1 /*
   2  * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/vmClasses.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeHeapState.hpp"
  32 #include "code/dependencyContext.hpp"
  33 #include "compiler/compilationLog.hpp"
  34 #include "compiler/compilationPolicy.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileLog.hpp"
  37 #include "compiler/compilerEvent.hpp"
  38 #include "compiler/compilerOracle.hpp"
  39 #include "compiler/directivesParser.hpp"
  40 #include "interpreter/linkResolver.hpp"
  41 #include "jvm.h"
  42 #include "jfr/jfrEvents.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logStream.hpp"
  45 #include "memory/allocation.inline.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.hpp"
  48 #include "oops/methodData.hpp"
  49 #include "oops/method.inline.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "prims/jvmtiExport.hpp"
  52 #include "prims/nativeLookup.hpp"
  53 #include "prims/whitebox.hpp"
  54 #include "runtime/atomic.hpp"
  55 #include "runtime/escapeBarrier.hpp"
  56 #include "runtime/globals_extension.hpp"
  57 #include "runtime/handles.inline.hpp"
  58 #include "runtime/init.hpp"
  59 #include "runtime/interfaceSupport.inline.hpp"
  60 #include "runtime/java.hpp"
  61 #include "runtime/javaCalls.hpp"
  62 #include "runtime/jniHandles.inline.hpp"
  63 #include "runtime/os.hpp"
  64 #include "runtime/perfData.hpp"
  65 #include "runtime/safepointVerifiers.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/threads.hpp"
  68 #include "runtime/threadSMR.hpp"
  69 #include "runtime/timerTrace.hpp"
  70 #include "runtime/vframe.inline.hpp"
  71 #include "utilities/debug.hpp"
  72 #include "utilities/dtrace.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/formatBuffer.hpp"
  75 #include "utilities/macros.hpp"
  76 #ifdef COMPILER1
  77 #include "c1/c1_Compiler.hpp"
  78 #endif
  79 #ifdef COMPILER2
  80 #include "opto/c2compiler.hpp"
  81 #endif
  82 #if INCLUDE_JVMCI
  83 #include "jvmci/jvmciEnv.hpp"
  84 #include "jvmci/jvmciRuntime.hpp"
  85 #endif
  86 
  87 #ifdef DTRACE_ENABLED
  88 
  89 // Only bother with this argument setup if dtrace is available
  90 
  91 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)             \
  92   {                                                                      \
  93     Symbol* klass_name = (method)->klass_name();                         \
  94     Symbol* name = (method)->name();                                     \
  95     Symbol* signature = (method)->signature();                           \
  96     HOTSPOT_METHOD_COMPILE_BEGIN(                                        \
  97       (char *) comp_name, strlen(comp_name),                             \
  98       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
  99       (char *) name->bytes(), name->utf8_length(),                       \
 100       (char *) signature->bytes(), signature->utf8_length());            \
 101   }
 102 
 103 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)      \
 104   {                                                                      \
 105     Symbol* klass_name = (method)->klass_name();                         \
 106     Symbol* name = (method)->name();                                     \
 107     Symbol* signature = (method)->signature();                           \
 108     HOTSPOT_METHOD_COMPILE_END(                                          \
 109       (char *) comp_name, strlen(comp_name),                             \
 110       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 111       (char *) name->bytes(), name->utf8_length(),                       \
 112       (char *) signature->bytes(), signature->utf8_length(), (success)); \
 113   }
 114 
 115 #else //  ndef DTRACE_ENABLED
 116 
 117 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
 118 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
 119 
 120 #endif // ndef DTRACE_ENABLED
 121 
 122 bool CompileBroker::_initialized = false;
 123 volatile bool CompileBroker::_should_block = false;
 124 volatile int  CompileBroker::_print_compilation_warning = 0;
 125 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
 126 
 127 // The installed compiler(s)
 128 AbstractCompiler* CompileBroker::_compilers[2];
 129 
 130 // The maximum numbers of compiler threads to be determined during startup.
 131 int CompileBroker::_c1_count = 0;
 132 int CompileBroker::_c2_count = 0;
 133 
 134 // An array of compiler names as Java String objects
 135 jobject* CompileBroker::_compiler1_objects = nullptr;
 136 jobject* CompileBroker::_compiler2_objects = nullptr;
 137 
 138 CompileLog** CompileBroker::_compiler1_logs = nullptr;
 139 CompileLog** CompileBroker::_compiler2_logs = nullptr;
 140 
 141 // These counters are used to assign an unique ID to each compilation.
 142 volatile jint CompileBroker::_compilation_id     = 0;
 143 volatile jint CompileBroker::_osr_compilation_id = 0;
 144 volatile jint CompileBroker::_native_compilation_id = 0;
 145 
 146 // Performance counters
 147 PerfCounter* CompileBroker::_perf_total_compilation = nullptr;
 148 PerfCounter* CompileBroker::_perf_osr_compilation = nullptr;
 149 PerfCounter* CompileBroker::_perf_standard_compilation = nullptr;
 150 
 151 PerfCounter* CompileBroker::_perf_total_bailout_count = nullptr;
 152 PerfCounter* CompileBroker::_perf_total_invalidated_count = nullptr;
 153 PerfCounter* CompileBroker::_perf_total_compile_count = nullptr;
 154 PerfCounter* CompileBroker::_perf_total_osr_compile_count = nullptr;
 155 PerfCounter* CompileBroker::_perf_total_standard_compile_count = nullptr;
 156 
 157 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = nullptr;
 158 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = nullptr;
 159 PerfCounter* CompileBroker::_perf_sum_nmethod_size = nullptr;
 160 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = nullptr;
 161 
 162 PerfStringVariable* CompileBroker::_perf_last_method = nullptr;
 163 PerfStringVariable* CompileBroker::_perf_last_failed_method = nullptr;
 164 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = nullptr;
 165 PerfVariable*       CompileBroker::_perf_last_compile_type = nullptr;
 166 PerfVariable*       CompileBroker::_perf_last_compile_size = nullptr;
 167 PerfVariable*       CompileBroker::_perf_last_failed_type = nullptr;
 168 PerfVariable*       CompileBroker::_perf_last_invalidated_type = nullptr;
 169 
 170 // Timers and counters for generating statistics
 171 elapsedTimer CompileBroker::_t_total_compilation;
 172 elapsedTimer CompileBroker::_t_osr_compilation;
 173 elapsedTimer CompileBroker::_t_standard_compilation;
 174 elapsedTimer CompileBroker::_t_invalidated_compilation;
 175 elapsedTimer CompileBroker::_t_bailedout_compilation;
 176 
 177 uint CompileBroker::_total_bailout_count            = 0;
 178 uint CompileBroker::_total_invalidated_count        = 0;
 179 uint CompileBroker::_total_compile_count            = 0;
 180 uint CompileBroker::_total_osr_compile_count        = 0;
 181 uint CompileBroker::_total_standard_compile_count   = 0;
 182 uint CompileBroker::_total_compiler_stopped_count   = 0;
 183 uint CompileBroker::_total_compiler_restarted_count = 0;
 184 
 185 uint CompileBroker::_sum_osr_bytes_compiled         = 0;
 186 uint CompileBroker::_sum_standard_bytes_compiled    = 0;
 187 uint CompileBroker::_sum_nmethod_size               = 0;
 188 uint CompileBroker::_sum_nmethod_code_size          = 0;
 189 
 190 jlong CompileBroker::_peak_compilation_time        = 0;
 191 
 192 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization];
 193 
 194 CompileQueue* CompileBroker::_c2_compile_queue     = nullptr;
 195 CompileQueue* CompileBroker::_c1_compile_queue     = nullptr;
 196 
 197 bool compileBroker_init() {
 198   if (LogEvents) {
 199     CompilationLog::init();
 200   }
 201 
 202   // init directives stack, adding default directive
 203   DirectivesStack::init();
 204 
 205   if (DirectivesParser::has_file()) {
 206     return DirectivesParser::parse_from_flag();
 207   } else if (CompilerDirectivesPrint) {
 208     // Print default directive even when no other was added
 209     DirectivesStack::print(tty);
 210   }
 211 
 212   return true;
 213 }
 214 
 215 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
 216   CompilerThread* thread = CompilerThread::current();
 217   thread->set_task(task);
 218   CompileLog*     log  = thread->log();
 219   if (log != nullptr && !task->is_unloaded())  task->log_task_start(log);
 220 }
 221 
 222 CompileTaskWrapper::~CompileTaskWrapper() {
 223   CompilerThread* thread = CompilerThread::current();
 224   CompileTask* task = thread->task();
 225   CompileLog*  log  = thread->log();
 226   if (log != nullptr && !task->is_unloaded())  task->log_task_done(log);
 227   thread->set_task(nullptr);
 228   thread->set_env(nullptr);
 229   if (task->is_blocking()) {
 230     bool free_task = false;
 231     {
 232       MutexLocker notifier(thread, task->lock());
 233       task->mark_complete();
 234 #if INCLUDE_JVMCI
 235       if (CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 236         if (!task->has_waiter()) {
 237           // The waiting thread timed out and thus did not free the task.
 238           free_task = true;
 239         }
 240         task->set_blocking_jvmci_compile_state(nullptr);
 241       }
 242 #endif
 243       if (!free_task) {
 244         // Notify the waiting thread that the compilation has completed
 245         // so that it can free the task.
 246         task->lock()->notify_all();
 247       }
 248     }
 249     if (free_task) {
 250       // The task can only be freed once the task lock is released.
 251       CompileTask::free(task);
 252     }
 253   } else {
 254     task->mark_complete();
 255 
 256     // By convention, the compiling thread is responsible for
 257     // recycling a non-blocking CompileTask.
 258     CompileTask::free(task);
 259   }
 260 }
 261 
 262 /**
 263  * Check if a CompilerThread can be removed and update count if requested.
 264  */
 265 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) {
 266   assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
 267   if (!ReduceNumberOfCompilerThreads) return false;
 268 
 269   AbstractCompiler *compiler = ct->compiler();
 270   int compiler_count = compiler->num_compiler_threads();
 271   bool c1 = compiler->is_c1();
 272 
 273   // Keep at least 1 compiler thread of each type.
 274   if (compiler_count < 2) return false;
 275 
 276   // Keep thread alive for at least some time.
 277   if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
 278 
 279 #if INCLUDE_JVMCI
 280   if (compiler->is_jvmci()) {
 281     // Handles for JVMCI thread objects may get released concurrently.
 282     if (do_it) {
 283       assert(CompileThread_lock->owner() == ct, "must be holding lock");
 284     } else {
 285       // Skip check if it's the last thread and let caller check again.
 286       return true;
 287     }
 288   }
 289 #endif
 290 
 291   // We only allow the last compiler thread of each type to get removed.
 292   jobject last_compiler = c1 ? compiler1_object(compiler_count - 1)
 293                              : compiler2_object(compiler_count - 1);
 294   if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) {
 295     if (do_it) {
 296       assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
 297       compiler->set_num_compiler_threads(compiler_count - 1);
 298 #if INCLUDE_JVMCI
 299       if (compiler->is_jvmci()) {
 300         // Old j.l.Thread object can die when no longer referenced elsewhere.
 301         JNIHandles::destroy_global(compiler2_object(compiler_count - 1));
 302         _compiler2_objects[compiler_count - 1] = nullptr;
 303       }
 304 #endif
 305     }
 306     return true;
 307   }
 308   return false;
 309 }
 310 
 311 /**
 312  * Add a CompileTask to a CompileQueue.
 313  */
 314 void CompileQueue::add(CompileTask* task) {
 315   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 316 
 317   task->set_next(nullptr);
 318   task->set_prev(nullptr);
 319 
 320   if (_last == nullptr) {
 321     // The compile queue is empty.
 322     assert(_first == nullptr, "queue is empty");
 323     _first = task;
 324     _last = task;
 325   } else {
 326     // Append the task to the queue.
 327     assert(_last->next() == nullptr, "not last");
 328     _last->set_next(task);
 329     task->set_prev(_last);
 330     _last = task;
 331   }
 332   ++_size;
 333 
 334   // Mark the method as being in the compile queue.
 335   task->method()->set_queued_for_compilation();
 336 
 337   if (CIPrintCompileQueue) {
 338     print_tty();
 339   }
 340 
 341   if (LogCompilation && xtty != nullptr) {
 342     task->log_task_queued();
 343   }
 344 
 345   // Notify CompilerThreads that a task is available.
 346   MethodCompileQueue_lock->notify_all();
 347 }
 348 
 349 /**
 350  * Empties compilation queue by putting all compilation tasks onto
 351  * a freelist. Furthermore, the method wakes up all threads that are
 352  * waiting on a compilation task to finish. This can happen if background
 353  * compilation is disabled.
 354  */
 355 void CompileQueue::free_all() {
 356   MutexLocker mu(MethodCompileQueue_lock);
 357   CompileTask* next = _first;
 358 
 359   // Iterate over all tasks in the compile queue
 360   while (next != nullptr) {
 361     CompileTask* current = next;
 362     next = current->next();
 363     {
 364       // Wake up thread that blocks on the compile task.
 365       MutexLocker ct_lock(current->lock());
 366       current->lock()->notify();
 367     }
 368     // Put the task back on the freelist.
 369     CompileTask::free(current);
 370   }
 371   _first = nullptr;
 372   _last = nullptr;
 373 
 374   // Wake up all threads that block on the queue.
 375   MethodCompileQueue_lock->notify_all();
 376 }
 377 
 378 /**
 379  * Get the next CompileTask from a CompileQueue
 380  */
 381 CompileTask* CompileQueue::get(CompilerThread* thread) {
 382   // save methods from RedefineClasses across safepoint
 383   // across MethodCompileQueue_lock below.
 384   methodHandle save_method;
 385   methodHandle save_hot_method;
 386 
 387   MonitorLocker locker(MethodCompileQueue_lock);
 388   // If _first is null we have no more compile jobs. There are two reasons for
 389   // having no compile jobs: First, we compiled everything we wanted. Second,
 390   // we ran out of code cache so compilation has been disabled. In the latter
 391   // case we perform code cache sweeps to free memory such that we can re-enable
 392   // compilation.
 393   while (_first == nullptr) {
 394     // Exit loop if compilation is disabled forever
 395     if (CompileBroker::is_compilation_disabled_forever()) {
 396       return nullptr;
 397     }
 398 
 399     AbstractCompiler* compiler = thread->compiler();
 400     guarantee(compiler != nullptr, "Compiler object must exist");
 401     compiler->on_empty_queue(this, thread);
 402     if (_first != nullptr) {
 403       // The call to on_empty_queue may have temporarily unlocked the MCQ lock
 404       // so check again whether any tasks were added to the queue.
 405       break;
 406     }
 407 
 408     // If there are no compilation tasks and we can compile new jobs
 409     // (i.e., there is enough free space in the code cache) there is
 410     // no need to invoke the GC.
 411     // We need a timed wait here, since compiler threads can exit if compilation
 412     // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
 413     // is not critical and we do not want idle compiler threads to wake up too often.
 414     locker.wait(5*1000);
 415 
 416     if (UseDynamicNumberOfCompilerThreads && _first == nullptr) {
 417       // Still nothing to compile. Give caller a chance to stop this thread.
 418       if (CompileBroker::can_remove(CompilerThread::current(), false)) return nullptr;
 419     }
 420   }
 421 
 422   if (CompileBroker::is_compilation_disabled_forever()) {
 423     return nullptr;
 424   }
 425 
 426   CompileTask* task;
 427   {
 428     NoSafepointVerifier nsv;
 429     task = CompilationPolicy::select_task(this);
 430     if (task != nullptr) {
 431       task = task->select_for_compilation();
 432     }
 433   }
 434 
 435   if (task != nullptr) {
 436     // Save method pointers across unlock safepoint.  The task is removed from
 437     // the compilation queue, which is walked during RedefineClasses.
 438     Thread* thread = Thread::current();
 439     save_method = methodHandle(thread, task->method());
 440     save_hot_method = methodHandle(thread, task->hot_method());
 441 
 442     remove(task);
 443   }
 444   purge_stale_tasks(); // may temporarily release MCQ lock
 445   return task;
 446 }
 447 
 448 // Clean & deallocate stale compile tasks.
 449 // Temporarily releases MethodCompileQueue lock.
 450 void CompileQueue::purge_stale_tasks() {
 451   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 452   if (_first_stale != nullptr) {
 453     // Stale tasks are purged when MCQ lock is released,
 454     // but _first_stale updates are protected by MCQ lock.
 455     // Once task processing starts and MCQ lock is released,
 456     // other compiler threads can reuse _first_stale.
 457     CompileTask* head = _first_stale;
 458     _first_stale = nullptr;
 459     {
 460       MutexUnlocker ul(MethodCompileQueue_lock);
 461       for (CompileTask* task = head; task != nullptr; ) {
 462         CompileTask* next_task = task->next();
 463         CompileTaskWrapper ctw(task); // Frees the task
 464         task->set_failure_reason("stale task");
 465         task = next_task;
 466       }
 467     }
 468   }
 469 }
 470 
 471 void CompileQueue::remove(CompileTask* task) {
 472   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 473   if (task->prev() != nullptr) {
 474     task->prev()->set_next(task->next());
 475   } else {
 476     // max is the first element
 477     assert(task == _first, "Sanity");
 478     _first = task->next();
 479   }
 480 
 481   if (task->next() != nullptr) {
 482     task->next()->set_prev(task->prev());
 483   } else {
 484     // max is the last element
 485     assert(task == _last, "Sanity");
 486     _last = task->prev();
 487   }
 488   --_size;
 489 }
 490 
 491 void CompileQueue::remove_and_mark_stale(CompileTask* task) {
 492   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 493   remove(task);
 494 
 495   // Enqueue the task for reclamation (should be done outside MCQ lock)
 496   task->set_next(_first_stale);
 497   task->set_prev(nullptr);
 498   _first_stale = task;
 499 }
 500 
 501 // methods in the compile queue need to be marked as used on the stack
 502 // so that they don't get reclaimed by Redefine Classes
 503 void CompileQueue::mark_on_stack() {
 504   CompileTask* task = _first;
 505   while (task != nullptr) {
 506     task->mark_on_stack();
 507     task = task->next();
 508   }
 509 }
 510 
 511 
 512 CompileQueue* CompileBroker::compile_queue(int comp_level) {
 513   if (is_c2_compile(comp_level)) return _c2_compile_queue;
 514   if (is_c1_compile(comp_level)) return _c1_compile_queue;
 515   return nullptr;
 516 }
 517 
 518 void CompileBroker::print_compile_queues(outputStream* st) {
 519   st->print_cr("Current compiles: ");
 520 
 521   char buf[2000];
 522   int buflen = sizeof(buf);
 523   Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true);
 524 
 525   st->cr();
 526   if (_c1_compile_queue != nullptr) {
 527     _c1_compile_queue->print(st);
 528   }
 529   if (_c2_compile_queue != nullptr) {
 530     _c2_compile_queue->print(st);
 531   }
 532 }
 533 
 534 void CompileQueue::print(outputStream* st) {
 535   assert_locked_or_safepoint(MethodCompileQueue_lock);
 536   st->print_cr("%s:", name());
 537   CompileTask* task = _first;
 538   if (task == nullptr) {
 539     st->print_cr("Empty");
 540   } else {
 541     while (task != nullptr) {
 542       task->print(st, nullptr, true, true);
 543       task = task->next();
 544     }
 545   }
 546   st->cr();
 547 }
 548 
 549 void CompileQueue::print_tty() {
 550   stringStream ss;
 551   // Dump the compile queue into a buffer before locking the tty
 552   print(&ss);
 553   {
 554     ttyLocker ttyl;
 555     tty->print("%s", ss.freeze());
 556   }
 557 }
 558 
 559 CompilerCounters::CompilerCounters() {
 560   _current_method[0] = '\0';
 561   _compile_type = CompileBroker::no_compile;
 562 }
 563 
 564 #if INCLUDE_JFR && COMPILER2_OR_JVMCI
 565 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping
 566 // in compiler/compilerEvent.cpp) and registers it with its serializer.
 567 //
 568 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp,
 569 // so if c2 is used, it should be always registered first.
 570 // This function is called during vm initialization.
 571 void register_jfr_phasetype_serializer(CompilerType compiler_type) {
 572   ResourceMark rm;
 573   static bool first_registration = true;
 574   if (compiler_type == compiler_jvmci) {
 575     CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false);
 576     first_registration = false;
 577 #ifdef COMPILER2
 578   } else if (compiler_type == compiler_c2) {
 579     assert(first_registration, "invariant"); // c2 must be registered first.
 580     for (int i = 0; i < PHASE_NUM_TYPES; i++) {
 581       const char* phase_name = CompilerPhaseTypeHelper::to_description((CompilerPhaseType) i);
 582       CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false);
 583     }
 584     first_registration = false;
 585 #endif // COMPILER2
 586   }
 587 }
 588 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI
 589 
 590 // ------------------------------------------------------------------
 591 // CompileBroker::compilation_init
 592 //
 593 // Initialize the Compilation object
 594 void CompileBroker::compilation_init_phase1(JavaThread* THREAD) {
 595   // No need to initialize compilation system if we do not use it.
 596   if (!UseCompiler) {
 597     return;
 598   }
 599   // Set the interface to the current compiler(s).
 600   _c1_count = CompilationPolicy::c1_count();
 601   _c2_count = CompilationPolicy::c2_count();
 602 
 603 #if INCLUDE_JVMCI
 604   if (EnableJVMCI) {
 605     // This is creating a JVMCICompiler singleton.
 606     JVMCICompiler* jvmci = new JVMCICompiler();
 607 
 608     if (UseJVMCICompiler) {
 609       _compilers[1] = jvmci;
 610       if (FLAG_IS_DEFAULT(JVMCIThreads)) {
 611         if (BootstrapJVMCI) {
 612           // JVMCI will bootstrap so give it more threads
 613           _c2_count = MIN2(32, os::active_processor_count());
 614         }
 615       } else {
 616         _c2_count = JVMCIThreads;
 617       }
 618       if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
 619       } else {
 620 #ifdef COMPILER1
 621         _c1_count = JVMCIHostThreads;
 622 #endif // COMPILER1
 623       }
 624     }
 625   }
 626 #endif // INCLUDE_JVMCI
 627 
 628 #ifdef COMPILER1
 629   if (_c1_count > 0) {
 630     _compilers[0] = new Compiler();
 631   }
 632 #endif // COMPILER1
 633 
 634 #ifdef COMPILER2
 635   if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
 636     if (_c2_count > 0) {
 637       _compilers[1] = new C2Compiler();
 638       // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit.
 639       // idToPhase mapping for c2 is in opto/phasetype.hpp
 640       JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);)
 641     }
 642   }
 643 #endif // COMPILER2
 644 
 645 #if INCLUDE_JVMCI
 646    // Register after c2 registration.
 647    // JVMCI CompilerPhaseType idToPhase mapping is dynamic.
 648    if (EnableJVMCI) {
 649      JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);)
 650    }
 651 #endif // INCLUDE_JVMCI
 652 
 653   // Start the compiler thread(s)
 654   init_compiler_threads();
 655   // totalTime performance counter is always created as it is required
 656   // by the implementation of java.lang.management.CompilationMXBean.
 657   {
 658     // Ensure OOM leads to vm_exit_during_initialization.
 659     EXCEPTION_MARK;
 660     _perf_total_compilation =
 661                  PerfDataManager::create_counter(JAVA_CI, "totalTime",
 662                                                  PerfData::U_Ticks, CHECK);
 663   }
 664 
 665   if (UsePerfData) {
 666 
 667     EXCEPTION_MARK;
 668 
 669     // create the jvmstat performance counters
 670     _perf_osr_compilation =
 671                  PerfDataManager::create_counter(SUN_CI, "osrTime",
 672                                                  PerfData::U_Ticks, CHECK);
 673 
 674     _perf_standard_compilation =
 675                  PerfDataManager::create_counter(SUN_CI, "standardTime",
 676                                                  PerfData::U_Ticks, CHECK);
 677 
 678     _perf_total_bailout_count =
 679                  PerfDataManager::create_counter(SUN_CI, "totalBailouts",
 680                                                  PerfData::U_Events, CHECK);
 681 
 682     _perf_total_invalidated_count =
 683                  PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
 684                                                  PerfData::U_Events, CHECK);
 685 
 686     _perf_total_compile_count =
 687                  PerfDataManager::create_counter(SUN_CI, "totalCompiles",
 688                                                  PerfData::U_Events, CHECK);
 689     _perf_total_osr_compile_count =
 690                  PerfDataManager::create_counter(SUN_CI, "osrCompiles",
 691                                                  PerfData::U_Events, CHECK);
 692 
 693     _perf_total_standard_compile_count =
 694                  PerfDataManager::create_counter(SUN_CI, "standardCompiles",
 695                                                  PerfData::U_Events, CHECK);
 696 
 697     _perf_sum_osr_bytes_compiled =
 698                  PerfDataManager::create_counter(SUN_CI, "osrBytes",
 699                                                  PerfData::U_Bytes, CHECK);
 700 
 701     _perf_sum_standard_bytes_compiled =
 702                  PerfDataManager::create_counter(SUN_CI, "standardBytes",
 703                                                  PerfData::U_Bytes, CHECK);
 704 
 705     _perf_sum_nmethod_size =
 706                  PerfDataManager::create_counter(SUN_CI, "nmethodSize",
 707                                                  PerfData::U_Bytes, CHECK);
 708 
 709     _perf_sum_nmethod_code_size =
 710                  PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
 711                                                  PerfData::U_Bytes, CHECK);
 712 
 713     _perf_last_method =
 714                  PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
 715                                        CompilerCounters::cmname_buffer_length,
 716                                        "", CHECK);
 717 
 718     _perf_last_failed_method =
 719             PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
 720                                        CompilerCounters::cmname_buffer_length,
 721                                        "", CHECK);
 722 
 723     _perf_last_invalidated_method =
 724         PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
 725                                      CompilerCounters::cmname_buffer_length,
 726                                      "", CHECK);
 727 
 728     _perf_last_compile_type =
 729              PerfDataManager::create_variable(SUN_CI, "lastType",
 730                                               PerfData::U_None,
 731                                               (jlong)CompileBroker::no_compile,
 732                                               CHECK);
 733 
 734     _perf_last_compile_size =
 735              PerfDataManager::create_variable(SUN_CI, "lastSize",
 736                                               PerfData::U_Bytes,
 737                                               (jlong)CompileBroker::no_compile,
 738                                               CHECK);
 739 
 740 
 741     _perf_last_failed_type =
 742              PerfDataManager::create_variable(SUN_CI, "lastFailedType",
 743                                               PerfData::U_None,
 744                                               (jlong)CompileBroker::no_compile,
 745                                               CHECK);
 746 
 747     _perf_last_invalidated_type =
 748          PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
 749                                           PerfData::U_None,
 750                                           (jlong)CompileBroker::no_compile,
 751                                           CHECK);
 752   }
 753 }
 754 
 755 // Completes compiler initialization. Compilation requests submitted
 756 // prior to this will be silently ignored.
 757 void CompileBroker::compilation_init_phase2() {
 758   _initialized = true;
 759 }
 760 
 761 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) {
 762   Handle thread_oop = JavaThread::create_system_thread_object(name, CHECK_NH);
 763   return thread_oop;
 764 }
 765 
 766 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 767 // Stress testing. Dedicated threads revert optimizations based on escape analysis concurrently to
 768 // the running java application.  Configured with vm options DeoptimizeObjectsALot*.
 769 class DeoptimizeObjectsALotThread : public JavaThread {
 770 
 771   static void deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS);
 772   void deoptimize_objects_alot_loop_single();
 773   void deoptimize_objects_alot_loop_all();
 774 
 775 public:
 776   DeoptimizeObjectsALotThread() : JavaThread(&deopt_objs_alot_thread_entry) { }
 777 
 778   bool is_hidden_from_external_view() const      { return true; }
 779 };
 780 
 781 // Entry for DeoptimizeObjectsALotThread. The threads are started in
 782 // CompileBroker::init_compiler_threads() iff DeoptimizeObjectsALot is enabled
 783 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) {
 784     DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread);
 785     bool enter_single_loop;
 786     {
 787       MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag);
 788       static int single_thread_count = 0;
 789       enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle;
 790     }
 791     if (enter_single_loop) {
 792       dt->deoptimize_objects_alot_loop_single();
 793     } else {
 794       dt->deoptimize_objects_alot_loop_all();
 795     }
 796   }
 797 
 798 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
 799 // barrier targets a single thread which is selected round robin.
 800 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() {
 801   HandleMark hm(this);
 802   while (true) {
 803     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) {
 804       { // Begin new scope for escape barrier
 805         HandleMarkCleaner hmc(this);
 806         ResourceMark rm(this);
 807         EscapeBarrier eb(true, this, deoptee_thread);
 808         eb.deoptimize_objects(100);
 809       }
 810       // Now sleep after the escape barriers destructor resumed deoptee_thread.
 811       sleep(DeoptimizeObjectsALotInterval);
 812     }
 813   }
 814 }
 815 
 816 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
 817 // barrier targets all java threads in the vm at once.
 818 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() {
 819   HandleMark hm(this);
 820   while (true) {
 821     { // Begin new scope for escape barrier
 822       HandleMarkCleaner hmc(this);
 823       ResourceMark rm(this);
 824       EscapeBarrier eb(true, this);
 825       eb.deoptimize_objects_all_threads();
 826     }
 827     // Now sleep after the escape barriers destructor resumed the java threads.
 828     sleep(DeoptimizeObjectsALotInterval);
 829   }
 830 }
 831 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
 832 
 833 
 834 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, JavaThread* THREAD) {
 835   JavaThread* new_thread = nullptr;
 836 
 837   switch (type) {
 838     case compiler_t:
 839       assert(comp != nullptr, "Compiler instance missing.");
 840       if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
 841         CompilerCounters* counters = new CompilerCounters();
 842         new_thread = new CompilerThread(queue, counters);
 843       }
 844       break;
 845 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 846     case deoptimizer_t:
 847       new_thread = new DeoptimizeObjectsALotThread();
 848       break;
 849 #endif // ASSERT
 850     default:
 851       ShouldNotReachHere();
 852   }
 853 
 854   // At this point the new CompilerThread data-races with this startup
 855   // thread (which is the main thread and NOT the VM thread).
 856   // This means Java bytecodes being executed at startup can
 857   // queue compile jobs which will run at whatever default priority the
 858   // newly created CompilerThread runs at.
 859 
 860 
 861   // At this point it may be possible that no osthread was created for the
 862   // JavaThread due to lack of resources. We will handle that failure below.
 863   // Also check new_thread so that static analysis is happy.
 864   if (new_thread != nullptr && new_thread->osthread() != nullptr) {
 865     Handle thread_oop(THREAD, JNIHandles::resolve_non_null(thread_handle));
 866 
 867     if (type == compiler_t) {
 868       CompilerThread::cast(new_thread)->set_compiler(comp);
 869     }
 870 
 871     // Note that we cannot call os::set_priority because it expects Java
 872     // priorities and we are *explicitly* using OS priorities so that it's
 873     // possible to set the compiler thread priority higher than any Java
 874     // thread.
 875 
 876     int native_prio = CompilerThreadPriority;
 877     if (native_prio == -1) {
 878       if (UseCriticalCompilerThreadPriority) {
 879         native_prio = os::java_to_os_priority[CriticalPriority];
 880       } else {
 881         native_prio = os::java_to_os_priority[NearMaxPriority];
 882       }
 883     }
 884     os::set_native_priority(new_thread, native_prio);
 885 
 886     // Note that this only sets the JavaThread _priority field, which by
 887     // definition is limited to Java priorities and not OS priorities.
 888     JavaThread::start_internal_daemon(THREAD, new_thread, thread_oop, NearMaxPriority);
 889 
 890   } else { // osthread initialization failure
 891     if (UseDynamicNumberOfCompilerThreads && type == compiler_t
 892         && comp->num_compiler_threads() > 0) {
 893       // The new thread is not known to Thread-SMR yet so we can just delete.
 894       delete new_thread;
 895       return nullptr;
 896     } else {
 897       vm_exit_during_initialization("java.lang.OutOfMemoryError",
 898                                     os::native_thread_creation_failed_msg());
 899     }
 900   }
 901 
 902   os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
 903 
 904   return new_thread;
 905 }
 906 
 907 static bool trace_compiler_threads() {
 908   LogTarget(Debug, jit, thread) lt;
 909   return TraceCompilerThreads || lt.is_enabled();
 910 }
 911 
 912 static void print_compiler_threads(stringStream& msg) {
 913   if (TraceCompilerThreads) {
 914     tty->print_cr("%7d %s", (int)tty->time_stamp().milliseconds(), msg.as_string());
 915   }
 916   LogTarget(Debug, jit, thread) lt;
 917   if (lt.is_enabled()) {
 918     LogStream ls(lt);
 919     ls.print_cr("%s", msg.as_string());
 920   }
 921 }
 922 
 923 void CompileBroker::init_compiler_threads() {
 924   // Ensure any exceptions lead to vm_exit_during_initialization.
 925   EXCEPTION_MARK;
 926 #if !defined(ZERO)
 927   assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
 928 #endif // !ZERO
 929   // Initialize the compilation queue
 930   if (_c2_count > 0) {
 931     const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
 932     _c2_compile_queue  = new CompileQueue(name);
 933     _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
 934     _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
 935   }
 936   if (_c1_count > 0) {
 937     _c1_compile_queue  = new CompileQueue("C1 compile queue");
 938     _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
 939     _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
 940   }
 941 
 942   char name_buffer[256];
 943 
 944   for (int i = 0; i < _c2_count; i++) {
 945     jobject thread_handle = nullptr;
 946     // Create all j.l.Thread objects for C1 and C2 threads here, but only one
 947     // for JVMCI compiler which can create further ones on demand.
 948     JVMCI_ONLY(if (!UseJVMCICompiler || !UseDynamicNumberOfCompilerThreads || i == 0) {)
 949     // Create a name for our thread.
 950     os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i);
 951     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
 952     thread_handle = JNIHandles::make_global(thread_oop);
 953     JVMCI_ONLY(})
 954     _compiler2_objects[i] = thread_handle;
 955     _compiler2_logs[i] = nullptr;
 956 
 957     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 958       JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD);
 959       assert(ct != nullptr, "should have been handled for initial thread");
 960       _compilers[1]->set_num_compiler_threads(i + 1);
 961       if (trace_compiler_threads()) {
 962         ResourceMark rm;
 963         ThreadsListHandle tlh;  // name() depends on the TLH.
 964         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
 965         stringStream msg;
 966         msg.print("Added initial compiler thread %s", ct->name());
 967         print_compiler_threads(msg);
 968       }
 969     }
 970   }
 971 
 972   for (int i = 0; i < _c1_count; i++) {
 973     // Create a name for our thread.
 974     os::snprintf_checked(name_buffer, sizeof(name_buffer), "C1 CompilerThread%d", i);
 975     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
 976     jobject thread_handle = JNIHandles::make_global(thread_oop);
 977     _compiler1_objects[i] = thread_handle;
 978     _compiler1_logs[i] = nullptr;
 979 
 980     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 981       JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD);
 982       assert(ct != nullptr, "should have been handled for initial thread");
 983       _compilers[0]->set_num_compiler_threads(i + 1);
 984       if (trace_compiler_threads()) {
 985         ResourceMark rm;
 986         ThreadsListHandle tlh;  // name() depends on the TLH.
 987         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
 988         stringStream msg;
 989         msg.print("Added initial compiler thread %s", ct->name());
 990         print_compiler_threads(msg);
 991       }
 992     }
 993   }
 994 
 995   if (UsePerfData) {
 996     PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK);
 997   }
 998 
 999 #if defined(ASSERT) && COMPILER2_OR_JVMCI
1000   if (DeoptimizeObjectsALot) {
1001     // Initialize and start the object deoptimizer threads
1002     const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll;
1003     for (int count = 0; count < total_count; count++) {
1004       Handle thread_oop = create_thread_oop("Deoptimize objects a lot single mode", CHECK);
1005       jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
1006       make_thread(deoptimizer_t, thread_handle, nullptr, nullptr, THREAD);
1007     }
1008   }
1009 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
1010 }
1011 
1012 void CompileBroker::possibly_add_compiler_threads(JavaThread* THREAD) {
1013 
1014   julong free_memory = os::free_memory();
1015   // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
1016   size_t available_cc_np  = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
1017          available_cc_p   = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
1018 
1019   // Only do attempt to start additional threads if the lock is free.
1020   if (!CompileThread_lock->try_lock()) return;
1021 
1022   if (_c2_compile_queue != nullptr) {
1023     int old_c2_count = _compilers[1]->num_compiler_threads();
1024     int new_c2_count = MIN4(_c2_count,
1025         _c2_compile_queue->size() / 2,
1026         (int)(free_memory / (200*M)),
1027         (int)(available_cc_np / (128*K)));
1028 
1029     for (int i = old_c2_count; i < new_c2_count; i++) {
1030 #if INCLUDE_JVMCI
1031       if (UseJVMCICompiler) {
1032         // Native compiler threads as used in C1/C2 can reuse the j.l.Thread
1033         // objects as their existence is completely hidden from the rest of
1034         // the VM (and those compiler threads can't call Java code to do the
1035         // creation anyway). For JVMCI we have to create new j.l.Thread objects
1036         // as they are visible and we can see unexpected thread lifecycle
1037         // transitions if we bind them to new JavaThreads.
1038         if (!THREAD->can_call_java()) break;
1039         char name_buffer[256];
1040         os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i);
1041         Handle thread_oop;
1042         {
1043           // We have to give up the lock temporarily for the Java calls.
1044           MutexUnlocker mu(CompileThread_lock);
1045           thread_oop = create_thread_oop(name_buffer, THREAD);
1046         }
1047         if (HAS_PENDING_EXCEPTION) {
1048           if (trace_compiler_threads()) {
1049             ResourceMark rm;
1050             stringStream msg;
1051             msg.print_cr("JVMCI compiler thread creation failed:");
1052             PENDING_EXCEPTION->print_on(&msg);
1053             print_compiler_threads(msg);
1054           }
1055           CLEAR_PENDING_EXCEPTION;
1056           break;
1057         }
1058         // Check if another thread has beaten us during the Java calls.
1059         if (_compilers[1]->num_compiler_threads() != i) break;
1060         jobject thread_handle = JNIHandles::make_global(thread_oop);
1061         assert(compiler2_object(i) == nullptr, "Old one must be released!");
1062         _compiler2_objects[i] = thread_handle;
1063       }
1064 #endif
1065       JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD);
1066       if (ct == nullptr) break;
1067       _compilers[1]->set_num_compiler_threads(i + 1);
1068       if (trace_compiler_threads()) {
1069         ResourceMark rm;
1070         ThreadsListHandle tlh;  // name() depends on the TLH.
1071         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1072         stringStream msg;
1073         msg.print("Added compiler thread %s (free memory: %dMB, available non-profiled code cache: %dMB)",
1074                   ct->name(), (int)(free_memory/M), (int)(available_cc_np/M));
1075         print_compiler_threads(msg);
1076       }
1077     }
1078   }
1079 
1080   if (_c1_compile_queue != nullptr) {
1081     int old_c1_count = _compilers[0]->num_compiler_threads();
1082     int new_c1_count = MIN4(_c1_count,
1083         _c1_compile_queue->size() / 4,
1084         (int)(free_memory / (100*M)),
1085         (int)(available_cc_p / (128*K)));
1086 
1087     for (int i = old_c1_count; i < new_c1_count; i++) {
1088       JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD);
1089       if (ct == nullptr) break;
1090       _compilers[0]->set_num_compiler_threads(i + 1);
1091       if (trace_compiler_threads()) {
1092         ResourceMark rm;
1093         ThreadsListHandle tlh;  // name() depends on the TLH.
1094         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1095         stringStream msg;
1096         msg.print("Added compiler thread %s (free memory: %dMB, available profiled code cache: %dMB)",
1097                   ct->name(), (int)(free_memory/M), (int)(available_cc_p/M));
1098         print_compiler_threads(msg);
1099       }
1100     }
1101   }
1102 
1103   CompileThread_lock->unlock();
1104 }
1105 
1106 
1107 /**
1108  * Set the methods on the stack as on_stack so that redefine classes doesn't
1109  * reclaim them. This method is executed at a safepoint.
1110  */
1111 void CompileBroker::mark_on_stack() {
1112   assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
1113   // Since we are at a safepoint, we do not need a lock to access
1114   // the compile queues.
1115   if (_c2_compile_queue != nullptr) {
1116     _c2_compile_queue->mark_on_stack();
1117   }
1118   if (_c1_compile_queue != nullptr) {
1119     _c1_compile_queue->mark_on_stack();
1120   }
1121 }
1122 
1123 // ------------------------------------------------------------------
1124 // CompileBroker::compile_method
1125 //
1126 // Request compilation of a method.
1127 void CompileBroker::compile_method_base(const methodHandle& method,
1128                                         int osr_bci,
1129                                         int comp_level,
1130                                         const methodHandle& hot_method,
1131                                         int hot_count,
1132                                         CompileTask::CompileReason compile_reason,
1133                                         bool blocking,
1134                                         Thread* thread) {
1135   guarantee(!method->is_abstract(), "cannot compile abstract methods");
1136   assert(method->method_holder()->is_instance_klass(),
1137          "sanity check");
1138   assert(!method->method_holder()->is_not_initialized(),
1139          "method holder must be initialized");
1140   assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
1141 
1142   if (CIPrintRequests) {
1143     tty->print("request: ");
1144     method->print_short_name(tty);
1145     if (osr_bci != InvocationEntryBci) {
1146       tty->print(" osr_bci: %d", osr_bci);
1147     }
1148     tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
1149     if (!hot_method.is_null()) {
1150       tty->print(" hot: ");
1151       if (hot_method() != method()) {
1152           hot_method->print_short_name(tty);
1153       } else {
1154         tty->print("yes");
1155       }
1156     }
1157     tty->cr();
1158   }
1159 
1160   // A request has been made for compilation.  Before we do any
1161   // real work, check to see if the method has been compiled
1162   // in the meantime with a definitive result.
1163   if (compilation_is_complete(method, osr_bci, comp_level)) {
1164     return;
1165   }
1166 
1167 #ifndef PRODUCT
1168   if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
1169     if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
1170       // Positive OSROnlyBCI means only compile that bci.  Negative means don't compile that BCI.
1171       return;
1172     }
1173   }
1174 #endif
1175 
1176   // If this method is already in the compile queue, then
1177   // we do not block the current thread.
1178   if (compilation_is_in_queue(method)) {
1179     // We may want to decay our counter a bit here to prevent
1180     // multiple denied requests for compilation.  This is an
1181     // open compilation policy issue. Note: The other possibility,
1182     // in the case that this is a blocking compile request, is to have
1183     // all subsequent blocking requesters wait for completion of
1184     // ongoing compiles. Note that in this case we'll need a protocol
1185     // for freeing the associated compile tasks. [Or we could have
1186     // a single static monitor on which all these waiters sleep.]
1187     return;
1188   }
1189 
1190   // Tiered policy requires MethodCounters to exist before adding a method to
1191   // the queue. Create if we don't have them yet.
1192   method->get_method_counters(thread);
1193 
1194   // Outputs from the following MutexLocker block:
1195   CompileTask* task     = nullptr;
1196   CompileQueue* queue  = compile_queue(comp_level);
1197 
1198   // Acquire our lock.
1199   {
1200     MutexLocker locker(thread, MethodCompileQueue_lock);
1201 
1202     // Make sure the method has not slipped into the queues since
1203     // last we checked; note that those checks were "fast bail-outs".
1204     // Here we need to be more careful, see 14012000 below.
1205     if (compilation_is_in_queue(method)) {
1206       return;
1207     }
1208 
1209     // We need to check again to see if the compilation has
1210     // completed.  A previous compilation may have registered
1211     // some result.
1212     if (compilation_is_complete(method, osr_bci, comp_level)) {
1213       return;
1214     }
1215 
1216     // We now know that this compilation is not pending, complete,
1217     // or prohibited.  Assign a compile_id to this compilation
1218     // and check to see if it is in our [Start..Stop) range.
1219     int compile_id = assign_compile_id(method, osr_bci);
1220     if (compile_id == 0) {
1221       // The compilation falls outside the allowed range.
1222       return;
1223     }
1224 
1225 #if INCLUDE_JVMCI
1226     if (UseJVMCICompiler && blocking) {
1227       // Don't allow blocking compiles for requests triggered by JVMCI.
1228       if (thread->is_Compiler_thread()) {
1229         blocking = false;
1230       }
1231 
1232       if (!UseJVMCINativeLibrary) {
1233         // Don't allow blocking compiles if inside a class initializer or while performing class loading
1234         vframeStream vfst(JavaThread::cast(thread));
1235         for (; !vfst.at_end(); vfst.next()) {
1236           if (vfst.method()->is_static_initializer() ||
1237               (vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) &&
1238                   vfst.method()->name() == vmSymbols::loadClass_name())) {
1239             blocking = false;
1240             break;
1241           }
1242         }
1243       }
1244 
1245       // Don't allow blocking compilation requests to JVMCI
1246       // if JVMCI itself is not yet initialized
1247       if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) {
1248         blocking = false;
1249       }
1250 
1251       // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
1252       // to avoid deadlock between compiler thread(s) and threads run at shutdown
1253       // such as the DestroyJavaVM thread.
1254       if (JVMCI::in_shutdown()) {
1255         blocking = false;
1256       }
1257     }
1258 #endif // INCLUDE_JVMCI
1259 
1260     // We will enter the compilation in the queue.
1261     // 14012000: Note that this sets the queued_for_compile bits in
1262     // the target method. We can now reason that a method cannot be
1263     // queued for compilation more than once, as follows:
1264     // Before a thread queues a task for compilation, it first acquires
1265     // the compile queue lock, then checks if the method's queued bits
1266     // are set or it has already been compiled. Thus there can not be two
1267     // instances of a compilation task for the same method on the
1268     // compilation queue. Consider now the case where the compilation
1269     // thread has already removed a task for that method from the queue
1270     // and is in the midst of compiling it. In this case, the
1271     // queued_for_compile bits must be set in the method (and these
1272     // will be visible to the current thread, since the bits were set
1273     // under protection of the compile queue lock, which we hold now.
1274     // When the compilation completes, the compiler thread first sets
1275     // the compilation result and then clears the queued_for_compile
1276     // bits. Neither of these actions are protected by a barrier (or done
1277     // under the protection of a lock), so the only guarantee we have
1278     // (on machines with TSO (Total Store Order)) is that these values
1279     // will update in that order. As a result, the only combinations of
1280     // these bits that the current thread will see are, in temporal order:
1281     // <RESULT, QUEUE> :
1282     //     <0, 1> : in compile queue, but not yet compiled
1283     //     <1, 1> : compiled but queue bit not cleared
1284     //     <1, 0> : compiled and queue bit cleared
1285     // Because we first check the queue bits then check the result bits,
1286     // we are assured that we cannot introduce a duplicate task.
1287     // Note that if we did the tests in the reverse order (i.e. check
1288     // result then check queued bit), we could get the result bit before
1289     // the compilation completed, and the queue bit after the compilation
1290     // completed, and end up introducing a "duplicate" (redundant) task.
1291     // In that case, the compiler thread should first check if a method
1292     // has already been compiled before trying to compile it.
1293     // NOTE: in the event that there are multiple compiler threads and
1294     // there is de-optimization/recompilation, things will get hairy,
1295     // and in that case it's best to protect both the testing (here) of
1296     // these bits, and their updating (here and elsewhere) under a
1297     // common lock.
1298     task = create_compile_task(queue,
1299                                compile_id, method,
1300                                osr_bci, comp_level,
1301                                hot_method, hot_count, compile_reason,
1302                                blocking);
1303   }
1304 
1305   if (blocking) {
1306     wait_for_completion(task);
1307   }
1308 }
1309 
1310 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1311                                        int comp_level,
1312                                        const methodHandle& hot_method, int hot_count,
1313                                        CompileTask::CompileReason compile_reason,
1314                                        TRAPS) {
1315   // Do nothing if compilebroker is not initialized or compiles are submitted on level none
1316   if (!_initialized || comp_level == CompLevel_none) {
1317     return nullptr;
1318   }
1319 
1320   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
1321   assert(comp != nullptr, "Ensure we have a compiler");
1322 
1323   DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
1324   // CompileBroker::compile_method can trap and can have pending async exception.
1325   nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, directive, THREAD);
1326   DirectivesStack::release(directive);
1327   return nm;
1328 }
1329 
1330 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1331                                          int comp_level,
1332                                          const methodHandle& hot_method, int hot_count,
1333                                          CompileTask::CompileReason compile_reason,
1334                                          DirectiveSet* directive,
1335                                          TRAPS) {
1336 
1337   // make sure arguments make sense
1338   assert(method->method_holder()->is_instance_klass(), "not an instance method");
1339   assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
1340   assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
1341   assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized");
1342   // return quickly if possible
1343 
1344   // lock, make sure that the compilation
1345   // isn't prohibited in a straightforward way.
1346   AbstractCompiler* comp = CompileBroker::compiler(comp_level);
1347   if (comp == nullptr || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
1348     return nullptr;
1349   }
1350 
1351 #if INCLUDE_JVMCI
1352   if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) {
1353     return nullptr;
1354   }
1355 #endif
1356 
1357   if (osr_bci == InvocationEntryBci) {
1358     // standard compilation
1359     CompiledMethod* method_code = method->code();
1360     if (method_code != nullptr && method_code->is_nmethod()) {
1361       if (compilation_is_complete(method, osr_bci, comp_level)) {
1362         return (nmethod*) method_code;
1363       }
1364     }
1365     if (method->is_not_compilable(comp_level)) {
1366       return nullptr;
1367     }
1368   } else {
1369     // osr compilation
1370     // We accept a higher level osr method
1371     nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1372     if (nm != nullptr) return nm;
1373     if (method->is_not_osr_compilable(comp_level)) return nullptr;
1374   }
1375 
1376   assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
1377   // some prerequisites that are compiler specific
1378   if (comp->is_c2() || comp->is_jvmci()) {
1379     method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL);
1380     // Resolve all classes seen in the signature of the method
1381     // we are compiling.
1382     Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL);
1383   }
1384 
1385   // If the method is native, do the lookup in the thread requesting
1386   // the compilation. Native lookups can load code, which is not
1387   // permitted during compilation.
1388   //
1389   // Note: A native method implies non-osr compilation which is
1390   //       checked with an assertion at the entry of this method.
1391   if (method->is_native() && !method->is_method_handle_intrinsic()) {
1392     address adr = NativeLookup::lookup(method, THREAD);
1393     if (HAS_PENDING_EXCEPTION) {
1394       // In case of an exception looking up the method, we just forget
1395       // about it. The interpreter will kick-in and throw the exception.
1396       method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable()
1397       CLEAR_PENDING_EXCEPTION;
1398       return nullptr;
1399     }
1400     assert(method->has_native_function(), "must have native code by now");
1401   }
1402 
1403   // RedefineClasses() has replaced this method; just return
1404   if (method->is_old()) {
1405     return nullptr;
1406   }
1407 
1408   // JVMTI -- post_compile_event requires jmethod_id() that may require
1409   // a lock the compiling thread can not acquire. Prefetch it here.
1410   if (JvmtiExport::should_post_compiled_method_load()) {
1411     method->jmethod_id();
1412   }
1413 
1414   // do the compilation
1415   if (method->is_native()) {
1416     if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
1417 #if defined(X86) && !defined(ZERO)
1418       // The following native methods:
1419       //
1420       // java.lang.Float.intBitsToFloat
1421       // java.lang.Float.floatToRawIntBits
1422       // java.lang.Double.longBitsToDouble
1423       // java.lang.Double.doubleToRawLongBits
1424       //
1425       // are called through the interpreter even if interpreter native stubs
1426       // are not preferred (i.e., calling through adapter handlers is preferred).
1427       // The reason is that on x86_32 signaling NaNs (sNaNs) are not preserved
1428       // if the version of the methods from the native libraries is called.
1429       // As the interpreter and the C2-intrinsified version of the methods preserves
1430       // sNaNs, that would result in an inconsistent way of handling of sNaNs.
1431       if ((UseSSE >= 1 &&
1432           (method->intrinsic_id() == vmIntrinsics::_intBitsToFloat ||
1433            method->intrinsic_id() == vmIntrinsics::_floatToRawIntBits)) ||
1434           (UseSSE >= 2 &&
1435            (method->intrinsic_id() == vmIntrinsics::_longBitsToDouble ||
1436             method->intrinsic_id() == vmIntrinsics::_doubleToRawLongBits))) {
1437         return nullptr;
1438       }
1439 #endif // X86 && !ZERO
1440 
1441       // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
1442       // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
1443       //
1444       // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
1445       // in this case.  If we can't generate one and use it we can not execute the out-of-line method handle calls.
1446       AdapterHandlerLibrary::create_native_wrapper(method);
1447     } else {
1448       return nullptr;
1449     }
1450   } else {
1451     // If the compiler is shut off due to code cache getting full
1452     // fail out now so blocking compiles dont hang the java thread
1453     if (!should_compile_new_jobs()) {
1454       return nullptr;
1455     }
1456     bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles;
1457     compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, is_blocking, THREAD);
1458   }
1459 
1460   // return requested nmethod
1461   // We accept a higher level osr method
1462   if (osr_bci == InvocationEntryBci) {
1463     CompiledMethod* code = method->code();
1464     if (code == nullptr) {
1465       return (nmethod*) code;
1466     } else {
1467       return code->as_nmethod_or_null();
1468     }
1469   }
1470   return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1471 }
1472 
1473 
1474 // ------------------------------------------------------------------
1475 // CompileBroker::compilation_is_complete
1476 //
1477 // See if compilation of this method is already complete.
1478 bool CompileBroker::compilation_is_complete(const methodHandle& method,
1479                                             int                 osr_bci,
1480                                             int                 comp_level) {
1481   bool is_osr = (osr_bci != standard_entry_bci);
1482   if (is_osr) {
1483     if (method->is_not_osr_compilable(comp_level)) {
1484       return true;
1485     } else {
1486       nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
1487       return (result != nullptr);
1488     }
1489   } else {
1490     if (method->is_not_compilable(comp_level)) {
1491       return true;
1492     } else {
1493       CompiledMethod* result = method->code();
1494       if (result == nullptr) return false;
1495       return comp_level == result->comp_level();
1496     }
1497   }
1498 }
1499 
1500 
1501 /**
1502  * See if this compilation is already requested.
1503  *
1504  * Implementation note: there is only a single "is in queue" bit
1505  * for each method.  This means that the check below is overly
1506  * conservative in the sense that an osr compilation in the queue
1507  * will block a normal compilation from entering the queue (and vice
1508  * versa).  This can be remedied by a full queue search to disambiguate
1509  * cases.  If it is deemed profitable, this may be done.
1510  */
1511 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
1512   return method->queued_for_compilation();
1513 }
1514 
1515 // ------------------------------------------------------------------
1516 // CompileBroker::compilation_is_prohibited
1517 //
1518 // See if this compilation is not allowed.
1519 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
1520   bool is_native = method->is_native();
1521   // Some compilers may not support the compilation of natives.
1522   AbstractCompiler *comp = compiler(comp_level);
1523   if (is_native && (!CICompileNatives || comp == nullptr)) {
1524     method->set_not_compilable_quietly("native methods not supported", comp_level);
1525     return true;
1526   }
1527 
1528   bool is_osr = (osr_bci != standard_entry_bci);
1529   // Some compilers may not support on stack replacement.
1530   if (is_osr && (!CICompileOSR || comp == nullptr)) {
1531     method->set_not_osr_compilable("OSR not supported", comp_level);
1532     return true;
1533   }
1534 
1535   // The method may be explicitly excluded by the user.
1536   double scale;
1537   if (excluded || (CompilerOracle::has_option_value(method, CompileCommand::CompileThresholdScaling, scale) && scale == 0)) {
1538     bool quietly = CompilerOracle::be_quiet();
1539     if (PrintCompilation && !quietly) {
1540       // This does not happen quietly...
1541       ResourceMark rm;
1542       tty->print("### Excluding %s:%s",
1543                  method->is_native() ? "generation of native wrapper" : "compile",
1544                  (method->is_static() ? " static" : ""));
1545       method->print_short_name(tty);
1546       tty->cr();
1547     }
1548     method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly);
1549   }
1550 
1551   return false;
1552 }
1553 
1554 /**
1555  * Generate serialized IDs for compilation requests. If certain debugging flags are used
1556  * and the ID is not within the specified range, the method is not compiled and 0 is returned.
1557  * The function also allows to generate separate compilation IDs for OSR compilations.
1558  */
1559 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
1560 #ifdef ASSERT
1561   bool is_osr = (osr_bci != standard_entry_bci);
1562   int id;
1563   if (method->is_native()) {
1564     assert(!is_osr, "can't be osr");
1565     // Adapters, native wrappers and method handle intrinsics
1566     // should be generated always.
1567     return Atomic::add(CICountNative ? &_native_compilation_id : &_compilation_id, 1);
1568   } else if (CICountOSR && is_osr) {
1569     id = Atomic::add(&_osr_compilation_id, 1);
1570     if (CIStartOSR <= id && id < CIStopOSR) {
1571       return id;
1572     }
1573   } else {
1574     id = Atomic::add(&_compilation_id, 1);
1575     if (CIStart <= id && id < CIStop) {
1576       return id;
1577     }
1578   }
1579 
1580   // Method was not in the appropriate compilation range.
1581   method->set_not_compilable_quietly("Not in requested compile id range");
1582   return 0;
1583 #else
1584   // CICountOSR is a develop flag and set to 'false' by default. In a product built,
1585   // only _compilation_id is incremented.
1586   return Atomic::add(&_compilation_id, 1);
1587 #endif
1588 }
1589 
1590 // ------------------------------------------------------------------
1591 // CompileBroker::assign_compile_id_unlocked
1592 //
1593 // Public wrapper for assign_compile_id that acquires the needed locks
1594 int CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
1595   MutexLocker locker(thread, MethodCompileQueue_lock);
1596   return assign_compile_id(method, osr_bci);
1597 }
1598 
1599 // ------------------------------------------------------------------
1600 // CompileBroker::create_compile_task
1601 //
1602 // Create a CompileTask object representing the current request for
1603 // compilation.  Add this task to the queue.
1604 CompileTask* CompileBroker::create_compile_task(CompileQueue*       queue,
1605                                                 int                 compile_id,
1606                                                 const methodHandle& method,
1607                                                 int                 osr_bci,
1608                                                 int                 comp_level,
1609                                                 const methodHandle& hot_method,
1610                                                 int                 hot_count,
1611                                                 CompileTask::CompileReason compile_reason,
1612                                                 bool                blocking) {
1613   CompileTask* new_task = CompileTask::allocate();
1614   new_task->initialize(compile_id, method, osr_bci, comp_level,
1615                        hot_method, hot_count, compile_reason,
1616                        blocking);
1617   queue->add(new_task);
1618   return new_task;
1619 }
1620 
1621 #if INCLUDE_JVMCI
1622 // The number of milliseconds to wait before checking if
1623 // JVMCI compilation has made progress.
1624 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
1625 
1626 // The number of JVMCI compilation progress checks that must fail
1627 // before unblocking a thread waiting for a blocking compilation.
1628 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
1629 
1630 /**
1631  * Waits for a JVMCI compiler to complete a given task. This thread
1632  * waits until either the task completes or it sees no JVMCI compilation
1633  * progress for N consecutive milliseconds where N is
1634  * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
1635  * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
1636  *
1637  * @return true if this thread needs to free/recycle the task
1638  */
1639 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
1640   assert(UseJVMCICompiler, "sanity");
1641   MonitorLocker ml(thread, task->lock());
1642   int progress_wait_attempts = 0;
1643   jint thread_jvmci_compilation_ticks = 0;
1644   jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks();
1645   while (!task->is_complete() && !is_compilation_disabled_forever() &&
1646          ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
1647     JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state();
1648 
1649     bool progress;
1650     if (jvmci_compile_state != nullptr) {
1651       jint ticks = jvmci_compile_state->compilation_ticks();
1652       progress = (ticks - thread_jvmci_compilation_ticks) != 0;
1653       JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks);
1654       thread_jvmci_compilation_ticks = ticks;
1655     } else {
1656       // Still waiting on JVMCI compiler queue. This thread may be holding a lock
1657       // that all JVMCI compiler threads are blocked on. We use the global JVMCI
1658       // compilation ticks to determine whether JVMCI compilation
1659       // is still making progress through the JVMCI compiler queue.
1660       jint ticks = jvmci->global_compilation_ticks();
1661       progress = (ticks - global_jvmci_compilation_ticks) != 0;
1662       JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks);
1663       global_jvmci_compilation_ticks = ticks;
1664     }
1665 
1666     if (!progress) {
1667       if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
1668         if (PrintCompilation) {
1669           task->print(tty, "wait for blocking compilation timed out");
1670         }
1671         JVMCI_event_1("waiting on compilation %d timed out", task->compile_id());
1672         break;
1673       }
1674     } else {
1675       progress_wait_attempts = 0;
1676     }
1677   }
1678   task->clear_waiter();
1679   return task->is_complete();
1680 }
1681 #endif
1682 
1683 /**
1684  *  Wait for the compilation task to complete.
1685  */
1686 void CompileBroker::wait_for_completion(CompileTask* task) {
1687   if (CIPrintCompileQueue) {
1688     ttyLocker ttyl;
1689     tty->print_cr("BLOCKING FOR COMPILE");
1690   }
1691 
1692   assert(task->is_blocking(), "can only wait on blocking task");
1693 
1694   JavaThread* thread = JavaThread::current();
1695 
1696   methodHandle method(thread, task->method());
1697   bool free_task;
1698 #if INCLUDE_JVMCI
1699   AbstractCompiler* comp = compiler(task->comp_level());
1700   if (comp->is_jvmci() && !task->should_wait_for_compilation()) {
1701     // It may return before compilation is completed.
1702     free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
1703   } else
1704 #endif
1705   {
1706     MonitorLocker ml(thread, task->lock());
1707     free_task = true;
1708     while (!task->is_complete() && !is_compilation_disabled_forever()) {
1709       ml.wait();
1710     }
1711   }
1712 
1713   if (free_task) {
1714     if (is_compilation_disabled_forever()) {
1715       CompileTask::free(task);
1716       return;
1717     }
1718 
1719     // It is harmless to check this status without the lock, because
1720     // completion is a stable property (until the task object is recycled).
1721     assert(task->is_complete(), "Compilation should have completed");
1722 
1723     // By convention, the waiter is responsible for recycling a
1724     // blocking CompileTask. Since there is only one waiter ever
1725     // waiting on a CompileTask, we know that no one else will
1726     // be using this CompileTask; we can free it.
1727     CompileTask::free(task);
1728   }
1729 }
1730 
1731 /**
1732  * Initialize compiler thread(s) + compiler object(s). The postcondition
1733  * of this function is that the compiler runtimes are initialized and that
1734  * compiler threads can start compiling.
1735  */
1736 bool CompileBroker::init_compiler_runtime() {
1737   CompilerThread* thread = CompilerThread::current();
1738   AbstractCompiler* comp = thread->compiler();
1739   // Final sanity check - the compiler object must exist
1740   guarantee(comp != nullptr, "Compiler object must exist");
1741 
1742   {
1743     // Must switch to native to allocate ci_env
1744     ThreadToNativeFromVM ttn(thread);
1745     ciEnv ci_env((CompileTask*)nullptr);
1746     // Cache Jvmti state
1747     ci_env.cache_jvmti_state();
1748     // Cache DTrace flags
1749     ci_env.cache_dtrace_flags();
1750 
1751     // Switch back to VM state to do compiler initialization
1752     ThreadInVMfromNative tv(thread);
1753 
1754     // Perform per-thread and global initializations
1755     comp->initialize();
1756   }
1757 
1758   if (comp->is_failed()) {
1759     disable_compilation_forever();
1760     // If compiler initialization failed, no compiler thread that is specific to a
1761     // particular compiler runtime will ever start to compile methods.
1762     shutdown_compiler_runtime(comp, thread);
1763     return false;
1764   }
1765 
1766   // C1 specific check
1767   if (comp->is_c1() && (thread->get_buffer_blob() == nullptr)) {
1768     warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
1769     return false;
1770   }
1771 
1772   return true;
1773 }
1774 
1775 /**
1776  * If C1 and/or C2 initialization failed, we shut down all compilation.
1777  * We do this to keep things simple. This can be changed if it ever turns
1778  * out to be a problem.
1779  */
1780 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
1781   // Free buffer blob, if allocated
1782   if (thread->get_buffer_blob() != nullptr) {
1783     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1784     CodeCache::free(thread->get_buffer_blob());
1785   }
1786 
1787   if (comp->should_perform_shutdown()) {
1788     // There are two reasons for shutting down the compiler
1789     // 1) compiler runtime initialization failed
1790     // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
1791     warning("%s initialization failed. Shutting down all compilers", comp->name());
1792 
1793     // Only one thread per compiler runtime object enters here
1794     // Set state to shut down
1795     comp->set_shut_down();
1796 
1797     // Delete all queued compilation tasks to make compiler threads exit faster.
1798     if (_c1_compile_queue != nullptr) {
1799       _c1_compile_queue->free_all();
1800     }
1801 
1802     if (_c2_compile_queue != nullptr) {
1803       _c2_compile_queue->free_all();
1804     }
1805 
1806     // Set flags so that we continue execution with using interpreter only.
1807     UseCompiler    = false;
1808     UseInterpreter = true;
1809 
1810     // We could delete compiler runtimes also. However, there are references to
1811     // the compiler runtime(s) (e.g.,  nmethod::is_compiled_by_c1()) which then
1812     // fail. This can be done later if necessary.
1813   }
1814 }
1815 
1816 /**
1817  * Helper function to create new or reuse old CompileLog.
1818  */
1819 CompileLog* CompileBroker::get_log(CompilerThread* ct) {
1820   if (!LogCompilation) return nullptr;
1821 
1822   AbstractCompiler *compiler = ct->compiler();
1823   bool c1 = compiler->is_c1();
1824   jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects;
1825   assert(compiler_objects != nullptr, "must be initialized at this point");
1826   CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs;
1827   assert(logs != nullptr, "must be initialized at this point");
1828   int count = c1 ? _c1_count : _c2_count;
1829 
1830   // Find Compiler number by its threadObj.
1831   oop compiler_obj = ct->threadObj();
1832   int compiler_number = 0;
1833   bool found = false;
1834   for (; compiler_number < count; compiler_number++) {
1835     if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) {
1836       found = true;
1837       break;
1838     }
1839   }
1840   assert(found, "Compiler must exist at this point");
1841 
1842   // Determine pointer for this thread's log.
1843   CompileLog** log_ptr = &logs[compiler_number];
1844 
1845   // Return old one if it exists.
1846   CompileLog* log = *log_ptr;
1847   if (log != nullptr) {
1848     ct->init_log(log);
1849     return log;
1850   }
1851 
1852   // Create a new one and remember it.
1853   init_compiler_thread_log();
1854   log = ct->log();
1855   *log_ptr = log;
1856   return log;
1857 }
1858 
1859 // ------------------------------------------------------------------
1860 // CompileBroker::compiler_thread_loop
1861 //
1862 // The main loop run by a CompilerThread.
1863 void CompileBroker::compiler_thread_loop() {
1864   CompilerThread* thread = CompilerThread::current();
1865   CompileQueue* queue = thread->queue();
1866   // For the thread that initializes the ciObjectFactory
1867   // this resource mark holds all the shared objects
1868   ResourceMark rm;
1869 
1870   // First thread to get here will initialize the compiler interface
1871 
1872   {
1873     ASSERT_IN_VM;
1874     MutexLocker only_one (thread, CompileThread_lock);
1875     if (!ciObjectFactory::is_initialized()) {
1876       ciObjectFactory::initialize();
1877     }
1878   }
1879 
1880   // Open a log.
1881   CompileLog* log = get_log(thread);
1882   if (log != nullptr) {
1883     log->begin_elem("start_compile_thread name='%s' thread='" UINTX_FORMAT "' process='%d'",
1884                     thread->name(),
1885                     os::current_thread_id(),
1886                     os::current_process_id());
1887     log->stamp();
1888     log->end_elem();
1889   }
1890 
1891   // If compiler thread/runtime initialization fails, exit the compiler thread
1892   if (!init_compiler_runtime()) {
1893     return;
1894   }
1895 
1896   thread->start_idle_timer();
1897 
1898   // Poll for new compilation tasks as long as the JVM runs. Compilation
1899   // should only be disabled if something went wrong while initializing the
1900   // compiler runtimes. This, in turn, should not happen. The only known case
1901   // when compiler runtime initialization fails is if there is not enough free
1902   // space in the code cache to generate the necessary stubs, etc.
1903   while (!is_compilation_disabled_forever()) {
1904     // We need this HandleMark to avoid leaking VM handles.
1905     HandleMark hm(thread);
1906 
1907     CompileTask* task = queue->get(thread);
1908     if (task == nullptr) {
1909       if (UseDynamicNumberOfCompilerThreads) {
1910         // Access compiler_count under lock to enforce consistency.
1911         MutexLocker only_one(CompileThread_lock);
1912         if (can_remove(thread, true)) {
1913           if (trace_compiler_threads()) {
1914             ResourceMark rm;
1915             stringStream msg;
1916             msg.print("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
1917                       thread->name(), thread->idle_time_millis());
1918             print_compiler_threads(msg);
1919           }
1920 
1921           // Notify compiler that the compiler thread is about to stop
1922           thread->compiler()->stopping_compiler_thread(thread);
1923 
1924           // Free buffer blob, if allocated
1925           if (thread->get_buffer_blob() != nullptr) {
1926             MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1927             CodeCache::free(thread->get_buffer_blob());
1928           }
1929           return; // Stop this thread.
1930         }
1931       }
1932     } else {
1933       // Assign the task to the current thread.  Mark this compilation
1934       // thread as active for the profiler.
1935       // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
1936       // occurs after fetching the compile task off the queue.
1937       CompileTaskWrapper ctw(task);
1938       methodHandle method(thread, task->method());
1939 
1940       // Never compile a method if breakpoints are present in it
1941       if (method()->number_of_breakpoints() == 0) {
1942         // Compile the method.
1943         if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
1944           invoke_compiler_on_method(task);
1945           thread->start_idle_timer();
1946         } else {
1947           // After compilation is disabled, remove remaining methods from queue
1948           method->clear_queued_for_compilation();
1949           task->set_failure_reason("compilation is disabled");
1950         }
1951       } else {
1952         task->set_failure_reason("breakpoints are present");
1953       }
1954 
1955       if (UseDynamicNumberOfCompilerThreads) {
1956         possibly_add_compiler_threads(thread);
1957         assert(!thread->has_pending_exception(), "should have been handled");
1958       }
1959     }
1960   }
1961 
1962   // Shut down compiler runtime
1963   shutdown_compiler_runtime(thread->compiler(), thread);
1964 }
1965 
1966 // ------------------------------------------------------------------
1967 // CompileBroker::init_compiler_thread_log
1968 //
1969 // Set up state required by +LogCompilation.
1970 void CompileBroker::init_compiler_thread_log() {
1971     CompilerThread* thread = CompilerThread::current();
1972     char  file_name[4*K];
1973     FILE* fp = nullptr;
1974     intx thread_id = os::current_thread_id();
1975     for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
1976       const char* dir = (try_temp_dir ? os::get_temp_directory() : nullptr);
1977       if (dir == nullptr) {
1978         jio_snprintf(file_name, sizeof(file_name), "hs_c" UINTX_FORMAT "_pid%u.log",
1979                      thread_id, os::current_process_id());
1980       } else {
1981         jio_snprintf(file_name, sizeof(file_name),
1982                      "%s%shs_c" UINTX_FORMAT "_pid%u.log", dir,
1983                      os::file_separator(), thread_id, os::current_process_id());
1984       }
1985 
1986       fp = os::fopen(file_name, "wt");
1987       if (fp != nullptr) {
1988         if (LogCompilation && Verbose) {
1989           tty->print_cr("Opening compilation log %s", file_name);
1990         }
1991         CompileLog* log = new(mtCompiler) CompileLog(file_name, fp, thread_id);
1992         if (log == nullptr) {
1993           fclose(fp);
1994           return;
1995         }
1996         thread->init_log(log);
1997 
1998         if (xtty != nullptr) {
1999           ttyLocker ttyl;
2000           // Record any per thread log files
2001           xtty->elem("thread_logfile thread='" INTX_FORMAT "' filename='%s'", thread_id, file_name);
2002         }
2003         return;
2004       }
2005     }
2006     warning("Cannot open log file: %s", file_name);
2007 }
2008 
2009 void CompileBroker::log_metaspace_failure() {
2010   const char* message = "some methods may not be compiled because metaspace "
2011                         "is out of memory";
2012   if (CompilationLog::log() != nullptr) {
2013     CompilationLog::log()->log_metaspace_failure(message);
2014   }
2015   if (PrintCompilation) {
2016     tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
2017   }
2018 }
2019 
2020 
2021 // ------------------------------------------------------------------
2022 // CompileBroker::set_should_block
2023 //
2024 // Set _should_block.
2025 // Call this from the VM, with Threads_lock held and a safepoint requested.
2026 void CompileBroker::set_should_block() {
2027   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2028   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
2029 #ifndef PRODUCT
2030   if (PrintCompilation && (Verbose || WizardMode))
2031     tty->print_cr("notifying compiler thread pool to block");
2032 #endif
2033   _should_block = true;
2034 }
2035 
2036 // ------------------------------------------------------------------
2037 // CompileBroker::maybe_block
2038 //
2039 // Call this from the compiler at convenient points, to poll for _should_block.
2040 void CompileBroker::maybe_block() {
2041   if (_should_block) {
2042 #ifndef PRODUCT
2043     if (PrintCompilation && (Verbose || WizardMode))
2044       tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
2045 #endif
2046     ThreadInVMfromNative tivfn(JavaThread::current());
2047   }
2048 }
2049 
2050 // wrapper for CodeCache::print_summary()
2051 static void codecache_print(bool detailed)
2052 {
2053   stringStream s;
2054   // Dump code cache  into a buffer before locking the tty,
2055   {
2056     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2057     CodeCache::print_summary(&s, detailed);
2058   }
2059   ttyLocker ttyl;
2060   tty->print("%s", s.freeze());
2061 }
2062 
2063 // wrapper for CodeCache::print_summary() using outputStream
2064 static void codecache_print(outputStream* out, bool detailed) {
2065   stringStream s;
2066 
2067   // Dump code cache into a buffer
2068   {
2069     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2070     CodeCache::print_summary(&s, detailed);
2071   }
2072 
2073   char* remaining_log = s.as_string();
2074   while (*remaining_log != '\0') {
2075     char* eol = strchr(remaining_log, '\n');
2076     if (eol == nullptr) {
2077       out->print_cr("%s", remaining_log);
2078       remaining_log = remaining_log + strlen(remaining_log);
2079     } else {
2080       *eol = '\0';
2081       out->print_cr("%s", remaining_log);
2082       remaining_log = eol + 1;
2083     }
2084   }
2085 }
2086 
2087 void CompileBroker::handle_compile_error(CompilerThread* thread, CompileTask* task, ciEnv* ci_env,
2088                                          int compilable, const char* failure_reason) {
2089   if (!AbortVMOnCompilationFailure) {
2090     return;
2091   }
2092   if (compilable == ciEnv::MethodCompilable_not_at_tier) {
2093     fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
2094   }
2095   if (compilable == ciEnv::MethodCompilable_never) {
2096     fatal("Never compilable: %s", failure_reason);
2097   }
2098 }
2099 
2100 static void post_compilation_event(EventCompilation& event, CompileTask* task) {
2101   assert(task != nullptr, "invariant");
2102   CompilerEvent::CompilationEvent::post(event,
2103                                         task->compile_id(),
2104                                         task->compiler()->type(),
2105                                         task->method(),
2106                                         task->comp_level(),
2107                                         task->is_success(),
2108                                         task->osr_bci() != CompileBroker::standard_entry_bci,
2109                                         task->nm_total_size(),
2110                                         task->num_inlined_bytecodes());
2111 }
2112 
2113 int DirectivesStack::_depth = 0;
2114 CompilerDirectives* DirectivesStack::_top = nullptr;
2115 CompilerDirectives* DirectivesStack::_bottom = nullptr;
2116 
2117 // Acquires Compilation_lock and waits for it to be notified
2118 // as long as WhiteBox::compilation_locked is true.
2119 static void whitebox_lock_compilation() {
2120   MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
2121   while (WhiteBox::compilation_locked) {
2122     locker.wait();
2123   }
2124 }
2125 
2126 // ------------------------------------------------------------------
2127 // CompileBroker::invoke_compiler_on_method
2128 //
2129 // Compile a method.
2130 //
2131 void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
2132   task->print_ul();
2133   elapsedTimer time;
2134 
2135   DirectiveSet* directive = task->directive();
2136   if (directive->PrintCompilationOption) {
2137     ResourceMark rm;
2138     task->print_tty();
2139   }
2140 
2141   CompilerThread* thread = CompilerThread::current();
2142   ResourceMark rm(thread);
2143 
2144   if (CompilationLog::log() != nullptr) {
2145     CompilationLog::log()->log_compile(thread, task);
2146   }
2147 
2148   // Common flags.
2149   int compile_id = task->compile_id();
2150   int osr_bci = task->osr_bci();
2151   bool is_osr = (osr_bci != standard_entry_bci);
2152   bool should_log = (thread->log() != nullptr);
2153   bool should_break = false;
2154   const int task_level = task->comp_level();
2155   AbstractCompiler* comp = task->compiler();
2156   {
2157     // create the handle inside it's own block so it can't
2158     // accidentally be referenced once the thread transitions to
2159     // native.  The NoHandleMark before the transition should catch
2160     // any cases where this occurs in the future.
2161     methodHandle method(thread, task->method());
2162 
2163     assert(!method->is_native(), "no longer compile natives");
2164 
2165     // Update compile information when using perfdata.
2166     if (UsePerfData) {
2167       update_compile_perf_data(thread, method, is_osr);
2168     }
2169 
2170     DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
2171   }
2172 
2173   should_break = directive->BreakAtCompileOption || task->check_break_at_flags();
2174   if (should_log && !directive->LogOption) {
2175     should_log = false;
2176   }
2177 
2178   // Allocate a new set of JNI handles.
2179   JNIHandleMark jhm(thread);
2180   Method* target_handle = task->method();
2181   int compilable = ciEnv::MethodCompilable;
2182   const char* failure_reason = nullptr;
2183   bool failure_reason_on_C_heap = false;
2184   const char* retry_message = nullptr;
2185 
2186 #if INCLUDE_JVMCI
2187   if (UseJVMCICompiler && comp != nullptr && comp->is_jvmci()) {
2188     JVMCICompiler* jvmci = (JVMCICompiler*) comp;
2189 
2190     TraceTime t1("compilation", &time);
2191     EventCompilation event;
2192     JVMCICompileState compile_state(task, jvmci);
2193     JVMCIRuntime *runtime = nullptr;
2194 
2195     if (JVMCI::in_shutdown()) {
2196       failure_reason = "in JVMCI shutdown";
2197       retry_message = "not retryable";
2198       compilable = ciEnv::MethodCompilable_never;
2199     } else if (compile_state.target_method_is_old()) {
2200       // Skip redefined methods
2201       failure_reason = "redefined method";
2202       retry_message = "not retryable";
2203       compilable = ciEnv::MethodCompilable_never;
2204     } else {
2205       JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__);
2206       failure_reason = compile_state.failure_reason();
2207       if (failure_reason == nullptr) {
2208         if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2209           // Must switch to native to block
2210           ThreadToNativeFromVM ttn(thread);
2211           whitebox_lock_compilation();
2212         }
2213         methodHandle method(thread, target_handle);
2214         runtime = env.runtime();
2215         runtime->compile_method(&env, jvmci, method, osr_bci);
2216 
2217         failure_reason = compile_state.failure_reason();
2218         failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap();
2219         if (!compile_state.retryable()) {
2220           retry_message = "not retryable";
2221           compilable = ciEnv::MethodCompilable_not_at_tier;
2222         }
2223         if (!task->is_success()) {
2224           assert(failure_reason != nullptr, "must specify failure_reason");
2225         }
2226       }
2227     }
2228     if (!task->is_success()) {
2229       handle_compile_error(thread, task, nullptr, compilable, failure_reason);
2230     }
2231     if (event.should_commit()) {
2232       post_compilation_event(event, task);
2233     }
2234 
2235     if (runtime != nullptr) {
2236       runtime->post_compile(thread);
2237     }
2238   } else
2239 #endif // INCLUDE_JVMCI
2240   {
2241     NoHandleMark  nhm;
2242     ThreadToNativeFromVM ttn(thread);
2243 
2244     ciEnv ci_env(task);
2245     if (should_break) {
2246       ci_env.set_break_at_compile(true);
2247     }
2248     if (should_log) {
2249       ci_env.set_log(thread->log());
2250     }
2251     assert(thread->env() == &ci_env, "set by ci_env");
2252     // The thread-env() field is cleared in ~CompileTaskWrapper.
2253 
2254     // Cache Jvmti state
2255     bool method_is_old = ci_env.cache_jvmti_state();
2256 
2257     // Skip redefined methods
2258     if (method_is_old) {
2259       ci_env.record_method_not_compilable("redefined method", true);
2260     }
2261 
2262     // Cache DTrace flags
2263     ci_env.cache_dtrace_flags();
2264 
2265     ciMethod* target = ci_env.get_method_from_handle(target_handle);
2266 
2267     TraceTime t1("compilation", &time);
2268     EventCompilation event;
2269 
2270     if (comp == nullptr) {
2271       ci_env.record_method_not_compilable("no compiler");
2272     } else if (!ci_env.failing()) {
2273       if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2274         whitebox_lock_compilation();
2275       }
2276       comp->compile_method(&ci_env, target, osr_bci, true, directive);
2277 
2278       /* Repeat compilation without installing code for profiling purposes */
2279       int repeat_compilation_count = directive->RepeatCompilationOption;
2280       while (repeat_compilation_count > 0) {
2281         ResourceMark rm(thread);
2282         task->print_ul("NO CODE INSTALLED");
2283         comp->compile_method(&ci_env, target, osr_bci, false, directive);
2284         repeat_compilation_count--;
2285       }
2286     }
2287 
2288     DirectivesStack::release(directive);
2289 
2290     if (!ci_env.failing() && !task->is_success()) {
2291       assert(ci_env.failure_reason() != nullptr, "expect failure reason");
2292       assert(false, "compiler should always document failure: %s", ci_env.failure_reason());
2293       // The compiler elected, without comment, not to register a result.
2294       // Do not attempt further compilations of this method.
2295       ci_env.record_method_not_compilable("compile failed");
2296     }
2297 
2298     // Copy this bit to the enclosing block:
2299     compilable = ci_env.compilable();
2300 
2301     if (ci_env.failing()) {
2302       failure_reason = ci_env.failure_reason();
2303       retry_message = ci_env.retry_message();
2304       ci_env.report_failure(failure_reason);
2305     }
2306 
2307     if (ci_env.failing()) {
2308       handle_compile_error(thread, task, &ci_env, compilable, failure_reason);
2309     }
2310     if (event.should_commit()) {
2311       post_compilation_event(event, task);
2312     }
2313   }
2314 
2315   if (failure_reason != nullptr) {
2316     task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
2317     if (CompilationLog::log() != nullptr) {
2318       CompilationLog::log()->log_failure(thread, task, failure_reason, retry_message);
2319     }
2320     if (PrintCompilation) {
2321       FormatBufferResource msg = retry_message != nullptr ?
2322         FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
2323         FormatBufferResource("COMPILE SKIPPED: %s",      failure_reason);
2324       task->print(tty, msg);
2325     }
2326   }
2327 
2328   methodHandle method(thread, task->method());
2329 
2330   DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
2331 
2332   collect_statistics(thread, time, task);
2333 
2334   if (PrintCompilation && PrintCompilation2) {
2335     tty->print("%7d ", (int) tty->time_stamp().milliseconds());  // print timestamp
2336     tty->print("%4d ", compile_id);    // print compilation number
2337     tty->print("%s ", (is_osr ? "%" : " "));
2338     if (task->is_success()) {
2339       tty->print("size: %d(%d) ", task->nm_total_size(), task->nm_insts_size());
2340     }
2341     tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
2342   }
2343 
2344   Log(compilation, codecache) log;
2345   if (log.is_debug()) {
2346     LogStream ls(log.debug());
2347     codecache_print(&ls, /* detailed= */ false);
2348   }
2349   if (PrintCodeCacheOnCompilation) {
2350     codecache_print(/* detailed= */ false);
2351   }
2352   // Disable compilation, if required.
2353   switch (compilable) {
2354   case ciEnv::MethodCompilable_never:
2355     if (is_osr)
2356       method->set_not_osr_compilable_quietly("MethodCompilable_never");
2357     else
2358       method->set_not_compilable_quietly("MethodCompilable_never");
2359     break;
2360   case ciEnv::MethodCompilable_not_at_tier:
2361     if (is_osr)
2362       method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2363     else
2364       method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2365     break;
2366   }
2367 
2368   // Note that the queued_for_compilation bits are cleared without
2369   // protection of a mutex. [They were set by the requester thread,
2370   // when adding the task to the compile queue -- at which time the
2371   // compile queue lock was held. Subsequently, we acquired the compile
2372   // queue lock to get this task off the compile queue; thus (to belabour
2373   // the point somewhat) our clearing of the bits must be occurring
2374   // only after the setting of the bits. See also 14012000 above.
2375   method->clear_queued_for_compilation();
2376 }
2377 
2378 /**
2379  * The CodeCache is full. Print warning and disable compilation.
2380  * Schedule code cache cleaning so compilation can continue later.
2381  * This function needs to be called only from CodeCache::allocate(),
2382  * since we currently handle a full code cache uniformly.
2383  */
2384 void CompileBroker::handle_full_code_cache(CodeBlobType code_blob_type) {
2385   UseInterpreter = true;
2386   if (UseCompiler || AlwaysCompileLoopMethods ) {
2387     if (xtty != nullptr) {
2388       stringStream s;
2389       // Dump code cache state into a buffer before locking the tty,
2390       // because log_state() will use locks causing lock conflicts.
2391       CodeCache::log_state(&s);
2392       // Lock to prevent tearing
2393       ttyLocker ttyl;
2394       xtty->begin_elem("code_cache_full");
2395       xtty->print("%s", s.freeze());
2396       xtty->stamp();
2397       xtty->end_elem();
2398     }
2399 
2400 #ifndef PRODUCT
2401     if (ExitOnFullCodeCache) {
2402       codecache_print(/* detailed= */ true);
2403       before_exit(JavaThread::current());
2404       exit_globals(); // will delete tty
2405       vm_direct_exit(1);
2406     }
2407 #endif
2408     if (UseCodeCacheFlushing) {
2409       // Since code cache is full, immediately stop new compiles
2410       if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
2411         log_info(codecache)("Code cache is full - disabling compilation");
2412       }
2413     } else {
2414       disable_compilation_forever();
2415     }
2416 
2417     CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
2418   }
2419 }
2420 
2421 // ------------------------------------------------------------------
2422 // CompileBroker::update_compile_perf_data
2423 //
2424 // Record this compilation for debugging purposes.
2425 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) {
2426   ResourceMark rm;
2427   char* method_name = method->name()->as_C_string();
2428   char current_method[CompilerCounters::cmname_buffer_length];
2429   size_t maxLen = CompilerCounters::cmname_buffer_length;
2430 
2431   const char* class_name = method->method_holder()->name()->as_C_string();
2432 
2433   size_t s1len = strlen(class_name);
2434   size_t s2len = strlen(method_name);
2435 
2436   // check if we need to truncate the string
2437   if (s1len + s2len + 2 > maxLen) {
2438 
2439     // the strategy is to lop off the leading characters of the
2440     // class name and the trailing characters of the method name.
2441 
2442     if (s2len + 2 > maxLen) {
2443       // lop of the entire class name string, let snprintf handle
2444       // truncation of the method name.
2445       class_name += s1len; // null string
2446     }
2447     else {
2448       // lop off the extra characters from the front of the class name
2449       class_name += ((s1len + s2len + 2) - maxLen);
2450     }
2451   }
2452 
2453   jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
2454 
2455   int last_compile_type = normal_compile;
2456   if (CICountOSR && is_osr) {
2457     last_compile_type = osr_compile;
2458   } else if (CICountNative && method->is_native()) {
2459     last_compile_type = native_compile;
2460   }
2461 
2462   CompilerCounters* counters = thread->counters();
2463   counters->set_current_method(current_method);
2464   counters->set_compile_type((jlong) last_compile_type);
2465 }
2466 
2467 // ------------------------------------------------------------------
2468 // CompileBroker::collect_statistics
2469 //
2470 // Collect statistics about the compilation.
2471 
2472 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
2473   bool success = task->is_success();
2474   methodHandle method (thread, task->method());
2475   int compile_id = task->compile_id();
2476   bool is_osr = (task->osr_bci() != standard_entry_bci);
2477   const int comp_level = task->comp_level();
2478   CompilerCounters* counters = thread->counters();
2479 
2480   MutexLocker locker(CompileStatistics_lock);
2481 
2482   // _perf variables are production performance counters which are
2483   // updated regardless of the setting of the CITime and CITimeEach flags
2484   //
2485 
2486   // account all time, including bailouts and failures in this counter;
2487   // C1 and C2 counters are counting both successful and unsuccessful compiles
2488   _t_total_compilation.add(time);
2489 
2490   if (!success) {
2491     _total_bailout_count++;
2492     if (UsePerfData) {
2493       _perf_last_failed_method->set_value(counters->current_method());
2494       _perf_last_failed_type->set_value(counters->compile_type());
2495       _perf_total_bailout_count->inc();
2496     }
2497     _t_bailedout_compilation.add(time);
2498   } else if (!task->is_success()) {
2499     if (UsePerfData) {
2500       _perf_last_invalidated_method->set_value(counters->current_method());
2501       _perf_last_invalidated_type->set_value(counters->compile_type());
2502       _perf_total_invalidated_count->inc();
2503     }
2504     _total_invalidated_count++;
2505     _t_invalidated_compilation.add(time);
2506   } else {
2507     // Compilation succeeded
2508 
2509     // update compilation ticks - used by the implementation of
2510     // java.lang.management.CompilationMXBean
2511     _perf_total_compilation->inc(time.ticks());
2512     _peak_compilation_time = time.milliseconds() > _peak_compilation_time ? time.milliseconds() : _peak_compilation_time;
2513 
2514     if (CITime) {
2515       int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
2516       if (is_osr) {
2517         _t_osr_compilation.add(time);
2518         _sum_osr_bytes_compiled += bytes_compiled;
2519       } else {
2520         _t_standard_compilation.add(time);
2521         _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
2522       }
2523 
2524       // Collect statistic per compilation level
2525       if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) {
2526         CompilerStatistics* stats = &_stats_per_level[comp_level-1];
2527         if (is_osr) {
2528           stats->_osr.update(time, bytes_compiled);
2529         } else {
2530           stats->_standard.update(time, bytes_compiled);
2531         }
2532         stats->_nmethods_size += task->nm_total_size();
2533         stats->_nmethods_code_size += task->nm_insts_size();
2534       } else {
2535         assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level);
2536       }
2537 
2538       // Collect statistic per compiler
2539       AbstractCompiler* comp = compiler(comp_level);
2540       if (comp) {
2541         CompilerStatistics* stats = comp->stats();
2542         if (is_osr) {
2543           stats->_osr.update(time, bytes_compiled);
2544         } else {
2545           stats->_standard.update(time, bytes_compiled);
2546         }
2547         stats->_nmethods_size += task->nm_total_size();
2548         stats->_nmethods_code_size += task->nm_insts_size();
2549       } else { // if (!comp)
2550         assert(false, "Compiler object must exist");
2551       }
2552     }
2553 
2554     if (UsePerfData) {
2555       // save the name of the last method compiled
2556       _perf_last_method->set_value(counters->current_method());
2557       _perf_last_compile_type->set_value(counters->compile_type());
2558       _perf_last_compile_size->set_value(method->code_size() +
2559                                          task->num_inlined_bytecodes());
2560       if (is_osr) {
2561         _perf_osr_compilation->inc(time.ticks());
2562         _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2563       } else {
2564         _perf_standard_compilation->inc(time.ticks());
2565         _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2566       }
2567     }
2568 
2569     if (CITimeEach) {
2570       double compile_time = time.seconds();
2571       double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time;
2572       tty->print_cr("%3d   seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)",
2573                     compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
2574     }
2575 
2576     // Collect counts of successful compilations
2577     _sum_nmethod_size      += task->nm_total_size();
2578     _sum_nmethod_code_size += task->nm_insts_size();
2579     _total_compile_count++;
2580 
2581     if (UsePerfData) {
2582       _perf_sum_nmethod_size->inc(     task->nm_total_size());
2583       _perf_sum_nmethod_code_size->inc(task->nm_insts_size());
2584       _perf_total_compile_count->inc();
2585     }
2586 
2587     if (is_osr) {
2588       if (UsePerfData) _perf_total_osr_compile_count->inc();
2589       _total_osr_compile_count++;
2590     } else {
2591       if (UsePerfData) _perf_total_standard_compile_count->inc();
2592       _total_standard_compile_count++;
2593     }
2594   }
2595   // set the current method for the thread to null
2596   if (UsePerfData) counters->set_current_method("");
2597 }
2598 
2599 const char* CompileBroker::compiler_name(int comp_level) {
2600   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
2601   if (comp == nullptr) {
2602     return "no compiler";
2603   } else {
2604     return (comp->name());
2605   }
2606 }
2607 
2608 jlong CompileBroker::total_compilation_ticks() {
2609   return _perf_total_compilation != nullptr ? _perf_total_compilation->get_value() : 0;
2610 }
2611 
2612 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) {
2613   tty->print_cr("  %s {speed: %6.3f bytes/s; standard: %6.3f s, %u bytes, %u methods; osr: %6.3f s, %u bytes, %u methods; nmethods_size: %u bytes; nmethods_code_size: %u bytes}",
2614                 name, stats->bytes_per_second(),
2615                 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
2616                 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
2617                 stats->_nmethods_size, stats->_nmethods_code_size);
2618 }
2619 
2620 void CompileBroker::print_times(bool per_compiler, bool aggregate) {
2621   if (per_compiler) {
2622     if (aggregate) {
2623       tty->cr();
2624       tty->print_cr("Individual compiler times (for compiled methods only)");
2625       tty->print_cr("------------------------------------------------");
2626       tty->cr();
2627     }
2628     for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
2629       AbstractCompiler* comp = _compilers[i];
2630       if (comp != nullptr) {
2631         print_times(comp->name(), comp->stats());
2632       }
2633     }
2634     if (aggregate) {
2635       tty->cr();
2636       tty->print_cr("Individual compilation Tier times (for compiled methods only)");
2637       tty->print_cr("------------------------------------------------");
2638       tty->cr();
2639     }
2640     char tier_name[256];
2641     for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) {
2642       CompilerStatistics* stats = &_stats_per_level[tier-1];
2643       os::snprintf_checked(tier_name, sizeof(tier_name), "Tier%d", tier);
2644       print_times(tier_name, stats);
2645     }
2646   }
2647 
2648   if (!aggregate) {
2649     return;
2650   }
2651 
2652   elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
2653   elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
2654   elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
2655 
2656   uint standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
2657   uint osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
2658 
2659   uint standard_compile_count = CompileBroker::_total_standard_compile_count;
2660   uint osr_compile_count = CompileBroker::_total_osr_compile_count;
2661   uint total_compile_count = CompileBroker::_total_compile_count;
2662   uint total_bailout_count = CompileBroker::_total_bailout_count;
2663   uint total_invalidated_count = CompileBroker::_total_invalidated_count;
2664 
2665   uint nmethods_size = CompileBroker::_sum_nmethod_code_size;
2666   uint nmethods_code_size = CompileBroker::_sum_nmethod_size;
2667 
2668   tty->cr();
2669   tty->print_cr("Accumulated compiler times");
2670   tty->print_cr("----------------------------------------------------------");
2671                //0000000000111111111122222222223333333333444444444455555555556666666666
2672                //0123456789012345678901234567890123456789012345678901234567890123456789
2673   tty->print_cr("  Total compilation time   : %7.3f s", total_compilation.seconds());
2674   tty->print_cr("    Standard compilation   : %7.3f s, Average : %2.3f s",
2675                 standard_compilation.seconds(),
2676                 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count);
2677   tty->print_cr("    Bailed out compilation : %7.3f s, Average : %2.3f s",
2678                 CompileBroker::_t_bailedout_compilation.seconds(),
2679                 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count);
2680   tty->print_cr("    On stack replacement   : %7.3f s, Average : %2.3f s",
2681                 osr_compilation.seconds(),
2682                 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count);
2683   tty->print_cr("    Invalidated            : %7.3f s, Average : %2.3f s",
2684                 CompileBroker::_t_invalidated_compilation.seconds(),
2685                 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count);
2686 
2687   AbstractCompiler *comp = compiler(CompLevel_simple);
2688   if (comp != nullptr) {
2689     tty->cr();
2690     comp->print_timers();
2691   }
2692   comp = compiler(CompLevel_full_optimization);
2693   if (comp != nullptr) {
2694     tty->cr();
2695     comp->print_timers();
2696   }
2697 #if INCLUDE_JVMCI
2698   if (EnableJVMCI) {
2699     JVMCICompiler *jvmci_comp = JVMCICompiler::instance(false, JavaThread::current_or_null());
2700     if (jvmci_comp != nullptr && jvmci_comp != comp) {
2701       tty->cr();
2702       jvmci_comp->print_timers();
2703     }
2704   }
2705 #endif
2706 
2707   tty->cr();
2708   tty->print_cr("  Total compiled methods    : %8u methods", total_compile_count);
2709   tty->print_cr("    Standard compilation    : %8u methods", standard_compile_count);
2710   tty->print_cr("    On stack replacement    : %8u methods", osr_compile_count);
2711   uint tcb = osr_bytes_compiled + standard_bytes_compiled;
2712   tty->print_cr("  Total compiled bytecodes  : %8u bytes", tcb);
2713   tty->print_cr("    Standard compilation    : %8u bytes", standard_bytes_compiled);
2714   tty->print_cr("    On stack replacement    : %8u bytes", osr_bytes_compiled);
2715   double tcs = total_compilation.seconds();
2716   uint bps = tcs == 0.0 ? 0 : (uint)(tcb / tcs);
2717   tty->print_cr("  Average compilation speed : %8u bytes/s", bps);
2718   tty->cr();
2719   tty->print_cr("  nmethod code size         : %8u bytes", nmethods_code_size);
2720   tty->print_cr("  nmethod total size        : %8u bytes", nmethods_size);
2721 }
2722 
2723 // Print general/accumulated JIT information.
2724 void CompileBroker::print_info(outputStream *out) {
2725   if (out == nullptr) out = tty;
2726   out->cr();
2727   out->print_cr("======================");
2728   out->print_cr("   General JIT info   ");
2729   out->print_cr("======================");
2730   out->cr();
2731   out->print_cr("            JIT is : %7s",     should_compile_new_jobs() ? "on" : "off");
2732   out->print_cr("  Compiler threads : %7d",     (int)CICompilerCount);
2733   out->cr();
2734   out->print_cr("CodeCache overview");
2735   out->print_cr("--------------------------------------------------------");
2736   out->cr();
2737   out->print_cr("         Reserved size : " SIZE_FORMAT_W(7) " KB", CodeCache::max_capacity() / K);
2738   out->print_cr("        Committed size : " SIZE_FORMAT_W(7) " KB", CodeCache::capacity() / K);
2739   out->print_cr("  Unallocated capacity : " SIZE_FORMAT_W(7) " KB", CodeCache::unallocated_capacity() / K);
2740   out->cr();
2741 }
2742 
2743 // Note: tty_lock must not be held upon entry to this function.
2744 //       Print functions called from herein do "micro-locking" on tty_lock.
2745 //       That's a tradeoff which keeps together important blocks of output.
2746 //       At the same time, continuous tty_lock hold time is kept in check,
2747 //       preventing concurrently printing threads from stalling a long time.
2748 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) {
2749   TimeStamp ts_total;
2750   TimeStamp ts_global;
2751   TimeStamp ts;
2752 
2753   bool allFun = !strcmp(function, "all");
2754   bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
2755   bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
2756   bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
2757   bool methodCount = !strcmp(function, "MethodCount") || allFun;
2758   bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
2759   bool methodAge = !strcmp(function, "MethodAge") || allFun;
2760   bool methodNames = !strcmp(function, "MethodNames") || allFun;
2761   bool discard = !strcmp(function, "discard") || allFun;
2762 
2763   if (out == nullptr) {
2764     out = tty;
2765   }
2766 
2767   if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
2768     out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
2769     out->cr();
2770     return;
2771   }
2772 
2773   ts_total.update(); // record starting point
2774 
2775   if (aggregate) {
2776     print_info(out);
2777   }
2778 
2779   // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
2780   // That prevents other threads from destroying (making inconsistent) our view on the CodeHeap.
2781   // When we request individual parts of the analysis via the jcmd interface, it is possible
2782   // that in between another thread (another jcmd user or the vm running into CodeCache OOM)
2783   // updated the aggregated data. We will then see a modified, but again consistent, view
2784   // on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold
2785   // a lock across user interaction.
2786 
2787   // We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock.
2788   // CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time,
2789   // leading to an unnecessarily long hold time of the other locks we acquired before.
2790   ts.update(); // record starting point
2791   MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag);
2792   out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds());
2793 
2794   // Holding the CodeCache_lock protects from concurrent alterations of the CodeCache.
2795   // Unfortunately, such protection is not sufficient:
2796   // When a new nmethod is created via ciEnv::register_method(), the
2797   // Compile_lock is taken first. After some initializations,
2798   // nmethod::new_nmethod() takes over, grabbing the CodeCache_lock
2799   // immediately (after finalizing the oop references). To lock out concurrent
2800   // modifiers, we have to grab both locks as well in the described sequence.
2801   //
2802   // If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock
2803   // for the entire duration of aggregation and printing. That makes sure we see
2804   // a consistent picture and do not run into issues caused by concurrent alterations.
2805   bool should_take_Compile_lock   = !SafepointSynchronize::is_at_safepoint() &&
2806                                     !Compile_lock->owned_by_self();
2807   bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() &&
2808                                     !CodeCache_lock->owned_by_self();
2809   Mutex*   global_lock_1   = allFun ? (should_take_Compile_lock   ? Compile_lock   : nullptr) : nullptr;
2810   Monitor* global_lock_2   = allFun ? (should_take_CodeCache_lock ? CodeCache_lock : nullptr) : nullptr;
2811   Mutex*   function_lock_1 = allFun ? nullptr : (should_take_Compile_lock   ? Compile_lock    : nullptr);
2812   Monitor* function_lock_2 = allFun ? nullptr : (should_take_CodeCache_lock ? CodeCache_lock  : nullptr);
2813   ts_global.update(); // record starting point
2814   MutexLocker mu1(global_lock_1, Mutex::_safepoint_check_flag);
2815   MutexLocker mu2(global_lock_2, Mutex::_no_safepoint_check_flag);
2816   if ((global_lock_1 != nullptr) || (global_lock_2 != nullptr)) {
2817     out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds());
2818     ts_global.update(); // record starting point
2819   }
2820 
2821   if (aggregate) {
2822     ts.update(); // record starting point
2823     MutexLocker mu11(function_lock_1, Mutex::_safepoint_check_flag);
2824     MutexLocker mu22(function_lock_2, Mutex::_no_safepoint_check_flag);
2825     if ((function_lock_1 != nullptr) || (function_lock_2 != nullptr)) {
2826       out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds());
2827     }
2828 
2829     ts.update(); // record starting point
2830     CodeCache::aggregate(out, granularity);
2831     if ((function_lock_1 != nullptr) || (function_lock_2 != nullptr)) {
2832       out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds());
2833     }
2834   }
2835 
2836   if (usedSpace) CodeCache::print_usedSpace(out);
2837   if (freeSpace) CodeCache::print_freeSpace(out);
2838   if (methodCount) CodeCache::print_count(out);
2839   if (methodSpace) CodeCache::print_space(out);
2840   if (methodAge) CodeCache::print_age(out);
2841   if (methodNames) {
2842     if (allFun) {
2843       // print_names() can only be used safely if the locks have been continuously held
2844       // since aggregation begin. That is true only for function "all".
2845       CodeCache::print_names(out);
2846     } else {
2847       out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'");
2848     }
2849   }
2850   if (discard) CodeCache::discard(out);
2851 
2852   if ((global_lock_1 != nullptr) || (global_lock_2 != nullptr)) {
2853     out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds());
2854   }
2855   out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds());
2856 }