1 /*
  2  * Copyright (c) 2000, 2023, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_CI_CITYPEFLOW_HPP
 26 #define SHARE_CI_CITYPEFLOW_HPP
 27 
 28 #ifdef COMPILER2
 29 #include "ci/ciEnv.hpp"
 30 #include "ci/ciKlass.hpp"
 31 #include "ci/ciMethodBlocks.hpp"
 32 #endif
 33 
 34 
 35 class ciTypeFlow : public ArenaObj {
 36 private:
 37   ciEnv*    _env;
 38   ciMethod* _method;
 39   int       _osr_bci;
 40 
 41   bool      _has_irreducible_entry;
 42 
 43   const char* _failure_reason;
 44 
 45 public:
 46   class StateVector;
 47   class Loop;
 48   class Block;
 49 
 50   // Build a type flow analyzer
 51   // Do an OSR analysis if osr_bci >= 0.
 52   ciTypeFlow(ciEnv* env, ciMethod* method, int osr_bci = InvocationEntryBci);
 53 
 54   // Accessors
 55   ciMethod* method() const     { return _method; }
 56   ciEnv*    env()              { return _env; }
 57   Arena*    arena()            { return _env->arena(); }
 58   bool      is_osr_flow() const{ return _osr_bci != InvocationEntryBci; }
 59   int       start_bci() const  { return is_osr_flow()? _osr_bci: 0; }
 60   int       max_locals() const { return method()->max_locals(); }
 61   int       max_stack() const  { return method()->max_stack(); }
 62   int       max_cells() const  { return max_locals() + max_stack(); }
 63   int       code_size() const  { return method()->code_size(); }
 64   bool      has_irreducible_entry() const { return _has_irreducible_entry; }
 65 
 66   // Represents information about an "active" jsr call.  This
 67   // class represents a call to the routine at some entry address
 68   // with some distinct return address.
 69   class JsrRecord : public ArenaObj {
 70   private:
 71     int _entry_address;
 72     int _return_address;
 73   public:
 74     JsrRecord(int entry_address, int return_address) {
 75       _entry_address = entry_address;
 76       _return_address = return_address;
 77     }
 78 
 79     int entry_address() const  { return _entry_address; }
 80     int return_address() const { return _return_address; }
 81 
 82     void print_on(outputStream* st) const {
 83 #ifndef PRODUCT
 84       st->print("%d->%d", entry_address(), return_address());
 85 #endif
 86     }
 87   };
 88 
 89   // A JsrSet represents some set of JsrRecords.  This class
 90   // is used to record a set of all jsr routines which we permit
 91   // execution to return (ret) from.
 92   //
 93   // During abstract interpretation, JsrSets are used to determine
 94   // whether two paths which reach a given block are unique, and
 95   // should be cloned apart, or are compatible, and should merge
 96   // together.
 97   //
 98   // Note that different amounts of effort can be expended determining
 99   // if paths are compatible.  <DISCUSSION>
100   class JsrSet : public AnyObj {
101   private:
102     GrowableArray<JsrRecord*> _set;
103 
104     JsrRecord* record_at(int i) {
105       return _set.at(i);
106     }
107 
108     // Insert the given JsrRecord into the JsrSet, maintaining the order
109     // of the set and replacing any element with the same entry address.
110     void insert_jsr_record(JsrRecord* record);
111 
112     // Remove the JsrRecord with the given return address from the JsrSet.
113     void remove_jsr_record(int return_address);
114 
115   public:
116     JsrSet(Arena* arena, int default_len = 4);
117     JsrSet(int default_len = 4);
118 
119     // Copy this JsrSet.
120     void copy_into(JsrSet* jsrs);
121 
122     // Is this JsrSet compatible with some other JsrSet?
123     bool is_compatible_with(JsrSet* other);
124 
125     // Apply the effect of a single bytecode to the JsrSet.
126     void apply_control(ciTypeFlow* analyzer,
127                        ciBytecodeStream* str,
128                        StateVector* state);
129 
130     // What is the cardinality of this set?
131     int size() const { return _set.length(); }
132 
133     void print_on(outputStream* st) const PRODUCT_RETURN;
134   };
135 
136   class LocalSet {
137   private:
138     enum Constants { max = 63 };
139     uint64_t _bits;
140   public:
141     LocalSet() : _bits(0) {}
142     void add(uint32_t i)        { if (i < (uint32_t)max) _bits |=  (1LL << i); }
143     void add(LocalSet* ls)      { _bits |= ls->_bits; }
144     bool test(uint32_t i) const { return i < (uint32_t)max ? (_bits>>i)&1U : true; }
145     void clear()                { _bits = 0; }
146     void print_on(outputStream* st, int limit) const  PRODUCT_RETURN;
147   };
148 
149   // Used as a combined index for locals and temps
150   enum Cell {
151     Cell_0, Cell_max = INT_MAX
152   };
153 
154   // A StateVector summarizes the type information at some
155   // point in the program
156   class StateVector : public AnyObj {
157   private:
158     ciType**    _types;
159     int         _stack_size;
160     int         _monitor_count;
161     ciTypeFlow* _outer;
162 
163     int         _trap_bci;
164     int         _trap_index;
165 
166     LocalSet    _def_locals;  // For entire block
167 
168     static ciType* type_meet_internal(ciType* t1, ciType* t2, ciTypeFlow* analyzer);
169 
170   public:
171     // Special elements in our type lattice.
172     enum {
173       T_TOP     = T_VOID,      // why not?
174       T_BOTTOM  = T_CONFLICT,
175       T_LONG2   = T_SHORT,     // 2nd word of T_LONG
176       T_DOUBLE2 = T_CHAR,      // 2nd word of T_DOUBLE
177       T_NULL    = T_BYTE       // for now.
178     };
179     static ciType* top_type()    { return ciType::make((BasicType)T_TOP); }
180     static ciType* bottom_type() { return ciType::make((BasicType)T_BOTTOM); }
181     static ciType* long2_type()  { return ciType::make((BasicType)T_LONG2); }
182     static ciType* double2_type(){ return ciType::make((BasicType)T_DOUBLE2); }
183     static ciType* null_type()   { return ciType::make((BasicType)T_NULL); }
184 
185     static ciType* half_type(ciType* t) {
186       switch (t->basic_type()) {
187       case T_LONG:    return long2_type();
188       case T_DOUBLE:  return double2_type();
189       default:        ShouldNotReachHere(); return nullptr;
190       }
191     }
192 
193     // The meet operation for our type lattice.
194     ciType* type_meet(ciType* t1, ciType* t2) {
195       return type_meet_internal(t1, t2, outer());
196     }
197 
198     // Accessors
199     ciTypeFlow* outer() const          { return _outer; }
200 
201     int         stack_size() const     { return _stack_size; }
202     void    set_stack_size(int ss)     { _stack_size = ss; }
203 
204     int         monitor_count() const  { return _monitor_count; }
205     void    set_monitor_count(int mc)  { _monitor_count = mc; }
206 
207     LocalSet* def_locals() { return &_def_locals; }
208     const LocalSet* def_locals() const { return &_def_locals; }
209 
210     static Cell start_cell()           { return (Cell)0; }
211     static Cell next_cell(Cell c)      { return (Cell)(((int)c) + 1); }
212     Cell        limit_cell() const {
213       return (Cell)(outer()->max_locals() + stack_size());
214     }
215 
216     Cell local_limit_cell() const { return (Cell) outer()->max_locals(); }
217 
218     // Cell creation
219     Cell      local(int lnum) const {
220       assert(lnum < outer()->max_locals(), "index check");
221       assert(Cell_0 <= lnum && lnum <= Cell_max, "out of Cell's range");
222       return (Cell)(lnum);
223     }
224 
225     Cell      stack(int snum) const {
226       assert(snum < stack_size(), "index check");
227       return (Cell)(outer()->max_locals() + snum);
228     }
229 
230     Cell      tos() const { return stack(stack_size()-1); }
231 
232     // For external use only:
233     ciType* local_type_at(int i) const { return type_at(local(i)); }
234     ciType* stack_type_at(int i) const { return type_at(stack(i)); }
235 
236     // Accessors for the type of some Cell c
237     ciType*   type_at(Cell c) const {
238       assert(start_cell() <= c && c < limit_cell(), "out of bounds");
239       return _types[c];
240     }
241 
242     void      set_type_at(Cell c, ciType* type) {
243       assert(start_cell() <= c && c < limit_cell(), "out of bounds");
244       _types[c] = type;
245     }
246 
247     // Top-of-stack operations.
248     void      set_type_at_tos(ciType* type) { set_type_at(tos(), type); }
249     ciType*   type_at_tos() const           { return type_at(tos()); }
250 
251     void      push(ciType* type) {
252       _stack_size++;
253       set_type_at_tos(type);
254     }
255     void      pop() {
256       debug_only(set_type_at_tos(bottom_type()));
257       _stack_size--;
258     }
259     ciType*   pop_value() {
260       ciType* t = type_at_tos();
261       pop();
262       return t;
263     }
264 
265     // Convenience operations.
266     bool      is_reference(ciType* type) const {
267       return type == null_type() || !type->is_primitive_type();
268     }
269     bool      is_int(ciType* type) const {
270       return type->basic_type() == T_INT;
271     }
272     bool      is_long(ciType* type) const {
273       return type->basic_type() == T_LONG;
274     }
275     bool      is_float(ciType* type) const {
276       return type->basic_type() == T_FLOAT;
277     }
278     bool      is_double(ciType* type) const {
279       return type->basic_type() == T_DOUBLE;
280     }
281 
282     void store_to_local(int lnum) {
283       _def_locals.add((uint) lnum);
284     }
285 
286     void      push_translate(ciType* type);
287 
288     void      push_int() {
289       push(ciType::make(T_INT));
290     }
291     void      pop_int() {
292       assert(is_int(type_at_tos()), "must be integer");
293       pop();
294     }
295     void      check_int(Cell c) {
296       assert(is_int(type_at(c)), "must be integer");
297     }
298     void      push_double() {
299       push(ciType::make(T_DOUBLE));
300       push(double2_type());
301     }
302     void      pop_double() {
303       assert(type_at_tos() == double2_type(), "must be 2nd half");
304       pop();
305       assert(is_double(type_at_tos()), "must be double");
306       pop();
307     }
308     void      push_float() {
309       push(ciType::make(T_FLOAT));
310     }
311     void      pop_float() {
312       assert(is_float(type_at_tos()), "must be float");
313       pop();
314     }
315     void      push_long() {
316       push(ciType::make(T_LONG));
317       push(long2_type());
318     }
319     void      pop_long() {
320       assert(type_at_tos() == long2_type(), "must be 2nd half");
321       pop();
322       assert(is_long(type_at_tos()), "must be long");
323       pop();
324     }
325     void      push_object(ciKlass* klass) {
326       push(klass);
327     }
328     void      pop_object() {
329       assert(is_reference(type_at_tos()), "must be reference type");
330       pop();
331     }
332     void      pop_array() {
333       assert(type_at_tos() == null_type() ||
334              type_at_tos()->is_array_klass(), "must be array type");
335       pop();
336     }
337     // pop_objOrFlatArray and pop_typeArray narrow the tos to ciObjArrayKlass,
338     // ciFlatArrayKlass or ciTypeArrayKlass (resp.). In the rare case that an explicit
339     // null is popped from the stack, we return null.  Caller beware.
340     ciArrayKlass* pop_objOrFlatArray() {
341       ciType* array = pop_value();
342       if (array == null_type())  return nullptr;
343       assert(array->is_obj_array_klass() || array->is_flat_array_klass(),
344              "must be a flat or an object array type");
345       return array->as_array_klass();
346     }
347     ciTypeArrayKlass* pop_typeArray() {
348       ciType* array = pop_value();
349       if (array == null_type())  return nullptr;
350       assert(array->is_type_array_klass(), "must be prim array type");
351       return array->as_type_array_klass();
352     }
353     void      push_null() {
354       push(null_type());
355     }
356     void      do_null_assert(ciKlass* unloaded_klass);
357 
358     // Helper convenience routines.
359     void do_aload(ciBytecodeStream* str);
360     void do_checkcast(ciBytecodeStream* str);
361     void do_getfield(ciBytecodeStream* str);
362     void do_getstatic(ciBytecodeStream* str);
363     void do_invoke(ciBytecodeStream* str, bool has_receiver);
364     void do_jsr(ciBytecodeStream* str);
365     void do_ldc(ciBytecodeStream* str);
366     void do_multianewarray(ciBytecodeStream* str);
367     void do_new(ciBytecodeStream* str);
368     void do_newarray(ciBytecodeStream* str);
369     void do_putfield(ciBytecodeStream* str);
370     void do_putstatic(ciBytecodeStream* str);
371     void do_ret(ciBytecodeStream* str);
372 
373     void overwrite_local_double_long(int index) {
374       // Invalidate the previous local if it contains first half of
375       // a double or long value since its second half is being overwritten.
376       int prev_index = index - 1;
377       if (prev_index >= 0 &&
378           (is_double(type_at(local(prev_index))) ||
379            is_long(type_at(local(prev_index))))) {
380         set_type_at(local(prev_index), bottom_type());
381       }
382     }
383 
384     void load_local_object(int index) {
385       ciType* type = type_at(local(index));
386       assert(is_reference(type), "must be reference type");
387       push(type);
388     }
389     void store_local_object(int index) {
390       ciType* type = pop_value();
391       assert(is_reference(type) || type->is_return_address(),
392              "must be reference type or return address");
393       overwrite_local_double_long(index);
394       set_type_at(local(index), type);
395       store_to_local(index);
396     }
397 
398     void load_local_double(int index) {
399       ciType* type = type_at(local(index));
400       ciType* type2 = type_at(local(index+1));
401       assert(is_double(type), "must be double type");
402       assert(type2 == double2_type(), "must be 2nd half");
403       push(type);
404       push(double2_type());
405     }
406     void store_local_double(int index) {
407       ciType* type2 = pop_value();
408       ciType* type = pop_value();
409       assert(is_double(type), "must be double");
410       assert(type2 == double2_type(), "must be 2nd half");
411       overwrite_local_double_long(index);
412       set_type_at(local(index), type);
413       set_type_at(local(index+1), type2);
414       store_to_local(index);
415       store_to_local(index+1);
416     }
417 
418     void load_local_float(int index) {
419       ciType* type = type_at(local(index));
420       assert(is_float(type), "must be float type");
421       push(type);
422     }
423     void store_local_float(int index) {
424       ciType* type = pop_value();
425       assert(is_float(type), "must be float type");
426       overwrite_local_double_long(index);
427       set_type_at(local(index), type);
428       store_to_local(index);
429     }
430 
431     void load_local_int(int index) {
432       ciType* type = type_at(local(index));
433       assert(is_int(type), "must be int type");
434       push(type);
435     }
436     void store_local_int(int index) {
437       ciType* type = pop_value();
438       assert(is_int(type), "must be int type");
439       overwrite_local_double_long(index);
440       set_type_at(local(index), type);
441       store_to_local(index);
442     }
443 
444     void load_local_long(int index) {
445       ciType* type = type_at(local(index));
446       ciType* type2 = type_at(local(index+1));
447       assert(is_long(type), "must be long type");
448       assert(type2 == long2_type(), "must be 2nd half");
449       push(type);
450       push(long2_type());
451     }
452     void store_local_long(int index) {
453       ciType* type2 = pop_value();
454       ciType* type = pop_value();
455       assert(is_long(type), "must be long");
456       assert(type2 == long2_type(), "must be 2nd half");
457       overwrite_local_double_long(index);
458       set_type_at(local(index), type);
459       set_type_at(local(index+1), type2);
460       store_to_local(index);
461       store_to_local(index+1);
462     }
463 
464     // Stop interpretation of this path with a trap.
465     void trap(ciBytecodeStream* str, ciKlass* klass, int index);
466 
467   public:
468     StateVector(ciTypeFlow* outer);
469 
470     // Copy our value into some other StateVector
471     void copy_into(StateVector* copy) const;
472 
473     // Meets this StateVector with another, destructively modifying this
474     // one.  Returns true if any modification takes place.
475     bool meet(const StateVector* incoming);
476 
477     // Ditto, except that the incoming state is coming from an exception.
478     bool meet_exception(ciInstanceKlass* exc, const StateVector* incoming);
479 
480     // Apply the effect of one bytecode to this StateVector
481     bool apply_one_bytecode(ciBytecodeStream* stream);
482 
483     // What is the bci of the trap?
484     int  trap_bci() { return _trap_bci; }
485 
486     // What is the index associated with the trap?
487     int  trap_index() { return _trap_index; }
488 
489     void print_cell_on(outputStream* st, Cell c) const PRODUCT_RETURN;
490     void print_on(outputStream* st) const              PRODUCT_RETURN;
491   };
492 
493   // Parameter for "find_block" calls:
494   // Describes the difference between a public and backedge copy.
495   enum CreateOption {
496     create_public_copy,
497     create_backedge_copy,
498     no_create
499   };
500 
501   // Successor iterator
502   class SuccIter : public StackObj {
503   private:
504     Block* _pred;
505     int    _index;
506     Block* _succ;
507   public:
508     SuccIter()                        : _pred(nullptr), _index(-1), _succ(nullptr) {}
509     SuccIter(Block* pred)             : _pred(pred), _index(-1), _succ(nullptr) { next(); }
510     int    index()     { return _index; }
511     Block* pred()      { return _pred; }           // Return predecessor
512     bool   done()      { return _index < 0; }      // Finished?
513     Block* succ()      { return _succ; }           // Return current successor
514     void   next();                                 // Advance
515     void   set_succ(Block* succ);                  // Update current successor
516     bool   is_normal_ctrl() { return index() < _pred->successors()->length(); }
517   };
518 
519   // A basic block
520   class Block : public ArenaObj {
521   private:
522     ciBlock*                          _ciblock;
523     GrowableArray<Block*>*           _exceptions;
524     GrowableArray<ciInstanceKlass*>* _exc_klasses;
525     GrowableArray<Block*>*           _successors;
526     GrowableArray<Block*>            _predecessors;
527     StateVector*                     _state;
528     JsrSet*                          _jsrs;
529 
530     int                              _trap_bci;
531     int                              _trap_index;
532 
533     // pre_order, assigned at first visit. Used as block ID and "visited" tag
534     int                              _pre_order;
535 
536     // A post-order, used to compute the reverse post order (RPO) provided to the client
537     int                              _post_order;  // used to compute rpo
538 
539     // Has this block been cloned for a loop backedge?
540     bool                             _backedge_copy;
541 
542     // This block is a loop head of an irreducible loop.
543     bool                             _irreducible_loop_head;
544 
545     // This block is a secondary entry to an irreducible loop (entry but not head).
546     bool                             _irreducible_loop_secondary_entry;
547 
548     // This block has monitor entry point.
549     bool                             _has_monitorenter;
550 
551     // A pointer used for our internal work list
552     bool                             _on_work_list;      // on the work list
553     Block*                           _next;
554     Block*                           _rpo_next;          // Reverse post order list
555 
556     // Loop info
557     Loop*                            _loop;              // nearest loop
558 
559     ciBlock*     ciblock() const     { return _ciblock; }
560     StateVector* state() const     { return _state; }
561 
562     // Compute the exceptional successors and types for this Block.
563     void compute_exceptions();
564 
565   public:
566     // constructors
567     Block(ciTypeFlow* outer, ciBlock* ciblk, JsrSet* jsrs);
568 
569     void set_trap(int trap_bci, int trap_index) {
570       _trap_bci = trap_bci;
571       _trap_index = trap_index;
572       assert(has_trap(), "");
573     }
574     bool has_trap()   const  { return _trap_bci != -1; }
575     int  trap_bci()   const  { assert(has_trap(), ""); return _trap_bci; }
576     int  trap_index() const  { assert(has_trap(), ""); return _trap_index; }
577 
578     // accessors
579     ciTypeFlow* outer() const { return state()->outer(); }
580     int start() const         { return _ciblock->start_bci(); }
581     int limit() const         { return _ciblock->limit_bci(); }
582     int control() const       { return _ciblock->control_bci(); }
583     JsrSet* jsrs() const      { return _jsrs; }
584 
585     bool    is_backedge_copy() const       { return _backedge_copy; }
586     void   set_backedge_copy(bool z);
587     int        backedge_copy_count() const { return outer()->backedge_copy_count(ciblock()->index(), _jsrs); }
588 
589     // access to entry state
590     int     stack_size() const         { return _state->stack_size(); }
591     int     monitor_count() const      { return _state->monitor_count(); }
592     ciType* local_type_at(int i) const { return _state->local_type_at(i); }
593     ciType* stack_type_at(int i) const { return _state->stack_type_at(i); }
594 
595     // Data flow on locals
596     bool is_invariant_local(uint v) const {
597       assert(is_loop_head(), "only loop heads");
598       // Find outermost loop with same loop head
599       Loop* lp = loop();
600       while (lp->parent() != nullptr) {
601         if (lp->parent()->head() != lp->head()) break;
602         lp = lp->parent();
603       }
604       return !lp->def_locals()->test(v);
605     }
606     LocalSet* def_locals() { return _state->def_locals(); }
607     const LocalSet* def_locals() const { return _state->def_locals(); }
608 
609     // Get the successors for this Block.
610     GrowableArray<Block*>* successors(ciBytecodeStream* str,
611                                       StateVector* state,
612                                       JsrSet* jsrs);
613     GrowableArray<Block*>* successors() {
614       assert(_successors != nullptr, "must be filled in");
615       return _successors;
616     }
617 
618     // Predecessors of this block (including exception edges)
619     GrowableArray<Block*>* predecessors() {
620       return &_predecessors;
621     }
622 
623     // Get the exceptional successors for this Block.
624     GrowableArray<Block*>* exceptions() {
625       if (_exceptions == nullptr) {
626         compute_exceptions();
627       }
628       return _exceptions;
629     }
630 
631     // Get the exception klasses corresponding to the
632     // exceptional successors for this Block.
633     GrowableArray<ciInstanceKlass*>* exc_klasses() {
634       if (_exc_klasses == nullptr) {
635         compute_exceptions();
636       }
637       return _exc_klasses;
638     }
639 
640     // Is this Block compatible with a given JsrSet?
641     bool is_compatible_with(JsrSet* other) {
642       return _jsrs->is_compatible_with(other);
643     }
644 
645     // Copy the value of our state vector into another.
646     void copy_state_into(StateVector* copy) const {
647       _state->copy_into(copy);
648     }
649 
650     // Copy the value of our JsrSet into another
651     void copy_jsrs_into(JsrSet* copy) const {
652       _jsrs->copy_into(copy);
653     }
654 
655     // Meets the start state of this block with another state, destructively
656     // modifying this one.  Returns true if any modification takes place.
657     bool meet(const StateVector* incoming) {
658       return state()->meet(incoming);
659     }
660 
661     // Ditto, except that the incoming state is coming from an
662     // exception path.  This means the stack is replaced by the
663     // appropriate exception type.
664     bool meet_exception(ciInstanceKlass* exc, const StateVector* incoming) {
665       return state()->meet_exception(exc, incoming);
666     }
667 
668     // Work list manipulation
669     void   set_next(Block* block) { _next = block; }
670     Block* next() const           { return _next; }
671 
672     void   set_on_work_list(bool c) { _on_work_list = c; }
673     bool   is_on_work_list() const  { return _on_work_list; }
674 
675     bool   has_pre_order() const  { return _pre_order >= 0; }
676     void   set_pre_order(int po)  { assert(!has_pre_order(), ""); _pre_order = po; }
677     int    pre_order() const      { assert(has_pre_order(), ""); return _pre_order; }
678     void   set_next_pre_order()   { set_pre_order(outer()->inc_next_pre_order()); }
679     bool   is_start() const       { return _pre_order == outer()->start_block_num(); }
680 
681     // Reverse post order
682     void   df_init();
683     bool   has_post_order() const { return _post_order >= 0; }
684     void   set_post_order(int po) { assert(!has_post_order() && po >= 0, ""); _post_order = po; }
685     void   reset_post_order(int o){ _post_order = o; }
686     int    post_order() const     { assert(has_post_order(), ""); return _post_order; }
687 
688     bool   has_rpo() const        { return has_post_order() && outer()->have_block_count(); }
689     int    rpo() const            { assert(has_rpo(), ""); return outer()->block_count() - post_order() - 1; }
690     void   set_rpo_next(Block* b) { _rpo_next = b; }
691     Block* rpo_next()             { return _rpo_next; }
692 
693     // Loops
694     Loop*  loop() const                  { return _loop; }
695     void   set_loop(Loop* lp)            { _loop = lp; }
696     bool   is_loop_head() const          { return _loop && _loop->head() == this; }
697     bool   is_in_irreducible_loop() const;
698     void   set_irreducible_loop_head()   { _irreducible_loop_head = true; }
699     bool   is_irreducible_loop_head() const { return _irreducible_loop_head; }
700     void   set_irreducible_loop_secondary_entry() { _irreducible_loop_secondary_entry = true; }
701     bool   is_irreducible_loop_secondary_entry() const { return _irreducible_loop_secondary_entry; }
702     void   set_has_monitorenter()        { _has_monitorenter = true; }
703     bool   has_monitorenter() const      { return _has_monitorenter; }
704     bool   is_visited() const            { return has_pre_order(); }
705     bool   is_post_visited() const       { return has_post_order(); }
706     bool   is_clonable_exit(Loop* lp);
707     Block* looping_succ(Loop* lp);       // Successor inside of loop
708     bool   is_single_entry_loop_head() const {
709       if (!is_loop_head()) return false;
710       for (Loop* lp = loop(); lp != nullptr && lp->head() == this; lp = lp->parent())
711         if (lp->is_irreducible()) return false;
712       return true;
713     }
714 
715     void   print_value_on(outputStream* st) const PRODUCT_RETURN;
716     void   print_on(outputStream* st) const       PRODUCT_RETURN;
717   };
718 
719   // Loop
720   class Loop : public ArenaObj {
721   private:
722     Loop* _parent;
723     Loop* _sibling;  // List of siblings, null terminated
724     Loop* _child;    // Head of child list threaded thru sibling pointer
725     Block* _head;    // Head of loop
726     Block* _tail;    // Tail of loop
727     bool   _irreducible;
728     LocalSet _def_locals;
729     int _profiled_count;
730 
731     ciTypeFlow* outer() const { return head()->outer(); }
732     bool at_insertion_point(Loop* lp, Loop* current);
733 
734   public:
735     Loop(Block* head, Block* tail) :
736       _parent(nullptr), _sibling(nullptr), _child(nullptr),
737       _head(head),   _tail(tail),
738       _irreducible(false), _def_locals(), _profiled_count(-1) {}
739 
740     Loop* parent()  const { return _parent; }
741     Loop* sibling() const { return _sibling; }
742     Loop* child()   const { return _child; }
743     Block* head()   const { return _head; }
744     Block* tail()   const { return _tail; }
745     void set_parent(Loop* p)  { _parent = p; }
746     void set_sibling(Loop* s) { _sibling = s; }
747     void set_child(Loop* c)   { _child = c; }
748     void set_head(Block* hd)  { _head = hd; }
749     void set_tail(Block* tl)  { _tail = tl; }
750 
751     int depth() const;              // nesting depth
752 
753     // Returns true if lp is a nested loop or us.
754     bool contains(Loop* lp) const;
755     bool contains(Block* blk) const { return contains(blk->loop()); }
756 
757     // Data flow on locals
758     LocalSet* def_locals() { return &_def_locals; }
759     const LocalSet* def_locals() const { return &_def_locals; }
760 
761     // Merge the branch lp into this branch, sorting on the loop head
762     // pre_orders. Returns the new branch.
763     Loop* sorted_merge(Loop* lp);
764 
765     // Mark non-single entry to loop
766     void set_irreducible(Block* entry) {
767       _irreducible = true;
768       head()->set_irreducible_loop_head();
769       entry->set_irreducible_loop_secondary_entry();
770     }
771     bool is_irreducible() const { return _irreducible; }
772 
773     bool is_root() const { return _tail->pre_order() == max_jint; }
774 
775     int profiled_count();
776 
777     void print(outputStream* st = tty, int indent = 0) const PRODUCT_RETURN;
778   };
779 
780   // Preorder iteration over the loop tree.
781   class PreorderLoops : public StackObj {
782   private:
783     Loop* _root;
784     Loop* _current;
785   public:
786     PreorderLoops(Loop* root) : _root(root), _current(root) {}
787     bool done() { return _current == nullptr; }  // Finished iterating?
788     void next();                            // Advance to next loop
789     Loop* current() { return _current; }      // Return current loop.
790   };
791 
792   // Standard indexes of successors, for various bytecodes.
793   enum {
794     FALL_THROUGH   = 0,  // normal control
795     IF_NOT_TAKEN   = 0,  // the not-taken branch of an if (i.e., fall-through)
796     IF_TAKEN       = 1,  // the taken branch of an if
797     GOTO_TARGET    = 0,  // unique successor for goto, jsr, or ret
798     SWITCH_DEFAULT = 0,  // default branch of a switch
799     SWITCH_CASES   = 1   // first index for any non-default switch branches
800     // Unlike in other blocks, the successors of a switch are listed uniquely.
801   };
802 
803 private:
804   // A mapping from pre_order to Blocks.  This array is created
805   // only at the end of the flow.
806   Block** _block_map;
807 
808   // For each ciBlock index, a list of Blocks which share this ciBlock.
809   GrowableArray<Block*>** _idx_to_blocklist;
810 
811   // Tells if a given instruction is able to generate an exception edge.
812   bool can_trap(ciBytecodeStream& str);
813 
814   // Clone the loop heads. Returns true if any cloning occurred.
815   bool clone_loop_heads(StateVector* temp_vector, JsrSet* temp_set);
816 
817   // Clone lp's head and replace tail's successors with clone.
818   Block* clone_loop_head(Loop* lp, StateVector* temp_vector, JsrSet* temp_set);
819 
820 public:
821   // Return the block beginning at bci which has a JsrSet compatible
822   // with jsrs.
823   Block* block_at(int bci, JsrSet* set, CreateOption option = create_public_copy);
824 
825   // block factory
826   Block* get_block_for(int ciBlockIndex, JsrSet* jsrs, CreateOption option = create_public_copy);
827 
828   // How many of the blocks have the backedge_copy bit set?
829   int backedge_copy_count(int ciBlockIndex, JsrSet* jsrs) const;
830 
831   // Return an existing block containing bci which has a JsrSet compatible
832   // with jsrs, or null if there is none.
833   Block* existing_block_at(int bci, JsrSet* set) { return block_at(bci, set, no_create); }
834 
835   // Tell whether the flow analysis has encountered an error of some sort.
836   bool failing() { return env()->failing() || _failure_reason != nullptr; }
837 
838   // Reason this compilation is failing, such as "too many basic blocks".
839   const char* failure_reason() { return _failure_reason; }
840 
841   // Note a failure.
842   void record_failure(const char* reason);
843 
844   // Return the block of a given pre-order number.
845   int have_block_count() const      { return _block_map != nullptr; }
846   int block_count() const           { assert(have_block_count(), "");
847                                       return _next_pre_order; }
848   Block* pre_order_at(int po) const { assert(0 <= po && po < block_count(), "out of bounds");
849                                       return _block_map[po]; }
850   Block* start_block() const        { return pre_order_at(start_block_num()); }
851   int start_block_num() const       { return 0; }
852   Block* rpo_at(int rpo) const      { assert(0 <= rpo && rpo < block_count(), "out of bounds");
853                                       return _block_map[rpo]; }
854   int inc_next_pre_order()          { return _next_pre_order++; }
855 
856   ciType* mark_as_null_free(ciType* type);
857 
858 private:
859   // A work list used during flow analysis.
860   Block* _work_list;
861 
862   // List of blocks in reverse post order
863   Block* _rpo_list;
864 
865   // Next Block::_pre_order.  After mapping, doubles as block_count.
866   int _next_pre_order;
867 
868   // Are there more blocks on the work list?
869   bool work_list_empty() { return _work_list == nullptr; }
870 
871   // Get the next basic block from our work list.
872   Block* work_list_next();
873 
874   // Add a basic block to our work list.
875   void add_to_work_list(Block* block);
876 
877   // Prepend a basic block to rpo list.
878   void prepend_to_rpo_list(Block* blk) {
879     blk->set_rpo_next(_rpo_list);
880     _rpo_list = blk;
881   }
882 
883   // Root of the loop tree
884   Loop* _loop_tree_root;
885 
886   // State used for make_jsr_record
887   GrowableArray<JsrRecord*>* _jsr_records;
888 
889 public:
890   // Make a JsrRecord for a given (entry, return) pair, if such a record
891   // does not already exist.
892   JsrRecord* make_jsr_record(int entry_address, int return_address);
893 
894   void  set_loop_tree_root(Loop* ltr) { _loop_tree_root = ltr; }
895   Loop* loop_tree_root() const        { return _loop_tree_root; }
896 
897 private:
898   // Get the initial state for start_bci:
899   const StateVector* get_start_state();
900 
901   // Merge the current state into all exceptional successors at the
902   // current point in the code.
903   void flow_exceptions(GrowableArray<Block*>* exceptions,
904                        GrowableArray<ciInstanceKlass*>* exc_klasses,
905                        StateVector* state);
906 
907   // Merge the current state into all successors at the current point
908   // in the code.
909   void flow_successors(GrowableArray<Block*>* successors,
910                        StateVector* state);
911 
912   // Interpret the effects of the bytecodes on the incoming state
913   // vector of a basic block.  Push the changed state to succeeding
914   // basic blocks.
915   void flow_block(Block* block,
916                   StateVector* scratch_state,
917                   JsrSet* scratch_jsrs);
918 
919   // Perform the type flow analysis, creating and cloning Blocks as
920   // necessary.
921   void flow_types();
922 
923   // Perform the depth first type flow analysis. Helper for flow_types.
924   void df_flow_types(Block* start,
925                      bool do_flow,
926                      StateVector* temp_vector,
927                      JsrSet* temp_set);
928 
929   // Incrementally build loop tree.
930   void build_loop_tree(Block* blk);
931 
932   // Create the block map, which indexes blocks in pre_order.
933   void map_blocks();
934 
935 public:
936   // Perform type inference flow analysis.
937   void do_flow();
938 
939   // Determine if bci is dominated by dom_bci
940   bool is_dominated_by(int bci, int dom_bci);
941 
942   void print() const PRODUCT_RETURN;
943   void print_on(outputStream* st) const PRODUCT_RETURN;
944 
945   void rpo_print_on(outputStream* st) const PRODUCT_RETURN;
946 };
947 
948 #endif // SHARE_CI_CITYPEFLOW_HPP