1 /*
   2  * Copyright (c) 1999, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/vmClasses.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeHeapState.hpp"
  32 #include "code/dependencyContext.hpp"
  33 #include "compiler/compilationLog.hpp"
  34 #include "compiler/compilationPolicy.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileLog.hpp"
  37 #include "compiler/compilerEvent.hpp"
  38 #include "compiler/compilerOracle.hpp"
  39 #include "compiler/directivesParser.hpp"
  40 #include "interpreter/linkResolver.hpp"
  41 #include "jvm.h"
  42 #include "jfr/jfrEvents.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logStream.hpp"
  45 #include "memory/allocation.inline.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.hpp"
  48 #include "oops/methodData.hpp"
  49 #include "oops/method.inline.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "prims/jvmtiExport.hpp"
  52 #include "prims/nativeLookup.hpp"
  53 #include "prims/whitebox.hpp"
  54 #include "runtime/atomic.hpp"
  55 #include "runtime/escapeBarrier.hpp"
  56 #include "runtime/globals_extension.hpp"
  57 #include "runtime/handles.inline.hpp"
  58 #include "runtime/init.hpp"
  59 #include "runtime/interfaceSupport.inline.hpp"
  60 #include "runtime/java.hpp"
  61 #include "runtime/javaCalls.hpp"
  62 #include "runtime/jniHandles.inline.hpp"
  63 #include "runtime/os.hpp"
  64 #include "runtime/perfData.hpp"
  65 #include "runtime/safepointVerifiers.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/threads.hpp"
  68 #include "runtime/threadSMR.hpp"
  69 #include "runtime/timerTrace.hpp"
  70 #include "runtime/vframe.inline.hpp"
  71 #include "utilities/debug.hpp"
  72 #include "utilities/dtrace.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/formatBuffer.hpp"
  75 #include "utilities/macros.hpp"
  76 #ifdef COMPILER1
  77 #include "c1/c1_Compiler.hpp"
  78 #endif
  79 #ifdef COMPILER2
  80 #include "opto/c2compiler.hpp"
  81 #endif
  82 #if INCLUDE_JVMCI
  83 #include "jvmci/jvmciEnv.hpp"
  84 #include "jvmci/jvmciRuntime.hpp"
  85 #endif
  86 
  87 #ifdef DTRACE_ENABLED
  88 
  89 // Only bother with this argument setup if dtrace is available
  90 
  91 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)             \
  92   {                                                                      \
  93     Symbol* klass_name = (method)->klass_name();                         \
  94     Symbol* name = (method)->name();                                     \
  95     Symbol* signature = (method)->signature();                           \
  96     HOTSPOT_METHOD_COMPILE_BEGIN(                                        \
  97       (char *) comp_name, strlen(comp_name),                             \
  98       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
  99       (char *) name->bytes(), name->utf8_length(),                       \
 100       (char *) signature->bytes(), signature->utf8_length());            \
 101   }
 102 
 103 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)      \
 104   {                                                                      \
 105     Symbol* klass_name = (method)->klass_name();                         \
 106     Symbol* name = (method)->name();                                     \
 107     Symbol* signature = (method)->signature();                           \
 108     HOTSPOT_METHOD_COMPILE_END(                                          \
 109       (char *) comp_name, strlen(comp_name),                             \
 110       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 111       (char *) name->bytes(), name->utf8_length(),                       \
 112       (char *) signature->bytes(), signature->utf8_length(), (success)); \
 113   }
 114 
 115 #else //  ndef DTRACE_ENABLED
 116 
 117 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
 118 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
 119 
 120 #endif // ndef DTRACE_ENABLED
 121 
 122 bool CompileBroker::_initialized = false;
 123 volatile bool CompileBroker::_should_block = false;
 124 volatile int  CompileBroker::_print_compilation_warning = 0;
 125 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
 126 
 127 // The installed compiler(s)
 128 AbstractCompiler* CompileBroker::_compilers[2];
 129 
 130 // The maximum numbers of compiler threads to be determined during startup.
 131 int CompileBroker::_c1_count = 0;
 132 int CompileBroker::_c2_count = 0;
 133 
 134 // An array of compiler names as Java String objects
 135 jobject* CompileBroker::_compiler1_objects = NULL;
 136 jobject* CompileBroker::_compiler2_objects = NULL;
 137 
 138 CompileLog** CompileBroker::_compiler1_logs = NULL;
 139 CompileLog** CompileBroker::_compiler2_logs = NULL;
 140 
 141 // These counters are used to assign an unique ID to each compilation.
 142 volatile jint CompileBroker::_compilation_id     = 0;
 143 volatile jint CompileBroker::_osr_compilation_id = 0;
 144 volatile jint CompileBroker::_native_compilation_id = 0;
 145 
 146 // Performance counters
 147 PerfCounter* CompileBroker::_perf_total_compilation = NULL;
 148 PerfCounter* CompileBroker::_perf_osr_compilation = NULL;
 149 PerfCounter* CompileBroker::_perf_standard_compilation = NULL;
 150 
 151 PerfCounter* CompileBroker::_perf_total_bailout_count = NULL;
 152 PerfCounter* CompileBroker::_perf_total_invalidated_count = NULL;
 153 PerfCounter* CompileBroker::_perf_total_compile_count = NULL;
 154 PerfCounter* CompileBroker::_perf_total_osr_compile_count = NULL;
 155 PerfCounter* CompileBroker::_perf_total_standard_compile_count = NULL;
 156 
 157 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = NULL;
 158 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = NULL;
 159 PerfCounter* CompileBroker::_perf_sum_nmethod_size = NULL;
 160 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = NULL;
 161 
 162 PerfStringVariable* CompileBroker::_perf_last_method = NULL;
 163 PerfStringVariable* CompileBroker::_perf_last_failed_method = NULL;
 164 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = NULL;
 165 PerfVariable*       CompileBroker::_perf_last_compile_type = NULL;
 166 PerfVariable*       CompileBroker::_perf_last_compile_size = NULL;
 167 PerfVariable*       CompileBroker::_perf_last_failed_type = NULL;
 168 PerfVariable*       CompileBroker::_perf_last_invalidated_type = NULL;
 169 
 170 // Timers and counters for generating statistics
 171 elapsedTimer CompileBroker::_t_total_compilation;
 172 elapsedTimer CompileBroker::_t_osr_compilation;
 173 elapsedTimer CompileBroker::_t_standard_compilation;
 174 elapsedTimer CompileBroker::_t_invalidated_compilation;
 175 elapsedTimer CompileBroker::_t_bailedout_compilation;
 176 
 177 int CompileBroker::_total_bailout_count            = 0;
 178 int CompileBroker::_total_invalidated_count        = 0;
 179 int CompileBroker::_total_compile_count            = 0;
 180 int CompileBroker::_total_osr_compile_count        = 0;
 181 int CompileBroker::_total_standard_compile_count   = 0;
 182 int CompileBroker::_total_compiler_stopped_count   = 0;
 183 int CompileBroker::_total_compiler_restarted_count = 0;
 184 
 185 int CompileBroker::_sum_osr_bytes_compiled         = 0;
 186 int CompileBroker::_sum_standard_bytes_compiled    = 0;
 187 int CompileBroker::_sum_nmethod_size               = 0;
 188 int CompileBroker::_sum_nmethod_code_size          = 0;
 189 
 190 jlong CompileBroker::_peak_compilation_time        = 0;
 191 
 192 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization];
 193 
 194 CompileQueue* CompileBroker::_c2_compile_queue     = NULL;
 195 CompileQueue* CompileBroker::_c1_compile_queue     = NULL;
 196 
 197 bool compileBroker_init() {
 198   if (LogEvents) {
 199     CompilationLog::init();
 200   }
 201 
 202   // init directives stack, adding default directive
 203   DirectivesStack::init();
 204 
 205   if (DirectivesParser::has_file()) {
 206     return DirectivesParser::parse_from_flag();
 207   } else if (CompilerDirectivesPrint) {
 208     // Print default directive even when no other was added
 209     DirectivesStack::print(tty);
 210   }
 211 
 212   return true;
 213 }
 214 
 215 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
 216   CompilerThread* thread = CompilerThread::current();
 217   thread->set_task(task);
 218   CompileLog*     log  = thread->log();
 219   if (log != NULL && !task->is_unloaded())  task->log_task_start(log);
 220 }
 221 
 222 CompileTaskWrapper::~CompileTaskWrapper() {
 223   CompilerThread* thread = CompilerThread::current();
 224   CompileTask* task = thread->task();
 225   CompileLog*  log  = thread->log();
 226   if (log != NULL && !task->is_unloaded())  task->log_task_done(log);
 227   thread->set_task(NULL);
 228   thread->set_env(NULL);
 229   if (task->is_blocking()) {
 230     bool free_task = false;
 231     {
 232       MutexLocker notifier(thread, task->lock());
 233       task->mark_complete();
 234 #if INCLUDE_JVMCI
 235       if (CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 236         if (!task->has_waiter()) {
 237           // The waiting thread timed out and thus did not free the task.
 238           free_task = true;
 239         }
 240         task->set_blocking_jvmci_compile_state(NULL);
 241       }
 242 #endif
 243       if (!free_task) {
 244         // Notify the waiting thread that the compilation has completed
 245         // so that it can free the task.
 246         task->lock()->notify_all();
 247       }
 248     }
 249     if (free_task) {
 250       // The task can only be freed once the task lock is released.
 251       CompileTask::free(task);
 252     }
 253   } else {
 254     task->mark_complete();
 255 
 256     // By convention, the compiling thread is responsible for
 257     // recycling a non-blocking CompileTask.
 258     CompileTask::free(task);
 259   }
 260 }
 261 
 262 /**
 263  * Check if a CompilerThread can be removed and update count if requested.
 264  */
 265 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) {
 266   assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
 267   if (!ReduceNumberOfCompilerThreads) return false;
 268 
 269   AbstractCompiler *compiler = ct->compiler();
 270   int compiler_count = compiler->num_compiler_threads();
 271   bool c1 = compiler->is_c1();
 272 
 273   // Keep at least 1 compiler thread of each type.
 274   if (compiler_count < 2) return false;
 275 
 276   // Keep thread alive for at least some time.
 277   if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
 278 
 279 #if INCLUDE_JVMCI
 280   if (compiler->is_jvmci()) {
 281     // Handles for JVMCI thread objects may get released concurrently.
 282     if (do_it) {
 283       assert(CompileThread_lock->owner() == ct, "must be holding lock");
 284     } else {
 285       // Skip check if it's the last thread and let caller check again.
 286       return true;
 287     }
 288   }
 289 #endif
 290 
 291   // We only allow the last compiler thread of each type to get removed.
 292   jobject last_compiler = c1 ? compiler1_object(compiler_count - 1)
 293                              : compiler2_object(compiler_count - 1);
 294   if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) {
 295     if (do_it) {
 296       assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
 297       compiler->set_num_compiler_threads(compiler_count - 1);
 298 #if INCLUDE_JVMCI
 299       if (compiler->is_jvmci()) {
 300         // Old j.l.Thread object can die when no longer referenced elsewhere.
 301         JNIHandles::destroy_global(compiler2_object(compiler_count - 1));
 302         _compiler2_objects[compiler_count - 1] = NULL;
 303       }
 304 #endif
 305     }
 306     return true;
 307   }
 308   return false;
 309 }
 310 
 311 /**
 312  * Add a CompileTask to a CompileQueue.
 313  */
 314 void CompileQueue::add(CompileTask* task) {
 315   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 316 
 317   task->set_next(NULL);
 318   task->set_prev(NULL);
 319 
 320   if (_last == NULL) {
 321     // The compile queue is empty.
 322     assert(_first == NULL, "queue is empty");
 323     _first = task;
 324     _last = task;
 325   } else {
 326     // Append the task to the queue.
 327     assert(_last->next() == NULL, "not last");
 328     _last->set_next(task);
 329     task->set_prev(_last);
 330     _last = task;
 331   }
 332   ++_size;
 333 
 334   // Mark the method as being in the compile queue.
 335   task->method()->set_queued_for_compilation();
 336 
 337   if (CIPrintCompileQueue) {
 338     print_tty();
 339   }
 340 
 341   if (LogCompilation && xtty != NULL) {
 342     task->log_task_queued();
 343   }
 344 
 345   // Notify CompilerThreads that a task is available.
 346   MethodCompileQueue_lock->notify_all();
 347 }
 348 
 349 /**
 350  * Empties compilation queue by putting all compilation tasks onto
 351  * a freelist. Furthermore, the method wakes up all threads that are
 352  * waiting on a compilation task to finish. This can happen if background
 353  * compilation is disabled.
 354  */
 355 void CompileQueue::free_all() {
 356   MutexLocker mu(MethodCompileQueue_lock);
 357   CompileTask* next = _first;
 358 
 359   // Iterate over all tasks in the compile queue
 360   while (next != NULL) {
 361     CompileTask* current = next;
 362     next = current->next();
 363     {
 364       // Wake up thread that blocks on the compile task.
 365       MutexLocker ct_lock(current->lock());
 366       current->lock()->notify();
 367     }
 368     // Put the task back on the freelist.
 369     CompileTask::free(current);
 370   }
 371   _first = NULL;
 372   _last = NULL;
 373 
 374   // Wake up all threads that block on the queue.
 375   MethodCompileQueue_lock->notify_all();
 376 }
 377 
 378 /**
 379  * Get the next CompileTask from a CompileQueue
 380  */
 381 CompileTask* CompileQueue::get(CompilerThread* thread) {
 382   // save methods from RedefineClasses across safepoint
 383   // across MethodCompileQueue_lock below.
 384   methodHandle save_method;
 385   methodHandle save_hot_method;
 386 
 387   MonitorLocker locker(MethodCompileQueue_lock);
 388   // If _first is NULL we have no more compile jobs. There are two reasons for
 389   // having no compile jobs: First, we compiled everything we wanted. Second,
 390   // we ran out of code cache so compilation has been disabled. In the latter
 391   // case we perform code cache sweeps to free memory such that we can re-enable
 392   // compilation.
 393   while (_first == NULL) {
 394     // Exit loop if compilation is disabled forever
 395     if (CompileBroker::is_compilation_disabled_forever()) {
 396       return NULL;
 397     }
 398 
 399     AbstractCompiler* compiler = thread->compiler();
 400     guarantee(compiler != nullptr, "Compiler object must exist");
 401     compiler->on_empty_queue(this, thread);
 402     if (_first != nullptr) {
 403       // The call to on_empty_queue may have temporarily unlocked the MCQ lock
 404       // so check again whether any tasks were added to the queue.
 405       break;
 406     }
 407 
 408     // If there are no compilation tasks and we can compile new jobs
 409     // (i.e., there is enough free space in the code cache) there is
 410     // no need to invoke the GC.
 411     // We need a timed wait here, since compiler threads can exit if compilation
 412     // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
 413     // is not critical and we do not want idle compiler threads to wake up too often.
 414     locker.wait(5*1000);
 415 
 416     if (UseDynamicNumberOfCompilerThreads && _first == NULL) {
 417       // Still nothing to compile. Give caller a chance to stop this thread.
 418       if (CompileBroker::can_remove(CompilerThread::current(), false)) return NULL;
 419     }
 420   }
 421 
 422   if (CompileBroker::is_compilation_disabled_forever()) {
 423     return NULL;
 424   }
 425 
 426   CompileTask* task;
 427   {
 428     NoSafepointVerifier nsv;
 429     task = CompilationPolicy::select_task(this);
 430     if (task != NULL) {
 431       task = task->select_for_compilation();
 432     }
 433   }
 434 
 435   if (task != NULL) {
 436     // Save method pointers across unlock safepoint.  The task is removed from
 437     // the compilation queue, which is walked during RedefineClasses.
 438     Thread* thread = Thread::current();
 439     save_method = methodHandle(thread, task->method());
 440     save_hot_method = methodHandle(thread, task->hot_method());
 441 
 442     remove(task);
 443   }
 444   purge_stale_tasks(); // may temporarily release MCQ lock
 445   return task;
 446 }
 447 
 448 // Clean & deallocate stale compile tasks.
 449 // Temporarily releases MethodCompileQueue lock.
 450 void CompileQueue::purge_stale_tasks() {
 451   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 452   if (_first_stale != NULL) {
 453     // Stale tasks are purged when MCQ lock is released,
 454     // but _first_stale updates are protected by MCQ lock.
 455     // Once task processing starts and MCQ lock is released,
 456     // other compiler threads can reuse _first_stale.
 457     CompileTask* head = _first_stale;
 458     _first_stale = NULL;
 459     {
 460       MutexUnlocker ul(MethodCompileQueue_lock);
 461       for (CompileTask* task = head; task != NULL; ) {
 462         CompileTask* next_task = task->next();
 463         CompileTaskWrapper ctw(task); // Frees the task
 464         task->set_failure_reason("stale task");
 465         task = next_task;
 466       }
 467     }
 468   }
 469 }
 470 
 471 void CompileQueue::remove(CompileTask* task) {
 472   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 473   if (task->prev() != NULL) {
 474     task->prev()->set_next(task->next());
 475   } else {
 476     // max is the first element
 477     assert(task == _first, "Sanity");
 478     _first = task->next();
 479   }
 480 
 481   if (task->next() != NULL) {
 482     task->next()->set_prev(task->prev());
 483   } else {
 484     // max is the last element
 485     assert(task == _last, "Sanity");
 486     _last = task->prev();
 487   }
 488   --_size;
 489 }
 490 
 491 void CompileQueue::remove_and_mark_stale(CompileTask* task) {
 492   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 493   remove(task);
 494 
 495   // Enqueue the task for reclamation (should be done outside MCQ lock)
 496   task->set_next(_first_stale);
 497   task->set_prev(NULL);
 498   _first_stale = task;
 499 }
 500 
 501 // methods in the compile queue need to be marked as used on the stack
 502 // so that they don't get reclaimed by Redefine Classes
 503 void CompileQueue::mark_on_stack() {
 504   CompileTask* task = _first;
 505   while (task != NULL) {
 506     task->mark_on_stack();
 507     task = task->next();
 508   }
 509 }
 510 
 511 
 512 CompileQueue* CompileBroker::compile_queue(int comp_level) {
 513   if (is_c2_compile(comp_level)) return _c2_compile_queue;
 514   if (is_c1_compile(comp_level)) return _c1_compile_queue;
 515   return NULL;
 516 }
 517 
 518 void CompileBroker::print_compile_queues(outputStream* st) {
 519   st->print_cr("Current compiles: ");
 520 
 521   char buf[2000];
 522   int buflen = sizeof(buf);
 523   Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true);
 524 
 525   st->cr();
 526   if (_c1_compile_queue != NULL) {
 527     _c1_compile_queue->print(st);
 528   }
 529   if (_c2_compile_queue != NULL) {
 530     _c2_compile_queue->print(st);
 531   }
 532 }
 533 
 534 void CompileQueue::print(outputStream* st) {
 535   assert_locked_or_safepoint(MethodCompileQueue_lock);
 536   st->print_cr("%s:", name());
 537   CompileTask* task = _first;
 538   if (task == NULL) {
 539     st->print_cr("Empty");
 540   } else {
 541     while (task != NULL) {
 542       task->print(st, NULL, true, true);
 543       task = task->next();
 544     }
 545   }
 546   st->cr();
 547 }
 548 
 549 void CompileQueue::print_tty() {
 550   stringStream ss;
 551   // Dump the compile queue into a buffer before locking the tty
 552   print(&ss);
 553   {
 554     ttyLocker ttyl;
 555     tty->print("%s", ss.freeze());
 556   }
 557 }
 558 
 559 CompilerCounters::CompilerCounters() {
 560   _current_method[0] = '\0';
 561   _compile_type = CompileBroker::no_compile;
 562 }
 563 
 564 #if INCLUDE_JFR && COMPILER2_OR_JVMCI
 565 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping
 566 // in compiler/compilerEvent.cpp) and registers it with its serializer.
 567 //
 568 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp,
 569 // so if c2 is used, it should be always registered first.
 570 // This function is called during vm initialization.
 571 void register_jfr_phasetype_serializer(CompilerType compiler_type) {
 572   ResourceMark rm;
 573   static bool first_registration = true;
 574   if (compiler_type == compiler_jvmci) {
 575     CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false);
 576     first_registration = false;
 577 #ifdef COMPILER2
 578   } else if (compiler_type == compiler_c2) {
 579     assert(first_registration, "invariant"); // c2 must be registered first.
 580     for (int i = 0; i < PHASE_NUM_TYPES; i++) {
 581       const char* phase_name = CompilerPhaseTypeHelper::to_description((CompilerPhaseType) i);
 582       CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false);
 583     }
 584     first_registration = false;
 585 #endif // COMPILER2
 586   }
 587 }
 588 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI
 589 
 590 // ------------------------------------------------------------------
 591 // CompileBroker::compilation_init
 592 //
 593 // Initialize the Compilation object
 594 void CompileBroker::compilation_init_phase1(JavaThread* THREAD) {
 595   // No need to initialize compilation system if we do not use it.
 596   if (!UseCompiler) {
 597     return;
 598   }
 599   // Set the interface to the current compiler(s).
 600   _c1_count = CompilationPolicy::c1_count();
 601   _c2_count = CompilationPolicy::c2_count();
 602 
 603 #if INCLUDE_JVMCI
 604   if (EnableJVMCI) {
 605     // This is creating a JVMCICompiler singleton.
 606     JVMCICompiler* jvmci = new JVMCICompiler();
 607 
 608     if (UseJVMCICompiler) {
 609       _compilers[1] = jvmci;
 610       if (FLAG_IS_DEFAULT(JVMCIThreads)) {
 611         if (BootstrapJVMCI) {
 612           // JVMCI will bootstrap so give it more threads
 613           _c2_count = MIN2(32, os::active_processor_count());
 614         }
 615       } else {
 616         _c2_count = JVMCIThreads;
 617       }
 618       if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
 619       } else {
 620 #ifdef COMPILER1
 621         _c1_count = JVMCIHostThreads;
 622 #endif // COMPILER1
 623       }
 624     }
 625   }
 626 #endif // INCLUDE_JVMCI
 627 
 628 #ifdef COMPILER1
 629   if (_c1_count > 0) {
 630     _compilers[0] = new Compiler();
 631   }
 632 #endif // COMPILER1
 633 
 634 #ifdef COMPILER2
 635   if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
 636     if (_c2_count > 0) {
 637       _compilers[1] = new C2Compiler();
 638       // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit.
 639       // idToPhase mapping for c2 is in opto/phasetype.hpp
 640       JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);)
 641     }
 642   }
 643 #endif // COMPILER2
 644 
 645 #if INCLUDE_JVMCI
 646    // Register after c2 registration.
 647    // JVMCI CompilerPhaseType idToPhase mapping is dynamic.
 648    if (EnableJVMCI) {
 649      JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);)
 650    }
 651 #endif // INCLUDE_JVMCI
 652 
 653   // Start the compiler thread(s)
 654   init_compiler_threads();
 655   // totalTime performance counter is always created as it is required
 656   // by the implementation of java.lang.management.CompilationMXBean.
 657   {
 658     // Ensure OOM leads to vm_exit_during_initialization.
 659     EXCEPTION_MARK;
 660     _perf_total_compilation =
 661                  PerfDataManager::create_counter(JAVA_CI, "totalTime",
 662                                                  PerfData::U_Ticks, CHECK);
 663   }
 664 
 665   if (UsePerfData) {
 666 
 667     EXCEPTION_MARK;
 668 
 669     // create the jvmstat performance counters
 670     _perf_osr_compilation =
 671                  PerfDataManager::create_counter(SUN_CI, "osrTime",
 672                                                  PerfData::U_Ticks, CHECK);
 673 
 674     _perf_standard_compilation =
 675                  PerfDataManager::create_counter(SUN_CI, "standardTime",
 676                                                  PerfData::U_Ticks, CHECK);
 677 
 678     _perf_total_bailout_count =
 679                  PerfDataManager::create_counter(SUN_CI, "totalBailouts",
 680                                                  PerfData::U_Events, CHECK);
 681 
 682     _perf_total_invalidated_count =
 683                  PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
 684                                                  PerfData::U_Events, CHECK);
 685 
 686     _perf_total_compile_count =
 687                  PerfDataManager::create_counter(SUN_CI, "totalCompiles",
 688                                                  PerfData::U_Events, CHECK);
 689     _perf_total_osr_compile_count =
 690                  PerfDataManager::create_counter(SUN_CI, "osrCompiles",
 691                                                  PerfData::U_Events, CHECK);
 692 
 693     _perf_total_standard_compile_count =
 694                  PerfDataManager::create_counter(SUN_CI, "standardCompiles",
 695                                                  PerfData::U_Events, CHECK);
 696 
 697     _perf_sum_osr_bytes_compiled =
 698                  PerfDataManager::create_counter(SUN_CI, "osrBytes",
 699                                                  PerfData::U_Bytes, CHECK);
 700 
 701     _perf_sum_standard_bytes_compiled =
 702                  PerfDataManager::create_counter(SUN_CI, "standardBytes",
 703                                                  PerfData::U_Bytes, CHECK);
 704 
 705     _perf_sum_nmethod_size =
 706                  PerfDataManager::create_counter(SUN_CI, "nmethodSize",
 707                                                  PerfData::U_Bytes, CHECK);
 708 
 709     _perf_sum_nmethod_code_size =
 710                  PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
 711                                                  PerfData::U_Bytes, CHECK);
 712 
 713     _perf_last_method =
 714                  PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
 715                                        CompilerCounters::cmname_buffer_length,
 716                                        "", CHECK);
 717 
 718     _perf_last_failed_method =
 719             PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
 720                                        CompilerCounters::cmname_buffer_length,
 721                                        "", CHECK);
 722 
 723     _perf_last_invalidated_method =
 724         PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
 725                                      CompilerCounters::cmname_buffer_length,
 726                                      "", CHECK);
 727 
 728     _perf_last_compile_type =
 729              PerfDataManager::create_variable(SUN_CI, "lastType",
 730                                               PerfData::U_None,
 731                                               (jlong)CompileBroker::no_compile,
 732                                               CHECK);
 733 
 734     _perf_last_compile_size =
 735              PerfDataManager::create_variable(SUN_CI, "lastSize",
 736                                               PerfData::U_Bytes,
 737                                               (jlong)CompileBroker::no_compile,
 738                                               CHECK);
 739 
 740 
 741     _perf_last_failed_type =
 742              PerfDataManager::create_variable(SUN_CI, "lastFailedType",
 743                                               PerfData::U_None,
 744                                               (jlong)CompileBroker::no_compile,
 745                                               CHECK);
 746 
 747     _perf_last_invalidated_type =
 748          PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
 749                                           PerfData::U_None,
 750                                           (jlong)CompileBroker::no_compile,
 751                                           CHECK);
 752   }
 753 }
 754 
 755 // Completes compiler initialization. Compilation requests submitted
 756 // prior to this will be silently ignored.
 757 void CompileBroker::compilation_init_phase2() {
 758   _initialized = true;
 759 }
 760 
 761 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) {
 762   Handle thread_oop = JavaThread::create_system_thread_object(name, false /* not visible */, CHECK_NH);
 763   return thread_oop;
 764 }
 765 
 766 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 767 // Stress testing. Dedicated threads revert optimizations based on escape analysis concurrently to
 768 // the running java application.  Configured with vm options DeoptimizeObjectsALot*.
 769 class DeoptimizeObjectsALotThread : public JavaThread {
 770 
 771   static void deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS);
 772   void deoptimize_objects_alot_loop_single();
 773   void deoptimize_objects_alot_loop_all();
 774 
 775 public:
 776   DeoptimizeObjectsALotThread() : JavaThread(&deopt_objs_alot_thread_entry) { }
 777 
 778   bool is_hidden_from_external_view() const      { return true; }
 779 };
 780 
 781 // Entry for DeoptimizeObjectsALotThread. The threads are started in
 782 // CompileBroker::init_compiler_threads() iff DeoptimizeObjectsALot is enabled
 783 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) {
 784     DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread);
 785     bool enter_single_loop;
 786     {
 787       MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag);
 788       static int single_thread_count = 0;
 789       enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle;
 790     }
 791     if (enter_single_loop) {
 792       dt->deoptimize_objects_alot_loop_single();
 793     } else {
 794       dt->deoptimize_objects_alot_loop_all();
 795     }
 796   }
 797 
 798 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
 799 // barrier targets a single thread which is selected round robin.
 800 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() {
 801   HandleMark hm(this);
 802   while (true) {
 803     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) {
 804       { // Begin new scope for escape barrier
 805         HandleMarkCleaner hmc(this);
 806         ResourceMark rm(this);
 807         EscapeBarrier eb(true, this, deoptee_thread);
 808         eb.deoptimize_objects(100);
 809       }
 810       // Now sleep after the escape barriers destructor resumed deoptee_thread.
 811       sleep(DeoptimizeObjectsALotInterval);
 812     }
 813   }
 814 }
 815 
 816 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
 817 // barrier targets all java threads in the vm at once.
 818 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() {
 819   HandleMark hm(this);
 820   while (true) {
 821     { // Begin new scope for escape barrier
 822       HandleMarkCleaner hmc(this);
 823       ResourceMark rm(this);
 824       EscapeBarrier eb(true, this);
 825       eb.deoptimize_objects_all_threads();
 826     }
 827     // Now sleep after the escape barriers destructor resumed the java threads.
 828     sleep(DeoptimizeObjectsALotInterval);
 829   }
 830 }
 831 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
 832 
 833 
 834 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, JavaThread* THREAD) {
 835   JavaThread* new_thread = NULL;
 836 
 837   switch (type) {
 838     case compiler_t:
 839       assert(comp != NULL, "Compiler instance missing.");
 840       if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
 841         CompilerCounters* counters = new CompilerCounters();
 842         new_thread = new CompilerThread(queue, counters);
 843       }
 844       break;
 845 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 846     case deoptimizer_t:
 847       new_thread = new DeoptimizeObjectsALotThread();
 848       break;
 849 #endif // ASSERT
 850     default:
 851       ShouldNotReachHere();
 852   }
 853 
 854   // At this point the new CompilerThread data-races with this startup
 855   // thread (which is the main thread and NOT the VM thread).
 856   // This means Java bytecodes being executed at startup can
 857   // queue compile jobs which will run at whatever default priority the
 858   // newly created CompilerThread runs at.
 859 
 860 
 861   // At this point it may be possible that no osthread was created for the
 862   // JavaThread due to lack of resources. We will handle that failure below.
 863   // Also check new_thread so that static analysis is happy.
 864   if (new_thread != NULL && new_thread->osthread() != NULL) {
 865     Handle thread_oop(THREAD, JNIHandles::resolve_non_null(thread_handle));
 866 
 867     if (type == compiler_t) {
 868       CompilerThread::cast(new_thread)->set_compiler(comp);
 869     }
 870 
 871     // Note that we cannot call os::set_priority because it expects Java
 872     // priorities and we are *explicitly* using OS priorities so that it's
 873     // possible to set the compiler thread priority higher than any Java
 874     // thread.
 875 
 876     int native_prio = CompilerThreadPriority;
 877     if (native_prio == -1) {
 878       if (UseCriticalCompilerThreadPriority) {
 879         native_prio = os::java_to_os_priority[CriticalPriority];
 880       } else {
 881         native_prio = os::java_to_os_priority[NearMaxPriority];
 882       }
 883     }
 884     os::set_native_priority(new_thread, native_prio);
 885 
 886     // Note that this only sets the JavaThread _priority field, which by
 887     // definition is limited to Java priorities and not OS priorities.
 888     JavaThread::start_internal_daemon(THREAD, new_thread, thread_oop, NearMaxPriority);
 889 
 890   } else { // osthread initialization failure
 891     if (UseDynamicNumberOfCompilerThreads && type == compiler_t
 892         && comp->num_compiler_threads() > 0) {
 893       // The new thread is not known to Thread-SMR yet so we can just delete.
 894       delete new_thread;
 895       return NULL;
 896     } else {
 897       vm_exit_during_initialization("java.lang.OutOfMemoryError",
 898                                     os::native_thread_creation_failed_msg());
 899     }
 900   }
 901 
 902   os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
 903 
 904   return new_thread;
 905 }
 906 
 907 
 908 void CompileBroker::init_compiler_threads() {
 909   // Ensure any exceptions lead to vm_exit_during_initialization.
 910   EXCEPTION_MARK;
 911 #if !defined(ZERO)
 912   assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
 913 #endif // !ZERO
 914   // Initialize the compilation queue
 915   if (_c2_count > 0) {
 916     const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
 917     _c2_compile_queue  = new CompileQueue(name);
 918     _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
 919     _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
 920   }
 921   if (_c1_count > 0) {
 922     _c1_compile_queue  = new CompileQueue("C1 compile queue");
 923     _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
 924     _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
 925   }
 926 
 927   char name_buffer[256];
 928 
 929   for (int i = 0; i < _c2_count; i++) {
 930     jobject thread_handle = NULL;
 931     // Create all j.l.Thread objects for C1 and C2 threads here, but only one
 932     // for JVMCI compiler which can create further ones on demand.
 933     JVMCI_ONLY(if (!UseJVMCICompiler || !UseDynamicNumberOfCompilerThreads || i == 0) {)
 934     // Create a name for our thread.
 935     os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i);
 936     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
 937     thread_handle = JNIHandles::make_global(thread_oop);
 938     JVMCI_ONLY(})
 939     _compiler2_objects[i] = thread_handle;
 940     _compiler2_logs[i] = NULL;
 941 
 942     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 943       JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD);
 944       assert(ct != NULL, "should have been handled for initial thread");
 945       _compilers[1]->set_num_compiler_threads(i + 1);
 946       if (TraceCompilerThreads) {
 947         ResourceMark rm;
 948         ThreadsListHandle tlh;  // name() depends on the TLH.
 949         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
 950         tty->print_cr("Added initial compiler thread %s", ct->name());
 951       }
 952     }
 953   }
 954 
 955   for (int i = 0; i < _c1_count; i++) {
 956     // Create a name for our thread.
 957     os::snprintf_checked(name_buffer, sizeof(name_buffer), "C1 CompilerThread%d", i);
 958     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
 959     jobject thread_handle = JNIHandles::make_global(thread_oop);
 960     _compiler1_objects[i] = thread_handle;
 961     _compiler1_logs[i] = NULL;
 962 
 963     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 964       JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD);
 965       assert(ct != NULL, "should have been handled for initial thread");
 966       _compilers[0]->set_num_compiler_threads(i + 1);
 967       if (TraceCompilerThreads) {
 968         ResourceMark rm;
 969         ThreadsListHandle tlh;  // name() depends on the TLH.
 970         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
 971         tty->print_cr("Added initial compiler thread %s", ct->name());
 972       }
 973     }
 974   }
 975 
 976   if (UsePerfData) {
 977     PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK);
 978   }
 979 
 980 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 981   if (DeoptimizeObjectsALot) {
 982     // Initialize and start the object deoptimizer threads
 983     const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll;
 984     for (int count = 0; count < total_count; count++) {
 985       Handle thread_oop = create_thread_oop("Deoptimize objects a lot single mode", CHECK);
 986       jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
 987       make_thread(deoptimizer_t, thread_handle, NULL, NULL, THREAD);
 988     }
 989   }
 990 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
 991 }
 992 
 993 void CompileBroker::possibly_add_compiler_threads(JavaThread* THREAD) {
 994 
 995   julong available_memory = os::available_memory();
 996   // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
 997   size_t available_cc_np  = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
 998          available_cc_p   = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
 999 
1000   // Only do attempt to start additional threads if the lock is free.
1001   if (!CompileThread_lock->try_lock()) return;
1002 
1003   if (_c2_compile_queue != NULL) {
1004     int old_c2_count = _compilers[1]->num_compiler_threads();
1005     int new_c2_count = MIN4(_c2_count,
1006         _c2_compile_queue->size() / 2,
1007         (int)(available_memory / (200*M)),
1008         (int)(available_cc_np / (128*K)));
1009 
1010     for (int i = old_c2_count; i < new_c2_count; i++) {
1011 #if INCLUDE_JVMCI
1012       if (UseJVMCICompiler) {
1013         // Native compiler threads as used in C1/C2 can reuse the j.l.Thread
1014         // objects as their existence is completely hidden from the rest of
1015         // the VM (and those compiler threads can't call Java code to do the
1016         // creation anyway). For JVMCI we have to create new j.l.Thread objects
1017         // as they are visible and we can see unexpected thread lifecycle
1018         // transitions if we bind them to new JavaThreads.
1019         if (!THREAD->can_call_java()) break;
1020         char name_buffer[256];
1021         os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i);
1022         Handle thread_oop;
1023         {
1024           // We have to give up the lock temporarily for the Java calls.
1025           MutexUnlocker mu(CompileThread_lock);
1026           thread_oop = create_thread_oop(name_buffer, THREAD);
1027         }
1028         if (HAS_PENDING_EXCEPTION) {
1029           if (TraceCompilerThreads) {
1030             ResourceMark rm;
1031             tty->print_cr("JVMCI compiler thread creation failed:");
1032             PENDING_EXCEPTION->print();
1033           }
1034           CLEAR_PENDING_EXCEPTION;
1035           break;
1036         }
1037         // Check if another thread has beaten us during the Java calls.
1038         if (_compilers[1]->num_compiler_threads() != i) break;
1039         jobject thread_handle = JNIHandles::make_global(thread_oop);
1040         assert(compiler2_object(i) == NULL, "Old one must be released!");
1041         _compiler2_objects[i] = thread_handle;
1042       }
1043 #endif
1044       JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD);
1045       if (ct == NULL) break;
1046       _compilers[1]->set_num_compiler_threads(i + 1);
1047       if (TraceCompilerThreads) {
1048         ResourceMark rm;
1049         ThreadsListHandle tlh;  // name() depends on the TLH.
1050         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1051         tty->print_cr("Added compiler thread %s (available memory: %dMB, available non-profiled code cache: %dMB)",
1052                       ct->name(), (int)(available_memory/M), (int)(available_cc_np/M));
1053       }
1054     }
1055   }
1056 
1057   if (_c1_compile_queue != NULL) {
1058     int old_c1_count = _compilers[0]->num_compiler_threads();
1059     int new_c1_count = MIN4(_c1_count,
1060         _c1_compile_queue->size() / 4,
1061         (int)(available_memory / (100*M)),
1062         (int)(available_cc_p / (128*K)));
1063 
1064     for (int i = old_c1_count; i < new_c1_count; i++) {
1065       JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD);
1066       if (ct == NULL) break;
1067       _compilers[0]->set_num_compiler_threads(i + 1);
1068       if (TraceCompilerThreads) {
1069         ResourceMark rm;
1070         ThreadsListHandle tlh;  // name() depends on the TLH.
1071         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1072         tty->print_cr("Added compiler thread %s (available memory: %dMB, available profiled code cache: %dMB)",
1073                       ct->name(), (int)(available_memory/M), (int)(available_cc_p/M));
1074       }
1075     }
1076   }
1077 
1078   CompileThread_lock->unlock();
1079 }
1080 
1081 
1082 /**
1083  * Set the methods on the stack as on_stack so that redefine classes doesn't
1084  * reclaim them. This method is executed at a safepoint.
1085  */
1086 void CompileBroker::mark_on_stack() {
1087   assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
1088   // Since we are at a safepoint, we do not need a lock to access
1089   // the compile queues.
1090   if (_c2_compile_queue != NULL) {
1091     _c2_compile_queue->mark_on_stack();
1092   }
1093   if (_c1_compile_queue != NULL) {
1094     _c1_compile_queue->mark_on_stack();
1095   }
1096 }
1097 
1098 // ------------------------------------------------------------------
1099 // CompileBroker::compile_method
1100 //
1101 // Request compilation of a method.
1102 void CompileBroker::compile_method_base(const methodHandle& method,
1103                                         int osr_bci,
1104                                         int comp_level,
1105                                         const methodHandle& hot_method,
1106                                         int hot_count,
1107                                         CompileTask::CompileReason compile_reason,
1108                                         bool blocking,
1109                                         Thread* thread) {
1110   guarantee(!method->is_abstract(), "cannot compile abstract methods");
1111   assert(method->method_holder()->is_instance_klass(),
1112          "sanity check");
1113   assert(!method->method_holder()->is_not_initialized(),
1114          "method holder must be initialized");
1115   assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
1116 
1117   if (CIPrintRequests) {
1118     tty->print("request: ");
1119     method->print_short_name(tty);
1120     if (osr_bci != InvocationEntryBci) {
1121       tty->print(" osr_bci: %d", osr_bci);
1122     }
1123     tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
1124     if (!hot_method.is_null()) {
1125       tty->print(" hot: ");
1126       if (hot_method() != method()) {
1127           hot_method->print_short_name(tty);
1128       } else {
1129         tty->print("yes");
1130       }
1131     }
1132     tty->cr();
1133   }
1134 
1135   // A request has been made for compilation.  Before we do any
1136   // real work, check to see if the method has been compiled
1137   // in the meantime with a definitive result.
1138   if (compilation_is_complete(method, osr_bci, comp_level)) {
1139     return;
1140   }
1141 
1142 #ifndef PRODUCT
1143   if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
1144     if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
1145       // Positive OSROnlyBCI means only compile that bci.  Negative means don't compile that BCI.
1146       return;
1147     }
1148   }
1149 #endif
1150 
1151   // If this method is already in the compile queue, then
1152   // we do not block the current thread.
1153   if (compilation_is_in_queue(method)) {
1154     // We may want to decay our counter a bit here to prevent
1155     // multiple denied requests for compilation.  This is an
1156     // open compilation policy issue. Note: The other possibility,
1157     // in the case that this is a blocking compile request, is to have
1158     // all subsequent blocking requesters wait for completion of
1159     // ongoing compiles. Note that in this case we'll need a protocol
1160     // for freeing the associated compile tasks. [Or we could have
1161     // a single static monitor on which all these waiters sleep.]
1162     return;
1163   }
1164 
1165   // Tiered policy requires MethodCounters to exist before adding a method to
1166   // the queue. Create if we don't have them yet.
1167   method->get_method_counters(thread);
1168 
1169   // Outputs from the following MutexLocker block:
1170   CompileTask* task     = NULL;
1171   CompileQueue* queue  = compile_queue(comp_level);
1172 
1173   // Acquire our lock.
1174   {
1175     MutexLocker locker(thread, MethodCompileQueue_lock);
1176 
1177     // Make sure the method has not slipped into the queues since
1178     // last we checked; note that those checks were "fast bail-outs".
1179     // Here we need to be more careful, see 14012000 below.
1180     if (compilation_is_in_queue(method)) {
1181       return;
1182     }
1183 
1184     // We need to check again to see if the compilation has
1185     // completed.  A previous compilation may have registered
1186     // some result.
1187     if (compilation_is_complete(method, osr_bci, comp_level)) {
1188       return;
1189     }
1190 
1191     // We now know that this compilation is not pending, complete,
1192     // or prohibited.  Assign a compile_id to this compilation
1193     // and check to see if it is in our [Start..Stop) range.
1194     int compile_id = assign_compile_id(method, osr_bci);
1195     if (compile_id == 0) {
1196       // The compilation falls outside the allowed range.
1197       return;
1198     }
1199 
1200 #if INCLUDE_JVMCI
1201     if (UseJVMCICompiler && blocking) {
1202       // Don't allow blocking compiles for requests triggered by JVMCI.
1203       if (thread->is_Compiler_thread()) {
1204         blocking = false;
1205       }
1206 
1207       if (!UseJVMCINativeLibrary) {
1208         // Don't allow blocking compiles if inside a class initializer or while performing class loading
1209         vframeStream vfst(JavaThread::cast(thread));
1210         for (; !vfst.at_end(); vfst.next()) {
1211           if (vfst.method()->is_static_initializer() ||
1212               (vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) &&
1213                   vfst.method()->name() == vmSymbols::loadClass_name())) {
1214             blocking = false;
1215             break;
1216           }
1217         }
1218       }
1219 
1220       // Don't allow blocking compilation requests to JVMCI
1221       // if JVMCI itself is not yet initialized
1222       if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) {
1223         blocking = false;
1224       }
1225 
1226       // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
1227       // to avoid deadlock between compiler thread(s) and threads run at shutdown
1228       // such as the DestroyJavaVM thread.
1229       if (JVMCI::in_shutdown()) {
1230         blocking = false;
1231       }
1232     }
1233 #endif // INCLUDE_JVMCI
1234 
1235     // We will enter the compilation in the queue.
1236     // 14012000: Note that this sets the queued_for_compile bits in
1237     // the target method. We can now reason that a method cannot be
1238     // queued for compilation more than once, as follows:
1239     // Before a thread queues a task for compilation, it first acquires
1240     // the compile queue lock, then checks if the method's queued bits
1241     // are set or it has already been compiled. Thus there can not be two
1242     // instances of a compilation task for the same method on the
1243     // compilation queue. Consider now the case where the compilation
1244     // thread has already removed a task for that method from the queue
1245     // and is in the midst of compiling it. In this case, the
1246     // queued_for_compile bits must be set in the method (and these
1247     // will be visible to the current thread, since the bits were set
1248     // under protection of the compile queue lock, which we hold now.
1249     // When the compilation completes, the compiler thread first sets
1250     // the compilation result and then clears the queued_for_compile
1251     // bits. Neither of these actions are protected by a barrier (or done
1252     // under the protection of a lock), so the only guarantee we have
1253     // (on machines with TSO (Total Store Order)) is that these values
1254     // will update in that order. As a result, the only combinations of
1255     // these bits that the current thread will see are, in temporal order:
1256     // <RESULT, QUEUE> :
1257     //     <0, 1> : in compile queue, but not yet compiled
1258     //     <1, 1> : compiled but queue bit not cleared
1259     //     <1, 0> : compiled and queue bit cleared
1260     // Because we first check the queue bits then check the result bits,
1261     // we are assured that we cannot introduce a duplicate task.
1262     // Note that if we did the tests in the reverse order (i.e. check
1263     // result then check queued bit), we could get the result bit before
1264     // the compilation completed, and the queue bit after the compilation
1265     // completed, and end up introducing a "duplicate" (redundant) task.
1266     // In that case, the compiler thread should first check if a method
1267     // has already been compiled before trying to compile it.
1268     // NOTE: in the event that there are multiple compiler threads and
1269     // there is de-optimization/recompilation, things will get hairy,
1270     // and in that case it's best to protect both the testing (here) of
1271     // these bits, and their updating (here and elsewhere) under a
1272     // common lock.
1273     task = create_compile_task(queue,
1274                                compile_id, method,
1275                                osr_bci, comp_level,
1276                                hot_method, hot_count, compile_reason,
1277                                blocking);
1278   }
1279 
1280   if (blocking) {
1281     wait_for_completion(task);
1282   }
1283 }
1284 
1285 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1286                                        int comp_level,
1287                                        const methodHandle& hot_method, int hot_count,
1288                                        CompileTask::CompileReason compile_reason,
1289                                        TRAPS) {
1290   // Do nothing if compilebroker is not initialized or compiles are submitted on level none
1291   if (!_initialized || comp_level == CompLevel_none) {
1292     return NULL;
1293   }
1294 
1295   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
1296   assert(comp != NULL, "Ensure we have a compiler");
1297 
1298   DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
1299   // CompileBroker::compile_method can trap and can have pending async exception.
1300   nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, directive, THREAD);
1301   DirectivesStack::release(directive);
1302   return nm;
1303 }
1304 
1305 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1306                                          int comp_level,
1307                                          const methodHandle& hot_method, int hot_count,
1308                                          CompileTask::CompileReason compile_reason,
1309                                          DirectiveSet* directive,
1310                                          TRAPS) {
1311 
1312   // make sure arguments make sense
1313   assert(method->method_holder()->is_instance_klass(), "not an instance method");
1314   assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
1315   assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
1316   assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized");
1317   // return quickly if possible
1318 
1319   // lock, make sure that the compilation
1320   // isn't prohibited in a straightforward way.
1321   AbstractCompiler* comp = CompileBroker::compiler(comp_level);
1322   if (comp == NULL || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
1323     return NULL;
1324   }
1325 
1326 #if INCLUDE_JVMCI
1327   if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) {
1328     return NULL;
1329   }
1330 #endif
1331 
1332   if (osr_bci == InvocationEntryBci) {
1333     // standard compilation
1334     CompiledMethod* method_code = method->code();
1335     if (method_code != NULL && method_code->is_nmethod()) {
1336       if (compilation_is_complete(method, osr_bci, comp_level)) {
1337         return (nmethod*) method_code;
1338       }
1339     }
1340     if (method->is_not_compilable(comp_level)) {
1341       return NULL;
1342     }
1343   } else {
1344     // osr compilation
1345     // We accept a higher level osr method
1346     nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1347     if (nm != NULL) return nm;
1348     if (method->is_not_osr_compilable(comp_level)) return NULL;
1349   }
1350 
1351   assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
1352   // some prerequisites that are compiler specific
1353   if (comp->is_c2() || comp->is_jvmci()) {
1354     method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL);
1355     // Resolve all classes seen in the signature of the method
1356     // we are compiling.
1357     Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL);
1358   }
1359 
1360   // If the method is native, do the lookup in the thread requesting
1361   // the compilation. Native lookups can load code, which is not
1362   // permitted during compilation.
1363   //
1364   // Note: A native method implies non-osr compilation which is
1365   //       checked with an assertion at the entry of this method.
1366   if (method->is_native() && !method->is_method_handle_intrinsic()) {
1367     address adr = NativeLookup::lookup(method, THREAD);
1368     if (HAS_PENDING_EXCEPTION) {
1369       // In case of an exception looking up the method, we just forget
1370       // about it. The interpreter will kick-in and throw the exception.
1371       method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable()
1372       CLEAR_PENDING_EXCEPTION;
1373       return NULL;
1374     }
1375     assert(method->has_native_function(), "must have native code by now");
1376   }
1377 
1378   // RedefineClasses() has replaced this method; just return
1379   if (method->is_old()) {
1380     return NULL;
1381   }
1382 
1383   // JVMTI -- post_compile_event requires jmethod_id() that may require
1384   // a lock the compiling thread can not acquire. Prefetch it here.
1385   if (JvmtiExport::should_post_compiled_method_load()) {
1386     method->jmethod_id();
1387   }
1388 
1389   // do the compilation
1390   if (method->is_native()) {
1391     if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
1392 #if defined(X86) && !defined(ZERO)
1393       // The following native methods:
1394       //
1395       // java.lang.Float.intBitsToFloat
1396       // java.lang.Float.floatToRawIntBits
1397       // java.lang.Double.longBitsToDouble
1398       // java.lang.Double.doubleToRawLongBits
1399       //
1400       // are called through the interpreter even if interpreter native stubs
1401       // are not preferred (i.e., calling through adapter handlers is preferred).
1402       // The reason is that on x86_32 signaling NaNs (sNaNs) are not preserved
1403       // if the version of the methods from the native libraries is called.
1404       // As the interpreter and the C2-intrinsified version of the methods preserves
1405       // sNaNs, that would result in an inconsistent way of handling of sNaNs.
1406       if ((UseSSE >= 1 &&
1407           (method->intrinsic_id() == vmIntrinsics::_intBitsToFloat ||
1408            method->intrinsic_id() == vmIntrinsics::_floatToRawIntBits)) ||
1409           (UseSSE >= 2 &&
1410            (method->intrinsic_id() == vmIntrinsics::_longBitsToDouble ||
1411             method->intrinsic_id() == vmIntrinsics::_doubleToRawLongBits))) {
1412         return NULL;
1413       }
1414 #endif // X86 && !ZERO
1415 
1416       // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
1417       // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
1418       //
1419       // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
1420       // in this case.  If we can't generate one and use it we can not execute the out-of-line method handle calls.
1421       AdapterHandlerLibrary::create_native_wrapper(method);
1422     } else {
1423       return NULL;
1424     }
1425   } else {
1426     // If the compiler is shut off due to code cache getting full
1427     // fail out now so blocking compiles dont hang the java thread
1428     if (!should_compile_new_jobs()) {
1429       return NULL;
1430     }
1431     bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles;
1432     compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, is_blocking, THREAD);
1433   }
1434 
1435   // return requested nmethod
1436   // We accept a higher level osr method
1437   if (osr_bci == InvocationEntryBci) {
1438     CompiledMethod* code = method->code();
1439     if (code == NULL) {
1440       return (nmethod*) code;
1441     } else {
1442       return code->as_nmethod_or_null();
1443     }
1444   }
1445   return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1446 }
1447 
1448 
1449 // ------------------------------------------------------------------
1450 // CompileBroker::compilation_is_complete
1451 //
1452 // See if compilation of this method is already complete.
1453 bool CompileBroker::compilation_is_complete(const methodHandle& method,
1454                                             int                 osr_bci,
1455                                             int                 comp_level) {
1456   bool is_osr = (osr_bci != standard_entry_bci);
1457   if (is_osr) {
1458     if (method->is_not_osr_compilable(comp_level)) {
1459       return true;
1460     } else {
1461       nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
1462       return (result != NULL);
1463     }
1464   } else {
1465     if (method->is_not_compilable(comp_level)) {
1466       return true;
1467     } else {
1468       CompiledMethod* result = method->code();
1469       if (result == NULL) return false;
1470       return comp_level == result->comp_level();
1471     }
1472   }
1473 }
1474 
1475 
1476 /**
1477  * See if this compilation is already requested.
1478  *
1479  * Implementation note: there is only a single "is in queue" bit
1480  * for each method.  This means that the check below is overly
1481  * conservative in the sense that an osr compilation in the queue
1482  * will block a normal compilation from entering the queue (and vice
1483  * versa).  This can be remedied by a full queue search to disambiguate
1484  * cases.  If it is deemed profitable, this may be done.
1485  */
1486 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
1487   return method->queued_for_compilation();
1488 }
1489 
1490 // ------------------------------------------------------------------
1491 // CompileBroker::compilation_is_prohibited
1492 //
1493 // See if this compilation is not allowed.
1494 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
1495   bool is_native = method->is_native();
1496   // Some compilers may not support the compilation of natives.
1497   AbstractCompiler *comp = compiler(comp_level);
1498   if (is_native && (!CICompileNatives || comp == NULL)) {
1499     method->set_not_compilable_quietly("native methods not supported", comp_level);
1500     return true;
1501   }
1502 
1503   bool is_osr = (osr_bci != standard_entry_bci);
1504   // Some compilers may not support on stack replacement.
1505   if (is_osr && (!CICompileOSR || comp == NULL)) {
1506     method->set_not_osr_compilable("OSR not supported", comp_level);
1507     return true;
1508   }
1509 
1510   // The method may be explicitly excluded by the user.
1511   double scale;
1512   if (excluded || (CompilerOracle::has_option_value(method, CompileCommand::CompileThresholdScaling, scale) && scale == 0)) {
1513     bool quietly = CompilerOracle::be_quiet();
1514     if (PrintCompilation && !quietly) {
1515       // This does not happen quietly...
1516       ResourceMark rm;
1517       tty->print("### Excluding %s:%s",
1518                  method->is_native() ? "generation of native wrapper" : "compile",
1519                  (method->is_static() ? " static" : ""));
1520       method->print_short_name(tty);
1521       tty->cr();
1522     }
1523     method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly);
1524   }
1525 
1526   return false;
1527 }
1528 
1529 /**
1530  * Generate serialized IDs for compilation requests. If certain debugging flags are used
1531  * and the ID is not within the specified range, the method is not compiled and 0 is returned.
1532  * The function also allows to generate separate compilation IDs for OSR compilations.
1533  */
1534 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
1535 #ifdef ASSERT
1536   bool is_osr = (osr_bci != standard_entry_bci);
1537   int id;
1538   if (method->is_native()) {
1539     assert(!is_osr, "can't be osr");
1540     // Adapters, native wrappers and method handle intrinsics
1541     // should be generated always.
1542     return Atomic::add(CICountNative ? &_native_compilation_id : &_compilation_id, 1);
1543   } else if (CICountOSR && is_osr) {
1544     id = Atomic::add(&_osr_compilation_id, 1);
1545     if (CIStartOSR <= id && id < CIStopOSR) {
1546       return id;
1547     }
1548   } else {
1549     id = Atomic::add(&_compilation_id, 1);
1550     if (CIStart <= id && id < CIStop) {
1551       return id;
1552     }
1553   }
1554 
1555   // Method was not in the appropriate compilation range.
1556   method->set_not_compilable_quietly("Not in requested compile id range");
1557   return 0;
1558 #else
1559   // CICountOSR is a develop flag and set to 'false' by default. In a product built,
1560   // only _compilation_id is incremented.
1561   return Atomic::add(&_compilation_id, 1);
1562 #endif
1563 }
1564 
1565 // ------------------------------------------------------------------
1566 // CompileBroker::assign_compile_id_unlocked
1567 //
1568 // Public wrapper for assign_compile_id that acquires the needed locks
1569 int CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
1570   MutexLocker locker(thread, MethodCompileQueue_lock);
1571   return assign_compile_id(method, osr_bci);
1572 }
1573 
1574 // ------------------------------------------------------------------
1575 // CompileBroker::create_compile_task
1576 //
1577 // Create a CompileTask object representing the current request for
1578 // compilation.  Add this task to the queue.
1579 CompileTask* CompileBroker::create_compile_task(CompileQueue*       queue,
1580                                                 int                 compile_id,
1581                                                 const methodHandle& method,
1582                                                 int                 osr_bci,
1583                                                 int                 comp_level,
1584                                                 const methodHandle& hot_method,
1585                                                 int                 hot_count,
1586                                                 CompileTask::CompileReason compile_reason,
1587                                                 bool                blocking) {
1588   CompileTask* new_task = CompileTask::allocate();
1589   new_task->initialize(compile_id, method, osr_bci, comp_level,
1590                        hot_method, hot_count, compile_reason,
1591                        blocking);
1592   queue->add(new_task);
1593   return new_task;
1594 }
1595 
1596 #if INCLUDE_JVMCI
1597 // The number of milliseconds to wait before checking if
1598 // JVMCI compilation has made progress.
1599 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
1600 
1601 // The number of JVMCI compilation progress checks that must fail
1602 // before unblocking a thread waiting for a blocking compilation.
1603 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
1604 
1605 /**
1606  * Waits for a JVMCI compiler to complete a given task. This thread
1607  * waits until either the task completes or it sees no JVMCI compilation
1608  * progress for N consecutive milliseconds where N is
1609  * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
1610  * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
1611  *
1612  * @return true if this thread needs to free/recycle the task
1613  */
1614 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
1615   assert(UseJVMCICompiler, "sanity");
1616   MonitorLocker ml(thread, task->lock());
1617   int progress_wait_attempts = 0;
1618   jint thread_jvmci_compilation_ticks = 0;
1619   jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks();
1620   while (!task->is_complete() && !is_compilation_disabled_forever() &&
1621          ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
1622     JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state();
1623 
1624     bool progress;
1625     if (jvmci_compile_state != NULL) {
1626       jint ticks = jvmci_compile_state->compilation_ticks();
1627       progress = (ticks - thread_jvmci_compilation_ticks) != 0;
1628       JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks);
1629       thread_jvmci_compilation_ticks = ticks;
1630     } else {
1631       // Still waiting on JVMCI compiler queue. This thread may be holding a lock
1632       // that all JVMCI compiler threads are blocked on. We use the global JVMCI
1633       // compilation ticks to determine whether JVMCI compilation
1634       // is still making progress through the JVMCI compiler queue.
1635       jint ticks = jvmci->global_compilation_ticks();
1636       progress = (ticks - global_jvmci_compilation_ticks) != 0;
1637       JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks);
1638       global_jvmci_compilation_ticks = ticks;
1639     }
1640 
1641     if (!progress) {
1642       if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
1643         if (PrintCompilation) {
1644           task->print(tty, "wait for blocking compilation timed out");
1645         }
1646         JVMCI_event_1("waiting on compilation %d timed out", task->compile_id());
1647         break;
1648       }
1649     } else {
1650       progress_wait_attempts = 0;
1651     }
1652   }
1653   task->clear_waiter();
1654   return task->is_complete();
1655 }
1656 #endif
1657 
1658 /**
1659  *  Wait for the compilation task to complete.
1660  */
1661 void CompileBroker::wait_for_completion(CompileTask* task) {
1662   if (CIPrintCompileQueue) {
1663     ttyLocker ttyl;
1664     tty->print_cr("BLOCKING FOR COMPILE");
1665   }
1666 
1667   assert(task->is_blocking(), "can only wait on blocking task");
1668 
1669   JavaThread* thread = JavaThread::current();
1670 
1671   methodHandle method(thread, task->method());
1672   bool free_task;
1673 #if INCLUDE_JVMCI
1674   AbstractCompiler* comp = compiler(task->comp_level());
1675   if (comp->is_jvmci() && !task->should_wait_for_compilation()) {
1676     // It may return before compilation is completed.
1677     free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
1678   } else
1679 #endif
1680   {
1681     MonitorLocker ml(thread, task->lock());
1682     free_task = true;
1683     while (!task->is_complete() && !is_compilation_disabled_forever()) {
1684       ml.wait();
1685     }
1686   }
1687 
1688   if (free_task) {
1689     if (is_compilation_disabled_forever()) {
1690       CompileTask::free(task);
1691       return;
1692     }
1693 
1694     // It is harmless to check this status without the lock, because
1695     // completion is a stable property (until the task object is recycled).
1696     assert(task->is_complete(), "Compilation should have completed");
1697 
1698     // By convention, the waiter is responsible for recycling a
1699     // blocking CompileTask. Since there is only one waiter ever
1700     // waiting on a CompileTask, we know that no one else will
1701     // be using this CompileTask; we can free it.
1702     CompileTask::free(task);
1703   }
1704 }
1705 
1706 /**
1707  * Initialize compiler thread(s) + compiler object(s). The postcondition
1708  * of this function is that the compiler runtimes are initialized and that
1709  * compiler threads can start compiling.
1710  */
1711 bool CompileBroker::init_compiler_runtime() {
1712   CompilerThread* thread = CompilerThread::current();
1713   AbstractCompiler* comp = thread->compiler();
1714   // Final sanity check - the compiler object must exist
1715   guarantee(comp != NULL, "Compiler object must exist");
1716 
1717   {
1718     // Must switch to native to allocate ci_env
1719     ThreadToNativeFromVM ttn(thread);
1720     ciEnv ci_env((CompileTask*)NULL);
1721     // Cache Jvmti state
1722     ci_env.cache_jvmti_state();
1723     // Cache DTrace flags
1724     ci_env.cache_dtrace_flags();
1725 
1726     // Switch back to VM state to do compiler initialization
1727     ThreadInVMfromNative tv(thread);
1728 
1729     // Perform per-thread and global initializations
1730     comp->initialize();
1731   }
1732 
1733   if (comp->is_failed()) {
1734     disable_compilation_forever();
1735     // If compiler initialization failed, no compiler thread that is specific to a
1736     // particular compiler runtime will ever start to compile methods.
1737     shutdown_compiler_runtime(comp, thread);
1738     return false;
1739   }
1740 
1741   // C1 specific check
1742   if (comp->is_c1() && (thread->get_buffer_blob() == NULL)) {
1743     warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
1744     return false;
1745   }
1746 
1747   return true;
1748 }
1749 
1750 /**
1751  * If C1 and/or C2 initialization failed, we shut down all compilation.
1752  * We do this to keep things simple. This can be changed if it ever turns
1753  * out to be a problem.
1754  */
1755 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
1756   // Free buffer blob, if allocated
1757   if (thread->get_buffer_blob() != NULL) {
1758     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1759     CodeCache::free(thread->get_buffer_blob());
1760   }
1761 
1762   if (comp->should_perform_shutdown()) {
1763     // There are two reasons for shutting down the compiler
1764     // 1) compiler runtime initialization failed
1765     // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
1766     warning("%s initialization failed. Shutting down all compilers", comp->name());
1767 
1768     // Only one thread per compiler runtime object enters here
1769     // Set state to shut down
1770     comp->set_shut_down();
1771 
1772     // Delete all queued compilation tasks to make compiler threads exit faster.
1773     if (_c1_compile_queue != NULL) {
1774       _c1_compile_queue->free_all();
1775     }
1776 
1777     if (_c2_compile_queue != NULL) {
1778       _c2_compile_queue->free_all();
1779     }
1780 
1781     // Set flags so that we continue execution with using interpreter only.
1782     UseCompiler    = false;
1783     UseInterpreter = true;
1784 
1785     // We could delete compiler runtimes also. However, there are references to
1786     // the compiler runtime(s) (e.g.,  nmethod::is_compiled_by_c1()) which then
1787     // fail. This can be done later if necessary.
1788   }
1789 }
1790 
1791 /**
1792  * Helper function to create new or reuse old CompileLog.
1793  */
1794 CompileLog* CompileBroker::get_log(CompilerThread* ct) {
1795   if (!LogCompilation) return NULL;
1796 
1797   AbstractCompiler *compiler = ct->compiler();
1798   bool c1 = compiler->is_c1();
1799   jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects;
1800   assert(compiler_objects != NULL, "must be initialized at this point");
1801   CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs;
1802   assert(logs != NULL, "must be initialized at this point");
1803   int count = c1 ? _c1_count : _c2_count;
1804 
1805   // Find Compiler number by its threadObj.
1806   oop compiler_obj = ct->threadObj();
1807   int compiler_number = 0;
1808   bool found = false;
1809   for (; compiler_number < count; compiler_number++) {
1810     if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) {
1811       found = true;
1812       break;
1813     }
1814   }
1815   assert(found, "Compiler must exist at this point");
1816 
1817   // Determine pointer for this thread's log.
1818   CompileLog** log_ptr = &logs[compiler_number];
1819 
1820   // Return old one if it exists.
1821   CompileLog* log = *log_ptr;
1822   if (log != NULL) {
1823     ct->init_log(log);
1824     return log;
1825   }
1826 
1827   // Create a new one and remember it.
1828   init_compiler_thread_log();
1829   log = ct->log();
1830   *log_ptr = log;
1831   return log;
1832 }
1833 
1834 // ------------------------------------------------------------------
1835 // CompileBroker::compiler_thread_loop
1836 //
1837 // The main loop run by a CompilerThread.
1838 void CompileBroker::compiler_thread_loop() {
1839   CompilerThread* thread = CompilerThread::current();
1840   CompileQueue* queue = thread->queue();
1841   // For the thread that initializes the ciObjectFactory
1842   // this resource mark holds all the shared objects
1843   ResourceMark rm;
1844 
1845   // First thread to get here will initialize the compiler interface
1846 
1847   {
1848     ASSERT_IN_VM;
1849     MutexLocker only_one (thread, CompileThread_lock);
1850     if (!ciObjectFactory::is_initialized()) {
1851       ciObjectFactory::initialize();
1852     }
1853   }
1854 
1855   // Open a log.
1856   CompileLog* log = get_log(thread);
1857   if (log != NULL) {
1858     log->begin_elem("start_compile_thread name='%s' thread='" UINTX_FORMAT "' process='%d'",
1859                     thread->name(),
1860                     os::current_thread_id(),
1861                     os::current_process_id());
1862     log->stamp();
1863     log->end_elem();
1864   }
1865 
1866   // If compiler thread/runtime initialization fails, exit the compiler thread
1867   if (!init_compiler_runtime()) {
1868     return;
1869   }
1870 
1871   thread->start_idle_timer();
1872 
1873   // Poll for new compilation tasks as long as the JVM runs. Compilation
1874   // should only be disabled if something went wrong while initializing the
1875   // compiler runtimes. This, in turn, should not happen. The only known case
1876   // when compiler runtime initialization fails is if there is not enough free
1877   // space in the code cache to generate the necessary stubs, etc.
1878   while (!is_compilation_disabled_forever()) {
1879     // We need this HandleMark to avoid leaking VM handles.
1880     HandleMark hm(thread);
1881 
1882     CompileTask* task = queue->get(thread);
1883     if (task == NULL) {
1884       if (UseDynamicNumberOfCompilerThreads) {
1885         // Access compiler_count under lock to enforce consistency.
1886         MutexLocker only_one(CompileThread_lock);
1887         if (can_remove(thread, true)) {
1888           if (TraceCompilerThreads) {
1889             tty->print_cr("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
1890                           thread->name(), thread->idle_time_millis());
1891           }
1892 
1893           // Notify compiler that the compiler thread is about to stop
1894           thread->compiler()->stopping_compiler_thread(thread);
1895 
1896           // Free buffer blob, if allocated
1897           if (thread->get_buffer_blob() != NULL) {
1898             MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1899             CodeCache::free(thread->get_buffer_blob());
1900           }
1901           return; // Stop this thread.
1902         }
1903       }
1904     } else {
1905       // Assign the task to the current thread.  Mark this compilation
1906       // thread as active for the profiler.
1907       // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
1908       // occurs after fetching the compile task off the queue.
1909       CompileTaskWrapper ctw(task);
1910       methodHandle method(thread, task->method());
1911 
1912       // Never compile a method if breakpoints are present in it
1913       if (method()->number_of_breakpoints() == 0) {
1914         // Compile the method.
1915         if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
1916           invoke_compiler_on_method(task);
1917           thread->start_idle_timer();
1918         } else {
1919           // After compilation is disabled, remove remaining methods from queue
1920           method->clear_queued_for_compilation();
1921           task->set_failure_reason("compilation is disabled");
1922         }
1923       } else {
1924         task->set_failure_reason("breakpoints are present");
1925       }
1926 
1927       if (UseDynamicNumberOfCompilerThreads) {
1928         possibly_add_compiler_threads(thread);
1929         assert(!thread->has_pending_exception(), "should have been handled");
1930       }
1931     }
1932   }
1933 
1934   // Shut down compiler runtime
1935   shutdown_compiler_runtime(thread->compiler(), thread);
1936 }
1937 
1938 // ------------------------------------------------------------------
1939 // CompileBroker::init_compiler_thread_log
1940 //
1941 // Set up state required by +LogCompilation.
1942 void CompileBroker::init_compiler_thread_log() {
1943     CompilerThread* thread = CompilerThread::current();
1944     char  file_name[4*K];
1945     FILE* fp = NULL;
1946     intx thread_id = os::current_thread_id();
1947     for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
1948       const char* dir = (try_temp_dir ? os::get_temp_directory() : NULL);
1949       if (dir == NULL) {
1950         jio_snprintf(file_name, sizeof(file_name), "hs_c" UINTX_FORMAT "_pid%u.log",
1951                      thread_id, os::current_process_id());
1952       } else {
1953         jio_snprintf(file_name, sizeof(file_name),
1954                      "%s%shs_c" UINTX_FORMAT "_pid%u.log", dir,
1955                      os::file_separator(), thread_id, os::current_process_id());
1956       }
1957 
1958       fp = os::fopen(file_name, "wt");
1959       if (fp != NULL) {
1960         if (LogCompilation && Verbose) {
1961           tty->print_cr("Opening compilation log %s", file_name);
1962         }
1963         CompileLog* log = new(mtCompiler) CompileLog(file_name, fp, thread_id);
1964         if (log == NULL) {
1965           fclose(fp);
1966           return;
1967         }
1968         thread->init_log(log);
1969 
1970         if (xtty != NULL) {
1971           ttyLocker ttyl;
1972           // Record any per thread log files
1973           xtty->elem("thread_logfile thread='" INTX_FORMAT "' filename='%s'", thread_id, file_name);
1974         }
1975         return;
1976       }
1977     }
1978     warning("Cannot open log file: %s", file_name);
1979 }
1980 
1981 void CompileBroker::log_metaspace_failure() {
1982   const char* message = "some methods may not be compiled because metaspace "
1983                         "is out of memory";
1984   if (CompilationLog::log() != NULL) {
1985     CompilationLog::log()->log_metaspace_failure(message);
1986   }
1987   if (PrintCompilation) {
1988     tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
1989   }
1990 }
1991 
1992 
1993 // ------------------------------------------------------------------
1994 // CompileBroker::set_should_block
1995 //
1996 // Set _should_block.
1997 // Call this from the VM, with Threads_lock held and a safepoint requested.
1998 void CompileBroker::set_should_block() {
1999   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2000   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
2001 #ifndef PRODUCT
2002   if (PrintCompilation && (Verbose || WizardMode))
2003     tty->print_cr("notifying compiler thread pool to block");
2004 #endif
2005   _should_block = true;
2006 }
2007 
2008 // ------------------------------------------------------------------
2009 // CompileBroker::maybe_block
2010 //
2011 // Call this from the compiler at convenient points, to poll for _should_block.
2012 void CompileBroker::maybe_block() {
2013   if (_should_block) {
2014 #ifndef PRODUCT
2015     if (PrintCompilation && (Verbose || WizardMode))
2016       tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
2017 #endif
2018     ThreadInVMfromNative tivfn(JavaThread::current());
2019   }
2020 }
2021 
2022 // wrapper for CodeCache::print_summary()
2023 static void codecache_print(bool detailed)
2024 {
2025   stringStream s;
2026   // Dump code cache  into a buffer before locking the tty,
2027   {
2028     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2029     CodeCache::print_summary(&s, detailed);
2030   }
2031   ttyLocker ttyl;
2032   tty->print("%s", s.freeze());
2033 }
2034 
2035 // wrapper for CodeCache::print_summary() using outputStream
2036 static void codecache_print(outputStream* out, bool detailed) {
2037   stringStream s;
2038 
2039   // Dump code cache into a buffer
2040   {
2041     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2042     CodeCache::print_summary(&s, detailed);
2043   }
2044 
2045   char* remaining_log = s.as_string();
2046   while (*remaining_log != '\0') {
2047     char* eol = strchr(remaining_log, '\n');
2048     if (eol == NULL) {
2049       out->print_cr("%s", remaining_log);
2050       remaining_log = remaining_log + strlen(remaining_log);
2051     } else {
2052       *eol = '\0';
2053       out->print_cr("%s", remaining_log);
2054       remaining_log = eol + 1;
2055     }
2056   }
2057 }
2058 
2059 void CompileBroker::handle_compile_error(CompilerThread* thread, CompileTask* task, ciEnv* ci_env,
2060                                          int compilable, const char* failure_reason) {
2061   if (!AbortVMOnCompilationFailure) {
2062     return;
2063   }
2064   if (compilable == ciEnv::MethodCompilable_not_at_tier) {
2065     fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
2066   }
2067   if (compilable == ciEnv::MethodCompilable_never) {
2068     fatal("Never compilable: %s", failure_reason);
2069   }
2070 }
2071 
2072 static void post_compilation_event(EventCompilation& event, CompileTask* task) {
2073   assert(task != NULL, "invariant");
2074   CompilerEvent::CompilationEvent::post(event,
2075                                         task->compile_id(),
2076                                         task->compiler()->type(),
2077                                         task->method(),
2078                                         task->comp_level(),
2079                                         task->is_success(),
2080                                         task->osr_bci() != CompileBroker::standard_entry_bci,
2081                                         task->nm_total_size(),
2082                                         task->num_inlined_bytecodes());
2083 }
2084 
2085 int DirectivesStack::_depth = 0;
2086 CompilerDirectives* DirectivesStack::_top = NULL;
2087 CompilerDirectives* DirectivesStack::_bottom = NULL;
2088 
2089 // ------------------------------------------------------------------
2090 // CompileBroker::invoke_compiler_on_method
2091 //
2092 // Compile a method.
2093 //
2094 void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
2095   task->print_ul();
2096   elapsedTimer time;
2097 
2098   DirectiveSet* directive = task->directive();
2099   if (directive->PrintCompilationOption) {
2100     ResourceMark rm;
2101     task->print_tty();
2102   }
2103 
2104   CompilerThread* thread = CompilerThread::current();
2105   ResourceMark rm(thread);
2106 
2107   if (CompilationLog::log() != NULL) {
2108     CompilationLog::log()->log_compile(thread, task);
2109   }
2110 
2111   // Common flags.
2112   int compile_id = task->compile_id();
2113   int osr_bci = task->osr_bci();
2114   bool is_osr = (osr_bci != standard_entry_bci);
2115   bool should_log = (thread->log() != NULL);
2116   bool should_break = false;
2117   const int task_level = task->comp_level();
2118   AbstractCompiler* comp = task->compiler();
2119   {
2120     // create the handle inside it's own block so it can't
2121     // accidentally be referenced once the thread transitions to
2122     // native.  The NoHandleMark before the transition should catch
2123     // any cases where this occurs in the future.
2124     methodHandle method(thread, task->method());
2125 
2126     assert(!method->is_native(), "no longer compile natives");
2127 
2128     // Update compile information when using perfdata.
2129     if (UsePerfData) {
2130       update_compile_perf_data(thread, method, is_osr);
2131     }
2132 
2133     DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
2134   }
2135 
2136   should_break = directive->BreakAtCompileOption || task->check_break_at_flags();
2137   if (should_log && !directive->LogOption) {
2138     should_log = false;
2139   }
2140 
2141   // Allocate a new set of JNI handles.
2142   JNIHandleMark jhm(thread);
2143   Method* target_handle = task->method();
2144   int compilable = ciEnv::MethodCompilable;
2145   const char* failure_reason = NULL;
2146   bool failure_reason_on_C_heap = false;
2147   const char* retry_message = NULL;
2148 
2149 #if INCLUDE_JVMCI
2150   if (UseJVMCICompiler && comp != NULL && comp->is_jvmci()) {
2151     JVMCICompiler* jvmci = (JVMCICompiler*) comp;
2152 
2153     TraceTime t1("compilation", &time);
2154     EventCompilation event;
2155     JVMCICompileState compile_state(task, jvmci);
2156     JVMCIRuntime *runtime = NULL;
2157 
2158     if (JVMCI::in_shutdown()) {
2159       failure_reason = "in JVMCI shutdown";
2160       retry_message = "not retryable";
2161       compilable = ciEnv::MethodCompilable_never;
2162     } else if (compile_state.target_method_is_old()) {
2163       // Skip redefined methods
2164       failure_reason = "redefined method";
2165       retry_message = "not retryable";
2166       compilable = ciEnv::MethodCompilable_never;
2167     } else {
2168       JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__);
2169       failure_reason = compile_state.failure_reason();
2170       if (failure_reason == nullptr) {
2171         methodHandle method(thread, target_handle);
2172         runtime = env.runtime();
2173         runtime->compile_method(&env, jvmci, method, osr_bci);
2174 
2175         failure_reason = compile_state.failure_reason();
2176         failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap();
2177         if (!compile_state.retryable()) {
2178           retry_message = "not retryable";
2179           compilable = ciEnv::MethodCompilable_not_at_tier;
2180         }
2181         if (!task->is_success()) {
2182           assert(failure_reason != NULL, "must specify failure_reason");
2183         }
2184       }
2185     }
2186     if (!task->is_success()) {
2187       handle_compile_error(thread, task, NULL, compilable, failure_reason);
2188     }
2189     if (event.should_commit()) {
2190       post_compilation_event(event, task);
2191     }
2192 
2193     if (runtime != nullptr) {
2194       runtime->post_compile(thread);
2195     }
2196   } else
2197 #endif // INCLUDE_JVMCI
2198   {
2199     NoHandleMark  nhm;
2200     ThreadToNativeFromVM ttn(thread);
2201 
2202     ciEnv ci_env(task);
2203     if (should_break) {
2204       ci_env.set_break_at_compile(true);
2205     }
2206     if (should_log) {
2207       ci_env.set_log(thread->log());
2208     }
2209     assert(thread->env() == &ci_env, "set by ci_env");
2210     // The thread-env() field is cleared in ~CompileTaskWrapper.
2211 
2212     // Cache Jvmti state
2213     bool method_is_old = ci_env.cache_jvmti_state();
2214 
2215     // Skip redefined methods
2216     if (method_is_old) {
2217       ci_env.record_method_not_compilable("redefined method", true);
2218     }
2219 
2220     // Cache DTrace flags
2221     ci_env.cache_dtrace_flags();
2222 
2223     ciMethod* target = ci_env.get_method_from_handle(target_handle);
2224 
2225     TraceTime t1("compilation", &time);
2226     EventCompilation event;
2227 
2228     if (comp == NULL) {
2229       ci_env.record_method_not_compilable("no compiler");
2230     } else if (!ci_env.failing()) {
2231       if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2232         MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
2233         while (WhiteBox::compilation_locked) {
2234           locker.wait();
2235         }
2236       }
2237       comp->compile_method(&ci_env, target, osr_bci, true, directive);
2238 
2239       /* Repeat compilation without installing code for profiling purposes */
2240       int repeat_compilation_count = directive->RepeatCompilationOption;
2241       while (repeat_compilation_count > 0) {
2242         ResourceMark rm(thread);
2243         task->print_ul("NO CODE INSTALLED");
2244         comp->compile_method(&ci_env, target, osr_bci, false, directive);
2245         repeat_compilation_count--;
2246       }
2247     }
2248 
2249     DirectivesStack::release(directive);
2250 
2251     if (!ci_env.failing() && !task->is_success()) {
2252       //assert(false, "compiler should always document failure");
2253       // The compiler elected, without comment, not to register a result.
2254       // Do not attempt further compilations of this method.
2255       ci_env.record_method_not_compilable("compile failed");
2256     }
2257 
2258     // Copy this bit to the enclosing block:
2259     compilable = ci_env.compilable();
2260 
2261     if (ci_env.failing()) {
2262       failure_reason = ci_env.failure_reason();
2263       retry_message = ci_env.retry_message();
2264       ci_env.report_failure(failure_reason);
2265     }
2266 
2267     if (ci_env.failing()) {
2268       handle_compile_error(thread, task, &ci_env, compilable, failure_reason);
2269     }
2270     if (event.should_commit()) {
2271       post_compilation_event(event, task);
2272     }
2273   }
2274 
2275   if (failure_reason != NULL) {
2276     task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
2277     if (CompilationLog::log() != NULL) {
2278       CompilationLog::log()->log_failure(thread, task, failure_reason, retry_message);
2279     }
2280     if (PrintCompilation) {
2281       FormatBufferResource msg = retry_message != NULL ?
2282         FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
2283         FormatBufferResource("COMPILE SKIPPED: %s",      failure_reason);
2284       task->print(tty, msg);
2285     }
2286   }
2287 
2288   methodHandle method(thread, task->method());
2289 
2290   DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
2291 
2292   collect_statistics(thread, time, task);
2293 
2294   if (PrintCompilation && PrintCompilation2) {
2295     tty->print("%7d ", (int) tty->time_stamp().milliseconds());  // print timestamp
2296     tty->print("%4d ", compile_id);    // print compilation number
2297     tty->print("%s ", (is_osr ? "%" : " "));
2298     if (task->is_success()) {
2299       tty->print("size: %d(%d) ", task->nm_total_size(), task->nm_insts_size());
2300     }
2301     tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
2302   }
2303 
2304   Log(compilation, codecache) log;
2305   if (log.is_debug()) {
2306     LogStream ls(log.debug());
2307     codecache_print(&ls, /* detailed= */ false);
2308   }
2309   if (PrintCodeCacheOnCompilation) {
2310     codecache_print(/* detailed= */ false);
2311   }
2312   // Disable compilation, if required.
2313   switch (compilable) {
2314   case ciEnv::MethodCompilable_never:
2315     if (is_osr)
2316       method->set_not_osr_compilable_quietly("MethodCompilable_never");
2317     else
2318       method->set_not_compilable_quietly("MethodCompilable_never");
2319     break;
2320   case ciEnv::MethodCompilable_not_at_tier:
2321     if (is_osr)
2322       method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2323     else
2324       method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2325     break;
2326   }
2327 
2328   // Note that the queued_for_compilation bits are cleared without
2329   // protection of a mutex. [They were set by the requester thread,
2330   // when adding the task to the compile queue -- at which time the
2331   // compile queue lock was held. Subsequently, we acquired the compile
2332   // queue lock to get this task off the compile queue; thus (to belabour
2333   // the point somewhat) our clearing of the bits must be occurring
2334   // only after the setting of the bits. See also 14012000 above.
2335   method->clear_queued_for_compilation();
2336 }
2337 
2338 /**
2339  * The CodeCache is full. Print warning and disable compilation.
2340  * Schedule code cache cleaning so compilation can continue later.
2341  * This function needs to be called only from CodeCache::allocate(),
2342  * since we currently handle a full code cache uniformly.
2343  */
2344 void CompileBroker::handle_full_code_cache(CodeBlobType code_blob_type) {
2345   UseInterpreter = true;
2346   if (UseCompiler || AlwaysCompileLoopMethods ) {
2347     if (xtty != NULL) {
2348       stringStream s;
2349       // Dump code cache state into a buffer before locking the tty,
2350       // because log_state() will use locks causing lock conflicts.
2351       CodeCache::log_state(&s);
2352       // Lock to prevent tearing
2353       ttyLocker ttyl;
2354       xtty->begin_elem("code_cache_full");
2355       xtty->print("%s", s.freeze());
2356       xtty->stamp();
2357       xtty->end_elem();
2358     }
2359 
2360 #ifndef PRODUCT
2361     if (ExitOnFullCodeCache) {
2362       codecache_print(/* detailed= */ true);
2363       before_exit(JavaThread::current());
2364       exit_globals(); // will delete tty
2365       vm_direct_exit(1);
2366     }
2367 #endif
2368     if (UseCodeCacheFlushing) {
2369       // Since code cache is full, immediately stop new compiles
2370       if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
2371         log_info(codecache)("Code cache is full - disabling compilation");
2372       }
2373     } else {
2374       disable_compilation_forever();
2375     }
2376 
2377     CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
2378   }
2379 }
2380 
2381 // ------------------------------------------------------------------
2382 // CompileBroker::update_compile_perf_data
2383 //
2384 // Record this compilation for debugging purposes.
2385 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) {
2386   ResourceMark rm;
2387   char* method_name = method->name()->as_C_string();
2388   char current_method[CompilerCounters::cmname_buffer_length];
2389   size_t maxLen = CompilerCounters::cmname_buffer_length;
2390 
2391   const char* class_name = method->method_holder()->name()->as_C_string();
2392 
2393   size_t s1len = strlen(class_name);
2394   size_t s2len = strlen(method_name);
2395 
2396   // check if we need to truncate the string
2397   if (s1len + s2len + 2 > maxLen) {
2398 
2399     // the strategy is to lop off the leading characters of the
2400     // class name and the trailing characters of the method name.
2401 
2402     if (s2len + 2 > maxLen) {
2403       // lop of the entire class name string, let snprintf handle
2404       // truncation of the method name.
2405       class_name += s1len; // null string
2406     }
2407     else {
2408       // lop off the extra characters from the front of the class name
2409       class_name += ((s1len + s2len + 2) - maxLen);
2410     }
2411   }
2412 
2413   jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
2414 
2415   int last_compile_type = normal_compile;
2416   if (CICountOSR && is_osr) {
2417     last_compile_type = osr_compile;
2418   } else if (CICountNative && method->is_native()) {
2419     last_compile_type = native_compile;
2420   }
2421 
2422   CompilerCounters* counters = thread->counters();
2423   counters->set_current_method(current_method);
2424   counters->set_compile_type((jlong) last_compile_type);
2425 }
2426 
2427 // ------------------------------------------------------------------
2428 // CompileBroker::collect_statistics
2429 //
2430 // Collect statistics about the compilation.
2431 
2432 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
2433   bool success = task->is_success();
2434   methodHandle method (thread, task->method());
2435   int compile_id = task->compile_id();
2436   bool is_osr = (task->osr_bci() != standard_entry_bci);
2437   const int comp_level = task->comp_level();
2438   CompilerCounters* counters = thread->counters();
2439 
2440   MutexLocker locker(CompileStatistics_lock);
2441 
2442   // _perf variables are production performance counters which are
2443   // updated regardless of the setting of the CITime and CITimeEach flags
2444   //
2445 
2446   // account all time, including bailouts and failures in this counter;
2447   // C1 and C2 counters are counting both successful and unsuccessful compiles
2448   _t_total_compilation.add(time);
2449 
2450   if (!success) {
2451     _total_bailout_count++;
2452     if (UsePerfData) {
2453       _perf_last_failed_method->set_value(counters->current_method());
2454       _perf_last_failed_type->set_value(counters->compile_type());
2455       _perf_total_bailout_count->inc();
2456     }
2457     _t_bailedout_compilation.add(time);
2458   } else if (!task->is_success()) {
2459     if (UsePerfData) {
2460       _perf_last_invalidated_method->set_value(counters->current_method());
2461       _perf_last_invalidated_type->set_value(counters->compile_type());
2462       _perf_total_invalidated_count->inc();
2463     }
2464     _total_invalidated_count++;
2465     _t_invalidated_compilation.add(time);
2466   } else {
2467     // Compilation succeeded
2468 
2469     // update compilation ticks - used by the implementation of
2470     // java.lang.management.CompilationMXBean
2471     _perf_total_compilation->inc(time.ticks());
2472     _peak_compilation_time = time.milliseconds() > _peak_compilation_time ? time.milliseconds() : _peak_compilation_time;
2473 
2474     if (CITime) {
2475       int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
2476       if (is_osr) {
2477         _t_osr_compilation.add(time);
2478         _sum_osr_bytes_compiled += bytes_compiled;
2479       } else {
2480         _t_standard_compilation.add(time);
2481         _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
2482       }
2483 
2484       // Collect statistic per compilation level
2485       if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) {
2486         CompilerStatistics* stats = &_stats_per_level[comp_level-1];
2487         if (is_osr) {
2488           stats->_osr.update(time, bytes_compiled);
2489         } else {
2490           stats->_standard.update(time, bytes_compiled);
2491         }
2492         stats->_nmethods_size += task->nm_total_size();
2493         stats->_nmethods_code_size += task->nm_insts_size();
2494       } else {
2495         assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level);
2496       }
2497 
2498       // Collect statistic per compiler
2499       AbstractCompiler* comp = compiler(comp_level);
2500       if (comp) {
2501         CompilerStatistics* stats = comp->stats();
2502         if (is_osr) {
2503           stats->_osr.update(time, bytes_compiled);
2504         } else {
2505           stats->_standard.update(time, bytes_compiled);
2506         }
2507         stats->_nmethods_size += task->nm_total_size();
2508         stats->_nmethods_code_size += task->nm_insts_size();
2509       } else { // if (!comp)
2510         assert(false, "Compiler object must exist");
2511       }
2512     }
2513 
2514     if (UsePerfData) {
2515       // save the name of the last method compiled
2516       _perf_last_method->set_value(counters->current_method());
2517       _perf_last_compile_type->set_value(counters->compile_type());
2518       _perf_last_compile_size->set_value(method->code_size() +
2519                                          task->num_inlined_bytecodes());
2520       if (is_osr) {
2521         _perf_osr_compilation->inc(time.ticks());
2522         _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2523       } else {
2524         _perf_standard_compilation->inc(time.ticks());
2525         _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2526       }
2527     }
2528 
2529     if (CITimeEach) {
2530       double compile_time = time.seconds();
2531       double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time;
2532       tty->print_cr("%3d   seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)",
2533                     compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
2534     }
2535 
2536     // Collect counts of successful compilations
2537     _sum_nmethod_size      += task->nm_total_size();
2538     _sum_nmethod_code_size += task->nm_insts_size();
2539     _total_compile_count++;
2540 
2541     if (UsePerfData) {
2542       _perf_sum_nmethod_size->inc(     task->nm_total_size());
2543       _perf_sum_nmethod_code_size->inc(task->nm_insts_size());
2544       _perf_total_compile_count->inc();
2545     }
2546 
2547     if (is_osr) {
2548       if (UsePerfData) _perf_total_osr_compile_count->inc();
2549       _total_osr_compile_count++;
2550     } else {
2551       if (UsePerfData) _perf_total_standard_compile_count->inc();
2552       _total_standard_compile_count++;
2553     }
2554   }
2555   // set the current method for the thread to null
2556   if (UsePerfData) counters->set_current_method("");
2557 }
2558 
2559 const char* CompileBroker::compiler_name(int comp_level) {
2560   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
2561   if (comp == NULL) {
2562     return "no compiler";
2563   } else {
2564     return (comp->name());
2565   }
2566 }
2567 
2568 jlong CompileBroker::total_compilation_ticks() {
2569   return _perf_total_compilation != NULL ? _perf_total_compilation->get_value() : 0;
2570 }
2571 
2572 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) {
2573   tty->print_cr("  %s {speed: %6.3f bytes/s; standard: %6.3f s, %d bytes, %d methods; osr: %6.3f s, %d bytes, %d methods; nmethods_size: %d bytes; nmethods_code_size: %d bytes}",
2574                 name, stats->bytes_per_second(),
2575                 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
2576                 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
2577                 stats->_nmethods_size, stats->_nmethods_code_size);
2578 }
2579 
2580 void CompileBroker::print_times(bool per_compiler, bool aggregate) {
2581   if (per_compiler) {
2582     if (aggregate) {
2583       tty->cr();
2584       tty->print_cr("Individual compiler times (for compiled methods only)");
2585       tty->print_cr("------------------------------------------------");
2586       tty->cr();
2587     }
2588     for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
2589       AbstractCompiler* comp = _compilers[i];
2590       if (comp != NULL) {
2591         print_times(comp->name(), comp->stats());
2592       }
2593     }
2594     if (aggregate) {
2595       tty->cr();
2596       tty->print_cr("Individual compilation Tier times (for compiled methods only)");
2597       tty->print_cr("------------------------------------------------");
2598       tty->cr();
2599     }
2600     char tier_name[256];
2601     for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) {
2602       CompilerStatistics* stats = &_stats_per_level[tier-1];
2603       os::snprintf_checked(tier_name, sizeof(tier_name), "Tier%d", tier);
2604       print_times(tier_name, stats);
2605     }
2606   }
2607 
2608   if (!aggregate) {
2609     return;
2610   }
2611 
2612   elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
2613   elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
2614   elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
2615 
2616   int standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
2617   int osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
2618 
2619   int standard_compile_count = CompileBroker::_total_standard_compile_count;
2620   int osr_compile_count = CompileBroker::_total_osr_compile_count;
2621   int total_compile_count = CompileBroker::_total_compile_count;
2622   int total_bailout_count = CompileBroker::_total_bailout_count;
2623   int total_invalidated_count = CompileBroker::_total_invalidated_count;
2624 
2625   int nmethods_size = CompileBroker::_sum_nmethod_code_size;
2626   int nmethods_code_size = CompileBroker::_sum_nmethod_size;
2627 
2628   tty->cr();
2629   tty->print_cr("Accumulated compiler times");
2630   tty->print_cr("----------------------------------------------------------");
2631                //0000000000111111111122222222223333333333444444444455555555556666666666
2632                //0123456789012345678901234567890123456789012345678901234567890123456789
2633   tty->print_cr("  Total compilation time   : %7.3f s", total_compilation.seconds());
2634   tty->print_cr("    Standard compilation   : %7.3f s, Average : %2.3f s",
2635                 standard_compilation.seconds(),
2636                 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count);
2637   tty->print_cr("    Bailed out compilation : %7.3f s, Average : %2.3f s",
2638                 CompileBroker::_t_bailedout_compilation.seconds(),
2639                 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count);
2640   tty->print_cr("    On stack replacement   : %7.3f s, Average : %2.3f s",
2641                 osr_compilation.seconds(),
2642                 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count);
2643   tty->print_cr("    Invalidated            : %7.3f s, Average : %2.3f s",
2644                 CompileBroker::_t_invalidated_compilation.seconds(),
2645                 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count);
2646 
2647   AbstractCompiler *comp = compiler(CompLevel_simple);
2648   if (comp != NULL) {
2649     tty->cr();
2650     comp->print_timers();
2651   }
2652   comp = compiler(CompLevel_full_optimization);
2653   if (comp != NULL) {
2654     tty->cr();
2655     comp->print_timers();
2656   }
2657 #if INCLUDE_JVMCI
2658   if (EnableJVMCI) {
2659     JVMCICompiler *jvmci_comp = JVMCICompiler::instance(false, JavaThread::current_or_null());
2660     if (jvmci_comp != nullptr && jvmci_comp != comp) {
2661       tty->cr();
2662       jvmci_comp->print_timers();
2663     }
2664   }
2665 #endif
2666 
2667   tty->cr();
2668   tty->print_cr("  Total compiled methods    : %8d methods", total_compile_count);
2669   tty->print_cr("    Standard compilation    : %8d methods", standard_compile_count);
2670   tty->print_cr("    On stack replacement    : %8d methods", osr_compile_count);
2671   int tcb = osr_bytes_compiled + standard_bytes_compiled;
2672   tty->print_cr("  Total compiled bytecodes  : %8d bytes", tcb);
2673   tty->print_cr("    Standard compilation    : %8d bytes", standard_bytes_compiled);
2674   tty->print_cr("    On stack replacement    : %8d bytes", osr_bytes_compiled);
2675   double tcs = total_compilation.seconds();
2676   int bps = tcs == 0.0 ? 0 : (int)(tcb / tcs);
2677   tty->print_cr("  Average compilation speed : %8d bytes/s", bps);
2678   tty->cr();
2679   tty->print_cr("  nmethod code size         : %8d bytes", nmethods_code_size);
2680   tty->print_cr("  nmethod total size        : %8d bytes", nmethods_size);
2681 }
2682 
2683 // Print general/accumulated JIT information.
2684 void CompileBroker::print_info(outputStream *out) {
2685   if (out == NULL) out = tty;
2686   out->cr();
2687   out->print_cr("======================");
2688   out->print_cr("   General JIT info   ");
2689   out->print_cr("======================");
2690   out->cr();
2691   out->print_cr("            JIT is : %7s",     should_compile_new_jobs() ? "on" : "off");
2692   out->print_cr("  Compiler threads : %7d",     (int)CICompilerCount);
2693   out->cr();
2694   out->print_cr("CodeCache overview");
2695   out->print_cr("--------------------------------------------------------");
2696   out->cr();
2697   out->print_cr("         Reserved size : " SIZE_FORMAT_W(7) " KB", CodeCache::max_capacity() / K);
2698   out->print_cr("        Committed size : " SIZE_FORMAT_W(7) " KB", CodeCache::capacity() / K);
2699   out->print_cr("  Unallocated capacity : " SIZE_FORMAT_W(7) " KB", CodeCache::unallocated_capacity() / K);
2700   out->cr();
2701 }
2702 
2703 // Note: tty_lock must not be held upon entry to this function.
2704 //       Print functions called from herein do "micro-locking" on tty_lock.
2705 //       That's a tradeoff which keeps together important blocks of output.
2706 //       At the same time, continuous tty_lock hold time is kept in check,
2707 //       preventing concurrently printing threads from stalling a long time.
2708 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) {
2709   TimeStamp ts_total;
2710   TimeStamp ts_global;
2711   TimeStamp ts;
2712 
2713   bool allFun = !strcmp(function, "all");
2714   bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
2715   bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
2716   bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
2717   bool methodCount = !strcmp(function, "MethodCount") || allFun;
2718   bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
2719   bool methodAge = !strcmp(function, "MethodAge") || allFun;
2720   bool methodNames = !strcmp(function, "MethodNames") || allFun;
2721   bool discard = !strcmp(function, "discard") || allFun;
2722 
2723   if (out == NULL) {
2724     out = tty;
2725   }
2726 
2727   if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
2728     out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
2729     out->cr();
2730     return;
2731   }
2732 
2733   ts_total.update(); // record starting point
2734 
2735   if (aggregate) {
2736     print_info(out);
2737   }
2738 
2739   // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
2740   // That prevents other threads from destroying (making inconsistent) our view on the CodeHeap.
2741   // When we request individual parts of the analysis via the jcmd interface, it is possible
2742   // that in between another thread (another jcmd user or the vm running into CodeCache OOM)
2743   // updated the aggregated data. We will then see a modified, but again consistent, view
2744   // on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold
2745   // a lock across user interaction.
2746 
2747   // We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock.
2748   // CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time,
2749   // leading to an unnecessarily long hold time of the other locks we acquired before.
2750   ts.update(); // record starting point
2751   MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag);
2752   out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds());
2753 
2754   // Holding the CodeCache_lock protects from concurrent alterations of the CodeCache.
2755   // Unfortunately, such protection is not sufficient:
2756   // When a new nmethod is created via ciEnv::register_method(), the
2757   // Compile_lock is taken first. After some initializations,
2758   // nmethod::new_nmethod() takes over, grabbing the CodeCache_lock
2759   // immediately (after finalizing the oop references). To lock out concurrent
2760   // modifiers, we have to grab both locks as well in the described sequence.
2761   //
2762   // If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock
2763   // for the entire duration of aggregation and printing. That makes sure we see
2764   // a consistent picture and do not run into issues caused by concurrent alterations.
2765   bool should_take_Compile_lock   = !SafepointSynchronize::is_at_safepoint() &&
2766                                     !Compile_lock->owned_by_self();
2767   bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() &&
2768                                     !CodeCache_lock->owned_by_self();
2769   Mutex*   global_lock_1   = allFun ? (should_take_Compile_lock   ? Compile_lock   : NULL) : NULL;
2770   Monitor* global_lock_2   = allFun ? (should_take_CodeCache_lock ? CodeCache_lock : NULL) : NULL;
2771   Mutex*   function_lock_1 = allFun ? NULL : (should_take_Compile_lock   ? Compile_lock    : NULL);
2772   Monitor* function_lock_2 = allFun ? NULL : (should_take_CodeCache_lock ? CodeCache_lock  : NULL);
2773   ts_global.update(); // record starting point
2774   MutexLocker mu1(global_lock_1, Mutex::_safepoint_check_flag);
2775   MutexLocker mu2(global_lock_2, Mutex::_no_safepoint_check_flag);
2776   if ((global_lock_1 != NULL) || (global_lock_2 != NULL)) {
2777     out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds());
2778     ts_global.update(); // record starting point
2779   }
2780 
2781   if (aggregate) {
2782     ts.update(); // record starting point
2783     MutexLocker mu11(function_lock_1, Mutex::_safepoint_check_flag);
2784     MutexLocker mu22(function_lock_2, Mutex::_no_safepoint_check_flag);
2785     if ((function_lock_1 != NULL) || (function_lock_1 != NULL)) {
2786       out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds());
2787     }
2788 
2789     ts.update(); // record starting point
2790     CodeCache::aggregate(out, granularity);
2791     if ((function_lock_1 != NULL) || (function_lock_1 != NULL)) {
2792       out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds());
2793     }
2794   }
2795 
2796   if (usedSpace) CodeCache::print_usedSpace(out);
2797   if (freeSpace) CodeCache::print_freeSpace(out);
2798   if (methodCount) CodeCache::print_count(out);
2799   if (methodSpace) CodeCache::print_space(out);
2800   if (methodAge) CodeCache::print_age(out);
2801   if (methodNames) {
2802     if (allFun) {
2803       // print_names() can only be used safely if the locks have been continuously held
2804       // since aggregation begin. That is true only for function "all".
2805       CodeCache::print_names(out);
2806     } else {
2807       out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'");
2808     }
2809   }
2810   if (discard) CodeCache::discard(out);
2811 
2812   if ((global_lock_1 != NULL) || (global_lock_2 != NULL)) {
2813     out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds());
2814   }
2815   out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds());
2816 }