1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/javaClasses.inline.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/vmClasses.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/codeHeapState.hpp"
  31 #include "code/dependencyContext.hpp"
  32 #include "compiler/compilationLog.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compilationPolicy.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileLog.hpp"
  37 #include "compiler/compilerEvent.hpp"
  38 #include "compiler/compilerOracle.hpp"
  39 #include "compiler/directivesParser.hpp"
  40 #include "gc/shared/memAllocator.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "jfr/jfrEvents.hpp"
  43 #include "jvm.h"
  44 #include "logging/log.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "memory/allocation.inline.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.hpp"
  49 #include "oops/method.inline.hpp"
  50 #include "oops/methodData.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "prims/jvmtiExport.hpp"
  53 #include "prims/nativeLookup.hpp"
  54 #include "prims/whitebox.hpp"
  55 #include "runtime/atomic.hpp"
  56 #include "runtime/escapeBarrier.hpp"
  57 #include "runtime/globals_extension.hpp"
  58 #include "runtime/handles.inline.hpp"
  59 #include "runtime/init.hpp"
  60 #include "runtime/interfaceSupport.inline.hpp"
  61 #include "runtime/java.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/jniHandles.inline.hpp"
  64 #include "runtime/os.hpp"
  65 #include "runtime/perfData.hpp"
  66 #include "runtime/safepointVerifiers.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/threads.hpp"
  69 #include "runtime/threadSMR.hpp"
  70 #include "runtime/timerTrace.hpp"
  71 #include "runtime/vframe.inline.hpp"
  72 #include "utilities/debug.hpp"
  73 #include "utilities/dtrace.hpp"
  74 #include "utilities/events.hpp"
  75 #include "utilities/formatBuffer.hpp"
  76 #include "utilities/macros.hpp"
  77 #ifdef COMPILER1
  78 #include "c1/c1_Compiler.hpp"
  79 #endif
  80 #ifdef COMPILER2
  81 #include "opto/c2compiler.hpp"
  82 #endif
  83 #if INCLUDE_JVMCI
  84 #include "jvmci/jvmciEnv.hpp"
  85 #include "jvmci/jvmciRuntime.hpp"
  86 #endif
  87 
  88 #ifdef DTRACE_ENABLED
  89 
  90 // Only bother with this argument setup if dtrace is available
  91 
  92 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)             \
  93   {                                                                      \
  94     Symbol* klass_name = (method)->klass_name();                         \
  95     Symbol* name = (method)->name();                                     \
  96     Symbol* signature = (method)->signature();                           \
  97     HOTSPOT_METHOD_COMPILE_BEGIN(                                        \
  98       (char *) comp_name, strlen(comp_name),                             \
  99       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 100       (char *) name->bytes(), name->utf8_length(),                       \
 101       (char *) signature->bytes(), signature->utf8_length());            \
 102   }
 103 
 104 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)      \
 105   {                                                                      \
 106     Symbol* klass_name = (method)->klass_name();                         \
 107     Symbol* name = (method)->name();                                     \
 108     Symbol* signature = (method)->signature();                           \
 109     HOTSPOT_METHOD_COMPILE_END(                                          \
 110       (char *) comp_name, strlen(comp_name),                             \
 111       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 112       (char *) name->bytes(), name->utf8_length(),                       \
 113       (char *) signature->bytes(), signature->utf8_length(), (success)); \
 114   }
 115 
 116 #else //  ndef DTRACE_ENABLED
 117 
 118 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
 119 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
 120 
 121 #endif // ndef DTRACE_ENABLED
 122 
 123 bool CompileBroker::_initialized = false;
 124 volatile bool CompileBroker::_should_block = false;
 125 volatile int  CompileBroker::_print_compilation_warning = 0;
 126 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
 127 
 128 // The installed compiler(s)
 129 AbstractCompiler* CompileBroker::_compilers[2];
 130 
 131 // The maximum numbers of compiler threads to be determined during startup.
 132 int CompileBroker::_c1_count = 0;
 133 int CompileBroker::_c2_count = 0;
 134 
 135 // An array of compiler names as Java String objects
 136 jobject* CompileBroker::_compiler1_objects = nullptr;
 137 jobject* CompileBroker::_compiler2_objects = nullptr;
 138 
 139 CompileLog** CompileBroker::_compiler1_logs = nullptr;
 140 CompileLog** CompileBroker::_compiler2_logs = nullptr;
 141 
 142 // These counters are used to assign an unique ID to each compilation.
 143 volatile jint CompileBroker::_compilation_id     = 0;
 144 volatile jint CompileBroker::_osr_compilation_id = 0;
 145 volatile jint CompileBroker::_native_compilation_id = 0;
 146 
 147 // Performance counters
 148 PerfCounter* CompileBroker::_perf_total_compilation = nullptr;
 149 PerfCounter* CompileBroker::_perf_osr_compilation = nullptr;
 150 PerfCounter* CompileBroker::_perf_standard_compilation = nullptr;
 151 
 152 PerfCounter* CompileBroker::_perf_total_bailout_count = nullptr;
 153 PerfCounter* CompileBroker::_perf_total_invalidated_count = nullptr;
 154 PerfCounter* CompileBroker::_perf_total_compile_count = nullptr;
 155 PerfCounter* CompileBroker::_perf_total_osr_compile_count = nullptr;
 156 PerfCounter* CompileBroker::_perf_total_standard_compile_count = nullptr;
 157 
 158 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = nullptr;
 159 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = nullptr;
 160 PerfCounter* CompileBroker::_perf_sum_nmethod_size = nullptr;
 161 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = nullptr;
 162 
 163 PerfStringVariable* CompileBroker::_perf_last_method = nullptr;
 164 PerfStringVariable* CompileBroker::_perf_last_failed_method = nullptr;
 165 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = nullptr;
 166 PerfVariable*       CompileBroker::_perf_last_compile_type = nullptr;
 167 PerfVariable*       CompileBroker::_perf_last_compile_size = nullptr;
 168 PerfVariable*       CompileBroker::_perf_last_failed_type = nullptr;
 169 PerfVariable*       CompileBroker::_perf_last_invalidated_type = nullptr;
 170 
 171 // Timers and counters for generating statistics
 172 elapsedTimer CompileBroker::_t_total_compilation;
 173 elapsedTimer CompileBroker::_t_osr_compilation;
 174 elapsedTimer CompileBroker::_t_standard_compilation;
 175 elapsedTimer CompileBroker::_t_invalidated_compilation;
 176 elapsedTimer CompileBroker::_t_bailedout_compilation;
 177 
 178 uint CompileBroker::_total_bailout_count            = 0;
 179 uint CompileBroker::_total_invalidated_count        = 0;
 180 uint CompileBroker::_total_compile_count            = 0;
 181 uint CompileBroker::_total_osr_compile_count        = 0;
 182 uint CompileBroker::_total_standard_compile_count   = 0;
 183 uint CompileBroker::_total_compiler_stopped_count   = 0;
 184 uint CompileBroker::_total_compiler_restarted_count = 0;
 185 
 186 uint CompileBroker::_sum_osr_bytes_compiled         = 0;
 187 uint CompileBroker::_sum_standard_bytes_compiled    = 0;
 188 uint CompileBroker::_sum_nmethod_size               = 0;
 189 uint CompileBroker::_sum_nmethod_code_size          = 0;
 190 
 191 jlong CompileBroker::_peak_compilation_time        = 0;
 192 
 193 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization];
 194 
 195 CompileQueue* CompileBroker::_c2_compile_queue     = nullptr;
 196 CompileQueue* CompileBroker::_c1_compile_queue     = nullptr;
 197 
 198 bool compileBroker_init() {
 199   if (LogEvents) {
 200     CompilationLog::init();
 201   }
 202 
 203   // init directives stack, adding default directive
 204   DirectivesStack::init();
 205 
 206   if (DirectivesParser::has_file()) {
 207     return DirectivesParser::parse_from_flag();
 208   } else if (CompilerDirectivesPrint) {
 209     // Print default directive even when no other was added
 210     DirectivesStack::print(tty);
 211   }
 212 
 213   return true;
 214 }
 215 
 216 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
 217   CompilerThread* thread = CompilerThread::current();
 218   thread->set_task(task);
 219   CompileLog*     log  = thread->log();
 220   if (log != nullptr && !task->is_unloaded())  task->log_task_start(log);
 221 }
 222 
 223 CompileTaskWrapper::~CompileTaskWrapper() {
 224   CompilerThread* thread = CompilerThread::current();
 225   CompileTask* task = thread->task();
 226   CompileLog*  log  = thread->log();
 227   if (log != nullptr && !task->is_unloaded())  task->log_task_done(log);
 228   thread->set_task(nullptr);
 229   thread->set_env(nullptr);
 230   if (task->is_blocking()) {
 231     bool free_task = false;
 232     {
 233       MutexLocker notifier(thread, task->lock());
 234       task->mark_complete();
 235 #if INCLUDE_JVMCI
 236       if (CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 237         if (!task->has_waiter()) {
 238           // The waiting thread timed out and thus did not free the task.
 239           free_task = true;
 240         }
 241         task->set_blocking_jvmci_compile_state(nullptr);
 242       }
 243 #endif
 244       if (!free_task) {
 245         // Notify the waiting thread that the compilation has completed
 246         // so that it can free the task.
 247         task->lock()->notify_all();
 248       }
 249     }
 250     if (free_task) {
 251       // The task can only be freed once the task lock is released.
 252       CompileTask::free(task);
 253     }
 254   } else {
 255     task->mark_complete();
 256 
 257     // By convention, the compiling thread is responsible for
 258     // recycling a non-blocking CompileTask.
 259     CompileTask::free(task);
 260   }
 261 }
 262 
 263 /**
 264  * Check if a CompilerThread can be removed and update count if requested.
 265  */
 266 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) {
 267   assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
 268   if (!ReduceNumberOfCompilerThreads) return false;
 269 
 270   AbstractCompiler *compiler = ct->compiler();
 271   int compiler_count = compiler->num_compiler_threads();
 272   bool c1 = compiler->is_c1();
 273 
 274   // Keep at least 1 compiler thread of each type.
 275   if (compiler_count < 2) return false;
 276 
 277   // Keep thread alive for at least some time.
 278   if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
 279 
 280 #if INCLUDE_JVMCI
 281   if (compiler->is_jvmci() && !UseJVMCINativeLibrary) {
 282     // Handles for JVMCI thread objects may get released concurrently.
 283     if (do_it) {
 284       assert(CompileThread_lock->owner() == ct, "must be holding lock");
 285     } else {
 286       // Skip check if it's the last thread and let caller check again.
 287       return true;
 288     }
 289   }
 290 #endif
 291 
 292   // We only allow the last compiler thread of each type to get removed.
 293   jobject last_compiler = c1 ? compiler1_object(compiler_count - 1)
 294                              : compiler2_object(compiler_count - 1);
 295   if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) {
 296     if (do_it) {
 297       assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
 298       compiler->set_num_compiler_threads(compiler_count - 1);
 299 #if INCLUDE_JVMCI
 300       if (compiler->is_jvmci() && !UseJVMCINativeLibrary) {
 301         // Old j.l.Thread object can die when no longer referenced elsewhere.
 302         JNIHandles::destroy_global(compiler2_object(compiler_count - 1));
 303         _compiler2_objects[compiler_count - 1] = nullptr;
 304       }
 305 #endif
 306     }
 307     return true;
 308   }
 309   return false;
 310 }
 311 
 312 /**
 313  * Add a CompileTask to a CompileQueue.
 314  */
 315 void CompileQueue::add(CompileTask* task) {
 316   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 317 
 318   task->set_next(nullptr);
 319   task->set_prev(nullptr);
 320 
 321   if (_last == nullptr) {
 322     // The compile queue is empty.
 323     assert(_first == nullptr, "queue is empty");
 324     _first = task;
 325     _last = task;
 326   } else {
 327     // Append the task to the queue.
 328     assert(_last->next() == nullptr, "not last");
 329     _last->set_next(task);
 330     task->set_prev(_last);
 331     _last = task;
 332   }
 333   ++_size;
 334   ++_total_added;
 335   if (_size > _peak_size) {
 336     _peak_size = _size;
 337   }
 338 
 339   // Mark the method as being in the compile queue.
 340   task->method()->set_queued_for_compilation();
 341 
 342   if (CIPrintCompileQueue) {
 343     print_tty();
 344   }
 345 
 346   if (LogCompilation && xtty != nullptr) {
 347     task->log_task_queued();
 348   }
 349 
 350   // Notify CompilerThreads that a task is available.
 351   MethodCompileQueue_lock->notify_all();
 352 }
 353 
 354 /**
 355  * Empties compilation queue by putting all compilation tasks onto
 356  * a freelist. Furthermore, the method wakes up all threads that are
 357  * waiting on a compilation task to finish. This can happen if background
 358  * compilation is disabled.
 359  */
 360 void CompileQueue::free_all() {
 361   MutexLocker mu(MethodCompileQueue_lock);
 362   CompileTask* next = _first;
 363 
 364   // Iterate over all tasks in the compile queue
 365   while (next != nullptr) {
 366     CompileTask* current = next;
 367     next = current->next();
 368     bool found_waiter = false;
 369     {
 370       MutexLocker ct_lock(current->lock());
 371       assert(current->waiting_for_completion_count() <= 1, "more than one thread are waiting for task");
 372       if (current->waiting_for_completion_count() > 0) {
 373         // If another thread waits for this task, we must wake them up
 374         // so they will stop waiting and free the task.
 375         current->lock()->notify();
 376         found_waiter = true;
 377       }
 378     }
 379     if (!found_waiter) {
 380       // If no one was waiting for this task, we need to free it ourselves. In this case, the task
 381       // is also certainly unlocked, because, again, there is no waiter.
 382       // Otherwise, by convention, it's the waiters responsibility to free the task.
 383       // Put the task back on the freelist.
 384       CompileTask::free(current);
 385     }
 386   }
 387   _first = nullptr;
 388   _last = nullptr;
 389 
 390   // Wake up all threads that block on the queue.
 391   MethodCompileQueue_lock->notify_all();
 392 }
 393 
 394 /**
 395  * Get the next CompileTask from a CompileQueue
 396  */
 397 CompileTask* CompileQueue::get(CompilerThread* thread) {
 398   // save methods from RedefineClasses across safepoint
 399   // across MethodCompileQueue_lock below.
 400   methodHandle save_method;
 401   methodHandle save_hot_method;
 402 
 403   MonitorLocker locker(MethodCompileQueue_lock);
 404   // If _first is null we have no more compile jobs. There are two reasons for
 405   // having no compile jobs: First, we compiled everything we wanted. Second,
 406   // we ran out of code cache so compilation has been disabled. In the latter
 407   // case we perform code cache sweeps to free memory such that we can re-enable
 408   // compilation.
 409   while (_first == nullptr) {
 410     // Exit loop if compilation is disabled forever
 411     if (CompileBroker::is_compilation_disabled_forever()) {
 412       return nullptr;
 413     }
 414 
 415     AbstractCompiler* compiler = thread->compiler();
 416     guarantee(compiler != nullptr, "Compiler object must exist");
 417     compiler->on_empty_queue(this, thread);
 418     if (_first != nullptr) {
 419       // The call to on_empty_queue may have temporarily unlocked the MCQ lock
 420       // so check again whether any tasks were added to the queue.
 421       break;
 422     }
 423 
 424     // If there are no compilation tasks and we can compile new jobs
 425     // (i.e., there is enough free space in the code cache) there is
 426     // no need to invoke the GC.
 427     // We need a timed wait here, since compiler threads can exit if compilation
 428     // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
 429     // is not critical and we do not want idle compiler threads to wake up too often.
 430     locker.wait(5*1000);
 431 
 432     if (UseDynamicNumberOfCompilerThreads && _first == nullptr) {
 433       // Still nothing to compile. Give caller a chance to stop this thread.
 434       if (CompileBroker::can_remove(CompilerThread::current(), false)) return nullptr;
 435     }
 436   }
 437 
 438   if (CompileBroker::is_compilation_disabled_forever()) {
 439     return nullptr;
 440   }
 441 
 442   CompileTask* task;
 443   {
 444     NoSafepointVerifier nsv;
 445     task = CompilationPolicy::select_task(this);
 446     if (task != nullptr) {
 447       task = task->select_for_compilation();
 448     }
 449   }
 450 
 451   if (task != nullptr) {
 452     // Save method pointers across unlock safepoint.  The task is removed from
 453     // the compilation queue, which is walked during RedefineClasses.
 454     Thread* thread = Thread::current();
 455     save_method = methodHandle(thread, task->method());
 456     save_hot_method = methodHandle(thread, task->hot_method());
 457 
 458     remove(task);
 459   }
 460   purge_stale_tasks(); // may temporarily release MCQ lock
 461   return task;
 462 }
 463 
 464 // Clean & deallocate stale compile tasks.
 465 // Temporarily releases MethodCompileQueue lock.
 466 void CompileQueue::purge_stale_tasks() {
 467   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 468   if (_first_stale != nullptr) {
 469     // Stale tasks are purged when MCQ lock is released,
 470     // but _first_stale updates are protected by MCQ lock.
 471     // Once task processing starts and MCQ lock is released,
 472     // other compiler threads can reuse _first_stale.
 473     CompileTask* head = _first_stale;
 474     _first_stale = nullptr;
 475     {
 476       MutexUnlocker ul(MethodCompileQueue_lock);
 477       for (CompileTask* task = head; task != nullptr; ) {
 478         CompileTask* next_task = task->next();
 479         CompileTaskWrapper ctw(task); // Frees the task
 480         task->set_failure_reason("stale task");
 481         task = next_task;
 482       }
 483     }
 484   }
 485 }
 486 
 487 void CompileQueue::remove(CompileTask* task) {
 488   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 489   if (task->prev() != nullptr) {
 490     task->prev()->set_next(task->next());
 491   } else {
 492     // max is the first element
 493     assert(task == _first, "Sanity");
 494     _first = task->next();
 495   }
 496 
 497   if (task->next() != nullptr) {
 498     task->next()->set_prev(task->prev());
 499   } else {
 500     // max is the last element
 501     assert(task == _last, "Sanity");
 502     _last = task->prev();
 503   }
 504   --_size;
 505   ++_total_removed;
 506 }
 507 
 508 void CompileQueue::remove_and_mark_stale(CompileTask* task) {
 509   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 510   remove(task);
 511 
 512   // Enqueue the task for reclamation (should be done outside MCQ lock)
 513   task->set_next(_first_stale);
 514   task->set_prev(nullptr);
 515   _first_stale = task;
 516 }
 517 
 518 // methods in the compile queue need to be marked as used on the stack
 519 // so that they don't get reclaimed by Redefine Classes
 520 void CompileQueue::mark_on_stack() {
 521   CompileTask* task = _first;
 522   while (task != nullptr) {
 523     task->mark_on_stack();
 524     task = task->next();
 525   }
 526 }
 527 
 528 
 529 CompileQueue* CompileBroker::compile_queue(int comp_level) {
 530   if (is_c2_compile(comp_level)) return _c2_compile_queue;
 531   if (is_c1_compile(comp_level)) return _c1_compile_queue;
 532   return nullptr;
 533 }
 534 
 535 CompileQueue* CompileBroker::c1_compile_queue() {
 536   return _c1_compile_queue;
 537 }
 538 
 539 CompileQueue* CompileBroker::c2_compile_queue() {
 540   return _c2_compile_queue;
 541 }
 542 
 543 void CompileBroker::print_compile_queues(outputStream* st) {
 544   st->print_cr("Current compiles: ");
 545 
 546   char buf[2000];
 547   int buflen = sizeof(buf);
 548   Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true);
 549 
 550   st->cr();
 551   if (_c1_compile_queue != nullptr) {
 552     _c1_compile_queue->print(st);
 553   }
 554   if (_c2_compile_queue != nullptr) {
 555     _c2_compile_queue->print(st);
 556   }
 557 }
 558 
 559 void CompileQueue::print(outputStream* st) {
 560   assert_locked_or_safepoint(MethodCompileQueue_lock);
 561   st->print_cr("%s:", name());
 562   CompileTask* task = _first;
 563   if (task == nullptr) {
 564     st->print_cr("Empty");
 565   } else {
 566     while (task != nullptr) {
 567       task->print(st, nullptr, true, true);
 568       task = task->next();
 569     }
 570   }
 571   st->cr();
 572 }
 573 
 574 void CompileQueue::print_tty() {
 575   stringStream ss;
 576   // Dump the compile queue into a buffer before locking the tty
 577   print(&ss);
 578   {
 579     ttyLocker ttyl;
 580     tty->print("%s", ss.freeze());
 581   }
 582 }
 583 
 584 CompilerCounters::CompilerCounters() {
 585   _current_method[0] = '\0';
 586   _compile_type = CompileBroker::no_compile;
 587 }
 588 
 589 #if INCLUDE_JFR && COMPILER2_OR_JVMCI
 590 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping
 591 // in compiler/compilerEvent.cpp) and registers it with its serializer.
 592 //
 593 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp,
 594 // so if c2 is used, it should be always registered first.
 595 // This function is called during vm initialization.
 596 static void register_jfr_phasetype_serializer(CompilerType compiler_type) {
 597   ResourceMark rm;
 598   static bool first_registration = true;
 599   if (compiler_type == compiler_jvmci) {
 600     CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false);
 601     first_registration = false;
 602 #ifdef COMPILER2
 603   } else if (compiler_type == compiler_c2) {
 604     assert(first_registration, "invariant"); // c2 must be registered first.
 605     for (int i = 0; i < PHASE_NUM_TYPES; i++) {
 606       const char* phase_name = CompilerPhaseTypeHelper::to_description((CompilerPhaseType) i);
 607       CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false);
 608     }
 609     first_registration = false;
 610 #endif // COMPILER2
 611   }
 612 }
 613 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI
 614 
 615 // ------------------------------------------------------------------
 616 // CompileBroker::compilation_init
 617 //
 618 // Initialize the Compilation object
 619 void CompileBroker::compilation_init(JavaThread* THREAD) {
 620   // No need to initialize compilation system if we do not use it.
 621   if (!UseCompiler) {
 622     return;
 623   }
 624   // Set the interface to the current compiler(s).
 625   _c1_count = CompilationPolicy::c1_count();
 626   _c2_count = CompilationPolicy::c2_count();
 627 
 628 #if INCLUDE_JVMCI
 629   if (EnableJVMCI) {
 630     // This is creating a JVMCICompiler singleton.
 631     JVMCICompiler* jvmci = new JVMCICompiler();
 632 
 633     if (UseJVMCICompiler) {
 634       _compilers[1] = jvmci;
 635       if (FLAG_IS_DEFAULT(JVMCIThreads)) {
 636         if (BootstrapJVMCI) {
 637           // JVMCI will bootstrap so give it more threads
 638           _c2_count = MIN2(32, os::active_processor_count());
 639         }
 640       } else {
 641         _c2_count = JVMCIThreads;
 642       }
 643       if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
 644       } else {
 645 #ifdef COMPILER1
 646         _c1_count = JVMCIHostThreads;
 647 #endif // COMPILER1
 648       }
 649     }
 650   }
 651 #endif // INCLUDE_JVMCI
 652 
 653 #ifdef COMPILER1
 654   if (_c1_count > 0) {
 655     _compilers[0] = new Compiler();
 656   }
 657 #endif // COMPILER1
 658 
 659 #ifdef COMPILER2
 660   if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
 661     if (_c2_count > 0) {
 662       _compilers[1] = new C2Compiler();
 663       // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit.
 664       // idToPhase mapping for c2 is in opto/phasetype.hpp
 665       JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);)
 666     }
 667   }
 668 #endif // COMPILER2
 669 
 670 #if INCLUDE_JVMCI
 671    // Register after c2 registration.
 672    // JVMCI CompilerPhaseType idToPhase mapping is dynamic.
 673    if (EnableJVMCI) {
 674      JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);)
 675    }
 676 #endif // INCLUDE_JVMCI
 677 
 678   if (CompilerOracle::should_collect_memstat()) {
 679     CompilationMemoryStatistic::initialize();
 680   }
 681 
 682   // Start the compiler thread(s)
 683   init_compiler_threads();
 684   // totalTime performance counter is always created as it is required
 685   // by the implementation of java.lang.management.CompilationMXBean.
 686   {
 687     // Ensure OOM leads to vm_exit_during_initialization.
 688     EXCEPTION_MARK;
 689     _perf_total_compilation =
 690                  PerfDataManager::create_counter(JAVA_CI, "totalTime",
 691                                                  PerfData::U_Ticks, CHECK);
 692   }
 693 
 694   if (UsePerfData) {
 695 
 696     EXCEPTION_MARK;
 697 
 698     // create the jvmstat performance counters
 699     _perf_osr_compilation =
 700                  PerfDataManager::create_counter(SUN_CI, "osrTime",
 701                                                  PerfData::U_Ticks, CHECK);
 702 
 703     _perf_standard_compilation =
 704                  PerfDataManager::create_counter(SUN_CI, "standardTime",
 705                                                  PerfData::U_Ticks, CHECK);
 706 
 707     _perf_total_bailout_count =
 708                  PerfDataManager::create_counter(SUN_CI, "totalBailouts",
 709                                                  PerfData::U_Events, CHECK);
 710 
 711     _perf_total_invalidated_count =
 712                  PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
 713                                                  PerfData::U_Events, CHECK);
 714 
 715     _perf_total_compile_count =
 716                  PerfDataManager::create_counter(SUN_CI, "totalCompiles",
 717                                                  PerfData::U_Events, CHECK);
 718     _perf_total_osr_compile_count =
 719                  PerfDataManager::create_counter(SUN_CI, "osrCompiles",
 720                                                  PerfData::U_Events, CHECK);
 721 
 722     _perf_total_standard_compile_count =
 723                  PerfDataManager::create_counter(SUN_CI, "standardCompiles",
 724                                                  PerfData::U_Events, CHECK);
 725 
 726     _perf_sum_osr_bytes_compiled =
 727                  PerfDataManager::create_counter(SUN_CI, "osrBytes",
 728                                                  PerfData::U_Bytes, CHECK);
 729 
 730     _perf_sum_standard_bytes_compiled =
 731                  PerfDataManager::create_counter(SUN_CI, "standardBytes",
 732                                                  PerfData::U_Bytes, CHECK);
 733 
 734     _perf_sum_nmethod_size =
 735                  PerfDataManager::create_counter(SUN_CI, "nmethodSize",
 736                                                  PerfData::U_Bytes, CHECK);
 737 
 738     _perf_sum_nmethod_code_size =
 739                  PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
 740                                                  PerfData::U_Bytes, CHECK);
 741 
 742     _perf_last_method =
 743                  PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
 744                                        CompilerCounters::cmname_buffer_length,
 745                                        "", CHECK);
 746 
 747     _perf_last_failed_method =
 748             PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
 749                                        CompilerCounters::cmname_buffer_length,
 750                                        "", CHECK);
 751 
 752     _perf_last_invalidated_method =
 753         PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
 754                                      CompilerCounters::cmname_buffer_length,
 755                                      "", CHECK);
 756 
 757     _perf_last_compile_type =
 758              PerfDataManager::create_variable(SUN_CI, "lastType",
 759                                               PerfData::U_None,
 760                                               (jlong)CompileBroker::no_compile,
 761                                               CHECK);
 762 
 763     _perf_last_compile_size =
 764              PerfDataManager::create_variable(SUN_CI, "lastSize",
 765                                               PerfData::U_Bytes,
 766                                               (jlong)CompileBroker::no_compile,
 767                                               CHECK);
 768 
 769 
 770     _perf_last_failed_type =
 771              PerfDataManager::create_variable(SUN_CI, "lastFailedType",
 772                                               PerfData::U_None,
 773                                               (jlong)CompileBroker::no_compile,
 774                                               CHECK);
 775 
 776     _perf_last_invalidated_type =
 777          PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
 778                                           PerfData::U_None,
 779                                           (jlong)CompileBroker::no_compile,
 780                                           CHECK);
 781   }
 782 
 783   _initialized = true;
 784 }
 785 
 786 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 787 // Entry for DeoptimizeObjectsALotThread. The threads are started in
 788 // CompileBroker::init_compiler_threads() iff DeoptimizeObjectsALot is enabled
 789 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) {
 790     DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread);
 791     bool enter_single_loop;
 792     {
 793       MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag);
 794       static int single_thread_count = 0;
 795       enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle;
 796     }
 797     if (enter_single_loop) {
 798       dt->deoptimize_objects_alot_loop_single();
 799     } else {
 800       dt->deoptimize_objects_alot_loop_all();
 801     }
 802   }
 803 
 804 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
 805 // barrier targets a single thread which is selected round robin.
 806 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() {
 807   HandleMark hm(this);
 808   while (true) {
 809     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) {
 810       { // Begin new scope for escape barrier
 811         HandleMarkCleaner hmc(this);
 812         ResourceMark rm(this);
 813         EscapeBarrier eb(true, this, deoptee_thread);
 814         eb.deoptimize_objects(100);
 815       }
 816       // Now sleep after the escape barriers destructor resumed deoptee_thread.
 817       sleep(DeoptimizeObjectsALotInterval);
 818     }
 819   }
 820 }
 821 
 822 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
 823 // barrier targets all java threads in the vm at once.
 824 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() {
 825   HandleMark hm(this);
 826   while (true) {
 827     { // Begin new scope for escape barrier
 828       HandleMarkCleaner hmc(this);
 829       ResourceMark rm(this);
 830       EscapeBarrier eb(true, this);
 831       eb.deoptimize_objects_all_threads();
 832     }
 833     // Now sleep after the escape barriers destructor resumed the java threads.
 834     sleep(DeoptimizeObjectsALotInterval);
 835   }
 836 }
 837 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
 838 
 839 
 840 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, JavaThread* THREAD) {
 841   Handle thread_oop(THREAD, JNIHandles::resolve_non_null(thread_handle));
 842 
 843   if (java_lang_Thread::thread(thread_oop()) != nullptr) {
 844     assert(type == compiler_t, "should only happen with reused compiler threads");
 845     // The compiler thread hasn't actually exited yet so don't try to reuse it
 846     return nullptr;
 847   }
 848 
 849   JavaThread* new_thread = nullptr;
 850   switch (type) {
 851     case compiler_t:
 852       assert(comp != nullptr, "Compiler instance missing.");
 853       if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
 854         CompilerCounters* counters = new CompilerCounters();
 855         new_thread = new CompilerThread(queue, counters);
 856       }
 857       break;
 858 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 859     case deoptimizer_t:
 860       new_thread = new DeoptimizeObjectsALotThread();
 861       break;
 862 #endif // ASSERT
 863     default:
 864       ShouldNotReachHere();
 865   }
 866 
 867   // At this point the new CompilerThread data-races with this startup
 868   // thread (which is the main thread and NOT the VM thread).
 869   // This means Java bytecodes being executed at startup can
 870   // queue compile jobs which will run at whatever default priority the
 871   // newly created CompilerThread runs at.
 872 
 873 
 874   // At this point it may be possible that no osthread was created for the
 875   // JavaThread due to lack of resources. We will handle that failure below.
 876   // Also check new_thread so that static analysis is happy.
 877   if (new_thread != nullptr && new_thread->osthread() != nullptr) {
 878 
 879     if (type == compiler_t) {
 880       CompilerThread::cast(new_thread)->set_compiler(comp);
 881     }
 882 
 883     // Note that we cannot call os::set_priority because it expects Java
 884     // priorities and we are *explicitly* using OS priorities so that it's
 885     // possible to set the compiler thread priority higher than any Java
 886     // thread.
 887 
 888     int native_prio = CompilerThreadPriority;
 889     if (native_prio == -1) {
 890       if (UseCriticalCompilerThreadPriority) {
 891         native_prio = os::java_to_os_priority[CriticalPriority];
 892       } else {
 893         native_prio = os::java_to_os_priority[NearMaxPriority];
 894       }
 895     }
 896     os::set_native_priority(new_thread, native_prio);
 897 
 898     // Note that this only sets the JavaThread _priority field, which by
 899     // definition is limited to Java priorities and not OS priorities.
 900     JavaThread::start_internal_daemon(THREAD, new_thread, thread_oop, NearMaxPriority);
 901 
 902   } else { // osthread initialization failure
 903     if (UseDynamicNumberOfCompilerThreads && type == compiler_t
 904         && comp->num_compiler_threads() > 0) {
 905       // The new thread is not known to Thread-SMR yet so we can just delete.
 906       delete new_thread;
 907       return nullptr;
 908     } else {
 909       vm_exit_during_initialization("java.lang.OutOfMemoryError",
 910                                     os::native_thread_creation_failed_msg());
 911     }
 912   }
 913 
 914   os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
 915 
 916   return new_thread;
 917 }
 918 
 919 static bool trace_compiler_threads() {
 920   LogTarget(Debug, jit, thread) lt;
 921   return TraceCompilerThreads || lt.is_enabled();
 922 }
 923 
 924 static jobject create_compiler_thread(AbstractCompiler* compiler, int i, TRAPS) {
 925   char name_buffer[256];
 926   os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", compiler->name(), i);
 927   Handle thread_oop = JavaThread::create_system_thread_object(name_buffer, CHECK_NULL);
 928   return JNIHandles::make_global(thread_oop);
 929 }
 930 
 931 static void print_compiler_threads(stringStream& msg) {
 932   if (TraceCompilerThreads) {
 933     tty->print_cr("%7d %s", (int)tty->time_stamp().milliseconds(), msg.as_string());
 934   }
 935   LogTarget(Debug, jit, thread) lt;
 936   if (lt.is_enabled()) {
 937     LogStream ls(lt);
 938     ls.print_cr("%s", msg.as_string());
 939   }
 940 }
 941 
 942 void CompileBroker::init_compiler_threads() {
 943   // Ensure any exceptions lead to vm_exit_during_initialization.
 944   EXCEPTION_MARK;
 945 #if !defined(ZERO)
 946   assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
 947 #endif // !ZERO
 948   // Initialize the compilation queue
 949   if (_c2_count > 0) {
 950     const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
 951     _c2_compile_queue  = new CompileQueue(name);
 952     _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
 953     _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
 954   }
 955   if (_c1_count > 0) {
 956     _c1_compile_queue  = new CompileQueue("C1 compile queue");
 957     _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
 958     _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
 959   }
 960 
 961   for (int i = 0; i < _c2_count; i++) {
 962     // Create a name for our thread.
 963     jobject thread_handle = create_compiler_thread(_compilers[1], i, CHECK);
 964     _compiler2_objects[i] = thread_handle;
 965     _compiler2_logs[i] = nullptr;
 966 
 967     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 968       JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD);
 969       assert(ct != nullptr, "should have been handled for initial thread");
 970       _compilers[1]->set_num_compiler_threads(i + 1);
 971       if (trace_compiler_threads()) {
 972         ResourceMark rm;
 973         ThreadsListHandle tlh;  // name() depends on the TLH.
 974         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
 975         stringStream msg;
 976         msg.print("Added initial compiler thread %s", ct->name());
 977         print_compiler_threads(msg);
 978       }
 979     }
 980   }
 981 
 982   for (int i = 0; i < _c1_count; i++) {
 983     // Create a name for our thread.
 984     jobject thread_handle = create_compiler_thread(_compilers[0], i, CHECK);
 985     _compiler1_objects[i] = thread_handle;
 986     _compiler1_logs[i] = nullptr;
 987 
 988     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 989       JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD);
 990       assert(ct != nullptr, "should have been handled for initial thread");
 991       _compilers[0]->set_num_compiler_threads(i + 1);
 992       if (trace_compiler_threads()) {
 993         ResourceMark rm;
 994         ThreadsListHandle tlh;  // name() depends on the TLH.
 995         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
 996         stringStream msg;
 997         msg.print("Added initial compiler thread %s", ct->name());
 998         print_compiler_threads(msg);
 999       }
1000     }
1001   }
1002 
1003   if (UsePerfData) {
1004     PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK);
1005   }
1006 
1007 #if defined(ASSERT) && COMPILER2_OR_JVMCI
1008   if (DeoptimizeObjectsALot) {
1009     // Initialize and start the object deoptimizer threads
1010     const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll;
1011     for (int count = 0; count < total_count; count++) {
1012       Handle thread_oop = JavaThread::create_system_thread_object("Deoptimize objects a lot single mode", CHECK);
1013       jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
1014       make_thread(deoptimizer_t, thread_handle, nullptr, nullptr, THREAD);
1015     }
1016   }
1017 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
1018 }
1019 
1020 void CompileBroker::possibly_add_compiler_threads(JavaThread* THREAD) {
1021 
1022   int old_c2_count = 0, new_c2_count = 0, old_c1_count = 0, new_c1_count = 0;
1023   const int c2_tasks_per_thread = 2, c1_tasks_per_thread = 4;
1024 
1025   // Quick check if we already have enough compiler threads without taking the lock.
1026   // Numbers may change concurrently, so we read them again after we have the lock.
1027   if (_c2_compile_queue != nullptr) {
1028     old_c2_count = get_c2_thread_count();
1029     new_c2_count = MIN2(_c2_count, _c2_compile_queue->size() / c2_tasks_per_thread);
1030   }
1031   if (_c1_compile_queue != nullptr) {
1032     old_c1_count = get_c1_thread_count();
1033     new_c1_count = MIN2(_c1_count, _c1_compile_queue->size() / c1_tasks_per_thread);
1034   }
1035   if (new_c2_count <= old_c2_count && new_c1_count <= old_c1_count) return;
1036 
1037   // Now, we do the more expensive operations.
1038   julong free_memory = os::free_memory();
1039   // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
1040   size_t available_cc_np = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
1041          available_cc_p  = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
1042 
1043   // Only attempt to start additional threads if the lock is free.
1044   if (!CompileThread_lock->try_lock()) return;
1045 
1046   if (_c2_compile_queue != nullptr) {
1047     old_c2_count = get_c2_thread_count();
1048     new_c2_count = MIN4(_c2_count,
1049         _c2_compile_queue->size() / c2_tasks_per_thread,
1050         (int)(free_memory / (200*M)),
1051         (int)(available_cc_np / (128*K)));
1052 
1053     for (int i = old_c2_count; i < new_c2_count; i++) {
1054 #if INCLUDE_JVMCI
1055       if (UseJVMCICompiler && !UseJVMCINativeLibrary && _compiler2_objects[i] == nullptr) {
1056         // Native compiler threads as used in C1/C2 can reuse the j.l.Thread objects as their
1057         // existence is completely hidden from the rest of the VM (and those compiler threads can't
1058         // call Java code to do the creation anyway).
1059         //
1060         // For pure Java JVMCI we have to create new j.l.Thread objects as they are visible and we
1061         // can see unexpected thread lifecycle transitions if we bind them to new JavaThreads.  For
1062         // native library JVMCI it's preferred to use the C1/C2 strategy as this avoids unnecessary
1063         // coupling with Java.
1064         if (!THREAD->can_call_java()) break;
1065         char name_buffer[256];
1066         os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i);
1067         Handle thread_oop;
1068         {
1069           // We have to give up the lock temporarily for the Java calls.
1070           MutexUnlocker mu(CompileThread_lock);
1071           thread_oop = JavaThread::create_system_thread_object(name_buffer, THREAD);
1072         }
1073         if (HAS_PENDING_EXCEPTION) {
1074           if (trace_compiler_threads()) {
1075             ResourceMark rm;
1076             stringStream msg;
1077             msg.print_cr("JVMCI compiler thread creation failed:");
1078             PENDING_EXCEPTION->print_on(&msg);
1079             print_compiler_threads(msg);
1080           }
1081           CLEAR_PENDING_EXCEPTION;
1082           break;
1083         }
1084         // Check if another thread has beaten us during the Java calls.
1085         if (get_c2_thread_count() != i) break;
1086         jobject thread_handle = JNIHandles::make_global(thread_oop);
1087         assert(compiler2_object(i) == nullptr, "Old one must be released!");
1088         _compiler2_objects[i] = thread_handle;
1089       }
1090 #endif
1091       guarantee(compiler2_object(i) != nullptr, "Thread oop must exist");
1092       JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD);
1093       if (ct == nullptr) break;
1094       _compilers[1]->set_num_compiler_threads(i + 1);
1095       if (trace_compiler_threads()) {
1096         ResourceMark rm;
1097         ThreadsListHandle tlh;  // name() depends on the TLH.
1098         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1099         stringStream msg;
1100         msg.print("Added compiler thread %s (free memory: %dMB, available non-profiled code cache: %dMB)",
1101                   ct->name(), (int)(free_memory/M), (int)(available_cc_np/M));
1102         print_compiler_threads(msg);
1103       }
1104     }
1105   }
1106 
1107   if (_c1_compile_queue != nullptr) {
1108     old_c1_count = get_c1_thread_count();
1109     new_c1_count = MIN4(_c1_count,
1110         _c1_compile_queue->size() / c1_tasks_per_thread,
1111         (int)(free_memory / (100*M)),
1112         (int)(available_cc_p / (128*K)));
1113 
1114     for (int i = old_c1_count; i < new_c1_count; i++) {
1115       JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD);
1116       if (ct == nullptr) break;
1117       _compilers[0]->set_num_compiler_threads(i + 1);
1118       if (trace_compiler_threads()) {
1119         ResourceMark rm;
1120         ThreadsListHandle tlh;  // name() depends on the TLH.
1121         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1122         stringStream msg;
1123         msg.print("Added compiler thread %s (free memory: %dMB, available profiled code cache: %dMB)",
1124                   ct->name(), (int)(free_memory/M), (int)(available_cc_p/M));
1125         print_compiler_threads(msg);
1126       }
1127     }
1128   }
1129 
1130   CompileThread_lock->unlock();
1131 }
1132 
1133 
1134 /**
1135  * Set the methods on the stack as on_stack so that redefine classes doesn't
1136  * reclaim them. This method is executed at a safepoint.
1137  */
1138 void CompileBroker::mark_on_stack() {
1139   assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
1140   // Since we are at a safepoint, we do not need a lock to access
1141   // the compile queues.
1142   if (_c2_compile_queue != nullptr) {
1143     _c2_compile_queue->mark_on_stack();
1144   }
1145   if (_c1_compile_queue != nullptr) {
1146     _c1_compile_queue->mark_on_stack();
1147   }
1148 }
1149 
1150 // ------------------------------------------------------------------
1151 // CompileBroker::compile_method
1152 //
1153 // Request compilation of a method.
1154 void CompileBroker::compile_method_base(const methodHandle& method,
1155                                         int osr_bci,
1156                                         int comp_level,
1157                                         const methodHandle& hot_method,
1158                                         int hot_count,
1159                                         CompileTask::CompileReason compile_reason,
1160                                         bool blocking,
1161                                         Thread* thread) {
1162   guarantee(!method->is_abstract(), "cannot compile abstract methods");
1163   assert(method->method_holder()->is_instance_klass(),
1164          "sanity check");
1165   assert(!method->method_holder()->is_not_initialized(),
1166          "method holder must be initialized");
1167   assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
1168 
1169   if (CIPrintRequests) {
1170     tty->print("request: ");
1171     method->print_short_name(tty);
1172     if (osr_bci != InvocationEntryBci) {
1173       tty->print(" osr_bci: %d", osr_bci);
1174     }
1175     tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
1176     if (!hot_method.is_null()) {
1177       tty->print(" hot: ");
1178       if (hot_method() != method()) {
1179           hot_method->print_short_name(tty);
1180       } else {
1181         tty->print("yes");
1182       }
1183     }
1184     tty->cr();
1185   }
1186 
1187   // A request has been made for compilation.  Before we do any
1188   // real work, check to see if the method has been compiled
1189   // in the meantime with a definitive result.
1190   if (compilation_is_complete(method, osr_bci, comp_level)) {
1191     return;
1192   }
1193 
1194 #ifndef PRODUCT
1195   if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
1196     if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
1197       // Positive OSROnlyBCI means only compile that bci.  Negative means don't compile that BCI.
1198       return;
1199     }
1200   }
1201 #endif
1202 
1203   // If this method is already in the compile queue, then
1204   // we do not block the current thread.
1205   if (compilation_is_in_queue(method)) {
1206     // We may want to decay our counter a bit here to prevent
1207     // multiple denied requests for compilation.  This is an
1208     // open compilation policy issue. Note: The other possibility,
1209     // in the case that this is a blocking compile request, is to have
1210     // all subsequent blocking requesters wait for completion of
1211     // ongoing compiles. Note that in this case we'll need a protocol
1212     // for freeing the associated compile tasks. [Or we could have
1213     // a single static monitor on which all these waiters sleep.]
1214     return;
1215   }
1216 
1217   // Tiered policy requires MethodCounters to exist before adding a method to
1218   // the queue. Create if we don't have them yet.
1219   method->get_method_counters(thread);
1220 
1221   // Outputs from the following MutexLocker block:
1222   CompileTask* task     = nullptr;
1223   CompileQueue* queue  = compile_queue(comp_level);
1224 
1225   // Acquire our lock.
1226   {
1227     MutexLocker locker(thread, MethodCompileQueue_lock);
1228 
1229     // Make sure the method has not slipped into the queues since
1230     // last we checked; note that those checks were "fast bail-outs".
1231     // Here we need to be more careful, see 14012000 below.
1232     if (compilation_is_in_queue(method)) {
1233       return;
1234     }
1235 
1236     // We need to check again to see if the compilation has
1237     // completed.  A previous compilation may have registered
1238     // some result.
1239     if (compilation_is_complete(method, osr_bci, comp_level)) {
1240       return;
1241     }
1242 
1243     // We now know that this compilation is not pending, complete,
1244     // or prohibited.  Assign a compile_id to this compilation
1245     // and check to see if it is in our [Start..Stop) range.
1246     int compile_id = assign_compile_id(method, osr_bci);
1247     if (compile_id == 0) {
1248       // The compilation falls outside the allowed range.
1249       return;
1250     }
1251 
1252 #if INCLUDE_JVMCI
1253     if (UseJVMCICompiler && blocking) {
1254       // Don't allow blocking compiles for requests triggered by JVMCI.
1255       if (thread->is_Compiler_thread()) {
1256         blocking = false;
1257       }
1258 
1259       // In libjvmci, JVMCI initialization should not deadlock with other threads
1260       if (!UseJVMCINativeLibrary) {
1261         // Don't allow blocking compiles if inside a class initializer or while performing class loading
1262         vframeStream vfst(JavaThread::cast(thread));
1263         for (; !vfst.at_end(); vfst.next()) {
1264         if (vfst.method()->is_class_initializer() ||
1265               (vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) &&
1266                   vfst.method()->name() == vmSymbols::loadClass_name())) {
1267             blocking = false;
1268             break;
1269           }
1270         }
1271 
1272         // Don't allow blocking compilation requests to JVMCI
1273         // if JVMCI itself is not yet initialized
1274         if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) {
1275           blocking = false;
1276         }
1277       }
1278 
1279       // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
1280       // to avoid deadlock between compiler thread(s) and threads run at shutdown
1281       // such as the DestroyJavaVM thread.
1282       if (JVMCI::in_shutdown()) {
1283         blocking = false;
1284       }
1285     }
1286 #endif // INCLUDE_JVMCI
1287 
1288     // We will enter the compilation in the queue.
1289     // 14012000: Note that this sets the queued_for_compile bits in
1290     // the target method. We can now reason that a method cannot be
1291     // queued for compilation more than once, as follows:
1292     // Before a thread queues a task for compilation, it first acquires
1293     // the compile queue lock, then checks if the method's queued bits
1294     // are set or it has already been compiled. Thus there can not be two
1295     // instances of a compilation task for the same method on the
1296     // compilation queue. Consider now the case where the compilation
1297     // thread has already removed a task for that method from the queue
1298     // and is in the midst of compiling it. In this case, the
1299     // queued_for_compile bits must be set in the method (and these
1300     // will be visible to the current thread, since the bits were set
1301     // under protection of the compile queue lock, which we hold now.
1302     // When the compilation completes, the compiler thread first sets
1303     // the compilation result and then clears the queued_for_compile
1304     // bits. Neither of these actions are protected by a barrier (or done
1305     // under the protection of a lock), so the only guarantee we have
1306     // (on machines with TSO (Total Store Order)) is that these values
1307     // will update in that order. As a result, the only combinations of
1308     // these bits that the current thread will see are, in temporal order:
1309     // <RESULT, QUEUE> :
1310     //     <0, 1> : in compile queue, but not yet compiled
1311     //     <1, 1> : compiled but queue bit not cleared
1312     //     <1, 0> : compiled and queue bit cleared
1313     // Because we first check the queue bits then check the result bits,
1314     // we are assured that we cannot introduce a duplicate task.
1315     // Note that if we did the tests in the reverse order (i.e. check
1316     // result then check queued bit), we could get the result bit before
1317     // the compilation completed, and the queue bit after the compilation
1318     // completed, and end up introducing a "duplicate" (redundant) task.
1319     // In that case, the compiler thread should first check if a method
1320     // has already been compiled before trying to compile it.
1321     // NOTE: in the event that there are multiple compiler threads and
1322     // there is de-optimization/recompilation, things will get hairy,
1323     // and in that case it's best to protect both the testing (here) of
1324     // these bits, and their updating (here and elsewhere) under a
1325     // common lock.
1326     task = create_compile_task(queue,
1327                                compile_id, method,
1328                                osr_bci, comp_level,
1329                                hot_method, hot_count, compile_reason,
1330                                blocking);
1331   }
1332 
1333   if (blocking) {
1334     wait_for_completion(task);
1335   }
1336 }
1337 
1338 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1339                                        int comp_level,
1340                                        const methodHandle& hot_method, int hot_count,
1341                                        CompileTask::CompileReason compile_reason,
1342                                        TRAPS) {
1343   // Do nothing if compilebroker is not initialized or compiles are submitted on level none
1344   if (!_initialized || comp_level == CompLevel_none) {
1345     return nullptr;
1346   }
1347 
1348   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
1349   assert(comp != nullptr, "Ensure we have a compiler");
1350 
1351 #if INCLUDE_JVMCI
1352   if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) {
1353     // JVMCI compilation is not yet initializable.
1354     return nullptr;
1355   }
1356 #endif
1357 
1358   DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
1359   // CompileBroker::compile_method can trap and can have pending async exception.
1360   nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, directive, THREAD);
1361   DirectivesStack::release(directive);
1362   return nm;
1363 }
1364 
1365 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1366                                          int comp_level,
1367                                          const methodHandle& hot_method, int hot_count,
1368                                          CompileTask::CompileReason compile_reason,
1369                                          DirectiveSet* directive,
1370                                          TRAPS) {
1371 
1372   // make sure arguments make sense
1373   assert(method->method_holder()->is_instance_klass(), "not an instance method");
1374   assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
1375   assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
1376   assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized");
1377   // return quickly if possible
1378 
1379   // lock, make sure that the compilation
1380   // isn't prohibited in a straightforward way.
1381   AbstractCompiler* comp = CompileBroker::compiler(comp_level);
1382   if (comp == nullptr || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
1383     return nullptr;
1384   }
1385 
1386   if (osr_bci == InvocationEntryBci) {
1387     // standard compilation
1388     nmethod* method_code = method->code();
1389     if (method_code != nullptr) {
1390       if (compilation_is_complete(method, osr_bci, comp_level)) {
1391         return method_code;
1392       }
1393     }
1394     if (method->is_not_compilable(comp_level)) {
1395       return nullptr;
1396     }
1397   } else {
1398     // osr compilation
1399     // We accept a higher level osr method
1400     nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1401     if (nm != nullptr) return nm;
1402     if (method->is_not_osr_compilable(comp_level)) return nullptr;
1403   }
1404 
1405   assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
1406   // some prerequisites that are compiler specific
1407   if (comp->is_c2() || comp->is_jvmci()) {
1408     InternalOOMEMark iom(THREAD);
1409     method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL);
1410     // Resolve all classes seen in the signature of the method
1411     // we are compiling.
1412     Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL);
1413   }
1414 
1415   // If the method is native, do the lookup in the thread requesting
1416   // the compilation. Native lookups can load code, which is not
1417   // permitted during compilation.
1418   //
1419   // Note: A native method implies non-osr compilation which is
1420   //       checked with an assertion at the entry of this method.
1421   if (method->is_native() && !method->is_method_handle_intrinsic()) {
1422     address adr = NativeLookup::lookup(method, THREAD);
1423     if (HAS_PENDING_EXCEPTION) {
1424       // In case of an exception looking up the method, we just forget
1425       // about it. The interpreter will kick-in and throw the exception.
1426       method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable()
1427       CLEAR_PENDING_EXCEPTION;
1428       return nullptr;
1429     }
1430     assert(method->has_native_function(), "must have native code by now");
1431   }
1432 
1433   // RedefineClasses() has replaced this method; just return
1434   if (method->is_old()) {
1435     return nullptr;
1436   }
1437 
1438   // JVMTI -- post_compile_event requires jmethod_id() that may require
1439   // a lock the compiling thread can not acquire. Prefetch it here.
1440   if (JvmtiExport::should_post_compiled_method_load()) {
1441     method->jmethod_id();
1442   }
1443 
1444   // do the compilation
1445   if (method->is_native()) {
1446     if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
1447       // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
1448       // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
1449       //
1450       // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
1451       // in this case.  If we can't generate one and use it we can not execute the out-of-line method handle calls.
1452       AdapterHandlerLibrary::create_native_wrapper(method);
1453     } else {
1454       return nullptr;
1455     }
1456   } else {
1457     // If the compiler is shut off due to code cache getting full
1458     // fail out now so blocking compiles dont hang the java thread
1459     if (!should_compile_new_jobs()) {
1460       return nullptr;
1461     }
1462     bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles;
1463     compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, is_blocking, THREAD);
1464   }
1465 
1466   // return requested nmethod
1467   // We accept a higher level osr method
1468   if (osr_bci == InvocationEntryBci) {
1469     return method->code();
1470   }
1471   return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1472 }
1473 
1474 
1475 // ------------------------------------------------------------------
1476 // CompileBroker::compilation_is_complete
1477 //
1478 // See if compilation of this method is already complete.
1479 bool CompileBroker::compilation_is_complete(const methodHandle& method,
1480                                             int                 osr_bci,
1481                                             int                 comp_level) {
1482   bool is_osr = (osr_bci != standard_entry_bci);
1483   if (is_osr) {
1484     if (method->is_not_osr_compilable(comp_level)) {
1485       return true;
1486     } else {
1487       nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
1488       return (result != nullptr);
1489     }
1490   } else {
1491     if (method->is_not_compilable(comp_level)) {
1492       return true;
1493     } else {
1494       nmethod* result = method->code();
1495       if (result == nullptr) return false;
1496       return comp_level == result->comp_level();
1497     }
1498   }
1499 }
1500 
1501 
1502 /**
1503  * See if this compilation is already requested.
1504  *
1505  * Implementation note: there is only a single "is in queue" bit
1506  * for each method.  This means that the check below is overly
1507  * conservative in the sense that an osr compilation in the queue
1508  * will block a normal compilation from entering the queue (and vice
1509  * versa).  This can be remedied by a full queue search to disambiguate
1510  * cases.  If it is deemed profitable, this may be done.
1511  */
1512 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
1513   return method->queued_for_compilation();
1514 }
1515 
1516 // ------------------------------------------------------------------
1517 // CompileBroker::compilation_is_prohibited
1518 //
1519 // See if this compilation is not allowed.
1520 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
1521   bool is_native = method->is_native();
1522   // Some compilers may not support the compilation of natives.
1523   AbstractCompiler *comp = compiler(comp_level);
1524   if (is_native && (!CICompileNatives || comp == nullptr)) {
1525     method->set_not_compilable_quietly("native methods not supported", comp_level);
1526     return true;
1527   }
1528 
1529   bool is_osr = (osr_bci != standard_entry_bci);
1530   // Some compilers may not support on stack replacement.
1531   if (is_osr && (!CICompileOSR || comp == nullptr)) {
1532     method->set_not_osr_compilable("OSR not supported", comp_level);
1533     return true;
1534   }
1535 
1536   // The method may be explicitly excluded by the user.
1537   double scale;
1538   if (excluded || (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, scale) && scale == 0)) {
1539     bool quietly = CompilerOracle::be_quiet();
1540     if (PrintCompilation && !quietly) {
1541       // This does not happen quietly...
1542       ResourceMark rm;
1543       tty->print("### Excluding %s:%s",
1544                  method->is_native() ? "generation of native wrapper" : "compile",
1545                  (method->is_static() ? " static" : ""));
1546       method->print_short_name(tty);
1547       tty->cr();
1548     }
1549     method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly);
1550   }
1551 
1552   return false;
1553 }
1554 
1555 /**
1556  * Generate serialized IDs for compilation requests. If certain debugging flags are used
1557  * and the ID is not within the specified range, the method is not compiled and 0 is returned.
1558  * The function also allows to generate separate compilation IDs for OSR compilations.
1559  */
1560 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
1561 #ifdef ASSERT
1562   bool is_osr = (osr_bci != standard_entry_bci);
1563   int id;
1564   if (method->is_native()) {
1565     assert(!is_osr, "can't be osr");
1566     // Adapters, native wrappers and method handle intrinsics
1567     // should be generated always.
1568     return Atomic::add(CICountNative ? &_native_compilation_id : &_compilation_id, 1);
1569   } else if (CICountOSR && is_osr) {
1570     id = Atomic::add(&_osr_compilation_id, 1);
1571     if (CIStartOSR <= id && id < CIStopOSR) {
1572       return id;
1573     }
1574   } else {
1575     id = Atomic::add(&_compilation_id, 1);
1576     if (CIStart <= id && id < CIStop) {
1577       return id;
1578     }
1579   }
1580 
1581   // Method was not in the appropriate compilation range.
1582   method->set_not_compilable_quietly("Not in requested compile id range");
1583   return 0;
1584 #else
1585   // CICountOSR is a develop flag and set to 'false' by default. In a product built,
1586   // only _compilation_id is incremented.
1587   return Atomic::add(&_compilation_id, 1);
1588 #endif
1589 }
1590 
1591 // ------------------------------------------------------------------
1592 // CompileBroker::assign_compile_id_unlocked
1593 //
1594 // Public wrapper for assign_compile_id that acquires the needed locks
1595 int CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
1596   MutexLocker locker(thread, MethodCompileQueue_lock);
1597   return assign_compile_id(method, osr_bci);
1598 }
1599 
1600 // ------------------------------------------------------------------
1601 // CompileBroker::create_compile_task
1602 //
1603 // Create a CompileTask object representing the current request for
1604 // compilation.  Add this task to the queue.
1605 CompileTask* CompileBroker::create_compile_task(CompileQueue*       queue,
1606                                                 int                 compile_id,
1607                                                 const methodHandle& method,
1608                                                 int                 osr_bci,
1609                                                 int                 comp_level,
1610                                                 const methodHandle& hot_method,
1611                                                 int                 hot_count,
1612                                                 CompileTask::CompileReason compile_reason,
1613                                                 bool                blocking) {
1614   CompileTask* new_task = CompileTask::allocate();
1615   new_task->initialize(compile_id, method, osr_bci, comp_level,
1616                        hot_method, hot_count, compile_reason,
1617                        blocking);
1618   queue->add(new_task);
1619   return new_task;
1620 }
1621 
1622 #if INCLUDE_JVMCI
1623 // The number of milliseconds to wait before checking if
1624 // JVMCI compilation has made progress.
1625 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
1626 
1627 // The number of JVMCI compilation progress checks that must fail
1628 // before unblocking a thread waiting for a blocking compilation.
1629 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
1630 
1631 /**
1632  * Waits for a JVMCI compiler to complete a given task. This thread
1633  * waits until either the task completes or it sees no JVMCI compilation
1634  * progress for N consecutive milliseconds where N is
1635  * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
1636  * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
1637  *
1638  * @return true if this thread needs to free/recycle the task
1639  */
1640 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
1641   assert(UseJVMCICompiler, "sanity");
1642   MonitorLocker ml(thread, task->lock());
1643   int progress_wait_attempts = 0;
1644   jint thread_jvmci_compilation_ticks = 0;
1645   jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks();
1646   while (!task->is_complete() && !is_compilation_disabled_forever() &&
1647          ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
1648     JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state();
1649 
1650     bool progress;
1651     if (jvmci_compile_state != nullptr) {
1652       jint ticks = jvmci_compile_state->compilation_ticks();
1653       progress = (ticks - thread_jvmci_compilation_ticks) != 0;
1654       JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks);
1655       thread_jvmci_compilation_ticks = ticks;
1656     } else {
1657       // Still waiting on JVMCI compiler queue. This thread may be holding a lock
1658       // that all JVMCI compiler threads are blocked on. We use the global JVMCI
1659       // compilation ticks to determine whether JVMCI compilation
1660       // is still making progress through the JVMCI compiler queue.
1661       jint ticks = jvmci->global_compilation_ticks();
1662       progress = (ticks - global_jvmci_compilation_ticks) != 0;
1663       JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks);
1664       global_jvmci_compilation_ticks = ticks;
1665     }
1666 
1667     if (!progress) {
1668       if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
1669         if (PrintCompilation) {
1670           task->print(tty, "wait for blocking compilation timed out");
1671         }
1672         JVMCI_event_1("waiting on compilation %d timed out", task->compile_id());
1673         break;
1674       }
1675     } else {
1676       progress_wait_attempts = 0;
1677     }
1678   }
1679   task->clear_waiter();
1680   return task->is_complete();
1681 }
1682 #endif
1683 
1684 /**
1685  *  Wait for the compilation task to complete.
1686  */
1687 void CompileBroker::wait_for_completion(CompileTask* task) {
1688   if (CIPrintCompileQueue) {
1689     ttyLocker ttyl;
1690     tty->print_cr("BLOCKING FOR COMPILE");
1691   }
1692 
1693   assert(task->is_blocking(), "can only wait on blocking task");
1694 
1695   JavaThread* thread = JavaThread::current();
1696 
1697   methodHandle method(thread, task->method());
1698   bool free_task;
1699 #if INCLUDE_JVMCI
1700   AbstractCompiler* comp = compiler(task->comp_level());
1701   if (!UseJVMCINativeLibrary && comp->is_jvmci() && !task->should_wait_for_compilation()) {
1702     // It may return before compilation is completed.
1703     // Note that libjvmci should not pre-emptively unblock
1704     // a thread waiting for a compilation as it does not call
1705     // Java code and so is not deadlock prone like jarjvmci.
1706     free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
1707   } else
1708 #endif
1709   {
1710     MonitorLocker ml(thread, task->lock());
1711     free_task = true;
1712     task->inc_waiting_for_completion();
1713     while (!task->is_complete() && !is_compilation_disabled_forever()) {
1714       ml.wait();
1715     }
1716     task->dec_waiting_for_completion();
1717   }
1718 
1719   if (free_task) {
1720     if (is_compilation_disabled_forever()) {
1721       CompileTask::free(task);
1722       return;
1723     }
1724 
1725     // It is harmless to check this status without the lock, because
1726     // completion is a stable property (until the task object is recycled).
1727     assert(task->is_complete(), "Compilation should have completed");
1728 
1729     // By convention, the waiter is responsible for recycling a
1730     // blocking CompileTask. Since there is only one waiter ever
1731     // waiting on a CompileTask, we know that no one else will
1732     // be using this CompileTask; we can free it.
1733     CompileTask::free(task);
1734   }
1735 }
1736 
1737 /**
1738  * Initialize compiler thread(s) + compiler object(s). The postcondition
1739  * of this function is that the compiler runtimes are initialized and that
1740  * compiler threads can start compiling.
1741  */
1742 bool CompileBroker::init_compiler_runtime() {
1743   CompilerThread* thread = CompilerThread::current();
1744   AbstractCompiler* comp = thread->compiler();
1745   // Final sanity check - the compiler object must exist
1746   guarantee(comp != nullptr, "Compiler object must exist");
1747 
1748   {
1749     // Must switch to native to allocate ci_env
1750     ThreadToNativeFromVM ttn(thread);
1751     ciEnv ci_env((CompileTask*)nullptr);
1752     // Cache Jvmti state
1753     ci_env.cache_jvmti_state();
1754     // Cache DTrace flags
1755     ci_env.cache_dtrace_flags();
1756 
1757     // Switch back to VM state to do compiler initialization
1758     ThreadInVMfromNative tv(thread);
1759 
1760     // Perform per-thread and global initializations
1761     comp->initialize();
1762   }
1763 
1764   if (comp->is_failed()) {
1765     disable_compilation_forever();
1766     // If compiler initialization failed, no compiler thread that is specific to a
1767     // particular compiler runtime will ever start to compile methods.
1768     shutdown_compiler_runtime(comp, thread);
1769     return false;
1770   }
1771 
1772   // C1 specific check
1773   if (comp->is_c1() && (thread->get_buffer_blob() == nullptr)) {
1774     warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
1775     return false;
1776   }
1777 
1778   return true;
1779 }
1780 
1781 void CompileBroker::free_buffer_blob_if_allocated(CompilerThread* thread) {
1782   BufferBlob* blob = thread->get_buffer_blob();
1783   if (blob != nullptr) {
1784     blob->purge();
1785     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1786     CodeCache::free(blob);
1787   }
1788 }
1789 
1790 /**
1791  * If C1 and/or C2 initialization failed, we shut down all compilation.
1792  * We do this to keep things simple. This can be changed if it ever turns
1793  * out to be a problem.
1794  */
1795 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
1796   free_buffer_blob_if_allocated(thread);
1797 
1798   if (comp->should_perform_shutdown()) {
1799     // There are two reasons for shutting down the compiler
1800     // 1) compiler runtime initialization failed
1801     // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
1802     warning("%s initialization failed. Shutting down all compilers", comp->name());
1803 
1804     // Only one thread per compiler runtime object enters here
1805     // Set state to shut down
1806     comp->set_shut_down();
1807 
1808     // Delete all queued compilation tasks to make compiler threads exit faster.
1809     if (_c1_compile_queue != nullptr) {
1810       _c1_compile_queue->free_all();
1811     }
1812 
1813     if (_c2_compile_queue != nullptr) {
1814       _c2_compile_queue->free_all();
1815     }
1816 
1817     // Set flags so that we continue execution with using interpreter only.
1818     UseCompiler    = false;
1819     UseInterpreter = true;
1820 
1821     // We could delete compiler runtimes also. However, there are references to
1822     // the compiler runtime(s) (e.g.,  nmethod::is_compiled_by_c1()) which then
1823     // fail. This can be done later if necessary.
1824   }
1825 }
1826 
1827 /**
1828  * Helper function to create new or reuse old CompileLog.
1829  */
1830 CompileLog* CompileBroker::get_log(CompilerThread* ct) {
1831   if (!LogCompilation) return nullptr;
1832 
1833   AbstractCompiler *compiler = ct->compiler();
1834   bool c1 = compiler->is_c1();
1835   jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects;
1836   assert(compiler_objects != nullptr, "must be initialized at this point");
1837   CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs;
1838   assert(logs != nullptr, "must be initialized at this point");
1839   int count = c1 ? _c1_count : _c2_count;
1840 
1841   // Find Compiler number by its threadObj.
1842   oop compiler_obj = ct->threadObj();
1843   int compiler_number = 0;
1844   bool found = false;
1845   for (; compiler_number < count; compiler_number++) {
1846     if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) {
1847       found = true;
1848       break;
1849     }
1850   }
1851   assert(found, "Compiler must exist at this point");
1852 
1853   // Determine pointer for this thread's log.
1854   CompileLog** log_ptr = &logs[compiler_number];
1855 
1856   // Return old one if it exists.
1857   CompileLog* log = *log_ptr;
1858   if (log != nullptr) {
1859     ct->init_log(log);
1860     return log;
1861   }
1862 
1863   // Create a new one and remember it.
1864   init_compiler_thread_log();
1865   log = ct->log();
1866   *log_ptr = log;
1867   return log;
1868 }
1869 
1870 // ------------------------------------------------------------------
1871 // CompileBroker::compiler_thread_loop
1872 //
1873 // The main loop run by a CompilerThread.
1874 void CompileBroker::compiler_thread_loop() {
1875   CompilerThread* thread = CompilerThread::current();
1876   CompileQueue* queue = thread->queue();
1877   // For the thread that initializes the ciObjectFactory
1878   // this resource mark holds all the shared objects
1879   ResourceMark rm;
1880 
1881   // First thread to get here will initialize the compiler interface
1882 
1883   {
1884     ASSERT_IN_VM;
1885     MutexLocker only_one (thread, CompileThread_lock);
1886     if (!ciObjectFactory::is_initialized()) {
1887       ciObjectFactory::initialize();
1888     }
1889   }
1890 
1891   // Open a log.
1892   CompileLog* log = get_log(thread);
1893   if (log != nullptr) {
1894     log->begin_elem("start_compile_thread name='%s' thread='%zu' process='%d'",
1895                     thread->name(),
1896                     os::current_thread_id(),
1897                     os::current_process_id());
1898     log->stamp();
1899     log->end_elem();
1900   }
1901 
1902   // If compiler thread/runtime initialization fails, exit the compiler thread
1903   if (!init_compiler_runtime()) {
1904     return;
1905   }
1906 
1907   thread->start_idle_timer();
1908 
1909   // Poll for new compilation tasks as long as the JVM runs. Compilation
1910   // should only be disabled if something went wrong while initializing the
1911   // compiler runtimes. This, in turn, should not happen. The only known case
1912   // when compiler runtime initialization fails is if there is not enough free
1913   // space in the code cache to generate the necessary stubs, etc.
1914   while (!is_compilation_disabled_forever()) {
1915     // We need this HandleMark to avoid leaking VM handles.
1916     HandleMark hm(thread);
1917 
1918     CompileTask* task = queue->get(thread);
1919     if (task == nullptr) {
1920       if (UseDynamicNumberOfCompilerThreads) {
1921         // Access compiler_count under lock to enforce consistency.
1922         MutexLocker only_one(CompileThread_lock);
1923         if (can_remove(thread, true)) {
1924           if (trace_compiler_threads()) {
1925             ResourceMark rm;
1926             stringStream msg;
1927             msg.print("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
1928                       thread->name(), thread->idle_time_millis());
1929             print_compiler_threads(msg);
1930           }
1931 
1932           // Notify compiler that the compiler thread is about to stop
1933           thread->compiler()->stopping_compiler_thread(thread);
1934 
1935           free_buffer_blob_if_allocated(thread);
1936           return; // Stop this thread.
1937         }
1938       }
1939     } else {
1940       // Assign the task to the current thread.  Mark this compilation
1941       // thread as active for the profiler.
1942       // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
1943       // occurs after fetching the compile task off the queue.
1944       CompileTaskWrapper ctw(task);
1945       methodHandle method(thread, task->method());
1946 
1947       // Never compile a method if breakpoints are present in it
1948       if (method()->number_of_breakpoints() == 0) {
1949         // Compile the method.
1950         if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
1951           invoke_compiler_on_method(task);
1952           thread->start_idle_timer();
1953         } else {
1954           // After compilation is disabled, remove remaining methods from queue
1955           method->clear_queued_for_compilation();
1956           task->set_failure_reason("compilation is disabled");
1957         }
1958       } else {
1959         task->set_failure_reason("breakpoints are present");
1960       }
1961 
1962       if (UseDynamicNumberOfCompilerThreads) {
1963         possibly_add_compiler_threads(thread);
1964         assert(!thread->has_pending_exception(), "should have been handled");
1965       }
1966     }
1967   }
1968 
1969   // Shut down compiler runtime
1970   shutdown_compiler_runtime(thread->compiler(), thread);
1971 }
1972 
1973 // ------------------------------------------------------------------
1974 // CompileBroker::init_compiler_thread_log
1975 //
1976 // Set up state required by +LogCompilation.
1977 void CompileBroker::init_compiler_thread_log() {
1978     CompilerThread* thread = CompilerThread::current();
1979     char  file_name[4*K];
1980     FILE* fp = nullptr;
1981     intx thread_id = os::current_thread_id();
1982     for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
1983       const char* dir = (try_temp_dir ? os::get_temp_directory() : nullptr);
1984       if (dir == nullptr) {
1985         jio_snprintf(file_name, sizeof(file_name), "hs_c%zu_pid%u.log",
1986                      thread_id, os::current_process_id());
1987       } else {
1988         jio_snprintf(file_name, sizeof(file_name),
1989                      "%s%shs_c%zu_pid%u.log", dir,
1990                      os::file_separator(), thread_id, os::current_process_id());
1991       }
1992 
1993       fp = os::fopen(file_name, "wt");
1994       if (fp != nullptr) {
1995         if (LogCompilation && Verbose) {
1996           tty->print_cr("Opening compilation log %s", file_name);
1997         }
1998         CompileLog* log = new(mtCompiler) CompileLog(file_name, fp, thread_id);
1999         if (log == nullptr) {
2000           fclose(fp);
2001           return;
2002         }
2003         thread->init_log(log);
2004 
2005         if (xtty != nullptr) {
2006           ttyLocker ttyl;
2007           // Record any per thread log files
2008           xtty->elem("thread_logfile thread='%zd' filename='%s'", thread_id, file_name);
2009         }
2010         return;
2011       }
2012     }
2013     warning("Cannot open log file: %s", file_name);
2014 }
2015 
2016 void CompileBroker::log_metaspace_failure() {
2017   const char* message = "some methods may not be compiled because metaspace "
2018                         "is out of memory";
2019   if (CompilationLog::log() != nullptr) {
2020     CompilationLog::log()->log_metaspace_failure(message);
2021   }
2022   if (PrintCompilation) {
2023     tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
2024   }
2025 }
2026 
2027 
2028 // ------------------------------------------------------------------
2029 // CompileBroker::set_should_block
2030 //
2031 // Set _should_block.
2032 // Call this from the VM, with Threads_lock held and a safepoint requested.
2033 void CompileBroker::set_should_block() {
2034   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2035   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
2036 #ifndef PRODUCT
2037   if (PrintCompilation && (Verbose || WizardMode))
2038     tty->print_cr("notifying compiler thread pool to block");
2039 #endif
2040   _should_block = true;
2041 }
2042 
2043 // ------------------------------------------------------------------
2044 // CompileBroker::maybe_block
2045 //
2046 // Call this from the compiler at convenient points, to poll for _should_block.
2047 void CompileBroker::maybe_block() {
2048   if (_should_block) {
2049 #ifndef PRODUCT
2050     if (PrintCompilation && (Verbose || WizardMode))
2051       tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
2052 #endif
2053     // If we are executing a task during the request to block, report the task
2054     // before disappearing.
2055     CompilerThread* thread = CompilerThread::current();
2056     if (thread != nullptr) {
2057       CompileTask* task = thread->task();
2058       if (task != nullptr) {
2059         if (PrintCompilation) {
2060           task->print(tty, "blocked");
2061         }
2062         task->print_ul("blocked");
2063       }
2064     }
2065     // Go to VM state and block for final VM shutdown safepoint.
2066     ThreadInVMfromNative tivfn(JavaThread::current());
2067     assert(false, "Should never unblock from TIVNM entry");
2068   }
2069 }
2070 
2071 // wrapper for CodeCache::print_summary()
2072 static void codecache_print(bool detailed)
2073 {
2074   stringStream s;
2075   // Dump code cache  into a buffer before locking the tty,
2076   {
2077     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2078     CodeCache::print_summary(&s, detailed);
2079   }
2080   ttyLocker ttyl;
2081   tty->print("%s", s.freeze());
2082 }
2083 
2084 // wrapper for CodeCache::print_summary() using outputStream
2085 static void codecache_print(outputStream* out, bool detailed) {
2086   stringStream s;
2087 
2088   // Dump code cache into a buffer
2089   {
2090     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2091     CodeCache::print_summary(&s, detailed);
2092   }
2093 
2094   char* remaining_log = s.as_string();
2095   while (*remaining_log != '\0') {
2096     char* eol = strchr(remaining_log, '\n');
2097     if (eol == nullptr) {
2098       out->print_cr("%s", remaining_log);
2099       remaining_log = remaining_log + strlen(remaining_log);
2100     } else {
2101       *eol = '\0';
2102       out->print_cr("%s", remaining_log);
2103       remaining_log = eol + 1;
2104     }
2105   }
2106 }
2107 
2108 void CompileBroker::handle_compile_error(CompilerThread* thread, CompileTask* task, ciEnv* ci_env,
2109                                          int compilable, const char* failure_reason) {
2110   if (!AbortVMOnCompilationFailure) {
2111     return;
2112   }
2113   if (compilable == ciEnv::MethodCompilable_not_at_tier) {
2114     fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
2115   }
2116   if (compilable == ciEnv::MethodCompilable_never) {
2117     fatal("Never compilable: %s", failure_reason);
2118   }
2119 }
2120 
2121 static void post_compilation_event(EventCompilation& event, CompileTask* task) {
2122   assert(task != nullptr, "invariant");
2123   CompilerEvent::CompilationEvent::post(event,
2124                                         task->compile_id(),
2125                                         task->compiler()->type(),
2126                                         task->method(),
2127                                         task->comp_level(),
2128                                         task->is_success(),
2129                                         task->osr_bci() != CompileBroker::standard_entry_bci,
2130                                         task->nm_total_size(),
2131                                         task->num_inlined_bytecodes(),
2132                                         task->arena_bytes());
2133 }
2134 
2135 int DirectivesStack::_depth = 0;
2136 CompilerDirectives* DirectivesStack::_top = nullptr;
2137 CompilerDirectives* DirectivesStack::_bottom = nullptr;
2138 
2139 // Acquires Compilation_lock and waits for it to be notified
2140 // as long as WhiteBox::compilation_locked is true.
2141 static void whitebox_lock_compilation() {
2142   MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
2143   while (WhiteBox::compilation_locked) {
2144     locker.wait();
2145   }
2146 }
2147 
2148 // ------------------------------------------------------------------
2149 // CompileBroker::invoke_compiler_on_method
2150 //
2151 // Compile a method.
2152 //
2153 void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
2154   task->print_ul();
2155   elapsedTimer time;
2156 
2157   DirectiveSet* directive = task->directive();
2158   if (directive->PrintCompilationOption) {
2159     ResourceMark rm;
2160     task->print_tty();
2161   }
2162 
2163   CompilerThread* thread = CompilerThread::current();
2164   ResourceMark rm(thread);
2165 
2166   if (CompilationLog::log() != nullptr) {
2167     CompilationLog::log()->log_compile(thread, task);
2168   }
2169 
2170   // Common flags.
2171   int compile_id = task->compile_id();
2172   int osr_bci = task->osr_bci();
2173   bool is_osr = (osr_bci != standard_entry_bci);
2174   bool should_log = (thread->log() != nullptr);
2175   bool should_break = false;
2176   const int task_level = task->comp_level();
2177   AbstractCompiler* comp = task->compiler();
2178   {
2179     // create the handle inside it's own block so it can't
2180     // accidentally be referenced once the thread transitions to
2181     // native.  The NoHandleMark before the transition should catch
2182     // any cases where this occurs in the future.
2183     methodHandle method(thread, task->method());
2184 
2185     assert(!method->is_native(), "no longer compile natives");
2186 
2187     // Update compile information when using perfdata.
2188     if (UsePerfData) {
2189       update_compile_perf_data(thread, method, is_osr);
2190     }
2191 
2192     DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
2193   }
2194 
2195   should_break = directive->BreakAtCompileOption || task->check_break_at_flags();
2196   if (should_log && !directive->LogOption) {
2197     should_log = false;
2198   }
2199 
2200   // Allocate a new set of JNI handles.
2201   JNIHandleMark jhm(thread);
2202   Method* target_handle = task->method();
2203   int compilable = ciEnv::MethodCompilable;
2204   const char* failure_reason = nullptr;
2205   bool failure_reason_on_C_heap = false;
2206   const char* retry_message = nullptr;
2207 
2208 #if INCLUDE_JVMCI
2209   if (UseJVMCICompiler && comp != nullptr && comp->is_jvmci()) {
2210     JVMCICompiler* jvmci = (JVMCICompiler*) comp;
2211 
2212     TraceTime t1("compilation", &time);
2213     EventCompilation event;
2214     JVMCICompileState compile_state(task, jvmci);
2215     JVMCIRuntime *runtime = nullptr;
2216 
2217     if (JVMCI::in_shutdown()) {
2218       failure_reason = "in JVMCI shutdown";
2219       retry_message = "not retryable";
2220       compilable = ciEnv::MethodCompilable_never;
2221     } else if (compile_state.target_method_is_old()) {
2222       // Skip redefined methods
2223       failure_reason = "redefined method";
2224       retry_message = "not retryable";
2225       compilable = ciEnv::MethodCompilable_never;
2226     } else {
2227       JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__);
2228       if (env.init_error() != JNI_OK) {
2229         const char* msg = env.init_error_msg();
2230         failure_reason = os::strdup(err_msg("Error attaching to libjvmci (err: %d, %s)",
2231                                     env.init_error(), msg == nullptr ? "unknown" : msg), mtJVMCI);
2232         bool reason_on_C_heap = true;
2233         // In case of JNI_ENOMEM, there's a good chance a subsequent attempt to create libjvmci or attach to it
2234         // might succeed. Other errors most likely indicate a non-recoverable error in the JVMCI runtime.
2235         bool retryable = env.init_error() == JNI_ENOMEM;
2236         compile_state.set_failure(retryable, failure_reason, reason_on_C_heap);
2237       }
2238       if (failure_reason == nullptr) {
2239         if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2240           // Must switch to native to block
2241           ThreadToNativeFromVM ttn(thread);
2242           whitebox_lock_compilation();
2243         }
2244         methodHandle method(thread, target_handle);
2245         runtime = env.runtime();
2246         runtime->compile_method(&env, jvmci, method, osr_bci);
2247 
2248         failure_reason = compile_state.failure_reason();
2249         failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap();
2250         if (!compile_state.retryable()) {
2251           retry_message = "not retryable";
2252           compilable = ciEnv::MethodCompilable_not_at_tier;
2253         }
2254         if (!task->is_success()) {
2255           assert(failure_reason != nullptr, "must specify failure_reason");
2256         }
2257       }
2258     }
2259     if (!task->is_success() && !JVMCI::in_shutdown()) {
2260       handle_compile_error(thread, task, nullptr, compilable, failure_reason);
2261     }
2262     if (event.should_commit()) {
2263       post_compilation_event(event, task);
2264     }
2265 
2266     if (runtime != nullptr) {
2267       runtime->post_compile(thread);
2268     }
2269   } else
2270 #endif // INCLUDE_JVMCI
2271   {
2272     NoHandleMark  nhm;
2273     ThreadToNativeFromVM ttn(thread);
2274 
2275     ciEnv ci_env(task);
2276     if (should_break) {
2277       ci_env.set_break_at_compile(true);
2278     }
2279     if (should_log) {
2280       ci_env.set_log(thread->log());
2281     }
2282     assert(thread->env() == &ci_env, "set by ci_env");
2283     // The thread-env() field is cleared in ~CompileTaskWrapper.
2284 
2285     // Cache Jvmti state
2286     bool method_is_old = ci_env.cache_jvmti_state();
2287 
2288     // Skip redefined methods
2289     if (method_is_old) {
2290       ci_env.record_method_not_compilable("redefined method", true);
2291     }
2292 
2293     // Cache DTrace flags
2294     ci_env.cache_dtrace_flags();
2295 
2296     ciMethod* target = ci_env.get_method_from_handle(target_handle);
2297 
2298     TraceTime t1("compilation", &time);
2299     EventCompilation event;
2300 
2301     if (comp == nullptr) {
2302       ci_env.record_method_not_compilable("no compiler");
2303     } else if (!ci_env.failing()) {
2304       if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2305         whitebox_lock_compilation();
2306       }
2307       comp->compile_method(&ci_env, target, osr_bci, true, directive);
2308 
2309       /* Repeat compilation without installing code for profiling purposes */
2310       int repeat_compilation_count = directive->RepeatCompilationOption;
2311       while (repeat_compilation_count > 0) {
2312         ResourceMark rm(thread);
2313         task->print_ul("NO CODE INSTALLED");
2314         comp->compile_method(&ci_env, target, osr_bci, false, directive);
2315         repeat_compilation_count--;
2316       }
2317     }
2318 
2319 
2320     if (!ci_env.failing() && !task->is_success()) {
2321       assert(ci_env.failure_reason() != nullptr, "expect failure reason");
2322       assert(false, "compiler should always document failure: %s", ci_env.failure_reason());
2323       // The compiler elected, without comment, not to register a result.
2324       // Do not attempt further compilations of this method.
2325       ci_env.record_method_not_compilable("compile failed");
2326     }
2327 
2328     // Copy this bit to the enclosing block:
2329     compilable = ci_env.compilable();
2330 
2331     if (ci_env.failing()) {
2332       // Duplicate the failure reason string, so that it outlives ciEnv
2333       failure_reason = os::strdup(ci_env.failure_reason(), mtCompiler);
2334       failure_reason_on_C_heap = true;
2335       retry_message = ci_env.retry_message();
2336       ci_env.report_failure(failure_reason);
2337     }
2338 
2339     if (ci_env.failing()) {
2340       handle_compile_error(thread, task, &ci_env, compilable, failure_reason);
2341     }
2342     if (event.should_commit()) {
2343       post_compilation_event(event, task);
2344     }
2345   }
2346 
2347   if (failure_reason != nullptr) {
2348     task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
2349     if (CompilationLog::log() != nullptr) {
2350       CompilationLog::log()->log_failure(thread, task, failure_reason, retry_message);
2351     }
2352     if (PrintCompilation || directive->PrintCompilationOption) {
2353       FormatBufferResource msg = retry_message != nullptr ?
2354         FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
2355         FormatBufferResource("COMPILE SKIPPED: %s",      failure_reason);
2356       task->print(tty, msg);
2357     }
2358   }
2359 
2360   DirectivesStack::release(directive);
2361 
2362   methodHandle method(thread, task->method());
2363 
2364   DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
2365 
2366   collect_statistics(thread, time, task);
2367 
2368   if (PrintCompilation && PrintCompilation2) {
2369     tty->print("%7d ", (int) tty->time_stamp().milliseconds());  // print timestamp
2370     tty->print("%4d ", compile_id);    // print compilation number
2371     tty->print("%s ", (is_osr ? "%" : " "));
2372     if (task->is_success()) {
2373       tty->print("size: %d(%d) ", task->nm_total_size(), task->nm_insts_size());
2374     }
2375     tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
2376   }
2377 
2378   Log(compilation, codecache) log;
2379   if (log.is_debug()) {
2380     LogStream ls(log.debug());
2381     codecache_print(&ls, /* detailed= */ false);
2382   }
2383   if (PrintCodeCacheOnCompilation) {
2384     codecache_print(/* detailed= */ false);
2385   }
2386   // Disable compilation, if required.
2387   switch (compilable) {
2388   case ciEnv::MethodCompilable_never:
2389     if (is_osr)
2390       method->set_not_osr_compilable_quietly("MethodCompilable_never");
2391     else
2392       method->set_not_compilable_quietly("MethodCompilable_never");
2393     break;
2394   case ciEnv::MethodCompilable_not_at_tier:
2395     if (is_osr)
2396       method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2397     else
2398       method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2399     break;
2400   }
2401 
2402   // Note that the queued_for_compilation bits are cleared without
2403   // protection of a mutex. [They were set by the requester thread,
2404   // when adding the task to the compile queue -- at which time the
2405   // compile queue lock was held. Subsequently, we acquired the compile
2406   // queue lock to get this task off the compile queue; thus (to belabour
2407   // the point somewhat) our clearing of the bits must be occurring
2408   // only after the setting of the bits. See also 14012000 above.
2409   method->clear_queued_for_compilation();
2410 }
2411 
2412 /**
2413  * The CodeCache is full. Print warning and disable compilation.
2414  * Schedule code cache cleaning so compilation can continue later.
2415  * This function needs to be called only from CodeCache::allocate(),
2416  * since we currently handle a full code cache uniformly.
2417  */
2418 void CompileBroker::handle_full_code_cache(CodeBlobType code_blob_type) {
2419   UseInterpreter = true;
2420   if (UseCompiler || AlwaysCompileLoopMethods ) {
2421     if (xtty != nullptr) {
2422       stringStream s;
2423       // Dump code cache state into a buffer before locking the tty,
2424       // because log_state() will use locks causing lock conflicts.
2425       CodeCache::log_state(&s);
2426       // Lock to prevent tearing
2427       ttyLocker ttyl;
2428       xtty->begin_elem("code_cache_full");
2429       xtty->print("%s", s.freeze());
2430       xtty->stamp();
2431       xtty->end_elem();
2432     }
2433 
2434 #ifndef PRODUCT
2435     if (ExitOnFullCodeCache) {
2436       codecache_print(/* detailed= */ true);
2437       before_exit(JavaThread::current());
2438       exit_globals(); // will delete tty
2439       vm_direct_exit(1);
2440     }
2441 #endif
2442     if (UseCodeCacheFlushing) {
2443       // Since code cache is full, immediately stop new compiles
2444       if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
2445         log_info(codecache)("Code cache is full - disabling compilation");
2446       }
2447     } else {
2448       disable_compilation_forever();
2449     }
2450 
2451     CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
2452   }
2453 }
2454 
2455 // ------------------------------------------------------------------
2456 // CompileBroker::update_compile_perf_data
2457 //
2458 // Record this compilation for debugging purposes.
2459 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) {
2460   ResourceMark rm;
2461   char* method_name = method->name()->as_C_string();
2462   char current_method[CompilerCounters::cmname_buffer_length];
2463   size_t maxLen = CompilerCounters::cmname_buffer_length;
2464 
2465   const char* class_name = method->method_holder()->name()->as_C_string();
2466 
2467   size_t s1len = strlen(class_name);
2468   size_t s2len = strlen(method_name);
2469 
2470   // check if we need to truncate the string
2471   if (s1len + s2len + 2 > maxLen) {
2472 
2473     // the strategy is to lop off the leading characters of the
2474     // class name and the trailing characters of the method name.
2475 
2476     if (s2len + 2 > maxLen) {
2477       // lop of the entire class name string, let snprintf handle
2478       // truncation of the method name.
2479       class_name += s1len; // null string
2480     }
2481     else {
2482       // lop off the extra characters from the front of the class name
2483       class_name += ((s1len + s2len + 2) - maxLen);
2484     }
2485   }
2486 
2487   jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
2488 
2489   int last_compile_type = normal_compile;
2490   if (CICountOSR && is_osr) {
2491     last_compile_type = osr_compile;
2492   } else if (CICountNative && method->is_native()) {
2493     last_compile_type = native_compile;
2494   }
2495 
2496   CompilerCounters* counters = thread->counters();
2497   counters->set_current_method(current_method);
2498   counters->set_compile_type((jlong) last_compile_type);
2499 }
2500 
2501 // ------------------------------------------------------------------
2502 // CompileBroker::collect_statistics
2503 //
2504 // Collect statistics about the compilation.
2505 
2506 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
2507   bool success = task->is_success();
2508   methodHandle method (thread, task->method());
2509   int compile_id = task->compile_id();
2510   bool is_osr = (task->osr_bci() != standard_entry_bci);
2511   const int comp_level = task->comp_level();
2512   CompilerCounters* counters = thread->counters();
2513 
2514   MutexLocker locker(CompileStatistics_lock);
2515 
2516   // _perf variables are production performance counters which are
2517   // updated regardless of the setting of the CITime and CITimeEach flags
2518   //
2519 
2520   // account all time, including bailouts and failures in this counter;
2521   // C1 and C2 counters are counting both successful and unsuccessful compiles
2522   _t_total_compilation.add(time);
2523 
2524   // Update compilation times. Used by the implementation of JFR CompilerStatistics
2525   // and java.lang.management.CompilationMXBean.
2526   _perf_total_compilation->inc(time.ticks());
2527   _peak_compilation_time = MAX2(time.milliseconds(), _peak_compilation_time);
2528 
2529   if (!success) {
2530     _total_bailout_count++;
2531     if (UsePerfData) {
2532       _perf_last_failed_method->set_value(counters->current_method());
2533       _perf_last_failed_type->set_value(counters->compile_type());
2534       _perf_total_bailout_count->inc();
2535     }
2536     _t_bailedout_compilation.add(time);
2537   } else if (!task->is_success()) {
2538     if (UsePerfData) {
2539       _perf_last_invalidated_method->set_value(counters->current_method());
2540       _perf_last_invalidated_type->set_value(counters->compile_type());
2541       _perf_total_invalidated_count->inc();
2542     }
2543     _total_invalidated_count++;
2544     _t_invalidated_compilation.add(time);
2545   } else {
2546     // Compilation succeeded
2547     if (CITime) {
2548       int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
2549       if (is_osr) {
2550         _t_osr_compilation.add(time);
2551         _sum_osr_bytes_compiled += bytes_compiled;
2552       } else {
2553         _t_standard_compilation.add(time);
2554         _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
2555       }
2556 
2557       // Collect statistic per compilation level
2558       if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) {
2559         CompilerStatistics* stats = &_stats_per_level[comp_level-1];
2560         if (is_osr) {
2561           stats->_osr.update(time, bytes_compiled);
2562         } else {
2563           stats->_standard.update(time, bytes_compiled);
2564         }
2565         stats->_nmethods_size += task->nm_total_size();
2566         stats->_nmethods_code_size += task->nm_insts_size();
2567       } else {
2568         assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level);
2569       }
2570 
2571       // Collect statistic per compiler
2572       AbstractCompiler* comp = compiler(comp_level);
2573       if (comp) {
2574         CompilerStatistics* stats = comp->stats();
2575         if (is_osr) {
2576           stats->_osr.update(time, bytes_compiled);
2577         } else {
2578           stats->_standard.update(time, bytes_compiled);
2579         }
2580         stats->_nmethods_size += task->nm_total_size();
2581         stats->_nmethods_code_size += task->nm_insts_size();
2582       } else { // if (!comp)
2583         assert(false, "Compiler object must exist");
2584       }
2585     }
2586 
2587     if (UsePerfData) {
2588       // save the name of the last method compiled
2589       _perf_last_method->set_value(counters->current_method());
2590       _perf_last_compile_type->set_value(counters->compile_type());
2591       _perf_last_compile_size->set_value(method->code_size() +
2592                                          task->num_inlined_bytecodes());
2593       if (is_osr) {
2594         _perf_osr_compilation->inc(time.ticks());
2595         _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2596       } else {
2597         _perf_standard_compilation->inc(time.ticks());
2598         _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2599       }
2600     }
2601 
2602     if (CITimeEach) {
2603       double compile_time = time.seconds();
2604       double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time;
2605       tty->print_cr("%3d   seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)",
2606                     compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
2607     }
2608 
2609     // Collect counts of successful compilations
2610     _sum_nmethod_size      += task->nm_total_size();
2611     _sum_nmethod_code_size += task->nm_insts_size();
2612     _total_compile_count++;
2613 
2614     if (UsePerfData) {
2615       _perf_sum_nmethod_size->inc(     task->nm_total_size());
2616       _perf_sum_nmethod_code_size->inc(task->nm_insts_size());
2617       _perf_total_compile_count->inc();
2618     }
2619 
2620     if (is_osr) {
2621       if (UsePerfData) _perf_total_osr_compile_count->inc();
2622       _total_osr_compile_count++;
2623     } else {
2624       if (UsePerfData) _perf_total_standard_compile_count->inc();
2625       _total_standard_compile_count++;
2626     }
2627   }
2628   // set the current method for the thread to null
2629   if (UsePerfData) counters->set_current_method("");
2630 }
2631 
2632 const char* CompileBroker::compiler_name(int comp_level) {
2633   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
2634   if (comp == nullptr) {
2635     return "no compiler";
2636   } else {
2637     return (comp->name());
2638   }
2639 }
2640 
2641 jlong CompileBroker::total_compilation_ticks() {
2642   return _perf_total_compilation != nullptr ? _perf_total_compilation->get_value() : 0;
2643 }
2644 
2645 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) {
2646   tty->print_cr("  %s {speed: %6.3f bytes/s; standard: %6.3f s, %u bytes, %u methods; osr: %6.3f s, %u bytes, %u methods; nmethods_size: %u bytes; nmethods_code_size: %u bytes}",
2647                 name, stats->bytes_per_second(),
2648                 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
2649                 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
2650                 stats->_nmethods_size, stats->_nmethods_code_size);
2651 }
2652 
2653 void CompileBroker::print_times(bool per_compiler, bool aggregate) {
2654   if (per_compiler) {
2655     if (aggregate) {
2656       tty->cr();
2657       tty->print_cr("Individual compiler times (for compiled methods only)");
2658       tty->print_cr("------------------------------------------------");
2659       tty->cr();
2660     }
2661     for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
2662       AbstractCompiler* comp = _compilers[i];
2663       if (comp != nullptr) {
2664         print_times(comp->name(), comp->stats());
2665       }
2666     }
2667     if (aggregate) {
2668       tty->cr();
2669       tty->print_cr("Individual compilation Tier times (for compiled methods only)");
2670       tty->print_cr("------------------------------------------------");
2671       tty->cr();
2672     }
2673     char tier_name[256];
2674     for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) {
2675       CompilerStatistics* stats = &_stats_per_level[tier-1];
2676       os::snprintf_checked(tier_name, sizeof(tier_name), "Tier%d", tier);
2677       print_times(tier_name, stats);
2678     }
2679   }
2680 
2681   if (!aggregate) {
2682     return;
2683   }
2684 
2685   elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
2686   elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
2687   elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
2688 
2689   uint standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
2690   uint osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
2691 
2692   uint standard_compile_count = CompileBroker::_total_standard_compile_count;
2693   uint osr_compile_count = CompileBroker::_total_osr_compile_count;
2694   uint total_compile_count = CompileBroker::_total_compile_count;
2695   uint total_bailout_count = CompileBroker::_total_bailout_count;
2696   uint total_invalidated_count = CompileBroker::_total_invalidated_count;
2697 
2698   uint nmethods_code_size = CompileBroker::_sum_nmethod_code_size;
2699   uint nmethods_size = CompileBroker::_sum_nmethod_size;
2700 
2701   tty->cr();
2702   tty->print_cr("Accumulated compiler times");
2703   tty->print_cr("----------------------------------------------------------");
2704                //0000000000111111111122222222223333333333444444444455555555556666666666
2705                //0123456789012345678901234567890123456789012345678901234567890123456789
2706   tty->print_cr("  Total compilation time   : %7.3f s", total_compilation.seconds());
2707   tty->print_cr("    Standard compilation   : %7.3f s, Average : %2.3f s",
2708                 standard_compilation.seconds(),
2709                 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count);
2710   tty->print_cr("    Bailed out compilation : %7.3f s, Average : %2.3f s",
2711                 CompileBroker::_t_bailedout_compilation.seconds(),
2712                 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count);
2713   tty->print_cr("    On stack replacement   : %7.3f s, Average : %2.3f s",
2714                 osr_compilation.seconds(),
2715                 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count);
2716   tty->print_cr("    Invalidated            : %7.3f s, Average : %2.3f s",
2717                 CompileBroker::_t_invalidated_compilation.seconds(),
2718                 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count);
2719 
2720   AbstractCompiler *comp = compiler(CompLevel_simple);
2721   if (comp != nullptr) {
2722     tty->cr();
2723     comp->print_timers();
2724   }
2725   comp = compiler(CompLevel_full_optimization);
2726   if (comp != nullptr) {
2727     tty->cr();
2728     comp->print_timers();
2729   }
2730 #if INCLUDE_JVMCI
2731   if (EnableJVMCI) {
2732     JVMCICompiler *jvmci_comp = JVMCICompiler::instance(false, JavaThread::current_or_null());
2733     if (jvmci_comp != nullptr && jvmci_comp != comp) {
2734       tty->cr();
2735       jvmci_comp->print_timers();
2736     }
2737   }
2738 #endif
2739 
2740   tty->cr();
2741   tty->print_cr("  Total compiled methods    : %8u methods", total_compile_count);
2742   tty->print_cr("    Standard compilation    : %8u methods", standard_compile_count);
2743   tty->print_cr("    On stack replacement    : %8u methods", osr_compile_count);
2744   uint tcb = osr_bytes_compiled + standard_bytes_compiled;
2745   tty->print_cr("  Total compiled bytecodes  : %8u bytes", tcb);
2746   tty->print_cr("    Standard compilation    : %8u bytes", standard_bytes_compiled);
2747   tty->print_cr("    On stack replacement    : %8u bytes", osr_bytes_compiled);
2748   double tcs = total_compilation.seconds();
2749   uint bps = tcs == 0.0 ? 0 : (uint)(tcb / tcs);
2750   tty->print_cr("  Average compilation speed : %8u bytes/s", bps);
2751   tty->cr();
2752   tty->print_cr("  nmethod code size         : %8u bytes", nmethods_code_size);
2753   tty->print_cr("  nmethod total size        : %8u bytes", nmethods_size);
2754 }
2755 
2756 // Print general/accumulated JIT information.
2757 void CompileBroker::print_info(outputStream *out) {
2758   if (out == nullptr) out = tty;
2759   out->cr();
2760   out->print_cr("======================");
2761   out->print_cr("   General JIT info   ");
2762   out->print_cr("======================");
2763   out->cr();
2764   out->print_cr("            JIT is : %7s",     should_compile_new_jobs() ? "on" : "off");
2765   out->print_cr("  Compiler threads : %7d",     (int)CICompilerCount);
2766   out->cr();
2767   out->print_cr("CodeCache overview");
2768   out->print_cr("--------------------------------------------------------");
2769   out->cr();
2770   out->print_cr("         Reserved size : %7zu KB", CodeCache::max_capacity() / K);
2771   out->print_cr("        Committed size : %7zu KB", CodeCache::capacity() / K);
2772   out->print_cr("  Unallocated capacity : %7zu KB", CodeCache::unallocated_capacity() / K);
2773   out->cr();
2774 }
2775 
2776 // Note: tty_lock must not be held upon entry to this function.
2777 //       Print functions called from herein do "micro-locking" on tty_lock.
2778 //       That's a tradeoff which keeps together important blocks of output.
2779 //       At the same time, continuous tty_lock hold time is kept in check,
2780 //       preventing concurrently printing threads from stalling a long time.
2781 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) {
2782   TimeStamp ts_total;
2783   TimeStamp ts_global;
2784   TimeStamp ts;
2785 
2786   bool allFun = !strcmp(function, "all");
2787   bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
2788   bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
2789   bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
2790   bool methodCount = !strcmp(function, "MethodCount") || allFun;
2791   bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
2792   bool methodAge = !strcmp(function, "MethodAge") || allFun;
2793   bool methodNames = !strcmp(function, "MethodNames") || allFun;
2794   bool discard = !strcmp(function, "discard") || allFun;
2795 
2796   if (out == nullptr) {
2797     out = tty;
2798   }
2799 
2800   if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
2801     out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
2802     out->cr();
2803     return;
2804   }
2805 
2806   ts_total.update(); // record starting point
2807 
2808   if (aggregate) {
2809     print_info(out);
2810   }
2811 
2812   // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
2813   // That prevents other threads from destroying (making inconsistent) our view on the CodeHeap.
2814   // When we request individual parts of the analysis via the jcmd interface, it is possible
2815   // that in between another thread (another jcmd user or the vm running into CodeCache OOM)
2816   // updated the aggregated data. We will then see a modified, but again consistent, view
2817   // on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold
2818   // a lock across user interaction.
2819 
2820   // We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock.
2821   // CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time,
2822   // leading to an unnecessarily long hold time of the other locks we acquired before.
2823   ts.update(); // record starting point
2824   MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag);
2825   out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds());
2826 
2827   // Holding the CodeCache_lock protects from concurrent alterations of the CodeCache.
2828   // Unfortunately, such protection is not sufficient:
2829   // When a new nmethod is created via ciEnv::register_method(), the
2830   // Compile_lock is taken first. After some initializations,
2831   // nmethod::new_nmethod() takes over, grabbing the CodeCache_lock
2832   // immediately (after finalizing the oop references). To lock out concurrent
2833   // modifiers, we have to grab both locks as well in the described sequence.
2834   //
2835   // If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock
2836   // for the entire duration of aggregation and printing. That makes sure we see
2837   // a consistent picture and do not run into issues caused by concurrent alterations.
2838   bool should_take_Compile_lock   = !SafepointSynchronize::is_at_safepoint() &&
2839                                     !Compile_lock->owned_by_self();
2840   bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() &&
2841                                     !CodeCache_lock->owned_by_self();
2842   bool take_global_lock_1   =  allFun && should_take_Compile_lock;
2843   bool take_global_lock_2   =  allFun && should_take_CodeCache_lock;
2844   bool take_function_lock_1 = !allFun && should_take_Compile_lock;
2845   bool take_function_lock_2 = !allFun && should_take_CodeCache_lock;
2846   bool take_global_locks    = take_global_lock_1 || take_global_lock_2;
2847   bool take_function_locks  = take_function_lock_1 || take_function_lock_2;
2848 
2849   ts_global.update(); // record starting point
2850 
2851   ConditionalMutexLocker mu1(Compile_lock, take_global_lock_1, Mutex::_safepoint_check_flag);
2852   ConditionalMutexLocker mu2(CodeCache_lock, take_global_lock_2, Mutex::_no_safepoint_check_flag);
2853   if (take_global_locks) {
2854     out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds());
2855     ts_global.update(); // record starting point
2856   }
2857 
2858   if (aggregate) {
2859     ts.update(); // record starting point
2860     ConditionalMutexLocker mu11(Compile_lock, take_function_lock_1,  Mutex::_safepoint_check_flag);
2861     ConditionalMutexLocker mu22(CodeCache_lock, take_function_lock_2, Mutex::_no_safepoint_check_flag);
2862     if (take_function_locks) {
2863       out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds());
2864     }
2865 
2866     ts.update(); // record starting point
2867     CodeCache::aggregate(out, granularity);
2868     if (take_function_locks) {
2869       out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds());
2870     }
2871   }
2872 
2873   if (usedSpace) CodeCache::print_usedSpace(out);
2874   if (freeSpace) CodeCache::print_freeSpace(out);
2875   if (methodCount) CodeCache::print_count(out);
2876   if (methodSpace) CodeCache::print_space(out);
2877   if (methodAge) CodeCache::print_age(out);
2878   if (methodNames) {
2879     if (allFun) {
2880       // print_names() can only be used safely if the locks have been continuously held
2881       // since aggregation begin. That is true only for function "all".
2882       CodeCache::print_names(out);
2883     } else {
2884       out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'");
2885     }
2886   }
2887   if (discard) CodeCache::discard(out);
2888 
2889   if (take_global_locks) {
2890     out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds());
2891   }
2892   out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds());
2893 }