::LocalSet::print_on 2000 void ciTypeFlow::LocalSet::print_on(outputStream* st, int limit) const { 2001 st->print("{"); 2002 for (int i = 0; i < max; i++) { 2003 if (test(i)) st->print(" %d", i); 2004 } 2005 if (limit > max) { 2006 st->print(" %d..%d ", max, limit); 2007 } 2008 st->print(" }"); 2009 } 2010 #endif 2011 2012 // ciTypeFlow 2013 // 2014 // This is a pass over the bytecodes which computes the following: 2015 // basic block structure 2016 // interpreter type-states (a la the verifier) 2017 2018 // ------------------------------------------------------------------ 2019 // ciTypeFlow::ciTypeFlow 2020 ciTypeFlow::ciTypeFlow(ciEnv* env, ciMethod* method, int osr_bci) { 2021 _env = env; 2022 _method = method; 2023 _has_irreducible_entry = false; 2024 _osr_bci = osr_bci; 2025 _failure_reason = nullptr; 2026 assert(0 <= start_bci() && start_bci() < code_size() , "correct osr_bci argument: 0 <= %d < %d", start_bci(), code_size()); 2027 _work_list = nullptr; 2028 2029 int ciblock_count = _method->get_method_blocks()->num_blocks(); 2030 _idx_to_blocklist = NEW_ARENA_ARRAY(arena(), GrowableArray<Block*>*, ciblock_count); 2031 for (int i = 0; i < ciblock_count; i++) { 2032 _idx_to_blocklist[i] = nullptr; 2033 } 2034 _block_map = nullptr; // until all blocks are seen 2035 _jsr_records = nullptr; 2036 } 2037 2038 // ------------------------------------------------------------------ 2039 // ciTypeFlow::work_list_next 2040 // 2041 // Get the next basic block from our work list. 2042 ciTypeFlow::Block* ciTypeFlow::work_list_next() { 2043 assert(!work_list_empty(), "work list must not be empty"); 2044 Block* next_block = _work_list; 2045 _work_list = next_block->next(); 2046 next_block->set_next(nullptr); 2047 next_block->set_on_work_list(false); 2048 return next_block; 2049 } 2050 2051 // ------------------------------------------------------------------ 2052 // ciTypeFlow::add_to_work_list 2053 // 2054 // Add a basic block to our work list. 2055 // List is sorted by decreasing postorder sort (same as increasing RPO) 2056 void ciTypeFlow::add_to_work_list(ciTypeFlow::Block* block) { 2057 assert(!block->is_on_work_list(), "must not already be on work list"); 2058 2059 if (CITraceTypeFlow) { 2060 tty->print(">> Adding block "); 2061 block->print_value_on(tty); 2062 tty->print_cr(" to the work list : "); 2063 } 2064 2065 block->set_on_work_list(true); 2066 2067 // decreasing post order sort 2068 2069 Block* prev = nullptr; 2070 Block* current = _work_list; 2071 int po = block->post_order(); 2072 while (current != nullptr) { 2073 if (!current->has_post_order() || po > current->post_order()) 2074 break; 2075 prev = current; 2076 current = current->next(); 2077 } 2078 if (prev == nullptr) { 2079 block->set_next(_work_list); 2080 _work_list = block; 2081 } else { 2082 block->set_next(current); 2083 prev->set_next(block); 2084 } 2085 2086 if (CITraceTypeFlow) { 2087 tty->cr(); 2088 } 2089 } 2090 2091 // ------------------------------------------------------------------ 2092 // ciTypeFlow::block_at 2093 // 2094 // Return the block beginning at bci which has a JsrSet compatible 2095 // with jsrs. 2096 ciTypeFlow::Block* ciTypeFlow::block_at(int bci, ciTypeFlow::JsrSet* jsrs, CreateOption option) { 2097 // First find the right ciBlock. 2098 if (CITraceTypeFlow) { 2099 tty->print(">> Requesting block for %d/", bci); 2100 jsrs->print_on(tty); 2101 tty->cr(); 2102 } 2103 2104 ciBlock* ciblk = _method->get_method_blocks()->block_containing(bci); 2105 assert(ciblk->start_bci() == bci, "bad ciBlock boundaries"); 2106 Block* block = get_block_for(ciblk->index(), jsrs, option); 2107 2108 assert(block == nullptr? (option == no_create): block->is_backedge_copy() == (option == create_backedge_copy), "create option consistent with result"); 2109 2110 if (CITraceTypeFlow) { 2111 if (block != nullptr) { 2112 tty->print(">> Found block "); 2113 block->print_value_on(tty); 2114 tty->cr(); 2115 } else { 2116 tty->print_cr(">> No such block."); 2117 } 2118 } 2119 2120 return block; 2121 } 2122 2123 // ------------------------------------------------------------------ 2124 // ciTypeFlow::make_jsr_record 2125 // 2126 // Make a JsrRecord for a given (entry, return) pair, if such a record 2127 // does not already exist. 2128 ciTypeFlow::JsrRecord* ciTypeFlow::make_jsr_record(int entry_address, 2129 int return_address) { 2130 if (_jsr_records == nullptr) { 2131 _jsr_records = new (arena()) GrowableArray<JsrRecord*>(arena(), 2132 2, 2133 0, 2134 nullptr); 2135 } 2136 JsrRecord* record = nullptr; 2137 int len = _jsr_records->length(); 2138 for (int i = 0; i < len; i++) { 2139 JsrRecord* record = _jsr_records->at(i); 2140 if (record->entry_address() == entry_address && 2141 record->return_address() == return_address) { 2142 return record; 2143 } 2144 } 2145 2146 record = new (arena()) JsrRecord(entry_address, return_address); 2147 _jsr_records->append(record); 2148 return record; 2149 } 2150 2151 // ------------------------------------------------------------------ 2152 // ciTypeFlow::flow_exceptions 2153 // 2154 // Merge the current state into all exceptional successors at the 2155 // current point in the code. 2156 void ciTypeFlow::flow_exceptions(GrowableArray<ciTypeFlow::Block*>* exceptions, 2157 GrowableArray<ciInstanceKlass*>* exc_klasses, 2158 ciTypeFlow::StateVector* state) { 2159 int len = exceptions->length(); 2160 assert(exc_klasses->length() == len, "must have same length"); 2161 for (int i = 0; i < len; i++) { 2162 Block* block = exceptions->at(i); 2163 ciInstanceKlass* exception_klass = exc_klasses->at(i); 2164 2165 if (!exception_klass->is_loaded()) { 2166 // Do not compile any code for unloaded exception types. 2167 // Following compiler passes are responsible for doing this also. 2168 continue; 2169 } 2170 2171 if (block->meet_exception(exception_klass, state)) { 2172 // Block was modified and has PO. Add it to the work list. 2173 if (block->has_post_order() && 2174 !block->is_on_work_list()) { 2175 add_to_work_list(block); 2176 } 2177 } 2178 } 2179 } 2180 2181 // ------------------------------------------------------------------ 2182 // ciTypeFlow::flow_successors 2183 // 2184 // Merge the current state into all successors at the current point 2185 // in the code. 2186 void ciTypeFlow::flow_successors(GrowableArray<ciTypeFlow::Block*>* successors, 2187 ciTypeFlow::StateVector* state) { 2188 int len = successors->length(); 2189 for (int i = 0; i < len; i++) { 2190 Block* block = successors->at(i); 2191 if (block->meet(state)) { 2192 // Block was modified and has PO. Add it to the work list. 2193 if (block->has_post_order() && 2194 !block->is_on_work_list()) { 2195 add_to_work_list(block); 2196 } 2197 } 2198 } 2199 } 2200 2201 // ------------------------------------------------------------------ 2202 // ciTypeFlow::can_trap 2203 // 2204 // Tells if a given instruction is able to generate an exception edge. 2205 bool ciTypeFlow::can_trap(ciBytecodeStream& str) { 2206 // Cf. GenerateOopMap::do_exception_edge. 2207 if (!Bytecodes::can_trap(str.cur_bc())) return false; 2208 2209 switch (str.cur_bc()) { 2210 // %%% FIXME: ldc of Class can generate an exception 2211 case Bytecodes::_ldc: 2212 case Bytecodes::_ldc_w: 2213 case Bytecodes::_ldc2_w: 2214 return str.is_in_error(); 2215 2216 case Bytecodes::_aload_0: 2217 // These bytecodes can trap for rewriting. We need to assume that 2218 // they do not throw exceptions to make the monitor analysis work. 2219 return false; 2220 2221 case Bytecodes::_ireturn: 2222 case Bytecodes::_lreturn: 2223 case Bytecodes::_freturn: 2224 case Bytecodes::_dreturn: 2225 case Bytecodes::_areturn: 2226 case Bytecodes::_return: 2227 // We can assume the monitor stack is empty in this analysis. 2228 return false; 2229 2230 case Bytecodes::_monitorexit: 2231 // We can assume monitors are matched in this analysis. 2232 return false; 2233 2234 default: 2235 return true; 2236 } 2237 } 2238 2239 // ------------------------------------------------------------------ 2240 // ciTypeFlow::clone_loop_heads 2241 // 2242 // Clone the loop heads 2243 bool ciTypeFlow::clone_loop_heads(StateVector* temp_vector, JsrSet* temp_set) { 2244 bool rslt = false; 2245 for (PreorderLoops iter(loop_tree_root()); !iter.done(); iter.next()) { 2246 Loop* lp = iter.current(); 2247 Block* head = lp->head(); 2248 if (lp == loop_tree_root() || 2249 lp->is_irreducible() || 2250 !head->is_clonable_exit(lp)) 2251 continue; 2252 2253 // Avoid BoxLock merge. 2254 if (EliminateNestedLocks && head->has_monitorenter()) 2255 continue; 2256 2257 // check not already cloned 2258 if (head->backedge_copy_count() != 0) 2259 continue; 2260 2261 // Don't clone head of OSR loop to get correct types in start block. 2262 if (is_osr_flow() && head->start() == start_bci()) 2263 continue; 2264 2265 // check _no_ shared head below us 2266 Loop* ch; 2267 for (ch = lp->child(); ch != nullptr && ch->head() != head; ch = ch->sibling()); 2268 if (ch != nullptr) 2269 continue; 2270 2271 // Clone head 2272 Block* new_head = head->looping_succ(lp); 2273 Block* clone = clone_loop_head(lp, temp_vector, temp_set); 2274 // Update lp's info 2275 clone->set_loop(lp); 2276 lp->set_head(new_head); 2277 lp->set_tail(clone); 2278 // And move original head into outer loop 2279 head->set_loop(lp->parent()); 2280 2281 rslt = true; 2282 } 2283 return rslt; 2284 } 2285 2286 // ------------------------------------------------------------------ 2287 // ciTypeFlow::clone_loop_head 2288 // 2289 // Clone lp's head and replace tail's successors with clone. 2290 // 2291 // | 2292 // v 2293 // head <-> body 2294 // | 2295 // v 2296 // exit 2297 // 2298 // new_head 2299 // 2300 // | 2301 // v 2302 // head ----------\ 2303 // | | 2304 // | v 2305 // | clone <-> body 2306 // | | 2307 // | /--/ 2308 // | | 2309 // v v 2310 // exit 2311 // 2312 ciTypeFlow::Block* ciTypeFlow::clone_loop_head(Loop* lp, StateVector* temp_vector, JsrSet* temp_set) { 2313 Block* head = lp->head(); 2314 Block* tail = lp->tail(); 2315 if (CITraceTypeFlow) { 2316 tty->print(">> Requesting clone of loop head "); head->print_value_on(tty); 2317 tty->print(" for predecessor "); tail->print_value_on(tty); 2318 tty->cr(); 2319 } 2320 Block* clone = block_at(head->start(), head->jsrs(), create_backedge_copy); 2321 assert(clone->backedge_copy_count() == 1, "one backedge copy for all back edges"); 2322 2323 assert(!clone->has_pre_order(), "just created"); 2324 clone->set_next_pre_order(); 2325 2326 // Accumulate profiled count for all backedges that share this loop's head 2327 int total_count = lp->profiled_count(); 2328 for (Loop* lp1 = lp->parent(); lp1 != nullptr; lp1 = lp1->parent()) { 2329 for (Loop* lp2 = lp1; lp2 != nullptr; lp2 = lp2->sibling()) { 2330 if (lp2->head() == head && !lp2->tail()->is_backedge_copy()) { 2331 total_count += lp2->profiled_count(); 2332 } 2333 } 2334 } 2335 // Have the most frequent ones branch to the clone instead 2336 int count = 0; 2337 int loops_with_shared_head = 0; 2338 Block* latest_tail = tail; 2339 bool done = false; 2340 for (Loop* lp1 = lp; lp1 != nullptr && !done; lp1 = lp1->parent()) { 2341 for (Loop* lp2 = lp1; lp2 != nullptr && !done; lp2 = lp2->sibling()) { 2342 if (lp2->head() == head && !lp2->tail()->is_backedge_copy()) { 2343 count += lp2->profiled_count(); 2344 if (lp2->tail()->post_order() < latest_tail->post_order()) { 2345 latest_tail = lp2->tail(); 2346 } 2347 loops_with_shared_head++; 2348 for (SuccIter iter(lp2->tail()); !iter.done(); iter.next()) { 2349 if (iter.succ() == head) { 2350 iter.set_succ(clone); 2351 // Update predecessor information 2352 head->predecessors()->remove(lp2->tail()); 2353 clone->predecessors()->append(lp2->tail()); 2354 } 2355 } 2356 flow_block(lp2->tail(), temp_vector, temp_set); 2357 if (lp2->head() == lp2->tail()) { 2358 // For self-loops, clone->head becomes clone->clone 2359 flow_block(clone, temp_vector, temp_set); 2360 for (SuccIter iter(clone); !iter.done(); iter.next()) { 2361 if (iter.succ() == lp2->head()) { 2362 iter.set_succ(clone); 2363 // Update predecessor information 2364 lp2->head()->predecessors()->remove(clone); 2365 clone->predecessors()->append(clone); 2366 break; 2367 } 2368 } 2369 } 2370 if (total_count == 0 || count > (total_count * .9)) { 2371 done = true; 2372 } 2373 } 2374 } 2375 } 2376 assert(loops_with_shared_head >= 1, "at least one new"); 2377 clone->set_rpo_next(latest_tail->rpo_next()); 2378 latest_tail->set_rpo_next(clone); 2379 flow_block(clone, temp_vector, temp_set); 2380 2381 return clone; 2382 } 2383 2384 // ------------------------------------------------------------------ 2385 // ciTypeFlow::flow_block 2386 // 2387 // Interpret the effects of the bytecodes on the incoming state 2388 // vector of a basic block. Push the changed state to succeeding 2389 // basic blocks. 2390 void ciTypeFlow::flow_block(ciTypeFlow::Block* block, 2391 ciTypeFlow::StateVector* state, 2392 ciTypeFlow::JsrSet* jsrs) { 2393 if (CITraceTypeFlow) { 2394 tty->print("\n>> ANALYZING BLOCK : "); 2395 tty->cr(); 2396 block->print_on(tty); 2397 } 2398 assert(block->has_pre_order(), "pre-order is assigned before 1st flow"); 2399 2400 int start = block->start(); 2401 int limit = block->limit(); 2402 int control = block->control(); 2403 if (control != ciBlock::fall_through_bci) { 2404 limit = control; 2405 } 2406 2407 // Grab the state from the current block. 2408 block->copy_state_into(state); 2409 state->def_locals()->clear(); 2410 2411 GrowableArray<Block*>* exceptions = block->exceptions(); 2412 GrowableArray<ciInstanceKlass*>* exc_klasses = block->exc_klasses(); 2413 bool has_exceptions = exceptions->length() > 0; 2414 2415 bool exceptions_used = false; 2416 2417 ciBytecodeStream str(method()); 2418 str.reset_to_bci(start); 2419 Bytecodes::Code code; 2420 while ((code = str.next()) != ciBytecodeStream::EOBC() && 2421 str.cur_bci() < limit) { 2422 // Check for exceptional control flow from this point. 2423 if (has_exceptions && can_trap(str)) { 2424 flow_exceptions(exceptions, exc_klasses, state); 2425 exceptions_used = true; 2426 } 2427 // Apply the effects of the current bytecode to our state. 2428 bool res = state->apply_one_bytecode(&str); 2429 2430 // Watch for bailouts. 2431 if (failing()) return; 2432 2433 if (str.cur_bc() == Bytecodes::_monitorenter) { 2434 block->set_has_monitorenter(); 2435 } 2436 2437 if (res) { 2438 2439 // We have encountered a trap. Record it in this block. 2440 block->set_trap(state->trap_bci(), state->trap_index()); 2441 2442 if (CITraceTypeFlow) { 2443 tty->print_cr(">> Found trap"); 2444 block->print_on(tty); 2445 } 2446 2447 // Save set of locals defined in this block 2448 block->def_locals()->add(state->def_locals()); 2449 2450 // Record (no) successors. 2451 block->successors(&str, state, jsrs); 2452 2453 assert(!has_exceptions || exceptions_used, "Not removing exceptions"); 2454 2455 // Discontinue interpretation of this Block. 2456 return; 2457 } 2458 } 2459 2460 GrowableArray<Block*>* successors = nullptr; 2461 if (control != ciBlock::fall_through_bci) { 2462 // Check for exceptional control flow from this point. 2463 if (has_exceptions && can_trap(str)) { 2464 flow_exceptions(exceptions, exc_klasses, state); 2465 exceptions_used = true; 2466 } 2467 2468 // Fix the JsrSet to reflect effect of the bytecode. 2469 block->copy_jsrs_into(jsrs); 2470 jsrs->apply_control(this, &str, state); 2471 2472 // Find successor edges based on old state and new JsrSet. 2473 successors = block->successors(&str, state, jsrs); 2474 2475 // Apply the control changes to the state. 2476 state->apply_one_bytecode(&str); 2477 } else { 2478 // Fall through control 2479 successors = block->successors(&str, nullptr, nullptr); 2480 } 2481 2482 // Save set of locals defined in this block 2483 block->def_locals()->add(state->def_locals()); 2484 2485 // Remove untaken exception paths 2486 if (!exceptions_used) 2487 exceptions->clear(); 2488 2489 // Pass our state to successors. 2490 flow_successors(successors, state); 2491 } 2492 2493 // ------------------------------------------------------------------ 2494 // ciTypeFlow::PreOrderLoops::next 2495 // 2496 // Advance to next loop tree using a preorder, left-to-right traversal. 2497 void ciTypeFlow::PreorderLoops::next() { 2498 assert(!done(), "must not be done."); 2499 if (_current->child() != nullptr) { 2500 _current = _current->child(); 2501 } else if (_current->sibling() != nullptr) { 2502 _current = _current->sibling(); 2503 } else { 2504 while (_current != _root && _current->sibling() == nullptr) { 2505 _current = _current->parent(); 2506 } 2507 if (_current == _root) { 2508 _current = nullptr; 2509 assert(done(), "must be done."); 2510 } else { 2511 assert(_current->sibling() != nullptr, "must be more to do"); 2512 _current = _current->sibling(); 2513 } 2514 } 2515 } 2516 2517 // If the tail is a branch to the head, retrieve how many times that path was taken from profiling 2518 int ciTypeFlow::Loop::profiled_count() { 2519 if (_profiled_count >= 0) { 2520 return _profiled_count; 2521 } 2522 ciMethodData* methodData = outer()->method()->method_data(); 2523 if (!methodData->is_mature()) { 2524 _profiled_count = 0; 2525 return 0; 2526 } 2527 ciTypeFlow::Block* tail = this->tail(); 2528 if (tail->control() == -1 || tail->has_trap()) { 2529 _profiled_count = 0; 2530 return 0; 2531 } 2532 2533 ciProfileData* data = methodData->bci_to_data(tail->control()); 2534 2535 if (data == nullptr || !data->is_JumpData()) { 2536 _profiled_count = 0; 2537 return 0; 2538 } 2539 2540 ciBytecodeStream iter(outer()->method()); 2541 iter.reset_to_bci(tail->control()); 2542 2543 bool is_an_if = false; 2544 bool wide = false; 2545 Bytecodes::Code bc = iter.next(); 2546 switch (bc) { 2547 case Bytecodes::_ifeq: 2548 case Bytecodes::_ifne: 2549 case Bytecodes::_iflt: 2550 case Bytecodes::_ifge: 2551 case Bytecodes::_ifgt: 2552 case Bytecodes::_ifle: 2553 case Bytecodes::_if_icmpeq: 2554 case Bytecodes::_if_icmpne: 2555 case Bytecodes::_if_icmplt: 2556 case Bytecodes::_if_icmpge: 2557 case Bytecodes::_if_icmpgt: 2558 case Bytecodes::_if_icmple: 2559 case Bytecodes::_if_acmpeq: 2560 case Bytecodes::_if_acmpne: 2561 case Bytecodes::_ifnull: 2562 case Bytecodes::_ifnonnull: 2563 is_an_if = true; 2564 break; 2565 case Bytecodes::_goto_w: 2566 case Bytecodes::_jsr_w: 2567 wide = true; 2568 break; 2569 case Bytecodes::_goto: 2570 case Bytecodes::_jsr: 2571 break; 2572 default: 2573 fatal(" invalid bytecode: %s", Bytecodes::name(iter.cur_bc())); 2574 } 2575 2576 GrowableArray<ciTypeFlow::Block*>* succs = tail->successors(); 2577 2578 if (!is_an_if) { 2579 assert(((wide ? iter.get_far_dest() : iter.get_dest()) == head()->start()) == (succs->at(ciTypeFlow::GOTO_TARGET) == head()), "branch should lead to loop head"); 2580 if (succs->at(ciTypeFlow::GOTO_TARGET) == head()) { 2581 _profiled_count = outer()->method()->scale_count(data->as_JumpData()->taken()); 2582 return _profiled_count; 2583 } 2584 } else { 2585 assert((iter.get_dest() == head()->start()) == (succs->at(ciTypeFlow::IF_TAKEN) == head()), "bytecode and CFG not consistent"); 2586 assert((tail->limit() == head()->start()) == (succs->at(ciTypeFlow::IF_NOT_TAKEN) == head()), "bytecode and CFG not consistent"); 2587 if (succs->at(ciTypeFlow::IF_TAKEN) == head()) { 2588 _profiled_count = outer()->method()->scale_count(data->as_JumpData()->taken()); 2589 return _profiled_count; 2590 } else if (succs->at(ciTypeFlow::IF_NOT_TAKEN) == head()) { 2591 _profiled_count = outer()->method()->scale_count(data->as_BranchData()->not_taken()); 2592 return _profiled_count; 2593 } 2594 } 2595 2596 _profiled_count = 0; 2597 return _profiled_count; 2598 } 2599 2600 bool ciTypeFlow::Loop::at_insertion_point(Loop* lp, Loop* current) { 2601 int lp_pre_order = lp->head()->pre_order(); 2602 if (current->head()->pre_order() < lp_pre_order) { 2603 return true; 2604 } else if (current->head()->pre_order() > lp_pre_order) { 2605 return false; 2606 } 2607 // In the case of a shared head, make the most frequent head/tail (as reported by profiling) the inner loop 2608 if (current->head() == lp->head()) { 2609 int lp_count = lp->profiled_count(); 2610 int current_count = current->profiled_count(); 2611 if (current_count < lp_count) { 2612 return true; 2613 } else if (current_count > lp_count) { 2614 return false; 2615 } 2616 } 2617 if (current->tail()->pre_order() > lp->tail()->pre_order()) { 2618 return true; 2619 } 2620 return false; 2621 } 2622 2623 // ------------------------------------------------------------------ 2624 // ciTypeFlow::Loop::sorted_merge 2625 // 2626 // Merge the branch lp into this branch, sorting on the loop head 2627 // pre_orders. Returns the leaf of the merged branch. 2628 // Child and sibling pointers will be setup later. 2629 // Sort is (looking from leaf towards the root) 2630 // descending on primary key: loop head's pre_order, and 2631 // ascending on secondary key: loop tail's pre_order. 2632 ciTypeFlow::Loop* ciTypeFlow::Loop::sorted_merge(Loop* lp) { 2633 Loop* leaf = this; 2634 Loop* prev = nullptr; 2635 Loop* current = leaf; 2636 while (lp != nullptr) { 2637 int lp_pre_order = lp->head()->pre_order(); 2638 // Find insertion point for "lp" 2639 while (current != nullptr) { 2640 if (current == lp) { 2641 return leaf; // Already in list 2642 } 2643 if (at_insertion_point(lp, current)) { 2644 break; 2645 } 2646 prev = current; 2647 current = current->parent(); 2648 } 2649 Loop* next_lp = lp->parent(); // Save future list of items to insert 2650 // Insert lp before current 2651 lp->set_parent(current); 2652 if (prev != nullptr) { 2653 prev->set_parent(lp); 2654 } else { 2655 leaf = lp; 2656 } 2657 prev = lp; // Inserted item is new prev[ious] 2658 lp = next_lp; // Next item to insert 2659 } 2660 return leaf; 2661 } 2662 2663 // ------------------------------------------------------------------ 2664 // ciTypeFlow::build_loop_tree 2665 // 2666 // Incrementally build loop tree. 2667 void ciTypeFlow::build_loop_tree(Block* blk) { 2668 assert(!blk->is_post_visited(), "precondition"); 2669 Loop* innermost = nullptr; // merge of loop tree branches over all successors 2670 2671 for (SuccIter iter(blk); !iter.done(); iter.next()) { 2672 Loop* lp = nullptr; 2673 Block* succ = iter.succ(); 2674 if (!succ->is_post_visited()) { 2675 // Found backedge since predecessor post visited, but successor is not 2676 assert(succ->pre_order() <= blk->pre_order(), "should be backedge"); 2677 2678 // Create a LoopNode to mark this loop. 2679 lp = new (arena()) Loop(succ, blk); 2680 if (succ->loop() == nullptr) 2681 succ->set_loop(lp); 2682 // succ->loop will be updated to innermost loop on a later call, when blk==succ 2683 2684 } else { // Nested loop 2685 lp = succ->loop(); 2686 2687 // If succ is loop head, find outer loop. 2688 while (lp != nullptr && lp->head() == succ) { 2689 lp = lp->parent(); 2690 } 2691 if (lp == nullptr) { 2692 // Infinite loop, it's parent is the root 2693 lp = loop_tree_root(); 2694 } 2695 } 2696 2697 // Check for irreducible loop. 2698 // Successor has already been visited. If the successor's loop head 2699 // has already been post-visited, then this is another entry into the loop. 2700 while (lp->head()->is_post_visited() && lp != loop_tree_root()) { 2701 _has_irreducible_entry = true; 2702 lp->set_irreducible(succ); 2703 if (!succ->is_on_work_list()) { 2704 // Assume irreducible entries need more data flow 2705 add_to_work_list(succ); 2706 } 2707 Loop* plp = lp->parent(); 2708 if (plp == nullptr) { 2709 // This only happens for some irreducible cases. The parent 2710 // will be updated during a later pass. 2711 break; 2712 } 2713 lp = plp; 2714 } 2715 2716 // Merge loop tree branch for all successors. 2717 innermost = innermost == nullptr ? lp : innermost->sorted_merge(lp); 2718 2719 } // end loop 2720 2721 if (innermost == nullptr) { 2722 assert(blk->successors()->length() == 0, "CFG exit"); 2723 blk->set_loop(loop_tree_root()); 2724 } else if (innermost->head() == blk) { 2725 // If loop header, complete the tree pointers 2726 if (blk->loop() != innermost) { 2727 #ifdef ASSERT 2728 assert(blk->loop()->head() == innermost->head(), "same head"); 2729 Loop* dl; 2730 for (dl = innermost; dl != nullptr && dl != blk->loop(); dl = dl->parent()); 2731 assert(dl == blk->loop(), "blk->loop() already in innermost list"); 2732 #endif 2733 blk->set_loop(innermost); 2734 } 2735 innermost->def_locals()->add(blk->def_locals()); 2736 Loop* l = innermost; 2737 Loop* p = l->parent(); 2738 while (p && l->head() == blk) { 2739 l->set_sibling(p->child()); // Put self on parents 'next child' 2740 p->set_child(l); // Make self the first child of parent 2741 p->def_locals()->add(l->def_locals()); 2742 l = p; // Walk up the parent chain 2743 p = l->parent(); 2744 } 2745 } else { 2746 blk->set_loop(innermost); 2747 innermost->def_locals()->add(blk->def_locals()); 2748 } 2749 } 2750 2751 // ------------------------------------------------------------------ 2752 // ciTypeFlow::Loop::contains 2753 // 2754 // Returns true if lp is nested loop. 2755 bool ciTypeFlow::Loop::contains(ciTypeFlow::Loop* lp) const { 2756 assert(lp != nullptr, ""); 2757 if (this == lp || head() == lp->head()) return true; 2758 int depth1 = depth(); 2759 int depth2 = lp->depth(); 2760 if (depth1 > depth2) 2761 return false; 2762 while (depth1 < depth2) { 2763 depth2--; 2764 lp = lp->parent(); 2765 } 2766 return this == lp; 2767 } 2768 2769 // ------------------------------------------------------------------ 2770 // ciTypeFlow::Loop::depth 2771 // 2772 // Loop depth 2773 int ciTypeFlow::Loop::depth() const { 2774 int dp = 0; 2775 for (Loop* lp = this->parent(); lp != nullptr; lp = lp->parent()) 2776 dp++; 2777 return dp; 2778 } 2779 2780 #ifndef PRODUCT 2781 // ------------------------------------------------------------------ 2782 // ciTypeFlow::Loop::print 2783 void ciTypeFlow::Loop::print(outputStream* st, int indent) const { 2784 for (int i = 0; i < indent; i++) st->print(" "); 2785 st->print("%d<-%d %s", 2786 is_root() ? 0 : this->head()->pre_order(), 2787 is_root() ? 0 : this->tail()->pre_order(), 2788 is_irreducible()?" irr":""); 2789 st->print(" defs: "); 2790 def_locals()->print_on(st, _head->outer()->method()->max_locals()); 2791 st->cr(); 2792 for (Loop* ch = child(); ch != nullptr; ch = ch->sibling()) 2793 ch->print(st, indent+2); 2794 } 2795 #endif 2796 2797 // ------------------------------------------------------------------ 2798 // ciTypeFlow::df_flow_types 2799 // 2800 // Perform the depth first type flow analysis. Helper for flow_types. 2801 void ciTypeFlow::df_flow_types(Block* start, 2802 bool do_flow, 2803 StateVector* temp_vector, 2804 JsrSet* temp_set) { 2805 int dft_len = 100; 2806 GrowableArray<Block*> stk(dft_len); 2807 2808 ciBlock* dummy = _method->get_method_blocks()->make_dummy_block(); 2809 JsrSet* root_set = new JsrSet(0); 2810 Block* root_head = new (arena()) Block(this, dummy, root_set); 2811 Block* root_tail = new (arena()) Block(this, dummy, root_set); 2812 root_head->set_pre_order(0); 2813 root_head->set_post_order(0); 2814 root_tail->set_pre_order(max_jint); 2815 root_tail->set_post_order(max_jint); 2816 set_loop_tree_root(new (arena()) Loop(root_head, root_tail)); 2817 2818 stk.push(start); 2819 2820 _next_pre_order = 0; // initialize pre_order counter 2821 _rpo_list = nullptr; 2822 int next_po = 0; // initialize post_order counter 2823 2824 // Compute RPO and the control flow graph 2825 int size; 2826 while ((size = stk.length()) > 0) { 2827 Block* blk = stk.top(); // Leave node on stack 2828 if (!blk->is_visited()) { 2829 // forward arc in graph 2830 assert (!blk->has_pre_order(), ""); 2831 blk->set_next_pre_order(); 2832 2833 if (_next_pre_order >= (int)Compile::current()->max_node_limit() / 2) { 2834 // Too many basic blocks. Bail out. 2835 // This can happen when try/finally constructs are nested to depth N, 2836 // and there is O(2**N) cloning of jsr bodies. See bug 4697245! 2837 // "MaxNodeLimit / 2" is used because probably the parser will 2838 // generate at least twice that many nodes and bail out. 2839 record_failure("too many basic blocks"); 2840 return; 2841 } 2842 if (do_flow) { 2843 flow_block(blk, temp_vector, temp_set); 2844 if (failing()) return; // Watch for bailouts. 2845 } 2846 } else if (!blk->is_post_visited()) { 2847 // cross or back arc 2848 for (SuccIter iter(blk); !iter.done(); iter.next()) { 2849 Block* succ = iter.succ(); 2850 if (!succ->is_visited()) { 2851 stk.push(succ); 2852 } 2853 } 2854 if (stk.length() == size) { 2855 // There were no additional children, post visit node now 2856 stk.pop(); // Remove node from stack 2857 2858 build_loop_tree(blk); 2859 blk->set_post_order(next_po++); // Assign post order 2860 prepend_to_rpo_list(blk); 2861 assert(blk->is_post_visited(), ""); 2862 2863 if (blk->is_loop_head() && !blk->is_on_work_list()) { 2864 // Assume loop heads need more data flow 2865 add_to_work_list(blk); 2866 } 2867 } 2868 } else { 2869 stk.pop(); // Remove post-visited node from stack 2870 } 2871 } 2872 } 2873 2874 // ------------------------------------------------------------------ 2875 // ciTypeFlow::flow_types 2876 // 2877 // Perform the type flow analysis, creating and cloning Blocks as 2878 // necessary. 2879 void ciTypeFlow::flow_types() { 2880 ResourceMark rm; 2881 StateVector* temp_vector = new StateVector(this); 2882 JsrSet* temp_set = new JsrSet(4); 2883 2884 // Create the method entry block. 2885 Block* start = block_at(start_bci(), temp_set); 2886 2887 // Load the initial state into it. 2888 const StateVector* start_state = get_start_state(); 2889 if (failing()) return; 2890 start->meet(start_state); 2891 2892 // Depth first visit 2893 df_flow_types(start, true /*do flow*/, temp_vector, temp_set); 2894 2895 if (failing()) return; 2896 assert(_rpo_list == start, "must be start"); 2897 2898 // Any loops found? 2899 if (loop_tree_root()->child() != nullptr && 2900 env()->comp_level() >= CompLevel_full_optimization) { 2901 // Loop optimizations are not performed on Tier1 compiles. 2902 2903 bool changed = clone_loop_heads(temp_vector, temp_set); 2904 2905 // If some loop heads were cloned, recompute postorder and loop tree 2906 if (changed) { 2907 loop_tree_root()->set_child(nullptr); 2908 for (Block* blk = _rpo_list; blk != nullptr;) { 2909 Block* next = blk->rpo_next(); 2910 blk->df_init(); 2911 blk = next; 2912 } 2913 df_flow_types(start, false /*no flow*/, temp_vector, temp_set); 2914 } 2915 } 2916 2917 if (CITraceTypeFlow) { 2918 tty->print_cr("\nLoop tree"); 2919 loop_tree_root()->print(); 2920 } 2921 2922 // Continue flow analysis until fixed point reached 2923 2924 debug_only(int max_block = _next_pre_order;) 2925 2926 while (!work_list_empty()) { 2927 Block* blk = work_list_next(); 2928 assert (blk->has_post_order(), "post order assigned above"); 2929 2930 flow_block(blk, temp_vector, temp_set); 2931 2932 assert (max_block == _next_pre_order, "no new blocks"); 2933 assert (!failing(), "no more bailouts"); 2934 } 2935 } 2936 2937 // ------------------------------------------------------------------ 2938 // ciTypeFlow::map_blocks 2939 // 2940 // Create the block map, which indexes blocks in reverse post-order. 2941 void ciTypeFlow::map_blocks() { 2942 assert(_block_map == nullptr, "single initialization"); 2943 int block_ct = _next_pre_order; 2944 _block_map = NEW_ARENA_ARRAY(arena(), Block*, block_ct); 2945 assert(block_ct == block_count(), ""); 2946 2947 Block* blk = _rpo_list; 2948 for (int m = 0; m < block_ct; m++) { 2949 int rpo = blk->rpo(); 2950 assert(rpo == m, "should be sequential"); 2951 _block_map[rpo] = blk; 2952 blk = blk->rpo_next(); 2953 } 2954 assert(blk == nullptr, "should be done"); 2955 2956 for (int j = 0; j < block_ct; j++) { 2957 assert(_block_map[j] != nullptr, "must not drop any blocks"); 2958 Block* block = _block_map[j]; 2959 // Remove dead blocks from successor lists: 2960 for (int e = 0; e <= 1; e++) { 2961 GrowableArray<Block*>* l = e? block->exceptions(): block->successors(); 2962 for (int k = 0; k < l->length(); k++) { 2963 Block* s = l->at(k); 2964 if (!s->has_post_order()) { 2965 if (CITraceTypeFlow) { 2966 tty->print("Removing dead %s successor of #%d: ", (e? "exceptional": "normal"), block->pre_order()); 2967 s->print_value_on(tty); 2968 tty->cr(); 2969 } 2970 l->remove(s); 2971 --k; 2972 } 2973 } 2974 } 2975 } 2976 } 2977 2978 // ------------------------------------------------------------------ 2979 // ciTypeFlow::get_block_for 2980 // 2981 // Find a block with this ciBlock which has a compatible JsrSet. 2982 // If no such block exists, create it, unless the option is no_create. 2983 // If the option is create_backedge_copy, always create a fresh backedge copy. 2984 ciTypeFlow::Block* ciTypeFlow::get_block_for(int ciBlockIndex, ciTypeFlow::JsrSet* jsrs, CreateOption option) { 2985 Arena* a = arena(); 2986 GrowableArray<Block*>* blocks = _idx_to_blocklist[ciBlockIndex]; 2987 if (blocks == nullptr) { 2988 // Query only? 2989 if (option == no_create) return nullptr; 2990 2991 // Allocate the growable array. 2992 blocks = new (a) GrowableArray<Block*>(a, 4, 0, nullptr); 2993 _idx_to_blocklist[ciBlockIndex] = blocks; 2994 } 2995 2996 if (option != create_backedge_copy) { 2997 int len = blocks->length(); 2998 for (int i = 0; i < len; i++) { 2999 Block* block = blocks->at(i); 3000 if (!block->is_backedge_copy() && block->is_compatible_with(jsrs)) { 3001 return block; 3002 } 3003 } 3004 } 3005 3006 // Query only? 3007 if (option == no_create) return nullptr; 3008 3009 // We did not find a compatible block. Create one. 3010 Block* new_block = new (a) Block(this, _method->get_method_blocks()->block(ciBlockIndex), jsrs); 3011 if (option == create_backedge_copy) new_block->set_backedge_copy(true); 3012 blocks->append(new_block); 3013 return new_block; 3014 } 3015 3016 // ------------------------------------------------------------------ 3017 // ciTypeFlow::backedge_copy_count 3018 // 3019 int ciTypeFlow::backedge_copy_count(int ciBlockIndex, ciTypeFlow::JsrSet* jsrs) const { 3020 GrowableArray<Block*>* blocks = _idx_to_blocklist[ciBlockIndex]; 3021 3022 if (blocks == nullptr) { 3023 return 0; 3024 } 3025 3026 int count = 0; 3027 int len = blocks->length(); 3028 for (int i = 0; i < len; i++) { 3029 Block* block = blocks->at(i); 3030 if (block->is_backedge_copy() && block->is_compatible_with(jsrs)) { 3031 count++; 3032 } 3033 } 3034 3035 return count; 3036 } 3037 3038 // ------------------------------------------------------------------ 3039 // ciTypeFlow::do_flow 3040 // 3041 // Perform type inference flow analysis. 3042 void ciTypeFlow::do_flow() { 3043 if (CITraceTypeFlow) { 3044 tty->print_cr("\nPerforming flow analysis on method"); 3045 method()->print(); 3046 if (is_osr_flow()) tty->print(" at OSR bci %d", start_bci()); 3047 tty->cr(); 3048 method()->print_codes(); 3049 } 3050 if (CITraceTypeFlow) { 3051 tty->print_cr("Initial CI Blocks"); 3052 print_on(tty); 3053 } 3054 flow_types(); 3055 // Watch for bailouts. 3056 if (failing()) { 3057 return; 3058 } 3059 3060 map_blocks(); 3061 3062 if (CIPrintTypeFlow || CITraceTypeFlow) { 3063 rpo_print_on(tty); 3064 } 3065 } 3066 3067 // ------------------------------------------------------------------ 3068 // ciTypeFlow::is_dominated_by 3069 // 3070 // Determine if the instruction at bci is dominated by the instruction at dom_bci. 3071 bool ciTypeFlow::is_dominated_by(int bci, int dom_bci) { 3072 assert(!method()->has_jsrs(), "jsrs are not supported"); 3073 3074 ResourceMark rm; 3075 JsrSet* jsrs = new ciTypeFlow::JsrSet(); 3076 int index = _method->get_method_blocks()->block_containing(bci)->index(); 3077 int dom_index = _method->get_method_blocks()->block_containing(dom_bci)->index(); 3078 Block* block = get_block_for(index, jsrs, ciTypeFlow::no_create); 3079 Block* dom_block = get_block_for(dom_index, jsrs, ciTypeFlow::no_create); 3080 3081 // Start block dominates all other blocks 3082 if (start_block()->rpo() == dom_block->rpo()) { 3083 return true; 3084 } 3085 3086 // Dominated[i] is true if block i is dominated by dom_block 3087 int num_blocks = block_count(); 3088 bool* dominated = NEW_RESOURCE_ARRAY(bool, num_blocks); 3089 for (int i = 0; i < num_blocks; ++i) { 3090 dominated[i] = true; 3091 } 3092 dominated[start_block()->rpo()] = false; 3093 3094 // Iterative dominator algorithm 3095 bool changed = true; 3096 while (changed) { 3097 changed = false; 3098 // Use reverse postorder iteration 3099 for (Block* blk = _rpo_list; blk != nullptr; blk = blk->rpo_next()) { 3100 if (blk->is_start()) { 3101 // Ignore start block 3102 continue; 3103 } 3104 // The block is dominated if it is the dominating block 3105 // itself or if all predecessors are dominated. 3106 int index = blk->rpo(); 3107 bool dom = (index == dom_block->rpo()); 3108 if (!dom) { 3109 // Check if all predecessors are dominated 3110 dom = true; 3111 for (int i = 0; i < blk->predecessors()->length(); ++i) { 3112 Block* pred = blk->predecessors()->at(i); 3113 if (!dominated[pred->rpo()]) { 3114 dom = false; 3115 break; 3116 } 3117 } 3118 } 3119 // Update dominator information 3120 if (dominated[index] != dom) { 3121 changed = true; 3122 dominated[index] = dom; 3123 } 3124 } 3125 } 3126 // block dominated by dom_block? 3127 return dominated[block->rpo()]; 3128 } 3129 3130 // ------------------------------------------------------------------ 3131 // ciTypeFlow::record_failure() 3132 // The ciTypeFlow object keeps track of failure reasons separately from the ciEnv. 3133 // This is required because there is not a 1-1 relation between the ciEnv and 3134 // the TypeFlow passes within a compilation task. For example, if the compiler 3135 // is considering inlining a method, it will request a TypeFlow. If that fails, 3136 // the compilation as a whole may continue without the inlining. Some TypeFlow 3137 // requests are not optional; if they fail the requestor is responsible for 3138 // copying the failure reason up to the ciEnv. (See Parse::Parse.) 3139 void ciTypeFlow::record_failure(const char* reason) { 3140 if (env()->log() != nullptr) { 3141 env()->log()->elem("failure reason='%s' phase='typeflow'", reason); 3142 } 3143 if (_failure_reason == nullptr) { 3144 // Record the first failure reason. 3145 _failure_reason = reason; 3146 } 3147 } 3148 3149 #ifndef PRODUCT 3150 void ciTypeFlow::print() const { print_on(tty); } 3151 3152 // ------------------------------------------------------------------ 3153 // ciTypeFlow::print_on 3154 void ciTypeFlow::print_on(outputStream* st) const { 3155 // Walk through CI blocks 3156 st->print_cr("********************************************************"); 3157 st->print ("TypeFlow for "); 3158 method()->name()->print_symbol_on(st); 3159 int limit_bci = code_size(); 3160 st->print_cr(" %d bytes", limit_bci); 3161 ciMethodBlocks* mblks = _method->get_method_blocks(); 3162 ciBlock* current = nullptr; 3163 for (int bci = 0; bci < limit_bci; bci++) { 3164 ciBlock* blk = mblks->block_containing(bci); 3165 if (blk != nullptr && blk != current) { 3166 current = blk; 3167 current->print_on(st); 3168 3169 GrowableArray<Block*>* blocks = _idx_to_blocklist[blk->index()]; 3170 int num_blocks = (blocks == nullptr) ? 0 : blocks->length(); 3171 3172 if (num_blocks == 0) { 3173 st->print_cr(" No Blocks"); 3174 } else { 3175 for (int i = 0; i < num_blocks; i++) { 3176 Block* block = blocks->at(i); 3177 block->print_on(st); 3178 } 3179 } 3180 st->print_cr("--------------------------------------------------------"); 3181 st->cr(); 3182 } 3183 } 3184 st->print_cr("********************************************************"); 3185 st->cr(); 3186 } 3187 3188 void ciTypeFlow::rpo_print_on(outputStream* st) const { 3189 st->print_cr("********************************************************"); 3190 st->print ("TypeFlow for "); 3191 method()->name()->print_symbol_on(st); 3192 int limit_bci = code_size(); 3193 st->print_cr(" %d bytes", limit_bci); 3194 for (Block* blk = _rpo_list; blk != nullptr; blk = blk->rpo_next()) { 3195 blk->print_on(st); 3196 st->print_cr("--------------------------------------------------------"); 3197 st->cr(); 3198 } 3199 st->print_cr("********************************************************"); 3200 st->cr(); 3201 } 3202 #endif