1 /*
  2  * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_CODE_DEPENDENCIES_HPP
 26 #define SHARE_CODE_DEPENDENCIES_HPP
 27 
 28 #include "ci/ciCallSite.hpp"
 29 #include "ci/ciKlass.hpp"
 30 #include "ci/ciMethod.hpp"
 31 #include "ci/ciMethodHandle.hpp"
 32 #include "code/compressedStream.hpp"
 33 #include "code/nmethod.hpp"
 34 #include "memory/resourceArea.hpp"
 35 #include "runtime/safepointVerifiers.hpp"
 36 #include "utilities/growableArray.hpp"
 37 
 38 //** Dependencies represent assertions (approximate invariants) within
 39 // the runtime system, e.g. class hierarchy changes.  An example is an
 40 // assertion that a given method is not overridden; another example is
 41 // that a type has only one concrete subtype.  Compiled code which
 42 // relies on such assertions must be discarded if they are overturned
 43 // by changes in the runtime system.  We can think of these assertions
 44 // as approximate invariants, because we expect them to be overturned
 45 // very infrequently.  We are willing to perform expensive recovery
 46 // operations when they are overturned.  The benefit, of course, is
 47 // performing optimistic optimizations (!) on the object code.
 48 //
 49 // Changes in the class hierarchy due to dynamic linking or
 50 // class evolution can violate dependencies.  There is enough
 51 // indexing between classes and nmethods to make dependency
 52 // checking reasonably efficient.
 53 
 54 class ciEnv;
 55 class nmethod;
 56 class OopRecorder;
 57 class xmlStream;
 58 class CompileLog;
 59 class CompileTask;
 60 class DepChange;
 61 class   KlassDepChange;
 62 class     NewKlassDepChange;
 63 class     KlassInitDepChange;
 64 class   CallSiteDepChange;
 65 class NoSafepointVerifier;
 66 
 67 class Dependencies: public ResourceObj {
 68  public:
 69   // Note: In the comments on dependency types, most uses of the terms
 70   // subtype and supertype are used in a "non-strict" or "inclusive"
 71   // sense, and are starred to remind the reader of this fact.
 72   // Strict uses of the terms use the word "proper".
 73   //
 74   // Specifically, every class is its own subtype* and supertype*.
 75   // (This trick is easier than continually saying things like "Y is a
 76   // subtype of X or X itself".)
 77   //
 78   // Sometimes we write X > Y to mean X is a proper supertype of Y.
 79   // The notation X > {Y, Z} means X has proper subtypes Y, Z.
 80   // The notation X.m > Y means that Y inherits m from X, while
 81   // X.m > Y.m means Y overrides X.m.  A star denotes abstractness,
 82   // as *I > A, meaning (abstract) interface I is a super type of A,
 83   // or A.*m > B.m, meaning B.m implements abstract method A.m.
 84   //
 85   // In this module, the terms "subtype" and "supertype" refer to
 86   // Java-level reference type conversions, as detected by
 87   // "instanceof" and performed by "checkcast" operations.  The method
 88   // Klass::is_subtype_of tests these relations.  Note that "subtype"
 89   // is richer than "subclass" (as tested by Klass::is_subclass_of),
 90   // since it takes account of relations involving interface and array
 91   // types.
 92   //
 93   // To avoid needless complexity, dependencies involving array types
 94   // are not accepted.  If you need to make an assertion about an
 95   // array type, make the assertion about its corresponding element
 96   // types.  Any assertion that might change about an array type can
 97   // be converted to an assertion about its element type.
 98   //
 99   // Most dependencies are evaluated over a "context type" CX, which
100   // stands for the set Subtypes(CX) of every Java type that is a subtype*
101   // of CX.  When the system loads a new class or interface N, it is
102   // responsible for re-evaluating changed dependencies whose context
103   // type now includes N, that is, all super types of N.
104   //
105   enum DepType {
106     // _type is initially set to -1, to prevent "already at end" assert
107     undefined_dependency = -1,
108 
109     end_marker = 0,
110 
111     // An 'evol' dependency simply notes that the contents of the
112     // method were used.  If it evolves (is replaced), the nmethod
113     // must be recompiled.  No other dependencies are implied.
114     evol_method,
115     FIRST_TYPE = evol_method,
116 
117     // This dependency means that some argument of this method was
118     // assumed to be always passed in scalarized form. In case of
119     // a mismatch with two super methods (one assuming scalarized
120     // and one assuming non-scalarized), all callers of this method
121     // (via virtual calls) now need to be recompiled.
122     // See CompiledEntrySignature::compute_calling_conventions
123     mismatch_calling_convention,
124 
125     // A context type CX is a leaf it if has no proper subtype.
126     leaf_type,
127 
128     // An abstract class CX has exactly one concrete subtype CC.
129     abstract_with_unique_concrete_subtype,
130 
131     // Given a method M1 and a context class CX, the set MM(CX, M1) of
132     // "concrete matching methods" in CX of M1 is the set of every
133     // concrete M2 for which it is possible to create an invokevirtual
134     // or invokeinterface call site that can reach either M1 or M2.
135     // That is, M1 and M2 share a name, signature, and vtable index.
136     // We wish to notice when the set MM(CX, M1) is just {M1}, or
137     // perhaps a set of two {M1,M2}, and issue dependencies on this.
138 
139     // The set MM(CX, M1) can be computed by starting with any matching
140     // concrete M2 that is inherited into CX, and then walking the
141     // subtypes* of CX looking for concrete definitions.
142 
143     // The parameters to this dependency are the method M1 and the
144     // context class CX.  M1 must be either inherited in CX or defined
145     // in a subtype* of CX.  It asserts that MM(CX, M1) is no greater
146     // than {M1}.
147     unique_concrete_method_2, // one unique concrete method under CX
148 
149     // In addition to the method M1 and the context class CX, the parameters
150     // to this dependency are the resolved class RC1 and the
151     // resolved method RM1. It asserts that MM(CX, M1, RC1, RM1)
152     // is no greater than {M1}. RC1 and RM1 are used to improve the precision
153     // of the analysis.
154     unique_concrete_method_4, // one unique concrete method under CX
155 
156     // This dependency asserts that interface CX has a unique implementor class.
157     unique_implementor, // one unique implementor under CX
158 
159     // This dependency asserts that no instances of class or it's
160     // subclasses require finalization registration.
161     no_finalizable_subclasses,
162 
163     // This dependency asserts when the CallSite.target value changed.
164     call_site_target_value,
165 
166     TYPE_LIMIT
167   };
168   enum {
169     LG2_TYPE_LIMIT = 4,  // assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT))
170 
171     // handy categorizations of dependency types:
172     all_types           = ((1 << TYPE_LIMIT) - 1) & ((~0u) << FIRST_TYPE),
173 
174     non_klass_types     = (1 << call_site_target_value),
175     klass_types         = all_types & ~non_klass_types,
176 
177     non_ctxk_types      = (1 << evol_method) | (1 << mismatch_calling_convention) | (1 << call_site_target_value),
178     implicit_ctxk_types = 0,
179     explicit_ctxk_types = all_types & ~(non_ctxk_types | implicit_ctxk_types),
180 
181     max_arg_count = 4,   // current maximum number of arguments (incl. ctxk)
182 
183     // A "context type" is a class or interface that
184     // provides context for evaluating a dependency.
185     // When present, it is one of the arguments (dep_context_arg).
186     //
187     // If a dependency does not have a context type, there is a
188     // default context, depending on the type of the dependency.
189     // This bit signals that a default context has been compressed away.
190     default_context_type_bit = (1<<LG2_TYPE_LIMIT),
191 
192     method_types = (1 << evol_method) | (1 << mismatch_calling_convention),
193   };
194 
195   static const char* dep_name(DepType dept);
196   static int         dep_args(DepType dept);
197 
198   static bool is_klass_type(           DepType dept) { return dept_in_mask(dept, klass_types        ); }
199 
200   static bool has_explicit_context_arg(DepType dept) { return dept_in_mask(dept, explicit_ctxk_types); }
201   static bool has_implicit_context_arg(DepType dept) { return dept_in_mask(dept, implicit_ctxk_types); }
202 
203   static bool has_method_dep(DepType dept) { return dept_in_mask(dept, method_types); }
204 
205   static int           dep_context_arg(DepType dept) { return has_explicit_context_arg(dept) ? 0 : -1; }
206   static int  dep_implicit_context_arg(DepType dept) { return has_implicit_context_arg(dept) ? 0 : -1; }
207 
208   static void check_valid_dependency_type(DepType dept);
209 
210 #if INCLUDE_JVMCI
211   // A Metadata* or object value recorded in an OopRecorder
212   class DepValue {
213    private:
214     // Unique identifier of the value within the associated OopRecorder that
215     // encodes both the category of the value (0: invalid, positive: metadata, negative: object)
216     // and the index within a category specific array (metadata: index + 1, object: -(index + 1))
217     int _id;
218 
219    public:
220     DepValue() : _id(0) {}
221     DepValue(OopRecorder* rec, Metadata* metadata, DepValue* candidate = nullptr) {
222       assert(candidate == nullptr || candidate->is_metadata(), "oops");
223       if (candidate != nullptr && candidate->as_metadata(rec) == metadata) {
224         _id = candidate->_id;
225       } else {
226         _id = rec->find_index(metadata) + 1;
227       }
228     }
229     DepValue(OopRecorder* rec, jobject obj, DepValue* candidate = nullptr) {
230       assert(candidate == nullptr || candidate->is_object(), "oops");
231       if (candidate != nullptr && candidate->as_object(rec) == obj) {
232         _id = candidate->_id;
233       } else {
234         _id = -(rec->find_index(obj) + 1);
235       }
236     }
237 
238     // Used to sort values in ascending order of index() with metadata values preceding object values
239     int sort_key() const { return -_id; }
240 
241     bool operator == (const DepValue& other) const   { return other._id == _id; }
242 
243     bool is_valid() const             { return _id != 0; }
244     int  index() const                { assert(is_valid(), "oops"); return _id < 0 ? -(_id + 1) : _id - 1; }
245     bool is_metadata() const          { assert(is_valid(), "oops"); return _id > 0; }
246     bool is_object() const            { assert(is_valid(), "oops"); return _id < 0; }
247 
248     Metadata*  as_metadata(OopRecorder* rec) const    { assert(is_metadata(), "oops"); return rec->metadata_at(index()); }
249     Klass*     as_klass(OopRecorder* rec) const {
250       Metadata* m = as_metadata(rec);
251       assert(m != nullptr, "as_metadata returned nullptr");
252       assert(m->is_klass(), "oops");
253       return (Klass*) m;
254     }
255     Method*    as_method(OopRecorder* rec) const {
256       Metadata* m = as_metadata(rec);
257       assert(m != nullptr, "as_metadata returned nullptr");
258       assert(m->is_method(), "oops");
259       return (Method*) m;
260     }
261     jobject    as_object(OopRecorder* rec) const      { assert(is_object(), "oops"); return rec->oop_at(index()); }
262   };
263 #endif // INCLUDE_JVMCI
264 
265  private:
266   // State for writing a new set of dependencies:
267   GrowableArray<int>*       _dep_seen;  // (seen[h->ident] & (1<<dept))
268   GrowableArray<ciBaseObject*>*  _deps[TYPE_LIMIT];
269 #if INCLUDE_JVMCI
270   bool _using_dep_values;
271   GrowableArray<DepValue>*  _dep_values[TYPE_LIMIT];
272 #endif
273 
274   static const char* _dep_name[TYPE_LIMIT];
275   static int         _dep_args[TYPE_LIMIT];
276 
277   static bool dept_in_mask(DepType dept, int mask) {
278     return (int)dept >= 0 && dept < TYPE_LIMIT && ((1<<dept) & mask) != 0;
279   }
280 
281   bool note_dep_seen(int dept, ciBaseObject* x) {
282     assert(dept < BitsPerInt, "oob");
283     int x_id = x->ident();
284     assert(_dep_seen != nullptr, "deps must be writable");
285     int seen = _dep_seen->at_grow(x_id, 0);
286     _dep_seen->at_put(x_id, seen | (1<<dept));
287     // return true if we've already seen dept/x
288     return (seen & (1<<dept)) != 0;
289   }
290 
291 #if INCLUDE_JVMCI
292   bool note_dep_seen(int dept, DepValue x) {
293     assert(dept < BitsPerInt, "oops");
294     // place metadata deps at even indexes, object deps at odd indexes
295     int x_id = x.is_metadata() ? x.index() * 2 : (x.index() * 2) + 1;
296     assert(_dep_seen != nullptr, "deps must be writable");
297     int seen = _dep_seen->at_grow(x_id, 0);
298     _dep_seen->at_put(x_id, seen | (1<<dept));
299     // return true if we've already seen dept/x
300     return (seen & (1<<dept)) != 0;
301   }
302 #endif
303 
304   bool maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
305                         int ctxk_i, ciKlass* ctxk);
306 #if INCLUDE_JVMCI
307   bool maybe_merge_ctxk(GrowableArray<DepValue>* deps,
308                         int ctxk_i, DepValue ctxk);
309 #endif
310 
311   void sort_all_deps();
312   size_t estimate_size_in_bytes();
313 
314   // Initialize _deps, etc.
315   void initialize(ciEnv* env);
316 
317   // State for making a new set of dependencies:
318   OopRecorder* _oop_recorder;
319 
320   // Logging support
321   CompileLog* _log;
322 
323   address  _content_bytes;  // everything but the oop references, encoded
324   size_t   _size_in_bytes;
325 
326  public:
327   // Make a new empty dependencies set.
328   Dependencies(ciEnv* env) {
329     initialize(env);
330   }
331 #if INCLUDE_JVMCI
332   Dependencies(Arena* arena, OopRecorder* oop_recorder, CompileLog* log);
333 #endif
334 
335  private:
336   // Check for a valid context type.
337   // Enforce the restriction against array types.
338   static void check_ctxk(ciKlass* ctxk) {
339     assert(ctxk->is_instance_klass(), "java types only");
340   }
341   static void check_ctxk_concrete(ciKlass* ctxk) {
342     assert(is_concrete_klass(ctxk->as_instance_klass()), "must be concrete");
343   }
344   static void check_ctxk_abstract(ciKlass* ctxk) {
345     check_ctxk(ctxk);
346     assert(!is_concrete_klass(ctxk->as_instance_klass()), "must be abstract");
347   }
348   static void check_unique_method(ciKlass* ctxk, ciMethod* m) {
349     assert(!m->can_be_statically_bound(ctxk->as_instance_klass()) || ctxk->is_interface(), "redundant");
350   }
351   static void check_unique_implementor(ciInstanceKlass* ctxk, ciInstanceKlass* uniqk) {
352     assert(ctxk->implementor() == uniqk, "not a unique implementor");
353   }
354 
355   void assert_common_1(DepType dept, ciBaseObject* x);
356   void assert_common_2(DepType dept, ciBaseObject* x0, ciBaseObject* x1);
357   void assert_common_4(DepType dept, ciKlass* ctxk, ciBaseObject* x1, ciBaseObject* x2, ciBaseObject* x3);
358 
359  public:
360   // Adding assertions to a new dependency set at compile time:
361   void assert_evol_method(ciMethod* m);
362   void assert_mismatch_calling_convention(ciMethod* m);
363   void assert_leaf_type(ciKlass* ctxk);
364   void assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck);
365   void assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm);
366   void assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm, ciKlass* resolved_klass, ciMethod* resolved_method);
367   void assert_unique_implementor(ciInstanceKlass* ctxk, ciInstanceKlass* uniqk);
368   void assert_has_no_finalizable_subclasses(ciKlass* ctxk);
369   void assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle);
370 #if INCLUDE_JVMCI
371  private:
372   static void check_ctxk(Klass* ctxk) {
373     assert(ctxk->is_instance_klass(), "java types only");
374   }
375   static void check_ctxk_abstract(Klass* ctxk) {
376     check_ctxk(ctxk);
377     assert(ctxk->is_abstract(), "must be abstract");
378   }
379   static void check_unique_method(Klass* ctxk, Method* m) {
380     assert(!m->can_be_statically_bound(InstanceKlass::cast(ctxk)), "redundant");
381   }
382 
383   void assert_common_1(DepType dept, DepValue x);
384   void assert_common_2(DepType dept, DepValue x0, DepValue x1);
385 
386  public:
387   void assert_evol_method(Method* m);
388   void assert_has_no_finalizable_subclasses(Klass* ctxk);
389   void assert_leaf_type(Klass* ctxk);
390   void assert_unique_implementor(InstanceKlass* ctxk, InstanceKlass* uniqk);
391   void assert_unique_concrete_method(Klass* ctxk, Method* uniqm);
392   void assert_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck);
393   void assert_call_site_target_value(oop callSite, oop methodHandle);
394 #endif // INCLUDE_JVMCI
395 
396   // Define whether a given method or type is concrete.
397   // These methods define the term "concrete" as used in this module.
398   // For this module, an "abstract" class is one which is non-concrete.
399   //
400   // Future optimizations may allow some classes to remain
401   // non-concrete until their first instantiation, and allow some
402   // methods to remain non-concrete until their first invocation.
403   // In that case, there would be a middle ground between concrete
404   // and abstract (as defined by the Java language and VM).
405   static bool is_concrete_klass(Klass* k);    // k is instantiable
406   static bool is_concrete_method(Method* m, Klass* k);  // m is invocable
407   static Klass* find_finalizable_subclass(InstanceKlass* ik);
408 
409   static bool is_concrete_root_method(Method* uniqm, InstanceKlass* ctxk);
410   static Klass* find_witness_AME(InstanceKlass* ctxk, Method* m, KlassDepChange* changes = nullptr);
411 
412   // These versions of the concreteness queries work through the CI.
413   // The CI versions are allowed to skew sometimes from the VM
414   // (oop-based) versions.  The cost of such a difference is a
415   // (safely) aborted compilation, or a deoptimization, or a missed
416   // optimization opportunity.
417   //
418   // In order to prevent spurious assertions, query results must
419   // remain stable within any single ciEnv instance.  (I.e., they must
420   // not go back into the VM to get their value; they must cache the
421   // bit in the CI, either eagerly or lazily.)
422   static bool is_concrete_klass(ciInstanceKlass* k); // k appears instantiable
423   static bool has_finalizable_subclass(ciInstanceKlass* k);
424 
425   // As a general rule, it is OK to compile under the assumption that
426   // a given type or method is concrete, even if it at some future
427   // point becomes abstract.  So dependency checking is one-sided, in
428   // that it permits supposedly concrete classes or methods to turn up
429   // as really abstract.  (This shouldn't happen, except during class
430   // evolution, but that's the logic of the checking.)  However, if a
431   // supposedly abstract class or method suddenly becomes concrete, a
432   // dependency on it must fail.
433 
434   // Checking old assertions at run-time (in the VM only):
435   static Klass* check_evol_method(Method* m);
436   static Klass* check_mismatch_calling_convention(Method* m);
437   static Klass* check_leaf_type(InstanceKlass* ctxk);
438   static Klass* check_abstract_with_unique_concrete_subtype(InstanceKlass* ctxk, Klass* conck, NewKlassDepChange* changes = nullptr);
439   static Klass* check_unique_implementor(InstanceKlass* ctxk, Klass* uniqk, NewKlassDepChange* changes = nullptr);
440   static Klass* check_unique_concrete_method(InstanceKlass* ctxk, Method* uniqm, NewKlassDepChange* changes = nullptr);
441   static Klass* check_unique_concrete_method(InstanceKlass* ctxk, Method* uniqm, Klass* resolved_klass, Method* resolved_method, KlassDepChange* changes = nullptr);
442   static Klass* check_has_no_finalizable_subclasses(InstanceKlass* ctxk, NewKlassDepChange* changes = nullptr);
443   static Klass* check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes = nullptr);
444   // A returned Klass* is nullptr if the dependency assertion is still
445   // valid.  A non-nullptr Klass* is a 'witness' to the assertion
446   // failure, a point in the class hierarchy where the assertion has
447   // been proven false.  For example, if check_leaf_type returns
448   // non-nullptr, the value is a subtype of the supposed leaf type.  This
449   // witness value may be useful for logging the dependency failure.
450   // Note that, when a dependency fails, there may be several possible
451   // witnesses to the failure.  The value returned from the check_foo
452   // method is chosen arbitrarily.
453 
454   // The 'changes' value, if non-null, requests a limited spot-check
455   // near the indicated recent changes in the class hierarchy.
456   // It is used by DepStream::spot_check_dependency_at.
457 
458   // Detecting possible new assertions:
459   static Klass*  find_unique_concrete_subtype(InstanceKlass* ctxk);
460   static Method* find_unique_concrete_method(InstanceKlass* ctxk, Method* m,
461                                              Klass** participant = nullptr); // out parameter
462   static Method* find_unique_concrete_method(InstanceKlass* ctxk, Method* m, Klass* resolved_klass, Method* resolved_method);
463 
464 #ifdef ASSERT
465   static bool verify_method_context(InstanceKlass* ctxk, Method* m);
466 #endif // ASSERT
467 
468   // Create the encoding which will be stored in an nmethod.
469   void encode_content_bytes();
470 
471   address content_bytes() {
472     assert(_content_bytes != nullptr, "encode it first");
473     return _content_bytes;
474   }
475   size_t size_in_bytes() {
476     assert(_content_bytes != nullptr, "encode it first");
477     return _size_in_bytes;
478   }
479 
480   OopRecorder* oop_recorder() { return _oop_recorder; }
481   CompileLog*  log()          { return _log; }
482 
483   void copy_to(nmethod* nm);
484 
485   static bool _verify_in_progress;  // turn off logging dependencies
486 
487   DepType validate_dependencies(CompileTask* task, char** failure_detail = nullptr);
488 
489   void log_all_dependencies();
490 
491   void log_dependency(DepType dept, GrowableArray<ciBaseObject*>* args) {
492     ResourceMark rm;
493     int argslen = args->length();
494     write_dependency_to(log(), dept, args);
495     guarantee(argslen == args->length(),
496               "args array cannot grow inside nested ResoureMark scope");
497   }
498 
499   void log_dependency(DepType dept,
500                       ciBaseObject* x0,
501                       ciBaseObject* x1 = nullptr,
502                       ciBaseObject* x2 = nullptr,
503                       ciBaseObject* x3 = nullptr) {
504     if (log() == nullptr) {
505       return;
506     }
507     ResourceMark rm;
508     GrowableArray<ciBaseObject*>* ciargs =
509                 new GrowableArray<ciBaseObject*>(dep_args(dept));
510     assert (x0 != nullptr, "no log x0");
511     ciargs->push(x0);
512 
513     if (x1 != nullptr) {
514       ciargs->push(x1);
515     }
516     if (x2 != nullptr) {
517       ciargs->push(x2);
518     }
519     if (x3 != nullptr) {
520       ciargs->push(x3);
521     }
522     assert(ciargs->length() == dep_args(dept), "");
523     log_dependency(dept, ciargs);
524   }
525 
526   class DepArgument : public ResourceObj {
527    private:
528     bool  _is_oop;
529     bool  _valid;
530     void* _value;
531    public:
532     DepArgument() : _is_oop(false), _valid(false), _value(nullptr) {}
533     DepArgument(oop v): _is_oop(true), _valid(true), _value(v) {}
534     DepArgument(Metadata* v): _is_oop(false), _valid(true), _value(v) {}
535 
536     bool is_null() const               { return _value == nullptr; }
537     bool is_oop() const                { return _is_oop; }
538     bool is_metadata() const           { return !_is_oop; }
539     bool is_klass() const              { return is_metadata() && metadata_value()->is_klass(); }
540     bool is_method() const             { return is_metadata() && metadata_value()->is_method(); }
541 
542     oop oop_value() const              { assert(_is_oop && _valid, "must be"); return cast_to_oop(_value); }
543     Metadata* metadata_value() const   { assert(!_is_oop && _valid, "must be"); return (Metadata*) _value; }
544   };
545 
546   static void print_dependency(DepType dept,
547                                GrowableArray<DepArgument>* args,
548                                Klass* witness = nullptr, outputStream* st = tty);
549 
550  private:
551   // helper for encoding common context types as zero:
552   static ciKlass* ctxk_encoded_as_null(DepType dept, ciBaseObject* x);
553 
554   static Klass* ctxk_encoded_as_null(DepType dept, Metadata* x);
555 
556   static void write_dependency_to(CompileLog* log,
557                                   DepType dept,
558                                   GrowableArray<ciBaseObject*>* args,
559                                   Klass* witness = nullptr);
560   static void write_dependency_to(CompileLog* log,
561                                   DepType dept,
562                                   GrowableArray<DepArgument>* args,
563                                   Klass* witness = nullptr);
564   static void write_dependency_to(xmlStream* xtty,
565                                   DepType dept,
566                                   GrowableArray<DepArgument>* args,
567                                   Klass* witness = nullptr);
568  public:
569   // Use this to iterate over an nmethod's dependency set.
570   // Works on new and old dependency sets.
571   // Usage:
572   //
573   // ;
574   // Dependencies::DepType dept;
575   // for (Dependencies::DepStream deps(nm); deps.next(); ) {
576   //   ...
577   // }
578   //
579   // The caller must be in the VM, since oops are not wrapped in handles.
580   class DepStream {
581   private:
582     nmethod*              _code;   // null if in a compiler thread
583     Dependencies*         _deps;   // null if not in a compiler thread
584     CompressedReadStream  _bytes;
585 #ifdef ASSERT
586     size_t                _byte_limit;
587 #endif
588 
589     // iteration variables:
590     DepType               _type;
591     int                   _xi[max_arg_count+1];
592 
593     void initial_asserts(size_t byte_limit) NOT_DEBUG({});
594 
595     inline Metadata* recorded_metadata_at(int i);
596     inline oop recorded_oop_at(int i);
597 
598     Klass* check_klass_dependency(KlassDepChange* changes);
599     Klass* check_new_klass_dependency(NewKlassDepChange* changes);
600     Klass* check_klass_init_dependency(KlassInitDepChange* changes);
601     Klass* check_call_site_dependency(CallSiteDepChange* changes);
602 
603     void trace_and_log_witness(Klass* witness);
604 
605   public:
606     DepStream(Dependencies* deps)
607       : _code(nullptr),
608         _deps(deps),
609         _bytes(deps->content_bytes())
610     {
611       initial_asserts(deps->size_in_bytes());
612     }
613     DepStream(nmethod* code)
614       : _code(code),
615         _deps(nullptr),
616         _bytes(code->dependencies_begin())
617     {
618       initial_asserts(code->dependencies_size());
619     }
620 
621     bool next();
622 
623     DepType type()               { return _type; }
624     bool is_oop_argument(int i)  { return type() == call_site_target_value; }
625     uintptr_t get_identifier(int i);
626 
627     int argument_count()         { return dep_args(type()); }
628     int argument_index(int i)    { assert(0 <= i && i < argument_count(), "oob");
629                                    return _xi[i]; }
630     Metadata* argument(int i);     // => recorded_oop_at(argument_index(i))
631     oop argument_oop(int i);         // => recorded_oop_at(argument_index(i))
632     InstanceKlass* context_type();
633 
634     bool is_klass_type()         { return Dependencies::is_klass_type(type()); }
635 
636     Method* method_argument(int i) {
637       Metadata* x = argument(i);
638       assert(x->is_method(), "type");
639       return (Method*) x;
640     }
641     Klass* type_argument(int i) {
642       Metadata* x = argument(i);
643       assert(x->is_klass(), "type");
644       return (Klass*) x;
645     }
646 
647     // The point of the whole exercise:  Is this dep still OK?
648     Klass* check_dependency() {
649       Klass* result = check_klass_dependency(nullptr);
650       if (result != nullptr)  return result;
651       return check_call_site_dependency(nullptr);
652     }
653 
654     // A lighter version:  Checks only around recent changes in a class
655     // hierarchy.  (See Universe::flush_dependents_on.)
656     Klass* spot_check_dependency_at(DepChange& changes);
657 
658     // Log the current dependency to xtty or compilation log.
659     void log_dependency(Klass* witness = nullptr);
660 
661     // Print the current dependency to tty.
662     void print_dependency(outputStream* st, Klass* witness = nullptr, bool verbose = false);
663   };
664   friend class Dependencies::DepStream;
665 
666   static void print_statistics();
667 };
668 
669 
670 class DependencySignature : public ResourceObj {
671  private:
672   int                   _args_count;
673   uintptr_t             _argument_hash[Dependencies::max_arg_count];
674   Dependencies::DepType _type;
675 
676  public:
677   DependencySignature(Dependencies::DepStream& dep) {
678     _args_count = dep.argument_count();
679     _type = dep.type();
680     for (int i = 0; i < _args_count; i++) {
681       _argument_hash[i] = dep.get_identifier(i);
682     }
683   }
684 
685   static bool     equals(DependencySignature const& s1, DependencySignature const& s2);
686   static unsigned hash  (DependencySignature const& s1) { return (unsigned)(s1.arg(0) >> 2); }
687 
688   int args_count()             const { return _args_count; }
689   uintptr_t arg(int idx)       const { return _argument_hash[idx]; }
690   Dependencies::DepType type() const { return _type; }
691 
692 };
693 
694 
695 // Every particular DepChange is a sub-class of this class.
696 class DepChange : public StackObj {
697  public:
698   // What kind of DepChange is this?
699   virtual bool is_klass_change()      const { return false; }
700   virtual bool is_new_klass_change()  const { return false; }
701   virtual bool is_klass_init_change() const { return false; }
702   virtual bool is_call_site_change()  const { return false; }
703 
704   // Subclass casting with assertions.
705   KlassDepChange*    as_klass_change() {
706     assert(is_klass_change(), "bad cast");
707     return (KlassDepChange*) this;
708   }
709   NewKlassDepChange* as_new_klass_change() {
710     assert(is_new_klass_change(), "bad cast");
711     return (NewKlassDepChange*) this;
712   }
713   KlassInitDepChange* as_klass_init_change() {
714     assert(is_klass_init_change(), "bad cast");
715     return (KlassInitDepChange*) this;
716   }
717   CallSiteDepChange* as_call_site_change() {
718     assert(is_call_site_change(), "bad cast");
719     return (CallSiteDepChange*) this;
720   }
721 
722   void print();
723   void print_on(outputStream* st);
724 
725  public:
726   enum ChangeType {
727     NO_CHANGE = 0,              // an uninvolved klass
728     Change_new_type,            // a newly loaded type
729     Change_new_sub,             // a super with a new subtype
730     Change_new_impl,            // an interface with a new implementation
731     CHANGE_LIMIT,
732     Start_Klass = CHANGE_LIMIT  // internal indicator for ContextStream
733   };
734 
735   // Usage:
736   // for (DepChange::ContextStream str(changes); str.next(); ) {
737   //   InstanceKlass* k = str.klass();
738   //   switch (str.change_type()) {
739   //     ...
740   //   }
741   // }
742   class ContextStream : public StackObj {
743    private:
744     DepChange&  _changes;
745     friend class DepChange;
746 
747     // iteration variables:
748     ChangeType     _change_type;
749     InstanceKlass* _klass;
750     Array<InstanceKlass*>* _ti_base;    // i.e., transitive_interfaces
751     int         _ti_index;
752     int         _ti_limit;
753 
754     // start at the beginning:
755     void start();
756 
757    public:
758     ContextStream(DepChange& changes)
759       : _changes(changes)
760     { start(); }
761 
762     ContextStream(DepChange& changes, NoSafepointVerifier& nsv)
763       : _changes(changes)
764       // the nsv argument makes it safe to hold oops like _klass
765     { start(); }
766 
767     bool next();
768 
769     ChangeType change_type()     { return _change_type; }
770     InstanceKlass* klass()       { return _klass; }
771   };
772   friend class DepChange::ContextStream;
773 };
774 
775 
776 // A class hierarchy change coming through the VM (under the Compile_lock).
777 // The change is structured as a single type with any number of supers
778 // and implemented interface types.  Other than the type, any of the
779 // super types can be context types for a relevant dependency, which the
780 // type could invalidate.
781 class KlassDepChange : public DepChange {
782  private:
783   // each change set is rooted in exactly one type (at present):
784   InstanceKlass* _type;
785 
786   void initialize();
787 
788  protected:
789   // notes the type, marks it and all its super-types
790   KlassDepChange(InstanceKlass* type) : _type(type) {
791     initialize();
792   }
793 
794   // cleans up the marks
795   ~KlassDepChange();
796 
797  public:
798   // What kind of DepChange is this?
799   virtual bool is_klass_change() const { return true; }
800 
801   InstanceKlass* type() { return _type; }
802 
803   // involves_context(k) is true if k == _type or any of its super types
804   bool involves_context(Klass* k);
805 };
806 
807 // A class hierarchy change: new type is loaded.
808 class NewKlassDepChange : public KlassDepChange {
809  public:
810   NewKlassDepChange(InstanceKlass* new_type) : KlassDepChange(new_type) {}
811 
812   // What kind of DepChange is this?
813   virtual bool is_new_klass_change() const { return true; }
814 
815   InstanceKlass* new_type() { return type(); }
816 };
817 
818 // Change in initialization state of a loaded class.
819 class KlassInitDepChange : public KlassDepChange {
820  public:
821   KlassInitDepChange(InstanceKlass* type) : KlassDepChange(type) {}
822 
823   // What kind of DepChange is this?
824   virtual bool is_klass_init_change() const { return true; }
825 };
826 
827 // A CallSite has changed its target.
828 class CallSiteDepChange : public DepChange {
829  private:
830   Handle _call_site;
831   Handle _method_handle;
832 
833  public:
834   CallSiteDepChange(Handle call_site, Handle method_handle);
835 
836   // What kind of DepChange is this?
837   virtual bool is_call_site_change() const { return true; }
838 
839   oop call_site()     const { return _call_site();     }
840   oop method_handle() const { return _method_handle(); }
841 };
842 
843 #endif // SHARE_CODE_DEPENDENCIES_HPP