1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/javaClasses.inline.hpp" 26 #include "classfile/symbolTable.hpp" 27 #include "classfile/vmClasses.hpp" 28 #include "classfile/vmSymbols.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/codeHeapState.hpp" 31 #include "code/dependencyContext.hpp" 32 #include "compiler/compilationLog.hpp" 33 #include "compiler/compilationMemoryStatistic.hpp" 34 #include "compiler/compilationPolicy.hpp" 35 #include "compiler/compileBroker.hpp" 36 #include "compiler/compileLog.hpp" 37 #include "compiler/compilerEvent.hpp" 38 #include "compiler/compilerOracle.hpp" 39 #include "compiler/directivesParser.hpp" 40 #include "gc/shared/memAllocator.hpp" 41 #include "interpreter/linkResolver.hpp" 42 #include "jfr/jfrEvents.hpp" 43 #include "jvm.h" 44 #include "logging/log.hpp" 45 #include "logging/logStream.hpp" 46 #include "memory/allocation.inline.hpp" 47 #include "memory/resourceArea.hpp" 48 #include "memory/universe.hpp" 49 #include "oops/method.inline.hpp" 50 #include "oops/methodData.hpp" 51 #include "oops/oop.inline.hpp" 52 #include "prims/jvmtiExport.hpp" 53 #include "prims/nativeLookup.hpp" 54 #include "prims/whitebox.hpp" 55 #include "runtime/atomic.hpp" 56 #include "runtime/escapeBarrier.hpp" 57 #include "runtime/globals_extension.hpp" 58 #include "runtime/handles.inline.hpp" 59 #include "runtime/init.hpp" 60 #include "runtime/interfaceSupport.inline.hpp" 61 #include "runtime/java.hpp" 62 #include "runtime/javaCalls.hpp" 63 #include "runtime/jniHandles.inline.hpp" 64 #include "runtime/os.hpp" 65 #include "runtime/perfData.hpp" 66 #include "runtime/safepointVerifiers.hpp" 67 #include "runtime/sharedRuntime.hpp" 68 #include "runtime/threads.hpp" 69 #include "runtime/threadSMR.hpp" 70 #include "runtime/timerTrace.hpp" 71 #include "runtime/vframe.inline.hpp" 72 #include "utilities/debug.hpp" 73 #include "utilities/dtrace.hpp" 74 #include "utilities/events.hpp" 75 #include "utilities/formatBuffer.hpp" 76 #include "utilities/macros.hpp" 77 #ifdef COMPILER1 78 #include "c1/c1_Compiler.hpp" 79 #endif 80 #ifdef COMPILER2 81 #include "opto/c2compiler.hpp" 82 #endif 83 #if INCLUDE_JVMCI 84 #include "jvmci/jvmciEnv.hpp" 85 #include "jvmci/jvmciRuntime.hpp" 86 #endif 87 88 #ifdef DTRACE_ENABLED 89 90 // Only bother with this argument setup if dtrace is available 91 92 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) \ 93 { \ 94 Symbol* klass_name = (method)->klass_name(); \ 95 Symbol* name = (method)->name(); \ 96 Symbol* signature = (method)->signature(); \ 97 HOTSPOT_METHOD_COMPILE_BEGIN( \ 98 (char *) comp_name, strlen(comp_name), \ 99 (char *) klass_name->bytes(), klass_name->utf8_length(), \ 100 (char *) name->bytes(), name->utf8_length(), \ 101 (char *) signature->bytes(), signature->utf8_length()); \ 102 } 103 104 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) \ 105 { \ 106 Symbol* klass_name = (method)->klass_name(); \ 107 Symbol* name = (method)->name(); \ 108 Symbol* signature = (method)->signature(); \ 109 HOTSPOT_METHOD_COMPILE_END( \ 110 (char *) comp_name, strlen(comp_name), \ 111 (char *) klass_name->bytes(), klass_name->utf8_length(), \ 112 (char *) name->bytes(), name->utf8_length(), \ 113 (char *) signature->bytes(), signature->utf8_length(), (success)); \ 114 } 115 116 #else // ndef DTRACE_ENABLED 117 118 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) 119 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) 120 121 #endif // ndef DTRACE_ENABLED 122 123 bool CompileBroker::_initialized = false; 124 volatile bool CompileBroker::_should_block = false; 125 volatile int CompileBroker::_print_compilation_warning = 0; 126 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation; 127 128 // The installed compiler(s) 129 AbstractCompiler* CompileBroker::_compilers[2]; 130 131 // The maximum numbers of compiler threads to be determined during startup. 132 int CompileBroker::_c1_count = 0; 133 int CompileBroker::_c2_count = 0; 134 135 // An array of compiler names as Java String objects 136 jobject* CompileBroker::_compiler1_objects = nullptr; 137 jobject* CompileBroker::_compiler2_objects = nullptr; 138 139 CompileLog** CompileBroker::_compiler1_logs = nullptr; 140 CompileLog** CompileBroker::_compiler2_logs = nullptr; 141 142 // These counters are used to assign an unique ID to each compilation. 143 volatile jint CompileBroker::_compilation_id = 0; 144 volatile jint CompileBroker::_osr_compilation_id = 0; 145 volatile jint CompileBroker::_native_compilation_id = 0; 146 147 // Performance counters 148 PerfCounter* CompileBroker::_perf_total_compilation = nullptr; 149 PerfCounter* CompileBroker::_perf_osr_compilation = nullptr; 150 PerfCounter* CompileBroker::_perf_standard_compilation = nullptr; 151 152 PerfCounter* CompileBroker::_perf_total_bailout_count = nullptr; 153 PerfCounter* CompileBroker::_perf_total_invalidated_count = nullptr; 154 PerfCounter* CompileBroker::_perf_total_compile_count = nullptr; 155 PerfCounter* CompileBroker::_perf_total_osr_compile_count = nullptr; 156 PerfCounter* CompileBroker::_perf_total_standard_compile_count = nullptr; 157 158 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = nullptr; 159 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = nullptr; 160 PerfCounter* CompileBroker::_perf_sum_nmethod_size = nullptr; 161 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = nullptr; 162 163 PerfStringVariable* CompileBroker::_perf_last_method = nullptr; 164 PerfStringVariable* CompileBroker::_perf_last_failed_method = nullptr; 165 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = nullptr; 166 PerfVariable* CompileBroker::_perf_last_compile_type = nullptr; 167 PerfVariable* CompileBroker::_perf_last_compile_size = nullptr; 168 PerfVariable* CompileBroker::_perf_last_failed_type = nullptr; 169 PerfVariable* CompileBroker::_perf_last_invalidated_type = nullptr; 170 171 // Timers and counters for generating statistics 172 elapsedTimer CompileBroker::_t_total_compilation; 173 elapsedTimer CompileBroker::_t_osr_compilation; 174 elapsedTimer CompileBroker::_t_standard_compilation; 175 elapsedTimer CompileBroker::_t_invalidated_compilation; 176 elapsedTimer CompileBroker::_t_bailedout_compilation; 177 178 uint CompileBroker::_total_bailout_count = 0; 179 uint CompileBroker::_total_invalidated_count = 0; 180 uint CompileBroker::_total_compile_count = 0; 181 uint CompileBroker::_total_osr_compile_count = 0; 182 uint CompileBroker::_total_standard_compile_count = 0; 183 uint CompileBroker::_total_compiler_stopped_count = 0; 184 uint CompileBroker::_total_compiler_restarted_count = 0; 185 186 uint CompileBroker::_sum_osr_bytes_compiled = 0; 187 uint CompileBroker::_sum_standard_bytes_compiled = 0; 188 uint CompileBroker::_sum_nmethod_size = 0; 189 uint CompileBroker::_sum_nmethod_code_size = 0; 190 191 jlong CompileBroker::_peak_compilation_time = 0; 192 193 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization]; 194 195 CompileQueue* CompileBroker::_c2_compile_queue = nullptr; 196 CompileQueue* CompileBroker::_c1_compile_queue = nullptr; 197 198 bool compileBroker_init() { 199 if (LogEvents) { 200 CompilationLog::init(); 201 } 202 203 // init directives stack, adding default directive 204 DirectivesStack::init(); 205 206 if (DirectivesParser::has_file()) { 207 return DirectivesParser::parse_from_flag(); 208 } else if (CompilerDirectivesPrint) { 209 // Print default directive even when no other was added 210 DirectivesStack::print(tty); 211 } 212 213 return true; 214 } 215 216 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) { 217 CompilerThread* thread = CompilerThread::current(); 218 thread->set_task(task); 219 CompileLog* log = thread->log(); 220 if (log != nullptr && !task->is_unloaded()) task->log_task_start(log); 221 } 222 223 CompileTaskWrapper::~CompileTaskWrapper() { 224 CompilerThread* thread = CompilerThread::current(); 225 CompileTask* task = thread->task(); 226 CompileLog* log = thread->log(); 227 if (log != nullptr && !task->is_unloaded()) task->log_task_done(log); 228 thread->set_task(nullptr); 229 thread->set_env(nullptr); 230 if (task->is_blocking()) { 231 bool free_task = false; 232 { 233 MutexLocker notifier(thread, task->lock()); 234 task->mark_complete(); 235 #if INCLUDE_JVMCI 236 if (CompileBroker::compiler(task->comp_level())->is_jvmci()) { 237 if (!task->has_waiter()) { 238 // The waiting thread timed out and thus did not free the task. 239 free_task = true; 240 } 241 task->set_blocking_jvmci_compile_state(nullptr); 242 } 243 #endif 244 if (!free_task) { 245 // Notify the waiting thread that the compilation has completed 246 // so that it can free the task. 247 task->lock()->notify_all(); 248 } 249 } 250 if (free_task) { 251 // The task can only be freed once the task lock is released. 252 CompileTask::free(task); 253 } 254 } else { 255 task->mark_complete(); 256 257 // By convention, the compiling thread is responsible for 258 // recycling a non-blocking CompileTask. 259 CompileTask::free(task); 260 } 261 } 262 263 /** 264 * Check if a CompilerThread can be removed and update count if requested. 265 */ 266 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) { 267 assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here"); 268 if (!ReduceNumberOfCompilerThreads) return false; 269 270 AbstractCompiler *compiler = ct->compiler(); 271 int compiler_count = compiler->num_compiler_threads(); 272 bool c1 = compiler->is_c1(); 273 274 // Keep at least 1 compiler thread of each type. 275 if (compiler_count < 2) return false; 276 277 // Keep thread alive for at least some time. 278 if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false; 279 280 #if INCLUDE_JVMCI 281 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) { 282 // Handles for JVMCI thread objects may get released concurrently. 283 if (do_it) { 284 assert(CompileThread_lock->owner() == ct, "must be holding lock"); 285 } else { 286 // Skip check if it's the last thread and let caller check again. 287 return true; 288 } 289 } 290 #endif 291 292 // We only allow the last compiler thread of each type to get removed. 293 jobject last_compiler = c1 ? compiler1_object(compiler_count - 1) 294 : compiler2_object(compiler_count - 1); 295 if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) { 296 if (do_it) { 297 assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent. 298 compiler->set_num_compiler_threads(compiler_count - 1); 299 #if INCLUDE_JVMCI 300 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) { 301 // Old j.l.Thread object can die when no longer referenced elsewhere. 302 JNIHandles::destroy_global(compiler2_object(compiler_count - 1)); 303 _compiler2_objects[compiler_count - 1] = nullptr; 304 } 305 #endif 306 } 307 return true; 308 } 309 return false; 310 } 311 312 /** 313 * Add a CompileTask to a CompileQueue. 314 */ 315 void CompileQueue::add(CompileTask* task) { 316 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 317 318 task->set_next(nullptr); 319 task->set_prev(nullptr); 320 321 if (_last == nullptr) { 322 // The compile queue is empty. 323 assert(_first == nullptr, "queue is empty"); 324 _first = task; 325 _last = task; 326 } else { 327 // Append the task to the queue. 328 assert(_last->next() == nullptr, "not last"); 329 _last->set_next(task); 330 task->set_prev(_last); 331 _last = task; 332 } 333 ++_size; 334 ++_total_added; 335 if (_size > _peak_size) { 336 _peak_size = _size; 337 } 338 339 // Mark the method as being in the compile queue. 340 task->method()->set_queued_for_compilation(); 341 342 if (CIPrintCompileQueue) { 343 print_tty(); 344 } 345 346 if (LogCompilation && xtty != nullptr) { 347 task->log_task_queued(); 348 } 349 350 // Notify CompilerThreads that a task is available. 351 MethodCompileQueue_lock->notify_all(); 352 } 353 354 /** 355 * Empties compilation queue by putting all compilation tasks onto 356 * a freelist. Furthermore, the method wakes up all threads that are 357 * waiting on a compilation task to finish. This can happen if background 358 * compilation is disabled. 359 */ 360 void CompileQueue::free_all() { 361 MutexLocker mu(MethodCompileQueue_lock); 362 CompileTask* next = _first; 363 364 // Iterate over all tasks in the compile queue 365 while (next != nullptr) { 366 CompileTask* current = next; 367 next = current->next(); 368 bool found_waiter = false; 369 { 370 MutexLocker ct_lock(current->lock()); 371 assert(current->waiting_for_completion_count() <= 1, "more than one thread are waiting for task"); 372 if (current->waiting_for_completion_count() > 0) { 373 // If another thread waits for this task, we must wake them up 374 // so they will stop waiting and free the task. 375 current->lock()->notify(); 376 found_waiter = true; 377 } 378 } 379 if (!found_waiter) { 380 // If no one was waiting for this task, we need to free it ourselves. In this case, the task 381 // is also certainly unlocked, because, again, there is no waiter. 382 // Otherwise, by convention, it's the waiters responsibility to free the task. 383 // Put the task back on the freelist. 384 CompileTask::free(current); 385 } 386 } 387 _first = nullptr; 388 _last = nullptr; 389 390 // Wake up all threads that block on the queue. 391 MethodCompileQueue_lock->notify_all(); 392 } 393 394 /** 395 * Get the next CompileTask from a CompileQueue 396 */ 397 CompileTask* CompileQueue::get(CompilerThread* thread) { 398 // save methods from RedefineClasses across safepoint 399 // across MethodCompileQueue_lock below. 400 methodHandle save_method; 401 methodHandle save_hot_method; 402 403 MonitorLocker locker(MethodCompileQueue_lock); 404 // If _first is null we have no more compile jobs. There are two reasons for 405 // having no compile jobs: First, we compiled everything we wanted. Second, 406 // we ran out of code cache so compilation has been disabled. In the latter 407 // case we perform code cache sweeps to free memory such that we can re-enable 408 // compilation. 409 while (_first == nullptr) { 410 // Exit loop if compilation is disabled forever 411 if (CompileBroker::is_compilation_disabled_forever()) { 412 return nullptr; 413 } 414 415 AbstractCompiler* compiler = thread->compiler(); 416 guarantee(compiler != nullptr, "Compiler object must exist"); 417 compiler->on_empty_queue(this, thread); 418 if (_first != nullptr) { 419 // The call to on_empty_queue may have temporarily unlocked the MCQ lock 420 // so check again whether any tasks were added to the queue. 421 break; 422 } 423 424 // If there are no compilation tasks and we can compile new jobs 425 // (i.e., there is enough free space in the code cache) there is 426 // no need to invoke the GC. 427 // We need a timed wait here, since compiler threads can exit if compilation 428 // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads 429 // is not critical and we do not want idle compiler threads to wake up too often. 430 locker.wait(5*1000); 431 432 if (UseDynamicNumberOfCompilerThreads && _first == nullptr) { 433 // Still nothing to compile. Give caller a chance to stop this thread. 434 if (CompileBroker::can_remove(CompilerThread::current(), false)) return nullptr; 435 } 436 } 437 438 if (CompileBroker::is_compilation_disabled_forever()) { 439 return nullptr; 440 } 441 442 CompileTask* task; 443 { 444 NoSafepointVerifier nsv; 445 task = CompilationPolicy::select_task(this); 446 if (task != nullptr) { 447 task = task->select_for_compilation(); 448 } 449 } 450 451 if (task != nullptr) { 452 // Save method pointers across unlock safepoint. The task is removed from 453 // the compilation queue, which is walked during RedefineClasses. 454 Thread* thread = Thread::current(); 455 save_method = methodHandle(thread, task->method()); 456 save_hot_method = methodHandle(thread, task->hot_method()); 457 458 remove(task); 459 } 460 purge_stale_tasks(); // may temporarily release MCQ lock 461 return task; 462 } 463 464 // Clean & deallocate stale compile tasks. 465 // Temporarily releases MethodCompileQueue lock. 466 void CompileQueue::purge_stale_tasks() { 467 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 468 if (_first_stale != nullptr) { 469 // Stale tasks are purged when MCQ lock is released, 470 // but _first_stale updates are protected by MCQ lock. 471 // Once task processing starts and MCQ lock is released, 472 // other compiler threads can reuse _first_stale. 473 CompileTask* head = _first_stale; 474 _first_stale = nullptr; 475 { 476 MutexUnlocker ul(MethodCompileQueue_lock); 477 for (CompileTask* task = head; task != nullptr; ) { 478 CompileTask* next_task = task->next(); 479 CompileTaskWrapper ctw(task); // Frees the task 480 task->set_failure_reason("stale task"); 481 task = next_task; 482 } 483 } 484 } 485 } 486 487 void CompileQueue::remove(CompileTask* task) { 488 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 489 if (task->prev() != nullptr) { 490 task->prev()->set_next(task->next()); 491 } else { 492 // max is the first element 493 assert(task == _first, "Sanity"); 494 _first = task->next(); 495 } 496 497 if (task->next() != nullptr) { 498 task->next()->set_prev(task->prev()); 499 } else { 500 // max is the last element 501 assert(task == _last, "Sanity"); 502 _last = task->prev(); 503 } 504 --_size; 505 ++_total_removed; 506 } 507 508 void CompileQueue::remove_and_mark_stale(CompileTask* task) { 509 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 510 remove(task); 511 512 // Enqueue the task for reclamation (should be done outside MCQ lock) 513 task->set_next(_first_stale); 514 task->set_prev(nullptr); 515 _first_stale = task; 516 } 517 518 // methods in the compile queue need to be marked as used on the stack 519 // so that they don't get reclaimed by Redefine Classes 520 void CompileQueue::mark_on_stack() { 521 CompileTask* task = _first; 522 while (task != nullptr) { 523 task->mark_on_stack(); 524 task = task->next(); 525 } 526 } 527 528 529 CompileQueue* CompileBroker::compile_queue(int comp_level) { 530 if (is_c2_compile(comp_level)) return _c2_compile_queue; 531 if (is_c1_compile(comp_level)) return _c1_compile_queue; 532 return nullptr; 533 } 534 535 CompileQueue* CompileBroker::c1_compile_queue() { 536 return _c1_compile_queue; 537 } 538 539 CompileQueue* CompileBroker::c2_compile_queue() { 540 return _c2_compile_queue; 541 } 542 543 void CompileBroker::print_compile_queues(outputStream* st) { 544 st->print_cr("Current compiles: "); 545 546 char buf[2000]; 547 int buflen = sizeof(buf); 548 Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true); 549 550 st->cr(); 551 if (_c1_compile_queue != nullptr) { 552 _c1_compile_queue->print(st); 553 } 554 if (_c2_compile_queue != nullptr) { 555 _c2_compile_queue->print(st); 556 } 557 } 558 559 void CompileQueue::print(outputStream* st) { 560 assert_locked_or_safepoint(MethodCompileQueue_lock); 561 st->print_cr("%s:", name()); 562 CompileTask* task = _first; 563 if (task == nullptr) { 564 st->print_cr("Empty"); 565 } else { 566 while (task != nullptr) { 567 task->print(st, nullptr, true, true); 568 task = task->next(); 569 } 570 } 571 st->cr(); 572 } 573 574 void CompileQueue::print_tty() { 575 stringStream ss; 576 // Dump the compile queue into a buffer before locking the tty 577 print(&ss); 578 { 579 ttyLocker ttyl; 580 tty->print("%s", ss.freeze()); 581 } 582 } 583 584 CompilerCounters::CompilerCounters() { 585 _current_method[0] = '\0'; 586 _compile_type = CompileBroker::no_compile; 587 } 588 589 #if INCLUDE_JFR && COMPILER2_OR_JVMCI 590 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping 591 // in compiler/compilerEvent.cpp) and registers it with its serializer. 592 // 593 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp, 594 // so if c2 is used, it should be always registered first. 595 // This function is called during vm initialization. 596 static void register_jfr_phasetype_serializer(CompilerType compiler_type) { 597 ResourceMark rm; 598 static bool first_registration = true; 599 if (compiler_type == compiler_jvmci) { 600 CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false); 601 first_registration = false; 602 #ifdef COMPILER2 603 } else if (compiler_type == compiler_c2) { 604 assert(first_registration, "invariant"); // c2 must be registered first. 605 for (int i = 0; i < PHASE_NUM_TYPES; i++) { 606 const char* phase_name = CompilerPhaseTypeHelper::to_description((CompilerPhaseType) i); 607 CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false); 608 } 609 first_registration = false; 610 #endif // COMPILER2 611 } 612 } 613 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI 614 615 // ------------------------------------------------------------------ 616 // CompileBroker::compilation_init 617 // 618 // Initialize the Compilation object 619 void CompileBroker::compilation_init(JavaThread* THREAD) { 620 // No need to initialize compilation system if we do not use it. 621 if (!UseCompiler) { 622 return; 623 } 624 // Set the interface to the current compiler(s). 625 _c1_count = CompilationPolicy::c1_count(); 626 _c2_count = CompilationPolicy::c2_count(); 627 628 #if INCLUDE_JVMCI 629 if (EnableJVMCI) { 630 // This is creating a JVMCICompiler singleton. 631 JVMCICompiler* jvmci = new JVMCICompiler(); 632 633 if (UseJVMCICompiler) { 634 _compilers[1] = jvmci; 635 if (FLAG_IS_DEFAULT(JVMCIThreads)) { 636 if (BootstrapJVMCI) { 637 // JVMCI will bootstrap so give it more threads 638 _c2_count = MIN2(32, os::active_processor_count()); 639 } 640 } else { 641 _c2_count = JVMCIThreads; 642 } 643 if (FLAG_IS_DEFAULT(JVMCIHostThreads)) { 644 } else { 645 #ifdef COMPILER1 646 _c1_count = JVMCIHostThreads; 647 #endif // COMPILER1 648 } 649 } 650 } 651 #endif // INCLUDE_JVMCI 652 653 #ifdef COMPILER1 654 if (_c1_count > 0) { 655 _compilers[0] = new Compiler(); 656 } 657 #endif // COMPILER1 658 659 #ifdef COMPILER2 660 if (true JVMCI_ONLY( && !UseJVMCICompiler)) { 661 if (_c2_count > 0) { 662 _compilers[1] = new C2Compiler(); 663 // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit. 664 // idToPhase mapping for c2 is in opto/phasetype.hpp 665 JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);) 666 } 667 } 668 #endif // COMPILER2 669 670 #if INCLUDE_JVMCI 671 // Register after c2 registration. 672 // JVMCI CompilerPhaseType idToPhase mapping is dynamic. 673 if (EnableJVMCI) { 674 JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);) 675 } 676 #endif // INCLUDE_JVMCI 677 678 if (CompilerOracle::should_collect_memstat()) { 679 CompilationMemoryStatistic::initialize(); 680 } 681 682 // Start the compiler thread(s) 683 init_compiler_threads(); 684 // totalTime performance counter is always created as it is required 685 // by the implementation of java.lang.management.CompilationMXBean. 686 { 687 // Ensure OOM leads to vm_exit_during_initialization. 688 EXCEPTION_MARK; 689 _perf_total_compilation = 690 PerfDataManager::create_counter(JAVA_CI, "totalTime", 691 PerfData::U_Ticks, CHECK); 692 } 693 694 if (UsePerfData) { 695 696 EXCEPTION_MARK; 697 698 // create the jvmstat performance counters 699 _perf_osr_compilation = 700 PerfDataManager::create_counter(SUN_CI, "osrTime", 701 PerfData::U_Ticks, CHECK); 702 703 _perf_standard_compilation = 704 PerfDataManager::create_counter(SUN_CI, "standardTime", 705 PerfData::U_Ticks, CHECK); 706 707 _perf_total_bailout_count = 708 PerfDataManager::create_counter(SUN_CI, "totalBailouts", 709 PerfData::U_Events, CHECK); 710 711 _perf_total_invalidated_count = 712 PerfDataManager::create_counter(SUN_CI, "totalInvalidates", 713 PerfData::U_Events, CHECK); 714 715 _perf_total_compile_count = 716 PerfDataManager::create_counter(SUN_CI, "totalCompiles", 717 PerfData::U_Events, CHECK); 718 _perf_total_osr_compile_count = 719 PerfDataManager::create_counter(SUN_CI, "osrCompiles", 720 PerfData::U_Events, CHECK); 721 722 _perf_total_standard_compile_count = 723 PerfDataManager::create_counter(SUN_CI, "standardCompiles", 724 PerfData::U_Events, CHECK); 725 726 _perf_sum_osr_bytes_compiled = 727 PerfDataManager::create_counter(SUN_CI, "osrBytes", 728 PerfData::U_Bytes, CHECK); 729 730 _perf_sum_standard_bytes_compiled = 731 PerfDataManager::create_counter(SUN_CI, "standardBytes", 732 PerfData::U_Bytes, CHECK); 733 734 _perf_sum_nmethod_size = 735 PerfDataManager::create_counter(SUN_CI, "nmethodSize", 736 PerfData::U_Bytes, CHECK); 737 738 _perf_sum_nmethod_code_size = 739 PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize", 740 PerfData::U_Bytes, CHECK); 741 742 _perf_last_method = 743 PerfDataManager::create_string_variable(SUN_CI, "lastMethod", 744 CompilerCounters::cmname_buffer_length, 745 "", CHECK); 746 747 _perf_last_failed_method = 748 PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod", 749 CompilerCounters::cmname_buffer_length, 750 "", CHECK); 751 752 _perf_last_invalidated_method = 753 PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod", 754 CompilerCounters::cmname_buffer_length, 755 "", CHECK); 756 757 _perf_last_compile_type = 758 PerfDataManager::create_variable(SUN_CI, "lastType", 759 PerfData::U_None, 760 (jlong)CompileBroker::no_compile, 761 CHECK); 762 763 _perf_last_compile_size = 764 PerfDataManager::create_variable(SUN_CI, "lastSize", 765 PerfData::U_Bytes, 766 (jlong)CompileBroker::no_compile, 767 CHECK); 768 769 770 _perf_last_failed_type = 771 PerfDataManager::create_variable(SUN_CI, "lastFailedType", 772 PerfData::U_None, 773 (jlong)CompileBroker::no_compile, 774 CHECK); 775 776 _perf_last_invalidated_type = 777 PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType", 778 PerfData::U_None, 779 (jlong)CompileBroker::no_compile, 780 CHECK); 781 } 782 783 _initialized = true; 784 } 785 786 #if defined(ASSERT) && COMPILER2_OR_JVMCI 787 // Entry for DeoptimizeObjectsALotThread. The threads are started in 788 // CompileBroker::init_compiler_threads() iff DeoptimizeObjectsALot is enabled 789 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) { 790 DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread); 791 bool enter_single_loop; 792 { 793 MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag); 794 static int single_thread_count = 0; 795 enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle; 796 } 797 if (enter_single_loop) { 798 dt->deoptimize_objects_alot_loop_single(); 799 } else { 800 dt->deoptimize_objects_alot_loop_all(); 801 } 802 } 803 804 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each 805 // barrier targets a single thread which is selected round robin. 806 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() { 807 HandleMark hm(this); 808 while (true) { 809 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) { 810 { // Begin new scope for escape barrier 811 HandleMarkCleaner hmc(this); 812 ResourceMark rm(this); 813 EscapeBarrier eb(true, this, deoptee_thread); 814 eb.deoptimize_objects(100); 815 } 816 // Now sleep after the escape barriers destructor resumed deoptee_thread. 817 sleep(DeoptimizeObjectsALotInterval); 818 } 819 } 820 } 821 822 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each 823 // barrier targets all java threads in the vm at once. 824 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() { 825 HandleMark hm(this); 826 while (true) { 827 { // Begin new scope for escape barrier 828 HandleMarkCleaner hmc(this); 829 ResourceMark rm(this); 830 EscapeBarrier eb(true, this); 831 eb.deoptimize_objects_all_threads(); 832 } 833 // Now sleep after the escape barriers destructor resumed the java threads. 834 sleep(DeoptimizeObjectsALotInterval); 835 } 836 } 837 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI 838 839 840 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, JavaThread* THREAD) { 841 Handle thread_oop(THREAD, JNIHandles::resolve_non_null(thread_handle)); 842 843 if (java_lang_Thread::thread(thread_oop()) != nullptr) { 844 assert(type == compiler_t, "should only happen with reused compiler threads"); 845 // The compiler thread hasn't actually exited yet so don't try to reuse it 846 return nullptr; 847 } 848 849 JavaThread* new_thread = nullptr; 850 switch (type) { 851 case compiler_t: 852 assert(comp != nullptr, "Compiler instance missing."); 853 if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) { 854 CompilerCounters* counters = new CompilerCounters(); 855 new_thread = new CompilerThread(queue, counters); 856 } 857 break; 858 #if defined(ASSERT) && COMPILER2_OR_JVMCI 859 case deoptimizer_t: 860 new_thread = new DeoptimizeObjectsALotThread(); 861 break; 862 #endif // ASSERT 863 default: 864 ShouldNotReachHere(); 865 } 866 867 // At this point the new CompilerThread data-races with this startup 868 // thread (which is the main thread and NOT the VM thread). 869 // This means Java bytecodes being executed at startup can 870 // queue compile jobs which will run at whatever default priority the 871 // newly created CompilerThread runs at. 872 873 874 // At this point it may be possible that no osthread was created for the 875 // JavaThread due to lack of resources. We will handle that failure below. 876 // Also check new_thread so that static analysis is happy. 877 if (new_thread != nullptr && new_thread->osthread() != nullptr) { 878 879 if (type == compiler_t) { 880 CompilerThread::cast(new_thread)->set_compiler(comp); 881 } 882 883 // Note that we cannot call os::set_priority because it expects Java 884 // priorities and we are *explicitly* using OS priorities so that it's 885 // possible to set the compiler thread priority higher than any Java 886 // thread. 887 888 int native_prio = CompilerThreadPriority; 889 if (native_prio == -1) { 890 if (UseCriticalCompilerThreadPriority) { 891 native_prio = os::java_to_os_priority[CriticalPriority]; 892 } else { 893 native_prio = os::java_to_os_priority[NearMaxPriority]; 894 } 895 } 896 os::set_native_priority(new_thread, native_prio); 897 898 // Note that this only sets the JavaThread _priority field, which by 899 // definition is limited to Java priorities and not OS priorities. 900 JavaThread::start_internal_daemon(THREAD, new_thread, thread_oop, NearMaxPriority); 901 902 } else { // osthread initialization failure 903 if (UseDynamicNumberOfCompilerThreads && type == compiler_t 904 && comp->num_compiler_threads() > 0) { 905 // The new thread is not known to Thread-SMR yet so we can just delete. 906 delete new_thread; 907 return nullptr; 908 } else { 909 vm_exit_during_initialization("java.lang.OutOfMemoryError", 910 os::native_thread_creation_failed_msg()); 911 } 912 } 913 914 os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS) 915 916 return new_thread; 917 } 918 919 static bool trace_compiler_threads() { 920 LogTarget(Debug, jit, thread) lt; 921 return TraceCompilerThreads || lt.is_enabled(); 922 } 923 924 static jobject create_compiler_thread(AbstractCompiler* compiler, int i, TRAPS) { 925 char name_buffer[256]; 926 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", compiler->name(), i); 927 Handle thread_oop = JavaThread::create_system_thread_object(name_buffer, CHECK_NULL); 928 return JNIHandles::make_global(thread_oop); 929 } 930 931 static void print_compiler_threads(stringStream& msg) { 932 if (TraceCompilerThreads) { 933 tty->print_cr("%7d %s", (int)tty->time_stamp().milliseconds(), msg.as_string()); 934 } 935 LogTarget(Debug, jit, thread) lt; 936 if (lt.is_enabled()) { 937 LogStream ls(lt); 938 ls.print_cr("%s", msg.as_string()); 939 } 940 } 941 942 void CompileBroker::init_compiler_threads() { 943 // Ensure any exceptions lead to vm_exit_during_initialization. 944 EXCEPTION_MARK; 945 #if !defined(ZERO) 946 assert(_c2_count > 0 || _c1_count > 0, "No compilers?"); 947 #endif // !ZERO 948 // Initialize the compilation queue 949 if (_c2_count > 0) { 950 const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue"; 951 _c2_compile_queue = new CompileQueue(name); 952 _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler); 953 _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler); 954 } 955 if (_c1_count > 0) { 956 _c1_compile_queue = new CompileQueue("C1 compile queue"); 957 _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler); 958 _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler); 959 } 960 961 for (int i = 0; i < _c2_count; i++) { 962 // Create a name for our thread. 963 jobject thread_handle = create_compiler_thread(_compilers[1], i, CHECK); 964 _compiler2_objects[i] = thread_handle; 965 _compiler2_logs[i] = nullptr; 966 967 if (!UseDynamicNumberOfCompilerThreads || i == 0) { 968 JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD); 969 assert(ct != nullptr, "should have been handled for initial thread"); 970 _compilers[1]->set_num_compiler_threads(i + 1); 971 if (trace_compiler_threads()) { 972 ResourceMark rm; 973 ThreadsListHandle tlh; // name() depends on the TLH. 974 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 975 stringStream msg; 976 msg.print("Added initial compiler thread %s", ct->name()); 977 print_compiler_threads(msg); 978 } 979 } 980 } 981 982 for (int i = 0; i < _c1_count; i++) { 983 // Create a name for our thread. 984 jobject thread_handle = create_compiler_thread(_compilers[0], i, CHECK); 985 _compiler1_objects[i] = thread_handle; 986 _compiler1_logs[i] = nullptr; 987 988 if (!UseDynamicNumberOfCompilerThreads || i == 0) { 989 JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD); 990 assert(ct != nullptr, "should have been handled for initial thread"); 991 _compilers[0]->set_num_compiler_threads(i + 1); 992 if (trace_compiler_threads()) { 993 ResourceMark rm; 994 ThreadsListHandle tlh; // name() depends on the TLH. 995 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 996 stringStream msg; 997 msg.print("Added initial compiler thread %s", ct->name()); 998 print_compiler_threads(msg); 999 } 1000 } 1001 } 1002 1003 if (UsePerfData) { 1004 PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK); 1005 } 1006 1007 #if defined(ASSERT) && COMPILER2_OR_JVMCI 1008 if (DeoptimizeObjectsALot) { 1009 // Initialize and start the object deoptimizer threads 1010 const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll; 1011 for (int count = 0; count < total_count; count++) { 1012 Handle thread_oop = JavaThread::create_system_thread_object("Deoptimize objects a lot single mode", CHECK); 1013 jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop()); 1014 make_thread(deoptimizer_t, thread_handle, nullptr, nullptr, THREAD); 1015 } 1016 } 1017 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI 1018 } 1019 1020 void CompileBroker::possibly_add_compiler_threads(JavaThread* THREAD) { 1021 1022 int old_c2_count = 0, new_c2_count = 0, old_c1_count = 0, new_c1_count = 0; 1023 const int c2_tasks_per_thread = 2, c1_tasks_per_thread = 4; 1024 1025 // Quick check if we already have enough compiler threads without taking the lock. 1026 // Numbers may change concurrently, so we read them again after we have the lock. 1027 if (_c2_compile_queue != nullptr) { 1028 old_c2_count = get_c2_thread_count(); 1029 new_c2_count = MIN2(_c2_count, _c2_compile_queue->size() / c2_tasks_per_thread); 1030 } 1031 if (_c1_compile_queue != nullptr) { 1032 old_c1_count = get_c1_thread_count(); 1033 new_c1_count = MIN2(_c1_count, _c1_compile_queue->size() / c1_tasks_per_thread); 1034 } 1035 if (new_c2_count <= old_c2_count && new_c1_count <= old_c1_count) return; 1036 1037 // Now, we do the more expensive operations. 1038 julong free_memory = os::free_memory(); 1039 // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All). 1040 size_t available_cc_np = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled), 1041 available_cc_p = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled); 1042 1043 // Only attempt to start additional threads if the lock is free. 1044 if (!CompileThread_lock->try_lock()) return; 1045 1046 if (_c2_compile_queue != nullptr) { 1047 old_c2_count = get_c2_thread_count(); 1048 new_c2_count = MIN4(_c2_count, 1049 _c2_compile_queue->size() / c2_tasks_per_thread, 1050 (int)(free_memory / (200*M)), 1051 (int)(available_cc_np / (128*K))); 1052 1053 for (int i = old_c2_count; i < new_c2_count; i++) { 1054 #if INCLUDE_JVMCI 1055 if (UseJVMCICompiler && !UseJVMCINativeLibrary && _compiler2_objects[i] == nullptr) { 1056 // Native compiler threads as used in C1/C2 can reuse the j.l.Thread objects as their 1057 // existence is completely hidden from the rest of the VM (and those compiler threads can't 1058 // call Java code to do the creation anyway). 1059 // 1060 // For pure Java JVMCI we have to create new j.l.Thread objects as they are visible and we 1061 // can see unexpected thread lifecycle transitions if we bind them to new JavaThreads. For 1062 // native library JVMCI it's preferred to use the C1/C2 strategy as this avoids unnecessary 1063 // coupling with Java. 1064 if (!THREAD->can_call_java()) break; 1065 char name_buffer[256]; 1066 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i); 1067 Handle thread_oop; 1068 { 1069 // We have to give up the lock temporarily for the Java calls. 1070 MutexUnlocker mu(CompileThread_lock); 1071 thread_oop = JavaThread::create_system_thread_object(name_buffer, THREAD); 1072 } 1073 if (HAS_PENDING_EXCEPTION) { 1074 if (trace_compiler_threads()) { 1075 ResourceMark rm; 1076 stringStream msg; 1077 msg.print_cr("JVMCI compiler thread creation failed:"); 1078 PENDING_EXCEPTION->print_on(&msg); 1079 print_compiler_threads(msg); 1080 } 1081 CLEAR_PENDING_EXCEPTION; 1082 break; 1083 } 1084 // Check if another thread has beaten us during the Java calls. 1085 if (get_c2_thread_count() != i) break; 1086 jobject thread_handle = JNIHandles::make_global(thread_oop); 1087 assert(compiler2_object(i) == nullptr, "Old one must be released!"); 1088 _compiler2_objects[i] = thread_handle; 1089 } 1090 #endif 1091 guarantee(compiler2_object(i) != nullptr, "Thread oop must exist"); 1092 JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD); 1093 if (ct == nullptr) break; 1094 _compilers[1]->set_num_compiler_threads(i + 1); 1095 if (trace_compiler_threads()) { 1096 ResourceMark rm; 1097 ThreadsListHandle tlh; // name() depends on the TLH. 1098 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1099 stringStream msg; 1100 msg.print("Added compiler thread %s (free memory: %dMB, available non-profiled code cache: %dMB)", 1101 ct->name(), (int)(free_memory/M), (int)(available_cc_np/M)); 1102 print_compiler_threads(msg); 1103 } 1104 } 1105 } 1106 1107 if (_c1_compile_queue != nullptr) { 1108 old_c1_count = get_c1_thread_count(); 1109 new_c1_count = MIN4(_c1_count, 1110 _c1_compile_queue->size() / c1_tasks_per_thread, 1111 (int)(free_memory / (100*M)), 1112 (int)(available_cc_p / (128*K))); 1113 1114 for (int i = old_c1_count; i < new_c1_count; i++) { 1115 JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD); 1116 if (ct == nullptr) break; 1117 _compilers[0]->set_num_compiler_threads(i + 1); 1118 if (trace_compiler_threads()) { 1119 ResourceMark rm; 1120 ThreadsListHandle tlh; // name() depends on the TLH. 1121 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1122 stringStream msg; 1123 msg.print("Added compiler thread %s (free memory: %dMB, available profiled code cache: %dMB)", 1124 ct->name(), (int)(free_memory/M), (int)(available_cc_p/M)); 1125 print_compiler_threads(msg); 1126 } 1127 } 1128 } 1129 1130 CompileThread_lock->unlock(); 1131 } 1132 1133 1134 /** 1135 * Set the methods on the stack as on_stack so that redefine classes doesn't 1136 * reclaim them. This method is executed at a safepoint. 1137 */ 1138 void CompileBroker::mark_on_stack() { 1139 assert(SafepointSynchronize::is_at_safepoint(), "sanity check"); 1140 // Since we are at a safepoint, we do not need a lock to access 1141 // the compile queues. 1142 if (_c2_compile_queue != nullptr) { 1143 _c2_compile_queue->mark_on_stack(); 1144 } 1145 if (_c1_compile_queue != nullptr) { 1146 _c1_compile_queue->mark_on_stack(); 1147 } 1148 } 1149 1150 // ------------------------------------------------------------------ 1151 // CompileBroker::compile_method 1152 // 1153 // Request compilation of a method. 1154 void CompileBroker::compile_method_base(const methodHandle& method, 1155 int osr_bci, 1156 int comp_level, 1157 const methodHandle& hot_method, 1158 int hot_count, 1159 CompileTask::CompileReason compile_reason, 1160 bool blocking, 1161 Thread* thread) { 1162 guarantee(!method->is_abstract(), "cannot compile abstract methods"); 1163 assert(method->method_holder()->is_instance_klass(), 1164 "sanity check"); 1165 assert(!method->method_holder()->is_not_initialized(), 1166 "method holder must be initialized"); 1167 assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys"); 1168 1169 if (CIPrintRequests) { 1170 tty->print("request: "); 1171 method->print_short_name(tty); 1172 if (osr_bci != InvocationEntryBci) { 1173 tty->print(" osr_bci: %d", osr_bci); 1174 } 1175 tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count); 1176 if (!hot_method.is_null()) { 1177 tty->print(" hot: "); 1178 if (hot_method() != method()) { 1179 hot_method->print_short_name(tty); 1180 } else { 1181 tty->print("yes"); 1182 } 1183 } 1184 tty->cr(); 1185 } 1186 1187 // A request has been made for compilation. Before we do any 1188 // real work, check to see if the method has been compiled 1189 // in the meantime with a definitive result. 1190 if (compilation_is_complete(method, osr_bci, comp_level)) { 1191 return; 1192 } 1193 1194 #ifndef PRODUCT 1195 if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) { 1196 if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) { 1197 // Positive OSROnlyBCI means only compile that bci. Negative means don't compile that BCI. 1198 return; 1199 } 1200 } 1201 #endif 1202 1203 // If this method is already in the compile queue, then 1204 // we do not block the current thread. 1205 if (compilation_is_in_queue(method)) { 1206 // We may want to decay our counter a bit here to prevent 1207 // multiple denied requests for compilation. This is an 1208 // open compilation policy issue. Note: The other possibility, 1209 // in the case that this is a blocking compile request, is to have 1210 // all subsequent blocking requesters wait for completion of 1211 // ongoing compiles. Note that in this case we'll need a protocol 1212 // for freeing the associated compile tasks. [Or we could have 1213 // a single static monitor on which all these waiters sleep.] 1214 return; 1215 } 1216 1217 // Tiered policy requires MethodCounters to exist before adding a method to 1218 // the queue. Create if we don't have them yet. 1219 method->get_method_counters(thread); 1220 1221 // Outputs from the following MutexLocker block: 1222 CompileTask* task = nullptr; 1223 CompileQueue* queue = compile_queue(comp_level); 1224 1225 // Acquire our lock. 1226 { 1227 MutexLocker locker(thread, MethodCompileQueue_lock); 1228 1229 // Make sure the method has not slipped into the queues since 1230 // last we checked; note that those checks were "fast bail-outs". 1231 // Here we need to be more careful, see 14012000 below. 1232 if (compilation_is_in_queue(method)) { 1233 return; 1234 } 1235 1236 // We need to check again to see if the compilation has 1237 // completed. A previous compilation may have registered 1238 // some result. 1239 if (compilation_is_complete(method, osr_bci, comp_level)) { 1240 return; 1241 } 1242 1243 // We now know that this compilation is not pending, complete, 1244 // or prohibited. Assign a compile_id to this compilation 1245 // and check to see if it is in our [Start..Stop) range. 1246 int compile_id = assign_compile_id(method, osr_bci); 1247 if (compile_id == 0) { 1248 // The compilation falls outside the allowed range. 1249 return; 1250 } 1251 1252 #if INCLUDE_JVMCI 1253 if (UseJVMCICompiler && blocking) { 1254 // Don't allow blocking compiles for requests triggered by JVMCI. 1255 if (thread->is_Compiler_thread()) { 1256 blocking = false; 1257 } 1258 1259 // In libjvmci, JVMCI initialization should not deadlock with other threads 1260 if (!UseJVMCINativeLibrary) { 1261 // Don't allow blocking compiles if inside a class initializer or while performing class loading 1262 vframeStream vfst(JavaThread::cast(thread)); 1263 for (; !vfst.at_end(); vfst.next()) { 1264 if (vfst.method()->is_class_initializer() || 1265 (vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) && 1266 vfst.method()->name() == vmSymbols::loadClass_name())) { 1267 blocking = false; 1268 break; 1269 } 1270 } 1271 1272 // Don't allow blocking compilation requests to JVMCI 1273 // if JVMCI itself is not yet initialized 1274 if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) { 1275 blocking = false; 1276 } 1277 } 1278 1279 // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown 1280 // to avoid deadlock between compiler thread(s) and threads run at shutdown 1281 // such as the DestroyJavaVM thread. 1282 if (JVMCI::in_shutdown()) { 1283 blocking = false; 1284 } 1285 } 1286 #endif // INCLUDE_JVMCI 1287 1288 // We will enter the compilation in the queue. 1289 // 14012000: Note that this sets the queued_for_compile bits in 1290 // the target method. We can now reason that a method cannot be 1291 // queued for compilation more than once, as follows: 1292 // Before a thread queues a task for compilation, it first acquires 1293 // the compile queue lock, then checks if the method's queued bits 1294 // are set or it has already been compiled. Thus there can not be two 1295 // instances of a compilation task for the same method on the 1296 // compilation queue. Consider now the case where the compilation 1297 // thread has already removed a task for that method from the queue 1298 // and is in the midst of compiling it. In this case, the 1299 // queued_for_compile bits must be set in the method (and these 1300 // will be visible to the current thread, since the bits were set 1301 // under protection of the compile queue lock, which we hold now. 1302 // When the compilation completes, the compiler thread first sets 1303 // the compilation result and then clears the queued_for_compile 1304 // bits. Neither of these actions are protected by a barrier (or done 1305 // under the protection of a lock), so the only guarantee we have 1306 // (on machines with TSO (Total Store Order)) is that these values 1307 // will update in that order. As a result, the only combinations of 1308 // these bits that the current thread will see are, in temporal order: 1309 // <RESULT, QUEUE> : 1310 // <0, 1> : in compile queue, but not yet compiled 1311 // <1, 1> : compiled but queue bit not cleared 1312 // <1, 0> : compiled and queue bit cleared 1313 // Because we first check the queue bits then check the result bits, 1314 // we are assured that we cannot introduce a duplicate task. 1315 // Note that if we did the tests in the reverse order (i.e. check 1316 // result then check queued bit), we could get the result bit before 1317 // the compilation completed, and the queue bit after the compilation 1318 // completed, and end up introducing a "duplicate" (redundant) task. 1319 // In that case, the compiler thread should first check if a method 1320 // has already been compiled before trying to compile it. 1321 // NOTE: in the event that there are multiple compiler threads and 1322 // there is de-optimization/recompilation, things will get hairy, 1323 // and in that case it's best to protect both the testing (here) of 1324 // these bits, and their updating (here and elsewhere) under a 1325 // common lock. 1326 task = create_compile_task(queue, 1327 compile_id, method, 1328 osr_bci, comp_level, 1329 hot_method, hot_count, compile_reason, 1330 blocking); 1331 } 1332 1333 if (blocking) { 1334 wait_for_completion(task); 1335 } 1336 } 1337 1338 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci, 1339 int comp_level, 1340 const methodHandle& hot_method, int hot_count, 1341 CompileTask::CompileReason compile_reason, 1342 TRAPS) { 1343 // Do nothing if compilebroker is not initialized or compiles are submitted on level none 1344 if (!_initialized || comp_level == CompLevel_none) { 1345 return nullptr; 1346 } 1347 1348 AbstractCompiler *comp = CompileBroker::compiler(comp_level); 1349 assert(comp != nullptr, "Ensure we have a compiler"); 1350 1351 #if INCLUDE_JVMCI 1352 if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) { 1353 // JVMCI compilation is not yet initializable. 1354 return nullptr; 1355 } 1356 #endif 1357 1358 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp); 1359 // CompileBroker::compile_method can trap and can have pending async exception. 1360 nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, directive, THREAD); 1361 DirectivesStack::release(directive); 1362 return nm; 1363 } 1364 1365 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci, 1366 int comp_level, 1367 const methodHandle& hot_method, int hot_count, 1368 CompileTask::CompileReason compile_reason, 1369 DirectiveSet* directive, 1370 TRAPS) { 1371 1372 // make sure arguments make sense 1373 assert(method->method_holder()->is_instance_klass(), "not an instance method"); 1374 assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range"); 1375 assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods"); 1376 assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized"); 1377 // return quickly if possible 1378 1379 // lock, make sure that the compilation 1380 // isn't prohibited in a straightforward way. 1381 AbstractCompiler* comp = CompileBroker::compiler(comp_level); 1382 if (comp == nullptr || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) { 1383 return nullptr; 1384 } 1385 1386 if (osr_bci == InvocationEntryBci) { 1387 // standard compilation 1388 nmethod* method_code = method->code(); 1389 if (method_code != nullptr) { 1390 if (compilation_is_complete(method, osr_bci, comp_level)) { 1391 return method_code; 1392 } 1393 } 1394 if (method->is_not_compilable(comp_level)) { 1395 return nullptr; 1396 } 1397 } else { 1398 // osr compilation 1399 // We accept a higher level osr method 1400 nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false); 1401 if (nm != nullptr) return nm; 1402 if (method->is_not_osr_compilable(comp_level)) return nullptr; 1403 } 1404 1405 assert(!HAS_PENDING_EXCEPTION, "No exception should be present"); 1406 // some prerequisites that are compiler specific 1407 if (comp->is_c2() || comp->is_jvmci()) { 1408 InternalOOMEMark iom(THREAD); 1409 method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL); 1410 // Resolve all classes seen in the signature of the method 1411 // we are compiling. 1412 Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL); 1413 } 1414 1415 // If the method is native, do the lookup in the thread requesting 1416 // the compilation. Native lookups can load code, which is not 1417 // permitted during compilation. 1418 // 1419 // Note: A native method implies non-osr compilation which is 1420 // checked with an assertion at the entry of this method. 1421 if (method->is_native() && !method->is_method_handle_intrinsic()) { 1422 address adr = NativeLookup::lookup(method, THREAD); 1423 if (HAS_PENDING_EXCEPTION) { 1424 // In case of an exception looking up the method, we just forget 1425 // about it. The interpreter will kick-in and throw the exception. 1426 method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable() 1427 CLEAR_PENDING_EXCEPTION; 1428 return nullptr; 1429 } 1430 assert(method->has_native_function(), "must have native code by now"); 1431 } 1432 1433 // RedefineClasses() has replaced this method; just return 1434 if (method->is_old()) { 1435 return nullptr; 1436 } 1437 1438 // JVMTI -- post_compile_event requires jmethod_id() that may require 1439 // a lock the compiling thread can not acquire. Prefetch it here. 1440 if (JvmtiExport::should_post_compiled_method_load()) { 1441 method->jmethod_id(); 1442 } 1443 1444 // do the compilation 1445 if (method->is_native()) { 1446 if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) { 1447 // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that 1448 // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime). 1449 // 1450 // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter 1451 // in this case. If we can't generate one and use it we can not execute the out-of-line method handle calls. 1452 AdapterHandlerLibrary::create_native_wrapper(method); 1453 } else { 1454 return nullptr; 1455 } 1456 } else { 1457 // If the compiler is shut off due to code cache getting full 1458 // fail out now so blocking compiles dont hang the java thread 1459 if (!should_compile_new_jobs()) { 1460 return nullptr; 1461 } 1462 bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles; 1463 compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, is_blocking, THREAD); 1464 } 1465 1466 // return requested nmethod 1467 // We accept a higher level osr method 1468 if (osr_bci == InvocationEntryBci) { 1469 return method->code(); 1470 } 1471 return method->lookup_osr_nmethod_for(osr_bci, comp_level, false); 1472 } 1473 1474 1475 // ------------------------------------------------------------------ 1476 // CompileBroker::compilation_is_complete 1477 // 1478 // See if compilation of this method is already complete. 1479 bool CompileBroker::compilation_is_complete(const methodHandle& method, 1480 int osr_bci, 1481 int comp_level) { 1482 bool is_osr = (osr_bci != standard_entry_bci); 1483 if (is_osr) { 1484 if (method->is_not_osr_compilable(comp_level)) { 1485 return true; 1486 } else { 1487 nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true); 1488 return (result != nullptr); 1489 } 1490 } else { 1491 if (method->is_not_compilable(comp_level)) { 1492 return true; 1493 } else { 1494 nmethod* result = method->code(); 1495 if (result == nullptr) return false; 1496 return comp_level == result->comp_level(); 1497 } 1498 } 1499 } 1500 1501 1502 /** 1503 * See if this compilation is already requested. 1504 * 1505 * Implementation note: there is only a single "is in queue" bit 1506 * for each method. This means that the check below is overly 1507 * conservative in the sense that an osr compilation in the queue 1508 * will block a normal compilation from entering the queue (and vice 1509 * versa). This can be remedied by a full queue search to disambiguate 1510 * cases. If it is deemed profitable, this may be done. 1511 */ 1512 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) { 1513 return method->queued_for_compilation(); 1514 } 1515 1516 // ------------------------------------------------------------------ 1517 // CompileBroker::compilation_is_prohibited 1518 // 1519 // See if this compilation is not allowed. 1520 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) { 1521 bool is_native = method->is_native(); 1522 // Some compilers may not support the compilation of natives. 1523 AbstractCompiler *comp = compiler(comp_level); 1524 if (is_native && (!CICompileNatives || comp == nullptr)) { 1525 method->set_not_compilable_quietly("native methods not supported", comp_level); 1526 return true; 1527 } 1528 1529 bool is_osr = (osr_bci != standard_entry_bci); 1530 // Some compilers may not support on stack replacement. 1531 if (is_osr && (!CICompileOSR || comp == nullptr)) { 1532 method->set_not_osr_compilable("OSR not supported", comp_level); 1533 return true; 1534 } 1535 1536 // The method may be explicitly excluded by the user. 1537 double scale; 1538 if (excluded || (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, scale) && scale == 0)) { 1539 bool quietly = CompilerOracle::be_quiet(); 1540 if (PrintCompilation && !quietly) { 1541 // This does not happen quietly... 1542 ResourceMark rm; 1543 tty->print("### Excluding %s:%s", 1544 method->is_native() ? "generation of native wrapper" : "compile", 1545 (method->is_static() ? " static" : "")); 1546 method->print_short_name(tty); 1547 tty->cr(); 1548 } 1549 method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly); 1550 } 1551 1552 return false; 1553 } 1554 1555 /** 1556 * Generate serialized IDs for compilation requests. If certain debugging flags are used 1557 * and the ID is not within the specified range, the method is not compiled and 0 is returned. 1558 * The function also allows to generate separate compilation IDs for OSR compilations. 1559 */ 1560 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) { 1561 #ifdef ASSERT 1562 bool is_osr = (osr_bci != standard_entry_bci); 1563 int id; 1564 if (method->is_native()) { 1565 assert(!is_osr, "can't be osr"); 1566 // Adapters, native wrappers and method handle intrinsics 1567 // should be generated always. 1568 return Atomic::add(CICountNative ? &_native_compilation_id : &_compilation_id, 1); 1569 } else if (CICountOSR && is_osr) { 1570 id = Atomic::add(&_osr_compilation_id, 1); 1571 if (CIStartOSR <= id && id < CIStopOSR) { 1572 return id; 1573 } 1574 } else { 1575 id = Atomic::add(&_compilation_id, 1); 1576 if (CIStart <= id && id < CIStop) { 1577 return id; 1578 } 1579 } 1580 1581 // Method was not in the appropriate compilation range. 1582 method->set_not_compilable_quietly("Not in requested compile id range"); 1583 return 0; 1584 #else 1585 // CICountOSR is a develop flag and set to 'false' by default. In a product built, 1586 // only _compilation_id is incremented. 1587 return Atomic::add(&_compilation_id, 1); 1588 #endif 1589 } 1590 1591 // ------------------------------------------------------------------ 1592 // CompileBroker::assign_compile_id_unlocked 1593 // 1594 // Public wrapper for assign_compile_id that acquires the needed locks 1595 int CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) { 1596 MutexLocker locker(thread, MethodCompileQueue_lock); 1597 return assign_compile_id(method, osr_bci); 1598 } 1599 1600 // ------------------------------------------------------------------ 1601 // CompileBroker::create_compile_task 1602 // 1603 // Create a CompileTask object representing the current request for 1604 // compilation. Add this task to the queue. 1605 CompileTask* CompileBroker::create_compile_task(CompileQueue* queue, 1606 int compile_id, 1607 const methodHandle& method, 1608 int osr_bci, 1609 int comp_level, 1610 const methodHandle& hot_method, 1611 int hot_count, 1612 CompileTask::CompileReason compile_reason, 1613 bool blocking) { 1614 CompileTask* new_task = CompileTask::allocate(); 1615 new_task->initialize(compile_id, method, osr_bci, comp_level, 1616 hot_method, hot_count, compile_reason, 1617 blocking); 1618 queue->add(new_task); 1619 return new_task; 1620 } 1621 1622 #if INCLUDE_JVMCI 1623 // The number of milliseconds to wait before checking if 1624 // JVMCI compilation has made progress. 1625 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000; 1626 1627 // The number of JVMCI compilation progress checks that must fail 1628 // before unblocking a thread waiting for a blocking compilation. 1629 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10; 1630 1631 /** 1632 * Waits for a JVMCI compiler to complete a given task. This thread 1633 * waits until either the task completes or it sees no JVMCI compilation 1634 * progress for N consecutive milliseconds where N is 1635 * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE * 1636 * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS. 1637 * 1638 * @return true if this thread needs to free/recycle the task 1639 */ 1640 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) { 1641 assert(UseJVMCICompiler, "sanity"); 1642 MonitorLocker ml(thread, task->lock()); 1643 int progress_wait_attempts = 0; 1644 jint thread_jvmci_compilation_ticks = 0; 1645 jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks(); 1646 while (!task->is_complete() && !is_compilation_disabled_forever() && 1647 ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) { 1648 JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state(); 1649 1650 bool progress; 1651 if (jvmci_compile_state != nullptr) { 1652 jint ticks = jvmci_compile_state->compilation_ticks(); 1653 progress = (ticks - thread_jvmci_compilation_ticks) != 0; 1654 JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks); 1655 thread_jvmci_compilation_ticks = ticks; 1656 } else { 1657 // Still waiting on JVMCI compiler queue. This thread may be holding a lock 1658 // that all JVMCI compiler threads are blocked on. We use the global JVMCI 1659 // compilation ticks to determine whether JVMCI compilation 1660 // is still making progress through the JVMCI compiler queue. 1661 jint ticks = jvmci->global_compilation_ticks(); 1662 progress = (ticks - global_jvmci_compilation_ticks) != 0; 1663 JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks); 1664 global_jvmci_compilation_ticks = ticks; 1665 } 1666 1667 if (!progress) { 1668 if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) { 1669 if (PrintCompilation) { 1670 task->print(tty, "wait for blocking compilation timed out"); 1671 } 1672 JVMCI_event_1("waiting on compilation %d timed out", task->compile_id()); 1673 break; 1674 } 1675 } else { 1676 progress_wait_attempts = 0; 1677 } 1678 } 1679 task->clear_waiter(); 1680 return task->is_complete(); 1681 } 1682 #endif 1683 1684 /** 1685 * Wait for the compilation task to complete. 1686 */ 1687 void CompileBroker::wait_for_completion(CompileTask* task) { 1688 if (CIPrintCompileQueue) { 1689 ttyLocker ttyl; 1690 tty->print_cr("BLOCKING FOR COMPILE"); 1691 } 1692 1693 assert(task->is_blocking(), "can only wait on blocking task"); 1694 1695 JavaThread* thread = JavaThread::current(); 1696 1697 methodHandle method(thread, task->method()); 1698 bool free_task; 1699 #if INCLUDE_JVMCI 1700 AbstractCompiler* comp = compiler(task->comp_level()); 1701 if (!UseJVMCINativeLibrary && comp->is_jvmci() && !task->should_wait_for_compilation()) { 1702 // It may return before compilation is completed. 1703 // Note that libjvmci should not pre-emptively unblock 1704 // a thread waiting for a compilation as it does not call 1705 // Java code and so is not deadlock prone like jarjvmci. 1706 free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread); 1707 } else 1708 #endif 1709 { 1710 MonitorLocker ml(thread, task->lock()); 1711 free_task = true; 1712 task->inc_waiting_for_completion(); 1713 while (!task->is_complete() && !is_compilation_disabled_forever()) { 1714 ml.wait(); 1715 } 1716 task->dec_waiting_for_completion(); 1717 } 1718 1719 if (free_task) { 1720 if (is_compilation_disabled_forever()) { 1721 CompileTask::free(task); 1722 return; 1723 } 1724 1725 // It is harmless to check this status without the lock, because 1726 // completion is a stable property (until the task object is recycled). 1727 assert(task->is_complete(), "Compilation should have completed"); 1728 1729 // By convention, the waiter is responsible for recycling a 1730 // blocking CompileTask. Since there is only one waiter ever 1731 // waiting on a CompileTask, we know that no one else will 1732 // be using this CompileTask; we can free it. 1733 CompileTask::free(task); 1734 } 1735 } 1736 1737 /** 1738 * Initialize compiler thread(s) + compiler object(s). The postcondition 1739 * of this function is that the compiler runtimes are initialized and that 1740 * compiler threads can start compiling. 1741 */ 1742 bool CompileBroker::init_compiler_runtime() { 1743 CompilerThread* thread = CompilerThread::current(); 1744 AbstractCompiler* comp = thread->compiler(); 1745 // Final sanity check - the compiler object must exist 1746 guarantee(comp != nullptr, "Compiler object must exist"); 1747 1748 { 1749 // Must switch to native to allocate ci_env 1750 ThreadToNativeFromVM ttn(thread); 1751 ciEnv ci_env((CompileTask*)nullptr); 1752 // Cache Jvmti state 1753 ci_env.cache_jvmti_state(); 1754 // Cache DTrace flags 1755 ci_env.cache_dtrace_flags(); 1756 1757 // Switch back to VM state to do compiler initialization 1758 ThreadInVMfromNative tv(thread); 1759 1760 // Perform per-thread and global initializations 1761 comp->initialize(); 1762 } 1763 1764 if (comp->is_failed()) { 1765 disable_compilation_forever(); 1766 // If compiler initialization failed, no compiler thread that is specific to a 1767 // particular compiler runtime will ever start to compile methods. 1768 shutdown_compiler_runtime(comp, thread); 1769 return false; 1770 } 1771 1772 // C1 specific check 1773 if (comp->is_c1() && (thread->get_buffer_blob() == nullptr)) { 1774 warning("Initialization of %s thread failed (no space to run compilers)", thread->name()); 1775 return false; 1776 } 1777 1778 return true; 1779 } 1780 1781 void CompileBroker::free_buffer_blob_if_allocated(CompilerThread* thread) { 1782 BufferBlob* blob = thread->get_buffer_blob(); 1783 if (blob != nullptr) { 1784 blob->purge(); 1785 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1786 CodeCache::free(blob); 1787 } 1788 } 1789 1790 /** 1791 * If C1 and/or C2 initialization failed, we shut down all compilation. 1792 * We do this to keep things simple. This can be changed if it ever turns 1793 * out to be a problem. 1794 */ 1795 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) { 1796 free_buffer_blob_if_allocated(thread); 1797 1798 if (comp->should_perform_shutdown()) { 1799 // There are two reasons for shutting down the compiler 1800 // 1) compiler runtime initialization failed 1801 // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing 1802 warning("%s initialization failed. Shutting down all compilers", comp->name()); 1803 1804 // Only one thread per compiler runtime object enters here 1805 // Set state to shut down 1806 comp->set_shut_down(); 1807 1808 // Delete all queued compilation tasks to make compiler threads exit faster. 1809 if (_c1_compile_queue != nullptr) { 1810 _c1_compile_queue->free_all(); 1811 } 1812 1813 if (_c2_compile_queue != nullptr) { 1814 _c2_compile_queue->free_all(); 1815 } 1816 1817 // Set flags so that we continue execution with using interpreter only. 1818 UseCompiler = false; 1819 UseInterpreter = true; 1820 1821 // We could delete compiler runtimes also. However, there are references to 1822 // the compiler runtime(s) (e.g., nmethod::is_compiled_by_c1()) which then 1823 // fail. This can be done later if necessary. 1824 } 1825 } 1826 1827 /** 1828 * Helper function to create new or reuse old CompileLog. 1829 */ 1830 CompileLog* CompileBroker::get_log(CompilerThread* ct) { 1831 if (!LogCompilation) return nullptr; 1832 1833 AbstractCompiler *compiler = ct->compiler(); 1834 bool c1 = compiler->is_c1(); 1835 jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects; 1836 assert(compiler_objects != nullptr, "must be initialized at this point"); 1837 CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs; 1838 assert(logs != nullptr, "must be initialized at this point"); 1839 int count = c1 ? _c1_count : _c2_count; 1840 1841 // Find Compiler number by its threadObj. 1842 oop compiler_obj = ct->threadObj(); 1843 int compiler_number = 0; 1844 bool found = false; 1845 for (; compiler_number < count; compiler_number++) { 1846 if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) { 1847 found = true; 1848 break; 1849 } 1850 } 1851 assert(found, "Compiler must exist at this point"); 1852 1853 // Determine pointer for this thread's log. 1854 CompileLog** log_ptr = &logs[compiler_number]; 1855 1856 // Return old one if it exists. 1857 CompileLog* log = *log_ptr; 1858 if (log != nullptr) { 1859 ct->init_log(log); 1860 return log; 1861 } 1862 1863 // Create a new one and remember it. 1864 init_compiler_thread_log(); 1865 log = ct->log(); 1866 *log_ptr = log; 1867 return log; 1868 } 1869 1870 // ------------------------------------------------------------------ 1871 // CompileBroker::compiler_thread_loop 1872 // 1873 // The main loop run by a CompilerThread. 1874 void CompileBroker::compiler_thread_loop() { 1875 CompilerThread* thread = CompilerThread::current(); 1876 CompileQueue* queue = thread->queue(); 1877 // For the thread that initializes the ciObjectFactory 1878 // this resource mark holds all the shared objects 1879 ResourceMark rm; 1880 1881 // First thread to get here will initialize the compiler interface 1882 1883 { 1884 ASSERT_IN_VM; 1885 MutexLocker only_one (thread, CompileThread_lock); 1886 if (!ciObjectFactory::is_initialized()) { 1887 ciObjectFactory::initialize(); 1888 } 1889 } 1890 1891 // Open a log. 1892 CompileLog* log = get_log(thread); 1893 if (log != nullptr) { 1894 log->begin_elem("start_compile_thread name='%s' thread='%zu' process='%d'", 1895 thread->name(), 1896 os::current_thread_id(), 1897 os::current_process_id()); 1898 log->stamp(); 1899 log->end_elem(); 1900 } 1901 1902 // If compiler thread/runtime initialization fails, exit the compiler thread 1903 if (!init_compiler_runtime()) { 1904 return; 1905 } 1906 1907 thread->start_idle_timer(); 1908 1909 // Poll for new compilation tasks as long as the JVM runs. Compilation 1910 // should only be disabled if something went wrong while initializing the 1911 // compiler runtimes. This, in turn, should not happen. The only known case 1912 // when compiler runtime initialization fails is if there is not enough free 1913 // space in the code cache to generate the necessary stubs, etc. 1914 while (!is_compilation_disabled_forever()) { 1915 // We need this HandleMark to avoid leaking VM handles. 1916 HandleMark hm(thread); 1917 1918 CompileTask* task = queue->get(thread); 1919 if (task == nullptr) { 1920 if (UseDynamicNumberOfCompilerThreads) { 1921 // Access compiler_count under lock to enforce consistency. 1922 MutexLocker only_one(CompileThread_lock); 1923 if (can_remove(thread, true)) { 1924 if (trace_compiler_threads()) { 1925 ResourceMark rm; 1926 stringStream msg; 1927 msg.print("Removing compiler thread %s after " JLONG_FORMAT " ms idle time", 1928 thread->name(), thread->idle_time_millis()); 1929 print_compiler_threads(msg); 1930 } 1931 1932 // Notify compiler that the compiler thread is about to stop 1933 thread->compiler()->stopping_compiler_thread(thread); 1934 1935 free_buffer_blob_if_allocated(thread); 1936 return; // Stop this thread. 1937 } 1938 } 1939 } else { 1940 // Assign the task to the current thread. Mark this compilation 1941 // thread as active for the profiler. 1942 // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition 1943 // occurs after fetching the compile task off the queue. 1944 CompileTaskWrapper ctw(task); 1945 methodHandle method(thread, task->method()); 1946 1947 // Never compile a method if breakpoints are present in it 1948 if (method()->number_of_breakpoints() == 0) { 1949 // Compile the method. 1950 if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) { 1951 invoke_compiler_on_method(task); 1952 thread->start_idle_timer(); 1953 } else { 1954 // After compilation is disabled, remove remaining methods from queue 1955 method->clear_queued_for_compilation(); 1956 task->set_failure_reason("compilation is disabled"); 1957 } 1958 } else { 1959 task->set_failure_reason("breakpoints are present"); 1960 } 1961 1962 if (UseDynamicNumberOfCompilerThreads) { 1963 possibly_add_compiler_threads(thread); 1964 assert(!thread->has_pending_exception(), "should have been handled"); 1965 } 1966 } 1967 } 1968 1969 // Shut down compiler runtime 1970 shutdown_compiler_runtime(thread->compiler(), thread); 1971 } 1972 1973 // ------------------------------------------------------------------ 1974 // CompileBroker::init_compiler_thread_log 1975 // 1976 // Set up state required by +LogCompilation. 1977 void CompileBroker::init_compiler_thread_log() { 1978 CompilerThread* thread = CompilerThread::current(); 1979 char file_name[4*K]; 1980 FILE* fp = nullptr; 1981 intx thread_id = os::current_thread_id(); 1982 for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) { 1983 const char* dir = (try_temp_dir ? os::get_temp_directory() : nullptr); 1984 if (dir == nullptr) { 1985 jio_snprintf(file_name, sizeof(file_name), "hs_c%zu_pid%u.log", 1986 thread_id, os::current_process_id()); 1987 } else { 1988 jio_snprintf(file_name, sizeof(file_name), 1989 "%s%shs_c%zu_pid%u.log", dir, 1990 os::file_separator(), thread_id, os::current_process_id()); 1991 } 1992 1993 fp = os::fopen(file_name, "wt"); 1994 if (fp != nullptr) { 1995 if (LogCompilation && Verbose) { 1996 tty->print_cr("Opening compilation log %s", file_name); 1997 } 1998 CompileLog* log = new(mtCompiler) CompileLog(file_name, fp, thread_id); 1999 if (log == nullptr) { 2000 fclose(fp); 2001 return; 2002 } 2003 thread->init_log(log); 2004 2005 if (xtty != nullptr) { 2006 ttyLocker ttyl; 2007 // Record any per thread log files 2008 xtty->elem("thread_logfile thread='%zd' filename='%s'", thread_id, file_name); 2009 } 2010 return; 2011 } 2012 } 2013 warning("Cannot open log file: %s", file_name); 2014 } 2015 2016 void CompileBroker::log_metaspace_failure() { 2017 const char* message = "some methods may not be compiled because metaspace " 2018 "is out of memory"; 2019 if (CompilationLog::log() != nullptr) { 2020 CompilationLog::log()->log_metaspace_failure(message); 2021 } 2022 if (PrintCompilation) { 2023 tty->print_cr("COMPILE PROFILING SKIPPED: %s", message); 2024 } 2025 } 2026 2027 2028 // ------------------------------------------------------------------ 2029 // CompileBroker::set_should_block 2030 // 2031 // Set _should_block. 2032 // Call this from the VM, with Threads_lock held and a safepoint requested. 2033 void CompileBroker::set_should_block() { 2034 assert(Threads_lock->owner() == Thread::current(), "must have threads lock"); 2035 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already"); 2036 #ifndef PRODUCT 2037 if (PrintCompilation && (Verbose || WizardMode)) 2038 tty->print_cr("notifying compiler thread pool to block"); 2039 #endif 2040 _should_block = true; 2041 } 2042 2043 // ------------------------------------------------------------------ 2044 // CompileBroker::maybe_block 2045 // 2046 // Call this from the compiler at convenient points, to poll for _should_block. 2047 void CompileBroker::maybe_block() { 2048 if (_should_block) { 2049 #ifndef PRODUCT 2050 if (PrintCompilation && (Verbose || WizardMode)) 2051 tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current())); 2052 #endif 2053 // If we are executing a task during the request to block, report the task 2054 // before disappearing. 2055 CompilerThread* thread = CompilerThread::current(); 2056 if (thread != nullptr) { 2057 CompileTask* task = thread->task(); 2058 if (task != nullptr) { 2059 if (PrintCompilation) { 2060 task->print(tty, "blocked"); 2061 } 2062 task->print_ul("blocked"); 2063 } 2064 } 2065 // Go to VM state and block for final VM shutdown safepoint. 2066 ThreadInVMfromNative tivfn(JavaThread::current()); 2067 assert(false, "Should never unblock from TIVNM entry"); 2068 } 2069 } 2070 2071 // wrapper for CodeCache::print_summary() 2072 static void codecache_print(bool detailed) 2073 { 2074 stringStream s; 2075 // Dump code cache into a buffer before locking the tty, 2076 { 2077 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2078 CodeCache::print_summary(&s, detailed); 2079 } 2080 ttyLocker ttyl; 2081 tty->print("%s", s.freeze()); 2082 } 2083 2084 // wrapper for CodeCache::print_summary() using outputStream 2085 static void codecache_print(outputStream* out, bool detailed) { 2086 stringStream s; 2087 2088 // Dump code cache into a buffer 2089 { 2090 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2091 CodeCache::print_summary(&s, detailed); 2092 } 2093 2094 char* remaining_log = s.as_string(); 2095 while (*remaining_log != '\0') { 2096 char* eol = strchr(remaining_log, '\n'); 2097 if (eol == nullptr) { 2098 out->print_cr("%s", remaining_log); 2099 remaining_log = remaining_log + strlen(remaining_log); 2100 } else { 2101 *eol = '\0'; 2102 out->print_cr("%s", remaining_log); 2103 remaining_log = eol + 1; 2104 } 2105 } 2106 } 2107 2108 void CompileBroker::handle_compile_error(CompilerThread* thread, CompileTask* task, ciEnv* ci_env, 2109 int compilable, const char* failure_reason) { 2110 if (!AbortVMOnCompilationFailure) { 2111 return; 2112 } 2113 if (compilable == ciEnv::MethodCompilable_not_at_tier) { 2114 fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason); 2115 } 2116 if (compilable == ciEnv::MethodCompilable_never) { 2117 fatal("Never compilable: %s", failure_reason); 2118 } 2119 } 2120 2121 static void post_compilation_event(EventCompilation& event, CompileTask* task) { 2122 assert(task != nullptr, "invariant"); 2123 CompilerEvent::CompilationEvent::post(event, 2124 task->compile_id(), 2125 task->compiler()->type(), 2126 task->method(), 2127 task->comp_level(), 2128 task->is_success(), 2129 task->osr_bci() != CompileBroker::standard_entry_bci, 2130 task->nm_total_size(), 2131 task->num_inlined_bytecodes(), 2132 task->arena_bytes()); 2133 } 2134 2135 int DirectivesStack::_depth = 0; 2136 CompilerDirectives* DirectivesStack::_top = nullptr; 2137 CompilerDirectives* DirectivesStack::_bottom = nullptr; 2138 2139 // Acquires Compilation_lock and waits for it to be notified 2140 // as long as WhiteBox::compilation_locked is true. 2141 static void whitebox_lock_compilation() { 2142 MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag); 2143 while (WhiteBox::compilation_locked) { 2144 locker.wait(); 2145 } 2146 } 2147 2148 // ------------------------------------------------------------------ 2149 // CompileBroker::invoke_compiler_on_method 2150 // 2151 // Compile a method. 2152 // 2153 void CompileBroker::invoke_compiler_on_method(CompileTask* task) { 2154 task->print_ul(); 2155 elapsedTimer time; 2156 2157 DirectiveSet* directive = task->directive(); 2158 if (directive->PrintCompilationOption) { 2159 ResourceMark rm; 2160 task->print_tty(); 2161 } 2162 2163 CompilerThread* thread = CompilerThread::current(); 2164 ResourceMark rm(thread); 2165 2166 if (CompilationLog::log() != nullptr) { 2167 CompilationLog::log()->log_compile(thread, task); 2168 } 2169 2170 // Common flags. 2171 int compile_id = task->compile_id(); 2172 int osr_bci = task->osr_bci(); 2173 bool is_osr = (osr_bci != standard_entry_bci); 2174 bool should_log = (thread->log() != nullptr); 2175 bool should_break = false; 2176 const int task_level = task->comp_level(); 2177 AbstractCompiler* comp = task->compiler(); 2178 { 2179 // create the handle inside it's own block so it can't 2180 // accidentally be referenced once the thread transitions to 2181 // native. The NoHandleMark before the transition should catch 2182 // any cases where this occurs in the future. 2183 methodHandle method(thread, task->method()); 2184 2185 assert(!method->is_native(), "no longer compile natives"); 2186 2187 // Update compile information when using perfdata. 2188 if (UsePerfData) { 2189 update_compile_perf_data(thread, method, is_osr); 2190 } 2191 2192 DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level)); 2193 } 2194 2195 should_break = directive->BreakAtCompileOption || task->check_break_at_flags(); 2196 if (should_log && !directive->LogOption) { 2197 should_log = false; 2198 } 2199 2200 // Allocate a new set of JNI handles. 2201 JNIHandleMark jhm(thread); 2202 Method* target_handle = task->method(); 2203 int compilable = ciEnv::MethodCompilable; 2204 const char* failure_reason = nullptr; 2205 bool failure_reason_on_C_heap = false; 2206 const char* retry_message = nullptr; 2207 2208 #if INCLUDE_JVMCI 2209 if (UseJVMCICompiler && comp != nullptr && comp->is_jvmci()) { 2210 JVMCICompiler* jvmci = (JVMCICompiler*) comp; 2211 2212 TraceTime t1("compilation", &time); 2213 EventCompilation event; 2214 JVMCICompileState compile_state(task, jvmci); 2215 JVMCIRuntime *runtime = nullptr; 2216 2217 if (JVMCI::in_shutdown()) { 2218 failure_reason = "in JVMCI shutdown"; 2219 retry_message = "not retryable"; 2220 compilable = ciEnv::MethodCompilable_never; 2221 } else if (compile_state.target_method_is_old()) { 2222 // Skip redefined methods 2223 failure_reason = "redefined method"; 2224 retry_message = "not retryable"; 2225 compilable = ciEnv::MethodCompilable_never; 2226 } else { 2227 JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__); 2228 if (env.init_error() != JNI_OK) { 2229 const char* msg = env.init_error_msg(); 2230 failure_reason = os::strdup(err_msg("Error attaching to libjvmci (err: %d, %s)", 2231 env.init_error(), msg == nullptr ? "unknown" : msg), mtJVMCI); 2232 bool reason_on_C_heap = true; 2233 // In case of JNI_ENOMEM, there's a good chance a subsequent attempt to create libjvmci or attach to it 2234 // might succeed. Other errors most likely indicate a non-recoverable error in the JVMCI runtime. 2235 bool retryable = env.init_error() == JNI_ENOMEM; 2236 compile_state.set_failure(retryable, failure_reason, reason_on_C_heap); 2237 } 2238 if (failure_reason == nullptr) { 2239 if (WhiteBoxAPI && WhiteBox::compilation_locked) { 2240 // Must switch to native to block 2241 ThreadToNativeFromVM ttn(thread); 2242 whitebox_lock_compilation(); 2243 } 2244 methodHandle method(thread, target_handle); 2245 runtime = env.runtime(); 2246 runtime->compile_method(&env, jvmci, method, osr_bci); 2247 2248 failure_reason = compile_state.failure_reason(); 2249 failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap(); 2250 if (!compile_state.retryable()) { 2251 retry_message = "not retryable"; 2252 compilable = ciEnv::MethodCompilable_not_at_tier; 2253 } 2254 if (!task->is_success()) { 2255 assert(failure_reason != nullptr, "must specify failure_reason"); 2256 } 2257 } 2258 } 2259 if (!task->is_success() && !JVMCI::in_shutdown()) { 2260 handle_compile_error(thread, task, nullptr, compilable, failure_reason); 2261 } 2262 if (event.should_commit()) { 2263 post_compilation_event(event, task); 2264 } 2265 2266 if (runtime != nullptr) { 2267 runtime->post_compile(thread); 2268 } 2269 } else 2270 #endif // INCLUDE_JVMCI 2271 { 2272 NoHandleMark nhm; 2273 ThreadToNativeFromVM ttn(thread); 2274 2275 ciEnv ci_env(task); 2276 if (should_break) { 2277 ci_env.set_break_at_compile(true); 2278 } 2279 if (should_log) { 2280 ci_env.set_log(thread->log()); 2281 } 2282 assert(thread->env() == &ci_env, "set by ci_env"); 2283 // The thread-env() field is cleared in ~CompileTaskWrapper. 2284 2285 // Cache Jvmti state 2286 bool method_is_old = ci_env.cache_jvmti_state(); 2287 2288 // Skip redefined methods 2289 if (method_is_old) { 2290 ci_env.record_method_not_compilable("redefined method", true); 2291 } 2292 2293 // Cache DTrace flags 2294 ci_env.cache_dtrace_flags(); 2295 2296 ciMethod* target = ci_env.get_method_from_handle(target_handle); 2297 2298 TraceTime t1("compilation", &time); 2299 EventCompilation event; 2300 2301 if (comp == nullptr) { 2302 ci_env.record_method_not_compilable("no compiler"); 2303 } else if (!ci_env.failing()) { 2304 if (WhiteBoxAPI && WhiteBox::compilation_locked) { 2305 whitebox_lock_compilation(); 2306 } 2307 comp->compile_method(&ci_env, target, osr_bci, true, directive); 2308 2309 /* Repeat compilation without installing code for profiling purposes */ 2310 int repeat_compilation_count = directive->RepeatCompilationOption; 2311 while (repeat_compilation_count > 0) { 2312 ResourceMark rm(thread); 2313 task->print_ul("NO CODE INSTALLED"); 2314 comp->compile_method(&ci_env, target, osr_bci, false, directive); 2315 repeat_compilation_count--; 2316 } 2317 } 2318 2319 2320 if (!ci_env.failing() && !task->is_success()) { 2321 assert(ci_env.failure_reason() != nullptr, "expect failure reason"); 2322 assert(false, "compiler should always document failure: %s", ci_env.failure_reason()); 2323 // The compiler elected, without comment, not to register a result. 2324 // Do not attempt further compilations of this method. 2325 ci_env.record_method_not_compilable("compile failed"); 2326 } 2327 2328 // Copy this bit to the enclosing block: 2329 compilable = ci_env.compilable(); 2330 2331 if (ci_env.failing()) { 2332 // Duplicate the failure reason string, so that it outlives ciEnv 2333 failure_reason = os::strdup(ci_env.failure_reason(), mtCompiler); 2334 failure_reason_on_C_heap = true; 2335 retry_message = ci_env.retry_message(); 2336 ci_env.report_failure(failure_reason); 2337 } 2338 2339 if (ci_env.failing()) { 2340 handle_compile_error(thread, task, &ci_env, compilable, failure_reason); 2341 } 2342 if (event.should_commit()) { 2343 post_compilation_event(event, task); 2344 } 2345 } 2346 2347 if (failure_reason != nullptr) { 2348 task->set_failure_reason(failure_reason, failure_reason_on_C_heap); 2349 if (CompilationLog::log() != nullptr) { 2350 CompilationLog::log()->log_failure(thread, task, failure_reason, retry_message); 2351 } 2352 if (PrintCompilation || directive->PrintCompilationOption) { 2353 FormatBufferResource msg = retry_message != nullptr ? 2354 FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) : 2355 FormatBufferResource("COMPILE SKIPPED: %s", failure_reason); 2356 task->print(tty, msg); 2357 } 2358 } 2359 2360 DirectivesStack::release(directive); 2361 2362 methodHandle method(thread, task->method()); 2363 2364 DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success()); 2365 2366 collect_statistics(thread, time, task); 2367 2368 if (PrintCompilation && PrintCompilation2) { 2369 tty->print("%7d ", (int) tty->time_stamp().milliseconds()); // print timestamp 2370 tty->print("%4d ", compile_id); // print compilation number 2371 tty->print("%s ", (is_osr ? "%" : " ")); 2372 if (task->is_success()) { 2373 tty->print("size: %d(%d) ", task->nm_total_size(), task->nm_insts_size()); 2374 } 2375 tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes()); 2376 } 2377 2378 Log(compilation, codecache) log; 2379 if (log.is_debug()) { 2380 LogStream ls(log.debug()); 2381 codecache_print(&ls, /* detailed= */ false); 2382 } 2383 if (PrintCodeCacheOnCompilation) { 2384 codecache_print(/* detailed= */ false); 2385 } 2386 // Disable compilation, if required. 2387 switch (compilable) { 2388 case ciEnv::MethodCompilable_never: 2389 if (is_osr) 2390 method->set_not_osr_compilable_quietly("MethodCompilable_never"); 2391 else 2392 method->set_not_compilable_quietly("MethodCompilable_never"); 2393 break; 2394 case ciEnv::MethodCompilable_not_at_tier: 2395 if (is_osr) 2396 method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level); 2397 else 2398 method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level); 2399 break; 2400 } 2401 2402 // Note that the queued_for_compilation bits are cleared without 2403 // protection of a mutex. [They were set by the requester thread, 2404 // when adding the task to the compile queue -- at which time the 2405 // compile queue lock was held. Subsequently, we acquired the compile 2406 // queue lock to get this task off the compile queue; thus (to belabour 2407 // the point somewhat) our clearing of the bits must be occurring 2408 // only after the setting of the bits. See also 14012000 above. 2409 method->clear_queued_for_compilation(); 2410 } 2411 2412 /** 2413 * The CodeCache is full. Print warning and disable compilation. 2414 * Schedule code cache cleaning so compilation can continue later. 2415 * This function needs to be called only from CodeCache::allocate(), 2416 * since we currently handle a full code cache uniformly. 2417 */ 2418 void CompileBroker::handle_full_code_cache(CodeBlobType code_blob_type) { 2419 UseInterpreter = true; 2420 if (UseCompiler || AlwaysCompileLoopMethods ) { 2421 if (xtty != nullptr) { 2422 stringStream s; 2423 // Dump code cache state into a buffer before locking the tty, 2424 // because log_state() will use locks causing lock conflicts. 2425 CodeCache::log_state(&s); 2426 // Lock to prevent tearing 2427 ttyLocker ttyl; 2428 xtty->begin_elem("code_cache_full"); 2429 xtty->print("%s", s.freeze()); 2430 xtty->stamp(); 2431 xtty->end_elem(); 2432 } 2433 2434 #ifndef PRODUCT 2435 if (ExitOnFullCodeCache) { 2436 codecache_print(/* detailed= */ true); 2437 before_exit(JavaThread::current()); 2438 exit_globals(); // will delete tty 2439 vm_direct_exit(1); 2440 } 2441 #endif 2442 if (UseCodeCacheFlushing) { 2443 // Since code cache is full, immediately stop new compiles 2444 if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) { 2445 log_info(codecache)("Code cache is full - disabling compilation"); 2446 } 2447 } else { 2448 disable_compilation_forever(); 2449 } 2450 2451 CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning()); 2452 } 2453 } 2454 2455 // ------------------------------------------------------------------ 2456 // CompileBroker::update_compile_perf_data 2457 // 2458 // Record this compilation for debugging purposes. 2459 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) { 2460 ResourceMark rm; 2461 char* method_name = method->name()->as_C_string(); 2462 char current_method[CompilerCounters::cmname_buffer_length]; 2463 size_t maxLen = CompilerCounters::cmname_buffer_length; 2464 2465 const char* class_name = method->method_holder()->name()->as_C_string(); 2466 2467 size_t s1len = strlen(class_name); 2468 size_t s2len = strlen(method_name); 2469 2470 // check if we need to truncate the string 2471 if (s1len + s2len + 2 > maxLen) { 2472 2473 // the strategy is to lop off the leading characters of the 2474 // class name and the trailing characters of the method name. 2475 2476 if (s2len + 2 > maxLen) { 2477 // lop of the entire class name string, let snprintf handle 2478 // truncation of the method name. 2479 class_name += s1len; // null string 2480 } 2481 else { 2482 // lop off the extra characters from the front of the class name 2483 class_name += ((s1len + s2len + 2) - maxLen); 2484 } 2485 } 2486 2487 jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name); 2488 2489 int last_compile_type = normal_compile; 2490 if (CICountOSR && is_osr) { 2491 last_compile_type = osr_compile; 2492 } else if (CICountNative && method->is_native()) { 2493 last_compile_type = native_compile; 2494 } 2495 2496 CompilerCounters* counters = thread->counters(); 2497 counters->set_current_method(current_method); 2498 counters->set_compile_type((jlong) last_compile_type); 2499 } 2500 2501 // ------------------------------------------------------------------ 2502 // CompileBroker::collect_statistics 2503 // 2504 // Collect statistics about the compilation. 2505 2506 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) { 2507 bool success = task->is_success(); 2508 methodHandle method (thread, task->method()); 2509 int compile_id = task->compile_id(); 2510 bool is_osr = (task->osr_bci() != standard_entry_bci); 2511 const int comp_level = task->comp_level(); 2512 CompilerCounters* counters = thread->counters(); 2513 2514 MutexLocker locker(CompileStatistics_lock); 2515 2516 // _perf variables are production performance counters which are 2517 // updated regardless of the setting of the CITime and CITimeEach flags 2518 // 2519 2520 // account all time, including bailouts and failures in this counter; 2521 // C1 and C2 counters are counting both successful and unsuccessful compiles 2522 _t_total_compilation.add(time); 2523 2524 // Update compilation times. Used by the implementation of JFR CompilerStatistics 2525 // and java.lang.management.CompilationMXBean. 2526 _perf_total_compilation->inc(time.ticks()); 2527 _peak_compilation_time = MAX2(time.milliseconds(), _peak_compilation_time); 2528 2529 if (!success) { 2530 _total_bailout_count++; 2531 if (UsePerfData) { 2532 _perf_last_failed_method->set_value(counters->current_method()); 2533 _perf_last_failed_type->set_value(counters->compile_type()); 2534 _perf_total_bailout_count->inc(); 2535 } 2536 _t_bailedout_compilation.add(time); 2537 } else if (!task->is_success()) { 2538 if (UsePerfData) { 2539 _perf_last_invalidated_method->set_value(counters->current_method()); 2540 _perf_last_invalidated_type->set_value(counters->compile_type()); 2541 _perf_total_invalidated_count->inc(); 2542 } 2543 _total_invalidated_count++; 2544 _t_invalidated_compilation.add(time); 2545 } else { 2546 // Compilation succeeded 2547 if (CITime) { 2548 int bytes_compiled = method->code_size() + task->num_inlined_bytecodes(); 2549 if (is_osr) { 2550 _t_osr_compilation.add(time); 2551 _sum_osr_bytes_compiled += bytes_compiled; 2552 } else { 2553 _t_standard_compilation.add(time); 2554 _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes(); 2555 } 2556 2557 // Collect statistic per compilation level 2558 if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) { 2559 CompilerStatistics* stats = &_stats_per_level[comp_level-1]; 2560 if (is_osr) { 2561 stats->_osr.update(time, bytes_compiled); 2562 } else { 2563 stats->_standard.update(time, bytes_compiled); 2564 } 2565 stats->_nmethods_size += task->nm_total_size(); 2566 stats->_nmethods_code_size += task->nm_insts_size(); 2567 } else { 2568 assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level); 2569 } 2570 2571 // Collect statistic per compiler 2572 AbstractCompiler* comp = compiler(comp_level); 2573 if (comp) { 2574 CompilerStatistics* stats = comp->stats(); 2575 if (is_osr) { 2576 stats->_osr.update(time, bytes_compiled); 2577 } else { 2578 stats->_standard.update(time, bytes_compiled); 2579 } 2580 stats->_nmethods_size += task->nm_total_size(); 2581 stats->_nmethods_code_size += task->nm_insts_size(); 2582 } else { // if (!comp) 2583 assert(false, "Compiler object must exist"); 2584 } 2585 } 2586 2587 if (UsePerfData) { 2588 // save the name of the last method compiled 2589 _perf_last_method->set_value(counters->current_method()); 2590 _perf_last_compile_type->set_value(counters->compile_type()); 2591 _perf_last_compile_size->set_value(method->code_size() + 2592 task->num_inlined_bytecodes()); 2593 if (is_osr) { 2594 _perf_osr_compilation->inc(time.ticks()); 2595 _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); 2596 } else { 2597 _perf_standard_compilation->inc(time.ticks()); 2598 _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); 2599 } 2600 } 2601 2602 if (CITimeEach) { 2603 double compile_time = time.seconds(); 2604 double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time; 2605 tty->print_cr("%3d seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)", 2606 compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes()); 2607 } 2608 2609 // Collect counts of successful compilations 2610 _sum_nmethod_size += task->nm_total_size(); 2611 _sum_nmethod_code_size += task->nm_insts_size(); 2612 _total_compile_count++; 2613 2614 if (UsePerfData) { 2615 _perf_sum_nmethod_size->inc( task->nm_total_size()); 2616 _perf_sum_nmethod_code_size->inc(task->nm_insts_size()); 2617 _perf_total_compile_count->inc(); 2618 } 2619 2620 if (is_osr) { 2621 if (UsePerfData) _perf_total_osr_compile_count->inc(); 2622 _total_osr_compile_count++; 2623 } else { 2624 if (UsePerfData) _perf_total_standard_compile_count->inc(); 2625 _total_standard_compile_count++; 2626 } 2627 } 2628 // set the current method for the thread to null 2629 if (UsePerfData) counters->set_current_method(""); 2630 } 2631 2632 const char* CompileBroker::compiler_name(int comp_level) { 2633 AbstractCompiler *comp = CompileBroker::compiler(comp_level); 2634 if (comp == nullptr) { 2635 return "no compiler"; 2636 } else { 2637 return (comp->name()); 2638 } 2639 } 2640 2641 jlong CompileBroker::total_compilation_ticks() { 2642 return _perf_total_compilation != nullptr ? _perf_total_compilation->get_value() : 0; 2643 } 2644 2645 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) { 2646 tty->print_cr(" %s {speed: %6.3f bytes/s; standard: %6.3f s, %u bytes, %u methods; osr: %6.3f s, %u bytes, %u methods; nmethods_size: %u bytes; nmethods_code_size: %u bytes}", 2647 name, stats->bytes_per_second(), 2648 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count, 2649 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count, 2650 stats->_nmethods_size, stats->_nmethods_code_size); 2651 } 2652 2653 void CompileBroker::print_times(bool per_compiler, bool aggregate) { 2654 if (per_compiler) { 2655 if (aggregate) { 2656 tty->cr(); 2657 tty->print_cr("Individual compiler times (for compiled methods only)"); 2658 tty->print_cr("------------------------------------------------"); 2659 tty->cr(); 2660 } 2661 for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) { 2662 AbstractCompiler* comp = _compilers[i]; 2663 if (comp != nullptr) { 2664 print_times(comp->name(), comp->stats()); 2665 } 2666 } 2667 if (aggregate) { 2668 tty->cr(); 2669 tty->print_cr("Individual compilation Tier times (for compiled methods only)"); 2670 tty->print_cr("------------------------------------------------"); 2671 tty->cr(); 2672 } 2673 char tier_name[256]; 2674 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) { 2675 CompilerStatistics* stats = &_stats_per_level[tier-1]; 2676 os::snprintf_checked(tier_name, sizeof(tier_name), "Tier%d", tier); 2677 print_times(tier_name, stats); 2678 } 2679 } 2680 2681 if (!aggregate) { 2682 return; 2683 } 2684 2685 elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation; 2686 elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation; 2687 elapsedTimer total_compilation = CompileBroker::_t_total_compilation; 2688 2689 uint standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled; 2690 uint osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled; 2691 2692 uint standard_compile_count = CompileBroker::_total_standard_compile_count; 2693 uint osr_compile_count = CompileBroker::_total_osr_compile_count; 2694 uint total_compile_count = CompileBroker::_total_compile_count; 2695 uint total_bailout_count = CompileBroker::_total_bailout_count; 2696 uint total_invalidated_count = CompileBroker::_total_invalidated_count; 2697 2698 uint nmethods_code_size = CompileBroker::_sum_nmethod_code_size; 2699 uint nmethods_size = CompileBroker::_sum_nmethod_size; 2700 2701 tty->cr(); 2702 tty->print_cr("Accumulated compiler times"); 2703 tty->print_cr("----------------------------------------------------------"); 2704 //0000000000111111111122222222223333333333444444444455555555556666666666 2705 //0123456789012345678901234567890123456789012345678901234567890123456789 2706 tty->print_cr(" Total compilation time : %7.3f s", total_compilation.seconds()); 2707 tty->print_cr(" Standard compilation : %7.3f s, Average : %2.3f s", 2708 standard_compilation.seconds(), 2709 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count); 2710 tty->print_cr(" Bailed out compilation : %7.3f s, Average : %2.3f s", 2711 CompileBroker::_t_bailedout_compilation.seconds(), 2712 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count); 2713 tty->print_cr(" On stack replacement : %7.3f s, Average : %2.3f s", 2714 osr_compilation.seconds(), 2715 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count); 2716 tty->print_cr(" Invalidated : %7.3f s, Average : %2.3f s", 2717 CompileBroker::_t_invalidated_compilation.seconds(), 2718 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count); 2719 2720 AbstractCompiler *comp = compiler(CompLevel_simple); 2721 if (comp != nullptr) { 2722 tty->cr(); 2723 comp->print_timers(); 2724 } 2725 comp = compiler(CompLevel_full_optimization); 2726 if (comp != nullptr) { 2727 tty->cr(); 2728 comp->print_timers(); 2729 } 2730 #if INCLUDE_JVMCI 2731 if (EnableJVMCI) { 2732 JVMCICompiler *jvmci_comp = JVMCICompiler::instance(false, JavaThread::current_or_null()); 2733 if (jvmci_comp != nullptr && jvmci_comp != comp) { 2734 tty->cr(); 2735 jvmci_comp->print_timers(); 2736 } 2737 } 2738 #endif 2739 2740 tty->cr(); 2741 tty->print_cr(" Total compiled methods : %8u methods", total_compile_count); 2742 tty->print_cr(" Standard compilation : %8u methods", standard_compile_count); 2743 tty->print_cr(" On stack replacement : %8u methods", osr_compile_count); 2744 uint tcb = osr_bytes_compiled + standard_bytes_compiled; 2745 tty->print_cr(" Total compiled bytecodes : %8u bytes", tcb); 2746 tty->print_cr(" Standard compilation : %8u bytes", standard_bytes_compiled); 2747 tty->print_cr(" On stack replacement : %8u bytes", osr_bytes_compiled); 2748 double tcs = total_compilation.seconds(); 2749 uint bps = tcs == 0.0 ? 0 : (uint)(tcb / tcs); 2750 tty->print_cr(" Average compilation speed : %8u bytes/s", bps); 2751 tty->cr(); 2752 tty->print_cr(" nmethod code size : %8u bytes", nmethods_code_size); 2753 tty->print_cr(" nmethod total size : %8u bytes", nmethods_size); 2754 } 2755 2756 // Print general/accumulated JIT information. 2757 void CompileBroker::print_info(outputStream *out) { 2758 if (out == nullptr) out = tty; 2759 out->cr(); 2760 out->print_cr("======================"); 2761 out->print_cr(" General JIT info "); 2762 out->print_cr("======================"); 2763 out->cr(); 2764 out->print_cr(" JIT is : %7s", should_compile_new_jobs() ? "on" : "off"); 2765 out->print_cr(" Compiler threads : %7d", (int)CICompilerCount); 2766 out->cr(); 2767 out->print_cr("CodeCache overview"); 2768 out->print_cr("--------------------------------------------------------"); 2769 out->cr(); 2770 out->print_cr(" Reserved size : %7zu KB", CodeCache::max_capacity() / K); 2771 out->print_cr(" Committed size : %7zu KB", CodeCache::capacity() / K); 2772 out->print_cr(" Unallocated capacity : %7zu KB", CodeCache::unallocated_capacity() / K); 2773 out->cr(); 2774 } 2775 2776 // Note: tty_lock must not be held upon entry to this function. 2777 // Print functions called from herein do "micro-locking" on tty_lock. 2778 // That's a tradeoff which keeps together important blocks of output. 2779 // At the same time, continuous tty_lock hold time is kept in check, 2780 // preventing concurrently printing threads from stalling a long time. 2781 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) { 2782 TimeStamp ts_total; 2783 TimeStamp ts_global; 2784 TimeStamp ts; 2785 2786 bool allFun = !strcmp(function, "all"); 2787 bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun; 2788 bool usedSpace = !strcmp(function, "UsedSpace") || allFun; 2789 bool freeSpace = !strcmp(function, "FreeSpace") || allFun; 2790 bool methodCount = !strcmp(function, "MethodCount") || allFun; 2791 bool methodSpace = !strcmp(function, "MethodSpace") || allFun; 2792 bool methodAge = !strcmp(function, "MethodAge") || allFun; 2793 bool methodNames = !strcmp(function, "MethodNames") || allFun; 2794 bool discard = !strcmp(function, "discard") || allFun; 2795 2796 if (out == nullptr) { 2797 out = tty; 2798 } 2799 2800 if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) { 2801 out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function); 2802 out->cr(); 2803 return; 2804 } 2805 2806 ts_total.update(); // record starting point 2807 2808 if (aggregate) { 2809 print_info(out); 2810 } 2811 2812 // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function. 2813 // That prevents other threads from destroying (making inconsistent) our view on the CodeHeap. 2814 // When we request individual parts of the analysis via the jcmd interface, it is possible 2815 // that in between another thread (another jcmd user or the vm running into CodeCache OOM) 2816 // updated the aggregated data. We will then see a modified, but again consistent, view 2817 // on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold 2818 // a lock across user interaction. 2819 2820 // We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock. 2821 // CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time, 2822 // leading to an unnecessarily long hold time of the other locks we acquired before. 2823 ts.update(); // record starting point 2824 MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag); 2825 out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds()); 2826 2827 // Holding the CodeCache_lock protects from concurrent alterations of the CodeCache. 2828 // Unfortunately, such protection is not sufficient: 2829 // When a new nmethod is created via ciEnv::register_method(), the 2830 // Compile_lock is taken first. After some initializations, 2831 // nmethod::new_nmethod() takes over, grabbing the CodeCache_lock 2832 // immediately (after finalizing the oop references). To lock out concurrent 2833 // modifiers, we have to grab both locks as well in the described sequence. 2834 // 2835 // If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock 2836 // for the entire duration of aggregation and printing. That makes sure we see 2837 // a consistent picture and do not run into issues caused by concurrent alterations. 2838 bool should_take_Compile_lock = !SafepointSynchronize::is_at_safepoint() && 2839 !Compile_lock->owned_by_self(); 2840 bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() && 2841 !CodeCache_lock->owned_by_self(); 2842 bool take_global_lock_1 = allFun && should_take_Compile_lock; 2843 bool take_global_lock_2 = allFun && should_take_CodeCache_lock; 2844 bool take_function_lock_1 = !allFun && should_take_Compile_lock; 2845 bool take_function_lock_2 = !allFun && should_take_CodeCache_lock; 2846 bool take_global_locks = take_global_lock_1 || take_global_lock_2; 2847 bool take_function_locks = take_function_lock_1 || take_function_lock_2; 2848 2849 ts_global.update(); // record starting point 2850 2851 ConditionalMutexLocker mu1(Compile_lock, take_global_lock_1, Mutex::_safepoint_check_flag); 2852 ConditionalMutexLocker mu2(CodeCache_lock, take_global_lock_2, Mutex::_no_safepoint_check_flag); 2853 if (take_global_locks) { 2854 out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds()); 2855 ts_global.update(); // record starting point 2856 } 2857 2858 if (aggregate) { 2859 ts.update(); // record starting point 2860 ConditionalMutexLocker mu11(Compile_lock, take_function_lock_1, Mutex::_safepoint_check_flag); 2861 ConditionalMutexLocker mu22(CodeCache_lock, take_function_lock_2, Mutex::_no_safepoint_check_flag); 2862 if (take_function_locks) { 2863 out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds()); 2864 } 2865 2866 ts.update(); // record starting point 2867 CodeCache::aggregate(out, granularity); 2868 if (take_function_locks) { 2869 out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds()); 2870 } 2871 } 2872 2873 if (usedSpace) CodeCache::print_usedSpace(out); 2874 if (freeSpace) CodeCache::print_freeSpace(out); 2875 if (methodCount) CodeCache::print_count(out); 2876 if (methodSpace) CodeCache::print_space(out); 2877 if (methodAge) CodeCache::print_age(out); 2878 if (methodNames) { 2879 if (allFun) { 2880 // print_names() can only be used safely if the locks have been continuously held 2881 // since aggregation begin. That is true only for function "all". 2882 CodeCache::print_names(out); 2883 } else { 2884 out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'"); 2885 } 2886 } 2887 if (discard) CodeCache::discard(out); 2888 2889 if (take_global_locks) { 2890 out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds()); 2891 } 2892 out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds()); 2893 }