1 /*
  2  * Copyright (c) 2018, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "classfile/javaClasses.hpp"
 26 #include "code/vmreg.inline.hpp"
 27 #include "gc/g1/c2/g1BarrierSetC2.hpp"
 28 #include "gc/g1/g1BarrierSet.hpp"
 29 #include "gc/g1/g1BarrierSetAssembler.hpp"
 30 #include "gc/g1/g1BarrierSetRuntime.hpp"
 31 #include "gc/g1/g1CardTable.hpp"
 32 #include "gc/g1/g1ThreadLocalData.hpp"
 33 #include "gc/g1/g1HeapRegion.hpp"
 34 #include "opto/arraycopynode.hpp"
 35 #include "opto/block.hpp"
 36 #include "opto/compile.hpp"
 37 #include "opto/escape.hpp"
 38 #include "opto/graphKit.hpp"
 39 #include "opto/idealKit.hpp"
 40 #include "opto/machnode.hpp"
 41 #include "opto/macro.hpp"
 42 #include "opto/memnode.hpp"
 43 #include "opto/node.hpp"
 44 #include "opto/output.hpp"
 45 #include "opto/regalloc.hpp"
 46 #include "opto/rootnode.hpp"
 47 #include "opto/runtime.hpp"
 48 #include "opto/type.hpp"
 49 #include "utilities/growableArray.hpp"
 50 #include "utilities/macros.hpp"
 51 
 52 /*
 53  * Determine if the G1 pre-barrier can be removed. The pre-barrier is
 54  * required by SATB to make sure all objects live at the start of the
 55  * marking are kept alive, all reference updates need to any previous
 56  * reference stored before writing.
 57  *
 58  * If the previous value is null there is no need to save the old value.
 59  * References that are null are filtered during runtime by the barrier
 60  * code to avoid unnecessary queuing.
 61  *
 62  * However in the case of newly allocated objects it might be possible to
 63  * prove that the reference about to be overwritten is null during compile
 64  * time and avoid adding the barrier code completely.
 65  *
 66  * The compiler needs to determine that the object in which a field is about
 67  * to be written is newly allocated, and that no prior store to the same field
 68  * has happened since the allocation.
 69  */
 70 bool G1BarrierSetC2::g1_can_remove_pre_barrier(GraphKit* kit,
 71                                                PhaseValues* phase,
 72                                                Node* adr,
 73                                                BasicType bt,
 74                                                uint adr_idx) const {
 75   intptr_t offset = 0;
 76   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 77   AllocateNode* alloc = AllocateNode::Ideal_allocation(base);
 78 
 79   if (offset == Type::OffsetBot) {
 80     return false; // Cannot unalias unless there are precise offsets.
 81   }
 82   if (alloc == nullptr) {
 83     return false; // No allocation found.
 84   }
 85 
 86   intptr_t size_in_bytes = type2aelembytes(bt);
 87   Node* mem = kit->memory(adr_idx); // Start searching here.
 88 
 89   for (int cnt = 0; cnt < 50; cnt++) {
 90     if (mem->is_Store()) {
 91       Node* st_adr = mem->in(MemNode::Address);
 92       intptr_t st_offset = 0;
 93       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 94 
 95       if (st_base == nullptr) {
 96         break; // Inscrutable pointer.
 97       }
 98       if (st_base == base && st_offset == offset) {
 99         // We have found a store with same base and offset as ours.
100         break;
101       }
102       if (st_offset != offset && st_offset != Type::OffsetBot) {
103         const int MAX_STORE = BytesPerLong;
104         if (st_offset >= offset + size_in_bytes ||
105             st_offset <= offset - MAX_STORE ||
106             st_offset <= offset - mem->as_Store()->memory_size()) {
107           // Success:  The offsets are provably independent.
108           // (You may ask, why not just test st_offset != offset and be done?
109           // The answer is that stores of different sizes can co-exist
110           // in the same sequence of RawMem effects.  We sometimes initialize
111           // a whole 'tile' of array elements with a single jint or jlong.)
112           mem = mem->in(MemNode::Memory);
113           continue; // Advance through independent store memory.
114         }
115       }
116       if (st_base != base
117           && MemNode::detect_ptr_independence(base, alloc, st_base,
118                                               AllocateNode::Ideal_allocation(st_base),
119                                               phase)) {
120         // Success: the bases are provably independent.
121         mem = mem->in(MemNode::Memory);
122         continue; // Advance through independent store memory.
123       }
124     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
125       InitializeNode* st_init = mem->in(0)->as_Initialize();
126       AllocateNode* st_alloc = st_init->allocation();
127 
128       // Make sure that we are looking at the same allocation site.
129       // The alloc variable is guaranteed to not be null here from earlier check.
130       if (alloc == st_alloc) {
131         // Check that the initialization is storing null so that no previous store
132         // has been moved up and directly write a reference.
133         Node* captured_store = st_init->find_captured_store(offset,
134                                                             type2aelembytes(T_OBJECT),
135                                                             phase);
136         if (captured_store == nullptr || captured_store == st_init->zero_memory()) {
137           return true;
138         }
139       }
140     }
141     // Unless there is an explicit 'continue', we must bail out here,
142     // because 'mem' is an inscrutable memory state (e.g., a call).
143     break;
144   }
145   return false;
146 }
147 
148 /*
149  * G1, similar to any GC with a Young Generation, requires a way to keep track
150  * of references from Old Generation to Young Generation to make sure all live
151  * objects are found. G1 also requires to keep track of object references
152  * between different regions to enable evacuation of old regions, which is done
153  * as part of mixed collections. References are tracked in remembered sets,
154  * which are continuously updated as references are written to with the help of
155  * the post-barrier.
156  *
157  * To reduce the number of updates to the remembered set, the post-barrier
158  * filters out updates to fields in objects located in the Young Generation, the
159  * same region as the reference, when null is being written, or if the card is
160  * already marked as dirty by an earlier write.
161  *
162  * Under certain circumstances it is possible to avoid generating the
163  * post-barrier completely, if it is possible during compile time to prove the
164  * object is newly allocated and that no safepoint exists between the allocation
165  * and the store. This can be seen as a compile-time version of the
166  * above-mentioned Young Generation filter.
167  *
168  * In the case of a slow allocation, the allocation code must handle the barrier
169  * as part of the allocation if the allocated object is not located in the
170  * nursery; this would happen for humongous objects.
171  */
172 bool G1BarrierSetC2::g1_can_remove_post_barrier(GraphKit* kit,
173                                                 PhaseValues* phase, Node* store_ctrl,
174                                                 Node* adr) const {
175   intptr_t      offset = 0;
176   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
177   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base);
178 
179   if (offset == Type::OffsetBot) {
180     return false; // Cannot unalias unless there are precise offsets.
181   }
182   if (alloc == nullptr) {
183     return false; // No allocation found.
184   }
185 
186   Node* mem = store_ctrl;   // Start search from Store node.
187   if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
188     InitializeNode* st_init = mem->in(0)->as_Initialize();
189     AllocateNode*  st_alloc = st_init->allocation();
190     // Make sure we are looking at the same allocation
191     if (alloc == st_alloc) {
192       return true;
193     }
194   }
195 
196   return false;
197 }
198 
199 Node* G1BarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
200   DecoratorSet decorators = access.decorators();
201   bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
202   bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0;
203   bool no_keepalive = (decorators & AS_NO_KEEPALIVE) != 0;
204   // If we are reading the value of the referent field of a Reference object, we
205   // need to record the referent in an SATB log buffer using the pre-barrier
206   // mechanism. Also we need to add a memory barrier to prevent commoning reads
207   // from this field across safepoints, since GC can change its value.
208   bool need_read_barrier = ((on_weak || on_phantom) && !no_keepalive);
209   if (access.is_oop() && need_read_barrier) {
210     access.set_barrier_data(G1C2BarrierPre);
211   }
212   return CardTableBarrierSetC2::load_at_resolved(access, val_type);
213 }
214 
215 void G1BarrierSetC2::eliminate_gc_barrier(PhaseIterGVN* igvn, Node* node) const {
216   eliminate_gc_barrier_data(node);
217 }
218 void G1BarrierSetC2::eliminate_gc_barrier_data(Node* node) const {
219   if (node->is_LoadStore()) {
220     LoadStoreNode* loadstore = node->as_LoadStore();
221     loadstore->set_barrier_data(0);
222   } else if (node->is_Mem()) {
223     MemNode* mem = node->as_Mem();
224     mem->set_barrier_data(0);
225   }
226 }
227 
228 static void refine_barrier_by_new_val_type(const Node* n) {
229   if (n->Opcode() != Op_StoreP &&
230       n->Opcode() != Op_StoreN) {
231     return;
232   }
233   MemNode* store = n->as_Mem();
234   const Node* newval = n->in(MemNode::ValueIn);
235   assert(newval != nullptr, "");
236   const Type* newval_bottom = newval->bottom_type();
237   TypePtr::PTR newval_type = newval_bottom->make_ptr()->ptr();
238   uint8_t barrier_data = store->barrier_data();
239   if (!newval_bottom->isa_oopptr() &&
240       !newval_bottom->isa_narrowoop() &&
241       newval_type != TypePtr::Null) {
242     // newval is neither an OOP nor null, so there is no barrier to refine.
243     assert(barrier_data == 0, "non-OOP stores should have no barrier data");
244     return;
245   }
246   if (barrier_data == 0) {
247     // No barrier to refine.
248     return;
249   }
250   if (newval_type == TypePtr::Null) {
251     // Simply elide post-barrier if writing null.
252     barrier_data &= ~G1C2BarrierPost;
253     barrier_data &= ~G1C2BarrierPostNotNull;
254   } else if (((barrier_data & G1C2BarrierPost) != 0) &&
255              newval_type == TypePtr::NotNull) {
256     // If the post-barrier has not been elided yet (e.g. due to newval being
257     // freshly allocated), mark it as not-null (simplifies barrier tests and
258     // compressed OOPs logic).
259     barrier_data |= G1C2BarrierPostNotNull;
260   }
261   store->set_barrier_data(barrier_data);
262   return;
263 }
264 
265 // Refine (not really expand) G1 barriers by looking at the new value type
266 // (whether it is necessarily null or necessarily non-null).
267 bool G1BarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const {
268   ResourceMark rm;
269   VectorSet visited;
270   Node_List worklist;
271   worklist.push(C->root());
272   while (worklist.size() > 0) {
273     Node* n = worklist.pop();
274     if (visited.test_set(n->_idx)) {
275       continue;
276     }
277     refine_barrier_by_new_val_type(n);
278     for (uint j = 0; j < n->req(); j++) {
279       Node* in = n->in(j);
280       if (in != nullptr) {
281         worklist.push(in);
282       }
283     }
284   }
285   return false;
286 }
287 
288 uint G1BarrierSetC2::estimated_barrier_size(const Node* node) const {
289   uint8_t barrier_data = MemNode::barrier_data(node);
290   uint nodes = 0;
291   if ((barrier_data & G1C2BarrierPre) != 0) {
292     // Only consider the fast path for the barrier that is
293     // actually inlined into the main code stream.
294     // The slow path is laid out separately and does not
295     // directly affect performance.
296     // It has a cost of 6 (AddP, LoadB, Cmp, Bool, If, IfProj).
297     nodes += 6;
298   }
299   if ((barrier_data & G1C2BarrierPost) != 0) {
300     nodes += 60;
301   }
302   return nodes;
303 }
304 
305 bool G1BarrierSetC2::can_initialize_object(const StoreNode* store) const {
306   assert(store->Opcode() == Op_StoreP || store->Opcode() == Op_StoreN, "OOP store expected");
307   // It is OK to move the store across the object initialization boundary only
308   // if it does not have any barrier, or if it has barriers that can be safely
309   // elided (because of the compensation steps taken on the allocation slow path
310   // when ReduceInitialCardMarks is enabled).
311   return (MemNode::barrier_data(store) == 0) || use_ReduceInitialCardMarks();
312 }
313 
314 void G1BarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
315   if (ac->is_clone_inst() && !use_ReduceInitialCardMarks()) {
316     clone_in_runtime(phase, ac, G1BarrierSetRuntime::clone_addr(), "G1BarrierSetRuntime::clone");
317     return;
318   }
319   BarrierSetC2::clone_at_expansion(phase, ac);
320 }
321 
322 Node* G1BarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
323   DecoratorSet decorators = access.decorators();
324   bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
325   bool in_heap = (decorators & IN_HEAP) != 0;
326   bool tightly_coupled_alloc = (decorators & C2_TIGHTLY_COUPLED_ALLOC) != 0;
327   bool need_store_barrier = !(tightly_coupled_alloc && use_ReduceInitialCardMarks()) && (in_heap || anonymous);
328   bool no_keepalive = (decorators & AS_NO_KEEPALIVE) != 0;
329   if (access.is_oop() && need_store_barrier) {
330     access.set_barrier_data(get_store_barrier(access));
331     if (tightly_coupled_alloc) {
332       assert(!use_ReduceInitialCardMarks(),
333              "post-barriers are only needed for tightly-coupled initialization stores when ReduceInitialCardMarks is disabled");
334       // Pre-barriers are unnecessary for tightly-coupled initialization stores.
335       access.set_barrier_data(access.barrier_data() & ~G1C2BarrierPre);
336     }
337   }
338   if (no_keepalive) {
339     // No keep-alive means no need for the pre-barrier.
340     access.set_barrier_data(access.barrier_data() & ~G1C2BarrierPre);
341   }
342   return BarrierSetC2::store_at_resolved(access, val);
343 }
344 
345 Node* G1BarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
346                                                      Node* new_val, const Type* value_type) const {
347   GraphKit* kit = access.kit();
348   if (!access.is_oop()) {
349     return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
350   }
351   access.set_barrier_data(G1C2BarrierPre | G1C2BarrierPost);
352   return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
353 }
354 
355 Node* G1BarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
356                                                       Node* new_val, const Type* value_type) const {
357   GraphKit* kit = access.kit();
358   if (!access.is_oop()) {
359     return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
360   }
361   access.set_barrier_data(G1C2BarrierPre | G1C2BarrierPost);
362   return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
363 }
364 
365 Node* G1BarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* new_val, const Type* value_type) const {
366   GraphKit* kit = access.kit();
367   if (!access.is_oop()) {
368     return BarrierSetC2::atomic_xchg_at_resolved(access, new_val, value_type);
369   }
370   access.set_barrier_data(G1C2BarrierPre | G1C2BarrierPost);
371   return BarrierSetC2::atomic_xchg_at_resolved(access, new_val, value_type);
372 }
373 
374 class G1BarrierSetC2State : public BarrierSetC2State {
375 private:
376   GrowableArray<G1BarrierStubC2*>* _stubs;
377 
378 public:
379   G1BarrierSetC2State(Arena* arena)
380     : BarrierSetC2State(arena),
381       _stubs(new (arena) GrowableArray<G1BarrierStubC2*>(arena, 8,  0, nullptr)) {}
382 
383   GrowableArray<G1BarrierStubC2*>* stubs() {
384     return _stubs;
385   }
386 
387   bool needs_liveness_data(const MachNode* mach) const {
388     return G1PreBarrierStubC2::needs_barrier(mach) ||
389            G1PostBarrierStubC2::needs_barrier(mach);
390   }
391 
392   bool needs_livein_data() const {
393     return false;
394   }
395 };
396 
397 static G1BarrierSetC2State* barrier_set_state() {
398   return reinterpret_cast<G1BarrierSetC2State*>(Compile::current()->barrier_set_state());
399 }
400 
401 G1BarrierStubC2::G1BarrierStubC2(const MachNode* node) : BarrierStubC2(node) {}
402 
403 G1PreBarrierStubC2::G1PreBarrierStubC2(const MachNode* node) : G1BarrierStubC2(node) {}
404 
405 bool G1PreBarrierStubC2::needs_barrier(const MachNode* node) {
406   return (node->barrier_data() & G1C2BarrierPre) != 0;
407 }
408 
409 G1PreBarrierStubC2* G1PreBarrierStubC2::create(const MachNode* node) {
410   G1PreBarrierStubC2* const stub = new (Compile::current()->comp_arena()) G1PreBarrierStubC2(node);
411   if (!Compile::current()->output()->in_scratch_emit_size()) {
412     barrier_set_state()->stubs()->append(stub);
413   }
414   return stub;
415 }
416 
417 void G1PreBarrierStubC2::initialize_registers(Register obj, Register pre_val, Register thread, Register tmp1, Register tmp2) {
418   _obj = obj;
419   _pre_val = pre_val;
420   _thread = thread;
421   _tmp1 = tmp1;
422   _tmp2 = tmp2;
423 }
424 
425 Register G1PreBarrierStubC2::obj() const {
426   return _obj;
427 }
428 
429 Register G1PreBarrierStubC2::pre_val() const {
430   return _pre_val;
431 }
432 
433 Register G1PreBarrierStubC2::thread() const {
434   return _thread;
435 }
436 
437 Register G1PreBarrierStubC2::tmp1() const {
438   return _tmp1;
439 }
440 
441 Register G1PreBarrierStubC2::tmp2() const {
442   return _tmp2;
443 }
444 
445 void G1PreBarrierStubC2::emit_code(MacroAssembler& masm) {
446   G1BarrierSetAssembler* bs = static_cast<G1BarrierSetAssembler*>(BarrierSet::barrier_set()->barrier_set_assembler());
447   bs->generate_c2_pre_barrier_stub(&masm, this);
448 }
449 
450 G1PostBarrierStubC2::G1PostBarrierStubC2(const MachNode* node) : G1BarrierStubC2(node) {}
451 
452 bool G1PostBarrierStubC2::needs_barrier(const MachNode* node) {
453   return (node->barrier_data() & G1C2BarrierPost) != 0;
454 }
455 
456 G1PostBarrierStubC2* G1PostBarrierStubC2::create(const MachNode* node) {
457   G1PostBarrierStubC2* const stub = new (Compile::current()->comp_arena()) G1PostBarrierStubC2(node);
458   if (!Compile::current()->output()->in_scratch_emit_size()) {
459     barrier_set_state()->stubs()->append(stub);
460   }
461   return stub;
462 }
463 
464 void G1PostBarrierStubC2::initialize_registers(Register thread, Register tmp1, Register tmp2, Register tmp3) {
465   _thread = thread;
466   _tmp1 = tmp1;
467   _tmp2 = tmp2;
468   _tmp3 = tmp3;
469 }
470 
471 Register G1PostBarrierStubC2::thread() const {
472   return _thread;
473 }
474 
475 Register G1PostBarrierStubC2::tmp1() const {
476   return _tmp1;
477 }
478 
479 Register G1PostBarrierStubC2::tmp2() const {
480   return _tmp2;
481 }
482 
483 Register G1PostBarrierStubC2::tmp3() const {
484   return _tmp3;
485 }
486 
487 void G1PostBarrierStubC2::emit_code(MacroAssembler& masm) {
488   G1BarrierSetAssembler* bs = static_cast<G1BarrierSetAssembler*>(BarrierSet::barrier_set()->barrier_set_assembler());
489   bs->generate_c2_post_barrier_stub(&masm, this);
490 }
491 
492 void* G1BarrierSetC2::create_barrier_state(Arena* comp_arena) const {
493   return new (comp_arena) G1BarrierSetC2State(comp_arena);
494 }
495 
496 int G1BarrierSetC2::get_store_barrier(C2Access& access) const {
497   if (!access.is_parse_access()) {
498     // Only support for eliding barriers at parse time for now.
499     return G1C2BarrierPre | G1C2BarrierPost;
500   }
501   GraphKit* kit = (static_cast<C2ParseAccess&>(access)).kit();
502   Node* ctl = kit->control();
503   Node* adr = access.addr().node();
504   uint adr_idx = kit->C->get_alias_index(access.addr().type());
505   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory");
506 
507   bool can_remove_pre_barrier = g1_can_remove_pre_barrier(kit, &kit->gvn(), adr, access.type(), adr_idx);
508 
509   // We can skip marks on a freshly-allocated object in Eden. Keep this code in
510   // sync with CardTableBarrierSet::on_slowpath_allocation_exit. That routine
511   // informs GC to take appropriate compensating steps, upon a slow-path
512   // allocation, so as to make this card-mark elision safe.
513   // The post-barrier can also be removed if null is written. This case is
514   // handled by G1BarrierSetC2::expand_barriers, which runs at the end of C2's
515   // platform-independent optimizations to exploit stronger type information.
516   bool can_remove_post_barrier = use_ReduceInitialCardMarks() &&
517     ((access.base() == kit->just_allocated_object(ctl)) ||
518      g1_can_remove_post_barrier(kit, &kit->gvn(), ctl, adr));
519 
520   int barriers = 0;
521   if (!can_remove_pre_barrier) {
522     barriers |= G1C2BarrierPre;
523   }
524   if (!can_remove_post_barrier) {
525     barriers |= G1C2BarrierPost;
526   }
527 
528   return barriers;
529 }
530 
531 void G1BarrierSetC2::elide_dominated_barrier(MachNode* mach) const {
532   uint8_t barrier_data = mach->barrier_data();
533   barrier_data &= ~G1C2BarrierPre;
534   if (CardTableBarrierSetC2::use_ReduceInitialCardMarks()) {
535     barrier_data &= ~G1C2BarrierPost;
536     barrier_data &= ~G1C2BarrierPostNotNull;
537   }
538   mach->set_barrier_data(barrier_data);
539 }
540 
541 void G1BarrierSetC2::analyze_dominating_barriers() const {
542   ResourceMark rm;
543   PhaseCFG* const cfg = Compile::current()->cfg();
544 
545   // Find allocations and memory accesses (stores and atomic operations), and
546   // track them in lists.
547   Node_List accesses;
548   Node_List allocations;
549   for (uint i = 0; i < cfg->number_of_blocks(); ++i) {
550     const Block* const block = cfg->get_block(i);
551     for (uint j = 0; j < block->number_of_nodes(); ++j) {
552       Node* const node = block->get_node(j);
553       if (node->is_Phi()) {
554         if (BarrierSetC2::is_allocation(node)) {
555           allocations.push(node);
556         }
557         continue;
558       } else if (!node->is_Mach()) {
559         continue;
560       }
561 
562       MachNode* const mach = node->as_Mach();
563       switch (mach->ideal_Opcode()) {
564       case Op_StoreP:
565       case Op_StoreN:
566       case Op_CompareAndExchangeP:
567       case Op_CompareAndSwapP:
568       case Op_GetAndSetP:
569       case Op_CompareAndExchangeN:
570       case Op_CompareAndSwapN:
571       case Op_GetAndSetN:
572         if (mach->barrier_data() != 0) {
573           accesses.push(mach);
574         }
575         break;
576       default:
577         break;
578       }
579     }
580   }
581 
582   // Find dominating allocations for each memory access (store or atomic
583   // operation) and elide barriers if there is no safepoint poll in between.
584   elide_dominated_barriers(accesses, allocations);
585 }
586 
587 void G1BarrierSetC2::late_barrier_analysis() const {
588   compute_liveness_at_stubs();
589   analyze_dominating_barriers();
590 }
591 
592 void G1BarrierSetC2::emit_stubs(CodeBuffer& cb) const {
593   MacroAssembler masm(&cb);
594   GrowableArray<G1BarrierStubC2*>* const stubs = barrier_set_state()->stubs();
595   for (int i = 0; i < stubs->length(); i++) {
596     // Make sure there is enough space in the code buffer
597     if (cb.insts()->maybe_expand_to_ensure_remaining(PhaseOutput::MAX_inst_size) && cb.blob() == nullptr) {
598       ciEnv::current()->record_failure("CodeCache is full");
599       return;
600     }
601     stubs->at(i)->emit_code(masm);
602   }
603   masm.flush();
604 }
605 
606 #ifndef PRODUCT
607 void G1BarrierSetC2::dump_barrier_data(const MachNode* mach, outputStream* st) const {
608   if ((mach->barrier_data() & G1C2BarrierPre) != 0) {
609     st->print("pre ");
610   }
611   if ((mach->barrier_data() & G1C2BarrierPost) != 0) {
612     st->print("post ");
613   }
614   if ((mach->barrier_data() & G1C2BarrierPostNotNull) != 0) {
615     st->print("notnull ");
616   }
617 }
618 #endif // !PRODUCT