1 /* 2 * Copyright (c) 2000, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciConstant.hpp" 27 #include "ci/ciField.hpp" 28 #include "ci/ciInlineKlass.hpp" 29 #include "ci/ciMethod.hpp" 30 #include "ci/ciMethodData.hpp" 31 #include "ci/ciObjArrayKlass.hpp" 32 #include "ci/ciStreams.hpp" 33 #include "ci/ciTypeArrayKlass.hpp" 34 #include "ci/ciTypeFlow.hpp" 35 #include "compiler/compileLog.hpp" 36 #include "interpreter/bytecode.hpp" 37 #include "interpreter/bytecodes.hpp" 38 #include "memory/allocation.inline.hpp" 39 #include "memory/resourceArea.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "opto/compile.hpp" 42 #include "opto/node.hpp" 43 #include "runtime/deoptimization.hpp" 44 #include "utilities/growableArray.hpp" 45 46 // ciTypeFlow::JsrSet 47 // 48 // A JsrSet represents some set of JsrRecords. This class 49 // is used to record a set of all jsr routines which we permit 50 // execution to return (ret) from. 51 // 52 // During abstract interpretation, JsrSets are used to determine 53 // whether two paths which reach a given block are unique, and 54 // should be cloned apart, or are compatible, and should merge 55 // together. 56 57 // ------------------------------------------------------------------ 58 // ciTypeFlow::JsrSet::JsrSet 59 60 // Allocate growable array storage in Arena. 61 ciTypeFlow::JsrSet::JsrSet(Arena* arena, int default_len) : _set(arena, default_len, 0, nullptr) { 62 assert(arena != nullptr, "invariant"); 63 } 64 65 // Allocate growable array storage in current ResourceArea. 66 ciTypeFlow::JsrSet::JsrSet(int default_len) : _set(default_len, 0, nullptr) {} 67 68 // ------------------------------------------------------------------ 69 // ciTypeFlow::JsrSet::copy_into 70 void ciTypeFlow::JsrSet::copy_into(JsrSet* jsrs) { 71 int len = size(); 72 jsrs->_set.clear(); 73 for (int i = 0; i < len; i++) { 74 jsrs->_set.append(_set.at(i)); 75 } 76 } 77 78 // ------------------------------------------------------------------ 79 // ciTypeFlow::JsrSet::is_compatible_with 80 // 81 // !!!! MISGIVINGS ABOUT THIS... disregard 82 // 83 // Is this JsrSet compatible with some other JsrSet? 84 // 85 // In set-theoretic terms, a JsrSet can be viewed as a partial function 86 // from entry addresses to return addresses. Two JsrSets A and B are 87 // compatible iff 88 // 89 // For any x, 90 // A(x) defined and B(x) defined implies A(x) == B(x) 91 // 92 // Less formally, two JsrSets are compatible when they have identical 93 // return addresses for any entry addresses they share in common. 94 bool ciTypeFlow::JsrSet::is_compatible_with(JsrSet* other) { 95 // Walk through both sets in parallel. If the same entry address 96 // appears in both sets, then the return address must match for 97 // the sets to be compatible. 98 int size1 = size(); 99 int size2 = other->size(); 100 101 // Special case. If nothing is on the jsr stack, then there can 102 // be no ret. 103 if (size2 == 0) { 104 return true; 105 } else if (size1 != size2) { 106 return false; 107 } else { 108 for (int i = 0; i < size1; i++) { 109 JsrRecord* record1 = record_at(i); 110 JsrRecord* record2 = other->record_at(i); 111 if (record1->entry_address() != record2->entry_address() || 112 record1->return_address() != record2->return_address()) { 113 return false; 114 } 115 } 116 return true; 117 } 118 119 #if 0 120 int pos1 = 0; 121 int pos2 = 0; 122 int size1 = size(); 123 int size2 = other->size(); 124 while (pos1 < size1 && pos2 < size2) { 125 JsrRecord* record1 = record_at(pos1); 126 JsrRecord* record2 = other->record_at(pos2); 127 int entry1 = record1->entry_address(); 128 int entry2 = record2->entry_address(); 129 if (entry1 < entry2) { 130 pos1++; 131 } else if (entry1 > entry2) { 132 pos2++; 133 } else { 134 if (record1->return_address() == record2->return_address()) { 135 pos1++; 136 pos2++; 137 } else { 138 // These two JsrSets are incompatible. 139 return false; 140 } 141 } 142 } 143 // The two JsrSets agree. 144 return true; 145 #endif 146 } 147 148 // ------------------------------------------------------------------ 149 // ciTypeFlow::JsrSet::insert_jsr_record 150 // 151 // Insert the given JsrRecord into the JsrSet, maintaining the order 152 // of the set and replacing any element with the same entry address. 153 void ciTypeFlow::JsrSet::insert_jsr_record(JsrRecord* record) { 154 int len = size(); 155 int entry = record->entry_address(); 156 int pos = 0; 157 for ( ; pos < len; pos++) { 158 JsrRecord* current = record_at(pos); 159 if (entry == current->entry_address()) { 160 // Stomp over this entry. 161 _set.at_put(pos, record); 162 assert(size() == len, "must be same size"); 163 return; 164 } else if (entry < current->entry_address()) { 165 break; 166 } 167 } 168 169 // Insert the record into the list. 170 JsrRecord* swap = record; 171 JsrRecord* temp = nullptr; 172 for ( ; pos < len; pos++) { 173 temp = _set.at(pos); 174 _set.at_put(pos, swap); 175 swap = temp; 176 } 177 _set.append(swap); 178 assert(size() == len+1, "must be larger"); 179 } 180 181 // ------------------------------------------------------------------ 182 // ciTypeFlow::JsrSet::remove_jsr_record 183 // 184 // Remove the JsrRecord with the given return address from the JsrSet. 185 void ciTypeFlow::JsrSet::remove_jsr_record(int return_address) { 186 int len = size(); 187 for (int i = 0; i < len; i++) { 188 if (record_at(i)->return_address() == return_address) { 189 // We have found the proper entry. Remove it from the 190 // JsrSet and exit. 191 for (int j = i + 1; j < len ; j++) { 192 _set.at_put(j - 1, _set.at(j)); 193 } 194 _set.trunc_to(len - 1); 195 assert(size() == len-1, "must be smaller"); 196 return; 197 } 198 } 199 assert(false, "verify: returning from invalid subroutine"); 200 } 201 202 // ------------------------------------------------------------------ 203 // ciTypeFlow::JsrSet::apply_control 204 // 205 // Apply the effect of a control-flow bytecode on the JsrSet. The 206 // only bytecodes that modify the JsrSet are jsr and ret. 207 void ciTypeFlow::JsrSet::apply_control(ciTypeFlow* analyzer, 208 ciBytecodeStream* str, 209 ciTypeFlow::StateVector* state) { 210 Bytecodes::Code code = str->cur_bc(); 211 if (code == Bytecodes::_jsr) { 212 JsrRecord* record = 213 analyzer->make_jsr_record(str->get_dest(), str->next_bci()); 214 insert_jsr_record(record); 215 } else if (code == Bytecodes::_jsr_w) { 216 JsrRecord* record = 217 analyzer->make_jsr_record(str->get_far_dest(), str->next_bci()); 218 insert_jsr_record(record); 219 } else if (code == Bytecodes::_ret) { 220 Cell local = state->local(str->get_index()); 221 ciType* return_address = state->type_at(local); 222 assert(return_address->is_return_address(), "verify: wrong type"); 223 if (size() == 0) { 224 // Ret-state underflow: Hit a ret w/o any previous jsrs. Bail out. 225 // This can happen when a loop is inside a finally clause (4614060). 226 analyzer->record_failure("OSR in finally clause"); 227 return; 228 } 229 remove_jsr_record(return_address->as_return_address()->bci()); 230 } 231 } 232 233 #ifndef PRODUCT 234 // ------------------------------------------------------------------ 235 // ciTypeFlow::JsrSet::print_on 236 void ciTypeFlow::JsrSet::print_on(outputStream* st) const { 237 st->print("{ "); 238 int num_elements = size(); 239 if (num_elements > 0) { 240 int i = 0; 241 for( ; i < num_elements - 1; i++) { 242 _set.at(i)->print_on(st); 243 st->print(", "); 244 } 245 _set.at(i)->print_on(st); 246 st->print(" "); 247 } 248 st->print("}"); 249 } 250 #endif 251 252 // ciTypeFlow::StateVector 253 // 254 // A StateVector summarizes the type information at some point in 255 // the program. 256 257 // ------------------------------------------------------------------ 258 // ciTypeFlow::StateVector::type_meet 259 // 260 // Meet two types. 261 // 262 // The semi-lattice of types use by this analysis are modeled on those 263 // of the verifier. The lattice is as follows: 264 // 265 // top_type() >= all non-extremal types >= bottom_type 266 // and 267 // Every primitive type is comparable only with itself. The meet of 268 // reference types is determined by their kind: instance class, 269 // interface, or array class. The meet of two types of the same 270 // kind is their least common ancestor. The meet of two types of 271 // different kinds is always java.lang.Object. 272 ciType* ciTypeFlow::StateVector::type_meet_internal(ciType* t1, ciType* t2, ciTypeFlow* analyzer) { 273 assert(t1 != t2, "checked in caller"); 274 if (t1->equals(top_type())) { 275 return t2; 276 } else if (t2->equals(top_type())) { 277 return t1; 278 } 279 // Unwrap after saving nullness information and handling top meets 280 bool null_free1 = t1->is_null_free(); 281 bool null_free2 = t2->is_null_free(); 282 if (t1->unwrap() == t2->unwrap() && null_free1 == null_free2) { 283 return t1; 284 } 285 t1 = t1->unwrap(); 286 t2 = t2->unwrap(); 287 288 if (t1->is_primitive_type() || t2->is_primitive_type()) { 289 // Special case null_type. null_type meet any reference type T 290 // is T. null_type meet null_type is null_type. 291 if (t1->equals(null_type())) { 292 if (!t2->is_primitive_type() || t2->equals(null_type())) { 293 return t2; 294 } 295 } else if (t2->equals(null_type())) { 296 if (!t1->is_primitive_type()) { 297 return t1; 298 } 299 } 300 301 // At least one of the two types is a non-top primitive type. 302 // The other type is not equal to it. Fall to bottom. 303 return bottom_type(); 304 } 305 306 // Both types are non-top non-primitive types. That is, 307 // both types are either instanceKlasses or arrayKlasses. 308 ciKlass* object_klass = analyzer->env()->Object_klass(); 309 ciKlass* k1 = t1->as_klass(); 310 ciKlass* k2 = t2->as_klass(); 311 if (k1->equals(object_klass) || k2->equals(object_klass)) { 312 return object_klass; 313 } else if (!k1->is_loaded() || !k2->is_loaded()) { 314 // Unloaded classes fall to java.lang.Object at a merge. 315 return object_klass; 316 } else if (k1->is_interface() != k2->is_interface()) { 317 // When an interface meets a non-interface, we get Object; 318 // This is what the verifier does. 319 return object_klass; 320 } else if (k1->is_array_klass() || k2->is_array_klass()) { 321 // When an array meets a non-array, we get Object. 322 // When (obj/flat)Array meets typeArray, we also get Object. 323 // And when typeArray meets different typeArray, we again get Object. 324 // But when (obj/flat)Array meets (obj/flat)Array, we look carefully at element types. 325 if ((k1->is_obj_array_klass() || k1->is_flat_array_klass()) && 326 (k2->is_obj_array_klass() || k2->is_flat_array_klass())) { 327 ciType* elem1 = k1->as_array_klass()->element_klass(); 328 ciType* elem2 = k2->as_array_klass()->element_klass(); 329 ciType* elem = elem1; 330 if (elem1 != elem2) { 331 elem = type_meet_internal(elem1, elem2, analyzer)->as_klass(); 332 } 333 // Do an easy shortcut if one type is a super of the other. 334 if (elem == elem1 && !elem->is_inlinetype()) { 335 assert(k1 == ciArrayKlass::make(elem), "shortcut is OK"); 336 return k1; 337 } else if (elem == elem2 && !elem->is_inlinetype()) { 338 assert(k2 == ciArrayKlass::make(elem), "shortcut is OK"); 339 return k2; 340 } else { 341 return ciArrayKlass::make(elem); 342 } 343 } else { 344 return object_klass; 345 } 346 } else { 347 // Must be two plain old instance klasses. 348 assert(k1->is_instance_klass(), "previous cases handle non-instances"); 349 assert(k2->is_instance_klass(), "previous cases handle non-instances"); 350 ciType* result = k1->least_common_ancestor(k2); 351 if (null_free1 && null_free2 && result->is_inlinetype()) { 352 result = analyzer->mark_as_null_free(result); 353 } 354 return result; 355 } 356 } 357 358 359 // ------------------------------------------------------------------ 360 // ciTypeFlow::StateVector::StateVector 361 // 362 // Build a new state vector 363 ciTypeFlow::StateVector::StateVector(ciTypeFlow* analyzer) { 364 _outer = analyzer; 365 _stack_size = -1; 366 _monitor_count = -1; 367 // Allocate the _types array 368 int max_cells = analyzer->max_cells(); 369 _types = (ciType**)analyzer->arena()->Amalloc(sizeof(ciType*) * max_cells); 370 for (int i=0; i<max_cells; i++) { 371 _types[i] = top_type(); 372 } 373 _trap_bci = -1; 374 _trap_index = 0; 375 _def_locals.clear(); 376 } 377 378 379 // ------------------------------------------------------------------ 380 // ciTypeFlow::get_start_state 381 // 382 // Set this vector to the method entry state. 383 const ciTypeFlow::StateVector* ciTypeFlow::get_start_state() { 384 StateVector* state = new StateVector(this); 385 if (is_osr_flow()) { 386 ciTypeFlow* non_osr_flow = method()->get_flow_analysis(); 387 if (non_osr_flow->failing()) { 388 record_failure(non_osr_flow->failure_reason()); 389 return nullptr; 390 } 391 JsrSet* jsrs = new JsrSet(4); 392 Block* non_osr_block = non_osr_flow->existing_block_at(start_bci(), jsrs); 393 if (non_osr_block == nullptr) { 394 record_failure("cannot reach OSR point"); 395 return nullptr; 396 } 397 // load up the non-OSR state at this point 398 non_osr_block->copy_state_into(state); 399 int non_osr_start = non_osr_block->start(); 400 if (non_osr_start != start_bci()) { 401 // must flow forward from it 402 if (CITraceTypeFlow) { 403 tty->print_cr(">> Interpreting pre-OSR block %d:", non_osr_start); 404 } 405 Block* block = block_at(non_osr_start, jsrs); 406 assert(block->limit() == start_bci(), "must flow forward to start"); 407 flow_block(block, state, jsrs); 408 } 409 return state; 410 // Note: The code below would be an incorrect for an OSR flow, 411 // even if it were possible for an OSR entry point to be at bci zero. 412 } 413 // "Push" the method signature into the first few locals. 414 state->set_stack_size(-max_locals()); 415 if (!method()->is_static()) { 416 ciType* holder = method()->holder(); 417 if (holder->is_inlinetype()) { 418 // The receiver is null-free 419 holder = mark_as_null_free(holder); 420 } 421 state->push(holder); 422 assert(state->tos() == state->local(0), ""); 423 } 424 for (ciSignatureStream str(method()->signature()); 425 !str.at_return_type(); 426 str.next()) { 427 state->push_translate(str.type()); 428 } 429 // Set the rest of the locals to bottom. 430 assert(state->stack_size() <= 0, "stack size should not be strictly positive"); 431 while (state->stack_size() < 0) { 432 state->push(state->bottom_type()); 433 } 434 // Lock an object, if necessary. 435 state->set_monitor_count(method()->is_synchronized() ? 1 : 0); 436 return state; 437 } 438 439 // ------------------------------------------------------------------ 440 // ciTypeFlow::StateVector::copy_into 441 // 442 // Copy our value into some other StateVector 443 void ciTypeFlow::StateVector::copy_into(ciTypeFlow::StateVector* copy) 444 const { 445 copy->set_stack_size(stack_size()); 446 copy->set_monitor_count(monitor_count()); 447 Cell limit = limit_cell(); 448 for (Cell c = start_cell(); c < limit; c = next_cell(c)) { 449 copy->set_type_at(c, type_at(c)); 450 } 451 } 452 453 // ------------------------------------------------------------------ 454 // ciTypeFlow::StateVector::meet 455 // 456 // Meets this StateVector with another, destructively modifying this 457 // one. Returns true if any modification takes place. 458 bool ciTypeFlow::StateVector::meet(const ciTypeFlow::StateVector* incoming) { 459 if (monitor_count() == -1) { 460 set_monitor_count(incoming->monitor_count()); 461 } 462 assert(monitor_count() == incoming->monitor_count(), "monitors must match"); 463 464 if (stack_size() == -1) { 465 set_stack_size(incoming->stack_size()); 466 Cell limit = limit_cell(); 467 #ifdef ASSERT 468 { for (Cell c = start_cell(); c < limit; c = next_cell(c)) { 469 assert(type_at(c) == top_type(), ""); 470 } } 471 #endif 472 // Make a simple copy of the incoming state. 473 for (Cell c = start_cell(); c < limit; c = next_cell(c)) { 474 set_type_at(c, incoming->type_at(c)); 475 } 476 return true; // it is always different the first time 477 } 478 #ifdef ASSERT 479 if (stack_size() != incoming->stack_size()) { 480 _outer->method()->print_codes(); 481 tty->print_cr("!!!! Stack size conflict"); 482 tty->print_cr("Current state:"); 483 print_on(tty); 484 tty->print_cr("Incoming state:"); 485 ((StateVector*)incoming)->print_on(tty); 486 } 487 #endif 488 assert(stack_size() == incoming->stack_size(), "sanity"); 489 490 bool different = false; 491 Cell limit = limit_cell(); 492 for (Cell c = start_cell(); c < limit; c = next_cell(c)) { 493 ciType* t1 = type_at(c); 494 ciType* t2 = incoming->type_at(c); 495 if (!t1->equals(t2)) { 496 ciType* new_type = type_meet(t1, t2); 497 if (!t1->equals(new_type)) { 498 set_type_at(c, new_type); 499 different = true; 500 } 501 } 502 } 503 return different; 504 } 505 506 // ------------------------------------------------------------------ 507 // ciTypeFlow::StateVector::meet_exception 508 // 509 // Meets this StateVector with another, destructively modifying this 510 // one. The incoming state is coming via an exception. Returns true 511 // if any modification takes place. 512 bool ciTypeFlow::StateVector::meet_exception(ciInstanceKlass* exc, 513 const ciTypeFlow::StateVector* incoming) { 514 if (monitor_count() == -1) { 515 set_monitor_count(incoming->monitor_count()); 516 } 517 assert(monitor_count() == incoming->monitor_count(), "monitors must match"); 518 519 if (stack_size() == -1) { 520 set_stack_size(1); 521 } 522 523 assert(stack_size() == 1, "must have one-element stack"); 524 525 bool different = false; 526 527 // Meet locals from incoming array. 528 Cell limit = local(_outer->max_locals()-1); 529 for (Cell c = start_cell(); c <= limit; c = next_cell(c)) { 530 ciType* t1 = type_at(c); 531 ciType* t2 = incoming->type_at(c); 532 if (!t1->equals(t2)) { 533 ciType* new_type = type_meet(t1, t2); 534 if (!t1->equals(new_type)) { 535 set_type_at(c, new_type); 536 different = true; 537 } 538 } 539 } 540 541 // Handle stack separately. When an exception occurs, the 542 // only stack entry is the exception instance. 543 ciType* tos_type = type_at_tos(); 544 if (!tos_type->equals(exc)) { 545 ciType* new_type = type_meet(tos_type, exc); 546 if (!tos_type->equals(new_type)) { 547 set_type_at_tos(new_type); 548 different = true; 549 } 550 } 551 552 return different; 553 } 554 555 // ------------------------------------------------------------------ 556 // ciTypeFlow::StateVector::push_translate 557 void ciTypeFlow::StateVector::push_translate(ciType* type) { 558 BasicType basic_type = type->basic_type(); 559 if (basic_type == T_BOOLEAN || basic_type == T_CHAR || 560 basic_type == T_BYTE || basic_type == T_SHORT) { 561 push_int(); 562 } else { 563 push(type); 564 if (type->is_two_word()) { 565 push(half_type(type)); 566 } 567 } 568 } 569 570 // ------------------------------------------------------------------ 571 // ciTypeFlow::StateVector::do_aload 572 void ciTypeFlow::StateVector::do_aload(ciBytecodeStream* str) { 573 pop_int(); 574 ciArrayKlass* array_klass = pop_objOrFlatArray(); 575 if (array_klass == nullptr) { 576 // Did aload on a null reference; push a null and ignore the exception. 577 // This instruction will never continue normally. All we have to do 578 // is report a value that will meet correctly with any downstream 579 // reference types on paths that will truly be executed. This null type 580 // meets with any reference type to yield that same reference type. 581 // (The compiler will generate an unconditional exception here.) 582 push(null_type()); 583 return; 584 } 585 if (!array_klass->is_loaded()) { 586 // Only fails for some -Xcomp runs 587 trap(str, array_klass, 588 Deoptimization::make_trap_request 589 (Deoptimization::Reason_unloaded, 590 Deoptimization::Action_reinterpret)); 591 return; 592 } 593 ciKlass* element_klass = array_klass->element_klass(); 594 if (!element_klass->is_loaded() && element_klass->is_instance_klass()) { 595 Untested("unloaded array element class in ciTypeFlow"); 596 trap(str, element_klass, 597 Deoptimization::make_trap_request 598 (Deoptimization::Reason_unloaded, 599 Deoptimization::Action_reinterpret)); 600 } else { 601 push_object(element_klass); 602 } 603 } 604 605 606 // ------------------------------------------------------------------ 607 // ciTypeFlow::StateVector::do_checkcast 608 void ciTypeFlow::StateVector::do_checkcast(ciBytecodeStream* str) { 609 bool will_link; 610 ciKlass* klass = str->get_klass(will_link); 611 if (!will_link) { 612 // VM's interpreter will not load 'klass' if object is nullptr. 613 // Type flow after this block may still be needed in two situations: 614 // 1) C2 uses do_null_assert() and continues compilation for later blocks 615 // 2) C2 does an OSR compile in a later block (see bug 4778368). 616 pop_object(); 617 do_null_assert(klass); 618 } else { 619 ciType* type = pop_value(); 620 type = type->unwrap(); 621 if (type->is_loaded() && klass->is_loaded() && 622 type != klass && type->is_subtype_of(klass)) { 623 // Useless cast, propagate more precise type of object 624 klass = type->as_klass(); 625 } 626 push_object(klass); 627 } 628 } 629 630 // ------------------------------------------------------------------ 631 // ciTypeFlow::StateVector::do_getfield 632 void ciTypeFlow::StateVector::do_getfield(ciBytecodeStream* str) { 633 // could add assert here for type of object. 634 pop_object(); 635 do_getstatic(str); 636 } 637 638 // ------------------------------------------------------------------ 639 // ciTypeFlow::StateVector::do_getstatic 640 void ciTypeFlow::StateVector::do_getstatic(ciBytecodeStream* str) { 641 bool will_link; 642 ciField* field = str->get_field(will_link); 643 if (!will_link) { 644 trap(str, field->holder(), str->get_field_holder_index()); 645 } else { 646 ciType* field_type = field->type(); 647 if (field->is_static() && field->is_null_free() && 648 !field_type->as_instance_klass()->is_initialized()) { 649 // Deoptimize if we load from a static field with an uninitialized inline type 650 // because we need to throw an exception if initialization of the type failed. 651 trap(str, field_type->as_klass(), 652 Deoptimization::make_trap_request 653 (Deoptimization::Reason_unloaded, 654 Deoptimization::Action_reinterpret)); 655 return; 656 } else if (!field_type->is_loaded()) { 657 // Normally, we need the field's type to be loaded if we are to 658 // do anything interesting with its value. 659 // We used to do this: trap(str, str->get_field_signature_index()); 660 // 661 // There is one good reason not to trap here. Execution can 662 // get past this "getfield" or "getstatic" if the value of 663 // the field is null. As long as the value is null, the class 664 // does not need to be loaded! The compiler must assume that 665 // the value of the unloaded class reference is null; if the code 666 // ever sees a non-null value, loading has occurred. 667 // 668 // This actually happens often enough to be annoying. If the 669 // compiler throws an uncommon trap at this bytecode, you can 670 // get an endless loop of recompilations, when all the code 671 // needs to do is load a series of null values. Also, a trap 672 // here can make an OSR entry point unreachable, triggering the 673 // assert on non_osr_block in ciTypeFlow::get_start_state. 674 // (See bug 4379915.) 675 do_null_assert(field_type->as_klass()); 676 } else { 677 if (field->is_null_free()) { 678 field_type = outer()->mark_as_null_free(field_type); 679 } 680 push_translate(field_type); 681 } 682 } 683 } 684 685 // ------------------------------------------------------------------ 686 // ciTypeFlow::StateVector::do_invoke 687 void ciTypeFlow::StateVector::do_invoke(ciBytecodeStream* str, 688 bool has_receiver) { 689 bool will_link; 690 ciSignature* declared_signature = nullptr; 691 ciMethod* callee = str->get_method(will_link, &declared_signature); 692 assert(declared_signature != nullptr, "cannot be null"); 693 if (!will_link) { 694 // We weren't able to find the method. 695 if (str->cur_bc() == Bytecodes::_invokedynamic) { 696 trap(str, nullptr, 697 Deoptimization::make_trap_request 698 (Deoptimization::Reason_uninitialized, 699 Deoptimization::Action_reinterpret)); 700 } else { 701 ciKlass* unloaded_holder = callee->holder(); 702 trap(str, unloaded_holder, str->get_method_holder_index()); 703 } 704 } else { 705 // We are using the declared signature here because it might be 706 // different from the callee signature (Cf. invokedynamic and 707 // invokehandle). 708 ciSignatureStream sigstr(declared_signature); 709 const int arg_size = declared_signature->size(); 710 const int stack_base = stack_size() - arg_size; 711 int i = 0; 712 for( ; !sigstr.at_return_type(); sigstr.next()) { 713 ciType* type = sigstr.type(); 714 ciType* stack_type = type_at(stack(stack_base + i++)); 715 // Do I want to check this type? 716 // assert(stack_type->is_subtype_of(type), "bad type for field value"); 717 if (type->is_two_word()) { 718 ciType* stack_type2 = type_at(stack(stack_base + i++)); 719 assert(stack_type2->equals(half_type(type)), "must be 2nd half"); 720 } 721 } 722 assert(arg_size == i, "must match"); 723 for (int j = 0; j < arg_size; j++) { 724 pop(); 725 } 726 if (has_receiver) { 727 // Check this? 728 pop_object(); 729 } 730 assert(!sigstr.is_done(), "must have return type"); 731 ciType* return_type = sigstr.type(); 732 if (!return_type->is_void()) { 733 if (!return_type->is_loaded()) { 734 // As in do_getstatic(), generally speaking, we need the return type to 735 // be loaded if we are to do anything interesting with its value. 736 // We used to do this: trap(str, str->get_method_signature_index()); 737 // 738 // We do not trap here since execution can get past this invoke if 739 // the return value is null. As long as the value is null, the class 740 // does not need to be loaded! The compiler must assume that 741 // the value of the unloaded class reference is null; if the code 742 // ever sees a non-null value, loading has occurred. 743 // 744 // See do_getstatic() for similar explanation, as well as bug 4684993. 745 if (InlineTypeReturnedAsFields) { 746 // Return might be in scalarized form but we can't handle it because we 747 // don't know the type. This can happen due to a missing preload attribute. 748 // TODO 8284443 Use PhaseMacroExpand::expand_mh_intrinsic_return for this 749 trap(str, nullptr, 750 Deoptimization::make_trap_request 751 (Deoptimization::Reason_uninitialized, 752 Deoptimization::Action_reinterpret)); 753 } else { 754 do_null_assert(return_type->as_klass()); 755 } 756 } else { 757 push_translate(return_type); 758 } 759 } 760 } 761 } 762 763 // ------------------------------------------------------------------ 764 // ciTypeFlow::StateVector::do_jsr 765 void ciTypeFlow::StateVector::do_jsr(ciBytecodeStream* str) { 766 push(ciReturnAddress::make(str->next_bci())); 767 } 768 769 // ------------------------------------------------------------------ 770 // ciTypeFlow::StateVector::do_ldc 771 void ciTypeFlow::StateVector::do_ldc(ciBytecodeStream* str) { 772 if (str->is_in_error()) { 773 trap(str, nullptr, Deoptimization::make_trap_request(Deoptimization::Reason_unhandled, 774 Deoptimization::Action_none)); 775 return; 776 } 777 ciConstant con = str->get_constant(); 778 if (con.is_valid()) { 779 int cp_index = str->get_constant_pool_index(); 780 BasicType basic_type = str->get_basic_type_for_constant_at(cp_index); 781 if (is_reference_type(basic_type)) { 782 ciObject* obj = con.as_object(); 783 if (obj->is_null_object()) { 784 push_null(); 785 } else { 786 assert(obj->is_instance() || obj->is_array(), "must be java_mirror of klass"); 787 ciType* type = obj->klass(); 788 if (type->is_inlinetype()) { 789 type = outer()->mark_as_null_free(type); 790 } 791 push(type); 792 } 793 } else { 794 assert(basic_type == con.basic_type() || con.basic_type() == T_OBJECT, 795 "not a boxed form: %s vs %s", type2name(basic_type), type2name(con.basic_type())); 796 push_translate(ciType::make(basic_type)); 797 } 798 } else { 799 // OutOfMemoryError in the CI while loading a String constant. 800 push_null(); 801 outer()->record_failure("ldc did not link"); 802 } 803 } 804 805 // ------------------------------------------------------------------ 806 // ciTypeFlow::StateVector::do_multianewarray 807 void ciTypeFlow::StateVector::do_multianewarray(ciBytecodeStream* str) { 808 int dimensions = str->get_dimensions(); 809 bool will_link; 810 ciArrayKlass* array_klass = str->get_klass(will_link)->as_array_klass(); 811 if (!will_link) { 812 trap(str, array_klass, str->get_klass_index()); 813 } else { 814 for (int i = 0; i < dimensions; i++) { 815 pop_int(); 816 } 817 push_object(array_klass); 818 } 819 } 820 821 // ------------------------------------------------------------------ 822 // ciTypeFlow::StateVector::do_new 823 void ciTypeFlow::StateVector::do_new(ciBytecodeStream* str) { 824 bool will_link; 825 ciKlass* klass = str->get_klass(will_link); 826 if (!will_link || str->is_unresolved_klass()) { 827 trap(str, klass, str->get_klass_index()); 828 } else { 829 push_object(klass); 830 } 831 } 832 833 // ------------------------------------------------------------------ 834 // ciTypeFlow::StateVector::do_newarray 835 void ciTypeFlow::StateVector::do_newarray(ciBytecodeStream* str) { 836 pop_int(); 837 ciKlass* klass = ciTypeArrayKlass::make((BasicType)str->get_index()); 838 push_object(klass); 839 } 840 841 // ------------------------------------------------------------------ 842 // ciTypeFlow::StateVector::do_putfield 843 void ciTypeFlow::StateVector::do_putfield(ciBytecodeStream* str) { 844 do_putstatic(str); 845 if (_trap_bci != -1) return; // unloaded field holder, etc. 846 // could add assert here for type of object. 847 pop_object(); 848 } 849 850 // ------------------------------------------------------------------ 851 // ciTypeFlow::StateVector::do_putstatic 852 void ciTypeFlow::StateVector::do_putstatic(ciBytecodeStream* str) { 853 bool will_link; 854 ciField* field = str->get_field(will_link); 855 if (!will_link) { 856 trap(str, field->holder(), str->get_field_holder_index()); 857 } else { 858 ciType* field_type = field->type(); 859 ciType* type = pop_value(); 860 // Do I want to check this type? 861 // assert(type->is_subtype_of(field_type), "bad type for field value"); 862 if (field_type->is_two_word()) { 863 ciType* type2 = pop_value(); 864 assert(type2->is_two_word(), "must be 2nd half"); 865 assert(type == half_type(type2), "must be 2nd half"); 866 } 867 } 868 } 869 870 // ------------------------------------------------------------------ 871 // ciTypeFlow::StateVector::do_ret 872 void ciTypeFlow::StateVector::do_ret(ciBytecodeStream* str) { 873 Cell index = local(str->get_index()); 874 875 ciType* address = type_at(index); 876 assert(address->is_return_address(), "bad return address"); 877 set_type_at(index, bottom_type()); 878 } 879 880 // ------------------------------------------------------------------ 881 // ciTypeFlow::StateVector::trap 882 // 883 // Stop interpretation of this path with a trap. 884 void ciTypeFlow::StateVector::trap(ciBytecodeStream* str, ciKlass* klass, int index) { 885 _trap_bci = str->cur_bci(); 886 _trap_index = index; 887 888 // Log information about this trap: 889 CompileLog* log = outer()->env()->log(); 890 if (log != nullptr) { 891 int mid = log->identify(outer()->method()); 892 int kid = (klass == nullptr)? -1: log->identify(klass); 893 log->begin_elem("uncommon_trap method='%d' bci='%d'", mid, str->cur_bci()); 894 char buf[100]; 895 log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf), 896 index)); 897 if (kid >= 0) 898 log->print(" klass='%d'", kid); 899 log->end_elem(); 900 } 901 } 902 903 // ------------------------------------------------------------------ 904 // ciTypeFlow::StateVector::do_null_assert 905 // Corresponds to graphKit::do_null_assert. 906 void ciTypeFlow::StateVector::do_null_assert(ciKlass* unloaded_klass) { 907 if (unloaded_klass->is_loaded()) { 908 // We failed to link, but we can still compute with this class, 909 // since it is loaded somewhere. The compiler will uncommon_trap 910 // if the object is not null, but the typeflow pass can not assume 911 // that the object will be null, otherwise it may incorrectly tell 912 // the parser that an object is known to be null. 4761344, 4807707 913 push_object(unloaded_klass); 914 } else { 915 // The class is not loaded anywhere. It is safe to model the 916 // null in the typestates, because we can compile in a null check 917 // which will deoptimize us if someone manages to load the 918 // class later. 919 push_null(); 920 } 921 } 922 923 924 // ------------------------------------------------------------------ 925 // ciTypeFlow::StateVector::apply_one_bytecode 926 // 927 // Apply the effect of one bytecode to this StateVector 928 bool ciTypeFlow::StateVector::apply_one_bytecode(ciBytecodeStream* str) { 929 _trap_bci = -1; 930 _trap_index = 0; 931 932 if (CITraceTypeFlow) { 933 tty->print_cr(">> Interpreting bytecode %d:%s", str->cur_bci(), 934 Bytecodes::name(str->cur_bc())); 935 } 936 937 switch(str->cur_bc()) { 938 case Bytecodes::_aaload: do_aload(str); break; 939 940 case Bytecodes::_aastore: 941 { 942 pop_object(); 943 pop_int(); 944 pop_objOrFlatArray(); 945 break; 946 } 947 case Bytecodes::_aconst_null: 948 { 949 push_null(); 950 break; 951 } 952 case Bytecodes::_aload: load_local_object(str->get_index()); break; 953 case Bytecodes::_aload_0: load_local_object(0); break; 954 case Bytecodes::_aload_1: load_local_object(1); break; 955 case Bytecodes::_aload_2: load_local_object(2); break; 956 case Bytecodes::_aload_3: load_local_object(3); break; 957 958 case Bytecodes::_anewarray: 959 { 960 pop_int(); 961 bool will_link; 962 ciKlass* element_klass = str->get_klass(will_link); 963 if (!will_link) { 964 trap(str, element_klass, str->get_klass_index()); 965 } else { 966 push_object(ciArrayKlass::make(element_klass)); 967 } 968 break; 969 } 970 case Bytecodes::_areturn: 971 case Bytecodes::_ifnonnull: 972 case Bytecodes::_ifnull: 973 { 974 pop_object(); 975 break; 976 } 977 case Bytecodes::_monitorenter: 978 { 979 pop_object(); 980 set_monitor_count(monitor_count() + 1); 981 break; 982 } 983 case Bytecodes::_monitorexit: 984 { 985 pop_object(); 986 assert(monitor_count() > 0, "must be a monitor to exit from"); 987 set_monitor_count(monitor_count() - 1); 988 break; 989 } 990 case Bytecodes::_arraylength: 991 { 992 pop_array(); 993 push_int(); 994 break; 995 } 996 case Bytecodes::_astore: store_local_object(str->get_index()); break; 997 case Bytecodes::_astore_0: store_local_object(0); break; 998 case Bytecodes::_astore_1: store_local_object(1); break; 999 case Bytecodes::_astore_2: store_local_object(2); break; 1000 case Bytecodes::_astore_3: store_local_object(3); break; 1001 1002 case Bytecodes::_athrow: 1003 { 1004 NEEDS_CLEANUP; 1005 pop_object(); 1006 break; 1007 } 1008 case Bytecodes::_baload: 1009 case Bytecodes::_caload: 1010 case Bytecodes::_iaload: 1011 case Bytecodes::_saload: 1012 { 1013 pop_int(); 1014 ciTypeArrayKlass* array_klass = pop_typeArray(); 1015 // Put assert here for right type? 1016 push_int(); 1017 break; 1018 } 1019 case Bytecodes::_bastore: 1020 case Bytecodes::_castore: 1021 case Bytecodes::_iastore: 1022 case Bytecodes::_sastore: 1023 { 1024 pop_int(); 1025 pop_int(); 1026 pop_typeArray(); 1027 // assert here? 1028 break; 1029 } 1030 case Bytecodes::_bipush: 1031 case Bytecodes::_iconst_m1: 1032 case Bytecodes::_iconst_0: 1033 case Bytecodes::_iconst_1: 1034 case Bytecodes::_iconst_2: 1035 case Bytecodes::_iconst_3: 1036 case Bytecodes::_iconst_4: 1037 case Bytecodes::_iconst_5: 1038 case Bytecodes::_sipush: 1039 { 1040 push_int(); 1041 break; 1042 } 1043 case Bytecodes::_checkcast: do_checkcast(str); break; 1044 1045 case Bytecodes::_d2f: 1046 { 1047 pop_double(); 1048 push_float(); 1049 break; 1050 } 1051 case Bytecodes::_d2i: 1052 { 1053 pop_double(); 1054 push_int(); 1055 break; 1056 } 1057 case Bytecodes::_d2l: 1058 { 1059 pop_double(); 1060 push_long(); 1061 break; 1062 } 1063 case Bytecodes::_dadd: 1064 case Bytecodes::_ddiv: 1065 case Bytecodes::_dmul: 1066 case Bytecodes::_drem: 1067 case Bytecodes::_dsub: 1068 { 1069 pop_double(); 1070 pop_double(); 1071 push_double(); 1072 break; 1073 } 1074 case Bytecodes::_daload: 1075 { 1076 pop_int(); 1077 ciTypeArrayKlass* array_klass = pop_typeArray(); 1078 // Put assert here for right type? 1079 push_double(); 1080 break; 1081 } 1082 case Bytecodes::_dastore: 1083 { 1084 pop_double(); 1085 pop_int(); 1086 pop_typeArray(); 1087 // assert here? 1088 break; 1089 } 1090 case Bytecodes::_dcmpg: 1091 case Bytecodes::_dcmpl: 1092 { 1093 pop_double(); 1094 pop_double(); 1095 push_int(); 1096 break; 1097 } 1098 case Bytecodes::_dconst_0: 1099 case Bytecodes::_dconst_1: 1100 { 1101 push_double(); 1102 break; 1103 } 1104 case Bytecodes::_dload: load_local_double(str->get_index()); break; 1105 case Bytecodes::_dload_0: load_local_double(0); break; 1106 case Bytecodes::_dload_1: load_local_double(1); break; 1107 case Bytecodes::_dload_2: load_local_double(2); break; 1108 case Bytecodes::_dload_3: load_local_double(3); break; 1109 1110 case Bytecodes::_dneg: 1111 { 1112 pop_double(); 1113 push_double(); 1114 break; 1115 } 1116 case Bytecodes::_dreturn: 1117 { 1118 pop_double(); 1119 break; 1120 } 1121 case Bytecodes::_dstore: store_local_double(str->get_index()); break; 1122 case Bytecodes::_dstore_0: store_local_double(0); break; 1123 case Bytecodes::_dstore_1: store_local_double(1); break; 1124 case Bytecodes::_dstore_2: store_local_double(2); break; 1125 case Bytecodes::_dstore_3: store_local_double(3); break; 1126 1127 case Bytecodes::_dup: 1128 { 1129 push(type_at_tos()); 1130 break; 1131 } 1132 case Bytecodes::_dup_x1: 1133 { 1134 ciType* value1 = pop_value(); 1135 ciType* value2 = pop_value(); 1136 push(value1); 1137 push(value2); 1138 push(value1); 1139 break; 1140 } 1141 case Bytecodes::_dup_x2: 1142 { 1143 ciType* value1 = pop_value(); 1144 ciType* value2 = pop_value(); 1145 ciType* value3 = pop_value(); 1146 push(value1); 1147 push(value3); 1148 push(value2); 1149 push(value1); 1150 break; 1151 } 1152 case Bytecodes::_dup2: 1153 { 1154 ciType* value1 = pop_value(); 1155 ciType* value2 = pop_value(); 1156 push(value2); 1157 push(value1); 1158 push(value2); 1159 push(value1); 1160 break; 1161 } 1162 case Bytecodes::_dup2_x1: 1163 { 1164 ciType* value1 = pop_value(); 1165 ciType* value2 = pop_value(); 1166 ciType* value3 = pop_value(); 1167 push(value2); 1168 push(value1); 1169 push(value3); 1170 push(value2); 1171 push(value1); 1172 break; 1173 } 1174 case Bytecodes::_dup2_x2: 1175 { 1176 ciType* value1 = pop_value(); 1177 ciType* value2 = pop_value(); 1178 ciType* value3 = pop_value(); 1179 ciType* value4 = pop_value(); 1180 push(value2); 1181 push(value1); 1182 push(value4); 1183 push(value3); 1184 push(value2); 1185 push(value1); 1186 break; 1187 } 1188 case Bytecodes::_f2d: 1189 { 1190 pop_float(); 1191 push_double(); 1192 break; 1193 } 1194 case Bytecodes::_f2i: 1195 { 1196 pop_float(); 1197 push_int(); 1198 break; 1199 } 1200 case Bytecodes::_f2l: 1201 { 1202 pop_float(); 1203 push_long(); 1204 break; 1205 } 1206 case Bytecodes::_fadd: 1207 case Bytecodes::_fdiv: 1208 case Bytecodes::_fmul: 1209 case Bytecodes::_frem: 1210 case Bytecodes::_fsub: 1211 { 1212 pop_float(); 1213 pop_float(); 1214 push_float(); 1215 break; 1216 } 1217 case Bytecodes::_faload: 1218 { 1219 pop_int(); 1220 ciTypeArrayKlass* array_klass = pop_typeArray(); 1221 // Put assert here. 1222 push_float(); 1223 break; 1224 } 1225 case Bytecodes::_fastore: 1226 { 1227 pop_float(); 1228 pop_int(); 1229 ciTypeArrayKlass* array_klass = pop_typeArray(); 1230 // Put assert here. 1231 break; 1232 } 1233 case Bytecodes::_fcmpg: 1234 case Bytecodes::_fcmpl: 1235 { 1236 pop_float(); 1237 pop_float(); 1238 push_int(); 1239 break; 1240 } 1241 case Bytecodes::_fconst_0: 1242 case Bytecodes::_fconst_1: 1243 case Bytecodes::_fconst_2: 1244 { 1245 push_float(); 1246 break; 1247 } 1248 case Bytecodes::_fload: load_local_float(str->get_index()); break; 1249 case Bytecodes::_fload_0: load_local_float(0); break; 1250 case Bytecodes::_fload_1: load_local_float(1); break; 1251 case Bytecodes::_fload_2: load_local_float(2); break; 1252 case Bytecodes::_fload_3: load_local_float(3); break; 1253 1254 case Bytecodes::_fneg: 1255 { 1256 pop_float(); 1257 push_float(); 1258 break; 1259 } 1260 case Bytecodes::_freturn: 1261 { 1262 pop_float(); 1263 break; 1264 } 1265 case Bytecodes::_fstore: store_local_float(str->get_index()); break; 1266 case Bytecodes::_fstore_0: store_local_float(0); break; 1267 case Bytecodes::_fstore_1: store_local_float(1); break; 1268 case Bytecodes::_fstore_2: store_local_float(2); break; 1269 case Bytecodes::_fstore_3: store_local_float(3); break; 1270 1271 case Bytecodes::_getfield: do_getfield(str); break; 1272 case Bytecodes::_getstatic: do_getstatic(str); break; 1273 1274 case Bytecodes::_goto: 1275 case Bytecodes::_goto_w: 1276 case Bytecodes::_nop: 1277 case Bytecodes::_return: 1278 { 1279 // do nothing. 1280 break; 1281 } 1282 case Bytecodes::_i2b: 1283 case Bytecodes::_i2c: 1284 case Bytecodes::_i2s: 1285 case Bytecodes::_ineg: 1286 { 1287 pop_int(); 1288 push_int(); 1289 break; 1290 } 1291 case Bytecodes::_i2d: 1292 { 1293 pop_int(); 1294 push_double(); 1295 break; 1296 } 1297 case Bytecodes::_i2f: 1298 { 1299 pop_int(); 1300 push_float(); 1301 break; 1302 } 1303 case Bytecodes::_i2l: 1304 { 1305 pop_int(); 1306 push_long(); 1307 break; 1308 } 1309 case Bytecodes::_iadd: 1310 case Bytecodes::_iand: 1311 case Bytecodes::_idiv: 1312 case Bytecodes::_imul: 1313 case Bytecodes::_ior: 1314 case Bytecodes::_irem: 1315 case Bytecodes::_ishl: 1316 case Bytecodes::_ishr: 1317 case Bytecodes::_isub: 1318 case Bytecodes::_iushr: 1319 case Bytecodes::_ixor: 1320 { 1321 pop_int(); 1322 pop_int(); 1323 push_int(); 1324 break; 1325 } 1326 case Bytecodes::_if_acmpeq: 1327 case Bytecodes::_if_acmpne: 1328 { 1329 pop_object(); 1330 pop_object(); 1331 break; 1332 } 1333 case Bytecodes::_if_icmpeq: 1334 case Bytecodes::_if_icmpge: 1335 case Bytecodes::_if_icmpgt: 1336 case Bytecodes::_if_icmple: 1337 case Bytecodes::_if_icmplt: 1338 case Bytecodes::_if_icmpne: 1339 { 1340 pop_int(); 1341 pop_int(); 1342 break; 1343 } 1344 case Bytecodes::_ifeq: 1345 case Bytecodes::_ifle: 1346 case Bytecodes::_iflt: 1347 case Bytecodes::_ifge: 1348 case Bytecodes::_ifgt: 1349 case Bytecodes::_ifne: 1350 case Bytecodes::_ireturn: 1351 case Bytecodes::_lookupswitch: 1352 case Bytecodes::_tableswitch: 1353 { 1354 pop_int(); 1355 break; 1356 } 1357 case Bytecodes::_iinc: 1358 { 1359 int lnum = str->get_index(); 1360 check_int(local(lnum)); 1361 store_to_local(lnum); 1362 break; 1363 } 1364 case Bytecodes::_iload: load_local_int(str->get_index()); break; 1365 case Bytecodes::_iload_0: load_local_int(0); break; 1366 case Bytecodes::_iload_1: load_local_int(1); break; 1367 case Bytecodes::_iload_2: load_local_int(2); break; 1368 case Bytecodes::_iload_3: load_local_int(3); break; 1369 1370 case Bytecodes::_instanceof: 1371 { 1372 // Check for uncommon trap: 1373 do_checkcast(str); 1374 pop_object(); 1375 push_int(); 1376 break; 1377 } 1378 case Bytecodes::_invokeinterface: do_invoke(str, true); break; 1379 case Bytecodes::_invokespecial: do_invoke(str, true); break; 1380 case Bytecodes::_invokestatic: do_invoke(str, false); break; 1381 case Bytecodes::_invokevirtual: do_invoke(str, true); break; 1382 case Bytecodes::_invokedynamic: do_invoke(str, false); break; 1383 1384 case Bytecodes::_istore: store_local_int(str->get_index()); break; 1385 case Bytecodes::_istore_0: store_local_int(0); break; 1386 case Bytecodes::_istore_1: store_local_int(1); break; 1387 case Bytecodes::_istore_2: store_local_int(2); break; 1388 case Bytecodes::_istore_3: store_local_int(3); break; 1389 1390 case Bytecodes::_jsr: 1391 case Bytecodes::_jsr_w: do_jsr(str); break; 1392 1393 case Bytecodes::_l2d: 1394 { 1395 pop_long(); 1396 push_double(); 1397 break; 1398 } 1399 case Bytecodes::_l2f: 1400 { 1401 pop_long(); 1402 push_float(); 1403 break; 1404 } 1405 case Bytecodes::_l2i: 1406 { 1407 pop_long(); 1408 push_int(); 1409 break; 1410 } 1411 case Bytecodes::_ladd: 1412 case Bytecodes::_land: 1413 case Bytecodes::_ldiv: 1414 case Bytecodes::_lmul: 1415 case Bytecodes::_lor: 1416 case Bytecodes::_lrem: 1417 case Bytecodes::_lsub: 1418 case Bytecodes::_lxor: 1419 { 1420 pop_long(); 1421 pop_long(); 1422 push_long(); 1423 break; 1424 } 1425 case Bytecodes::_laload: 1426 { 1427 pop_int(); 1428 ciTypeArrayKlass* array_klass = pop_typeArray(); 1429 // Put assert here for right type? 1430 push_long(); 1431 break; 1432 } 1433 case Bytecodes::_lastore: 1434 { 1435 pop_long(); 1436 pop_int(); 1437 pop_typeArray(); 1438 // assert here? 1439 break; 1440 } 1441 case Bytecodes::_lcmp: 1442 { 1443 pop_long(); 1444 pop_long(); 1445 push_int(); 1446 break; 1447 } 1448 case Bytecodes::_lconst_0: 1449 case Bytecodes::_lconst_1: 1450 { 1451 push_long(); 1452 break; 1453 } 1454 case Bytecodes::_ldc: 1455 case Bytecodes::_ldc_w: 1456 case Bytecodes::_ldc2_w: 1457 { 1458 do_ldc(str); 1459 break; 1460 } 1461 1462 case Bytecodes::_lload: load_local_long(str->get_index()); break; 1463 case Bytecodes::_lload_0: load_local_long(0); break; 1464 case Bytecodes::_lload_1: load_local_long(1); break; 1465 case Bytecodes::_lload_2: load_local_long(2); break; 1466 case Bytecodes::_lload_3: load_local_long(3); break; 1467 1468 case Bytecodes::_lneg: 1469 { 1470 pop_long(); 1471 push_long(); 1472 break; 1473 } 1474 case Bytecodes::_lreturn: 1475 { 1476 pop_long(); 1477 break; 1478 } 1479 case Bytecodes::_lshl: 1480 case Bytecodes::_lshr: 1481 case Bytecodes::_lushr: 1482 { 1483 pop_int(); 1484 pop_long(); 1485 push_long(); 1486 break; 1487 } 1488 case Bytecodes::_lstore: store_local_long(str->get_index()); break; 1489 case Bytecodes::_lstore_0: store_local_long(0); break; 1490 case Bytecodes::_lstore_1: store_local_long(1); break; 1491 case Bytecodes::_lstore_2: store_local_long(2); break; 1492 case Bytecodes::_lstore_3: store_local_long(3); break; 1493 1494 case Bytecodes::_multianewarray: do_multianewarray(str); break; 1495 1496 case Bytecodes::_new: do_new(str); break; 1497 1498 case Bytecodes::_newarray: do_newarray(str); break; 1499 1500 case Bytecodes::_pop: 1501 { 1502 pop(); 1503 break; 1504 } 1505 case Bytecodes::_pop2: 1506 { 1507 pop(); 1508 pop(); 1509 break; 1510 } 1511 1512 case Bytecodes::_putfield: do_putfield(str); break; 1513 case Bytecodes::_putstatic: do_putstatic(str); break; 1514 1515 case Bytecodes::_ret: do_ret(str); break; 1516 1517 case Bytecodes::_swap: 1518 { 1519 ciType* value1 = pop_value(); 1520 ciType* value2 = pop_value(); 1521 push(value1); 1522 push(value2); 1523 break; 1524 } 1525 1526 case Bytecodes::_wide: 1527 default: 1528 { 1529 // The iterator should skip this. 1530 ShouldNotReachHere(); 1531 break; 1532 } 1533 } 1534 1535 if (CITraceTypeFlow) { 1536 print_on(tty); 1537 } 1538 1539 return (_trap_bci != -1); 1540 } 1541 1542 #ifndef PRODUCT 1543 // ------------------------------------------------------------------ 1544 // ciTypeFlow::StateVector::print_cell_on 1545 void ciTypeFlow::StateVector::print_cell_on(outputStream* st, Cell c) const { 1546 ciType* type = type_at(c)->unwrap(); 1547 if (type == top_type()) { 1548 st->print("top"); 1549 } else if (type == bottom_type()) { 1550 st->print("bottom"); 1551 } else if (type == null_type()) { 1552 st->print("null"); 1553 } else if (type == long2_type()) { 1554 st->print("long2"); 1555 } else if (type == double2_type()) { 1556 st->print("double2"); 1557 } else if (is_int(type)) { 1558 st->print("int"); 1559 } else if (is_long(type)) { 1560 st->print("long"); 1561 } else if (is_float(type)) { 1562 st->print("float"); 1563 } else if (is_double(type)) { 1564 st->print("double"); 1565 } else if (type->is_return_address()) { 1566 st->print("address(%d)", type->as_return_address()->bci()); 1567 } else { 1568 if (type->is_klass()) { 1569 type->as_klass()->name()->print_symbol_on(st); 1570 } else { 1571 st->print("UNEXPECTED TYPE"); 1572 type->print(); 1573 } 1574 } 1575 } 1576 1577 // ------------------------------------------------------------------ 1578 // ciTypeFlow::StateVector::print_on 1579 void ciTypeFlow::StateVector::print_on(outputStream* st) const { 1580 int num_locals = _outer->max_locals(); 1581 int num_stack = stack_size(); 1582 int num_monitors = monitor_count(); 1583 st->print_cr(" State : locals %d, stack %d, monitors %d", num_locals, num_stack, num_monitors); 1584 if (num_stack >= 0) { 1585 int i; 1586 for (i = 0; i < num_locals; i++) { 1587 st->print(" local %2d : ", i); 1588 print_cell_on(st, local(i)); 1589 st->cr(); 1590 } 1591 for (i = 0; i < num_stack; i++) { 1592 st->print(" stack %2d : ", i); 1593 print_cell_on(st, stack(i)); 1594 st->cr(); 1595 } 1596 } 1597 } 1598 #endif 1599 1600 1601 // ------------------------------------------------------------------ 1602 // ciTypeFlow::SuccIter::next 1603 // 1604 void ciTypeFlow::SuccIter::next() { 1605 int succ_ct = _pred->successors()->length(); 1606 int next = _index + 1; 1607 if (next < succ_ct) { 1608 _index = next; 1609 _succ = _pred->successors()->at(next); 1610 return; 1611 } 1612 for (int i = next - succ_ct; i < _pred->exceptions()->length(); i++) { 1613 // Do not compile any code for unloaded exception types. 1614 // Following compiler passes are responsible for doing this also. 1615 ciInstanceKlass* exception_klass = _pred->exc_klasses()->at(i); 1616 if (exception_klass->is_loaded()) { 1617 _index = next; 1618 _succ = _pred->exceptions()->at(i); 1619 return; 1620 } 1621 next++; 1622 } 1623 _index = -1; 1624 _succ = nullptr; 1625 } 1626 1627 // ------------------------------------------------------------------ 1628 // ciTypeFlow::SuccIter::set_succ 1629 // 1630 void ciTypeFlow::SuccIter::set_succ(Block* succ) { 1631 int succ_ct = _pred->successors()->length(); 1632 if (_index < succ_ct) { 1633 _pred->successors()->at_put(_index, succ); 1634 } else { 1635 int idx = _index - succ_ct; 1636 _pred->exceptions()->at_put(idx, succ); 1637 } 1638 } 1639 1640 // ciTypeFlow::Block 1641 // 1642 // A basic block. 1643 1644 // ------------------------------------------------------------------ 1645 // ciTypeFlow::Block::Block 1646 ciTypeFlow::Block::Block(ciTypeFlow* outer, 1647 ciBlock *ciblk, 1648 ciTypeFlow::JsrSet* jsrs) : _predecessors(outer->arena(), 1, 0, nullptr) { 1649 _ciblock = ciblk; 1650 _exceptions = nullptr; 1651 _exc_klasses = nullptr; 1652 _successors = nullptr; 1653 _state = new (outer->arena()) StateVector(outer); 1654 JsrSet* new_jsrs = 1655 new (outer->arena()) JsrSet(outer->arena(), jsrs->size()); 1656 jsrs->copy_into(new_jsrs); 1657 _jsrs = new_jsrs; 1658 _next = nullptr; 1659 _on_work_list = false; 1660 _backedge_copy = false; 1661 _has_monitorenter = false; 1662 _trap_bci = -1; 1663 _trap_index = 0; 1664 df_init(); 1665 1666 if (CITraceTypeFlow) { 1667 tty->print_cr(">> Created new block"); 1668 print_on(tty); 1669 } 1670 1671 assert(this->outer() == outer, "outer link set up"); 1672 assert(!outer->have_block_count(), "must not have mapped blocks yet"); 1673 } 1674 1675 // ------------------------------------------------------------------ 1676 // ciTypeFlow::Block::df_init 1677 void ciTypeFlow::Block::df_init() { 1678 _pre_order = -1; assert(!has_pre_order(), ""); 1679 _post_order = -1; assert(!has_post_order(), ""); 1680 _loop = nullptr; 1681 _irreducible_loop_head = false; 1682 _irreducible_loop_secondary_entry = false; 1683 _rpo_next = nullptr; 1684 } 1685 1686 // ------------------------------------------------------------------ 1687 // ciTypeFlow::Block::successors 1688 // 1689 // Get the successors for this Block. 1690 GrowableArray<ciTypeFlow::Block*>* 1691 ciTypeFlow::Block::successors(ciBytecodeStream* str, 1692 ciTypeFlow::StateVector* state, 1693 ciTypeFlow::JsrSet* jsrs) { 1694 if (_successors == nullptr) { 1695 if (CITraceTypeFlow) { 1696 tty->print(">> Computing successors for block "); 1697 print_value_on(tty); 1698 tty->cr(); 1699 } 1700 1701 ciTypeFlow* analyzer = outer(); 1702 Arena* arena = analyzer->arena(); 1703 Block* block = nullptr; 1704 bool has_successor = !has_trap() && 1705 (control() != ciBlock::fall_through_bci || limit() < analyzer->code_size()); 1706 if (!has_successor) { 1707 _successors = 1708 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1709 // No successors 1710 } else if (control() == ciBlock::fall_through_bci) { 1711 assert(str->cur_bci() == limit(), "bad block end"); 1712 // This block simply falls through to the next. 1713 _successors = 1714 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1715 1716 Block* block = analyzer->block_at(limit(), _jsrs); 1717 assert(_successors->length() == FALL_THROUGH, ""); 1718 _successors->append(block); 1719 } else { 1720 int current_bci = str->cur_bci(); 1721 int next_bci = str->next_bci(); 1722 int branch_bci = -1; 1723 Block* target = nullptr; 1724 assert(str->next_bci() == limit(), "bad block end"); 1725 // This block is not a simple fall-though. Interpret 1726 // the current bytecode to find our successors. 1727 switch (str->cur_bc()) { 1728 case Bytecodes::_ifeq: case Bytecodes::_ifne: 1729 case Bytecodes::_iflt: case Bytecodes::_ifge: 1730 case Bytecodes::_ifgt: case Bytecodes::_ifle: 1731 case Bytecodes::_if_icmpeq: case Bytecodes::_if_icmpne: 1732 case Bytecodes::_if_icmplt: case Bytecodes::_if_icmpge: 1733 case Bytecodes::_if_icmpgt: case Bytecodes::_if_icmple: 1734 case Bytecodes::_if_acmpeq: case Bytecodes::_if_acmpne: 1735 case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: 1736 // Our successors are the branch target and the next bci. 1737 branch_bci = str->get_dest(); 1738 _successors = 1739 new (arena) GrowableArray<Block*>(arena, 2, 0, nullptr); 1740 assert(_successors->length() == IF_NOT_TAKEN, ""); 1741 _successors->append(analyzer->block_at(next_bci, jsrs)); 1742 assert(_successors->length() == IF_TAKEN, ""); 1743 _successors->append(analyzer->block_at(branch_bci, jsrs)); 1744 break; 1745 1746 case Bytecodes::_goto: 1747 branch_bci = str->get_dest(); 1748 _successors = 1749 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1750 assert(_successors->length() == GOTO_TARGET, ""); 1751 _successors->append(analyzer->block_at(branch_bci, jsrs)); 1752 break; 1753 1754 case Bytecodes::_jsr: 1755 branch_bci = str->get_dest(); 1756 _successors = 1757 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1758 assert(_successors->length() == GOTO_TARGET, ""); 1759 _successors->append(analyzer->block_at(branch_bci, jsrs)); 1760 break; 1761 1762 case Bytecodes::_goto_w: 1763 case Bytecodes::_jsr_w: 1764 _successors = 1765 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1766 assert(_successors->length() == GOTO_TARGET, ""); 1767 _successors->append(analyzer->block_at(str->get_far_dest(), jsrs)); 1768 break; 1769 1770 case Bytecodes::_tableswitch: { 1771 Bytecode_tableswitch tableswitch(str); 1772 1773 int len = tableswitch.length(); 1774 _successors = 1775 new (arena) GrowableArray<Block*>(arena, len+1, 0, nullptr); 1776 int bci = current_bci + tableswitch.default_offset(); 1777 Block* block = analyzer->block_at(bci, jsrs); 1778 assert(_successors->length() == SWITCH_DEFAULT, ""); 1779 _successors->append(block); 1780 while (--len >= 0) { 1781 int bci = current_bci + tableswitch.dest_offset_at(len); 1782 block = analyzer->block_at(bci, jsrs); 1783 assert(_successors->length() >= SWITCH_CASES, ""); 1784 _successors->append_if_missing(block); 1785 } 1786 break; 1787 } 1788 1789 case Bytecodes::_lookupswitch: { 1790 Bytecode_lookupswitch lookupswitch(str); 1791 1792 int npairs = lookupswitch.number_of_pairs(); 1793 _successors = 1794 new (arena) GrowableArray<Block*>(arena, npairs+1, 0, nullptr); 1795 int bci = current_bci + lookupswitch.default_offset(); 1796 Block* block = analyzer->block_at(bci, jsrs); 1797 assert(_successors->length() == SWITCH_DEFAULT, ""); 1798 _successors->append(block); 1799 while(--npairs >= 0) { 1800 LookupswitchPair pair = lookupswitch.pair_at(npairs); 1801 int bci = current_bci + pair.offset(); 1802 Block* block = analyzer->block_at(bci, jsrs); 1803 assert(_successors->length() >= SWITCH_CASES, ""); 1804 _successors->append_if_missing(block); 1805 } 1806 break; 1807 } 1808 1809 case Bytecodes::_athrow: 1810 case Bytecodes::_ireturn: 1811 case Bytecodes::_lreturn: 1812 case Bytecodes::_freturn: 1813 case Bytecodes::_dreturn: 1814 case Bytecodes::_areturn: 1815 case Bytecodes::_return: 1816 _successors = 1817 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1818 // No successors 1819 break; 1820 1821 case Bytecodes::_ret: { 1822 _successors = 1823 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1824 1825 Cell local = state->local(str->get_index()); 1826 ciType* return_address = state->type_at(local); 1827 assert(return_address->is_return_address(), "verify: wrong type"); 1828 int bci = return_address->as_return_address()->bci(); 1829 assert(_successors->length() == GOTO_TARGET, ""); 1830 _successors->append(analyzer->block_at(bci, jsrs)); 1831 break; 1832 } 1833 1834 case Bytecodes::_wide: 1835 default: 1836 ShouldNotReachHere(); 1837 break; 1838 } 1839 } 1840 1841 // Set predecessor information 1842 for (int i = 0; i < _successors->length(); i++) { 1843 Block* block = _successors->at(i); 1844 block->predecessors()->append(this); 1845 } 1846 } 1847 return _successors; 1848 } 1849 1850 // ------------------------------------------------------------------ 1851 // ciTypeFlow::Block:compute_exceptions 1852 // 1853 // Compute the exceptional successors and types for this Block. 1854 void ciTypeFlow::Block::compute_exceptions() { 1855 assert(_exceptions == nullptr && _exc_klasses == nullptr, "repeat"); 1856 1857 if (CITraceTypeFlow) { 1858 tty->print(">> Computing exceptions for block "); 1859 print_value_on(tty); 1860 tty->cr(); 1861 } 1862 1863 ciTypeFlow* analyzer = outer(); 1864 Arena* arena = analyzer->arena(); 1865 1866 // Any bci in the block will do. 1867 ciExceptionHandlerStream str(analyzer->method(), start()); 1868 1869 // Allocate our growable arrays. 1870 int exc_count = str.count(); 1871 _exceptions = new (arena) GrowableArray<Block*>(arena, exc_count, 0, nullptr); 1872 _exc_klasses = new (arena) GrowableArray<ciInstanceKlass*>(arena, exc_count, 1873 0, nullptr); 1874 1875 for ( ; !str.is_done(); str.next()) { 1876 ciExceptionHandler* handler = str.handler(); 1877 int bci = handler->handler_bci(); 1878 ciInstanceKlass* klass = nullptr; 1879 if (bci == -1) { 1880 // There is no catch all. It is possible to exit the method. 1881 break; 1882 } 1883 if (handler->is_catch_all()) { 1884 klass = analyzer->env()->Throwable_klass(); 1885 } else { 1886 klass = handler->catch_klass(); 1887 } 1888 Block* block = analyzer->block_at(bci, _jsrs); 1889 _exceptions->append(block); 1890 block->predecessors()->append(this); 1891 _exc_klasses->append(klass); 1892 } 1893 } 1894 1895 // ------------------------------------------------------------------ 1896 // ciTypeFlow::Block::set_backedge_copy 1897 // Use this only to make a pre-existing public block into a backedge copy. 1898 void ciTypeFlow::Block::set_backedge_copy(bool z) { 1899 assert(z || (z == is_backedge_copy()), "cannot make a backedge copy public"); 1900 _backedge_copy = z; 1901 } 1902 1903 // Analogous to PhaseIdealLoop::is_in_irreducible_loop 1904 bool ciTypeFlow::Block::is_in_irreducible_loop() const { 1905 if (!outer()->has_irreducible_entry()) { 1906 return false; // No irreducible loop in method. 1907 } 1908 Loop* lp = loop(); // Innermost loop containing block. 1909 if (lp == nullptr) { 1910 assert(!is_post_visited(), "must have enclosing loop once post-visited"); 1911 return false; // Not yet processed, so we do not know, yet. 1912 } 1913 // Walk all the way up the loop-tree, search for an irreducible loop. 1914 do { 1915 if (lp->is_irreducible()) { 1916 return true; // We are in irreducible loop. 1917 } 1918 if (lp->head()->pre_order() == 0) { 1919 return false; // Found root loop, terminate. 1920 } 1921 lp = lp->parent(); 1922 } while (lp != nullptr); 1923 // We have "lp->parent() == nullptr", which happens only for infinite loops, 1924 // where no parent is attached to the loop. We did not find any irreducible 1925 // loop from this block out to lp. Thus lp only has one entry, and no exit 1926 // (it is infinite and reducible). We can always rewrite an infinite loop 1927 // that is nested inside other loops: 1928 // while(condition) { infinite_loop; } 1929 // with an equivalent program where the infinite loop is an outermost loop 1930 // that is not nested in any loop: 1931 // while(condition) { break; } infinite_loop; 1932 // Thus, we can understand lp as an outermost loop, and can terminate and 1933 // conclude: this block is in no irreducible loop. 1934 return false; 1935 } 1936 1937 // ------------------------------------------------------------------ 1938 // ciTypeFlow::Block::is_clonable_exit 1939 // 1940 // At most 2 normal successors, one of which continues looping, 1941 // and all exceptional successors must exit. 1942 bool ciTypeFlow::Block::is_clonable_exit(ciTypeFlow::Loop* lp) { 1943 int normal_cnt = 0; 1944 int in_loop_cnt = 0; 1945 for (SuccIter iter(this); !iter.done(); iter.next()) { 1946 Block* succ = iter.succ(); 1947 if (iter.is_normal_ctrl()) { 1948 if (++normal_cnt > 2) return false; 1949 if (lp->contains(succ->loop())) { 1950 if (++in_loop_cnt > 1) return false; 1951 } 1952 } else { 1953 if (lp->contains(succ->loop())) return false; 1954 } 1955 } 1956 return in_loop_cnt == 1; 1957 } 1958 1959 // ------------------------------------------------------------------ 1960 // ciTypeFlow::Block::looping_succ 1961 // 1962 ciTypeFlow::Block* ciTypeFlow::Block::looping_succ(ciTypeFlow::Loop* lp) { 1963 assert(successors()->length() <= 2, "at most 2 normal successors"); 1964 for (SuccIter iter(this); !iter.done(); iter.next()) { 1965 Block* succ = iter.succ(); 1966 if (lp->contains(succ->loop())) { 1967 return succ; 1968 } 1969 } 1970 return nullptr; 1971 } 1972 1973 #ifndef PRODUCT 1974 // ------------------------------------------------------------------ 1975 // ciTypeFlow::Block::print_value_on 1976 void ciTypeFlow::Block::print_value_on(outputStream* st) const { 1977 if (has_pre_order()) st->print("#%-2d ", pre_order()); 1978 if (has_rpo()) st->print("rpo#%-2d ", rpo()); 1979 st->print("[%d - %d)", start(), limit()); 1980 if (is_loop_head()) st->print(" lphd"); 1981 if (is_in_irreducible_loop()) st->print(" in_irred"); 1982 if (is_irreducible_loop_head()) st->print(" irred_head"); 1983 if (is_irreducible_loop_secondary_entry()) st->print(" irred_entry"); 1984 if (_jsrs->size() > 0) { st->print("/"); _jsrs->print_on(st); } 1985 if (is_backedge_copy()) st->print("/backedge_copy"); 1986 } 1987 1988 // ------------------------------------------------------------------ 1989 // ciTypeFlow::Block::print_on 1990 void ciTypeFlow::Block::print_on(outputStream* st) const { 1991 if ((Verbose || WizardMode) && (limit() >= 0)) { 1992 // Don't print 'dummy' blocks (i.e. blocks with limit() '-1') 1993 outer()->method()->print_codes_on(start(), limit(), st); 1994 } 1995 st->print_cr(" ==================================================== "); 1996 st->print (" "); 1997 print_value_on(st); 1998 st->print(" Stored locals: "); def_locals()->print_on(st, outer()->method()->max_locals()); tty->cr(); 1999 if (loop() && loop()->parent() != nullptr) { 2000 st->print(" loops:"); 2001 Loop* lp = loop(); 2002 do { 2003 st->print(" %d<-%d", lp->head()->pre_order(),lp->tail()->pre_order()); 2004 if (lp->is_irreducible()) st->print("(ir)"); 2005 lp = lp->parent(); 2006 } while (lp->parent() != nullptr); 2007 } 2008 st->cr(); 2009 _state->print_on(st); 2010 if (_successors == nullptr) { 2011 st->print_cr(" No successor information"); 2012 } else { 2013 int num_successors = _successors->length(); 2014 st->print_cr(" Successors : %d", num_successors); 2015 for (int i = 0; i < num_successors; i++) { 2016 Block* successor = _successors->at(i); 2017 st->print(" "); 2018 successor->print_value_on(st); 2019 st->cr(); 2020 } 2021 } 2022 if (_predecessors.is_empty()) { 2023 st->print_cr(" No predecessor information"); 2024 } else { 2025 int num_predecessors = _predecessors.length(); 2026 st->print_cr(" Predecessors : %d", num_predecessors); 2027 for (int i = 0; i < num_predecessors; i++) { 2028 Block* predecessor = _predecessors.at(i); 2029 st->print(" "); 2030 predecessor->print_value_on(st); 2031 st->cr(); 2032 } 2033 } 2034 if (_exceptions == nullptr) { 2035 st->print_cr(" No exception information"); 2036 } else { 2037 int num_exceptions = _exceptions->length(); 2038 st->print_cr(" Exceptions : %d", num_exceptions); 2039 for (int i = 0; i < num_exceptions; i++) { 2040 Block* exc_succ = _exceptions->at(i); 2041 ciInstanceKlass* exc_klass = _exc_klasses->at(i); 2042 st->print(" "); 2043 exc_succ->print_value_on(st); 2044 st->print(" -- "); 2045 exc_klass->name()->print_symbol_on(st); 2046 st->cr(); 2047 } 2048 } 2049 if (has_trap()) { 2050 st->print_cr(" Traps on %d with trap index %d", trap_bci(), trap_index()); 2051 } 2052 st->print_cr(" ==================================================== "); 2053 } 2054 #endif 2055 2056 #ifndef PRODUCT 2057 // ------------------------------------------------------------------ 2058 // ciTypeFlow::LocalSet::print_on 2059 void ciTypeFlow::LocalSet::print_on(outputStream* st, int limit) const { 2060 st->print("{"); 2061 for (int i = 0; i < max; i++) { 2062 if (test(i)) st->print(" %d", i); 2063 } 2064 if (limit > max) { 2065 st->print(" %d..%d ", max, limit); 2066 } 2067 st->print(" }"); 2068 } 2069 #endif 2070 2071 // ciTypeFlow 2072 // 2073 // This is a pass over the bytecodes which computes the following: 2074 // basic block structure 2075 // interpreter type-states (a la the verifier) 2076 2077 // ------------------------------------------------------------------ 2078 // ciTypeFlow::ciTypeFlow 2079 ciTypeFlow::ciTypeFlow(ciEnv* env, ciMethod* method, int osr_bci) { 2080 _env = env; 2081 _method = method; 2082 _has_irreducible_entry = false; 2083 _osr_bci = osr_bci; 2084 _failure_reason = nullptr; 2085 assert(0 <= start_bci() && start_bci() < code_size() , "correct osr_bci argument: 0 <= %d < %d", start_bci(), code_size()); 2086 _work_list = nullptr; 2087 2088 int ciblock_count = _method->get_method_blocks()->num_blocks(); 2089 _idx_to_blocklist = NEW_ARENA_ARRAY(arena(), GrowableArray<Block*>*, ciblock_count); 2090 for (int i = 0; i < ciblock_count; i++) { 2091 _idx_to_blocklist[i] = nullptr; 2092 } 2093 _block_map = nullptr; // until all blocks are seen 2094 _jsr_records = nullptr; 2095 } 2096 2097 // ------------------------------------------------------------------ 2098 // ciTypeFlow::work_list_next 2099 // 2100 // Get the next basic block from our work list. 2101 ciTypeFlow::Block* ciTypeFlow::work_list_next() { 2102 assert(!work_list_empty(), "work list must not be empty"); 2103 Block* next_block = _work_list; 2104 _work_list = next_block->next(); 2105 next_block->set_next(nullptr); 2106 next_block->set_on_work_list(false); 2107 return next_block; 2108 } 2109 2110 // ------------------------------------------------------------------ 2111 // ciTypeFlow::add_to_work_list 2112 // 2113 // Add a basic block to our work list. 2114 // List is sorted by decreasing postorder sort (same as increasing RPO) 2115 void ciTypeFlow::add_to_work_list(ciTypeFlow::Block* block) { 2116 assert(!block->is_on_work_list(), "must not already be on work list"); 2117 2118 if (CITraceTypeFlow) { 2119 tty->print(">> Adding block "); 2120 block->print_value_on(tty); 2121 tty->print_cr(" to the work list : "); 2122 } 2123 2124 block->set_on_work_list(true); 2125 2126 // decreasing post order sort 2127 2128 Block* prev = nullptr; 2129 Block* current = _work_list; 2130 int po = block->post_order(); 2131 while (current != nullptr) { 2132 if (!current->has_post_order() || po > current->post_order()) 2133 break; 2134 prev = current; 2135 current = current->next(); 2136 } 2137 if (prev == nullptr) { 2138 block->set_next(_work_list); 2139 _work_list = block; 2140 } else { 2141 block->set_next(current); 2142 prev->set_next(block); 2143 } 2144 2145 if (CITraceTypeFlow) { 2146 tty->cr(); 2147 } 2148 } 2149 2150 // ------------------------------------------------------------------ 2151 // ciTypeFlow::block_at 2152 // 2153 // Return the block beginning at bci which has a JsrSet compatible 2154 // with jsrs. 2155 ciTypeFlow::Block* ciTypeFlow::block_at(int bci, ciTypeFlow::JsrSet* jsrs, CreateOption option) { 2156 // First find the right ciBlock. 2157 if (CITraceTypeFlow) { 2158 tty->print(">> Requesting block for %d/", bci); 2159 jsrs->print_on(tty); 2160 tty->cr(); 2161 } 2162 2163 ciBlock* ciblk = _method->get_method_blocks()->block_containing(bci); 2164 assert(ciblk->start_bci() == bci, "bad ciBlock boundaries"); 2165 Block* block = get_block_for(ciblk->index(), jsrs, option); 2166 2167 assert(block == nullptr? (option == no_create): block->is_backedge_copy() == (option == create_backedge_copy), "create option consistent with result"); 2168 2169 if (CITraceTypeFlow) { 2170 if (block != nullptr) { 2171 tty->print(">> Found block "); 2172 block->print_value_on(tty); 2173 tty->cr(); 2174 } else { 2175 tty->print_cr(">> No such block."); 2176 } 2177 } 2178 2179 return block; 2180 } 2181 2182 // ------------------------------------------------------------------ 2183 // ciTypeFlow::make_jsr_record 2184 // 2185 // Make a JsrRecord for a given (entry, return) pair, if such a record 2186 // does not already exist. 2187 ciTypeFlow::JsrRecord* ciTypeFlow::make_jsr_record(int entry_address, 2188 int return_address) { 2189 if (_jsr_records == nullptr) { 2190 _jsr_records = new (arena()) GrowableArray<JsrRecord*>(arena(), 2191 2, 2192 0, 2193 nullptr); 2194 } 2195 JsrRecord* record = nullptr; 2196 int len = _jsr_records->length(); 2197 for (int i = 0; i < len; i++) { 2198 JsrRecord* record = _jsr_records->at(i); 2199 if (record->entry_address() == entry_address && 2200 record->return_address() == return_address) { 2201 return record; 2202 } 2203 } 2204 2205 record = new (arena()) JsrRecord(entry_address, return_address); 2206 _jsr_records->append(record); 2207 return record; 2208 } 2209 2210 // ------------------------------------------------------------------ 2211 // ciTypeFlow::flow_exceptions 2212 // 2213 // Merge the current state into all exceptional successors at the 2214 // current point in the code. 2215 void ciTypeFlow::flow_exceptions(GrowableArray<ciTypeFlow::Block*>* exceptions, 2216 GrowableArray<ciInstanceKlass*>* exc_klasses, 2217 ciTypeFlow::StateVector* state) { 2218 int len = exceptions->length(); 2219 assert(exc_klasses->length() == len, "must have same length"); 2220 for (int i = 0; i < len; i++) { 2221 Block* block = exceptions->at(i); 2222 ciInstanceKlass* exception_klass = exc_klasses->at(i); 2223 2224 if (!exception_klass->is_loaded()) { 2225 // Do not compile any code for unloaded exception types. 2226 // Following compiler passes are responsible for doing this also. 2227 continue; 2228 } 2229 2230 if (block->meet_exception(exception_klass, state)) { 2231 // Block was modified and has PO. Add it to the work list. 2232 if (block->has_post_order() && 2233 !block->is_on_work_list()) { 2234 add_to_work_list(block); 2235 } 2236 } 2237 } 2238 } 2239 2240 // ------------------------------------------------------------------ 2241 // ciTypeFlow::flow_successors 2242 // 2243 // Merge the current state into all successors at the current point 2244 // in the code. 2245 void ciTypeFlow::flow_successors(GrowableArray<ciTypeFlow::Block*>* successors, 2246 ciTypeFlow::StateVector* state) { 2247 int len = successors->length(); 2248 for (int i = 0; i < len; i++) { 2249 Block* block = successors->at(i); 2250 if (block->meet(state)) { 2251 // Block was modified and has PO. Add it to the work list. 2252 if (block->has_post_order() && 2253 !block->is_on_work_list()) { 2254 add_to_work_list(block); 2255 } 2256 } 2257 } 2258 } 2259 2260 // ------------------------------------------------------------------ 2261 // ciTypeFlow::can_trap 2262 // 2263 // Tells if a given instruction is able to generate an exception edge. 2264 bool ciTypeFlow::can_trap(ciBytecodeStream& str) { 2265 // Cf. GenerateOopMap::do_exception_edge. 2266 if (!Bytecodes::can_trap(str.cur_bc())) return false; 2267 2268 switch (str.cur_bc()) { 2269 // %%% FIXME: ldc of Class can generate an exception 2270 case Bytecodes::_ldc: 2271 case Bytecodes::_ldc_w: 2272 case Bytecodes::_ldc2_w: 2273 return str.is_in_error(); 2274 2275 case Bytecodes::_aload_0: 2276 // These bytecodes can trap for rewriting. We need to assume that 2277 // they do not throw exceptions to make the monitor analysis work. 2278 return false; 2279 2280 case Bytecodes::_ireturn: 2281 case Bytecodes::_lreturn: 2282 case Bytecodes::_freturn: 2283 case Bytecodes::_dreturn: 2284 case Bytecodes::_areturn: 2285 case Bytecodes::_return: 2286 // We can assume the monitor stack is empty in this analysis. 2287 return false; 2288 2289 case Bytecodes::_monitorexit: 2290 // We can assume monitors are matched in this analysis. 2291 return false; 2292 2293 default: 2294 return true; 2295 } 2296 } 2297 2298 // ------------------------------------------------------------------ 2299 // ciTypeFlow::clone_loop_heads 2300 // 2301 // Clone the loop heads 2302 bool ciTypeFlow::clone_loop_heads(StateVector* temp_vector, JsrSet* temp_set) { 2303 bool rslt = false; 2304 for (PreorderLoops iter(loop_tree_root()); !iter.done(); iter.next()) { 2305 Loop* lp = iter.current(); 2306 Block* head = lp->head(); 2307 if (lp == loop_tree_root() || 2308 lp->is_irreducible() || 2309 !head->is_clonable_exit(lp)) 2310 continue; 2311 2312 // Avoid BoxLock merge. 2313 if (EliminateNestedLocks && head->has_monitorenter()) 2314 continue; 2315 2316 // check not already cloned 2317 if (head->backedge_copy_count() != 0) 2318 continue; 2319 2320 // Don't clone head of OSR loop to get correct types in start block. 2321 if (is_osr_flow() && head->start() == start_bci()) 2322 continue; 2323 2324 // check _no_ shared head below us 2325 Loop* ch; 2326 for (ch = lp->child(); ch != nullptr && ch->head() != head; ch = ch->sibling()); 2327 if (ch != nullptr) 2328 continue; 2329 2330 // Clone head 2331 Block* new_head = head->looping_succ(lp); 2332 Block* clone = clone_loop_head(lp, temp_vector, temp_set); 2333 // Update lp's info 2334 clone->set_loop(lp); 2335 lp->set_head(new_head); 2336 lp->set_tail(clone); 2337 // And move original head into outer loop 2338 head->set_loop(lp->parent()); 2339 2340 rslt = true; 2341 } 2342 return rslt; 2343 } 2344 2345 // ------------------------------------------------------------------ 2346 // ciTypeFlow::clone_loop_head 2347 // 2348 // Clone lp's head and replace tail's successors with clone. 2349 // 2350 // | 2351 // v 2352 // head <-> body 2353 // | 2354 // v 2355 // exit 2356 // 2357 // new_head 2358 // 2359 // | 2360 // v 2361 // head ----------\ 2362 // | | 2363 // | v 2364 // | clone <-> body 2365 // | | 2366 // | /--/ 2367 // | | 2368 // v v 2369 // exit 2370 // 2371 ciTypeFlow::Block* ciTypeFlow::clone_loop_head(Loop* lp, StateVector* temp_vector, JsrSet* temp_set) { 2372 Block* head = lp->head(); 2373 Block* tail = lp->tail(); 2374 if (CITraceTypeFlow) { 2375 tty->print(">> Requesting clone of loop head "); head->print_value_on(tty); 2376 tty->print(" for predecessor "); tail->print_value_on(tty); 2377 tty->cr(); 2378 } 2379 Block* clone = block_at(head->start(), head->jsrs(), create_backedge_copy); 2380 assert(clone->backedge_copy_count() == 1, "one backedge copy for all back edges"); 2381 2382 assert(!clone->has_pre_order(), "just created"); 2383 clone->set_next_pre_order(); 2384 2385 // Accumulate profiled count for all backedges that share this loop's head 2386 int total_count = lp->profiled_count(); 2387 for (Loop* lp1 = lp->parent(); lp1 != nullptr; lp1 = lp1->parent()) { 2388 for (Loop* lp2 = lp1; lp2 != nullptr; lp2 = lp2->sibling()) { 2389 if (lp2->head() == head && !lp2->tail()->is_backedge_copy()) { 2390 total_count += lp2->profiled_count(); 2391 } 2392 } 2393 } 2394 // Have the most frequent ones branch to the clone instead 2395 int count = 0; 2396 int loops_with_shared_head = 0; 2397 Block* latest_tail = tail; 2398 bool done = false; 2399 for (Loop* lp1 = lp; lp1 != nullptr && !done; lp1 = lp1->parent()) { 2400 for (Loop* lp2 = lp1; lp2 != nullptr && !done; lp2 = lp2->sibling()) { 2401 if (lp2->head() == head && !lp2->tail()->is_backedge_copy()) { 2402 count += lp2->profiled_count(); 2403 if (lp2->tail()->post_order() < latest_tail->post_order()) { 2404 latest_tail = lp2->tail(); 2405 } 2406 loops_with_shared_head++; 2407 for (SuccIter iter(lp2->tail()); !iter.done(); iter.next()) { 2408 if (iter.succ() == head) { 2409 iter.set_succ(clone); 2410 // Update predecessor information 2411 head->predecessors()->remove(lp2->tail()); 2412 clone->predecessors()->append(lp2->tail()); 2413 } 2414 } 2415 flow_block(lp2->tail(), temp_vector, temp_set); 2416 if (lp2->head() == lp2->tail()) { 2417 // For self-loops, clone->head becomes clone->clone 2418 flow_block(clone, temp_vector, temp_set); 2419 for (SuccIter iter(clone); !iter.done(); iter.next()) { 2420 if (iter.succ() == lp2->head()) { 2421 iter.set_succ(clone); 2422 // Update predecessor information 2423 lp2->head()->predecessors()->remove(clone); 2424 clone->predecessors()->append(clone); 2425 break; 2426 } 2427 } 2428 } 2429 if (total_count == 0 || count > (total_count * .9)) { 2430 done = true; 2431 } 2432 } 2433 } 2434 } 2435 assert(loops_with_shared_head >= 1, "at least one new"); 2436 clone->set_rpo_next(latest_tail->rpo_next()); 2437 latest_tail->set_rpo_next(clone); 2438 flow_block(clone, temp_vector, temp_set); 2439 2440 return clone; 2441 } 2442 2443 // ------------------------------------------------------------------ 2444 // ciTypeFlow::flow_block 2445 // 2446 // Interpret the effects of the bytecodes on the incoming state 2447 // vector of a basic block. Push the changed state to succeeding 2448 // basic blocks. 2449 void ciTypeFlow::flow_block(ciTypeFlow::Block* block, 2450 ciTypeFlow::StateVector* state, 2451 ciTypeFlow::JsrSet* jsrs) { 2452 if (CITraceTypeFlow) { 2453 tty->print("\n>> ANALYZING BLOCK : "); 2454 tty->cr(); 2455 block->print_on(tty); 2456 } 2457 assert(block->has_pre_order(), "pre-order is assigned before 1st flow"); 2458 2459 int start = block->start(); 2460 int limit = block->limit(); 2461 int control = block->control(); 2462 if (control != ciBlock::fall_through_bci) { 2463 limit = control; 2464 } 2465 2466 // Grab the state from the current block. 2467 block->copy_state_into(state); 2468 state->def_locals()->clear(); 2469 2470 GrowableArray<Block*>* exceptions = block->exceptions(); 2471 GrowableArray<ciInstanceKlass*>* exc_klasses = block->exc_klasses(); 2472 bool has_exceptions = exceptions->length() > 0; 2473 2474 bool exceptions_used = false; 2475 2476 ciBytecodeStream str(method()); 2477 str.reset_to_bci(start); 2478 Bytecodes::Code code; 2479 while ((code = str.next()) != ciBytecodeStream::EOBC() && 2480 str.cur_bci() < limit) { 2481 // Check for exceptional control flow from this point. 2482 if (has_exceptions && can_trap(str)) { 2483 flow_exceptions(exceptions, exc_klasses, state); 2484 exceptions_used = true; 2485 } 2486 // Apply the effects of the current bytecode to our state. 2487 bool res = state->apply_one_bytecode(&str); 2488 2489 // Watch for bailouts. 2490 if (failing()) return; 2491 2492 if (str.cur_bc() == Bytecodes::_monitorenter) { 2493 block->set_has_monitorenter(); 2494 } 2495 2496 if (res) { 2497 2498 // We have encountered a trap. Record it in this block. 2499 block->set_trap(state->trap_bci(), state->trap_index()); 2500 2501 if (CITraceTypeFlow) { 2502 tty->print_cr(">> Found trap"); 2503 block->print_on(tty); 2504 } 2505 2506 // Save set of locals defined in this block 2507 block->def_locals()->add(state->def_locals()); 2508 2509 // Record (no) successors. 2510 block->successors(&str, state, jsrs); 2511 2512 assert(!has_exceptions || exceptions_used, "Not removing exceptions"); 2513 2514 // Discontinue interpretation of this Block. 2515 return; 2516 } 2517 } 2518 2519 GrowableArray<Block*>* successors = nullptr; 2520 if (control != ciBlock::fall_through_bci) { 2521 // Check for exceptional control flow from this point. 2522 if (has_exceptions && can_trap(str)) { 2523 flow_exceptions(exceptions, exc_klasses, state); 2524 exceptions_used = true; 2525 } 2526 2527 // Fix the JsrSet to reflect effect of the bytecode. 2528 block->copy_jsrs_into(jsrs); 2529 jsrs->apply_control(this, &str, state); 2530 2531 // Find successor edges based on old state and new JsrSet. 2532 successors = block->successors(&str, state, jsrs); 2533 2534 // Apply the control changes to the state. 2535 state->apply_one_bytecode(&str); 2536 } else { 2537 // Fall through control 2538 successors = block->successors(&str, nullptr, nullptr); 2539 } 2540 2541 // Save set of locals defined in this block 2542 block->def_locals()->add(state->def_locals()); 2543 2544 // Remove untaken exception paths 2545 if (!exceptions_used) 2546 exceptions->clear(); 2547 2548 // Pass our state to successors. 2549 flow_successors(successors, state); 2550 } 2551 2552 // ------------------------------------------------------------------ 2553 // ciTypeFlow::PreOrderLoops::next 2554 // 2555 // Advance to next loop tree using a preorder, left-to-right traversal. 2556 void ciTypeFlow::PreorderLoops::next() { 2557 assert(!done(), "must not be done."); 2558 if (_current->child() != nullptr) { 2559 _current = _current->child(); 2560 } else if (_current->sibling() != nullptr) { 2561 _current = _current->sibling(); 2562 } else { 2563 while (_current != _root && _current->sibling() == nullptr) { 2564 _current = _current->parent(); 2565 } 2566 if (_current == _root) { 2567 _current = nullptr; 2568 assert(done(), "must be done."); 2569 } else { 2570 assert(_current->sibling() != nullptr, "must be more to do"); 2571 _current = _current->sibling(); 2572 } 2573 } 2574 } 2575 2576 // If the tail is a branch to the head, retrieve how many times that path was taken from profiling 2577 int ciTypeFlow::Loop::profiled_count() { 2578 if (_profiled_count >= 0) { 2579 return _profiled_count; 2580 } 2581 ciMethodData* methodData = outer()->method()->method_data(); 2582 if (!methodData->is_mature()) { 2583 _profiled_count = 0; 2584 return 0; 2585 } 2586 ciTypeFlow::Block* tail = this->tail(); 2587 if (tail->control() == -1 || tail->has_trap()) { 2588 _profiled_count = 0; 2589 return 0; 2590 } 2591 2592 ciProfileData* data = methodData->bci_to_data(tail->control()); 2593 2594 if (data == nullptr || !data->is_JumpData()) { 2595 _profiled_count = 0; 2596 return 0; 2597 } 2598 2599 ciBytecodeStream iter(outer()->method()); 2600 iter.reset_to_bci(tail->control()); 2601 2602 bool is_an_if = false; 2603 bool wide = false; 2604 Bytecodes::Code bc = iter.next(); 2605 switch (bc) { 2606 case Bytecodes::_ifeq: 2607 case Bytecodes::_ifne: 2608 case Bytecodes::_iflt: 2609 case Bytecodes::_ifge: 2610 case Bytecodes::_ifgt: 2611 case Bytecodes::_ifle: 2612 case Bytecodes::_if_icmpeq: 2613 case Bytecodes::_if_icmpne: 2614 case Bytecodes::_if_icmplt: 2615 case Bytecodes::_if_icmpge: 2616 case Bytecodes::_if_icmpgt: 2617 case Bytecodes::_if_icmple: 2618 case Bytecodes::_if_acmpeq: 2619 case Bytecodes::_if_acmpne: 2620 case Bytecodes::_ifnull: 2621 case Bytecodes::_ifnonnull: 2622 is_an_if = true; 2623 break; 2624 case Bytecodes::_goto_w: 2625 case Bytecodes::_jsr_w: 2626 wide = true; 2627 break; 2628 case Bytecodes::_goto: 2629 case Bytecodes::_jsr: 2630 break; 2631 default: 2632 fatal(" invalid bytecode: %s", Bytecodes::name(iter.cur_bc())); 2633 } 2634 2635 GrowableArray<ciTypeFlow::Block*>* succs = tail->successors(); 2636 2637 if (!is_an_if) { 2638 assert(((wide ? iter.get_far_dest() : iter.get_dest()) == head()->start()) == (succs->at(ciTypeFlow::GOTO_TARGET) == head()), "branch should lead to loop head"); 2639 if (succs->at(ciTypeFlow::GOTO_TARGET) == head()) { 2640 _profiled_count = outer()->method()->scale_count(data->as_JumpData()->taken()); 2641 return _profiled_count; 2642 } 2643 } else { 2644 assert((iter.get_dest() == head()->start()) == (succs->at(ciTypeFlow::IF_TAKEN) == head()), "bytecode and CFG not consistent"); 2645 assert((tail->limit() == head()->start()) == (succs->at(ciTypeFlow::IF_NOT_TAKEN) == head()), "bytecode and CFG not consistent"); 2646 if (succs->at(ciTypeFlow::IF_TAKEN) == head()) { 2647 _profiled_count = outer()->method()->scale_count(data->as_JumpData()->taken()); 2648 return _profiled_count; 2649 } else if (succs->at(ciTypeFlow::IF_NOT_TAKEN) == head()) { 2650 _profiled_count = outer()->method()->scale_count(data->as_BranchData()->not_taken()); 2651 return _profiled_count; 2652 } 2653 } 2654 2655 _profiled_count = 0; 2656 return _profiled_count; 2657 } 2658 2659 bool ciTypeFlow::Loop::at_insertion_point(Loop* lp, Loop* current) { 2660 int lp_pre_order = lp->head()->pre_order(); 2661 if (current->head()->pre_order() < lp_pre_order) { 2662 return true; 2663 } else if (current->head()->pre_order() > lp_pre_order) { 2664 return false; 2665 } 2666 // In the case of a shared head, make the most frequent head/tail (as reported by profiling) the inner loop 2667 if (current->head() == lp->head()) { 2668 int lp_count = lp->profiled_count(); 2669 int current_count = current->profiled_count(); 2670 if (current_count < lp_count) { 2671 return true; 2672 } else if (current_count > lp_count) { 2673 return false; 2674 } 2675 } 2676 if (current->tail()->pre_order() > lp->tail()->pre_order()) { 2677 return true; 2678 } 2679 return false; 2680 } 2681 2682 // ------------------------------------------------------------------ 2683 // ciTypeFlow::Loop::sorted_merge 2684 // 2685 // Merge the branch lp into this branch, sorting on the loop head 2686 // pre_orders. Returns the leaf of the merged branch. 2687 // Child and sibling pointers will be setup later. 2688 // Sort is (looking from leaf towards the root) 2689 // descending on primary key: loop head's pre_order, and 2690 // ascending on secondary key: loop tail's pre_order. 2691 ciTypeFlow::Loop* ciTypeFlow::Loop::sorted_merge(Loop* lp) { 2692 Loop* leaf = this; 2693 Loop* prev = nullptr; 2694 Loop* current = leaf; 2695 while (lp != nullptr) { 2696 int lp_pre_order = lp->head()->pre_order(); 2697 // Find insertion point for "lp" 2698 while (current != nullptr) { 2699 if (current == lp) { 2700 return leaf; // Already in list 2701 } 2702 if (at_insertion_point(lp, current)) { 2703 break; 2704 } 2705 prev = current; 2706 current = current->parent(); 2707 } 2708 Loop* next_lp = lp->parent(); // Save future list of items to insert 2709 // Insert lp before current 2710 lp->set_parent(current); 2711 if (prev != nullptr) { 2712 prev->set_parent(lp); 2713 } else { 2714 leaf = lp; 2715 } 2716 prev = lp; // Inserted item is new prev[ious] 2717 lp = next_lp; // Next item to insert 2718 } 2719 return leaf; 2720 } 2721 2722 // ------------------------------------------------------------------ 2723 // ciTypeFlow::build_loop_tree 2724 // 2725 // Incrementally build loop tree. 2726 void ciTypeFlow::build_loop_tree(Block* blk) { 2727 assert(!blk->is_post_visited(), "precondition"); 2728 Loop* innermost = nullptr; // merge of loop tree branches over all successors 2729 2730 for (SuccIter iter(blk); !iter.done(); iter.next()) { 2731 Loop* lp = nullptr; 2732 Block* succ = iter.succ(); 2733 if (!succ->is_post_visited()) { 2734 // Found backedge since predecessor post visited, but successor is not 2735 assert(succ->pre_order() <= blk->pre_order(), "should be backedge"); 2736 2737 // Create a LoopNode to mark this loop. 2738 lp = new (arena()) Loop(succ, blk); 2739 if (succ->loop() == nullptr) 2740 succ->set_loop(lp); 2741 // succ->loop will be updated to innermost loop on a later call, when blk==succ 2742 2743 } else { // Nested loop 2744 lp = succ->loop(); 2745 2746 // If succ is loop head, find outer loop. 2747 while (lp != nullptr && lp->head() == succ) { 2748 lp = lp->parent(); 2749 } 2750 if (lp == nullptr) { 2751 // Infinite loop, it's parent is the root 2752 lp = loop_tree_root(); 2753 } 2754 } 2755 2756 // Check for irreducible loop. 2757 // Successor has already been visited. If the successor's loop head 2758 // has already been post-visited, then this is another entry into the loop. 2759 while (lp->head()->is_post_visited() && lp != loop_tree_root()) { 2760 _has_irreducible_entry = true; 2761 lp->set_irreducible(succ); 2762 if (!succ->is_on_work_list()) { 2763 // Assume irreducible entries need more data flow 2764 add_to_work_list(succ); 2765 } 2766 Loop* plp = lp->parent(); 2767 if (plp == nullptr) { 2768 // This only happens for some irreducible cases. The parent 2769 // will be updated during a later pass. 2770 break; 2771 } 2772 lp = plp; 2773 } 2774 2775 // Merge loop tree branch for all successors. 2776 innermost = innermost == nullptr ? lp : innermost->sorted_merge(lp); 2777 2778 } // end loop 2779 2780 if (innermost == nullptr) { 2781 assert(blk->successors()->length() == 0, "CFG exit"); 2782 blk->set_loop(loop_tree_root()); 2783 } else if (innermost->head() == blk) { 2784 // If loop header, complete the tree pointers 2785 if (blk->loop() != innermost) { 2786 #ifdef ASSERT 2787 assert(blk->loop()->head() == innermost->head(), "same head"); 2788 Loop* dl; 2789 for (dl = innermost; dl != nullptr && dl != blk->loop(); dl = dl->parent()); 2790 assert(dl == blk->loop(), "blk->loop() already in innermost list"); 2791 #endif 2792 blk->set_loop(innermost); 2793 } 2794 innermost->def_locals()->add(blk->def_locals()); 2795 Loop* l = innermost; 2796 Loop* p = l->parent(); 2797 while (p && l->head() == blk) { 2798 l->set_sibling(p->child()); // Put self on parents 'next child' 2799 p->set_child(l); // Make self the first child of parent 2800 p->def_locals()->add(l->def_locals()); 2801 l = p; // Walk up the parent chain 2802 p = l->parent(); 2803 } 2804 } else { 2805 blk->set_loop(innermost); 2806 innermost->def_locals()->add(blk->def_locals()); 2807 } 2808 } 2809 2810 // ------------------------------------------------------------------ 2811 // ciTypeFlow::Loop::contains 2812 // 2813 // Returns true if lp is nested loop. 2814 bool ciTypeFlow::Loop::contains(ciTypeFlow::Loop* lp) const { 2815 assert(lp != nullptr, ""); 2816 if (this == lp || head() == lp->head()) return true; 2817 int depth1 = depth(); 2818 int depth2 = lp->depth(); 2819 if (depth1 > depth2) 2820 return false; 2821 while (depth1 < depth2) { 2822 depth2--; 2823 lp = lp->parent(); 2824 } 2825 return this == lp; 2826 } 2827 2828 // ------------------------------------------------------------------ 2829 // ciTypeFlow::Loop::depth 2830 // 2831 // Loop depth 2832 int ciTypeFlow::Loop::depth() const { 2833 int dp = 0; 2834 for (Loop* lp = this->parent(); lp != nullptr; lp = lp->parent()) 2835 dp++; 2836 return dp; 2837 } 2838 2839 #ifndef PRODUCT 2840 // ------------------------------------------------------------------ 2841 // ciTypeFlow::Loop::print 2842 void ciTypeFlow::Loop::print(outputStream* st, int indent) const { 2843 for (int i = 0; i < indent; i++) st->print(" "); 2844 st->print("%d<-%d %s", 2845 is_root() ? 0 : this->head()->pre_order(), 2846 is_root() ? 0 : this->tail()->pre_order(), 2847 is_irreducible()?" irr":""); 2848 st->print(" defs: "); 2849 def_locals()->print_on(st, _head->outer()->method()->max_locals()); 2850 st->cr(); 2851 for (Loop* ch = child(); ch != nullptr; ch = ch->sibling()) 2852 ch->print(st, indent+2); 2853 } 2854 #endif 2855 2856 // ------------------------------------------------------------------ 2857 // ciTypeFlow::df_flow_types 2858 // 2859 // Perform the depth first type flow analysis. Helper for flow_types. 2860 void ciTypeFlow::df_flow_types(Block* start, 2861 bool do_flow, 2862 StateVector* temp_vector, 2863 JsrSet* temp_set) { 2864 int dft_len = 100; 2865 GrowableArray<Block*> stk(dft_len); 2866 2867 ciBlock* dummy = _method->get_method_blocks()->make_dummy_block(); 2868 JsrSet* root_set = new JsrSet(0); 2869 Block* root_head = new (arena()) Block(this, dummy, root_set); 2870 Block* root_tail = new (arena()) Block(this, dummy, root_set); 2871 root_head->set_pre_order(0); 2872 root_head->set_post_order(0); 2873 root_tail->set_pre_order(max_jint); 2874 root_tail->set_post_order(max_jint); 2875 set_loop_tree_root(new (arena()) Loop(root_head, root_tail)); 2876 2877 stk.push(start); 2878 2879 _next_pre_order = 0; // initialize pre_order counter 2880 _rpo_list = nullptr; 2881 int next_po = 0; // initialize post_order counter 2882 2883 // Compute RPO and the control flow graph 2884 int size; 2885 while ((size = stk.length()) > 0) { 2886 Block* blk = stk.top(); // Leave node on stack 2887 if (!blk->is_visited()) { 2888 // forward arc in graph 2889 assert (!blk->has_pre_order(), ""); 2890 blk->set_next_pre_order(); 2891 2892 if (_next_pre_order >= (int)Compile::current()->max_node_limit() / 2) { 2893 // Too many basic blocks. Bail out. 2894 // This can happen when try/finally constructs are nested to depth N, 2895 // and there is O(2**N) cloning of jsr bodies. See bug 4697245! 2896 // "MaxNodeLimit / 2" is used because probably the parser will 2897 // generate at least twice that many nodes and bail out. 2898 record_failure("too many basic blocks"); 2899 return; 2900 } 2901 if (do_flow) { 2902 flow_block(blk, temp_vector, temp_set); 2903 if (failing()) return; // Watch for bailouts. 2904 } 2905 } else if (!blk->is_post_visited()) { 2906 // cross or back arc 2907 for (SuccIter iter(blk); !iter.done(); iter.next()) { 2908 Block* succ = iter.succ(); 2909 if (!succ->is_visited()) { 2910 stk.push(succ); 2911 } 2912 } 2913 if (stk.length() == size) { 2914 // There were no additional children, post visit node now 2915 stk.pop(); // Remove node from stack 2916 2917 build_loop_tree(blk); 2918 blk->set_post_order(next_po++); // Assign post order 2919 prepend_to_rpo_list(blk); 2920 assert(blk->is_post_visited(), ""); 2921 2922 if (blk->is_loop_head() && !blk->is_on_work_list()) { 2923 // Assume loop heads need more data flow 2924 add_to_work_list(blk); 2925 } 2926 } 2927 } else { 2928 stk.pop(); // Remove post-visited node from stack 2929 } 2930 } 2931 } 2932 2933 // ------------------------------------------------------------------ 2934 // ciTypeFlow::flow_types 2935 // 2936 // Perform the type flow analysis, creating and cloning Blocks as 2937 // necessary. 2938 void ciTypeFlow::flow_types() { 2939 ResourceMark rm; 2940 StateVector* temp_vector = new StateVector(this); 2941 JsrSet* temp_set = new JsrSet(4); 2942 2943 // Create the method entry block. 2944 Block* start = block_at(start_bci(), temp_set); 2945 2946 // Load the initial state into it. 2947 const StateVector* start_state = get_start_state(); 2948 if (failing()) return; 2949 start->meet(start_state); 2950 2951 // Depth first visit 2952 df_flow_types(start, true /*do flow*/, temp_vector, temp_set); 2953 2954 if (failing()) return; 2955 assert(_rpo_list == start, "must be start"); 2956 2957 // Any loops found? 2958 if (loop_tree_root()->child() != nullptr && 2959 env()->comp_level() >= CompLevel_full_optimization) { 2960 // Loop optimizations are not performed on Tier1 compiles. 2961 2962 bool changed = clone_loop_heads(temp_vector, temp_set); 2963 2964 // If some loop heads were cloned, recompute postorder and loop tree 2965 if (changed) { 2966 loop_tree_root()->set_child(nullptr); 2967 for (Block* blk = _rpo_list; blk != nullptr;) { 2968 Block* next = blk->rpo_next(); 2969 blk->df_init(); 2970 blk = next; 2971 } 2972 df_flow_types(start, false /*no flow*/, temp_vector, temp_set); 2973 } 2974 } 2975 2976 if (CITraceTypeFlow) { 2977 tty->print_cr("\nLoop tree"); 2978 loop_tree_root()->print(); 2979 } 2980 2981 // Continue flow analysis until fixed point reached 2982 2983 debug_only(int max_block = _next_pre_order;) 2984 2985 while (!work_list_empty()) { 2986 Block* blk = work_list_next(); 2987 assert (blk->has_post_order(), "post order assigned above"); 2988 2989 flow_block(blk, temp_vector, temp_set); 2990 2991 assert (max_block == _next_pre_order, "no new blocks"); 2992 assert (!failing(), "no more bailouts"); 2993 } 2994 } 2995 2996 // ------------------------------------------------------------------ 2997 // ciTypeFlow::map_blocks 2998 // 2999 // Create the block map, which indexes blocks in reverse post-order. 3000 void ciTypeFlow::map_blocks() { 3001 assert(_block_map == nullptr, "single initialization"); 3002 int block_ct = _next_pre_order; 3003 _block_map = NEW_ARENA_ARRAY(arena(), Block*, block_ct); 3004 assert(block_ct == block_count(), ""); 3005 3006 Block* blk = _rpo_list; 3007 for (int m = 0; m < block_ct; m++) { 3008 int rpo = blk->rpo(); 3009 assert(rpo == m, "should be sequential"); 3010 _block_map[rpo] = blk; 3011 blk = blk->rpo_next(); 3012 } 3013 assert(blk == nullptr, "should be done"); 3014 3015 for (int j = 0; j < block_ct; j++) { 3016 assert(_block_map[j] != nullptr, "must not drop any blocks"); 3017 Block* block = _block_map[j]; 3018 // Remove dead blocks from successor lists: 3019 for (int e = 0; e <= 1; e++) { 3020 GrowableArray<Block*>* l = e? block->exceptions(): block->successors(); 3021 for (int k = 0; k < l->length(); k++) { 3022 Block* s = l->at(k); 3023 if (!s->has_post_order()) { 3024 if (CITraceTypeFlow) { 3025 tty->print("Removing dead %s successor of #%d: ", (e? "exceptional": "normal"), block->pre_order()); 3026 s->print_value_on(tty); 3027 tty->cr(); 3028 } 3029 l->remove(s); 3030 --k; 3031 } 3032 } 3033 } 3034 } 3035 } 3036 3037 // ------------------------------------------------------------------ 3038 // ciTypeFlow::get_block_for 3039 // 3040 // Find a block with this ciBlock which has a compatible JsrSet. 3041 // If no such block exists, create it, unless the option is no_create. 3042 // If the option is create_backedge_copy, always create a fresh backedge copy. 3043 ciTypeFlow::Block* ciTypeFlow::get_block_for(int ciBlockIndex, ciTypeFlow::JsrSet* jsrs, CreateOption option) { 3044 Arena* a = arena(); 3045 GrowableArray<Block*>* blocks = _idx_to_blocklist[ciBlockIndex]; 3046 if (blocks == nullptr) { 3047 // Query only? 3048 if (option == no_create) return nullptr; 3049 3050 // Allocate the growable array. 3051 blocks = new (a) GrowableArray<Block*>(a, 4, 0, nullptr); 3052 _idx_to_blocklist[ciBlockIndex] = blocks; 3053 } 3054 3055 if (option != create_backedge_copy) { 3056 int len = blocks->length(); 3057 for (int i = 0; i < len; i++) { 3058 Block* block = blocks->at(i); 3059 if (!block->is_backedge_copy() && block->is_compatible_with(jsrs)) { 3060 return block; 3061 } 3062 } 3063 } 3064 3065 // Query only? 3066 if (option == no_create) return nullptr; 3067 3068 // We did not find a compatible block. Create one. 3069 Block* new_block = new (a) Block(this, _method->get_method_blocks()->block(ciBlockIndex), jsrs); 3070 if (option == create_backedge_copy) new_block->set_backedge_copy(true); 3071 blocks->append(new_block); 3072 return new_block; 3073 } 3074 3075 // ------------------------------------------------------------------ 3076 // ciTypeFlow::backedge_copy_count 3077 // 3078 int ciTypeFlow::backedge_copy_count(int ciBlockIndex, ciTypeFlow::JsrSet* jsrs) const { 3079 GrowableArray<Block*>* blocks = _idx_to_blocklist[ciBlockIndex]; 3080 3081 if (blocks == nullptr) { 3082 return 0; 3083 } 3084 3085 int count = 0; 3086 int len = blocks->length(); 3087 for (int i = 0; i < len; i++) { 3088 Block* block = blocks->at(i); 3089 if (block->is_backedge_copy() && block->is_compatible_with(jsrs)) { 3090 count++; 3091 } 3092 } 3093 3094 return count; 3095 } 3096 3097 // ------------------------------------------------------------------ 3098 // ciTypeFlow::do_flow 3099 // 3100 // Perform type inference flow analysis. 3101 void ciTypeFlow::do_flow() { 3102 if (CITraceTypeFlow) { 3103 tty->print_cr("\nPerforming flow analysis on method"); 3104 method()->print(); 3105 if (is_osr_flow()) tty->print(" at OSR bci %d", start_bci()); 3106 tty->cr(); 3107 method()->print_codes(); 3108 } 3109 if (CITraceTypeFlow) { 3110 tty->print_cr("Initial CI Blocks"); 3111 print_on(tty); 3112 } 3113 flow_types(); 3114 // Watch for bailouts. 3115 if (failing()) { 3116 return; 3117 } 3118 3119 map_blocks(); 3120 3121 if (CIPrintTypeFlow || CITraceTypeFlow) { 3122 rpo_print_on(tty); 3123 } 3124 } 3125 3126 // ------------------------------------------------------------------ 3127 // ciTypeFlow::is_dominated_by 3128 // 3129 // Determine if the instruction at bci is dominated by the instruction at dom_bci. 3130 bool ciTypeFlow::is_dominated_by(int bci, int dom_bci) { 3131 assert(!method()->has_jsrs(), "jsrs are not supported"); 3132 3133 ResourceMark rm; 3134 JsrSet* jsrs = new ciTypeFlow::JsrSet(); 3135 int index = _method->get_method_blocks()->block_containing(bci)->index(); 3136 int dom_index = _method->get_method_blocks()->block_containing(dom_bci)->index(); 3137 Block* block = get_block_for(index, jsrs, ciTypeFlow::no_create); 3138 Block* dom_block = get_block_for(dom_index, jsrs, ciTypeFlow::no_create); 3139 3140 // Start block dominates all other blocks 3141 if (start_block()->rpo() == dom_block->rpo()) { 3142 return true; 3143 } 3144 3145 // Dominated[i] is true if block i is dominated by dom_block 3146 int num_blocks = block_count(); 3147 bool* dominated = NEW_RESOURCE_ARRAY(bool, num_blocks); 3148 for (int i = 0; i < num_blocks; ++i) { 3149 dominated[i] = true; 3150 } 3151 dominated[start_block()->rpo()] = false; 3152 3153 // Iterative dominator algorithm 3154 bool changed = true; 3155 while (changed) { 3156 changed = false; 3157 // Use reverse postorder iteration 3158 for (Block* blk = _rpo_list; blk != nullptr; blk = blk->rpo_next()) { 3159 if (blk->is_start()) { 3160 // Ignore start block 3161 continue; 3162 } 3163 // The block is dominated if it is the dominating block 3164 // itself or if all predecessors are dominated. 3165 int index = blk->rpo(); 3166 bool dom = (index == dom_block->rpo()); 3167 if (!dom) { 3168 // Check if all predecessors are dominated 3169 dom = true; 3170 for (int i = 0; i < blk->predecessors()->length(); ++i) { 3171 Block* pred = blk->predecessors()->at(i); 3172 if (!dominated[pred->rpo()]) { 3173 dom = false; 3174 break; 3175 } 3176 } 3177 } 3178 // Update dominator information 3179 if (dominated[index] != dom) { 3180 changed = true; 3181 dominated[index] = dom; 3182 } 3183 } 3184 } 3185 // block dominated by dom_block? 3186 return dominated[block->rpo()]; 3187 } 3188 3189 // ------------------------------------------------------------------ 3190 // ciTypeFlow::record_failure() 3191 // The ciTypeFlow object keeps track of failure reasons separately from the ciEnv. 3192 // This is required because there is not a 1-1 relation between the ciEnv and 3193 // the TypeFlow passes within a compilation task. For example, if the compiler 3194 // is considering inlining a method, it will request a TypeFlow. If that fails, 3195 // the compilation as a whole may continue without the inlining. Some TypeFlow 3196 // requests are not optional; if they fail the requestor is responsible for 3197 // copying the failure reason up to the ciEnv. (See Parse::Parse.) 3198 void ciTypeFlow::record_failure(const char* reason) { 3199 if (env()->log() != nullptr) { 3200 env()->log()->elem("failure reason='%s' phase='typeflow'", reason); 3201 } 3202 if (_failure_reason == nullptr) { 3203 // Record the first failure reason. 3204 _failure_reason = reason; 3205 } 3206 } 3207 3208 ciType* ciTypeFlow::mark_as_null_free(ciType* type) { 3209 // Wrap the type to carry the information that it is null-free 3210 return env()->make_null_free_wrapper(type); 3211 } 3212 3213 #ifndef PRODUCT 3214 void ciTypeFlow::print() const { print_on(tty); } 3215 3216 // ------------------------------------------------------------------ 3217 // ciTypeFlow::print_on 3218 void ciTypeFlow::print_on(outputStream* st) const { 3219 // Walk through CI blocks 3220 st->print_cr("********************************************************"); 3221 st->print ("TypeFlow for "); 3222 method()->name()->print_symbol_on(st); 3223 int limit_bci = code_size(); 3224 st->print_cr(" %d bytes", limit_bci); 3225 ciMethodBlocks* mblks = _method->get_method_blocks(); 3226 ciBlock* current = nullptr; 3227 for (int bci = 0; bci < limit_bci; bci++) { 3228 ciBlock* blk = mblks->block_containing(bci); 3229 if (blk != nullptr && blk != current) { 3230 current = blk; 3231 current->print_on(st); 3232 3233 GrowableArray<Block*>* blocks = _idx_to_blocklist[blk->index()]; 3234 int num_blocks = (blocks == nullptr) ? 0 : blocks->length(); 3235 3236 if (num_blocks == 0) { 3237 st->print_cr(" No Blocks"); 3238 } else { 3239 for (int i = 0; i < num_blocks; i++) { 3240 Block* block = blocks->at(i); 3241 block->print_on(st); 3242 } 3243 } 3244 st->print_cr("--------------------------------------------------------"); 3245 st->cr(); 3246 } 3247 } 3248 st->print_cr("********************************************************"); 3249 st->cr(); 3250 } 3251 3252 void ciTypeFlow::rpo_print_on(outputStream* st) const { 3253 st->print_cr("********************************************************"); 3254 st->print ("TypeFlow for "); 3255 method()->name()->print_symbol_on(st); 3256 int limit_bci = code_size(); 3257 st->print_cr(" %d bytes", limit_bci); 3258 for (Block* blk = _rpo_list; blk != nullptr; blk = blk->rpo_next()) { 3259 blk->print_on(st); 3260 st->print_cr("--------------------------------------------------------"); 3261 st->cr(); 3262 } 3263 st->print_cr("********************************************************"); 3264 st->cr(); 3265 } 3266 #endif