1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/cdsConfig.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/symbolTable.hpp" 28 #include "classfile/vmClasses.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/codeHeapState.hpp" 32 #include "code/dependencyContext.hpp" 33 #include "compiler/compilationLog.hpp" 34 #include "compiler/compilationMemoryStatistic.hpp" 35 #include "compiler/compilationPolicy.hpp" 36 #include "compiler/compileBroker.hpp" 37 #include "compiler/compileLog.hpp" 38 #include "compiler/compilerEvent.hpp" 39 #include "compiler/compilerOracle.hpp" 40 #include "compiler/directivesParser.hpp" 41 #include "gc/shared/memAllocator.hpp" 42 #include "interpreter/linkResolver.hpp" 43 #include "jfr/jfrEvents.hpp" 44 #include "jvm.h" 45 #include "logging/log.hpp" 46 #include "logging/logStream.hpp" 47 #include "memory/allocation.inline.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "oops/method.inline.hpp" 51 #include "oops/methodData.hpp" 52 #include "oops/oop.inline.hpp" 53 #include "prims/jvmtiExport.hpp" 54 #include "prims/nativeLookup.hpp" 55 #include "prims/whitebox.hpp" 56 #include "runtime/atomic.hpp" 57 #include "runtime/escapeBarrier.hpp" 58 #include "runtime/globals_extension.hpp" 59 #include "runtime/handles.inline.hpp" 60 #include "runtime/init.hpp" 61 #include "runtime/interfaceSupport.inline.hpp" 62 #include "runtime/java.hpp" 63 #include "runtime/javaCalls.hpp" 64 #include "runtime/jniHandles.inline.hpp" 65 #include "runtime/os.hpp" 66 #include "runtime/perfData.hpp" 67 #include "runtime/safepointVerifiers.hpp" 68 #include "runtime/sharedRuntime.hpp" 69 #include "runtime/threads.hpp" 70 #include "runtime/threadSMR.hpp" 71 #include "runtime/timerTrace.hpp" 72 #include "runtime/vframe.inline.hpp" 73 #include "utilities/debug.hpp" 74 #include "utilities/dtrace.hpp" 75 #include "utilities/events.hpp" 76 #include "utilities/formatBuffer.hpp" 77 #include "utilities/macros.hpp" 78 #ifdef COMPILER1 79 #include "c1/c1_Compiler.hpp" 80 #endif 81 #ifdef COMPILER2 82 #include "opto/c2compiler.hpp" 83 #endif 84 #if INCLUDE_JVMCI 85 #include "jvmci/jvmciEnv.hpp" 86 #include "jvmci/jvmciRuntime.hpp" 87 #endif 88 89 #ifdef DTRACE_ENABLED 90 91 // Only bother with this argument setup if dtrace is available 92 93 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) \ 94 { \ 95 Symbol* klass_name = (method)->klass_name(); \ 96 Symbol* name = (method)->name(); \ 97 Symbol* signature = (method)->signature(); \ 98 HOTSPOT_METHOD_COMPILE_BEGIN( \ 99 (char *) comp_name, strlen(comp_name), \ 100 (char *) klass_name->bytes(), klass_name->utf8_length(), \ 101 (char *) name->bytes(), name->utf8_length(), \ 102 (char *) signature->bytes(), signature->utf8_length()); \ 103 } 104 105 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) \ 106 { \ 107 Symbol* klass_name = (method)->klass_name(); \ 108 Symbol* name = (method)->name(); \ 109 Symbol* signature = (method)->signature(); \ 110 HOTSPOT_METHOD_COMPILE_END( \ 111 (char *) comp_name, strlen(comp_name), \ 112 (char *) klass_name->bytes(), klass_name->utf8_length(), \ 113 (char *) name->bytes(), name->utf8_length(), \ 114 (char *) signature->bytes(), signature->utf8_length(), (success)); \ 115 } 116 117 #else // ndef DTRACE_ENABLED 118 119 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) 120 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) 121 122 #endif // ndef DTRACE_ENABLED 123 124 bool CompileBroker::_initialized = false; 125 volatile bool CompileBroker::_should_block = false; 126 volatile int CompileBroker::_print_compilation_warning = 0; 127 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation; 128 129 // The installed compiler(s) 130 AbstractCompiler* CompileBroker::_compilers[2]; 131 132 // The maximum numbers of compiler threads to be determined during startup. 133 int CompileBroker::_c1_count = 0; 134 int CompileBroker::_c2_count = 0; 135 136 // An array of compiler names as Java String objects 137 jobject* CompileBroker::_compiler1_objects = nullptr; 138 jobject* CompileBroker::_compiler2_objects = nullptr; 139 140 CompileLog** CompileBroker::_compiler1_logs = nullptr; 141 CompileLog** CompileBroker::_compiler2_logs = nullptr; 142 143 // These counters are used to assign an unique ID to each compilation. 144 volatile jint CompileBroker::_compilation_id = 0; 145 volatile jint CompileBroker::_osr_compilation_id = 0; 146 volatile jint CompileBroker::_native_compilation_id = 0; 147 148 // Performance counters 149 PerfCounter* CompileBroker::_perf_total_compilation = nullptr; 150 PerfCounter* CompileBroker::_perf_osr_compilation = nullptr; 151 PerfCounter* CompileBroker::_perf_standard_compilation = nullptr; 152 153 PerfCounter* CompileBroker::_perf_total_bailout_count = nullptr; 154 PerfCounter* CompileBroker::_perf_total_invalidated_count = nullptr; 155 PerfCounter* CompileBroker::_perf_total_compile_count = nullptr; 156 PerfCounter* CompileBroker::_perf_total_osr_compile_count = nullptr; 157 PerfCounter* CompileBroker::_perf_total_standard_compile_count = nullptr; 158 159 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = nullptr; 160 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = nullptr; 161 PerfCounter* CompileBroker::_perf_sum_nmethod_size = nullptr; 162 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = nullptr; 163 164 PerfStringVariable* CompileBroker::_perf_last_method = nullptr; 165 PerfStringVariable* CompileBroker::_perf_last_failed_method = nullptr; 166 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = nullptr; 167 PerfVariable* CompileBroker::_perf_last_compile_type = nullptr; 168 PerfVariable* CompileBroker::_perf_last_compile_size = nullptr; 169 PerfVariable* CompileBroker::_perf_last_failed_type = nullptr; 170 PerfVariable* CompileBroker::_perf_last_invalidated_type = nullptr; 171 172 // Timers and counters for generating statistics 173 elapsedTimer CompileBroker::_t_total_compilation; 174 elapsedTimer CompileBroker::_t_osr_compilation; 175 elapsedTimer CompileBroker::_t_standard_compilation; 176 elapsedTimer CompileBroker::_t_invalidated_compilation; 177 elapsedTimer CompileBroker::_t_bailedout_compilation; 178 179 uint CompileBroker::_total_bailout_count = 0; 180 uint CompileBroker::_total_invalidated_count = 0; 181 uint CompileBroker::_total_compile_count = 0; 182 uint CompileBroker::_total_osr_compile_count = 0; 183 uint CompileBroker::_total_standard_compile_count = 0; 184 uint CompileBroker::_total_compiler_stopped_count = 0; 185 uint CompileBroker::_total_compiler_restarted_count = 0; 186 187 uint CompileBroker::_sum_osr_bytes_compiled = 0; 188 uint CompileBroker::_sum_standard_bytes_compiled = 0; 189 uint CompileBroker::_sum_nmethod_size = 0; 190 uint CompileBroker::_sum_nmethod_code_size = 0; 191 192 jlong CompileBroker::_peak_compilation_time = 0; 193 194 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization]; 195 196 CompileQueue* CompileBroker::_c2_compile_queue = nullptr; 197 CompileQueue* CompileBroker::_c1_compile_queue = nullptr; 198 199 bool compileBroker_init() { 200 if (LogEvents) { 201 CompilationLog::init(); 202 } 203 204 // init directives stack, adding default directive 205 DirectivesStack::init(); 206 207 if (DirectivesParser::has_file()) { 208 return DirectivesParser::parse_from_flag(); 209 } else if (CompilerDirectivesPrint) { 210 // Print default directive even when no other was added 211 DirectivesStack::print(tty); 212 } 213 214 return true; 215 } 216 217 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) { 218 CompilerThread* thread = CompilerThread::current(); 219 thread->set_task(task); 220 CompileLog* log = thread->log(); 221 if (log != nullptr && !task->is_unloaded()) task->log_task_start(log); 222 } 223 224 CompileTaskWrapper::~CompileTaskWrapper() { 225 CompilerThread* thread = CompilerThread::current(); 226 CompileTask* task = thread->task(); 227 CompileLog* log = thread->log(); 228 if (log != nullptr && !task->is_unloaded()) task->log_task_done(log); 229 thread->set_task(nullptr); 230 thread->set_env(nullptr); 231 if (task->is_blocking()) { 232 bool free_task = false; 233 { 234 MutexLocker notifier(thread, CompileTaskWait_lock); 235 task->mark_complete(); 236 #if INCLUDE_JVMCI 237 if (CompileBroker::compiler(task->comp_level())->is_jvmci()) { 238 if (!task->has_waiter()) { 239 // The waiting thread timed out and thus did not delete the task. 240 free_task = true; 241 } 242 task->set_blocking_jvmci_compile_state(nullptr); 243 } 244 #endif 245 if (!free_task) { 246 // Notify the waiting thread that the compilation has completed 247 // so that it can free the task. 248 CompileTaskWait_lock->notify_all(); 249 } 250 } 251 if (free_task) { 252 // The task can only be deleted once the task lock is released. 253 delete task; 254 } 255 } else { 256 task->mark_complete(); 257 258 // By convention, the compiling thread is responsible for deleting 259 // a non-blocking CompileTask. 260 delete task; 261 } 262 } 263 264 /** 265 * Check if a CompilerThread can be removed and update count if requested. 266 */ 267 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) { 268 assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here"); 269 if (!ReduceNumberOfCompilerThreads) return false; 270 271 AbstractCompiler *compiler = ct->compiler(); 272 int compiler_count = compiler->num_compiler_threads(); 273 bool c1 = compiler->is_c1(); 274 275 // Keep at least 1 compiler thread of each type. 276 if (compiler_count < 2) return false; 277 278 // Keep thread alive for at least some time. 279 if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false; 280 281 #if INCLUDE_JVMCI 282 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) { 283 // Handles for JVMCI thread objects may get released concurrently. 284 if (do_it) { 285 assert(CompileThread_lock->owner() == ct, "must be holding lock"); 286 } else { 287 // Skip check if it's the last thread and let caller check again. 288 return true; 289 } 290 } 291 #endif 292 293 // We only allow the last compiler thread of each type to get removed. 294 jobject last_compiler = c1 ? compiler1_object(compiler_count - 1) 295 : compiler2_object(compiler_count - 1); 296 if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) { 297 if (do_it) { 298 assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent. 299 compiler->set_num_compiler_threads(compiler_count - 1); 300 #if INCLUDE_JVMCI 301 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) { 302 // Old j.l.Thread object can die when no longer referenced elsewhere. 303 JNIHandles::destroy_global(compiler2_object(compiler_count - 1)); 304 _compiler2_objects[compiler_count - 1] = nullptr; 305 } 306 #endif 307 } 308 return true; 309 } 310 return false; 311 } 312 313 /** 314 * Add a CompileTask to a CompileQueue. 315 */ 316 void CompileQueue::add(CompileTask* task) { 317 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 318 319 task->set_next(nullptr); 320 task->set_prev(nullptr); 321 322 if (_last == nullptr) { 323 // The compile queue is empty. 324 assert(_first == nullptr, "queue is empty"); 325 _first = task; 326 _last = task; 327 } else { 328 // Append the task to the queue. 329 assert(_last->next() == nullptr, "not last"); 330 _last->set_next(task); 331 task->set_prev(_last); 332 _last = task; 333 } 334 ++_size; 335 ++_total_added; 336 if (_size > _peak_size) { 337 _peak_size = _size; 338 } 339 340 // Mark the method as being in the compile queue. 341 task->method()->set_queued_for_compilation(); 342 343 if (CIPrintCompileQueue) { 344 print_tty(); 345 } 346 347 if (LogCompilation && xtty != nullptr) { 348 task->log_task_queued(); 349 } 350 351 if (TrainingData::need_data() && !CDSConfig::is_dumping_final_static_archive()) { 352 CompileTrainingData* ctd = CompileTrainingData::make(task); 353 if (ctd != nullptr) { 354 task->set_training_data(ctd); 355 } 356 } 357 358 // Notify CompilerThreads that a task is available. 359 MethodCompileQueue_lock->notify_all(); 360 } 361 362 /** 363 * Empties compilation queue by deleting all compilation tasks. 364 * Furthermore, the method wakes up all threads that are waiting 365 * on a compilation task to finish. This can happen if background 366 * compilation is disabled. 367 */ 368 void CompileQueue::delete_all() { 369 MutexLocker mu(MethodCompileQueue_lock); 370 CompileTask* current = _first; 371 372 // Iterate over all tasks in the compile queue 373 while (current != nullptr) { 374 CompileTask* next = current->next(); 375 if (!current->is_blocking()) { 376 // Non-blocking task. No one is waiting for it, delete it now. 377 delete current; 378 } else { 379 // Blocking task. By convention, it is the waiters responsibility 380 // to delete the task. We cannot delete it here, because we do not 381 // coordinate with waiters. We will notify the waiters later. 382 } 383 current = next; 384 } 385 _first = nullptr; 386 _last = nullptr; 387 388 // Wake up all blocking task waiters to deal with remaining blocking 389 // tasks. This is not a performance sensitive path, so we do this 390 // unconditionally to simplify coding/testing. 391 { 392 MonitorLocker ml(Thread::current(), CompileTaskWait_lock); 393 ml.notify_all(); 394 } 395 396 // Wake up all threads that block on the queue. 397 MethodCompileQueue_lock->notify_all(); 398 } 399 400 /** 401 * Get the next CompileTask from a CompileQueue 402 */ 403 CompileTask* CompileQueue::get(CompilerThread* thread) { 404 // save methods from RedefineClasses across safepoint 405 // across MethodCompileQueue_lock below. 406 methodHandle save_method; 407 408 MonitorLocker locker(MethodCompileQueue_lock); 409 // If _first is null we have no more compile jobs. There are two reasons for 410 // having no compile jobs: First, we compiled everything we wanted. Second, 411 // we ran out of code cache so compilation has been disabled. In the latter 412 // case we perform code cache sweeps to free memory such that we can re-enable 413 // compilation. 414 while (_first == nullptr) { 415 // Exit loop if compilation is disabled forever 416 if (CompileBroker::is_compilation_disabled_forever()) { 417 return nullptr; 418 } 419 420 AbstractCompiler* compiler = thread->compiler(); 421 guarantee(compiler != nullptr, "Compiler object must exist"); 422 compiler->on_empty_queue(this, thread); 423 if (_first != nullptr) { 424 // The call to on_empty_queue may have temporarily unlocked the MCQ lock 425 // so check again whether any tasks were added to the queue. 426 break; 427 } 428 429 // If there are no compilation tasks and we can compile new jobs 430 // (i.e., there is enough free space in the code cache) there is 431 // no need to invoke the GC. 432 // We need a timed wait here, since compiler threads can exit if compilation 433 // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads 434 // is not critical and we do not want idle compiler threads to wake up too often. 435 locker.wait(5*1000); 436 437 if (UseDynamicNumberOfCompilerThreads && _first == nullptr) { 438 // Still nothing to compile. Give caller a chance to stop this thread. 439 if (CompileBroker::can_remove(CompilerThread::current(), false)) return nullptr; 440 } 441 } 442 443 if (CompileBroker::is_compilation_disabled_forever()) { 444 return nullptr; 445 } 446 447 CompileTask* task; 448 { 449 NoSafepointVerifier nsv; 450 task = CompilationPolicy::select_task(this, thread); 451 if (task != nullptr) { 452 task = task->select_for_compilation(); 453 } 454 } 455 456 if (task != nullptr) { 457 // Save method pointers across unlock safepoint. The task is removed from 458 // the compilation queue, which is walked during RedefineClasses. 459 Thread* thread = Thread::current(); 460 save_method = methodHandle(thread, task->method()); 461 462 remove(task); 463 } 464 purge_stale_tasks(); // may temporarily release MCQ lock 465 return task; 466 } 467 468 // Clean & deallocate stale compile tasks. 469 // Temporarily releases MethodCompileQueue lock. 470 void CompileQueue::purge_stale_tasks() { 471 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 472 if (_first_stale != nullptr) { 473 // Stale tasks are purged when MCQ lock is released, 474 // but _first_stale updates are protected by MCQ lock. 475 // Once task processing starts and MCQ lock is released, 476 // other compiler threads can reuse _first_stale. 477 CompileTask* head = _first_stale; 478 _first_stale = nullptr; 479 { 480 MutexUnlocker ul(MethodCompileQueue_lock); 481 for (CompileTask* task = head; task != nullptr; ) { 482 CompileTask* next_task = task->next(); 483 CompileTaskWrapper ctw(task); // Frees the task 484 task->set_failure_reason("stale task"); 485 task = next_task; 486 } 487 } 488 } 489 } 490 491 void CompileQueue::remove(CompileTask* task) { 492 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 493 if (task->prev() != nullptr) { 494 task->prev()->set_next(task->next()); 495 } else { 496 // max is the first element 497 assert(task == _first, "Sanity"); 498 _first = task->next(); 499 } 500 501 if (task->next() != nullptr) { 502 task->next()->set_prev(task->prev()); 503 } else { 504 // max is the last element 505 assert(task == _last, "Sanity"); 506 _last = task->prev(); 507 } 508 task->set_next(nullptr); 509 task->set_prev(nullptr); 510 --_size; 511 ++_total_removed; 512 } 513 514 void CompileQueue::remove_and_mark_stale(CompileTask* task) { 515 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 516 remove(task); 517 518 // Enqueue the task for reclamation (should be done outside MCQ lock) 519 task->set_next(_first_stale); 520 task->set_prev(nullptr); 521 _first_stale = task; 522 } 523 524 // methods in the compile queue need to be marked as used on the stack 525 // so that they don't get reclaimed by Redefine Classes 526 void CompileQueue::mark_on_stack() { 527 CompileTask* task = _first; 528 while (task != nullptr) { 529 task->mark_on_stack(); 530 task = task->next(); 531 } 532 } 533 534 535 CompileQueue* CompileBroker::compile_queue(int comp_level) { 536 if (is_c2_compile(comp_level)) return _c2_compile_queue; 537 if (is_c1_compile(comp_level)) return _c1_compile_queue; 538 return nullptr; 539 } 540 541 CompileQueue* CompileBroker::c1_compile_queue() { 542 return _c1_compile_queue; 543 } 544 545 CompileQueue* CompileBroker::c2_compile_queue() { 546 return _c2_compile_queue; 547 } 548 549 void CompileBroker::print_compile_queues(outputStream* st) { 550 st->print_cr("Current compiles: "); 551 552 char buf[2000]; 553 int buflen = sizeof(buf); 554 Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true); 555 556 st->cr(); 557 if (_c1_compile_queue != nullptr) { 558 _c1_compile_queue->print(st); 559 } 560 if (_c2_compile_queue != nullptr) { 561 _c2_compile_queue->print(st); 562 } 563 } 564 565 void CompileQueue::print(outputStream* st) { 566 assert_locked_or_safepoint(MethodCompileQueue_lock); 567 st->print_cr("%s:", name()); 568 CompileTask* task = _first; 569 if (task == nullptr) { 570 st->print_cr("Empty"); 571 } else { 572 while (task != nullptr) { 573 task->print(st, nullptr, true, true); 574 task = task->next(); 575 } 576 } 577 st->cr(); 578 } 579 580 void CompileQueue::print_tty() { 581 stringStream ss; 582 // Dump the compile queue into a buffer before locking the tty 583 print(&ss); 584 { 585 ttyLocker ttyl; 586 tty->print("%s", ss.freeze()); 587 } 588 } 589 590 CompilerCounters::CompilerCounters() { 591 _current_method[0] = '\0'; 592 _compile_type = CompileBroker::no_compile; 593 } 594 595 #if INCLUDE_JFR && COMPILER2_OR_JVMCI 596 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping 597 // in compiler/compilerEvent.cpp) and registers it with its serializer. 598 // 599 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp, 600 // so if c2 is used, it should be always registered first. 601 // This function is called during vm initialization. 602 static void register_jfr_phasetype_serializer(CompilerType compiler_type) { 603 ResourceMark rm; 604 static bool first_registration = true; 605 if (compiler_type == compiler_jvmci) { 606 CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false); 607 first_registration = false; 608 #ifdef COMPILER2 609 } else if (compiler_type == compiler_c2) { 610 assert(first_registration, "invariant"); // c2 must be registered first. 611 for (int i = 0; i < PHASE_NUM_TYPES; i++) { 612 const char* phase_name = CompilerPhaseTypeHelper::to_description((CompilerPhaseType) i); 613 CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false); 614 } 615 first_registration = false; 616 #endif // COMPILER2 617 } 618 } 619 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI 620 621 // ------------------------------------------------------------------ 622 // CompileBroker::compilation_init 623 // 624 // Initialize the Compilation object 625 void CompileBroker::compilation_init(JavaThread* THREAD) { 626 // No need to initialize compilation system if we do not use it. 627 if (!UseCompiler) { 628 return; 629 } 630 // Set the interface to the current compiler(s). 631 _c1_count = CompilationPolicy::c1_count(); 632 _c2_count = CompilationPolicy::c2_count(); 633 634 #if INCLUDE_JVMCI 635 if (EnableJVMCI) { 636 // This is creating a JVMCICompiler singleton. 637 JVMCICompiler* jvmci = new JVMCICompiler(); 638 639 if (UseJVMCICompiler) { 640 _compilers[1] = jvmci; 641 if (FLAG_IS_DEFAULT(JVMCIThreads)) { 642 if (BootstrapJVMCI) { 643 // JVMCI will bootstrap so give it more threads 644 _c2_count = MIN2(32, os::active_processor_count()); 645 } 646 } else { 647 _c2_count = JVMCIThreads; 648 } 649 if (FLAG_IS_DEFAULT(JVMCIHostThreads)) { 650 } else { 651 #ifdef COMPILER1 652 _c1_count = JVMCIHostThreads; 653 #endif // COMPILER1 654 } 655 } 656 } 657 #endif // INCLUDE_JVMCI 658 659 #ifdef COMPILER1 660 if (_c1_count > 0) { 661 _compilers[0] = new Compiler(); 662 } 663 #endif // COMPILER1 664 665 #ifdef COMPILER2 666 if (true JVMCI_ONLY( && !UseJVMCICompiler)) { 667 if (_c2_count > 0) { 668 _compilers[1] = new C2Compiler(); 669 // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit. 670 // idToPhase mapping for c2 is in opto/phasetype.hpp 671 JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);) 672 } 673 } 674 #endif // COMPILER2 675 676 #if INCLUDE_JVMCI 677 // Register after c2 registration. 678 // JVMCI CompilerPhaseType idToPhase mapping is dynamic. 679 if (EnableJVMCI) { 680 JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);) 681 } 682 #endif // INCLUDE_JVMCI 683 684 if (CompilerOracle::should_collect_memstat()) { 685 CompilationMemoryStatistic::initialize(); 686 } 687 688 // Start the compiler thread(s) 689 init_compiler_threads(); 690 // totalTime performance counter is always created as it is required 691 // by the implementation of java.lang.management.CompilationMXBean. 692 { 693 // Ensure OOM leads to vm_exit_during_initialization. 694 EXCEPTION_MARK; 695 _perf_total_compilation = 696 PerfDataManager::create_counter(JAVA_CI, "totalTime", 697 PerfData::U_Ticks, CHECK); 698 } 699 700 if (UsePerfData) { 701 702 EXCEPTION_MARK; 703 704 // create the jvmstat performance counters 705 _perf_osr_compilation = 706 PerfDataManager::create_counter(SUN_CI, "osrTime", 707 PerfData::U_Ticks, CHECK); 708 709 _perf_standard_compilation = 710 PerfDataManager::create_counter(SUN_CI, "standardTime", 711 PerfData::U_Ticks, CHECK); 712 713 _perf_total_bailout_count = 714 PerfDataManager::create_counter(SUN_CI, "totalBailouts", 715 PerfData::U_Events, CHECK); 716 717 _perf_total_invalidated_count = 718 PerfDataManager::create_counter(SUN_CI, "totalInvalidates", 719 PerfData::U_Events, CHECK); 720 721 _perf_total_compile_count = 722 PerfDataManager::create_counter(SUN_CI, "totalCompiles", 723 PerfData::U_Events, CHECK); 724 _perf_total_osr_compile_count = 725 PerfDataManager::create_counter(SUN_CI, "osrCompiles", 726 PerfData::U_Events, CHECK); 727 728 _perf_total_standard_compile_count = 729 PerfDataManager::create_counter(SUN_CI, "standardCompiles", 730 PerfData::U_Events, CHECK); 731 732 _perf_sum_osr_bytes_compiled = 733 PerfDataManager::create_counter(SUN_CI, "osrBytes", 734 PerfData::U_Bytes, CHECK); 735 736 _perf_sum_standard_bytes_compiled = 737 PerfDataManager::create_counter(SUN_CI, "standardBytes", 738 PerfData::U_Bytes, CHECK); 739 740 _perf_sum_nmethod_size = 741 PerfDataManager::create_counter(SUN_CI, "nmethodSize", 742 PerfData::U_Bytes, CHECK); 743 744 _perf_sum_nmethod_code_size = 745 PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize", 746 PerfData::U_Bytes, CHECK); 747 748 _perf_last_method = 749 PerfDataManager::create_string_variable(SUN_CI, "lastMethod", 750 CompilerCounters::cmname_buffer_length, 751 "", CHECK); 752 753 _perf_last_failed_method = 754 PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod", 755 CompilerCounters::cmname_buffer_length, 756 "", CHECK); 757 758 _perf_last_invalidated_method = 759 PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod", 760 CompilerCounters::cmname_buffer_length, 761 "", CHECK); 762 763 _perf_last_compile_type = 764 PerfDataManager::create_variable(SUN_CI, "lastType", 765 PerfData::U_None, 766 (jlong)CompileBroker::no_compile, 767 CHECK); 768 769 _perf_last_compile_size = 770 PerfDataManager::create_variable(SUN_CI, "lastSize", 771 PerfData::U_Bytes, 772 (jlong)CompileBroker::no_compile, 773 CHECK); 774 775 776 _perf_last_failed_type = 777 PerfDataManager::create_variable(SUN_CI, "lastFailedType", 778 PerfData::U_None, 779 (jlong)CompileBroker::no_compile, 780 CHECK); 781 782 _perf_last_invalidated_type = 783 PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType", 784 PerfData::U_None, 785 (jlong)CompileBroker::no_compile, 786 CHECK); 787 } 788 789 _initialized = true; 790 } 791 792 void TrainingReplayThread::training_replay_thread_entry(JavaThread* thread, TRAPS) { 793 CompilationPolicy::replay_training_at_init_loop(thread); 794 } 795 796 #if defined(ASSERT) && COMPILER2_OR_JVMCI 797 // Entry for DeoptimizeObjectsALotThread. The threads are started in 798 // CompileBroker::init_compiler_threads() iff DeoptimizeObjectsALot is enabled 799 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) { 800 DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread); 801 bool enter_single_loop; 802 { 803 MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag); 804 static int single_thread_count = 0; 805 enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle; 806 } 807 if (enter_single_loop) { 808 dt->deoptimize_objects_alot_loop_single(); 809 } else { 810 dt->deoptimize_objects_alot_loop_all(); 811 } 812 } 813 814 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each 815 // barrier targets a single thread which is selected round robin. 816 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() { 817 HandleMark hm(this); 818 while (true) { 819 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) { 820 { // Begin new scope for escape barrier 821 HandleMarkCleaner hmc(this); 822 ResourceMark rm(this); 823 EscapeBarrier eb(true, this, deoptee_thread); 824 eb.deoptimize_objects(100); 825 } 826 // Now sleep after the escape barriers destructor resumed deoptee_thread. 827 sleep(DeoptimizeObjectsALotInterval); 828 } 829 } 830 } 831 832 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each 833 // barrier targets all java threads in the vm at once. 834 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() { 835 HandleMark hm(this); 836 while (true) { 837 { // Begin new scope for escape barrier 838 HandleMarkCleaner hmc(this); 839 ResourceMark rm(this); 840 EscapeBarrier eb(true, this); 841 eb.deoptimize_objects_all_threads(); 842 } 843 // Now sleep after the escape barriers destructor resumed the java threads. 844 sleep(DeoptimizeObjectsALotInterval); 845 } 846 } 847 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI 848 849 850 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, JavaThread* THREAD) { 851 Handle thread_oop(THREAD, JNIHandles::resolve_non_null(thread_handle)); 852 853 if (java_lang_Thread::thread(thread_oop()) != nullptr) { 854 assert(type == compiler_t, "should only happen with reused compiler threads"); 855 // The compiler thread hasn't actually exited yet so don't try to reuse it 856 return nullptr; 857 } 858 859 JavaThread* new_thread = nullptr; 860 switch (type) { 861 case compiler_t: 862 assert(comp != nullptr, "Compiler instance missing."); 863 if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) { 864 CompilerCounters* counters = new CompilerCounters(); 865 new_thread = new CompilerThread(queue, counters); 866 } 867 break; 868 #if defined(ASSERT) && COMPILER2_OR_JVMCI 869 case deoptimizer_t: 870 new_thread = new DeoptimizeObjectsALotThread(); 871 break; 872 #endif // ASSERT 873 case training_replay_t: 874 new_thread = new TrainingReplayThread(); 875 break; 876 default: 877 ShouldNotReachHere(); 878 } 879 880 // At this point the new CompilerThread data-races with this startup 881 // thread (which is the main thread and NOT the VM thread). 882 // This means Java bytecodes being executed at startup can 883 // queue compile jobs which will run at whatever default priority the 884 // newly created CompilerThread runs at. 885 886 887 // At this point it may be possible that no osthread was created for the 888 // JavaThread due to lack of resources. We will handle that failure below. 889 // Also check new_thread so that static analysis is happy. 890 if (new_thread != nullptr && new_thread->osthread() != nullptr) { 891 892 if (type == compiler_t) { 893 CompilerThread::cast(new_thread)->set_compiler(comp); 894 } 895 896 // Note that we cannot call os::set_priority because it expects Java 897 // priorities and we are *explicitly* using OS priorities so that it's 898 // possible to set the compiler thread priority higher than any Java 899 // thread. 900 901 int native_prio = CompilerThreadPriority; 902 if (native_prio == -1) { 903 if (UseCriticalCompilerThreadPriority) { 904 native_prio = os::java_to_os_priority[CriticalPriority]; 905 } else { 906 native_prio = os::java_to_os_priority[NearMaxPriority]; 907 } 908 } 909 os::set_native_priority(new_thread, native_prio); 910 911 // Note that this only sets the JavaThread _priority field, which by 912 // definition is limited to Java priorities and not OS priorities. 913 JavaThread::start_internal_daemon(THREAD, new_thread, thread_oop, NearMaxPriority); 914 915 } else { // osthread initialization failure 916 if (UseDynamicNumberOfCompilerThreads && type == compiler_t 917 && comp->num_compiler_threads() > 0) { 918 // The new thread is not known to Thread-SMR yet so we can just delete. 919 delete new_thread; 920 return nullptr; 921 } else { 922 vm_exit_during_initialization("java.lang.OutOfMemoryError", 923 os::native_thread_creation_failed_msg()); 924 } 925 } 926 927 os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS) 928 929 return new_thread; 930 } 931 932 static bool trace_compiler_threads() { 933 LogTarget(Debug, jit, thread) lt; 934 return TraceCompilerThreads || lt.is_enabled(); 935 } 936 937 static jobject create_compiler_thread(AbstractCompiler* compiler, int i, TRAPS) { 938 char name_buffer[256]; 939 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", compiler->name(), i); 940 Handle thread_oop = JavaThread::create_system_thread_object(name_buffer, CHECK_NULL); 941 return JNIHandles::make_global(thread_oop); 942 } 943 944 static void print_compiler_threads(stringStream& msg) { 945 if (TraceCompilerThreads) { 946 tty->print_cr("%7d %s", (int)tty->time_stamp().milliseconds(), msg.as_string()); 947 } 948 LogTarget(Debug, jit, thread) lt; 949 if (lt.is_enabled()) { 950 LogStream ls(lt); 951 ls.print_cr("%s", msg.as_string()); 952 } 953 } 954 955 void CompileBroker::init_compiler_threads() { 956 // Ensure any exceptions lead to vm_exit_during_initialization. 957 EXCEPTION_MARK; 958 #if !defined(ZERO) 959 assert(_c2_count > 0 || _c1_count > 0, "No compilers?"); 960 #endif // !ZERO 961 // Initialize the compilation queue 962 if (_c2_count > 0) { 963 const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue"; 964 _c2_compile_queue = new CompileQueue(name); 965 _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler); 966 _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler); 967 } 968 if (_c1_count > 0) { 969 _c1_compile_queue = new CompileQueue("C1 compile queue"); 970 _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler); 971 _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler); 972 } 973 974 for (int i = 0; i < _c2_count; i++) { 975 // Create a name for our thread. 976 jobject thread_handle = create_compiler_thread(_compilers[1], i, CHECK); 977 _compiler2_objects[i] = thread_handle; 978 _compiler2_logs[i] = nullptr; 979 980 if (!UseDynamicNumberOfCompilerThreads || i == 0) { 981 JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD); 982 assert(ct != nullptr, "should have been handled for initial thread"); 983 _compilers[1]->set_num_compiler_threads(i + 1); 984 if (trace_compiler_threads()) { 985 ResourceMark rm; 986 ThreadsListHandle tlh; // name() depends on the TLH. 987 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 988 stringStream msg; 989 msg.print("Added initial compiler thread %s", ct->name()); 990 print_compiler_threads(msg); 991 } 992 } 993 } 994 995 for (int i = 0; i < _c1_count; i++) { 996 // Create a name for our thread. 997 jobject thread_handle = create_compiler_thread(_compilers[0], i, CHECK); 998 _compiler1_objects[i] = thread_handle; 999 _compiler1_logs[i] = nullptr; 1000 1001 if (!UseDynamicNumberOfCompilerThreads || i == 0) { 1002 JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD); 1003 assert(ct != nullptr, "should have been handled for initial thread"); 1004 _compilers[0]->set_num_compiler_threads(i + 1); 1005 if (trace_compiler_threads()) { 1006 ResourceMark rm; 1007 ThreadsListHandle tlh; // name() depends on the TLH. 1008 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1009 stringStream msg; 1010 msg.print("Added initial compiler thread %s", ct->name()); 1011 print_compiler_threads(msg); 1012 } 1013 } 1014 } 1015 1016 if (UsePerfData) { 1017 PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK); 1018 } 1019 1020 #if defined(ASSERT) && COMPILER2_OR_JVMCI 1021 if (DeoptimizeObjectsALot) { 1022 // Initialize and start the object deoptimizer threads 1023 const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll; 1024 for (int count = 0; count < total_count; count++) { 1025 Handle thread_oop = JavaThread::create_system_thread_object("Deoptimize objects a lot single mode", CHECK); 1026 jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop()); 1027 make_thread(deoptimizer_t, thread_handle, nullptr, nullptr, THREAD); 1028 } 1029 } 1030 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI 1031 } 1032 1033 void CompileBroker::init_training_replay() { 1034 // Ensure any exceptions lead to vm_exit_during_initialization. 1035 EXCEPTION_MARK; 1036 if (TrainingData::have_data()) { 1037 Handle thread_oop = JavaThread::create_system_thread_object("Training replay thread", CHECK); 1038 jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop()); 1039 make_thread(training_replay_t, thread_handle, nullptr, nullptr, THREAD); 1040 } 1041 } 1042 1043 void CompileBroker::possibly_add_compiler_threads(JavaThread* THREAD) { 1044 1045 int old_c2_count = 0, new_c2_count = 0, old_c1_count = 0, new_c1_count = 0; 1046 const int c2_tasks_per_thread = 2, c1_tasks_per_thread = 4; 1047 1048 // Quick check if we already have enough compiler threads without taking the lock. 1049 // Numbers may change concurrently, so we read them again after we have the lock. 1050 if (_c2_compile_queue != nullptr) { 1051 old_c2_count = get_c2_thread_count(); 1052 new_c2_count = MIN2(_c2_count, _c2_compile_queue->size() / c2_tasks_per_thread); 1053 } 1054 if (_c1_compile_queue != nullptr) { 1055 old_c1_count = get_c1_thread_count(); 1056 new_c1_count = MIN2(_c1_count, _c1_compile_queue->size() / c1_tasks_per_thread); 1057 } 1058 if (new_c2_count <= old_c2_count && new_c1_count <= old_c1_count) return; 1059 1060 // Now, we do the more expensive operations. 1061 julong free_memory = os::free_memory(); 1062 // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All). 1063 size_t available_cc_np = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled), 1064 available_cc_p = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled); 1065 1066 // Only attempt to start additional threads if the lock is free. 1067 if (!CompileThread_lock->try_lock()) return; 1068 1069 if (_c2_compile_queue != nullptr) { 1070 old_c2_count = get_c2_thread_count(); 1071 new_c2_count = MIN4(_c2_count, 1072 _c2_compile_queue->size() / c2_tasks_per_thread, 1073 (int)(free_memory / (200*M)), 1074 (int)(available_cc_np / (128*K))); 1075 1076 for (int i = old_c2_count; i < new_c2_count; i++) { 1077 #if INCLUDE_JVMCI 1078 if (UseJVMCICompiler && !UseJVMCINativeLibrary && _compiler2_objects[i] == nullptr) { 1079 // Native compiler threads as used in C1/C2 can reuse the j.l.Thread objects as their 1080 // existence is completely hidden from the rest of the VM (and those compiler threads can't 1081 // call Java code to do the creation anyway). 1082 // 1083 // For pure Java JVMCI we have to create new j.l.Thread objects as they are visible and we 1084 // can see unexpected thread lifecycle transitions if we bind them to new JavaThreads. For 1085 // native library JVMCI it's preferred to use the C1/C2 strategy as this avoids unnecessary 1086 // coupling with Java. 1087 if (!THREAD->can_call_java()) break; 1088 char name_buffer[256]; 1089 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i); 1090 Handle thread_oop; 1091 { 1092 // We have to give up the lock temporarily for the Java calls. 1093 MutexUnlocker mu(CompileThread_lock); 1094 thread_oop = JavaThread::create_system_thread_object(name_buffer, THREAD); 1095 } 1096 if (HAS_PENDING_EXCEPTION) { 1097 if (trace_compiler_threads()) { 1098 ResourceMark rm; 1099 stringStream msg; 1100 msg.print_cr("JVMCI compiler thread creation failed:"); 1101 PENDING_EXCEPTION->print_on(&msg); 1102 print_compiler_threads(msg); 1103 } 1104 CLEAR_PENDING_EXCEPTION; 1105 break; 1106 } 1107 // Check if another thread has beaten us during the Java calls. 1108 if (get_c2_thread_count() != i) break; 1109 jobject thread_handle = JNIHandles::make_global(thread_oop); 1110 assert(compiler2_object(i) == nullptr, "Old one must be released!"); 1111 _compiler2_objects[i] = thread_handle; 1112 } 1113 #endif 1114 guarantee(compiler2_object(i) != nullptr, "Thread oop must exist"); 1115 JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD); 1116 if (ct == nullptr) break; 1117 _compilers[1]->set_num_compiler_threads(i + 1); 1118 if (trace_compiler_threads()) { 1119 ResourceMark rm; 1120 ThreadsListHandle tlh; // name() depends on the TLH. 1121 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1122 stringStream msg; 1123 msg.print("Added compiler thread %s (free memory: %dMB, available non-profiled code cache: %dMB)", 1124 ct->name(), (int)(free_memory/M), (int)(available_cc_np/M)); 1125 print_compiler_threads(msg); 1126 } 1127 } 1128 } 1129 1130 if (_c1_compile_queue != nullptr) { 1131 old_c1_count = get_c1_thread_count(); 1132 new_c1_count = MIN4(_c1_count, 1133 _c1_compile_queue->size() / c1_tasks_per_thread, 1134 (int)(free_memory / (100*M)), 1135 (int)(available_cc_p / (128*K))); 1136 1137 for (int i = old_c1_count; i < new_c1_count; i++) { 1138 JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD); 1139 if (ct == nullptr) break; 1140 _compilers[0]->set_num_compiler_threads(i + 1); 1141 if (trace_compiler_threads()) { 1142 ResourceMark rm; 1143 ThreadsListHandle tlh; // name() depends on the TLH. 1144 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1145 stringStream msg; 1146 msg.print("Added compiler thread %s (free memory: %dMB, available profiled code cache: %dMB)", 1147 ct->name(), (int)(free_memory/M), (int)(available_cc_p/M)); 1148 print_compiler_threads(msg); 1149 } 1150 } 1151 } 1152 1153 CompileThread_lock->unlock(); 1154 } 1155 1156 1157 /** 1158 * Set the methods on the stack as on_stack so that redefine classes doesn't 1159 * reclaim them. This method is executed at a safepoint. 1160 */ 1161 void CompileBroker::mark_on_stack() { 1162 assert(SafepointSynchronize::is_at_safepoint(), "sanity check"); 1163 // Since we are at a safepoint, we do not need a lock to access 1164 // the compile queues. 1165 if (_c2_compile_queue != nullptr) { 1166 _c2_compile_queue->mark_on_stack(); 1167 } 1168 if (_c1_compile_queue != nullptr) { 1169 _c1_compile_queue->mark_on_stack(); 1170 } 1171 } 1172 1173 // ------------------------------------------------------------------ 1174 // CompileBroker::compile_method 1175 // 1176 // Request compilation of a method. 1177 void CompileBroker::compile_method_base(const methodHandle& method, 1178 int osr_bci, 1179 int comp_level, 1180 int hot_count, 1181 CompileTask::CompileReason compile_reason, 1182 bool blocking, 1183 Thread* thread) { 1184 guarantee(!method->is_abstract(), "cannot compile abstract methods"); 1185 assert(method->method_holder()->is_instance_klass(), 1186 "sanity check"); 1187 assert(!method->method_holder()->is_not_initialized(), 1188 "method holder must be initialized"); 1189 assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys"); 1190 1191 if (CIPrintRequests) { 1192 tty->print("request: "); 1193 method->print_short_name(tty); 1194 if (osr_bci != InvocationEntryBci) { 1195 tty->print(" osr_bci: %d", osr_bci); 1196 } 1197 tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count); 1198 if (hot_count > 0) { 1199 tty->print(" hot: yes"); 1200 } 1201 tty->cr(); 1202 } 1203 1204 // A request has been made for compilation. Before we do any 1205 // real work, check to see if the method has been compiled 1206 // in the meantime with a definitive result. 1207 if (compilation_is_complete(method, osr_bci, comp_level)) { 1208 return; 1209 } 1210 1211 #ifndef PRODUCT 1212 if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) { 1213 if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) { 1214 // Positive OSROnlyBCI means only compile that bci. Negative means don't compile that BCI. 1215 return; 1216 } 1217 } 1218 #endif 1219 1220 // If this method is already in the compile queue, then 1221 // we do not block the current thread. 1222 if (compilation_is_in_queue(method)) { 1223 // We may want to decay our counter a bit here to prevent 1224 // multiple denied requests for compilation. This is an 1225 // open compilation policy issue. Note: The other possibility, 1226 // in the case that this is a blocking compile request, is to have 1227 // all subsequent blocking requesters wait for completion of 1228 // ongoing compiles. Note that in this case we'll need a protocol 1229 // for freeing the associated compile tasks. [Or we could have 1230 // a single static monitor on which all these waiters sleep.] 1231 return; 1232 } 1233 1234 // Tiered policy requires MethodCounters to exist before adding a method to 1235 // the queue. Create if we don't have them yet. 1236 method->get_method_counters(thread); 1237 1238 // Outputs from the following MutexLocker block: 1239 CompileTask* task = nullptr; 1240 CompileQueue* queue = compile_queue(comp_level); 1241 1242 // Acquire our lock. 1243 { 1244 MutexLocker locker(thread, MethodCompileQueue_lock); 1245 1246 // Make sure the method has not slipped into the queues since 1247 // last we checked; note that those checks were "fast bail-outs". 1248 // Here we need to be more careful, see 14012000 below. 1249 if (compilation_is_in_queue(method)) { 1250 return; 1251 } 1252 1253 // We need to check again to see if the compilation has 1254 // completed. A previous compilation may have registered 1255 // some result. 1256 if (compilation_is_complete(method, osr_bci, comp_level)) { 1257 return; 1258 } 1259 1260 // We now know that this compilation is not pending, complete, 1261 // or prohibited. Assign a compile_id to this compilation 1262 // and check to see if it is in our [Start..Stop) range. 1263 int compile_id = assign_compile_id(method, osr_bci); 1264 if (compile_id == 0) { 1265 // The compilation falls outside the allowed range. 1266 return; 1267 } 1268 1269 #if INCLUDE_JVMCI 1270 if (UseJVMCICompiler && blocking) { 1271 // Don't allow blocking compiles for requests triggered by JVMCI. 1272 if (thread->is_Compiler_thread()) { 1273 blocking = false; 1274 } 1275 1276 // In libjvmci, JVMCI initialization should not deadlock with other threads 1277 if (!UseJVMCINativeLibrary) { 1278 // Don't allow blocking compiles if inside a class initializer or while performing class loading 1279 vframeStream vfst(JavaThread::cast(thread)); 1280 for (; !vfst.at_end(); vfst.next()) { 1281 if (vfst.method()->is_class_initializer() || 1282 (vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) && 1283 vfst.method()->name() == vmSymbols::loadClass_name())) { 1284 blocking = false; 1285 break; 1286 } 1287 } 1288 1289 // Don't allow blocking compilation requests to JVMCI 1290 // if JVMCI itself is not yet initialized 1291 if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) { 1292 blocking = false; 1293 } 1294 } 1295 1296 // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown 1297 // to avoid deadlock between compiler thread(s) and threads run at shutdown 1298 // such as the DestroyJavaVM thread. 1299 if (JVMCI::in_shutdown()) { 1300 blocking = false; 1301 } 1302 } 1303 #endif // INCLUDE_JVMCI 1304 1305 // We will enter the compilation in the queue. 1306 // 14012000: Note that this sets the queued_for_compile bits in 1307 // the target method. We can now reason that a method cannot be 1308 // queued for compilation more than once, as follows: 1309 // Before a thread queues a task for compilation, it first acquires 1310 // the compile queue lock, then checks if the method's queued bits 1311 // are set or it has already been compiled. Thus there can not be two 1312 // instances of a compilation task for the same method on the 1313 // compilation queue. Consider now the case where the compilation 1314 // thread has already removed a task for that method from the queue 1315 // and is in the midst of compiling it. In this case, the 1316 // queued_for_compile bits must be set in the method (and these 1317 // will be visible to the current thread, since the bits were set 1318 // under protection of the compile queue lock, which we hold now. 1319 // When the compilation completes, the compiler thread first sets 1320 // the compilation result and then clears the queued_for_compile 1321 // bits. Neither of these actions are protected by a barrier (or done 1322 // under the protection of a lock), so the only guarantee we have 1323 // (on machines with TSO (Total Store Order)) is that these values 1324 // will update in that order. As a result, the only combinations of 1325 // these bits that the current thread will see are, in temporal order: 1326 // <RESULT, QUEUE> : 1327 // <0, 1> : in compile queue, but not yet compiled 1328 // <1, 1> : compiled but queue bit not cleared 1329 // <1, 0> : compiled and queue bit cleared 1330 // Because we first check the queue bits then check the result bits, 1331 // we are assured that we cannot introduce a duplicate task. 1332 // Note that if we did the tests in the reverse order (i.e. check 1333 // result then check queued bit), we could get the result bit before 1334 // the compilation completed, and the queue bit after the compilation 1335 // completed, and end up introducing a "duplicate" (redundant) task. 1336 // In that case, the compiler thread should first check if a method 1337 // has already been compiled before trying to compile it. 1338 // NOTE: in the event that there are multiple compiler threads and 1339 // there is de-optimization/recompilation, things will get hairy, 1340 // and in that case it's best to protect both the testing (here) of 1341 // these bits, and their updating (here and elsewhere) under a 1342 // common lock. 1343 task = create_compile_task(queue, 1344 compile_id, method, 1345 osr_bci, comp_level, 1346 hot_count, compile_reason, 1347 blocking); 1348 } 1349 1350 if (blocking) { 1351 wait_for_completion(task); 1352 } 1353 } 1354 1355 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci, 1356 int comp_level, 1357 int hot_count, 1358 CompileTask::CompileReason compile_reason, 1359 TRAPS) { 1360 // Do nothing if compilebroker is not initialized or compiles are submitted on level none 1361 if (!_initialized || comp_level == CompLevel_none) { 1362 return nullptr; 1363 } 1364 1365 AbstractCompiler *comp = CompileBroker::compiler(comp_level); 1366 assert(comp != nullptr, "Ensure we have a compiler"); 1367 1368 #if INCLUDE_JVMCI 1369 if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) { 1370 // JVMCI compilation is not yet initializable. 1371 return nullptr; 1372 } 1373 #endif 1374 1375 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp); 1376 // CompileBroker::compile_method can trap and can have pending async exception. 1377 nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_count, compile_reason, directive, THREAD); 1378 DirectivesStack::release(directive); 1379 return nm; 1380 } 1381 1382 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci, 1383 int comp_level, 1384 int hot_count, 1385 CompileTask::CompileReason compile_reason, 1386 DirectiveSet* directive, 1387 TRAPS) { 1388 1389 // make sure arguments make sense 1390 assert(method->method_holder()->is_instance_klass(), "not an instance method"); 1391 assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range"); 1392 assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods"); 1393 assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized"); 1394 // return quickly if possible 1395 1396 // lock, make sure that the compilation 1397 // isn't prohibited in a straightforward way. 1398 AbstractCompiler* comp = CompileBroker::compiler(comp_level); 1399 if (comp == nullptr || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) { 1400 return nullptr; 1401 } 1402 1403 if (osr_bci == InvocationEntryBci) { 1404 // standard compilation 1405 nmethod* method_code = method->code(); 1406 if (method_code != nullptr) { 1407 if (compilation_is_complete(method, osr_bci, comp_level)) { 1408 return method_code; 1409 } 1410 } 1411 if (method->is_not_compilable(comp_level)) { 1412 return nullptr; 1413 } 1414 } else { 1415 // osr compilation 1416 // We accept a higher level osr method 1417 nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false); 1418 if (nm != nullptr) return nm; 1419 if (method->is_not_osr_compilable(comp_level)) return nullptr; 1420 } 1421 1422 assert(!HAS_PENDING_EXCEPTION, "No exception should be present"); 1423 // some prerequisites that are compiler specific 1424 if (comp->is_c2() || comp->is_jvmci()) { 1425 InternalOOMEMark iom(THREAD); 1426 method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL); 1427 // Resolve all classes seen in the signature of the method 1428 // we are compiling. 1429 Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL); 1430 } 1431 1432 // If the method is native, do the lookup in the thread requesting 1433 // the compilation. Native lookups can load code, which is not 1434 // permitted during compilation. 1435 // 1436 // Note: A native method implies non-osr compilation which is 1437 // checked with an assertion at the entry of this method. 1438 if (method->is_native() && !method->is_method_handle_intrinsic()) { 1439 address adr = NativeLookup::lookup(method, THREAD); 1440 if (HAS_PENDING_EXCEPTION) { 1441 // In case of an exception looking up the method, we just forget 1442 // about it. The interpreter will kick-in and throw the exception. 1443 method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable() 1444 CLEAR_PENDING_EXCEPTION; 1445 return nullptr; 1446 } 1447 assert(method->has_native_function(), "must have native code by now"); 1448 } 1449 1450 // RedefineClasses() has replaced this method; just return 1451 if (method->is_old()) { 1452 return nullptr; 1453 } 1454 1455 // JVMTI -- post_compile_event requires jmethod_id() that may require 1456 // a lock the compiling thread can not acquire. Prefetch it here. 1457 if (JvmtiExport::should_post_compiled_method_load()) { 1458 method->jmethod_id(); 1459 } 1460 1461 // do the compilation 1462 if (method->is_native()) { 1463 if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) { 1464 // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that 1465 // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime). 1466 // 1467 // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter 1468 // in this case. If we can't generate one and use it we can not execute the out-of-line method handle calls. 1469 AdapterHandlerLibrary::create_native_wrapper(method); 1470 } else { 1471 return nullptr; 1472 } 1473 } else { 1474 // If the compiler is shut off due to code cache getting full 1475 // fail out now so blocking compiles dont hang the java thread 1476 if (!should_compile_new_jobs()) { 1477 return nullptr; 1478 } 1479 bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles; 1480 compile_method_base(method, osr_bci, comp_level, hot_count, compile_reason, is_blocking, THREAD); 1481 } 1482 1483 // return requested nmethod 1484 // We accept a higher level osr method 1485 if (osr_bci == InvocationEntryBci) { 1486 return method->code(); 1487 } 1488 return method->lookup_osr_nmethod_for(osr_bci, comp_level, false); 1489 } 1490 1491 1492 // ------------------------------------------------------------------ 1493 // CompileBroker::compilation_is_complete 1494 // 1495 // See if compilation of this method is already complete. 1496 bool CompileBroker::compilation_is_complete(const methodHandle& method, 1497 int osr_bci, 1498 int comp_level) { 1499 bool is_osr = (osr_bci != standard_entry_bci); 1500 if (is_osr) { 1501 if (method->is_not_osr_compilable(comp_level)) { 1502 return true; 1503 } else { 1504 nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true); 1505 return (result != nullptr); 1506 } 1507 } else { 1508 if (method->is_not_compilable(comp_level)) { 1509 return true; 1510 } else { 1511 nmethod* result = method->code(); 1512 if (result == nullptr) return false; 1513 return comp_level == result->comp_level(); 1514 } 1515 } 1516 } 1517 1518 1519 /** 1520 * See if this compilation is already requested. 1521 * 1522 * Implementation note: there is only a single "is in queue" bit 1523 * for each method. This means that the check below is overly 1524 * conservative in the sense that an osr compilation in the queue 1525 * will block a normal compilation from entering the queue (and vice 1526 * versa). This can be remedied by a full queue search to disambiguate 1527 * cases. If it is deemed profitable, this may be done. 1528 */ 1529 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) { 1530 return method->queued_for_compilation(); 1531 } 1532 1533 // ------------------------------------------------------------------ 1534 // CompileBroker::compilation_is_prohibited 1535 // 1536 // See if this compilation is not allowed. 1537 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) { 1538 bool is_native = method->is_native(); 1539 // Some compilers may not support the compilation of natives. 1540 AbstractCompiler *comp = compiler(comp_level); 1541 if (is_native && (!CICompileNatives || comp == nullptr)) { 1542 method->set_not_compilable_quietly("native methods not supported", comp_level); 1543 return true; 1544 } 1545 1546 bool is_osr = (osr_bci != standard_entry_bci); 1547 // Some compilers may not support on stack replacement. 1548 if (is_osr && (!CICompileOSR || comp == nullptr)) { 1549 method->set_not_osr_compilable("OSR not supported", comp_level); 1550 return true; 1551 } 1552 1553 // The method may be explicitly excluded by the user. 1554 double scale; 1555 if (excluded || (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, scale) && scale == 0)) { 1556 bool quietly = CompilerOracle::be_quiet(); 1557 if (PrintCompilation && !quietly) { 1558 // This does not happen quietly... 1559 ResourceMark rm; 1560 tty->print("### Excluding %s:%s", 1561 method->is_native() ? "generation of native wrapper" : "compile", 1562 (method->is_static() ? " static" : "")); 1563 method->print_short_name(tty); 1564 tty->cr(); 1565 } 1566 method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly); 1567 } 1568 1569 return false; 1570 } 1571 1572 /** 1573 * Generate serialized IDs for compilation requests. If certain debugging flags are used 1574 * and the ID is not within the specified range, the method is not compiled and 0 is returned. 1575 * The function also allows to generate separate compilation IDs for OSR compilations. 1576 */ 1577 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) { 1578 #ifdef ASSERT 1579 bool is_osr = (osr_bci != standard_entry_bci); 1580 int id; 1581 if (method->is_native()) { 1582 assert(!is_osr, "can't be osr"); 1583 // Adapters, native wrappers and method handle intrinsics 1584 // should be generated always. 1585 return Atomic::add(CICountNative ? &_native_compilation_id : &_compilation_id, 1); 1586 } else if (CICountOSR && is_osr) { 1587 id = Atomic::add(&_osr_compilation_id, 1); 1588 if (CIStartOSR <= id && id < CIStopOSR) { 1589 return id; 1590 } 1591 } else { 1592 id = Atomic::add(&_compilation_id, 1); 1593 if (CIStart <= id && id < CIStop) { 1594 return id; 1595 } 1596 } 1597 1598 // Method was not in the appropriate compilation range. 1599 method->set_not_compilable_quietly("Not in requested compile id range"); 1600 return 0; 1601 #else 1602 // CICountOSR is a develop flag and set to 'false' by default. In a product built, 1603 // only _compilation_id is incremented. 1604 return Atomic::add(&_compilation_id, 1); 1605 #endif 1606 } 1607 1608 // ------------------------------------------------------------------ 1609 // CompileBroker::assign_compile_id_unlocked 1610 // 1611 // Public wrapper for assign_compile_id that acquires the needed locks 1612 int CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) { 1613 MutexLocker locker(thread, MethodCompileQueue_lock); 1614 return assign_compile_id(method, osr_bci); 1615 } 1616 1617 // ------------------------------------------------------------------ 1618 // CompileBroker::create_compile_task 1619 // 1620 // Create a CompileTask object representing the current request for 1621 // compilation. Add this task to the queue. 1622 CompileTask* CompileBroker::create_compile_task(CompileQueue* queue, 1623 int compile_id, 1624 const methodHandle& method, 1625 int osr_bci, 1626 int comp_level, 1627 int hot_count, 1628 CompileTask::CompileReason compile_reason, 1629 bool blocking) { 1630 CompileTask* new_task = new CompileTask(compile_id, method, osr_bci, comp_level, 1631 hot_count, compile_reason, blocking); 1632 queue->add(new_task); 1633 return new_task; 1634 } 1635 1636 #if INCLUDE_JVMCI 1637 // The number of milliseconds to wait before checking if 1638 // JVMCI compilation has made progress. 1639 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000; 1640 1641 // The number of JVMCI compilation progress checks that must fail 1642 // before unblocking a thread waiting for a blocking compilation. 1643 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10; 1644 1645 /** 1646 * Waits for a JVMCI compiler to complete a given task. This thread 1647 * waits until either the task completes or it sees no JVMCI compilation 1648 * progress for N consecutive milliseconds where N is 1649 * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE * 1650 * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS. 1651 * 1652 * @return true if this thread needs to delete the task 1653 */ 1654 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) { 1655 assert(UseJVMCICompiler, "sanity"); 1656 MonitorLocker ml(thread, CompileTaskWait_lock); 1657 int progress_wait_attempts = 0; 1658 jint thread_jvmci_compilation_ticks = 0; 1659 jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks(); 1660 while (!task->is_complete() && !is_compilation_disabled_forever() && 1661 ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) { 1662 JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state(); 1663 1664 bool progress; 1665 if (jvmci_compile_state != nullptr) { 1666 jint ticks = jvmci_compile_state->compilation_ticks(); 1667 progress = (ticks - thread_jvmci_compilation_ticks) != 0; 1668 JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks); 1669 thread_jvmci_compilation_ticks = ticks; 1670 } else { 1671 // Still waiting on JVMCI compiler queue. This thread may be holding a lock 1672 // that all JVMCI compiler threads are blocked on. We use the global JVMCI 1673 // compilation ticks to determine whether JVMCI compilation 1674 // is still making progress through the JVMCI compiler queue. 1675 jint ticks = jvmci->global_compilation_ticks(); 1676 progress = (ticks - global_jvmci_compilation_ticks) != 0; 1677 JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks); 1678 global_jvmci_compilation_ticks = ticks; 1679 } 1680 1681 if (!progress) { 1682 if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) { 1683 if (PrintCompilation) { 1684 task->print(tty, "wait for blocking compilation timed out"); 1685 } 1686 JVMCI_event_1("waiting on compilation %d timed out", task->compile_id()); 1687 break; 1688 } 1689 } else { 1690 progress_wait_attempts = 0; 1691 } 1692 } 1693 task->clear_waiter(); 1694 return task->is_complete(); 1695 } 1696 #endif 1697 1698 /** 1699 * Wait for the compilation task to complete. 1700 */ 1701 void CompileBroker::wait_for_completion(CompileTask* task) { 1702 if (CIPrintCompileQueue) { 1703 ttyLocker ttyl; 1704 tty->print_cr("BLOCKING FOR COMPILE"); 1705 } 1706 1707 assert(task->is_blocking(), "can only wait on blocking task"); 1708 1709 JavaThread* thread = JavaThread::current(); 1710 1711 methodHandle method(thread, task->method()); 1712 bool free_task; 1713 #if INCLUDE_JVMCI 1714 AbstractCompiler* comp = compiler(task->comp_level()); 1715 if (!UseJVMCINativeLibrary && comp->is_jvmci() && !task->should_wait_for_compilation()) { 1716 // It may return before compilation is completed. 1717 // Note that libjvmci should not pre-emptively unblock 1718 // a thread waiting for a compilation as it does not call 1719 // Java code and so is not deadlock prone like jarjvmci. 1720 free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread); 1721 } else 1722 #endif 1723 { 1724 free_task = true; 1725 // Wait until the task is complete or compilation is shut down. 1726 MonitorLocker ml(thread, CompileTaskWait_lock); 1727 while (!task->is_complete() && !is_compilation_disabled_forever()) { 1728 ml.wait(); 1729 } 1730 } 1731 1732 // It is harmless to check this status without the lock, because 1733 // completion is a stable property. 1734 if (!task->is_complete()) { 1735 // Task is not complete, likely because we are exiting for compilation 1736 // shutdown. The task can still be reached through the queue, or executed 1737 // by some compiler thread. There is no coordination with either MCQ lock 1738 // holders or compilers, therefore we cannot delete the task. 1739 // 1740 // This will leave task allocated, which leaks it. At this (degraded) point, 1741 // it is less risky to abandon the task, rather than attempting a more 1742 // complicated deletion protocol. 1743 free_task = false; 1744 } 1745 1746 if (free_task) { 1747 assert(task->is_complete(), "Compilation should have completed"); 1748 assert(task->next() == nullptr && task->prev() == nullptr, 1749 "Completed task should not be in the queue"); 1750 1751 // By convention, the waiter is responsible for deleting a 1752 // blocking CompileTask. Since there is only one waiter ever 1753 // waiting on a CompileTask, we know that no one else will 1754 // be using this CompileTask; we can delete it. 1755 delete task; 1756 } 1757 } 1758 1759 void CompileBroker::wait_for_no_active_tasks() { 1760 CompileTask::wait_for_no_active_tasks(); 1761 } 1762 1763 /** 1764 * Initialize compiler thread(s) + compiler object(s). The postcondition 1765 * of this function is that the compiler runtimes are initialized and that 1766 * compiler threads can start compiling. 1767 */ 1768 bool CompileBroker::init_compiler_runtime() { 1769 CompilerThread* thread = CompilerThread::current(); 1770 AbstractCompiler* comp = thread->compiler(); 1771 // Final sanity check - the compiler object must exist 1772 guarantee(comp != nullptr, "Compiler object must exist"); 1773 1774 { 1775 // Must switch to native to allocate ci_env 1776 ThreadToNativeFromVM ttn(thread); 1777 ciEnv ci_env((CompileTask*)nullptr); 1778 // Cache Jvmti state 1779 ci_env.cache_jvmti_state(); 1780 // Cache DTrace flags 1781 ci_env.cache_dtrace_flags(); 1782 1783 // Switch back to VM state to do compiler initialization 1784 ThreadInVMfromNative tv(thread); 1785 1786 // Perform per-thread and global initializations 1787 comp->initialize(); 1788 } 1789 1790 if (comp->is_failed()) { 1791 disable_compilation_forever(); 1792 // If compiler initialization failed, no compiler thread that is specific to a 1793 // particular compiler runtime will ever start to compile methods. 1794 shutdown_compiler_runtime(comp, thread); 1795 return false; 1796 } 1797 1798 // C1 specific check 1799 if (comp->is_c1() && (thread->get_buffer_blob() == nullptr)) { 1800 warning("Initialization of %s thread failed (no space to run compilers)", thread->name()); 1801 return false; 1802 } 1803 1804 return true; 1805 } 1806 1807 void CompileBroker::free_buffer_blob_if_allocated(CompilerThread* thread) { 1808 BufferBlob* blob = thread->get_buffer_blob(); 1809 if (blob != nullptr) { 1810 blob->purge(); 1811 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1812 CodeCache::free(blob); 1813 } 1814 } 1815 1816 /** 1817 * If C1 and/or C2 initialization failed, we shut down all compilation. 1818 * We do this to keep things simple. This can be changed if it ever turns 1819 * out to be a problem. 1820 */ 1821 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) { 1822 free_buffer_blob_if_allocated(thread); 1823 1824 if (comp->should_perform_shutdown()) { 1825 // There are two reasons for shutting down the compiler 1826 // 1) compiler runtime initialization failed 1827 // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing 1828 warning("%s initialization failed. Shutting down all compilers", comp->name()); 1829 1830 // Only one thread per compiler runtime object enters here 1831 // Set state to shut down 1832 comp->set_shut_down(); 1833 1834 // Delete all queued compilation tasks to make compiler threads exit faster. 1835 if (_c1_compile_queue != nullptr) { 1836 _c1_compile_queue->delete_all(); 1837 } 1838 1839 if (_c2_compile_queue != nullptr) { 1840 _c2_compile_queue->delete_all(); 1841 } 1842 1843 // Set flags so that we continue execution with using interpreter only. 1844 UseCompiler = false; 1845 UseInterpreter = true; 1846 1847 // We could delete compiler runtimes also. However, there are references to 1848 // the compiler runtime(s) (e.g., nmethod::is_compiled_by_c1()) which then 1849 // fail. This can be done later if necessary. 1850 } 1851 } 1852 1853 /** 1854 * Helper function to create new or reuse old CompileLog. 1855 */ 1856 CompileLog* CompileBroker::get_log(CompilerThread* ct) { 1857 if (!LogCompilation) return nullptr; 1858 1859 AbstractCompiler *compiler = ct->compiler(); 1860 bool c1 = compiler->is_c1(); 1861 jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects; 1862 assert(compiler_objects != nullptr, "must be initialized at this point"); 1863 CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs; 1864 assert(logs != nullptr, "must be initialized at this point"); 1865 int count = c1 ? _c1_count : _c2_count; 1866 1867 // Find Compiler number by its threadObj. 1868 oop compiler_obj = ct->threadObj(); 1869 int compiler_number = 0; 1870 bool found = false; 1871 for (; compiler_number < count; compiler_number++) { 1872 if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) { 1873 found = true; 1874 break; 1875 } 1876 } 1877 assert(found, "Compiler must exist at this point"); 1878 1879 // Determine pointer for this thread's log. 1880 CompileLog** log_ptr = &logs[compiler_number]; 1881 1882 // Return old one if it exists. 1883 CompileLog* log = *log_ptr; 1884 if (log != nullptr) { 1885 ct->init_log(log); 1886 return log; 1887 } 1888 1889 // Create a new one and remember it. 1890 init_compiler_thread_log(); 1891 log = ct->log(); 1892 *log_ptr = log; 1893 return log; 1894 } 1895 1896 // ------------------------------------------------------------------ 1897 // CompileBroker::compiler_thread_loop 1898 // 1899 // The main loop run by a CompilerThread. 1900 void CompileBroker::compiler_thread_loop() { 1901 CompilerThread* thread = CompilerThread::current(); 1902 CompileQueue* queue = thread->queue(); 1903 // For the thread that initializes the ciObjectFactory 1904 // this resource mark holds all the shared objects 1905 ResourceMark rm; 1906 1907 // First thread to get here will initialize the compiler interface 1908 1909 { 1910 ASSERT_IN_VM; 1911 MutexLocker only_one (thread, CompileThread_lock); 1912 if (!ciObjectFactory::is_initialized()) { 1913 ciObjectFactory::initialize(); 1914 } 1915 } 1916 1917 // Open a log. 1918 CompileLog* log = get_log(thread); 1919 if (log != nullptr) { 1920 log->begin_elem("start_compile_thread name='%s' thread='%zu' process='%d'", 1921 thread->name(), 1922 os::current_thread_id(), 1923 os::current_process_id()); 1924 log->stamp(); 1925 log->end_elem(); 1926 } 1927 1928 // If compiler thread/runtime initialization fails, exit the compiler thread 1929 if (!init_compiler_runtime()) { 1930 return; 1931 } 1932 1933 thread->start_idle_timer(); 1934 1935 // Poll for new compilation tasks as long as the JVM runs. Compilation 1936 // should only be disabled if something went wrong while initializing the 1937 // compiler runtimes. This, in turn, should not happen. The only known case 1938 // when compiler runtime initialization fails is if there is not enough free 1939 // space in the code cache to generate the necessary stubs, etc. 1940 while (!is_compilation_disabled_forever()) { 1941 // We need this HandleMark to avoid leaking VM handles. 1942 HandleMark hm(thread); 1943 1944 CompileTask* task = queue->get(thread); 1945 if (task == nullptr) { 1946 if (UseDynamicNumberOfCompilerThreads) { 1947 // Access compiler_count under lock to enforce consistency. 1948 MutexLocker only_one(CompileThread_lock); 1949 if (can_remove(thread, true)) { 1950 if (trace_compiler_threads()) { 1951 ResourceMark rm; 1952 stringStream msg; 1953 msg.print("Removing compiler thread %s after " JLONG_FORMAT " ms idle time", 1954 thread->name(), thread->idle_time_millis()); 1955 print_compiler_threads(msg); 1956 } 1957 1958 // Notify compiler that the compiler thread is about to stop 1959 thread->compiler()->stopping_compiler_thread(thread); 1960 1961 free_buffer_blob_if_allocated(thread); 1962 return; // Stop this thread. 1963 } 1964 } 1965 } else { 1966 // Assign the task to the current thread. Mark this compilation 1967 // thread as active for the profiler. 1968 // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition 1969 // occurs after fetching the compile task off the queue. 1970 CompileTaskWrapper ctw(task); 1971 methodHandle method(thread, task->method()); 1972 1973 // Never compile a method if breakpoints are present in it 1974 if (method()->number_of_breakpoints() == 0) { 1975 // Compile the method. 1976 if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) { 1977 invoke_compiler_on_method(task); 1978 thread->start_idle_timer(); 1979 } else { 1980 // After compilation is disabled, remove remaining methods from queue 1981 method->clear_queued_for_compilation(); 1982 task->set_failure_reason("compilation is disabled"); 1983 } 1984 } else { 1985 task->set_failure_reason("breakpoints are present"); 1986 } 1987 1988 if (UseDynamicNumberOfCompilerThreads) { 1989 possibly_add_compiler_threads(thread); 1990 assert(!thread->has_pending_exception(), "should have been handled"); 1991 } 1992 } 1993 } 1994 1995 // Shut down compiler runtime 1996 shutdown_compiler_runtime(thread->compiler(), thread); 1997 } 1998 1999 // ------------------------------------------------------------------ 2000 // CompileBroker::init_compiler_thread_log 2001 // 2002 // Set up state required by +LogCompilation. 2003 void CompileBroker::init_compiler_thread_log() { 2004 CompilerThread* thread = CompilerThread::current(); 2005 char file_name[4*K]; 2006 FILE* fp = nullptr; 2007 intx thread_id = os::current_thread_id(); 2008 for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) { 2009 const char* dir = (try_temp_dir ? os::get_temp_directory() : nullptr); 2010 if (dir == nullptr) { 2011 jio_snprintf(file_name, sizeof(file_name), "hs_c%zu_pid%u.log", 2012 thread_id, os::current_process_id()); 2013 } else { 2014 jio_snprintf(file_name, sizeof(file_name), 2015 "%s%shs_c%zu_pid%u.log", dir, 2016 os::file_separator(), thread_id, os::current_process_id()); 2017 } 2018 2019 fp = os::fopen(file_name, "wt"); 2020 if (fp != nullptr) { 2021 if (LogCompilation && Verbose) { 2022 tty->print_cr("Opening compilation log %s", file_name); 2023 } 2024 CompileLog* log = new(mtCompiler) CompileLog(file_name, fp, thread_id); 2025 if (log == nullptr) { 2026 fclose(fp); 2027 return; 2028 } 2029 thread->init_log(log); 2030 2031 if (xtty != nullptr) { 2032 ttyLocker ttyl; 2033 // Record any per thread log files 2034 xtty->elem("thread_logfile thread='%zd' filename='%s'", thread_id, file_name); 2035 } 2036 return; 2037 } 2038 } 2039 warning("Cannot open log file: %s", file_name); 2040 } 2041 2042 void CompileBroker::log_metaspace_failure() { 2043 const char* message = "some methods may not be compiled because metaspace " 2044 "is out of memory"; 2045 if (CompilationLog::log() != nullptr) { 2046 CompilationLog::log()->log_metaspace_failure(message); 2047 } 2048 if (PrintCompilation) { 2049 tty->print_cr("COMPILE PROFILING SKIPPED: %s", message); 2050 } 2051 } 2052 2053 2054 // ------------------------------------------------------------------ 2055 // CompileBroker::set_should_block 2056 // 2057 // Set _should_block. 2058 // Call this from the VM, with Threads_lock held and a safepoint requested. 2059 void CompileBroker::set_should_block() { 2060 assert(Threads_lock->owner() == Thread::current(), "must have threads lock"); 2061 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already"); 2062 #ifndef PRODUCT 2063 if (PrintCompilation && (Verbose || WizardMode)) 2064 tty->print_cr("notifying compiler thread pool to block"); 2065 #endif 2066 _should_block = true; 2067 } 2068 2069 // ------------------------------------------------------------------ 2070 // CompileBroker::maybe_block 2071 // 2072 // Call this from the compiler at convenient points, to poll for _should_block. 2073 void CompileBroker::maybe_block() { 2074 if (_should_block) { 2075 #ifndef PRODUCT 2076 if (PrintCompilation && (Verbose || WizardMode)) 2077 tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current())); 2078 #endif 2079 // If we are executing a task during the request to block, report the task 2080 // before disappearing. 2081 CompilerThread* thread = CompilerThread::current(); 2082 if (thread != nullptr) { 2083 CompileTask* task = thread->task(); 2084 if (task != nullptr) { 2085 if (PrintCompilation) { 2086 task->print(tty, "blocked"); 2087 } 2088 task->print_ul("blocked"); 2089 } 2090 } 2091 // Go to VM state and block for final VM shutdown safepoint. 2092 ThreadInVMfromNative tivfn(JavaThread::current()); 2093 assert(false, "Should never unblock from TIVNM entry"); 2094 } 2095 } 2096 2097 // wrapper for CodeCache::print_summary() 2098 static void codecache_print(bool detailed) 2099 { 2100 stringStream s; 2101 // Dump code cache into a buffer before locking the tty, 2102 { 2103 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2104 CodeCache::print_summary(&s, detailed); 2105 } 2106 ttyLocker ttyl; 2107 tty->print("%s", s.freeze()); 2108 } 2109 2110 // wrapper for CodeCache::print_summary() using outputStream 2111 static void codecache_print(outputStream* out, bool detailed) { 2112 stringStream s; 2113 2114 // Dump code cache into a buffer 2115 { 2116 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2117 CodeCache::print_summary(&s, detailed); 2118 } 2119 2120 char* remaining_log = s.as_string(); 2121 while (*remaining_log != '\0') { 2122 char* eol = strchr(remaining_log, '\n'); 2123 if (eol == nullptr) { 2124 out->print_cr("%s", remaining_log); 2125 remaining_log = remaining_log + strlen(remaining_log); 2126 } else { 2127 *eol = '\0'; 2128 out->print_cr("%s", remaining_log); 2129 remaining_log = eol + 1; 2130 } 2131 } 2132 } 2133 2134 void CompileBroker::handle_compile_error(CompilerThread* thread, CompileTask* task, ciEnv* ci_env, 2135 int compilable, const char* failure_reason) { 2136 if (!AbortVMOnCompilationFailure) { 2137 return; 2138 } 2139 if (compilable == ciEnv::MethodCompilable_not_at_tier) { 2140 fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason); 2141 } 2142 if (compilable == ciEnv::MethodCompilable_never) { 2143 fatal("Never compilable: %s", failure_reason); 2144 } 2145 } 2146 2147 static void post_compilation_event(EventCompilation& event, CompileTask* task) { 2148 assert(task != nullptr, "invariant"); 2149 CompilerEvent::CompilationEvent::post(event, 2150 task->compile_id(), 2151 task->compiler()->type(), 2152 task->method(), 2153 task->comp_level(), 2154 task->is_success(), 2155 task->osr_bci() != CompileBroker::standard_entry_bci, 2156 task->nm_total_size(), 2157 task->num_inlined_bytecodes(), 2158 task->arena_bytes()); 2159 } 2160 2161 int DirectivesStack::_depth = 0; 2162 CompilerDirectives* DirectivesStack::_top = nullptr; 2163 CompilerDirectives* DirectivesStack::_bottom = nullptr; 2164 2165 // Acquires Compilation_lock and waits for it to be notified 2166 // as long as WhiteBox::compilation_locked is true. 2167 static void whitebox_lock_compilation() { 2168 MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag); 2169 while (WhiteBox::compilation_locked) { 2170 locker.wait(); 2171 } 2172 } 2173 2174 // ------------------------------------------------------------------ 2175 // CompileBroker::invoke_compiler_on_method 2176 // 2177 // Compile a method. 2178 // 2179 void CompileBroker::invoke_compiler_on_method(CompileTask* task) { 2180 task->print_ul(); 2181 elapsedTimer time; 2182 2183 DirectiveSet* directive = task->directive(); 2184 if (directive->PrintCompilationOption) { 2185 ResourceMark rm; 2186 task->print_tty(); 2187 } 2188 2189 CompilerThread* thread = CompilerThread::current(); 2190 ResourceMark rm(thread); 2191 2192 if (CompilationLog::log() != nullptr) { 2193 CompilationLog::log()->log_compile(thread, task); 2194 } 2195 2196 // Common flags. 2197 int compile_id = task->compile_id(); 2198 int osr_bci = task->osr_bci(); 2199 bool is_osr = (osr_bci != standard_entry_bci); 2200 bool should_log = (thread->log() != nullptr); 2201 bool should_break = false; 2202 const int task_level = task->comp_level(); 2203 AbstractCompiler* comp = task->compiler(); 2204 { 2205 // create the handle inside it's own block so it can't 2206 // accidentally be referenced once the thread transitions to 2207 // native. The NoHandleMark before the transition should catch 2208 // any cases where this occurs in the future. 2209 methodHandle method(thread, task->method()); 2210 2211 assert(!method->is_native(), "no longer compile natives"); 2212 2213 // Update compile information when using perfdata. 2214 if (UsePerfData) { 2215 update_compile_perf_data(thread, method, is_osr); 2216 } 2217 2218 DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level)); 2219 } 2220 2221 should_break = directive->BreakAtCompileOption || task->check_break_at_flags(); 2222 if (should_log && !directive->LogOption) { 2223 should_log = false; 2224 } 2225 2226 // Allocate a new set of JNI handles. 2227 JNIHandleMark jhm(thread); 2228 Method* target_handle = task->method(); 2229 int compilable = ciEnv::MethodCompilable; 2230 const char* failure_reason = nullptr; 2231 bool failure_reason_on_C_heap = false; 2232 const char* retry_message = nullptr; 2233 2234 #if INCLUDE_JVMCI 2235 if (UseJVMCICompiler && comp != nullptr && comp->is_jvmci()) { 2236 JVMCICompiler* jvmci = (JVMCICompiler*) comp; 2237 2238 TraceTime t1("compilation", &time); 2239 EventCompilation event; 2240 JVMCICompileState compile_state(task, jvmci); 2241 JVMCIRuntime *runtime = nullptr; 2242 2243 if (JVMCI::in_shutdown()) { 2244 failure_reason = "in JVMCI shutdown"; 2245 retry_message = "not retryable"; 2246 compilable = ciEnv::MethodCompilable_never; 2247 } else if (compile_state.target_method_is_old()) { 2248 // Skip redefined methods 2249 failure_reason = "redefined method"; 2250 retry_message = "not retryable"; 2251 compilable = ciEnv::MethodCompilable_never; 2252 } else { 2253 JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__); 2254 if (env.init_error() != JNI_OK) { 2255 const char* msg = env.init_error_msg(); 2256 failure_reason = os::strdup(err_msg("Error attaching to libjvmci (err: %d, %s)", 2257 env.init_error(), msg == nullptr ? "unknown" : msg), mtJVMCI); 2258 bool reason_on_C_heap = true; 2259 // In case of JNI_ENOMEM, there's a good chance a subsequent attempt to create libjvmci or attach to it 2260 // might succeed. Other errors most likely indicate a non-recoverable error in the JVMCI runtime. 2261 bool retryable = env.init_error() == JNI_ENOMEM; 2262 compile_state.set_failure(retryable, failure_reason, reason_on_C_heap); 2263 } 2264 if (failure_reason == nullptr) { 2265 if (WhiteBoxAPI && WhiteBox::compilation_locked) { 2266 // Must switch to native to block 2267 ThreadToNativeFromVM ttn(thread); 2268 whitebox_lock_compilation(); 2269 } 2270 methodHandle method(thread, target_handle); 2271 runtime = env.runtime(); 2272 runtime->compile_method(&env, jvmci, method, osr_bci); 2273 2274 failure_reason = compile_state.failure_reason(); 2275 failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap(); 2276 if (!compile_state.retryable()) { 2277 retry_message = "not retryable"; 2278 compilable = ciEnv::MethodCompilable_not_at_tier; 2279 } 2280 if (!task->is_success()) { 2281 assert(failure_reason != nullptr, "must specify failure_reason"); 2282 } 2283 } 2284 } 2285 if (!task->is_success() && !JVMCI::in_shutdown()) { 2286 handle_compile_error(thread, task, nullptr, compilable, failure_reason); 2287 } 2288 if (event.should_commit()) { 2289 post_compilation_event(event, task); 2290 } 2291 2292 if (runtime != nullptr) { 2293 runtime->post_compile(thread); 2294 } 2295 } else 2296 #endif // INCLUDE_JVMCI 2297 { 2298 NoHandleMark nhm; 2299 ThreadToNativeFromVM ttn(thread); 2300 2301 ciEnv ci_env(task); 2302 if (should_break) { 2303 ci_env.set_break_at_compile(true); 2304 } 2305 if (should_log) { 2306 ci_env.set_log(thread->log()); 2307 } 2308 assert(thread->env() == &ci_env, "set by ci_env"); 2309 // The thread-env() field is cleared in ~CompileTaskWrapper. 2310 2311 // Cache Jvmti state 2312 bool method_is_old = ci_env.cache_jvmti_state(); 2313 2314 // Skip redefined methods 2315 if (method_is_old) { 2316 ci_env.record_method_not_compilable("redefined method", true); 2317 } 2318 2319 // Cache DTrace flags 2320 ci_env.cache_dtrace_flags(); 2321 2322 ciMethod* target = ci_env.get_method_from_handle(target_handle); 2323 2324 TraceTime t1("compilation", &time); 2325 EventCompilation event; 2326 2327 if (comp == nullptr) { 2328 ci_env.record_method_not_compilable("no compiler"); 2329 } else if (!ci_env.failing()) { 2330 if (WhiteBoxAPI && WhiteBox::compilation_locked) { 2331 whitebox_lock_compilation(); 2332 } 2333 comp->compile_method(&ci_env, target, osr_bci, true, directive); 2334 2335 /* Repeat compilation without installing code for profiling purposes */ 2336 int repeat_compilation_count = directive->RepeatCompilationOption; 2337 while (repeat_compilation_count > 0) { 2338 ResourceMark rm(thread); 2339 task->print_ul("NO CODE INSTALLED"); 2340 comp->compile_method(&ci_env, target, osr_bci, false, directive); 2341 repeat_compilation_count--; 2342 } 2343 } 2344 2345 2346 if (!ci_env.failing() && !task->is_success()) { 2347 assert(ci_env.failure_reason() != nullptr, "expect failure reason"); 2348 assert(false, "compiler should always document failure: %s", ci_env.failure_reason()); 2349 // The compiler elected, without comment, not to register a result. 2350 // Do not attempt further compilations of this method. 2351 ci_env.record_method_not_compilable("compile failed"); 2352 } 2353 2354 // Copy this bit to the enclosing block: 2355 compilable = ci_env.compilable(); 2356 2357 if (ci_env.failing()) { 2358 // Duplicate the failure reason string, so that it outlives ciEnv 2359 failure_reason = os::strdup(ci_env.failure_reason(), mtCompiler); 2360 failure_reason_on_C_heap = true; 2361 retry_message = ci_env.retry_message(); 2362 ci_env.report_failure(failure_reason); 2363 } 2364 2365 if (ci_env.failing()) { 2366 handle_compile_error(thread, task, &ci_env, compilable, failure_reason); 2367 } 2368 if (event.should_commit()) { 2369 post_compilation_event(event, task); 2370 } 2371 } 2372 2373 if (failure_reason != nullptr) { 2374 task->set_failure_reason(failure_reason, failure_reason_on_C_heap); 2375 if (CompilationLog::log() != nullptr) { 2376 CompilationLog::log()->log_failure(thread, task, failure_reason, retry_message); 2377 } 2378 if (PrintCompilation || directive->PrintCompilationOption) { 2379 FormatBufferResource msg = retry_message != nullptr ? 2380 FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) : 2381 FormatBufferResource("COMPILE SKIPPED: %s", failure_reason); 2382 task->print(tty, msg); 2383 } 2384 } 2385 2386 DirectivesStack::release(directive); 2387 2388 methodHandle method(thread, task->method()); 2389 2390 DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success()); 2391 2392 collect_statistics(thread, time, task); 2393 2394 if (PrintCompilation && PrintCompilation2) { 2395 tty->print("%7d ", (int) tty->time_stamp().milliseconds()); // print timestamp 2396 tty->print("%4d ", compile_id); // print compilation number 2397 tty->print("%s ", (is_osr ? "%" : " ")); 2398 if (task->is_success()) { 2399 tty->print("size: %d(%d) ", task->nm_total_size(), task->nm_insts_size()); 2400 } 2401 tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes()); 2402 } 2403 2404 Log(compilation, codecache) log; 2405 if (log.is_debug()) { 2406 LogStream ls(log.debug()); 2407 codecache_print(&ls, /* detailed= */ false); 2408 } 2409 if (PrintCodeCacheOnCompilation) { 2410 codecache_print(/* detailed= */ false); 2411 } 2412 // Disable compilation, if required. 2413 switch (compilable) { 2414 case ciEnv::MethodCompilable_never: 2415 if (is_osr) 2416 method->set_not_osr_compilable_quietly("MethodCompilable_never"); 2417 else 2418 method->set_not_compilable_quietly("MethodCompilable_never"); 2419 break; 2420 case ciEnv::MethodCompilable_not_at_tier: 2421 if (is_osr) 2422 method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level); 2423 else 2424 method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level); 2425 break; 2426 } 2427 2428 // Note that the queued_for_compilation bits are cleared without 2429 // protection of a mutex. [They were set by the requester thread, 2430 // when adding the task to the compile queue -- at which time the 2431 // compile queue lock was held. Subsequently, we acquired the compile 2432 // queue lock to get this task off the compile queue; thus (to belabour 2433 // the point somewhat) our clearing of the bits must be occurring 2434 // only after the setting of the bits. See also 14012000 above. 2435 method->clear_queued_for_compilation(); 2436 } 2437 2438 /** 2439 * The CodeCache is full. Print warning and disable compilation. 2440 * Schedule code cache cleaning so compilation can continue later. 2441 * This function needs to be called only from CodeCache::allocate(), 2442 * since we currently handle a full code cache uniformly. 2443 */ 2444 void CompileBroker::handle_full_code_cache(CodeBlobType code_blob_type) { 2445 UseInterpreter = true; 2446 if (UseCompiler || AlwaysCompileLoopMethods ) { 2447 if (xtty != nullptr) { 2448 stringStream s; 2449 // Dump code cache state into a buffer before locking the tty, 2450 // because log_state() will use locks causing lock conflicts. 2451 CodeCache::log_state(&s); 2452 // Lock to prevent tearing 2453 ttyLocker ttyl; 2454 xtty->begin_elem("code_cache_full"); 2455 xtty->print("%s", s.freeze()); 2456 xtty->stamp(); 2457 xtty->end_elem(); 2458 } 2459 2460 #ifndef PRODUCT 2461 if (ExitOnFullCodeCache) { 2462 codecache_print(/* detailed= */ true); 2463 before_exit(JavaThread::current()); 2464 exit_globals(); // will delete tty 2465 vm_direct_exit(1); 2466 } 2467 #endif 2468 if (UseCodeCacheFlushing) { 2469 // Since code cache is full, immediately stop new compiles 2470 if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) { 2471 log_info(codecache)("Code cache is full - disabling compilation"); 2472 } 2473 } else { 2474 disable_compilation_forever(); 2475 } 2476 2477 CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning()); 2478 } 2479 } 2480 2481 // ------------------------------------------------------------------ 2482 // CompileBroker::update_compile_perf_data 2483 // 2484 // Record this compilation for debugging purposes. 2485 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) { 2486 ResourceMark rm; 2487 char* method_name = method->name()->as_C_string(); 2488 char current_method[CompilerCounters::cmname_buffer_length]; 2489 size_t maxLen = CompilerCounters::cmname_buffer_length; 2490 2491 const char* class_name = method->method_holder()->name()->as_C_string(); 2492 2493 size_t s1len = strlen(class_name); 2494 size_t s2len = strlen(method_name); 2495 2496 // check if we need to truncate the string 2497 if (s1len + s2len + 2 > maxLen) { 2498 2499 // the strategy is to lop off the leading characters of the 2500 // class name and the trailing characters of the method name. 2501 2502 if (s2len + 2 > maxLen) { 2503 // lop of the entire class name string, let snprintf handle 2504 // truncation of the method name. 2505 class_name += s1len; // null string 2506 } 2507 else { 2508 // lop off the extra characters from the front of the class name 2509 class_name += ((s1len + s2len + 2) - maxLen); 2510 } 2511 } 2512 2513 jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name); 2514 2515 int last_compile_type = normal_compile; 2516 if (CICountOSR && is_osr) { 2517 last_compile_type = osr_compile; 2518 } else if (CICountNative && method->is_native()) { 2519 last_compile_type = native_compile; 2520 } 2521 2522 CompilerCounters* counters = thread->counters(); 2523 counters->set_current_method(current_method); 2524 counters->set_compile_type((jlong) last_compile_type); 2525 } 2526 2527 // ------------------------------------------------------------------ 2528 // CompileBroker::collect_statistics 2529 // 2530 // Collect statistics about the compilation. 2531 2532 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) { 2533 bool success = task->is_success(); 2534 methodHandle method (thread, task->method()); 2535 int compile_id = task->compile_id(); 2536 bool is_osr = (task->osr_bci() != standard_entry_bci); 2537 const int comp_level = task->comp_level(); 2538 CompilerCounters* counters = thread->counters(); 2539 2540 MutexLocker locker(CompileStatistics_lock); 2541 2542 // _perf variables are production performance counters which are 2543 // updated regardless of the setting of the CITime and CITimeEach flags 2544 // 2545 2546 // account all time, including bailouts and failures in this counter; 2547 // C1 and C2 counters are counting both successful and unsuccessful compiles 2548 _t_total_compilation.add(time); 2549 2550 // Update compilation times. Used by the implementation of JFR CompilerStatistics 2551 // and java.lang.management.CompilationMXBean. 2552 _perf_total_compilation->inc(time.ticks()); 2553 _peak_compilation_time = MAX2(time.milliseconds(), _peak_compilation_time); 2554 2555 if (!success) { 2556 _total_bailout_count++; 2557 if (UsePerfData) { 2558 _perf_last_failed_method->set_value(counters->current_method()); 2559 _perf_last_failed_type->set_value(counters->compile_type()); 2560 _perf_total_bailout_count->inc(); 2561 } 2562 _t_bailedout_compilation.add(time); 2563 } else if (!task->is_success()) { 2564 if (UsePerfData) { 2565 _perf_last_invalidated_method->set_value(counters->current_method()); 2566 _perf_last_invalidated_type->set_value(counters->compile_type()); 2567 _perf_total_invalidated_count->inc(); 2568 } 2569 _total_invalidated_count++; 2570 _t_invalidated_compilation.add(time); 2571 } else { 2572 // Compilation succeeded 2573 if (CITime) { 2574 int bytes_compiled = method->code_size() + task->num_inlined_bytecodes(); 2575 if (is_osr) { 2576 _t_osr_compilation.add(time); 2577 _sum_osr_bytes_compiled += bytes_compiled; 2578 } else { 2579 _t_standard_compilation.add(time); 2580 _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes(); 2581 } 2582 2583 // Collect statistic per compilation level 2584 if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) { 2585 CompilerStatistics* stats = &_stats_per_level[comp_level-1]; 2586 if (is_osr) { 2587 stats->_osr.update(time, bytes_compiled); 2588 } else { 2589 stats->_standard.update(time, bytes_compiled); 2590 } 2591 stats->_nmethods_size += task->nm_total_size(); 2592 stats->_nmethods_code_size += task->nm_insts_size(); 2593 } else { 2594 assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level); 2595 } 2596 2597 // Collect statistic per compiler 2598 AbstractCompiler* comp = compiler(comp_level); 2599 if (comp) { 2600 CompilerStatistics* stats = comp->stats(); 2601 if (is_osr) { 2602 stats->_osr.update(time, bytes_compiled); 2603 } else { 2604 stats->_standard.update(time, bytes_compiled); 2605 } 2606 stats->_nmethods_size += task->nm_total_size(); 2607 stats->_nmethods_code_size += task->nm_insts_size(); 2608 } else { // if (!comp) 2609 assert(false, "Compiler object must exist"); 2610 } 2611 } 2612 2613 if (UsePerfData) { 2614 // save the name of the last method compiled 2615 _perf_last_method->set_value(counters->current_method()); 2616 _perf_last_compile_type->set_value(counters->compile_type()); 2617 _perf_last_compile_size->set_value(method->code_size() + 2618 task->num_inlined_bytecodes()); 2619 if (is_osr) { 2620 _perf_osr_compilation->inc(time.ticks()); 2621 _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); 2622 } else { 2623 _perf_standard_compilation->inc(time.ticks()); 2624 _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); 2625 } 2626 } 2627 2628 if (CITimeEach) { 2629 double compile_time = time.seconds(); 2630 double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time; 2631 tty->print_cr("%3d seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)", 2632 compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes()); 2633 } 2634 2635 // Collect counts of successful compilations 2636 _sum_nmethod_size += task->nm_total_size(); 2637 _sum_nmethod_code_size += task->nm_insts_size(); 2638 _total_compile_count++; 2639 2640 if (UsePerfData) { 2641 _perf_sum_nmethod_size->inc( task->nm_total_size()); 2642 _perf_sum_nmethod_code_size->inc(task->nm_insts_size()); 2643 _perf_total_compile_count->inc(); 2644 } 2645 2646 if (is_osr) { 2647 if (UsePerfData) _perf_total_osr_compile_count->inc(); 2648 _total_osr_compile_count++; 2649 } else { 2650 if (UsePerfData) _perf_total_standard_compile_count->inc(); 2651 _total_standard_compile_count++; 2652 } 2653 } 2654 // set the current method for the thread to null 2655 if (UsePerfData) counters->set_current_method(""); 2656 } 2657 2658 const char* CompileBroker::compiler_name(int comp_level) { 2659 AbstractCompiler *comp = CompileBroker::compiler(comp_level); 2660 if (comp == nullptr) { 2661 return "no compiler"; 2662 } else { 2663 return (comp->name()); 2664 } 2665 } 2666 2667 jlong CompileBroker::total_compilation_ticks() { 2668 return _perf_total_compilation != nullptr ? _perf_total_compilation->get_value() : 0; 2669 } 2670 2671 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) { 2672 tty->print_cr(" %s {speed: %6.3f bytes/s; standard: %6.3f s, %u bytes, %u methods; osr: %6.3f s, %u bytes, %u methods; nmethods_size: %u bytes; nmethods_code_size: %u bytes}", 2673 name, stats->bytes_per_second(), 2674 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count, 2675 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count, 2676 stats->_nmethods_size, stats->_nmethods_code_size); 2677 } 2678 2679 void CompileBroker::print_times(bool per_compiler, bool aggregate) { 2680 if (per_compiler) { 2681 if (aggregate) { 2682 tty->cr(); 2683 tty->print_cr("Individual compiler times (for compiled methods only)"); 2684 tty->print_cr("------------------------------------------------"); 2685 tty->cr(); 2686 } 2687 for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) { 2688 AbstractCompiler* comp = _compilers[i]; 2689 if (comp != nullptr) { 2690 print_times(comp->name(), comp->stats()); 2691 } 2692 } 2693 if (aggregate) { 2694 tty->cr(); 2695 tty->print_cr("Individual compilation Tier times (for compiled methods only)"); 2696 tty->print_cr("------------------------------------------------"); 2697 tty->cr(); 2698 } 2699 char tier_name[256]; 2700 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) { 2701 CompilerStatistics* stats = &_stats_per_level[tier-1]; 2702 os::snprintf_checked(tier_name, sizeof(tier_name), "Tier%d", tier); 2703 print_times(tier_name, stats); 2704 } 2705 } 2706 2707 if (!aggregate) { 2708 return; 2709 } 2710 2711 elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation; 2712 elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation; 2713 elapsedTimer total_compilation = CompileBroker::_t_total_compilation; 2714 2715 uint standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled; 2716 uint osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled; 2717 2718 uint standard_compile_count = CompileBroker::_total_standard_compile_count; 2719 uint osr_compile_count = CompileBroker::_total_osr_compile_count; 2720 uint total_compile_count = CompileBroker::_total_compile_count; 2721 uint total_bailout_count = CompileBroker::_total_bailout_count; 2722 uint total_invalidated_count = CompileBroker::_total_invalidated_count; 2723 2724 uint nmethods_code_size = CompileBroker::_sum_nmethod_code_size; 2725 uint nmethods_size = CompileBroker::_sum_nmethod_size; 2726 2727 tty->cr(); 2728 tty->print_cr("Accumulated compiler times"); 2729 tty->print_cr("----------------------------------------------------------"); 2730 //0000000000111111111122222222223333333333444444444455555555556666666666 2731 //0123456789012345678901234567890123456789012345678901234567890123456789 2732 tty->print_cr(" Total compilation time : %7.3f s", total_compilation.seconds()); 2733 tty->print_cr(" Standard compilation : %7.3f s, Average : %2.3f s", 2734 standard_compilation.seconds(), 2735 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count); 2736 tty->print_cr(" Bailed out compilation : %7.3f s, Average : %2.3f s", 2737 CompileBroker::_t_bailedout_compilation.seconds(), 2738 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count); 2739 tty->print_cr(" On stack replacement : %7.3f s, Average : %2.3f s", 2740 osr_compilation.seconds(), 2741 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count); 2742 tty->print_cr(" Invalidated : %7.3f s, Average : %2.3f s", 2743 CompileBroker::_t_invalidated_compilation.seconds(), 2744 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count); 2745 2746 AbstractCompiler *comp = compiler(CompLevel_simple); 2747 if (comp != nullptr) { 2748 tty->cr(); 2749 comp->print_timers(); 2750 } 2751 comp = compiler(CompLevel_full_optimization); 2752 if (comp != nullptr) { 2753 tty->cr(); 2754 comp->print_timers(); 2755 } 2756 #if INCLUDE_JVMCI 2757 if (EnableJVMCI) { 2758 JVMCICompiler *jvmci_comp = JVMCICompiler::instance(false, JavaThread::current_or_null()); 2759 if (jvmci_comp != nullptr && jvmci_comp != comp) { 2760 tty->cr(); 2761 jvmci_comp->print_timers(); 2762 } 2763 } 2764 #endif 2765 2766 tty->cr(); 2767 tty->print_cr(" Total compiled methods : %8u methods", total_compile_count); 2768 tty->print_cr(" Standard compilation : %8u methods", standard_compile_count); 2769 tty->print_cr(" On stack replacement : %8u methods", osr_compile_count); 2770 uint tcb = osr_bytes_compiled + standard_bytes_compiled; 2771 tty->print_cr(" Total compiled bytecodes : %8u bytes", tcb); 2772 tty->print_cr(" Standard compilation : %8u bytes", standard_bytes_compiled); 2773 tty->print_cr(" On stack replacement : %8u bytes", osr_bytes_compiled); 2774 double tcs = total_compilation.seconds(); 2775 uint bps = tcs == 0.0 ? 0 : (uint)(tcb / tcs); 2776 tty->print_cr(" Average compilation speed : %8u bytes/s", bps); 2777 tty->cr(); 2778 tty->print_cr(" nmethod code size : %8u bytes", nmethods_code_size); 2779 tty->print_cr(" nmethod total size : %8u bytes", nmethods_size); 2780 } 2781 2782 // Print general/accumulated JIT information. 2783 void CompileBroker::print_info(outputStream *out) { 2784 if (out == nullptr) out = tty; 2785 out->cr(); 2786 out->print_cr("======================"); 2787 out->print_cr(" General JIT info "); 2788 out->print_cr("======================"); 2789 out->cr(); 2790 out->print_cr(" JIT is : %7s", should_compile_new_jobs() ? "on" : "off"); 2791 out->print_cr(" Compiler threads : %7d", (int)CICompilerCount); 2792 out->cr(); 2793 out->print_cr("CodeCache overview"); 2794 out->print_cr("--------------------------------------------------------"); 2795 out->cr(); 2796 out->print_cr(" Reserved size : %7zu KB", CodeCache::max_capacity() / K); 2797 out->print_cr(" Committed size : %7zu KB", CodeCache::capacity() / K); 2798 out->print_cr(" Unallocated capacity : %7zu KB", CodeCache::unallocated_capacity() / K); 2799 out->cr(); 2800 } 2801 2802 // Note: tty_lock must not be held upon entry to this function. 2803 // Print functions called from herein do "micro-locking" on tty_lock. 2804 // That's a tradeoff which keeps together important blocks of output. 2805 // At the same time, continuous tty_lock hold time is kept in check, 2806 // preventing concurrently printing threads from stalling a long time. 2807 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) { 2808 TimeStamp ts_total; 2809 TimeStamp ts_global; 2810 TimeStamp ts; 2811 2812 bool allFun = !strcmp(function, "all"); 2813 bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun; 2814 bool usedSpace = !strcmp(function, "UsedSpace") || allFun; 2815 bool freeSpace = !strcmp(function, "FreeSpace") || allFun; 2816 bool methodCount = !strcmp(function, "MethodCount") || allFun; 2817 bool methodSpace = !strcmp(function, "MethodSpace") || allFun; 2818 bool methodAge = !strcmp(function, "MethodAge") || allFun; 2819 bool methodNames = !strcmp(function, "MethodNames") || allFun; 2820 bool discard = !strcmp(function, "discard") || allFun; 2821 2822 if (out == nullptr) { 2823 out = tty; 2824 } 2825 2826 if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) { 2827 out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function); 2828 out->cr(); 2829 return; 2830 } 2831 2832 ts_total.update(); // record starting point 2833 2834 if (aggregate) { 2835 print_info(out); 2836 } 2837 2838 // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function. 2839 // That prevents other threads from destroying (making inconsistent) our view on the CodeHeap. 2840 // When we request individual parts of the analysis via the jcmd interface, it is possible 2841 // that in between another thread (another jcmd user or the vm running into CodeCache OOM) 2842 // updated the aggregated data. We will then see a modified, but again consistent, view 2843 // on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold 2844 // a lock across user interaction. 2845 2846 // We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock. 2847 // CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time, 2848 // leading to an unnecessarily long hold time of the other locks we acquired before. 2849 ts.update(); // record starting point 2850 MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag); 2851 out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds()); 2852 2853 // Holding the CodeCache_lock protects from concurrent alterations of the CodeCache. 2854 // Unfortunately, such protection is not sufficient: 2855 // When a new nmethod is created via ciEnv::register_method(), the 2856 // Compile_lock is taken first. After some initializations, 2857 // nmethod::new_nmethod() takes over, grabbing the CodeCache_lock 2858 // immediately (after finalizing the oop references). To lock out concurrent 2859 // modifiers, we have to grab both locks as well in the described sequence. 2860 // 2861 // If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock 2862 // for the entire duration of aggregation and printing. That makes sure we see 2863 // a consistent picture and do not run into issues caused by concurrent alterations. 2864 bool should_take_Compile_lock = !SafepointSynchronize::is_at_safepoint() && 2865 !Compile_lock->owned_by_self(); 2866 bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() && 2867 !CodeCache_lock->owned_by_self(); 2868 bool take_global_lock_1 = allFun && should_take_Compile_lock; 2869 bool take_global_lock_2 = allFun && should_take_CodeCache_lock; 2870 bool take_function_lock_1 = !allFun && should_take_Compile_lock; 2871 bool take_function_lock_2 = !allFun && should_take_CodeCache_lock; 2872 bool take_global_locks = take_global_lock_1 || take_global_lock_2; 2873 bool take_function_locks = take_function_lock_1 || take_function_lock_2; 2874 2875 ts_global.update(); // record starting point 2876 2877 ConditionalMutexLocker mu1(Compile_lock, take_global_lock_1, Mutex::_safepoint_check_flag); 2878 ConditionalMutexLocker mu2(CodeCache_lock, take_global_lock_2, Mutex::_no_safepoint_check_flag); 2879 if (take_global_locks) { 2880 out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds()); 2881 ts_global.update(); // record starting point 2882 } 2883 2884 if (aggregate) { 2885 ts.update(); // record starting point 2886 ConditionalMutexLocker mu11(Compile_lock, take_function_lock_1, Mutex::_safepoint_check_flag); 2887 ConditionalMutexLocker mu22(CodeCache_lock, take_function_lock_2, Mutex::_no_safepoint_check_flag); 2888 if (take_function_locks) { 2889 out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds()); 2890 } 2891 2892 ts.update(); // record starting point 2893 CodeCache::aggregate(out, granularity); 2894 if (take_function_locks) { 2895 out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds()); 2896 } 2897 } 2898 2899 if (usedSpace) CodeCache::print_usedSpace(out); 2900 if (freeSpace) CodeCache::print_freeSpace(out); 2901 if (methodCount) CodeCache::print_count(out); 2902 if (methodSpace) CodeCache::print_space(out); 2903 if (methodAge) CodeCache::print_age(out); 2904 if (methodNames) { 2905 if (allFun) { 2906 // print_names() can only be used safely if the locks have been continuously held 2907 // since aggregation begin. That is true only for function "all". 2908 CodeCache::print_names(out); 2909 } else { 2910 out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'"); 2911 } 2912 } 2913 if (discard) CodeCache::discard(out); 2914 2915 if (take_global_locks) { 2916 out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds()); 2917 } 2918 out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds()); 2919 }