1 /* 2 * Copyright (c) 2000, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_CI_CITYPEFLOW_HPP 26 #define SHARE_CI_CITYPEFLOW_HPP 27 28 #ifdef COMPILER2 29 #include "ci/ciEnv.hpp" 30 #include "ci/ciKlass.hpp" 31 #include "ci/ciMethodBlocks.hpp" 32 #endif 33 34 35 class ciTypeFlow : public ArenaObj { 36 private: 37 ciEnv* _env; 38 ciMethod* _method; 39 int _osr_bci; 40 41 bool _has_irreducible_entry; 42 43 const char* _failure_reason; 44 45 public: 46 class StateVector; 47 class Loop; 48 class Block; 49 50 // Build a type flow analyzer 51 // Do an OSR analysis if osr_bci >= 0. 52 ciTypeFlow(ciEnv* env, ciMethod* method, int osr_bci = InvocationEntryBci); 53 54 // Accessors 55 ciMethod* method() const { return _method; } 56 ciEnv* env() { return _env; } 57 Arena* arena() { return _env->arena(); } 58 bool is_osr_flow() const{ return _osr_bci != InvocationEntryBci; } 59 int start_bci() const { return is_osr_flow()? _osr_bci: 0; } 60 int max_locals() const { return method()->max_locals(); } 61 int max_stack() const { return method()->max_stack(); } 62 int max_cells() const { return max_locals() + max_stack(); } 63 int code_size() const { return method()->code_size(); } 64 bool has_irreducible_entry() const { return _has_irreducible_entry; } 65 66 // Represents information about an "active" jsr call. This 67 // class represents a call to the routine at some entry address 68 // with some distinct return address. 69 class JsrRecord : public ArenaObj { 70 private: 71 int _entry_address; 72 int _return_address; 73 public: 74 JsrRecord(int entry_address, int return_address) { 75 _entry_address = entry_address; 76 _return_address = return_address; 77 } 78 79 int entry_address() const { return _entry_address; } 80 int return_address() const { return _return_address; } 81 82 void print_on(outputStream* st) const { 83 #ifndef PRODUCT 84 st->print("%d->%d", entry_address(), return_address()); 85 #endif 86 } 87 }; 88 89 // A JsrSet represents some set of JsrRecords. This class 90 // is used to record a set of all jsr routines which we permit 91 // execution to return (ret) from. 92 // 93 // During abstract interpretation, JsrSets are used to determine 94 // whether two paths which reach a given block are unique, and 95 // should be cloned apart, or are compatible, and should merge 96 // together. 97 // 98 // Note that different amounts of effort can be expended determining 99 // if paths are compatible. <DISCUSSION> 100 class JsrSet : public AnyObj { 101 private: 102 GrowableArray<JsrRecord*> _set; 103 104 JsrRecord* record_at(int i) { 105 return _set.at(i); 106 } 107 108 // Insert the given JsrRecord into the JsrSet, maintaining the order 109 // of the set and replacing any element with the same entry address. 110 void insert_jsr_record(JsrRecord* record); 111 112 // Remove the JsrRecord with the given return address from the JsrSet. 113 void remove_jsr_record(int return_address); 114 115 public: 116 JsrSet(Arena* arena, int default_len = 4); 117 JsrSet(int default_len = 4); 118 119 // Copy this JsrSet. 120 void copy_into(JsrSet* jsrs); 121 122 // Is this JsrSet compatible with some other JsrSet? 123 bool is_compatible_with(JsrSet* other); 124 125 // Apply the effect of a single bytecode to the JsrSet. 126 void apply_control(ciTypeFlow* analyzer, 127 ciBytecodeStream* str, 128 StateVector* state); 129 130 // What is the cardinality of this set? 131 int size() const { return _set.length(); } 132 133 void print_on(outputStream* st) const PRODUCT_RETURN; 134 }; 135 136 class LocalSet { 137 private: 138 enum Constants { max = 63 }; 139 uint64_t _bits; 140 public: 141 LocalSet() : _bits(0) {} 142 void add(uint32_t i) { if (i < (uint32_t)max) _bits |= (1LL << i); } 143 void add(LocalSet* ls) { _bits |= ls->_bits; } 144 bool test(uint32_t i) const { return i < (uint32_t)max ? (_bits>>i)&1U : true; } 145 void clear() { _bits = 0; } 146 void print_on(outputStream* st, int limit) const PRODUCT_RETURN; 147 }; 148 149 // Used as a combined index for locals and temps 150 enum Cell { 151 Cell_0, Cell_max = INT_MAX 152 }; 153 154 // A StateVector summarizes the type information at some 155 // point in the program 156 class StateVector : public AnyObj { 157 private: 158 ciType** _types; 159 int _stack_size; 160 int _monitor_count; 161 ciTypeFlow* _outer; 162 163 int _trap_bci; 164 int _trap_index; 165 166 LocalSet _def_locals; // For entire block 167 168 static ciType* type_meet_internal(ciType* t1, ciType* t2, ciTypeFlow* analyzer); 169 170 public: 171 // Special elements in our type lattice. 172 enum { 173 T_TOP = T_VOID, // why not? 174 T_BOTTOM = T_CONFLICT, 175 T_LONG2 = T_SHORT, // 2nd word of T_LONG 176 T_DOUBLE2 = T_CHAR, // 2nd word of T_DOUBLE 177 T_NULL = T_BYTE // for now. 178 }; 179 static ciType* top_type() { return ciType::make((BasicType)T_TOP); } 180 static ciType* bottom_type() { return ciType::make((BasicType)T_BOTTOM); } 181 static ciType* long2_type() { return ciType::make((BasicType)T_LONG2); } 182 static ciType* double2_type(){ return ciType::make((BasicType)T_DOUBLE2); } 183 static ciType* null_type() { return ciType::make((BasicType)T_NULL); } 184 185 static ciType* half_type(ciType* t) { 186 switch (t->basic_type()) { 187 case T_LONG: return long2_type(); 188 case T_DOUBLE: return double2_type(); 189 default: ShouldNotReachHere(); return nullptr; 190 } 191 } 192 193 // The meet operation for our type lattice. 194 ciType* type_meet(ciType* t1, ciType* t2) { 195 return type_meet_internal(t1, t2, outer()); 196 } 197 198 // Accessors 199 ciTypeFlow* outer() const { return _outer; } 200 201 int stack_size() const { return _stack_size; } 202 void set_stack_size(int ss) { _stack_size = ss; } 203 204 int monitor_count() const { return _monitor_count; } 205 void set_monitor_count(int mc) { _monitor_count = mc; } 206 207 LocalSet* def_locals() { return &_def_locals; } 208 const LocalSet* def_locals() const { return &_def_locals; } 209 210 static Cell start_cell() { return (Cell)0; } 211 static Cell next_cell(Cell c) { return (Cell)(((int)c) + 1); } 212 Cell limit_cell() const { 213 return (Cell)(outer()->max_locals() + stack_size()); 214 } 215 216 // Cell creation 217 Cell local(int lnum) const { 218 assert(lnum < outer()->max_locals(), "index check"); 219 return (Cell)(lnum); 220 } 221 222 Cell stack(int snum) const { 223 assert(snum < stack_size(), "index check"); 224 return (Cell)(outer()->max_locals() + snum); 225 } 226 227 Cell tos() const { return stack(stack_size()-1); } 228 229 // For external use only: 230 ciType* local_type_at(int i) const { return type_at(local(i)); } 231 ciType* stack_type_at(int i) const { return type_at(stack(i)); } 232 233 // Accessors for the type of some Cell c 234 ciType* type_at(Cell c) const { 235 assert(start_cell() <= c && c < limit_cell(), "out of bounds"); 236 return _types[c]; 237 } 238 239 void set_type_at(Cell c, ciType* type) { 240 assert(start_cell() <= c && c < limit_cell(), "out of bounds"); 241 _types[c] = type; 242 } 243 244 // Top-of-stack operations. 245 void set_type_at_tos(ciType* type) { set_type_at(tos(), type); } 246 ciType* type_at_tos() const { return type_at(tos()); } 247 248 void push(ciType* type) { 249 _stack_size++; 250 set_type_at_tos(type); 251 } 252 void pop() { 253 debug_only(set_type_at_tos(bottom_type())); 254 _stack_size--; 255 } 256 ciType* pop_value() { 257 ciType* t = type_at_tos(); 258 pop(); 259 return t; 260 } 261 262 // Convenience operations. 263 bool is_reference(ciType* type) const { 264 return type == null_type() || !type->is_primitive_type(); 265 } 266 bool is_int(ciType* type) const { 267 return type->basic_type() == T_INT; 268 } 269 bool is_long(ciType* type) const { 270 return type->basic_type() == T_LONG; 271 } 272 bool is_float(ciType* type) const { 273 return type->basic_type() == T_FLOAT; 274 } 275 bool is_double(ciType* type) const { 276 return type->basic_type() == T_DOUBLE; 277 } 278 279 void store_to_local(int lnum) { 280 _def_locals.add((uint) lnum); 281 } 282 283 void push_translate(ciType* type); 284 285 void push_int() { 286 push(ciType::make(T_INT)); 287 } 288 void pop_int() { 289 assert(is_int(type_at_tos()), "must be integer"); 290 pop(); 291 } 292 void check_int(Cell c) { 293 assert(is_int(type_at(c)), "must be integer"); 294 } 295 void push_double() { 296 push(ciType::make(T_DOUBLE)); 297 push(double2_type()); 298 } 299 void pop_double() { 300 assert(type_at_tos() == double2_type(), "must be 2nd half"); 301 pop(); 302 assert(is_double(type_at_tos()), "must be double"); 303 pop(); 304 } 305 void push_float() { 306 push(ciType::make(T_FLOAT)); 307 } 308 void pop_float() { 309 assert(is_float(type_at_tos()), "must be float"); 310 pop(); 311 } 312 void push_long() { 313 push(ciType::make(T_LONG)); 314 push(long2_type()); 315 } 316 void pop_long() { 317 assert(type_at_tos() == long2_type(), "must be 2nd half"); 318 pop(); 319 assert(is_long(type_at_tos()), "must be long"); 320 pop(); 321 } 322 void push_object(ciKlass* klass) { 323 push(klass); 324 } 325 void pop_object() { 326 assert(is_reference(type_at_tos()), "must be reference type"); 327 pop(); 328 } 329 void pop_array() { 330 assert(type_at_tos() == null_type() || 331 type_at_tos()->is_array_klass(), "must be array type"); 332 pop(); 333 } 334 // pop_objArray and pop_typeArray narrow the tos to ciObjArrayKlass 335 // or ciTypeArrayKlass (resp.). In the rare case that an explicit 336 // null is popped from the stack, we return null. Caller beware. 337 ciObjArrayKlass* pop_objArray() { 338 ciType* array = pop_value(); 339 if (array == null_type()) return nullptr; 340 assert(array->is_obj_array_klass(), "must be object array type"); 341 return array->as_obj_array_klass(); 342 } 343 ciTypeArrayKlass* pop_typeArray() { 344 ciType* array = pop_value(); 345 if (array == null_type()) return nullptr; 346 assert(array->is_type_array_klass(), "must be prim array type"); 347 return array->as_type_array_klass(); 348 } 349 void push_null() { 350 push(null_type()); 351 } 352 void do_null_assert(ciKlass* unloaded_klass); 353 354 // Helper convenience routines. 355 void do_aaload(ciBytecodeStream* str); 356 void do_checkcast(ciBytecodeStream* str); 357 void do_getfield(ciBytecodeStream* str); 358 void do_getstatic(ciBytecodeStream* str); 359 void do_invoke(ciBytecodeStream* str, bool has_receiver); 360 void do_jsr(ciBytecodeStream* str); 361 void do_ldc(ciBytecodeStream* str); 362 void do_multianewarray(ciBytecodeStream* str); 363 void do_new(ciBytecodeStream* str); 364 void do_newarray(ciBytecodeStream* str); 365 void do_putfield(ciBytecodeStream* str); 366 void do_putstatic(ciBytecodeStream* str); 367 void do_ret(ciBytecodeStream* str); 368 369 void overwrite_local_double_long(int index) { 370 // Invalidate the previous local if it contains first half of 371 // a double or long value since its second half is being overwritten. 372 int prev_index = index - 1; 373 if (prev_index >= 0 && 374 (is_double(type_at(local(prev_index))) || 375 is_long(type_at(local(prev_index))))) { 376 set_type_at(local(prev_index), bottom_type()); 377 } 378 } 379 380 void load_local_object(int index) { 381 ciType* type = type_at(local(index)); 382 assert(is_reference(type), "must be reference type"); 383 push(type); 384 } 385 void store_local_object(int index) { 386 ciType* type = pop_value(); 387 assert(is_reference(type) || type->is_return_address(), 388 "must be reference type or return address"); 389 overwrite_local_double_long(index); 390 set_type_at(local(index), type); 391 store_to_local(index); 392 } 393 394 void load_local_double(int index) { 395 ciType* type = type_at(local(index)); 396 ciType* type2 = type_at(local(index+1)); 397 assert(is_double(type), "must be double type"); 398 assert(type2 == double2_type(), "must be 2nd half"); 399 push(type); 400 push(double2_type()); 401 } 402 void store_local_double(int index) { 403 ciType* type2 = pop_value(); 404 ciType* type = pop_value(); 405 assert(is_double(type), "must be double"); 406 assert(type2 == double2_type(), "must be 2nd half"); 407 overwrite_local_double_long(index); 408 set_type_at(local(index), type); 409 set_type_at(local(index+1), type2); 410 store_to_local(index); 411 store_to_local(index+1); 412 } 413 414 void load_local_float(int index) { 415 ciType* type = type_at(local(index)); 416 assert(is_float(type), "must be float type"); 417 push(type); 418 } 419 void store_local_float(int index) { 420 ciType* type = pop_value(); 421 assert(is_float(type), "must be float type"); 422 overwrite_local_double_long(index); 423 set_type_at(local(index), type); 424 store_to_local(index); 425 } 426 427 void load_local_int(int index) { 428 ciType* type = type_at(local(index)); 429 assert(is_int(type), "must be int type"); 430 push(type); 431 } 432 void store_local_int(int index) { 433 ciType* type = pop_value(); 434 assert(is_int(type), "must be int type"); 435 overwrite_local_double_long(index); 436 set_type_at(local(index), type); 437 store_to_local(index); 438 } 439 440 void load_local_long(int index) { 441 ciType* type = type_at(local(index)); 442 ciType* type2 = type_at(local(index+1)); 443 assert(is_long(type), "must be long type"); 444 assert(type2 == long2_type(), "must be 2nd half"); 445 push(type); 446 push(long2_type()); 447 } 448 void store_local_long(int index) { 449 ciType* type2 = pop_value(); 450 ciType* type = pop_value(); 451 assert(is_long(type), "must be long"); 452 assert(type2 == long2_type(), "must be 2nd half"); 453 overwrite_local_double_long(index); 454 set_type_at(local(index), type); 455 set_type_at(local(index+1), type2); 456 store_to_local(index); 457 store_to_local(index+1); 458 } 459 460 // Stop interpretation of this path with a trap. 461 void trap(ciBytecodeStream* str, ciKlass* klass, int index); 462 463 public: 464 StateVector(ciTypeFlow* outer); 465 466 // Copy our value into some other StateVector 467 void copy_into(StateVector* copy) const; 468 469 // Meets this StateVector with another, destructively modifying this 470 // one. Returns true if any modification takes place. 471 bool meet(const StateVector* incoming); 472 473 // Ditto, except that the incoming state is coming from an exception. 474 bool meet_exception(ciInstanceKlass* exc, const StateVector* incoming); 475 476 // Apply the effect of one bytecode to this StateVector 477 bool apply_one_bytecode(ciBytecodeStream* stream); 478 479 // What is the bci of the trap? 480 int trap_bci() { return _trap_bci; } 481 482 // What is the index associated with the trap? 483 int trap_index() { return _trap_index; } 484 485 void print_cell_on(outputStream* st, Cell c) const PRODUCT_RETURN; 486 void print_on(outputStream* st) const PRODUCT_RETURN; 487 }; 488 489 // Parameter for "find_block" calls: 490 // Describes the difference between a public and backedge copy. 491 enum CreateOption { 492 create_public_copy, 493 create_backedge_copy, 494 no_create 495 }; 496 497 // Successor iterator 498 class SuccIter : public StackObj { 499 private: 500 Block* _pred; 501 int _index; 502 Block* _succ; 503 public: 504 SuccIter() : _pred(nullptr), _index(-1), _succ(nullptr) {} 505 SuccIter(Block* pred) : _pred(pred), _index(-1), _succ(nullptr) { next(); } 506 int index() { return _index; } 507 Block* pred() { return _pred; } // Return predecessor 508 bool done() { return _index < 0; } // Finished? 509 Block* succ() { return _succ; } // Return current successor 510 void next(); // Advance 511 void set_succ(Block* succ); // Update current successor 512 bool is_normal_ctrl() { return index() < _pred->successors()->length(); } 513 }; 514 515 // A basic block 516 class Block : public ArenaObj { 517 private: 518 ciBlock* _ciblock; 519 GrowableArray<Block*>* _exceptions; 520 GrowableArray<ciInstanceKlass*>* _exc_klasses; 521 GrowableArray<Block*>* _successors; 522 GrowableArray<Block*> _predecessors; 523 StateVector* _state; 524 JsrSet* _jsrs; 525 526 int _trap_bci; 527 int _trap_index; 528 529 // pre_order, assigned at first visit. Used as block ID and "visited" tag 530 int _pre_order; 531 532 // A post-order, used to compute the reverse post order (RPO) provided to the client 533 int _post_order; // used to compute rpo 534 535 // Has this block been cloned for a loop backedge? 536 bool _backedge_copy; 537 538 // This block is a loop head of an irreducible loop. 539 bool _irreducible_loop_head; 540 541 // This block is a secondary entry to an irreducible loop (entry but not head). 542 bool _irreducible_loop_secondary_entry; 543 544 // This block has monitor entry point. 545 bool _has_monitorenter; 546 547 // A pointer used for our internal work list 548 bool _on_work_list; // on the work list 549 Block* _next; 550 Block* _rpo_next; // Reverse post order list 551 552 // Loop info 553 Loop* _loop; // nearest loop 554 555 ciBlock* ciblock() const { return _ciblock; } 556 StateVector* state() const { return _state; } 557 558 // Compute the exceptional successors and types for this Block. 559 void compute_exceptions(); 560 561 public: 562 // constructors 563 Block(ciTypeFlow* outer, ciBlock* ciblk, JsrSet* jsrs); 564 565 void set_trap(int trap_bci, int trap_index) { 566 _trap_bci = trap_bci; 567 _trap_index = trap_index; 568 assert(has_trap(), ""); 569 } 570 bool has_trap() const { return _trap_bci != -1; } 571 int trap_bci() const { assert(has_trap(), ""); return _trap_bci; } 572 int trap_index() const { assert(has_trap(), ""); return _trap_index; } 573 574 // accessors 575 ciTypeFlow* outer() const { return state()->outer(); } 576 int start() const { return _ciblock->start_bci(); } 577 int limit() const { return _ciblock->limit_bci(); } 578 int control() const { return _ciblock->control_bci(); } 579 JsrSet* jsrs() const { return _jsrs; } 580 581 bool is_backedge_copy() const { return _backedge_copy; } 582 void set_backedge_copy(bool z); 583 int backedge_copy_count() const { return outer()->backedge_copy_count(ciblock()->index(), _jsrs); } 584 585 // access to entry state 586 int stack_size() const { return _state->stack_size(); } 587 int monitor_count() const { return _state->monitor_count(); } 588 ciType* local_type_at(int i) const { return _state->local_type_at(i); } 589 ciType* stack_type_at(int i) const { return _state->stack_type_at(i); } 590 591 // Data flow on locals 592 bool is_invariant_local(uint v) const { 593 assert(is_loop_head(), "only loop heads"); 594 // Find outermost loop with same loop head 595 Loop* lp = loop(); 596 while (lp->parent() != nullptr) { 597 if (lp->parent()->head() != lp->head()) break; 598 lp = lp->parent(); 599 } 600 return !lp->def_locals()->test(v); 601 } 602 LocalSet* def_locals() { return _state->def_locals(); } 603 const LocalSet* def_locals() const { return _state->def_locals(); } 604 605 // Get the successors for this Block. 606 GrowableArray<Block*>* successors(ciBytecodeStream* str, 607 StateVector* state, 608 JsrSet* jsrs); 609 GrowableArray<Block*>* successors() { 610 assert(_successors != nullptr, "must be filled in"); 611 return _successors; 612 } 613 614 // Predecessors of this block (including exception edges) 615 GrowableArray<Block*>* predecessors() { 616 return &_predecessors; 617 } 618 619 // Get the exceptional successors for this Block. 620 GrowableArray<Block*>* exceptions() { 621 if (_exceptions == nullptr) { 622 compute_exceptions(); 623 } 624 return _exceptions; 625 } 626 627 // Get the exception klasses corresponding to the 628 // exceptional successors for this Block. 629 GrowableArray<ciInstanceKlass*>* exc_klasses() { 630 if (_exc_klasses == nullptr) { 631 compute_exceptions(); 632 } 633 return _exc_klasses; 634 } 635 636 // Is this Block compatible with a given JsrSet? 637 bool is_compatible_with(JsrSet* other) { 638 return _jsrs->is_compatible_with(other); 639 } 640 641 // Copy the value of our state vector into another. 642 void copy_state_into(StateVector* copy) const { 643 _state->copy_into(copy); 644 } 645 646 // Copy the value of our JsrSet into another 647 void copy_jsrs_into(JsrSet* copy) const { 648 _jsrs->copy_into(copy); 649 } 650 651 // Meets the start state of this block with another state, destructively 652 // modifying this one. Returns true if any modification takes place. 653 bool meet(const StateVector* incoming) { 654 return state()->meet(incoming); 655 } 656 657 // Ditto, except that the incoming state is coming from an 658 // exception path. This means the stack is replaced by the 659 // appropriate exception type. 660 bool meet_exception(ciInstanceKlass* exc, const StateVector* incoming) { 661 return state()->meet_exception(exc, incoming); 662 } 663 664 // Work list manipulation 665 void set_next(Block* block) { _next = block; } 666 Block* next() const { return _next; } 667 668 void set_on_work_list(bool c) { _on_work_list = c; } 669 bool is_on_work_list() const { return _on_work_list; } 670 671 bool has_pre_order() const { return _pre_order >= 0; } 672 void set_pre_order(int po) { assert(!has_pre_order(), ""); _pre_order = po; } 673 int pre_order() const { assert(has_pre_order(), ""); return _pre_order; } 674 void set_next_pre_order() { set_pre_order(outer()->inc_next_pre_order()); } 675 bool is_start() const { return _pre_order == outer()->start_block_num(); } 676 677 // Reverse post order 678 void df_init(); 679 bool has_post_order() const { return _post_order >= 0; } 680 void set_post_order(int po) { assert(!has_post_order() && po >= 0, ""); _post_order = po; } 681 void reset_post_order(int o){ _post_order = o; } 682 int post_order() const { assert(has_post_order(), ""); return _post_order; } 683 684 bool has_rpo() const { return has_post_order() && outer()->have_block_count(); } 685 int rpo() const { assert(has_rpo(), ""); return outer()->block_count() - post_order() - 1; } 686 void set_rpo_next(Block* b) { _rpo_next = b; } 687 Block* rpo_next() { return _rpo_next; } 688 689 // Loops 690 Loop* loop() const { return _loop; } 691 void set_loop(Loop* lp) { _loop = lp; } 692 bool is_loop_head() const { return _loop && _loop->head() == this; } 693 bool is_in_irreducible_loop() const; 694 void set_irreducible_loop_head() { _irreducible_loop_head = true; } 695 bool is_irreducible_loop_head() const { return _irreducible_loop_head; } 696 void set_irreducible_loop_secondary_entry() { _irreducible_loop_secondary_entry = true; } 697 bool is_irreducible_loop_secondary_entry() const { return _irreducible_loop_secondary_entry; } 698 void set_has_monitorenter() { _has_monitorenter = true; } 699 bool has_monitorenter() const { return _has_monitorenter; } 700 bool is_visited() const { return has_pre_order(); } 701 bool is_post_visited() const { return has_post_order(); } 702 bool is_clonable_exit(Loop* lp); 703 Block* looping_succ(Loop* lp); // Successor inside of loop 704 bool is_single_entry_loop_head() const { 705 if (!is_loop_head()) return false; 706 for (Loop* lp = loop(); lp != nullptr && lp->head() == this; lp = lp->parent()) 707 if (lp->is_irreducible()) return false; 708 return true; 709 } 710 711 void print_value_on(outputStream* st) const PRODUCT_RETURN; 712 void print_on(outputStream* st) const PRODUCT_RETURN; 713 }; 714 715 // Loop 716 class Loop : public ArenaObj { 717 private: 718 Loop* _parent; 719 Loop* _sibling; // List of siblings, null terminated 720 Loop* _child; // Head of child list threaded thru sibling pointer 721 Block* _head; // Head of loop 722 Block* _tail; // Tail of loop 723 bool _irreducible; 724 LocalSet _def_locals; 725 int _profiled_count; 726 727 ciTypeFlow* outer() const { return head()->outer(); } 728 bool at_insertion_point(Loop* lp, Loop* current); 729 730 public: 731 Loop(Block* head, Block* tail) : 732 _parent(nullptr), _sibling(nullptr), _child(nullptr), 733 _head(head), _tail(tail), 734 _irreducible(false), _def_locals(), _profiled_count(-1) {} 735 736 Loop* parent() const { return _parent; } 737 Loop* sibling() const { return _sibling; } 738 Loop* child() const { return _child; } 739 Block* head() const { return _head; } 740 Block* tail() const { return _tail; } 741 void set_parent(Loop* p) { _parent = p; } 742 void set_sibling(Loop* s) { _sibling = s; } 743 void set_child(Loop* c) { _child = c; } 744 void set_head(Block* hd) { _head = hd; } 745 void set_tail(Block* tl) { _tail = tl; } 746 747 int depth() const; // nesting depth 748 749 // Returns true if lp is a nested loop or us. 750 bool contains(Loop* lp) const; 751 bool contains(Block* blk) const { return contains(blk->loop()); } 752 753 // Data flow on locals 754 LocalSet* def_locals() { return &_def_locals; } 755 const LocalSet* def_locals() const { return &_def_locals; } 756 757 // Merge the branch lp into this branch, sorting on the loop head 758 // pre_orders. Returns the new branch. 759 Loop* sorted_merge(Loop* lp); 760 761 // Mark non-single entry to loop 762 void set_irreducible(Block* entry) { 763 _irreducible = true; 764 head()->set_irreducible_loop_head(); 765 entry->set_irreducible_loop_secondary_entry(); 766 } 767 bool is_irreducible() const { return _irreducible; } 768 769 bool is_root() const { return _tail->pre_order() == max_jint; } 770 771 int profiled_count(); 772 773 void print(outputStream* st = tty, int indent = 0) const PRODUCT_RETURN; 774 }; 775 776 // Preorder iteration over the loop tree. 777 class PreorderLoops : public StackObj { 778 private: 779 Loop* _root; 780 Loop* _current; 781 public: 782 PreorderLoops(Loop* root) : _root(root), _current(root) {} 783 bool done() { return _current == nullptr; } // Finished iterating? 784 void next(); // Advance to next loop 785 Loop* current() { return _current; } // Return current loop. 786 }; 787 788 // Standard indexes of successors, for various bytecodes. 789 enum { 790 FALL_THROUGH = 0, // normal control 791 IF_NOT_TAKEN = 0, // the not-taken branch of an if (i.e., fall-through) 792 IF_TAKEN = 1, // the taken branch of an if 793 GOTO_TARGET = 0, // unique successor for goto, jsr, or ret 794 SWITCH_DEFAULT = 0, // default branch of a switch 795 SWITCH_CASES = 1 // first index for any non-default switch branches 796 // Unlike in other blocks, the successors of a switch are listed uniquely. 797 }; 798 799 private: 800 // A mapping from pre_order to Blocks. This array is created 801 // only at the end of the flow. 802 Block** _block_map; 803 804 // For each ciBlock index, a list of Blocks which share this ciBlock. 805 GrowableArray<Block*>** _idx_to_blocklist; 806 807 // Tells if a given instruction is able to generate an exception edge. 808 bool can_trap(ciBytecodeStream& str); 809 810 // Clone the loop heads. Returns true if any cloning occurred. 811 bool clone_loop_heads(StateVector* temp_vector, JsrSet* temp_set); 812 813 // Clone lp's head and replace tail's successors with clone. 814 Block* clone_loop_head(Loop* lp, StateVector* temp_vector, JsrSet* temp_set); 815 816 public: 817 // Return the block beginning at bci which has a JsrSet compatible 818 // with jsrs. 819 Block* block_at(int bci, JsrSet* set, CreateOption option = create_public_copy); 820 821 // block factory 822 Block* get_block_for(int ciBlockIndex, JsrSet* jsrs, CreateOption option = create_public_copy); 823 824 // How many of the blocks have the backedge_copy bit set? 825 int backedge_copy_count(int ciBlockIndex, JsrSet* jsrs) const; 826 827 // Return an existing block containing bci which has a JsrSet compatible 828 // with jsrs, or null if there is none. 829 Block* existing_block_at(int bci, JsrSet* set) { return block_at(bci, set, no_create); } 830 831 // Tell whether the flow analysis has encountered an error of some sort. 832 bool failing() { return env()->failing() || _failure_reason != nullptr; } 833 834 // Reason this compilation is failing, such as "too many basic blocks". 835 const char* failure_reason() { return _failure_reason; } 836 837 // Note a failure. 838 void record_failure(const char* reason); 839 840 // Return the block of a given pre-order number. 841 int have_block_count() const { return _block_map != nullptr; } 842 int block_count() const { assert(have_block_count(), ""); 843 return _next_pre_order; } 844 Block* pre_order_at(int po) const { assert(0 <= po && po < block_count(), "out of bounds"); 845 return _block_map[po]; } 846 Block* start_block() const { return pre_order_at(start_block_num()); } 847 int start_block_num() const { return 0; } 848 Block* rpo_at(int rpo) const { assert(0 <= rpo && rpo < block_count(), "out of bounds"); 849 return _block_map[rpo]; } 850 int inc_next_pre_order() { return _next_pre_order++; } 851 852 private: 853 // A work list used during flow analysis. 854 Block* _work_list; 855 856 // List of blocks in reverse post order 857 Block* _rpo_list; 858 859 // Next Block::_pre_order. After mapping, doubles as block_count. 860 int _next_pre_order; 861 862 // Are there more blocks on the work list? 863 bool work_list_empty() { return _work_list == nullptr; } 864 865 // Get the next basic block from our work list. 866 Block* work_list_next(); 867 868 // Add a basic block to our work list. 869 void add_to_work_list(Block* block); 870 871 // Prepend a basic block to rpo list. 872 void prepend_to_rpo_list(Block* blk) { 873 blk->set_rpo_next(_rpo_list); 874 _rpo_list = blk; 875 } 876 877 // Root of the loop tree 878 Loop* _loop_tree_root; 879 880 // State used for make_jsr_record 881 GrowableArray<JsrRecord*>* _jsr_records; 882 883 public: 884 // Make a JsrRecord for a given (entry, return) pair, if such a record 885 // does not already exist. 886 JsrRecord* make_jsr_record(int entry_address, int return_address); 887 888 void set_loop_tree_root(Loop* ltr) { _loop_tree_root = ltr; } 889 Loop* loop_tree_root() const { return _loop_tree_root; } 890 891 private: 892 // Get the initial state for start_bci: 893 const StateVector* get_start_state(); 894 895 // Merge the current state into all exceptional successors at the 896 // current point in the code. 897 void flow_exceptions(GrowableArray<Block*>* exceptions, 898 GrowableArray<ciInstanceKlass*>* exc_klasses, 899 StateVector* state); 900 901 // Merge the current state into all successors at the current point 902 // in the code. 903 void flow_successors(GrowableArray<Block*>* successors, 904 StateVector* state); 905 906 // Interpret the effects of the bytecodes on the incoming state 907 // vector of a basic block. Push the changed state to succeeding 908 // basic blocks. 909 void flow_block(Block* block, 910 StateVector* scratch_state, 911 JsrSet* scratch_jsrs); 912 913 // Perform the type flow analysis, creating and cloning Blocks as 914 // necessary. 915 void flow_types(); 916 917 // Perform the depth first type flow analysis. Helper for flow_types. 918 void df_flow_types(Block* start, 919 bool do_flow, 920 StateVector* temp_vector, 921 JsrSet* temp_set); 922 923 // Incrementally build loop tree. 924 void build_loop_tree(Block* blk); 925 926 // Create the block map, which indexes blocks in pre_order. 927 void map_blocks(); 928 929 public: 930 // Perform type inference flow analysis. 931 void do_flow(); 932 933 // Determine if bci is dominated by dom_bci 934 bool is_dominated_by(int bci, int dom_bci); 935 936 void print() const PRODUCT_RETURN; 937 void print_on(outputStream* st) const PRODUCT_RETURN; 938 939 void rpo_print_on(outputStream* st) const PRODUCT_RETURN; 940 }; 941 942 #endif // SHARE_CI_CITYPEFLOW_HPP