1 /*
   2  * Copyright (c) 1999, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/vmClasses.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/codeHeapState.hpp"
  33 #include "code/dependencyContext.hpp"
  34 #include "compiler/compilationPolicy.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileLog.hpp"
  37 #include "compiler/compilerEvent.hpp"
  38 #include "compiler/compilerOracle.hpp"
  39 #include "compiler/directivesParser.hpp"
  40 #include "interpreter/linkResolver.hpp"
  41 #include "jfr/jfrEvents.hpp"
  42 #include "logging/log.hpp"
  43 #include "logging/logStream.hpp"
  44 #include "memory/allocation.inline.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "memory/universe.hpp"
  47 #include "oops/methodData.hpp"
  48 #include "oops/method.inline.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "prims/jvmtiExport.hpp"
  51 #include "prims/nativeLookup.hpp"
  52 #include "prims/whitebox.hpp"
  53 #include "runtime/atomic.hpp"
  54 #include "runtime/escapeBarrier.hpp"
  55 #include "runtime/globals_extension.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/init.hpp"
  58 #include "runtime/interfaceSupport.inline.hpp"
  59 #include "runtime/java.hpp"
  60 #include "runtime/javaCalls.hpp"
  61 #include "runtime/jniHandles.inline.hpp"
  62 #include "runtime/os.hpp"
  63 #include "runtime/perfData.hpp"
  64 #include "runtime/safepointVerifiers.hpp"
  65 #include "runtime/sharedRuntime.hpp"
  66 #include "runtime/sweeper.hpp"
  67 #include "runtime/threadSMR.hpp"
  68 #include "runtime/timerTrace.hpp"
  69 #include "runtime/vframe.inline.hpp"
  70 #include "utilities/debug.hpp"
  71 #include "utilities/dtrace.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/formatBuffer.hpp"
  74 #include "utilities/macros.hpp"
  75 #ifdef COMPILER1
  76 #include "c1/c1_Compiler.hpp"
  77 #endif
  78 #if INCLUDE_JVMCI
  79 #include "jvmci/jvmciEnv.hpp"
  80 #include "jvmci/jvmciRuntime.hpp"
  81 #endif
  82 #ifdef COMPILER2
  83 #include "opto/c2compiler.hpp"
  84 #endif
  85 
  86 #ifdef DTRACE_ENABLED
  87 
  88 // Only bother with this argument setup if dtrace is available
  89 
  90 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)             \
  91   {                                                                      \
  92     Symbol* klass_name = (method)->klass_name();                         \
  93     Symbol* name = (method)->name();                                     \
  94     Symbol* signature = (method)->signature();                           \
  95     HOTSPOT_METHOD_COMPILE_BEGIN(                                        \
  96       (char *) comp_name, strlen(comp_name),                             \
  97       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
  98       (char *) name->bytes(), name->utf8_length(),                       \
  99       (char *) signature->bytes(), signature->utf8_length());            \
 100   }
 101 
 102 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)      \
 103   {                                                                      \
 104     Symbol* klass_name = (method)->klass_name();                         \
 105     Symbol* name = (method)->name();                                     \
 106     Symbol* signature = (method)->signature();                           \
 107     HOTSPOT_METHOD_COMPILE_END(                                          \
 108       (char *) comp_name, strlen(comp_name),                             \
 109       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 110       (char *) name->bytes(), name->utf8_length(),                       \
 111       (char *) signature->bytes(), signature->utf8_length(), (success)); \
 112   }
 113 
 114 #else //  ndef DTRACE_ENABLED
 115 
 116 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
 117 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
 118 
 119 #endif // ndef DTRACE_ENABLED
 120 
 121 bool CompileBroker::_initialized = false;
 122 volatile bool CompileBroker::_should_block = false;
 123 volatile int  CompileBroker::_print_compilation_warning = 0;
 124 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
 125 
 126 // The installed compiler(s)
 127 AbstractCompiler* CompileBroker::_compilers[2];
 128 
 129 // The maximum numbers of compiler threads to be determined during startup.
 130 int CompileBroker::_c1_count = 0;
 131 int CompileBroker::_c2_count = 0;
 132 
 133 // An array of compiler names as Java String objects
 134 jobject* CompileBroker::_compiler1_objects = NULL;
 135 jobject* CompileBroker::_compiler2_objects = NULL;
 136 
 137 CompileLog** CompileBroker::_compiler1_logs = NULL;
 138 CompileLog** CompileBroker::_compiler2_logs = NULL;
 139 
 140 // These counters are used to assign an unique ID to each compilation.
 141 volatile jint CompileBroker::_compilation_id     = 0;
 142 volatile jint CompileBroker::_osr_compilation_id = 0;
 143 volatile jint CompileBroker::_native_compilation_id = 0;
 144 
 145 // Performance counters
 146 PerfCounter* CompileBroker::_perf_total_compilation = NULL;
 147 PerfCounter* CompileBroker::_perf_osr_compilation = NULL;
 148 PerfCounter* CompileBroker::_perf_standard_compilation = NULL;
 149 
 150 PerfCounter* CompileBroker::_perf_total_bailout_count = NULL;
 151 PerfCounter* CompileBroker::_perf_total_invalidated_count = NULL;
 152 PerfCounter* CompileBroker::_perf_total_compile_count = NULL;
 153 PerfCounter* CompileBroker::_perf_total_osr_compile_count = NULL;
 154 PerfCounter* CompileBroker::_perf_total_standard_compile_count = NULL;
 155 
 156 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = NULL;
 157 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = NULL;
 158 PerfCounter* CompileBroker::_perf_sum_nmethod_size = NULL;
 159 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = NULL;
 160 
 161 PerfStringVariable* CompileBroker::_perf_last_method = NULL;
 162 PerfStringVariable* CompileBroker::_perf_last_failed_method = NULL;
 163 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = NULL;
 164 PerfVariable*       CompileBroker::_perf_last_compile_type = NULL;
 165 PerfVariable*       CompileBroker::_perf_last_compile_size = NULL;
 166 PerfVariable*       CompileBroker::_perf_last_failed_type = NULL;
 167 PerfVariable*       CompileBroker::_perf_last_invalidated_type = NULL;
 168 
 169 // Timers and counters for generating statistics
 170 elapsedTimer CompileBroker::_t_total_compilation;
 171 elapsedTimer CompileBroker::_t_osr_compilation;
 172 elapsedTimer CompileBroker::_t_standard_compilation;
 173 elapsedTimer CompileBroker::_t_invalidated_compilation;
 174 elapsedTimer CompileBroker::_t_bailedout_compilation;
 175 
 176 int CompileBroker::_total_bailout_count            = 0;
 177 int CompileBroker::_total_invalidated_count        = 0;
 178 int CompileBroker::_total_compile_count            = 0;
 179 int CompileBroker::_total_osr_compile_count        = 0;
 180 int CompileBroker::_total_standard_compile_count   = 0;
 181 int CompileBroker::_total_compiler_stopped_count   = 0;
 182 int CompileBroker::_total_compiler_restarted_count = 0;
 183 
 184 int CompileBroker::_sum_osr_bytes_compiled         = 0;
 185 int CompileBroker::_sum_standard_bytes_compiled    = 0;
 186 int CompileBroker::_sum_nmethod_size               = 0;
 187 int CompileBroker::_sum_nmethod_code_size          = 0;
 188 
 189 jlong CompileBroker::_peak_compilation_time        = 0;
 190 
 191 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization];
 192 
 193 CompileQueue* CompileBroker::_c2_compile_queue     = NULL;
 194 CompileQueue* CompileBroker::_c1_compile_queue     = NULL;
 195 
 196 
 197 
 198 class CompilationLog : public StringEventLog {
 199  public:
 200   CompilationLog() : StringEventLog("Compilation events", "jit") {
 201   }
 202 
 203   void log_compile(JavaThread* thread, CompileTask* task) {
 204     StringLogMessage lm;
 205     stringStream sstr(lm.buffer(), lm.size());
 206     // msg.time_stamp().update_to(tty->time_stamp().ticks());
 207     task->print(&sstr, NULL, true, false);
 208     log(thread, "%s", (const char*)lm);
 209   }
 210 
 211   void log_nmethod(JavaThread* thread, nmethod* nm) {
 212     log(thread, "nmethod %d%s " INTPTR_FORMAT " code [" INTPTR_FORMAT ", " INTPTR_FORMAT "]",
 213         nm->compile_id(), nm->is_osr_method() ? "%" : "",
 214         p2i(nm), p2i(nm->code_begin()), p2i(nm->code_end()));
 215   }
 216 
 217   void log_failure(JavaThread* thread, CompileTask* task, const char* reason, const char* retry_message) {
 218     StringLogMessage lm;
 219     lm.print("%4d   COMPILE SKIPPED: %s", task->compile_id(), reason);
 220     if (retry_message != NULL) {
 221       lm.append(" (%s)", retry_message);
 222     }
 223     lm.print("\n");
 224     log(thread, "%s", (const char*)lm);
 225   }
 226 
 227   void log_metaspace_failure(const char* reason) {
 228     // Note: This method can be called from non-Java/compiler threads to
 229     // log the global metaspace failure that might affect profiling.
 230     ResourceMark rm;
 231     StringLogMessage lm;
 232     lm.print("%4d   COMPILE PROFILING SKIPPED: %s", -1, reason);
 233     lm.print("\n");
 234     log(Thread::current(), "%s", (const char*)lm);
 235   }
 236 };
 237 
 238 static CompilationLog* _compilation_log = NULL;
 239 
 240 bool compileBroker_init() {
 241   if (LogEvents) {
 242     _compilation_log = new CompilationLog();
 243   }
 244 
 245   // init directives stack, adding default directive
 246   DirectivesStack::init();
 247 
 248   if (DirectivesParser::has_file()) {
 249     return DirectivesParser::parse_from_flag();
 250   } else if (CompilerDirectivesPrint) {
 251     // Print default directive even when no other was added
 252     DirectivesStack::print(tty);
 253   }
 254 
 255   return true;
 256 }
 257 
 258 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
 259   CompilerThread* thread = CompilerThread::current();
 260   thread->set_task(task);
 261   CompileLog*     log  = thread->log();
 262   if (log != NULL && !task->is_unloaded())  task->log_task_start(log);
 263 }
 264 
 265 CompileTaskWrapper::~CompileTaskWrapper() {
 266   CompilerThread* thread = CompilerThread::current();
 267   CompileTask* task = thread->task();
 268   CompileLog*  log  = thread->log();
 269   if (log != NULL && !task->is_unloaded())  task->log_task_done(log);
 270   thread->set_task(NULL);
 271   task->set_code_handle(NULL);
 272   thread->set_env(NULL);
 273   if (task->is_blocking()) {
 274     bool free_task = false;
 275     {
 276       MutexLocker notifier(thread, task->lock());
 277       task->mark_complete();
 278 #if INCLUDE_JVMCI
 279       if (CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 280         if (!task->has_waiter()) {
 281           // The waiting thread timed out and thus did not free the task.
 282           free_task = true;
 283         }
 284         task->set_blocking_jvmci_compile_state(NULL);
 285       }
 286 #endif
 287       if (!free_task) {
 288         // Notify the waiting thread that the compilation has completed
 289         // so that it can free the task.
 290         task->lock()->notify_all();
 291       }
 292     }
 293     if (free_task) {
 294       // The task can only be freed once the task lock is released.
 295       CompileTask::free(task);
 296     }
 297   } else {
 298     task->mark_complete();
 299 
 300     // By convention, the compiling thread is responsible for
 301     // recycling a non-blocking CompileTask.
 302     CompileTask::free(task);
 303   }
 304 }
 305 
 306 /**
 307  * Check if a CompilerThread can be removed and update count if requested.
 308  */
 309 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) {
 310   assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
 311   if (!ReduceNumberOfCompilerThreads) return false;
 312 
 313   AbstractCompiler *compiler = ct->compiler();
 314   int compiler_count = compiler->num_compiler_threads();
 315   bool c1 = compiler->is_c1();
 316 
 317   // Keep at least 1 compiler thread of each type.
 318   if (compiler_count < 2) return false;
 319 
 320   // Keep thread alive for at least some time.
 321   if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
 322 
 323 #if INCLUDE_JVMCI
 324   if (compiler->is_jvmci()) {
 325     // Handles for JVMCI thread objects may get released concurrently.
 326     if (do_it) {
 327       assert(CompileThread_lock->owner() == ct, "must be holding lock");
 328     } else {
 329       // Skip check if it's the last thread and let caller check again.
 330       return true;
 331     }
 332   }
 333 #endif
 334 
 335   // We only allow the last compiler thread of each type to get removed.
 336   jobject last_compiler = c1 ? compiler1_object(compiler_count - 1)
 337                              : compiler2_object(compiler_count - 1);
 338   if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) {
 339     if (do_it) {
 340       assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
 341       compiler->set_num_compiler_threads(compiler_count - 1);
 342 #if INCLUDE_JVMCI
 343       if (compiler->is_jvmci()) {
 344         // Old j.l.Thread object can die when no longer referenced elsewhere.
 345         JNIHandles::destroy_global(compiler2_object(compiler_count - 1));
 346         _compiler2_objects[compiler_count - 1] = NULL;
 347       }
 348 #endif
 349     }
 350     return true;
 351   }
 352   return false;
 353 }
 354 
 355 /**
 356  * Add a CompileTask to a CompileQueue.
 357  */
 358 void CompileQueue::add(CompileTask* task) {
 359   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 360 
 361   task->set_next(NULL);
 362   task->set_prev(NULL);
 363 
 364   if (_last == NULL) {
 365     // The compile queue is empty.
 366     assert(_first == NULL, "queue is empty");
 367     _first = task;
 368     _last = task;
 369   } else {
 370     // Append the task to the queue.
 371     assert(_last->next() == NULL, "not last");
 372     _last->set_next(task);
 373     task->set_prev(_last);
 374     _last = task;
 375   }
 376   ++_size;
 377 
 378   // Mark the method as being in the compile queue.
 379   task->method()->set_queued_for_compilation();
 380 
 381   if (CIPrintCompileQueue) {
 382     print_tty();
 383   }
 384 
 385   if (LogCompilation && xtty != NULL) {
 386     task->log_task_queued();
 387   }
 388 
 389   // Notify CompilerThreads that a task is available.
 390   MethodCompileQueue_lock->notify_all();
 391 }
 392 
 393 /**
 394  * Empties compilation queue by putting all compilation tasks onto
 395  * a freelist. Furthermore, the method wakes up all threads that are
 396  * waiting on a compilation task to finish. This can happen if background
 397  * compilation is disabled.
 398  */
 399 void CompileQueue::free_all() {
 400   MutexLocker mu(MethodCompileQueue_lock);
 401   CompileTask* next = _first;
 402 
 403   // Iterate over all tasks in the compile queue
 404   while (next != NULL) {
 405     CompileTask* current = next;
 406     next = current->next();
 407     {
 408       // Wake up thread that blocks on the compile task.
 409       MutexLocker ct_lock(current->lock());
 410       current->lock()->notify();
 411     }
 412     // Put the task back on the freelist.
 413     CompileTask::free(current);
 414   }
 415   _first = NULL;
 416   _last = NULL;
 417 
 418   // Wake up all threads that block on the queue.
 419   MethodCompileQueue_lock->notify_all();
 420 }
 421 
 422 /**
 423  * Get the next CompileTask from a CompileQueue
 424  */
 425 CompileTask* CompileQueue::get() {
 426   // save methods from RedefineClasses across safepoint
 427   // across MethodCompileQueue_lock below.
 428   methodHandle save_method;
 429   methodHandle save_hot_method;
 430 
 431   MonitorLocker locker(MethodCompileQueue_lock);
 432   // If _first is NULL we have no more compile jobs. There are two reasons for
 433   // having no compile jobs: First, we compiled everything we wanted. Second,
 434   // we ran out of code cache so compilation has been disabled. In the latter
 435   // case we perform code cache sweeps to free memory such that we can re-enable
 436   // compilation.
 437   while (_first == NULL) {
 438     // Exit loop if compilation is disabled forever
 439     if (CompileBroker::is_compilation_disabled_forever()) {
 440       return NULL;
 441     }
 442 
 443     // If there are no compilation tasks and we can compile new jobs
 444     // (i.e., there is enough free space in the code cache) there is
 445     // no need to invoke the sweeper. As a result, the hotness of methods
 446     // remains unchanged. This behavior is desired, since we want to keep
 447     // the stable state, i.e., we do not want to evict methods from the
 448     // code cache if it is unnecessary.
 449     // We need a timed wait here, since compiler threads can exit if compilation
 450     // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
 451     // is not critical and we do not want idle compiler threads to wake up too often.
 452     locker.wait(5*1000);
 453 
 454     if (UseDynamicNumberOfCompilerThreads && _first == NULL) {
 455       // Still nothing to compile. Give caller a chance to stop this thread.
 456       if (CompileBroker::can_remove(CompilerThread::current(), false)) return NULL;
 457     }
 458   }
 459 
 460   if (CompileBroker::is_compilation_disabled_forever()) {
 461     return NULL;
 462   }
 463 
 464   CompileTask* task;
 465   {
 466     NoSafepointVerifier nsv;
 467     task = CompilationPolicy::select_task(this);
 468     if (task != NULL) {
 469       task = task->select_for_compilation();
 470     }
 471   }
 472 
 473   if (task != NULL) {
 474     // Save method pointers across unlock safepoint.  The task is removed from
 475     // the compilation queue, which is walked during RedefineClasses.
 476     Thread* thread = Thread::current();
 477     save_method = methodHandle(thread, task->method());
 478     save_hot_method = methodHandle(thread, task->hot_method());
 479 
 480     remove(task);
 481   }
 482   purge_stale_tasks(); // may temporarily release MCQ lock
 483   return task;
 484 }
 485 
 486 // Clean & deallocate stale compile tasks.
 487 // Temporarily releases MethodCompileQueue lock.
 488 void CompileQueue::purge_stale_tasks() {
 489   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 490   if (_first_stale != NULL) {
 491     // Stale tasks are purged when MCQ lock is released,
 492     // but _first_stale updates are protected by MCQ lock.
 493     // Once task processing starts and MCQ lock is released,
 494     // other compiler threads can reuse _first_stale.
 495     CompileTask* head = _first_stale;
 496     _first_stale = NULL;
 497     {
 498       MutexUnlocker ul(MethodCompileQueue_lock);
 499       for (CompileTask* task = head; task != NULL; ) {
 500         CompileTask* next_task = task->next();
 501         CompileTaskWrapper ctw(task); // Frees the task
 502         task->set_failure_reason("stale task");
 503         task = next_task;
 504       }
 505     }
 506   }
 507 }
 508 
 509 void CompileQueue::remove(CompileTask* task) {
 510   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 511   if (task->prev() != NULL) {
 512     task->prev()->set_next(task->next());
 513   } else {
 514     // max is the first element
 515     assert(task == _first, "Sanity");
 516     _first = task->next();
 517   }
 518 
 519   if (task->next() != NULL) {
 520     task->next()->set_prev(task->prev());
 521   } else {
 522     // max is the last element
 523     assert(task == _last, "Sanity");
 524     _last = task->prev();
 525   }
 526   --_size;
 527 }
 528 
 529 void CompileQueue::remove_and_mark_stale(CompileTask* task) {
 530   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 531   remove(task);
 532 
 533   // Enqueue the task for reclamation (should be done outside MCQ lock)
 534   task->set_next(_first_stale);
 535   task->set_prev(NULL);
 536   _first_stale = task;
 537 }
 538 
 539 // methods in the compile queue need to be marked as used on the stack
 540 // so that they don't get reclaimed by Redefine Classes
 541 void CompileQueue::mark_on_stack() {
 542   CompileTask* task = _first;
 543   while (task != NULL) {
 544     task->mark_on_stack();
 545     task = task->next();
 546   }
 547 }
 548 
 549 
 550 CompileQueue* CompileBroker::compile_queue(int comp_level) {
 551   if (is_c2_compile(comp_level)) return _c2_compile_queue;
 552   if (is_c1_compile(comp_level)) return _c1_compile_queue;
 553   return NULL;
 554 }
 555 
 556 void CompileBroker::print_compile_queues(outputStream* st) {
 557   st->print_cr("Current compiles: ");
 558 
 559   char buf[2000];
 560   int buflen = sizeof(buf);
 561   Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true);
 562 
 563   st->cr();
 564   if (_c1_compile_queue != NULL) {
 565     _c1_compile_queue->print(st);
 566   }
 567   if (_c2_compile_queue != NULL) {
 568     _c2_compile_queue->print(st);
 569   }
 570 }
 571 
 572 void CompileQueue::print(outputStream* st) {
 573   assert_locked_or_safepoint(MethodCompileQueue_lock);
 574   st->print_cr("%s:", name());
 575   CompileTask* task = _first;
 576   if (task == NULL) {
 577     st->print_cr("Empty");
 578   } else {
 579     while (task != NULL) {
 580       task->print(st, NULL, true, true);
 581       task = task->next();
 582     }
 583   }
 584   st->cr();
 585 }
 586 
 587 void CompileQueue::print_tty() {
 588   ResourceMark rm;
 589   stringStream ss;
 590   // Dump the compile queue into a buffer before locking the tty
 591   print(&ss);
 592   {
 593     ttyLocker ttyl;
 594     tty->print("%s", ss.as_string());
 595   }
 596 }
 597 
 598 CompilerCounters::CompilerCounters() {
 599   _current_method[0] = '\0';
 600   _compile_type = CompileBroker::no_compile;
 601 }
 602 
 603 #if INCLUDE_JFR && COMPILER2_OR_JVMCI
 604 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping
 605 // in compiler/compilerEvent.cpp) and registers it with its serializer.
 606 //
 607 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp,
 608 // so if c2 is used, it should be always registered first.
 609 // This function is called during vm initialization.
 610 void register_jfr_phasetype_serializer(CompilerType compiler_type) {
 611   ResourceMark rm;
 612   static bool first_registration = true;
 613   if (compiler_type == compiler_jvmci) {
 614     CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false);
 615     first_registration = false;
 616 #ifdef COMPILER2
 617   } else if (compiler_type == compiler_c2) {
 618     assert(first_registration, "invariant"); // c2 must be registered first.
 619     for (int i = 0; i < PHASE_NUM_TYPES; i++) {
 620       const char* phase_name = CompilerPhaseTypeHelper::to_description((CompilerPhaseType) i);
 621       CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false);
 622     }
 623     first_registration = false;
 624 #endif // COMPILER2
 625   }
 626 }
 627 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI
 628 
 629 // ------------------------------------------------------------------
 630 // CompileBroker::compilation_init
 631 //
 632 // Initialize the Compilation object
 633 void CompileBroker::compilation_init_phase1(JavaThread* THREAD) {
 634   // No need to initialize compilation system if we do not use it.
 635   if (!UseCompiler) {
 636     return;
 637   }
 638   // Set the interface to the current compiler(s).
 639   _c1_count = CompilationPolicy::c1_count();
 640   _c2_count = CompilationPolicy::c2_count();
 641 
 642 #if INCLUDE_JVMCI
 643   if (EnableJVMCI) {
 644     // This is creating a JVMCICompiler singleton.
 645     JVMCICompiler* jvmci = new JVMCICompiler();
 646 
 647     if (UseJVMCICompiler) {
 648       _compilers[1] = jvmci;
 649       if (FLAG_IS_DEFAULT(JVMCIThreads)) {
 650         if (BootstrapJVMCI) {
 651           // JVMCI will bootstrap so give it more threads
 652           _c2_count = MIN2(32, os::active_processor_count());
 653         }
 654       } else {
 655         _c2_count = JVMCIThreads;
 656       }
 657       if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
 658       } else {
 659 #ifdef COMPILER1
 660         _c1_count = JVMCIHostThreads;
 661 #endif // COMPILER1
 662       }
 663     }
 664   }
 665 #endif // INCLUDE_JVMCI
 666 
 667 #ifdef COMPILER1
 668   if (_c1_count > 0) {
 669     _compilers[0] = new Compiler();
 670   }
 671 #endif // COMPILER1
 672 
 673 #ifdef COMPILER2
 674   if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
 675     if (_c2_count > 0) {
 676       _compilers[1] = new C2Compiler();
 677       // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit.
 678       // idToPhase mapping for c2 is in opto/phasetype.hpp
 679       JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);)
 680     }
 681   }
 682 #endif // COMPILER2
 683 
 684 #if INCLUDE_JVMCI
 685    // Register after c2 registration.
 686    // JVMCI CompilerPhaseType idToPhase mapping is dynamic.
 687    if (EnableJVMCI) {
 688      JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);)
 689    }
 690 #endif // INCLUDE_JVMCI
 691 
 692   // Start the compiler thread(s) and the sweeper thread
 693   init_compiler_sweeper_threads();
 694   // totalTime performance counter is always created as it is required
 695   // by the implementation of java.lang.management.CompilationMXBean.
 696   {
 697     // Ensure OOM leads to vm_exit_during_initialization.
 698     EXCEPTION_MARK;
 699     _perf_total_compilation =
 700                  PerfDataManager::create_counter(JAVA_CI, "totalTime",
 701                                                  PerfData::U_Ticks, CHECK);
 702   }
 703 
 704   if (UsePerfData) {
 705 
 706     EXCEPTION_MARK;
 707 
 708     // create the jvmstat performance counters
 709     _perf_osr_compilation =
 710                  PerfDataManager::create_counter(SUN_CI, "osrTime",
 711                                                  PerfData::U_Ticks, CHECK);
 712 
 713     _perf_standard_compilation =
 714                  PerfDataManager::create_counter(SUN_CI, "standardTime",
 715                                                  PerfData::U_Ticks, CHECK);
 716 
 717     _perf_total_bailout_count =
 718                  PerfDataManager::create_counter(SUN_CI, "totalBailouts",
 719                                                  PerfData::U_Events, CHECK);
 720 
 721     _perf_total_invalidated_count =
 722                  PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
 723                                                  PerfData::U_Events, CHECK);
 724 
 725     _perf_total_compile_count =
 726                  PerfDataManager::create_counter(SUN_CI, "totalCompiles",
 727                                                  PerfData::U_Events, CHECK);
 728     _perf_total_osr_compile_count =
 729                  PerfDataManager::create_counter(SUN_CI, "osrCompiles",
 730                                                  PerfData::U_Events, CHECK);
 731 
 732     _perf_total_standard_compile_count =
 733                  PerfDataManager::create_counter(SUN_CI, "standardCompiles",
 734                                                  PerfData::U_Events, CHECK);
 735 
 736     _perf_sum_osr_bytes_compiled =
 737                  PerfDataManager::create_counter(SUN_CI, "osrBytes",
 738                                                  PerfData::U_Bytes, CHECK);
 739 
 740     _perf_sum_standard_bytes_compiled =
 741                  PerfDataManager::create_counter(SUN_CI, "standardBytes",
 742                                                  PerfData::U_Bytes, CHECK);
 743 
 744     _perf_sum_nmethod_size =
 745                  PerfDataManager::create_counter(SUN_CI, "nmethodSize",
 746                                                  PerfData::U_Bytes, CHECK);
 747 
 748     _perf_sum_nmethod_code_size =
 749                  PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
 750                                                  PerfData::U_Bytes, CHECK);
 751 
 752     _perf_last_method =
 753                  PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
 754                                        CompilerCounters::cmname_buffer_length,
 755                                        "", CHECK);
 756 
 757     _perf_last_failed_method =
 758             PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
 759                                        CompilerCounters::cmname_buffer_length,
 760                                        "", CHECK);
 761 
 762     _perf_last_invalidated_method =
 763         PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
 764                                      CompilerCounters::cmname_buffer_length,
 765                                      "", CHECK);
 766 
 767     _perf_last_compile_type =
 768              PerfDataManager::create_variable(SUN_CI, "lastType",
 769                                               PerfData::U_None,
 770                                               (jlong)CompileBroker::no_compile,
 771                                               CHECK);
 772 
 773     _perf_last_compile_size =
 774              PerfDataManager::create_variable(SUN_CI, "lastSize",
 775                                               PerfData::U_Bytes,
 776                                               (jlong)CompileBroker::no_compile,
 777                                               CHECK);
 778 
 779 
 780     _perf_last_failed_type =
 781              PerfDataManager::create_variable(SUN_CI, "lastFailedType",
 782                                               PerfData::U_None,
 783                                               (jlong)CompileBroker::no_compile,
 784                                               CHECK);
 785 
 786     _perf_last_invalidated_type =
 787          PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
 788                                           PerfData::U_None,
 789                                           (jlong)CompileBroker::no_compile,
 790                                           CHECK);
 791   }
 792 }
 793 
 794 // Completes compiler initialization. Compilation requests submitted
 795 // prior to this will be silently ignored.
 796 void CompileBroker::compilation_init_phase2() {
 797   _initialized = true;
 798 }
 799 
 800 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) {
 801   Handle thread_oop = JavaThread::create_system_thread_object(name, false /* not visible */, CHECK_NH);
 802   return thread_oop;
 803 }
 804 
 805 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 806 // Stress testing. Dedicated threads revert optimizations based on escape analysis concurrently to
 807 // the running java application.  Configured with vm options DeoptimizeObjectsALot*.
 808 class DeoptimizeObjectsALotThread : public JavaThread {
 809 
 810   static void deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS);
 811   void deoptimize_objects_alot_loop_single();
 812   void deoptimize_objects_alot_loop_all();
 813 
 814 public:
 815   DeoptimizeObjectsALotThread() : JavaThread(&deopt_objs_alot_thread_entry) { }
 816 
 817   bool is_hidden_from_external_view() const      { return true; }
 818 };
 819 
 820 // Entry for DeoptimizeObjectsALotThread. The threads are started in
 821 // CompileBroker::init_compiler_sweeper_threads() iff DeoptimizeObjectsALot is enabled
 822 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) {
 823     DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread);
 824     bool enter_single_loop;
 825     {
 826       MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag);
 827       static int single_thread_count = 0;
 828       enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle;
 829     }
 830     if (enter_single_loop) {
 831       dt->deoptimize_objects_alot_loop_single();
 832     } else {
 833       dt->deoptimize_objects_alot_loop_all();
 834     }
 835   }
 836 
 837 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
 838 // barrier targets a single thread which is selected round robin.
 839 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() {
 840   HandleMark hm(this);
 841   while (true) {
 842     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) {
 843       { // Begin new scope for escape barrier
 844         HandleMarkCleaner hmc(this);
 845         ResourceMark rm(this);
 846         EscapeBarrier eb(true, this, deoptee_thread);
 847         eb.deoptimize_objects(100);
 848       }
 849       // Now sleep after the escape barriers destructor resumed deoptee_thread.
 850       sleep(DeoptimizeObjectsALotInterval);
 851     }
 852   }
 853 }
 854 
 855 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
 856 // barrier targets all java threads in the vm at once.
 857 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() {
 858   HandleMark hm(this);
 859   while (true) {
 860     { // Begin new scope for escape barrier
 861       HandleMarkCleaner hmc(this);
 862       ResourceMark rm(this);
 863       EscapeBarrier eb(true, this);
 864       eb.deoptimize_objects_all_threads();
 865     }
 866     // Now sleep after the escape barriers destructor resumed the java threads.
 867     sleep(DeoptimizeObjectsALotInterval);
 868   }
 869 }
 870 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
 871 
 872 
 873 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, JavaThread* THREAD) {
 874   JavaThread* new_thread = NULL;
 875 
 876   switch (type) {
 877     case compiler_t:
 878       assert(comp != NULL, "Compiler instance missing.");
 879       if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
 880         CompilerCounters* counters = new CompilerCounters();
 881         new_thread = new CompilerThread(queue, counters);
 882       }
 883       break;
 884     case sweeper_t:
 885       new_thread = new CodeCacheSweeperThread();
 886       break;
 887 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 888     case deoptimizer_t:
 889       new_thread = new DeoptimizeObjectsALotThread();
 890       break;
 891 #endif // ASSERT
 892     default:
 893       ShouldNotReachHere();
 894   }
 895 
 896   // At this point the new CompilerThread data-races with this startup
 897   // thread (which is the main thread and NOT the VM thread).
 898   // This means Java bytecodes being executed at startup can
 899   // queue compile jobs which will run at whatever default priority the
 900   // newly created CompilerThread runs at.
 901 
 902 
 903   // At this point it may be possible that no osthread was created for the
 904   // JavaThread due to lack of resources. We will handle that failure below.
 905   // Also check new_thread so that static analysis is happy.
 906   if (new_thread != NULL && new_thread->osthread() != NULL) {
 907     Handle thread_oop(THREAD, JNIHandles::resolve_non_null(thread_handle));
 908 
 909     if (type == compiler_t) {
 910       CompilerThread::cast(new_thread)->set_compiler(comp);
 911     }
 912 
 913     // Note that we cannot call os::set_priority because it expects Java
 914     // priorities and we are *explicitly* using OS priorities so that it's
 915     // possible to set the compiler thread priority higher than any Java
 916     // thread.
 917 
 918     int native_prio = CompilerThreadPriority;
 919     if (native_prio == -1) {
 920       if (UseCriticalCompilerThreadPriority) {
 921         native_prio = os::java_to_os_priority[CriticalPriority];
 922       } else {
 923         native_prio = os::java_to_os_priority[NearMaxPriority];
 924       }
 925     }
 926     os::set_native_priority(new_thread, native_prio);
 927 
 928     // Note that this only sets the JavaThread _priority field, which by
 929     // definition is limited to Java priorities and not OS priorities.
 930     JavaThread::start_internal_daemon(THREAD, new_thread, thread_oop, NearMaxPriority);
 931 
 932   } else { // osthread initialization failure
 933     if (UseDynamicNumberOfCompilerThreads && type == compiler_t
 934         && comp->num_compiler_threads() > 0) {
 935       // The new thread is not known to Thread-SMR yet so we can just delete.
 936       delete new_thread;
 937       return NULL;
 938     } else {
 939       vm_exit_during_initialization("java.lang.OutOfMemoryError",
 940                                     os::native_thread_creation_failed_msg());
 941     }
 942   }
 943 
 944   os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
 945 
 946   return new_thread;
 947 }
 948 
 949 
 950 void CompileBroker::init_compiler_sweeper_threads() {
 951   NMethodSweeper::set_sweep_threshold_bytes(static_cast<size_t>(SweeperThreshold * ReservedCodeCacheSize / 100.0));
 952   log_info(codecache, sweep)("Sweeper threshold: " SIZE_FORMAT " bytes", NMethodSweeper::sweep_threshold_bytes());
 953 
 954   // Ensure any exceptions lead to vm_exit_during_initialization.
 955   EXCEPTION_MARK;
 956 #if !defined(ZERO)
 957   assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
 958 #endif // !ZERO
 959   // Initialize the compilation queue
 960   if (_c2_count > 0) {
 961     const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
 962     _c2_compile_queue  = new CompileQueue(name);
 963     _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
 964     _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
 965   }
 966   if (_c1_count > 0) {
 967     _c1_compile_queue  = new CompileQueue("C1 compile queue");
 968     _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
 969     _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
 970   }
 971 
 972   char name_buffer[256];
 973 
 974   for (int i = 0; i < _c2_count; i++) {
 975     jobject thread_handle = NULL;
 976     // Create all j.l.Thread objects for C1 and C2 threads here, but only one
 977     // for JVMCI compiler which can create further ones on demand.
 978     JVMCI_ONLY(if (!UseJVMCICompiler || !UseDynamicNumberOfCompilerThreads || i == 0) {)
 979     // Create a name for our thread.
 980     sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
 981     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
 982     thread_handle = JNIHandles::make_global(thread_oop);
 983     JVMCI_ONLY(})
 984     _compiler2_objects[i] = thread_handle;
 985     _compiler2_logs[i] = NULL;
 986 
 987     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 988       JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD);
 989       assert(ct != NULL, "should have been handled for initial thread");
 990       _compilers[1]->set_num_compiler_threads(i + 1);
 991       if (TraceCompilerThreads) {
 992         ResourceMark rm;
 993         ThreadsListHandle tlh;  // name() depends on the TLH.
 994         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
 995         tty->print_cr("Added initial compiler thread %s", ct->name());
 996       }
 997     }
 998   }
 999 
1000   for (int i = 0; i < _c1_count; i++) {
1001     // Create a name for our thread.
1002     sprintf(name_buffer, "C1 CompilerThread%d", i);
1003     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
1004     jobject thread_handle = JNIHandles::make_global(thread_oop);
1005     _compiler1_objects[i] = thread_handle;
1006     _compiler1_logs[i] = NULL;
1007 
1008     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
1009       JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD);
1010       assert(ct != NULL, "should have been handled for initial thread");
1011       _compilers[0]->set_num_compiler_threads(i + 1);
1012       if (TraceCompilerThreads) {
1013         ResourceMark rm;
1014         ThreadsListHandle tlh;  // name() depends on the TLH.
1015         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1016         tty->print_cr("Added initial compiler thread %s", ct->name());
1017       }
1018     }
1019   }
1020 
1021   if (UsePerfData) {
1022     PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK);
1023   }
1024 
1025   if (MethodFlushing) {
1026     // Initialize the sweeper thread
1027     Handle thread_oop = create_thread_oop("Sweeper thread", CHECK);
1028     jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
1029     make_thread(sweeper_t, thread_handle, NULL, NULL, THREAD);
1030   }
1031 
1032 #if defined(ASSERT) && COMPILER2_OR_JVMCI
1033   if (DeoptimizeObjectsALot) {
1034     // Initialize and start the object deoptimizer threads
1035     const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll;
1036     for (int count = 0; count < total_count; count++) {
1037       Handle thread_oop = create_thread_oop("Deoptimize objects a lot single mode", CHECK);
1038       jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
1039       make_thread(deoptimizer_t, thread_handle, NULL, NULL, THREAD);
1040     }
1041   }
1042 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
1043 }
1044 
1045 void CompileBroker::possibly_add_compiler_threads(JavaThread* THREAD) {
1046 
1047   julong available_memory = os::available_memory();
1048   // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
1049   size_t available_cc_np  = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
1050          available_cc_p   = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
1051 
1052   // Only do attempt to start additional threads if the lock is free.
1053   if (!CompileThread_lock->try_lock()) return;
1054 
1055   if (_c2_compile_queue != NULL) {
1056     int old_c2_count = _compilers[1]->num_compiler_threads();
1057     int new_c2_count = MIN4(_c2_count,
1058         _c2_compile_queue->size() / 2,
1059         (int)(available_memory / (200*M)),
1060         (int)(available_cc_np / (128*K)));
1061 
1062     for (int i = old_c2_count; i < new_c2_count; i++) {
1063 #if INCLUDE_JVMCI
1064       if (UseJVMCICompiler) {
1065         // Native compiler threads as used in C1/C2 can reuse the j.l.Thread
1066         // objects as their existence is completely hidden from the rest of
1067         // the VM (and those compiler threads can't call Java code to do the
1068         // creation anyway). For JVMCI we have to create new j.l.Thread objects
1069         // as they are visible and we can see unexpected thread lifecycle
1070         // transitions if we bind them to new JavaThreads.
1071         if (!THREAD->can_call_java()) break;
1072         char name_buffer[256];
1073         sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
1074         Handle thread_oop;
1075         {
1076           // We have to give up the lock temporarily for the Java calls.
1077           MutexUnlocker mu(CompileThread_lock);
1078           thread_oop = create_thread_oop(name_buffer, THREAD);
1079         }
1080         if (HAS_PENDING_EXCEPTION) {
1081           if (TraceCompilerThreads) {
1082             ResourceMark rm;
1083             tty->print_cr("JVMCI compiler thread creation failed:");
1084             PENDING_EXCEPTION->print();
1085           }
1086           CLEAR_PENDING_EXCEPTION;
1087           break;
1088         }
1089         // Check if another thread has beaten us during the Java calls.
1090         if (_compilers[1]->num_compiler_threads() != i) break;
1091         jobject thread_handle = JNIHandles::make_global(thread_oop);
1092         assert(compiler2_object(i) == NULL, "Old one must be released!");
1093         _compiler2_objects[i] = thread_handle;
1094       }
1095 #endif
1096       JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD);
1097       if (ct == NULL) break;
1098       _compilers[1]->set_num_compiler_threads(i + 1);
1099       if (TraceCompilerThreads) {
1100         ResourceMark rm;
1101         ThreadsListHandle tlh;  // name() depends on the TLH.
1102         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1103         tty->print_cr("Added compiler thread %s (available memory: %dMB, available non-profiled code cache: %dMB)",
1104                       ct->name(), (int)(available_memory/M), (int)(available_cc_np/M));
1105       }
1106     }
1107   }
1108 
1109   if (_c1_compile_queue != NULL) {
1110     int old_c1_count = _compilers[0]->num_compiler_threads();
1111     int new_c1_count = MIN4(_c1_count,
1112         _c1_compile_queue->size() / 4,
1113         (int)(available_memory / (100*M)),
1114         (int)(available_cc_p / (128*K)));
1115 
1116     for (int i = old_c1_count; i < new_c1_count; i++) {
1117       JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD);
1118       if (ct == NULL) break;
1119       _compilers[0]->set_num_compiler_threads(i + 1);
1120       if (TraceCompilerThreads) {
1121         ResourceMark rm;
1122         ThreadsListHandle tlh;  // name() depends on the TLH.
1123         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1124         tty->print_cr("Added compiler thread %s (available memory: %dMB, available profiled code cache: %dMB)",
1125                       ct->name(), (int)(available_memory/M), (int)(available_cc_p/M));
1126       }
1127     }
1128   }
1129 
1130   CompileThread_lock->unlock();
1131 }
1132 
1133 
1134 /**
1135  * Set the methods on the stack as on_stack so that redefine classes doesn't
1136  * reclaim them. This method is executed at a safepoint.
1137  */
1138 void CompileBroker::mark_on_stack() {
1139   assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
1140   // Since we are at a safepoint, we do not need a lock to access
1141   // the compile queues.
1142   if (_c2_compile_queue != NULL) {
1143     _c2_compile_queue->mark_on_stack();
1144   }
1145   if (_c1_compile_queue != NULL) {
1146     _c1_compile_queue->mark_on_stack();
1147   }
1148 }
1149 
1150 // ------------------------------------------------------------------
1151 // CompileBroker::compile_method
1152 //
1153 // Request compilation of a method.
1154 void CompileBroker::compile_method_base(const methodHandle& method,
1155                                         int osr_bci,
1156                                         int comp_level,
1157                                         const methodHandle& hot_method,
1158                                         int hot_count,
1159                                         CompileTask::CompileReason compile_reason,
1160                                         bool blocking,
1161                                         Thread* thread) {
1162   guarantee(!method->is_abstract(), "cannot compile abstract methods");
1163   assert(method->method_holder()->is_instance_klass(),
1164          "sanity check");
1165   assert(!method->method_holder()->is_not_initialized(),
1166          "method holder must be initialized");
1167   assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
1168 
1169   if (CIPrintRequests) {
1170     tty->print("request: ");
1171     method->print_short_name(tty);
1172     if (osr_bci != InvocationEntryBci) {
1173       tty->print(" osr_bci: %d", osr_bci);
1174     }
1175     tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
1176     if (!hot_method.is_null()) {
1177       tty->print(" hot: ");
1178       if (hot_method() != method()) {
1179           hot_method->print_short_name(tty);
1180       } else {
1181         tty->print("yes");
1182       }
1183     }
1184     tty->cr();
1185   }
1186 
1187   // A request has been made for compilation.  Before we do any
1188   // real work, check to see if the method has been compiled
1189   // in the meantime with a definitive result.
1190   if (compilation_is_complete(method, osr_bci, comp_level)) {
1191     return;
1192   }
1193 
1194 #ifndef PRODUCT
1195   if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
1196     if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
1197       // Positive OSROnlyBCI means only compile that bci.  Negative means don't compile that BCI.
1198       return;
1199     }
1200   }
1201 #endif
1202 
1203   // If this method is already in the compile queue, then
1204   // we do not block the current thread.
1205   if (compilation_is_in_queue(method)) {
1206     // We may want to decay our counter a bit here to prevent
1207     // multiple denied requests for compilation.  This is an
1208     // open compilation policy issue. Note: The other possibility,
1209     // in the case that this is a blocking compile request, is to have
1210     // all subsequent blocking requesters wait for completion of
1211     // ongoing compiles. Note that in this case we'll need a protocol
1212     // for freeing the associated compile tasks. [Or we could have
1213     // a single static monitor on which all these waiters sleep.]
1214     return;
1215   }
1216 
1217   // Tiered policy requires MethodCounters to exist before adding a method to
1218   // the queue. Create if we don't have them yet.
1219   method->get_method_counters(thread);
1220 
1221   // Outputs from the following MutexLocker block:
1222   CompileTask* task     = NULL;
1223   CompileQueue* queue  = compile_queue(comp_level);
1224 
1225   // Acquire our lock.
1226   {
1227     MutexLocker locker(thread, MethodCompileQueue_lock);
1228 
1229     // Make sure the method has not slipped into the queues since
1230     // last we checked; note that those checks were "fast bail-outs".
1231     // Here we need to be more careful, see 14012000 below.
1232     if (compilation_is_in_queue(method)) {
1233       return;
1234     }
1235 
1236     // We need to check again to see if the compilation has
1237     // completed.  A previous compilation may have registered
1238     // some result.
1239     if (compilation_is_complete(method, osr_bci, comp_level)) {
1240       return;
1241     }
1242 
1243     // We now know that this compilation is not pending, complete,
1244     // or prohibited.  Assign a compile_id to this compilation
1245     // and check to see if it is in our [Start..Stop) range.
1246     int compile_id = assign_compile_id(method, osr_bci);
1247     if (compile_id == 0) {
1248       // The compilation falls outside the allowed range.
1249       return;
1250     }
1251 
1252 #if INCLUDE_JVMCI
1253     if (UseJVMCICompiler && blocking) {
1254       // Don't allow blocking compiles for requests triggered by JVMCI.
1255       if (thread->is_Compiler_thread()) {
1256         blocking = false;
1257       }
1258 
1259       if (!UseJVMCINativeLibrary) {
1260         // Don't allow blocking compiles if inside a class initializer or while performing class loading
1261         vframeStream vfst(JavaThread::cast(thread));
1262         for (; !vfst.at_end(); vfst.next()) {
1263         if (vfst.method()->is_class_initializer() ||
1264               (vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) &&
1265                   vfst.method()->name() == vmSymbols::loadClass_name())) {
1266             blocking = false;
1267             break;
1268           }
1269         }
1270       }
1271 
1272       // Don't allow blocking compilation requests to JVMCI
1273       // if JVMCI itself is not yet initialized
1274       if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) {
1275         blocking = false;
1276       }
1277 
1278       // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
1279       // to avoid deadlock between compiler thread(s) and threads run at shutdown
1280       // such as the DestroyJavaVM thread.
1281       if (JVMCI::in_shutdown()) {
1282         blocking = false;
1283       }
1284     }
1285 #endif // INCLUDE_JVMCI
1286 
1287     // We will enter the compilation in the queue.
1288     // 14012000: Note that this sets the queued_for_compile bits in
1289     // the target method. We can now reason that a method cannot be
1290     // queued for compilation more than once, as follows:
1291     // Before a thread queues a task for compilation, it first acquires
1292     // the compile queue lock, then checks if the method's queued bits
1293     // are set or it has already been compiled. Thus there can not be two
1294     // instances of a compilation task for the same method on the
1295     // compilation queue. Consider now the case where the compilation
1296     // thread has already removed a task for that method from the queue
1297     // and is in the midst of compiling it. In this case, the
1298     // queued_for_compile bits must be set in the method (and these
1299     // will be visible to the current thread, since the bits were set
1300     // under protection of the compile queue lock, which we hold now.
1301     // When the compilation completes, the compiler thread first sets
1302     // the compilation result and then clears the queued_for_compile
1303     // bits. Neither of these actions are protected by a barrier (or done
1304     // under the protection of a lock), so the only guarantee we have
1305     // (on machines with TSO (Total Store Order)) is that these values
1306     // will update in that order. As a result, the only combinations of
1307     // these bits that the current thread will see are, in temporal order:
1308     // <RESULT, QUEUE> :
1309     //     <0, 1> : in compile queue, but not yet compiled
1310     //     <1, 1> : compiled but queue bit not cleared
1311     //     <1, 0> : compiled and queue bit cleared
1312     // Because we first check the queue bits then check the result bits,
1313     // we are assured that we cannot introduce a duplicate task.
1314     // Note that if we did the tests in the reverse order (i.e. check
1315     // result then check queued bit), we could get the result bit before
1316     // the compilation completed, and the queue bit after the compilation
1317     // completed, and end up introducing a "duplicate" (redundant) task.
1318     // In that case, the compiler thread should first check if a method
1319     // has already been compiled before trying to compile it.
1320     // NOTE: in the event that there are multiple compiler threads and
1321     // there is de-optimization/recompilation, things will get hairy,
1322     // and in that case it's best to protect both the testing (here) of
1323     // these bits, and their updating (here and elsewhere) under a
1324     // common lock.
1325     task = create_compile_task(queue,
1326                                compile_id, method,
1327                                osr_bci, comp_level,
1328                                hot_method, hot_count, compile_reason,
1329                                blocking);
1330   }
1331 
1332   if (blocking) {
1333     wait_for_completion(task);
1334   }
1335 }
1336 
1337 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1338                                        int comp_level,
1339                                        const methodHandle& hot_method, int hot_count,
1340                                        CompileTask::CompileReason compile_reason,
1341                                        TRAPS) {
1342   // Do nothing if compilebroker is not initalized or compiles are submitted on level none
1343   if (!_initialized || comp_level == CompLevel_none) {
1344     return NULL;
1345   }
1346 
1347   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
1348   assert(comp != NULL, "Ensure we have a compiler");
1349 
1350   DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
1351   // CompileBroker::compile_method can trap and can have pending aysnc exception.
1352   nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, directive, THREAD);
1353   DirectivesStack::release(directive);
1354   return nm;
1355 }
1356 
1357 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1358                                          int comp_level,
1359                                          const methodHandle& hot_method, int hot_count,
1360                                          CompileTask::CompileReason compile_reason,
1361                                          DirectiveSet* directive,
1362                                          TRAPS) {
1363 
1364   // make sure arguments make sense
1365   assert(method->method_holder()->is_instance_klass(), "not an instance method");
1366   assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
1367   assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
1368   assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized");
1369   // return quickly if possible
1370 
1371   // lock, make sure that the compilation
1372   // isn't prohibited in a straightforward way.
1373   AbstractCompiler* comp = CompileBroker::compiler(comp_level);
1374   if (comp == NULL || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
1375     return NULL;
1376   }
1377 
1378 #if INCLUDE_JVMCI
1379   if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) {
1380     return NULL;
1381   }
1382 #endif
1383 
1384   if (osr_bci == InvocationEntryBci) {
1385     // standard compilation
1386     CompiledMethod* method_code = method->code();
1387     if (method_code != NULL && method_code->is_nmethod()) {
1388       if (compilation_is_complete(method, osr_bci, comp_level)) {
1389         return (nmethod*) method_code;
1390       }
1391     }
1392     if (method->is_not_compilable(comp_level)) {
1393       return NULL;
1394     }
1395   } else {
1396     // osr compilation
1397     // We accept a higher level osr method
1398     nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1399     if (nm != NULL) return nm;
1400     if (method->is_not_osr_compilable(comp_level)) return NULL;
1401   }
1402 
1403   assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
1404   // some prerequisites that are compiler specific
1405   if (comp->is_c2() || comp->is_jvmci()) {
1406     method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL);
1407     // Resolve all classes seen in the signature of the method
1408     // we are compiling.
1409     Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL);
1410   }
1411 
1412   // If the method is native, do the lookup in the thread requesting
1413   // the compilation. Native lookups can load code, which is not
1414   // permitted during compilation.
1415   //
1416   // Note: A native method implies non-osr compilation which is
1417   //       checked with an assertion at the entry of this method.
1418   if (method->is_native() && !method->is_method_handle_intrinsic()) {
1419     address adr = NativeLookup::lookup(method, THREAD);
1420     if (HAS_PENDING_EXCEPTION) {
1421       // In case of an exception looking up the method, we just forget
1422       // about it. The interpreter will kick-in and throw the exception.
1423       method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable()
1424       CLEAR_PENDING_EXCEPTION;
1425       return NULL;
1426     }
1427     assert(method->has_native_function(), "must have native code by now");
1428   }
1429 
1430   // RedefineClasses() has replaced this method; just return
1431   if (method->is_old()) {
1432     return NULL;
1433   }
1434 
1435   // JVMTI -- post_compile_event requires jmethod_id() that may require
1436   // a lock the compiling thread can not acquire. Prefetch it here.
1437   if (JvmtiExport::should_post_compiled_method_load()) {
1438     method->jmethod_id();
1439   }
1440 
1441   // do the compilation
1442   if (method->is_native()) {
1443     if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
1444 #if defined(X86) && !defined(ZERO)
1445       // The following native methods:
1446       //
1447       // java.lang.Float.intBitsToFloat
1448       // java.lang.Float.floatToRawIntBits
1449       // java.lang.Double.longBitsToDouble
1450       // java.lang.Double.doubleToRawLongBits
1451       //
1452       // are called through the interpreter even if interpreter native stubs
1453       // are not preferred (i.e., calling through adapter handlers is preferred).
1454       // The reason is that on x86_32 signaling NaNs (sNaNs) are not preserved
1455       // if the version of the methods from the native libraries is called.
1456       // As the interpreter and the C2-intrinsified version of the methods preserves
1457       // sNaNs, that would result in an inconsistent way of handling of sNaNs.
1458       if ((UseSSE >= 1 &&
1459           (method->intrinsic_id() == vmIntrinsics::_intBitsToFloat ||
1460            method->intrinsic_id() == vmIntrinsics::_floatToRawIntBits)) ||
1461           (UseSSE >= 2 &&
1462            (method->intrinsic_id() == vmIntrinsics::_longBitsToDouble ||
1463             method->intrinsic_id() == vmIntrinsics::_doubleToRawLongBits))) {
1464         return NULL;
1465       }
1466 #endif // X86 && !ZERO
1467 
1468       // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
1469       // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
1470       //
1471       // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
1472       // in this case.  If we can't generate one and use it we can not execute the out-of-line method handle calls.
1473       AdapterHandlerLibrary::create_native_wrapper(method);
1474     } else {
1475       return NULL;
1476     }
1477   } else {
1478     // If the compiler is shut off due to code cache getting full
1479     // fail out now so blocking compiles dont hang the java thread
1480     if (!should_compile_new_jobs()) {
1481       return NULL;
1482     }
1483     bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles;
1484     compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, is_blocking, THREAD);
1485   }
1486 
1487   // return requested nmethod
1488   // We accept a higher level osr method
1489   if (osr_bci == InvocationEntryBci) {
1490     CompiledMethod* code = method->code();
1491     if (code == NULL) {
1492       return (nmethod*) code;
1493     } else {
1494       return code->as_nmethod_or_null();
1495     }
1496   }
1497   return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1498 }
1499 
1500 
1501 // ------------------------------------------------------------------
1502 // CompileBroker::compilation_is_complete
1503 //
1504 // See if compilation of this method is already complete.
1505 bool CompileBroker::compilation_is_complete(const methodHandle& method,
1506                                             int                 osr_bci,
1507                                             int                 comp_level) {
1508   bool is_osr = (osr_bci != standard_entry_bci);
1509   if (is_osr) {
1510     if (method->is_not_osr_compilable(comp_level)) {
1511       return true;
1512     } else {
1513       nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
1514       return (result != NULL);
1515     }
1516   } else {
1517     if (method->is_not_compilable(comp_level)) {
1518       return true;
1519     } else {
1520       CompiledMethod* result = method->code();
1521       if (result == NULL) return false;
1522       return comp_level == result->comp_level();
1523     }
1524   }
1525 }
1526 
1527 
1528 /**
1529  * See if this compilation is already requested.
1530  *
1531  * Implementation note: there is only a single "is in queue" bit
1532  * for each method.  This means that the check below is overly
1533  * conservative in the sense that an osr compilation in the queue
1534  * will block a normal compilation from entering the queue (and vice
1535  * versa).  This can be remedied by a full queue search to disambiguate
1536  * cases.  If it is deemed profitable, this may be done.
1537  */
1538 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
1539   return method->queued_for_compilation();
1540 }
1541 
1542 // ------------------------------------------------------------------
1543 // CompileBroker::compilation_is_prohibited
1544 //
1545 // See if this compilation is not allowed.
1546 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
1547   bool is_native = method->is_native();
1548   // Some compilers may not support the compilation of natives.
1549   AbstractCompiler *comp = compiler(comp_level);
1550   if (is_native && (!CICompileNatives || comp == NULL)) {
1551     method->set_not_compilable_quietly("native methods not supported", comp_level);
1552     return true;
1553   }
1554 
1555   bool is_osr = (osr_bci != standard_entry_bci);
1556   // Some compilers may not support on stack replacement.
1557   if (is_osr && (!CICompileOSR || comp == NULL)) {
1558     method->set_not_osr_compilable("OSR not supported", comp_level);
1559     return true;
1560   }
1561 
1562   // The method may be explicitly excluded by the user.
1563   double scale;
1564   if (excluded || (CompilerOracle::has_option_value(method, CompileCommand::CompileThresholdScaling, scale) && scale == 0)) {
1565     bool quietly = CompilerOracle::be_quiet();
1566     if (PrintCompilation && !quietly) {
1567       // This does not happen quietly...
1568       ResourceMark rm;
1569       tty->print("### Excluding %s:%s",
1570                  method->is_native() ? "generation of native wrapper" : "compile",
1571                  (method->is_static() ? " static" : ""));
1572       method->print_short_name(tty);
1573       tty->cr();
1574     }
1575     method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly);
1576   }
1577 
1578   return false;
1579 }
1580 
1581 /**
1582  * Generate serialized IDs for compilation requests. If certain debugging flags are used
1583  * and the ID is not within the specified range, the method is not compiled and 0 is returned.
1584  * The function also allows to generate separate compilation IDs for OSR compilations.
1585  */
1586 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
1587 #ifdef ASSERT
1588   bool is_osr = (osr_bci != standard_entry_bci);
1589   int id;
1590   if (method->is_native()) {
1591     assert(!is_osr, "can't be osr");
1592     // Adapters, native wrappers and method handle intrinsics
1593     // should be generated always.
1594     return Atomic::add(CICountNative ? &_native_compilation_id : &_compilation_id, 1);
1595   } else if (CICountOSR && is_osr) {
1596     id = Atomic::add(&_osr_compilation_id, 1);
1597     if (CIStartOSR <= id && id < CIStopOSR) {
1598       return id;
1599     }
1600   } else {
1601     id = Atomic::add(&_compilation_id, 1);
1602     if (CIStart <= id && id < CIStop) {
1603       return id;
1604     }
1605   }
1606 
1607   // Method was not in the appropriate compilation range.
1608   method->set_not_compilable_quietly("Not in requested compile id range");
1609   return 0;
1610 #else
1611   // CICountOSR is a develop flag and set to 'false' by default. In a product built,
1612   // only _compilation_id is incremented.
1613   return Atomic::add(&_compilation_id, 1);
1614 #endif
1615 }
1616 
1617 // ------------------------------------------------------------------
1618 // CompileBroker::assign_compile_id_unlocked
1619 //
1620 // Public wrapper for assign_compile_id that acquires the needed locks
1621 uint CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
1622   MutexLocker locker(thread, MethodCompileQueue_lock);
1623   return assign_compile_id(method, osr_bci);
1624 }
1625 
1626 // ------------------------------------------------------------------
1627 // CompileBroker::create_compile_task
1628 //
1629 // Create a CompileTask object representing the current request for
1630 // compilation.  Add this task to the queue.
1631 CompileTask* CompileBroker::create_compile_task(CompileQueue*       queue,
1632                                                 int                 compile_id,
1633                                                 const methodHandle& method,
1634                                                 int                 osr_bci,
1635                                                 int                 comp_level,
1636                                                 const methodHandle& hot_method,
1637                                                 int                 hot_count,
1638                                                 CompileTask::CompileReason compile_reason,
1639                                                 bool                blocking) {
1640   CompileTask* new_task = CompileTask::allocate();
1641   new_task->initialize(compile_id, method, osr_bci, comp_level,
1642                        hot_method, hot_count, compile_reason,
1643                        blocking);
1644   queue->add(new_task);
1645   return new_task;
1646 }
1647 
1648 #if INCLUDE_JVMCI
1649 // The number of milliseconds to wait before checking if
1650 // JVMCI compilation has made progress.
1651 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
1652 
1653 // The number of JVMCI compilation progress checks that must fail
1654 // before unblocking a thread waiting for a blocking compilation.
1655 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
1656 
1657 /**
1658  * Waits for a JVMCI compiler to complete a given task. This thread
1659  * waits until either the task completes or it sees no JVMCI compilation
1660  * progress for N consecutive milliseconds where N is
1661  * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
1662  * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
1663  *
1664  * @return true if this thread needs to free/recycle the task
1665  */
1666 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
1667   assert(UseJVMCICompiler, "sanity");
1668   MonitorLocker ml(thread, task->lock());
1669   int progress_wait_attempts = 0;
1670   jint thread_jvmci_compilation_ticks = 0;
1671   jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks();
1672   while (!task->is_complete() && !is_compilation_disabled_forever() &&
1673          ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
1674     JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state();
1675 
1676     bool progress;
1677     if (jvmci_compile_state != NULL) {
1678       jint ticks = jvmci_compile_state->compilation_ticks();
1679       progress = (ticks - thread_jvmci_compilation_ticks) != 0;
1680       JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks);
1681       thread_jvmci_compilation_ticks = ticks;
1682     } else {
1683       // Still waiting on JVMCI compiler queue. This thread may be holding a lock
1684       // that all JVMCI compiler threads are blocked on. We use the global JVMCI
1685       // compilation ticks to determine whether JVMCI compilation
1686       // is still making progress through the JVMCI compiler queue.
1687       jint ticks = jvmci->global_compilation_ticks();
1688       progress = (ticks - global_jvmci_compilation_ticks) != 0;
1689       JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks);
1690       global_jvmci_compilation_ticks = ticks;
1691     }
1692 
1693     if (!progress) {
1694       if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
1695         if (PrintCompilation) {
1696           task->print(tty, "wait for blocking compilation timed out");
1697         }
1698         JVMCI_event_1("waiting on compilation %d timed out", task->compile_id());
1699         break;
1700       }
1701     } else {
1702       progress_wait_attempts = 0;
1703     }
1704   }
1705   task->clear_waiter();
1706   return task->is_complete();
1707 }
1708 #endif
1709 
1710 /**
1711  *  Wait for the compilation task to complete.
1712  */
1713 void CompileBroker::wait_for_completion(CompileTask* task) {
1714   if (CIPrintCompileQueue) {
1715     ttyLocker ttyl;
1716     tty->print_cr("BLOCKING FOR COMPILE");
1717   }
1718 
1719   assert(task->is_blocking(), "can only wait on blocking task");
1720 
1721   JavaThread* thread = JavaThread::current();
1722 
1723   methodHandle method(thread, task->method());
1724   bool free_task;
1725 #if INCLUDE_JVMCI
1726   AbstractCompiler* comp = compiler(task->comp_level());
1727   if (comp->is_jvmci() && !task->should_wait_for_compilation()) {
1728     // It may return before compilation is completed.
1729     free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
1730   } else
1731 #endif
1732   {
1733     MonitorLocker ml(thread, task->lock());
1734     free_task = true;
1735     while (!task->is_complete() && !is_compilation_disabled_forever()) {
1736       ml.wait();
1737     }
1738   }
1739 
1740   if (free_task) {
1741     if (is_compilation_disabled_forever()) {
1742       CompileTask::free(task);
1743       return;
1744     }
1745 
1746     // It is harmless to check this status without the lock, because
1747     // completion is a stable property (until the task object is recycled).
1748     assert(task->is_complete(), "Compilation should have completed");
1749     assert(task->code_handle() == NULL, "must be reset");
1750 
1751     // By convention, the waiter is responsible for recycling a
1752     // blocking CompileTask. Since there is only one waiter ever
1753     // waiting on a CompileTask, we know that no one else will
1754     // be using this CompileTask; we can free it.
1755     CompileTask::free(task);
1756   }
1757 }
1758 
1759 /**
1760  * Initialize compiler thread(s) + compiler object(s). The postcondition
1761  * of this function is that the compiler runtimes are initialized and that
1762  * compiler threads can start compiling.
1763  */
1764 bool CompileBroker::init_compiler_runtime() {
1765   CompilerThread* thread = CompilerThread::current();
1766   AbstractCompiler* comp = thread->compiler();
1767   // Final sanity check - the compiler object must exist
1768   guarantee(comp != NULL, "Compiler object must exist");
1769 
1770   {
1771     // Must switch to native to allocate ci_env
1772     ThreadToNativeFromVM ttn(thread);
1773     ciEnv ci_env((CompileTask*)NULL);
1774     // Cache Jvmti state
1775     ci_env.cache_jvmti_state();
1776     // Cache DTrace flags
1777     ci_env.cache_dtrace_flags();
1778 
1779     // Switch back to VM state to do compiler initialization
1780     ThreadInVMfromNative tv(thread);
1781 
1782     // Perform per-thread and global initializations
1783     comp->initialize();
1784   }
1785 
1786   if (comp->is_failed()) {
1787     disable_compilation_forever();
1788     // If compiler initialization failed, no compiler thread that is specific to a
1789     // particular compiler runtime will ever start to compile methods.
1790     shutdown_compiler_runtime(comp, thread);
1791     return false;
1792   }
1793 
1794   // C1 specific check
1795   if (comp->is_c1() && (thread->get_buffer_blob() == NULL)) {
1796     warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
1797     return false;
1798   }
1799 
1800   return true;
1801 }
1802 
1803 /**
1804  * If C1 and/or C2 initialization failed, we shut down all compilation.
1805  * We do this to keep things simple. This can be changed if it ever turns
1806  * out to be a problem.
1807  */
1808 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
1809   // Free buffer blob, if allocated
1810   if (thread->get_buffer_blob() != NULL) {
1811     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1812     CodeCache::free(thread->get_buffer_blob());
1813   }
1814 
1815   if (comp->should_perform_shutdown()) {
1816     // There are two reasons for shutting down the compiler
1817     // 1) compiler runtime initialization failed
1818     // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
1819     warning("%s initialization failed. Shutting down all compilers", comp->name());
1820 
1821     // Only one thread per compiler runtime object enters here
1822     // Set state to shut down
1823     comp->set_shut_down();
1824 
1825     // Delete all queued compilation tasks to make compiler threads exit faster.
1826     if (_c1_compile_queue != NULL) {
1827       _c1_compile_queue->free_all();
1828     }
1829 
1830     if (_c2_compile_queue != NULL) {
1831       _c2_compile_queue->free_all();
1832     }
1833 
1834     // Set flags so that we continue execution with using interpreter only.
1835     UseCompiler    = false;
1836     UseInterpreter = true;
1837 
1838     // We could delete compiler runtimes also. However, there are references to
1839     // the compiler runtime(s) (e.g.,  nmethod::is_compiled_by_c1()) which then
1840     // fail. This can be done later if necessary.
1841   }
1842 }
1843 
1844 /**
1845  * Helper function to create new or reuse old CompileLog.
1846  */
1847 CompileLog* CompileBroker::get_log(CompilerThread* ct) {
1848   if (!LogCompilation) return NULL;
1849 
1850   AbstractCompiler *compiler = ct->compiler();
1851   bool c1 = compiler->is_c1();
1852   jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects;
1853   assert(compiler_objects != NULL, "must be initialized at this point");
1854   CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs;
1855   assert(logs != NULL, "must be initialized at this point");
1856   int count = c1 ? _c1_count : _c2_count;
1857 
1858   // Find Compiler number by its threadObj.
1859   oop compiler_obj = ct->threadObj();
1860   int compiler_number = 0;
1861   bool found = false;
1862   for (; compiler_number < count; compiler_number++) {
1863     if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) {
1864       found = true;
1865       break;
1866     }
1867   }
1868   assert(found, "Compiler must exist at this point");
1869 
1870   // Determine pointer for this thread's log.
1871   CompileLog** log_ptr = &logs[compiler_number];
1872 
1873   // Return old one if it exists.
1874   CompileLog* log = *log_ptr;
1875   if (log != NULL) {
1876     ct->init_log(log);
1877     return log;
1878   }
1879 
1880   // Create a new one and remember it.
1881   init_compiler_thread_log();
1882   log = ct->log();
1883   *log_ptr = log;
1884   return log;
1885 }
1886 
1887 // ------------------------------------------------------------------
1888 // CompileBroker::compiler_thread_loop
1889 //
1890 // The main loop run by a CompilerThread.
1891 void CompileBroker::compiler_thread_loop() {
1892   CompilerThread* thread = CompilerThread::current();
1893   CompileQueue* queue = thread->queue();
1894   // For the thread that initializes the ciObjectFactory
1895   // this resource mark holds all the shared objects
1896   ResourceMark rm;
1897 
1898   // First thread to get here will initialize the compiler interface
1899 
1900   {
1901     ASSERT_IN_VM;
1902     MutexLocker only_one (thread, CompileThread_lock);
1903     if (!ciObjectFactory::is_initialized()) {
1904       ciObjectFactory::initialize();
1905     }
1906   }
1907 
1908   // Open a log.
1909   CompileLog* log = get_log(thread);
1910   if (log != NULL) {
1911     log->begin_elem("start_compile_thread name='%s' thread='" UINTX_FORMAT "' process='%d'",
1912                     thread->name(),
1913                     os::current_thread_id(),
1914                     os::current_process_id());
1915     log->stamp();
1916     log->end_elem();
1917   }
1918 
1919   // If compiler thread/runtime initialization fails, exit the compiler thread
1920   if (!init_compiler_runtime()) {
1921     return;
1922   }
1923 
1924   thread->start_idle_timer();
1925 
1926   // Poll for new compilation tasks as long as the JVM runs. Compilation
1927   // should only be disabled if something went wrong while initializing the
1928   // compiler runtimes. This, in turn, should not happen. The only known case
1929   // when compiler runtime initialization fails is if there is not enough free
1930   // space in the code cache to generate the necessary stubs, etc.
1931   while (!is_compilation_disabled_forever()) {
1932     // We need this HandleMark to avoid leaking VM handles.
1933     HandleMark hm(thread);
1934 
1935     CompileTask* task = queue->get();
1936     if (task == NULL) {
1937       if (UseDynamicNumberOfCompilerThreads) {
1938         // Access compiler_count under lock to enforce consistency.
1939         MutexLocker only_one(CompileThread_lock);
1940         if (can_remove(thread, true)) {
1941           if (TraceCompilerThreads) {
1942             tty->print_cr("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
1943                           thread->name(), thread->idle_time_millis());
1944           }
1945           // Free buffer blob, if allocated
1946           if (thread->get_buffer_blob() != NULL) {
1947             MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1948             CodeCache::free(thread->get_buffer_blob());
1949           }
1950           return; // Stop this thread.
1951         }
1952       }
1953     } else {
1954       // Assign the task to the current thread.  Mark this compilation
1955       // thread as active for the profiler.
1956       // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
1957       // occurs after fetching the compile task off the queue.
1958       CompileTaskWrapper ctw(task);
1959       nmethodLocker result_handle;  // (handle for the nmethod produced by this task)
1960       task->set_code_handle(&result_handle);
1961       methodHandle method(thread, task->method());
1962 
1963       // Never compile a method if breakpoints are present in it
1964       if (method()->number_of_breakpoints() == 0) {
1965         // Compile the method.
1966         if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
1967           invoke_compiler_on_method(task);
1968           thread->start_idle_timer();
1969         } else {
1970           // After compilation is disabled, remove remaining methods from queue
1971           method->clear_queued_for_compilation();
1972           task->set_failure_reason("compilation is disabled");
1973         }
1974       } else {
1975         task->set_failure_reason("breakpoints are present");
1976       }
1977 
1978       if (UseDynamicNumberOfCompilerThreads) {
1979         possibly_add_compiler_threads(thread);
1980         assert(!thread->has_pending_exception(), "should have been handled");
1981       }
1982     }
1983   }
1984 
1985   // Shut down compiler runtime
1986   shutdown_compiler_runtime(thread->compiler(), thread);
1987 }
1988 
1989 // ------------------------------------------------------------------
1990 // CompileBroker::init_compiler_thread_log
1991 //
1992 // Set up state required by +LogCompilation.
1993 void CompileBroker::init_compiler_thread_log() {
1994     CompilerThread* thread = CompilerThread::current();
1995     char  file_name[4*K];
1996     FILE* fp = NULL;
1997     intx thread_id = os::current_thread_id();
1998     for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
1999       const char* dir = (try_temp_dir ? os::get_temp_directory() : NULL);
2000       if (dir == NULL) {
2001         jio_snprintf(file_name, sizeof(file_name), "hs_c" UINTX_FORMAT "_pid%u.log",
2002                      thread_id, os::current_process_id());
2003       } else {
2004         jio_snprintf(file_name, sizeof(file_name),
2005                      "%s%shs_c" UINTX_FORMAT "_pid%u.log", dir,
2006                      os::file_separator(), thread_id, os::current_process_id());
2007       }
2008 
2009       fp = os::fopen(file_name, "wt");
2010       if (fp != NULL) {
2011         if (LogCompilation && Verbose) {
2012           tty->print_cr("Opening compilation log %s", file_name);
2013         }
2014         CompileLog* log = new(ResourceObj::C_HEAP, mtCompiler) CompileLog(file_name, fp, thread_id);
2015         if (log == NULL) {
2016           fclose(fp);
2017           return;
2018         }
2019         thread->init_log(log);
2020 
2021         if (xtty != NULL) {
2022           ttyLocker ttyl;
2023           // Record any per thread log files
2024           xtty->elem("thread_logfile thread='" INTX_FORMAT "' filename='%s'", thread_id, file_name);
2025         }
2026         return;
2027       }
2028     }
2029     warning("Cannot open log file: %s", file_name);
2030 }
2031 
2032 void CompileBroker::log_metaspace_failure() {
2033   const char* message = "some methods may not be compiled because metaspace "
2034                         "is out of memory";
2035   if (_compilation_log != NULL) {
2036     _compilation_log->log_metaspace_failure(message);
2037   }
2038   if (PrintCompilation) {
2039     tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
2040   }
2041 }
2042 
2043 
2044 // ------------------------------------------------------------------
2045 // CompileBroker::set_should_block
2046 //
2047 // Set _should_block.
2048 // Call this from the VM, with Threads_lock held and a safepoint requested.
2049 void CompileBroker::set_should_block() {
2050   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2051   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
2052 #ifndef PRODUCT
2053   if (PrintCompilation && (Verbose || WizardMode))
2054     tty->print_cr("notifying compiler thread pool to block");
2055 #endif
2056   _should_block = true;
2057 }
2058 
2059 // ------------------------------------------------------------------
2060 // CompileBroker::maybe_block
2061 //
2062 // Call this from the compiler at convenient points, to poll for _should_block.
2063 void CompileBroker::maybe_block() {
2064   if (_should_block) {
2065 #ifndef PRODUCT
2066     if (PrintCompilation && (Verbose || WizardMode))
2067       tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
2068 #endif
2069     ThreadInVMfromNative tivfn(JavaThread::current());
2070   }
2071 }
2072 
2073 // wrapper for CodeCache::print_summary()
2074 static void codecache_print(bool detailed)
2075 {
2076   ResourceMark rm;
2077   stringStream s;
2078   // Dump code cache  into a buffer before locking the tty,
2079   {
2080     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2081     CodeCache::print_summary(&s, detailed);
2082   }
2083   ttyLocker ttyl;
2084   tty->print("%s", s.as_string());
2085 }
2086 
2087 // wrapper for CodeCache::print_summary() using outputStream
2088 static void codecache_print(outputStream* out, bool detailed) {
2089   ResourceMark rm;
2090   stringStream s;
2091 
2092   // Dump code cache into a buffer
2093   {
2094     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2095     CodeCache::print_summary(&s, detailed);
2096   }
2097 
2098   char* remaining_log = s.as_string();
2099   while (*remaining_log != '\0') {
2100     char* eol = strchr(remaining_log, '\n');
2101     if (eol == NULL) {
2102       out->print_cr("%s", remaining_log);
2103       remaining_log = remaining_log + strlen(remaining_log);
2104     } else {
2105       *eol = '\0';
2106       out->print_cr("%s", remaining_log);
2107       remaining_log = eol + 1;
2108     }
2109   }
2110 }
2111 
2112 void CompileBroker::post_compile(CompilerThread* thread, CompileTask* task, bool success, ciEnv* ci_env,
2113                                  int compilable, const char* failure_reason) {
2114   if (success) {
2115     task->mark_success();
2116     if (ci_env != NULL) {
2117       task->set_num_inlined_bytecodes(ci_env->num_inlined_bytecodes());
2118     }
2119     if (_compilation_log != NULL) {
2120       nmethod* code = task->code();
2121       if (code != NULL) {
2122         _compilation_log->log_nmethod(thread, code);
2123       }
2124     }
2125   } else if (AbortVMOnCompilationFailure) {
2126     if (compilable == ciEnv::MethodCompilable_not_at_tier) {
2127       fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
2128     }
2129     if (compilable == ciEnv::MethodCompilable_never) {
2130       fatal("Never compilable: %s", failure_reason);
2131     }
2132   }
2133 }
2134 
2135 static void post_compilation_event(EventCompilation& event, CompileTask* task) {
2136   assert(task != NULL, "invariant");
2137   CompilerEvent::CompilationEvent::post(event,
2138                                         task->compile_id(),
2139                                         task->compiler()->type(),
2140                                         task->method(),
2141                                         task->comp_level(),
2142                                         task->is_success(),
2143                                         task->osr_bci() != CompileBroker::standard_entry_bci,
2144                                         (task->code() == NULL) ? 0 : task->code()->total_size(),
2145                                         task->num_inlined_bytecodes());
2146 }
2147 
2148 int DirectivesStack::_depth = 0;
2149 CompilerDirectives* DirectivesStack::_top = NULL;
2150 CompilerDirectives* DirectivesStack::_bottom = NULL;
2151 
2152 // ------------------------------------------------------------------
2153 // CompileBroker::invoke_compiler_on_method
2154 //
2155 // Compile a method.
2156 //
2157 void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
2158   task->print_ul();
2159   if (PrintCompilation) {
2160     ResourceMark rm;
2161     task->print_tty();
2162   }
2163   elapsedTimer time;
2164 
2165   CompilerThread* thread = CompilerThread::current();
2166   ResourceMark rm(thread);
2167 
2168   if (LogEvents) {
2169     _compilation_log->log_compile(thread, task);
2170   }
2171 
2172   // Common flags.
2173   uint compile_id = task->compile_id();
2174   int osr_bci = task->osr_bci();
2175   bool is_osr = (osr_bci != standard_entry_bci);
2176   bool should_log = (thread->log() != NULL);
2177   bool should_break = false;
2178   const int task_level = task->comp_level();
2179   AbstractCompiler* comp = task->compiler();
2180 
2181   DirectiveSet* directive;
2182   {
2183     // create the handle inside it's own block so it can't
2184     // accidentally be referenced once the thread transitions to
2185     // native.  The NoHandleMark before the transition should catch
2186     // any cases where this occurs in the future.
2187     methodHandle method(thread, task->method());
2188     assert(!method->is_native(), "no longer compile natives");
2189 
2190     // Look up matching directives
2191     directive = DirectivesStack::getMatchingDirective(method, comp);
2192 
2193     // Update compile information when using perfdata.
2194     if (UsePerfData) {
2195       update_compile_perf_data(thread, method, is_osr);
2196     }
2197 
2198     DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
2199   }
2200 
2201   should_break = directive->BreakAtCompileOption || task->check_break_at_flags();
2202   if (should_log && !directive->LogOption) {
2203     should_log = false;
2204   }
2205 
2206   // Allocate a new set of JNI handles.
2207   JNIHandleMark jhm(thread);
2208   Method* target_handle = task->method();
2209   int compilable = ciEnv::MethodCompilable;
2210   const char* failure_reason = NULL;
2211   bool failure_reason_on_C_heap = false;
2212   const char* retry_message = NULL;
2213 
2214 #if INCLUDE_JVMCI
2215   if (UseJVMCICompiler && comp != NULL && comp->is_jvmci()) {
2216     JVMCICompiler* jvmci = (JVMCICompiler*) comp;
2217 
2218     TraceTime t1("compilation", &time);
2219     EventCompilation event;
2220     JVMCICompileState compile_state(task, jvmci);
2221     JVMCIRuntime *runtime = NULL;
2222 
2223     if (JVMCI::in_shutdown()) {
2224       failure_reason = "in JVMCI shutdown";
2225       retry_message = "not retryable";
2226       compilable = ciEnv::MethodCompilable_never;
2227     } else if (compile_state.target_method_is_old()) {
2228       // Skip redefined methods
2229       failure_reason = "redefined method";
2230       retry_message = "not retryable";
2231       compilable = ciEnv::MethodCompilable_never;
2232     } else {
2233       JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__);
2234       methodHandle method(thread, target_handle);
2235       runtime = env.runtime();
2236       runtime->compile_method(&env, jvmci, method, osr_bci);
2237 
2238       failure_reason = compile_state.failure_reason();
2239       failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap();
2240       if (!compile_state.retryable()) {
2241         retry_message = "not retryable";
2242         compilable = ciEnv::MethodCompilable_not_at_tier;
2243       }
2244       if (task->code() == NULL) {
2245         assert(failure_reason != NULL, "must specify failure_reason");
2246       }
2247     }
2248     post_compile(thread, task, task->code() != NULL, NULL, compilable, failure_reason);
2249     if (event.should_commit()) {
2250       post_compilation_event(event, task);
2251     }
2252 
2253   } else
2254 #endif // INCLUDE_JVMCI
2255   {
2256     NoHandleMark  nhm;
2257     ThreadToNativeFromVM ttn(thread);
2258 
2259     ciEnv ci_env(task);
2260     if (should_break) {
2261       ci_env.set_break_at_compile(true);
2262     }
2263     if (should_log) {
2264       ci_env.set_log(thread->log());
2265     }
2266     assert(thread->env() == &ci_env, "set by ci_env");
2267     // The thread-env() field is cleared in ~CompileTaskWrapper.
2268 
2269     // Cache Jvmti state
2270     bool method_is_old = ci_env.cache_jvmti_state();
2271 
2272     // Skip redefined methods
2273     if (method_is_old) {
2274       ci_env.record_method_not_compilable("redefined method", true);
2275     }
2276 
2277     // Cache DTrace flags
2278     ci_env.cache_dtrace_flags();
2279 
2280     ciMethod* target = ci_env.get_method_from_handle(target_handle);
2281 
2282     TraceTime t1("compilation", &time);
2283     EventCompilation event;
2284 
2285     if (comp == NULL) {
2286       ci_env.record_method_not_compilable("no compiler");
2287     } else if (!ci_env.failing()) {
2288       if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2289         MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
2290         while (WhiteBox::compilation_locked) {
2291           locker.wait();
2292         }
2293       }
2294       comp->compile_method(&ci_env, target, osr_bci, true, directive);
2295 
2296       /* Repeat compilation without installing code for profiling purposes */
2297       int repeat_compilation_count = directive->RepeatCompilationOption;
2298       while (repeat_compilation_count > 0) {
2299         task->print_ul("NO CODE INSTALLED");
2300         comp->compile_method(&ci_env, target, osr_bci, false , directive);
2301         repeat_compilation_count--;
2302       }
2303     }
2304 
2305     if (!ci_env.failing() && task->code() == NULL) {
2306       //assert(false, "compiler should always document failure");
2307       // The compiler elected, without comment, not to register a result.
2308       // Do not attempt further compilations of this method.
2309       ci_env.record_method_not_compilable("compile failed");
2310     }
2311 
2312     // Copy this bit to the enclosing block:
2313     compilable = ci_env.compilable();
2314 
2315     if (ci_env.failing()) {
2316       failure_reason = ci_env.failure_reason();
2317       retry_message = ci_env.retry_message();
2318       ci_env.report_failure(failure_reason);
2319     }
2320 
2321     post_compile(thread, task, !ci_env.failing(), &ci_env, compilable, failure_reason);
2322     if (event.should_commit()) {
2323       post_compilation_event(event, task);
2324     }
2325   }
2326 
2327   if (failure_reason != NULL) {
2328     task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
2329     if (_compilation_log != NULL) {
2330       _compilation_log->log_failure(thread, task, failure_reason, retry_message);
2331     }
2332     if (PrintCompilation) {
2333       FormatBufferResource msg = retry_message != NULL ?
2334         FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
2335         FormatBufferResource("COMPILE SKIPPED: %s",      failure_reason);
2336       task->print(tty, msg);
2337     }
2338   }
2339 
2340   methodHandle method(thread, task->method());
2341 
2342   DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
2343 
2344   collect_statistics(thread, time, task);
2345 
2346   nmethod* nm = task->code();
2347   if (nm != NULL) {
2348     nm->maybe_print_nmethod(directive);
2349   }
2350   DirectivesStack::release(directive);
2351 
2352   if (PrintCompilation && PrintCompilation2) {
2353     tty->print("%7d ", (int) tty->time_stamp().milliseconds());  // print timestamp
2354     tty->print("%4d ", compile_id);    // print compilation number
2355     tty->print("%s ", (is_osr ? "%" : " "));
2356     if (task->code() != NULL) {
2357       tty->print("size: %d(%d) ", task->code()->total_size(), task->code()->insts_size());
2358     }
2359     tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
2360   }
2361 
2362   Log(compilation, codecache) log;
2363   if (log.is_debug()) {
2364     LogStream ls(log.debug());
2365     codecache_print(&ls, /* detailed= */ false);
2366   }
2367   if (PrintCodeCacheOnCompilation) {
2368     codecache_print(/* detailed= */ false);
2369   }
2370   // Disable compilation, if required.
2371   switch (compilable) {
2372   case ciEnv::MethodCompilable_never:
2373     if (is_osr)
2374       method->set_not_osr_compilable_quietly("MethodCompilable_never");
2375     else
2376       method->set_not_compilable_quietly("MethodCompilable_never");
2377     break;
2378   case ciEnv::MethodCompilable_not_at_tier:
2379     if (is_osr)
2380       method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2381     else
2382       method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2383     break;
2384   }
2385 
2386   // Note that the queued_for_compilation bits are cleared without
2387   // protection of a mutex. [They were set by the requester thread,
2388   // when adding the task to the compile queue -- at which time the
2389   // compile queue lock was held. Subsequently, we acquired the compile
2390   // queue lock to get this task off the compile queue; thus (to belabour
2391   // the point somewhat) our clearing of the bits must be occurring
2392   // only after the setting of the bits. See also 14012000 above.
2393   method->clear_queued_for_compilation();
2394 }
2395 
2396 /**
2397  * The CodeCache is full. Print warning and disable compilation.
2398  * Schedule code cache cleaning so compilation can continue later.
2399  * This function needs to be called only from CodeCache::allocate(),
2400  * since we currently handle a full code cache uniformly.
2401  */
2402 void CompileBroker::handle_full_code_cache(int code_blob_type) {
2403   UseInterpreter = true;
2404   if (UseCompiler || AlwaysCompileLoopMethods ) {
2405     if (xtty != NULL) {
2406       ResourceMark rm;
2407       stringStream s;
2408       // Dump code cache state into a buffer before locking the tty,
2409       // because log_state() will use locks causing lock conflicts.
2410       CodeCache::log_state(&s);
2411       // Lock to prevent tearing
2412       ttyLocker ttyl;
2413       xtty->begin_elem("code_cache_full");
2414       xtty->print("%s", s.as_string());
2415       xtty->stamp();
2416       xtty->end_elem();
2417     }
2418 
2419 #ifndef PRODUCT
2420     if (ExitOnFullCodeCache) {
2421       codecache_print(/* detailed= */ true);
2422       before_exit(JavaThread::current());
2423       exit_globals(); // will delete tty
2424       vm_direct_exit(1);
2425     }
2426 #endif
2427     if (UseCodeCacheFlushing) {
2428       // Since code cache is full, immediately stop new compiles
2429       if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
2430         NMethodSweeper::log_sweep("disable_compiler");
2431       }
2432     } else {
2433       disable_compilation_forever();
2434     }
2435 
2436     CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
2437   }
2438 }
2439 
2440 // ------------------------------------------------------------------
2441 // CompileBroker::update_compile_perf_data
2442 //
2443 // Record this compilation for debugging purposes.
2444 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) {
2445   ResourceMark rm;
2446   char* method_name = method->name()->as_C_string();
2447   char current_method[CompilerCounters::cmname_buffer_length];
2448   size_t maxLen = CompilerCounters::cmname_buffer_length;
2449 
2450   const char* class_name = method->method_holder()->name()->as_C_string();
2451 
2452   size_t s1len = strlen(class_name);
2453   size_t s2len = strlen(method_name);
2454 
2455   // check if we need to truncate the string
2456   if (s1len + s2len + 2 > maxLen) {
2457 
2458     // the strategy is to lop off the leading characters of the
2459     // class name and the trailing characters of the method name.
2460 
2461     if (s2len + 2 > maxLen) {
2462       // lop of the entire class name string, let snprintf handle
2463       // truncation of the method name.
2464       class_name += s1len; // null string
2465     }
2466     else {
2467       // lop off the extra characters from the front of the class name
2468       class_name += ((s1len + s2len + 2) - maxLen);
2469     }
2470   }
2471 
2472   jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
2473 
2474   int last_compile_type = normal_compile;
2475   if (CICountOSR && is_osr) {
2476     last_compile_type = osr_compile;
2477   } else if (CICountNative && method->is_native()) {
2478     last_compile_type = native_compile;
2479   }
2480 
2481   CompilerCounters* counters = thread->counters();
2482   counters->set_current_method(current_method);
2483   counters->set_compile_type((jlong) last_compile_type);
2484 }
2485 
2486 // ------------------------------------------------------------------
2487 // CompileBroker::collect_statistics
2488 //
2489 // Collect statistics about the compilation.
2490 
2491 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
2492   bool success = task->is_success();
2493   methodHandle method (thread, task->method());
2494   uint compile_id = task->compile_id();
2495   bool is_osr = (task->osr_bci() != standard_entry_bci);
2496   const int comp_level = task->comp_level();
2497   nmethod* code = task->code();
2498   CompilerCounters* counters = thread->counters();
2499 
2500   assert(code == NULL || code->is_locked_by_vm(), "will survive the MutexLocker");
2501   MutexLocker locker(CompileStatistics_lock);
2502 
2503   // _perf variables are production performance counters which are
2504   // updated regardless of the setting of the CITime and CITimeEach flags
2505   //
2506 
2507   // account all time, including bailouts and failures in this counter;
2508   // C1 and C2 counters are counting both successful and unsuccessful compiles
2509   _t_total_compilation.add(time);
2510 
2511   if (!success) {
2512     _total_bailout_count++;
2513     if (UsePerfData) {
2514       _perf_last_failed_method->set_value(counters->current_method());
2515       _perf_last_failed_type->set_value(counters->compile_type());
2516       _perf_total_bailout_count->inc();
2517     }
2518     _t_bailedout_compilation.add(time);
2519   } else if (code == NULL) {
2520     if (UsePerfData) {
2521       _perf_last_invalidated_method->set_value(counters->current_method());
2522       _perf_last_invalidated_type->set_value(counters->compile_type());
2523       _perf_total_invalidated_count->inc();
2524     }
2525     _total_invalidated_count++;
2526     _t_invalidated_compilation.add(time);
2527   } else {
2528     // Compilation succeeded
2529 
2530     // update compilation ticks - used by the implementation of
2531     // java.lang.management.CompilationMXBean
2532     _perf_total_compilation->inc(time.ticks());
2533     _peak_compilation_time = time.milliseconds() > _peak_compilation_time ? time.milliseconds() : _peak_compilation_time;
2534 
2535     if (CITime) {
2536       int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
2537       if (is_osr) {
2538         _t_osr_compilation.add(time);
2539         _sum_osr_bytes_compiled += bytes_compiled;
2540       } else {
2541         _t_standard_compilation.add(time);
2542         _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
2543       }
2544 
2545       // Collect statistic per compilation level
2546       if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) {
2547         CompilerStatistics* stats = &_stats_per_level[comp_level-1];
2548         if (is_osr) {
2549           stats->_osr.update(time, bytes_compiled);
2550         } else {
2551           stats->_standard.update(time, bytes_compiled);
2552         }
2553         stats->_nmethods_size += code->total_size();
2554         stats->_nmethods_code_size += code->insts_size();
2555       } else {
2556         assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level);
2557       }
2558 
2559       // Collect statistic per compiler
2560       AbstractCompiler* comp = compiler(comp_level);
2561       if (comp) {
2562         CompilerStatistics* stats = comp->stats();
2563         if (is_osr) {
2564           stats->_osr.update(time, bytes_compiled);
2565         } else {
2566           stats->_standard.update(time, bytes_compiled);
2567         }
2568         stats->_nmethods_size += code->total_size();
2569         stats->_nmethods_code_size += code->insts_size();
2570       } else { // if (!comp)
2571         assert(false, "Compiler object must exist");
2572       }
2573     }
2574 
2575     if (UsePerfData) {
2576       // save the name of the last method compiled
2577       _perf_last_method->set_value(counters->current_method());
2578       _perf_last_compile_type->set_value(counters->compile_type());
2579       _perf_last_compile_size->set_value(method->code_size() +
2580                                          task->num_inlined_bytecodes());
2581       if (is_osr) {
2582         _perf_osr_compilation->inc(time.ticks());
2583         _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2584       } else {
2585         _perf_standard_compilation->inc(time.ticks());
2586         _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2587       }
2588     }
2589 
2590     if (CITimeEach) {
2591       double compile_time = time.seconds();
2592       double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time;
2593       tty->print_cr("%3d   seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)",
2594                     compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
2595     }
2596 
2597     // Collect counts of successful compilations
2598     _sum_nmethod_size      += code->total_size();
2599     _sum_nmethod_code_size += code->insts_size();
2600     _total_compile_count++;
2601 
2602     if (UsePerfData) {
2603       _perf_sum_nmethod_size->inc(     code->total_size());
2604       _perf_sum_nmethod_code_size->inc(code->insts_size());
2605       _perf_total_compile_count->inc();
2606     }
2607 
2608     if (is_osr) {
2609       if (UsePerfData) _perf_total_osr_compile_count->inc();
2610       _total_osr_compile_count++;
2611     } else {
2612       if (UsePerfData) _perf_total_standard_compile_count->inc();
2613       _total_standard_compile_count++;
2614     }
2615   }
2616   // set the current method for the thread to null
2617   if (UsePerfData) counters->set_current_method("");
2618 }
2619 
2620 const char* CompileBroker::compiler_name(int comp_level) {
2621   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
2622   if (comp == NULL) {
2623     return "no compiler";
2624   } else {
2625     return (comp->name());
2626   }
2627 }
2628 
2629 jlong CompileBroker::total_compilation_ticks() {
2630   return _perf_total_compilation != NULL ? _perf_total_compilation->get_value() : 0;
2631 }
2632 
2633 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) {
2634   tty->print_cr("  %s {speed: %6.3f bytes/s; standard: %6.3f s, %d bytes, %d methods; osr: %6.3f s, %d bytes, %d methods; nmethods_size: %d bytes; nmethods_code_size: %d bytes}",
2635                 name, stats->bytes_per_second(),
2636                 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
2637                 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
2638                 stats->_nmethods_size, stats->_nmethods_code_size);
2639 }
2640 
2641 void CompileBroker::print_times(bool per_compiler, bool aggregate) {
2642   if (per_compiler) {
2643     if (aggregate) {
2644       tty->cr();
2645       tty->print_cr("Individual compiler times (for compiled methods only)");
2646       tty->print_cr("------------------------------------------------");
2647       tty->cr();
2648     }
2649     for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
2650       AbstractCompiler* comp = _compilers[i];
2651       if (comp != NULL) {
2652         print_times(comp->name(), comp->stats());
2653       }
2654     }
2655     if (aggregate) {
2656       tty->cr();
2657       tty->print_cr("Individual compilation Tier times (for compiled methods only)");
2658       tty->print_cr("------------------------------------------------");
2659       tty->cr();
2660     }
2661     char tier_name[256];
2662     for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) {
2663       CompilerStatistics* stats = &_stats_per_level[tier-1];
2664       sprintf(tier_name, "Tier%d", tier);
2665       print_times(tier_name, stats);
2666     }
2667   }
2668 
2669   if (!aggregate) {
2670     return;
2671   }
2672 
2673   elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
2674   elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
2675   elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
2676 
2677   int standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
2678   int osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
2679 
2680   int standard_compile_count = CompileBroker::_total_standard_compile_count;
2681   int osr_compile_count = CompileBroker::_total_osr_compile_count;
2682   int total_compile_count = CompileBroker::_total_compile_count;
2683   int total_bailout_count = CompileBroker::_total_bailout_count;
2684   int total_invalidated_count = CompileBroker::_total_invalidated_count;
2685 
2686   int nmethods_size = CompileBroker::_sum_nmethod_code_size;
2687   int nmethods_code_size = CompileBroker::_sum_nmethod_size;
2688 
2689   tty->cr();
2690   tty->print_cr("Accumulated compiler times");
2691   tty->print_cr("----------------------------------------------------------");
2692                //0000000000111111111122222222223333333333444444444455555555556666666666
2693                //0123456789012345678901234567890123456789012345678901234567890123456789
2694   tty->print_cr("  Total compilation time   : %7.3f s", total_compilation.seconds());
2695   tty->print_cr("    Standard compilation   : %7.3f s, Average : %2.3f s",
2696                 standard_compilation.seconds(),
2697                 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count);
2698   tty->print_cr("    Bailed out compilation : %7.3f s, Average : %2.3f s",
2699                 CompileBroker::_t_bailedout_compilation.seconds(),
2700                 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count);
2701   tty->print_cr("    On stack replacement   : %7.3f s, Average : %2.3f s",
2702                 osr_compilation.seconds(),
2703                 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count);
2704   tty->print_cr("    Invalidated            : %7.3f s, Average : %2.3f s",
2705                 CompileBroker::_t_invalidated_compilation.seconds(),
2706                 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count);
2707 
2708   AbstractCompiler *comp = compiler(CompLevel_simple);
2709   if (comp != NULL) {
2710     tty->cr();
2711     comp->print_timers();
2712   }
2713   comp = compiler(CompLevel_full_optimization);
2714   if (comp != NULL) {
2715     tty->cr();
2716     comp->print_timers();
2717   }
2718 #if INCLUDE_JVMCI
2719   if (EnableJVMCI) {
2720     tty->cr();
2721     JVMCICompiler::print_hosted_timers();
2722   }
2723 #endif
2724 
2725   tty->cr();
2726   tty->print_cr("  Total compiled methods    : %8d methods", total_compile_count);
2727   tty->print_cr("    Standard compilation    : %8d methods", standard_compile_count);
2728   tty->print_cr("    On stack replacement    : %8d methods", osr_compile_count);
2729   int tcb = osr_bytes_compiled + standard_bytes_compiled;
2730   tty->print_cr("  Total compiled bytecodes  : %8d bytes", tcb);
2731   tty->print_cr("    Standard compilation    : %8d bytes", standard_bytes_compiled);
2732   tty->print_cr("    On stack replacement    : %8d bytes", osr_bytes_compiled);
2733   double tcs = total_compilation.seconds();
2734   int bps = tcs == 0.0 ? 0 : (int)(tcb / tcs);
2735   tty->print_cr("  Average compilation speed : %8d bytes/s", bps);
2736   tty->cr();
2737   tty->print_cr("  nmethod code size         : %8d bytes", nmethods_code_size);
2738   tty->print_cr("  nmethod total size        : %8d bytes", nmethods_size);
2739 }
2740 
2741 // Print general/accumulated JIT information.
2742 void CompileBroker::print_info(outputStream *out) {
2743   if (out == NULL) out = tty;
2744   out->cr();
2745   out->print_cr("======================");
2746   out->print_cr("   General JIT info   ");
2747   out->print_cr("======================");
2748   out->cr();
2749   out->print_cr("            JIT is : %7s",     should_compile_new_jobs() ? "on" : "off");
2750   out->print_cr("  Compiler threads : %7d",     (int)CICompilerCount);
2751   out->cr();
2752   out->print_cr("CodeCache overview");
2753   out->print_cr("--------------------------------------------------------");
2754   out->cr();
2755   out->print_cr("         Reserved size : " SIZE_FORMAT_W(7) " KB", CodeCache::max_capacity() / K);
2756   out->print_cr("        Committed size : " SIZE_FORMAT_W(7) " KB", CodeCache::capacity() / K);
2757   out->print_cr("  Unallocated capacity : " SIZE_FORMAT_W(7) " KB", CodeCache::unallocated_capacity() / K);
2758   out->cr();
2759 
2760   out->cr();
2761   out->print_cr("CodeCache cleaning overview");
2762   out->print_cr("--------------------------------------------------------");
2763   out->cr();
2764   NMethodSweeper::print(out);
2765   out->print_cr("--------------------------------------------------------");
2766   out->cr();
2767 }
2768 
2769 // Note: tty_lock must not be held upon entry to this function.
2770 //       Print functions called from herein do "micro-locking" on tty_lock.
2771 //       That's a tradeoff which keeps together important blocks of output.
2772 //       At the same time, continuous tty_lock hold time is kept in check,
2773 //       preventing concurrently printing threads from stalling a long time.
2774 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) {
2775   TimeStamp ts_total;
2776   TimeStamp ts_global;
2777   TimeStamp ts;
2778 
2779   bool allFun = !strcmp(function, "all");
2780   bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
2781   bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
2782   bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
2783   bool methodCount = !strcmp(function, "MethodCount") || allFun;
2784   bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
2785   bool methodAge = !strcmp(function, "MethodAge") || allFun;
2786   bool methodNames = !strcmp(function, "MethodNames") || allFun;
2787   bool discard = !strcmp(function, "discard") || allFun;
2788 
2789   if (out == NULL) {
2790     out = tty;
2791   }
2792 
2793   if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
2794     out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
2795     out->cr();
2796     return;
2797   }
2798 
2799   ts_total.update(); // record starting point
2800 
2801   if (aggregate) {
2802     print_info(out);
2803   }
2804 
2805   // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
2806   // That prevents other threads from destroying (making inconsistent) our view on the CodeHeap.
2807   // When we request individual parts of the analysis via the jcmd interface, it is possible
2808   // that in between another thread (another jcmd user or the vm running into CodeCache OOM)
2809   // updated the aggregated data. We will then see a modified, but again consistent, view
2810   // on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold
2811   // a lock across user interaction.
2812 
2813   // We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock.
2814   // CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time,
2815   // leading to an unnecessarily long hold time of the other locks we acquired before.
2816   ts.update(); // record starting point
2817   MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag);
2818   out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds());
2819 
2820   // Holding the CodeCache_lock protects from concurrent alterations of the CodeCache.
2821   // Unfortunately, such protection is not sufficient:
2822   // When a new nmethod is created via ciEnv::register_method(), the
2823   // Compile_lock is taken first. After some initializations,
2824   // nmethod::new_nmethod() takes over, grabbing the CodeCache_lock
2825   // immediately (after finalizing the oop references). To lock out concurrent
2826   // modifiers, we have to grab both locks as well in the described sequence.
2827   //
2828   // If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock
2829   // for the entire duration of aggregation and printing. That makes sure we see
2830   // a consistent picture and do not run into issues caused by concurrent alterations.
2831   bool should_take_Compile_lock   = !SafepointSynchronize::is_at_safepoint() &&
2832                                     !Compile_lock->owned_by_self();
2833   bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() &&
2834                                     !CodeCache_lock->owned_by_self();
2835   Mutex*   global_lock_1   = allFun ? (should_take_Compile_lock   ? Compile_lock   : NULL) : NULL;
2836   Monitor* global_lock_2   = allFun ? (should_take_CodeCache_lock ? CodeCache_lock : NULL) : NULL;
2837   Mutex*   function_lock_1 = allFun ? NULL : (should_take_Compile_lock   ? Compile_lock    : NULL);
2838   Monitor* function_lock_2 = allFun ? NULL : (should_take_CodeCache_lock ? CodeCache_lock  : NULL);
2839   ts_global.update(); // record starting point
2840   MutexLocker mu1(global_lock_1, Mutex::_safepoint_check_flag);
2841   MutexLocker mu2(global_lock_2, Mutex::_no_safepoint_check_flag);
2842   if ((global_lock_1 != NULL) || (global_lock_2 != NULL)) {
2843     out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds());
2844     ts_global.update(); // record starting point
2845   }
2846 
2847   if (aggregate) {
2848     ts.update(); // record starting point
2849     MutexLocker mu11(function_lock_1, Mutex::_safepoint_check_flag);
2850     MutexLocker mu22(function_lock_2, Mutex::_no_safepoint_check_flag);
2851     if ((function_lock_1 != NULL) || (function_lock_1 != NULL)) {
2852       out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds());
2853     }
2854 
2855     ts.update(); // record starting point
2856     CodeCache::aggregate(out, granularity);
2857     if ((function_lock_1 != NULL) || (function_lock_1 != NULL)) {
2858       out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds());
2859     }
2860   }
2861 
2862   if (usedSpace) CodeCache::print_usedSpace(out);
2863   if (freeSpace) CodeCache::print_freeSpace(out);
2864   if (methodCount) CodeCache::print_count(out);
2865   if (methodSpace) CodeCache::print_space(out);
2866   if (methodAge) CodeCache::print_age(out);
2867   if (methodNames) {
2868     if (allFun) {
2869       // print_names() can only be used safely if the locks have been continuously held
2870       // since aggregation begin. That is true only for function "all".
2871       CodeCache::print_names(out);
2872     } else {
2873       out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'");
2874     }
2875   }
2876   if (discard) CodeCache::discard(out);
2877 
2878   if ((global_lock_1 != NULL) || (global_lock_2 != NULL)) {
2879     out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds());
2880   }
2881   out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds());
2882 }