1 /* 2 * Copyright (c) 2018, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.hpp" 27 #include "code/vmreg.inline.hpp" 28 #include "gc/g1/c2/g1BarrierSetC2.hpp" 29 #include "gc/g1/g1BarrierSet.hpp" 30 #include "gc/g1/g1BarrierSetAssembler.hpp" 31 #include "gc/g1/g1BarrierSetRuntime.hpp" 32 #include "gc/g1/g1CardTable.hpp" 33 #include "gc/g1/g1ThreadLocalData.hpp" 34 #include "gc/g1/g1HeapRegion.hpp" 35 #include "opto/arraycopynode.hpp" 36 #include "opto/block.hpp" 37 #include "opto/compile.hpp" 38 #include "opto/escape.hpp" 39 #include "opto/graphKit.hpp" 40 #include "opto/idealKit.hpp" 41 #include "opto/machnode.hpp" 42 #include "opto/macro.hpp" 43 #include "opto/memnode.hpp" 44 #include "opto/node.hpp" 45 #include "opto/output.hpp" 46 #include "opto/regalloc.hpp" 47 #include "opto/rootnode.hpp" 48 #include "opto/runtime.hpp" 49 #include "opto/type.hpp" 50 #include "utilities/growableArray.hpp" 51 #include "utilities/macros.hpp" 52 53 /* 54 * Determine if the G1 pre-barrier can be removed. The pre-barrier is 55 * required by SATB to make sure all objects live at the start of the 56 * marking are kept alive, all reference updates need to any previous 57 * reference stored before writing. 58 * 59 * If the previous value is null there is no need to save the old value. 60 * References that are null are filtered during runtime by the barrier 61 * code to avoid unnecessary queuing. 62 * 63 * However in the case of newly allocated objects it might be possible to 64 * prove that the reference about to be overwritten is null during compile 65 * time and avoid adding the barrier code completely. 66 * 67 * The compiler needs to determine that the object in which a field is about 68 * to be written is newly allocated, and that no prior store to the same field 69 * has happened since the allocation. 70 */ 71 bool G1BarrierSetC2::g1_can_remove_pre_barrier(GraphKit* kit, 72 PhaseValues* phase, 73 Node* adr, 74 BasicType bt, 75 uint adr_idx) const { 76 intptr_t offset = 0; 77 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 78 AllocateNode* alloc = AllocateNode::Ideal_allocation(base); 79 80 if (offset == Type::OffsetBot) { 81 return false; // Cannot unalias unless there are precise offsets. 82 } 83 if (alloc == nullptr) { 84 return false; // No allocation found. 85 } 86 87 intptr_t size_in_bytes = type2aelembytes(bt); 88 Node* mem = kit->memory(adr_idx); // Start searching here. 89 90 for (int cnt = 0; cnt < 50; cnt++) { 91 if (mem->is_Store()) { 92 Node* st_adr = mem->in(MemNode::Address); 93 intptr_t st_offset = 0; 94 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); 95 96 if (st_base == nullptr) { 97 break; // Inscrutable pointer. 98 } 99 if (st_base == base && st_offset == offset) { 100 // We have found a store with same base and offset as ours. 101 break; 102 } 103 if (st_offset != offset && st_offset != Type::OffsetBot) { 104 const int MAX_STORE = BytesPerLong; 105 if (st_offset >= offset + size_in_bytes || 106 st_offset <= offset - MAX_STORE || 107 st_offset <= offset - mem->as_Store()->memory_size()) { 108 // Success: The offsets are provably independent. 109 // (You may ask, why not just test st_offset != offset and be done? 110 // The answer is that stores of different sizes can co-exist 111 // in the same sequence of RawMem effects. We sometimes initialize 112 // a whole 'tile' of array elements with a single jint or jlong.) 113 mem = mem->in(MemNode::Memory); 114 continue; // Advance through independent store memory. 115 } 116 } 117 if (st_base != base 118 && MemNode::detect_ptr_independence(base, alloc, st_base, 119 AllocateNode::Ideal_allocation(st_base), 120 phase)) { 121 // Success: the bases are provably independent. 122 mem = mem->in(MemNode::Memory); 123 continue; // Advance through independent store memory. 124 } 125 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 126 InitializeNode* st_init = mem->in(0)->as_Initialize(); 127 AllocateNode* st_alloc = st_init->allocation(); 128 129 // Make sure that we are looking at the same allocation site. 130 // The alloc variable is guaranteed to not be null here from earlier check. 131 if (alloc == st_alloc) { 132 // Check that the initialization is storing null so that no previous store 133 // has been moved up and directly write a reference. 134 Node* captured_store = st_init->find_captured_store(offset, 135 type2aelembytes(T_OBJECT), 136 phase); 137 if (captured_store == nullptr || captured_store == st_init->zero_memory()) { 138 return true; 139 } 140 } 141 } 142 // Unless there is an explicit 'continue', we must bail out here, 143 // because 'mem' is an inscrutable memory state (e.g., a call). 144 break; 145 } 146 return false; 147 } 148 149 /* 150 * G1, similar to any GC with a Young Generation, requires a way to keep track 151 * of references from Old Generation to Young Generation to make sure all live 152 * objects are found. G1 also requires to keep track of object references 153 * between different regions to enable evacuation of old regions, which is done 154 * as part of mixed collections. References are tracked in remembered sets, 155 * which are continuously updated as references are written to with the help of 156 * the post-barrier. 157 * 158 * To reduce the number of updates to the remembered set, the post-barrier 159 * filters out updates to fields in objects located in the Young Generation, the 160 * same region as the reference, when null is being written, or if the card is 161 * already marked as dirty by an earlier write. 162 * 163 * Under certain circumstances it is possible to avoid generating the 164 * post-barrier completely, if it is possible during compile time to prove the 165 * object is newly allocated and that no safepoint exists between the allocation 166 * and the store. This can be seen as a compile-time version of the 167 * above-mentioned Young Generation filter. 168 * 169 * In the case of a slow allocation, the allocation code must handle the barrier 170 * as part of the allocation if the allocated object is not located in the 171 * nursery; this would happen for humongous objects. 172 */ 173 bool G1BarrierSetC2::g1_can_remove_post_barrier(GraphKit* kit, 174 PhaseValues* phase, Node* store_ctrl, 175 Node* adr) const { 176 intptr_t offset = 0; 177 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 178 AllocateNode* alloc = AllocateNode::Ideal_allocation(base); 179 180 if (offset == Type::OffsetBot) { 181 return false; // Cannot unalias unless there are precise offsets. 182 } 183 if (alloc == nullptr) { 184 return false; // No allocation found. 185 } 186 187 Node* mem = store_ctrl; // Start search from Store node. 188 if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 189 InitializeNode* st_init = mem->in(0)->as_Initialize(); 190 AllocateNode* st_alloc = st_init->allocation(); 191 // Make sure we are looking at the same allocation 192 if (alloc == st_alloc) { 193 return true; 194 } 195 } 196 197 return false; 198 } 199 200 Node* G1BarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const { 201 DecoratorSet decorators = access.decorators(); 202 bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0; 203 bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0; 204 bool no_keepalive = (decorators & AS_NO_KEEPALIVE) != 0; 205 // If we are reading the value of the referent field of a Reference object, we 206 // need to record the referent in an SATB log buffer using the pre-barrier 207 // mechanism. Also we need to add a memory barrier to prevent commoning reads 208 // from this field across safepoints, since GC can change its value. 209 bool need_read_barrier = ((on_weak || on_phantom) && !no_keepalive); 210 if (access.is_oop() && need_read_barrier) { 211 access.set_barrier_data(G1C2BarrierPre); 212 } 213 return CardTableBarrierSetC2::load_at_resolved(access, val_type); 214 } 215 216 void G1BarrierSetC2::eliminate_gc_barrier(PhaseIterGVN* igvn, Node* node) const { 217 eliminate_gc_barrier_data(node); 218 } 219 void G1BarrierSetC2::eliminate_gc_barrier_data(Node* node) const { 220 if (node->is_LoadStore()) { 221 LoadStoreNode* loadstore = node->as_LoadStore(); 222 loadstore->set_barrier_data(0); 223 } else if (node->is_Mem()) { 224 MemNode* mem = node->as_Mem(); 225 mem->set_barrier_data(0); 226 } 227 } 228 229 static void refine_barrier_by_new_val_type(const Node* n) { 230 if (n->Opcode() != Op_StoreP && 231 n->Opcode() != Op_StoreN) { 232 return; 233 } 234 MemNode* store = n->as_Mem(); 235 const Node* newval = n->in(MemNode::ValueIn); 236 assert(newval != nullptr, ""); 237 const Type* newval_bottom = newval->bottom_type(); 238 TypePtr::PTR newval_type = newval_bottom->make_ptr()->ptr(); 239 uint8_t barrier_data = store->barrier_data(); 240 if (!newval_bottom->isa_oopptr() && 241 !newval_bottom->isa_narrowoop() && 242 newval_type != TypePtr::Null) { 243 // newval is neither an OOP nor null, so there is no barrier to refine. 244 assert(barrier_data == 0, "non-OOP stores should have no barrier data"); 245 return; 246 } 247 if (barrier_data == 0) { 248 // No barrier to refine. 249 return; 250 } 251 if (newval_type == TypePtr::Null) { 252 // Simply elide post-barrier if writing null. 253 barrier_data &= ~G1C2BarrierPost; 254 barrier_data &= ~G1C2BarrierPostNotNull; 255 } else if (((barrier_data & G1C2BarrierPost) != 0) && 256 newval_type == TypePtr::NotNull) { 257 // If the post-barrier has not been elided yet (e.g. due to newval being 258 // freshly allocated), mark it as not-null (simplifies barrier tests and 259 // compressed OOPs logic). 260 barrier_data |= G1C2BarrierPostNotNull; 261 } 262 store->set_barrier_data(barrier_data); 263 return; 264 } 265 266 // Refine (not really expand) G1 barriers by looking at the new value type 267 // (whether it is necessarily null or necessarily non-null). 268 bool G1BarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const { 269 ResourceMark rm; 270 VectorSet visited; 271 Node_List worklist; 272 worklist.push(C->root()); 273 while (worklist.size() > 0) { 274 Node* n = worklist.pop(); 275 if (visited.test_set(n->_idx)) { 276 continue; 277 } 278 refine_barrier_by_new_val_type(n); 279 for (uint j = 0; j < n->req(); j++) { 280 Node* in = n->in(j); 281 if (in != nullptr) { 282 worklist.push(in); 283 } 284 } 285 } 286 return false; 287 } 288 289 uint G1BarrierSetC2::estimated_barrier_size(const Node* node) const { 290 // These Ideal node counts are extracted from the pre-matching Ideal graph 291 // generated when compiling the following method with early barrier expansion: 292 // static void write(MyObject obj1, Object o) { 293 // obj1.o1 = o; 294 // } 295 uint8_t barrier_data = MemNode::barrier_data(node); 296 uint nodes = 0; 297 if ((barrier_data & G1C2BarrierPre) != 0) { 298 nodes += 50; 299 } 300 if ((barrier_data & G1C2BarrierPost) != 0) { 301 nodes += 60; 302 } 303 return nodes; 304 } 305 306 bool G1BarrierSetC2::can_initialize_object(const StoreNode* store) const { 307 assert(store->Opcode() == Op_StoreP || store->Opcode() == Op_StoreN, "OOP store expected"); 308 // It is OK to move the store across the object initialization boundary only 309 // if it does not have any barrier, or if it has barriers that can be safely 310 // elided (because of the compensation steps taken on the allocation slow path 311 // when ReduceInitialCardMarks is enabled). 312 return (MemNode::barrier_data(store) == 0) || use_ReduceInitialCardMarks(); 313 } 314 315 void G1BarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const { 316 if (ac->is_clone_inst() && !use_ReduceInitialCardMarks()) { 317 clone_in_runtime(phase, ac, G1BarrierSetRuntime::clone_addr(), "G1BarrierSetRuntime::clone"); 318 return; 319 } 320 BarrierSetC2::clone_at_expansion(phase, ac); 321 } 322 323 Node* G1BarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const { 324 DecoratorSet decorators = access.decorators(); 325 bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0; 326 bool in_heap = (decorators & IN_HEAP) != 0; 327 bool tightly_coupled_alloc = (decorators & C2_TIGHTLY_COUPLED_ALLOC) != 0; 328 bool need_store_barrier = !(tightly_coupled_alloc && use_ReduceInitialCardMarks()) && (in_heap || anonymous); 329 bool no_keepalive = (decorators & AS_NO_KEEPALIVE) != 0; 330 if (access.is_oop() && need_store_barrier) { 331 access.set_barrier_data(get_store_barrier(access)); 332 if (tightly_coupled_alloc) { 333 assert(!use_ReduceInitialCardMarks(), 334 "post-barriers are only needed for tightly-coupled initialization stores when ReduceInitialCardMarks is disabled"); 335 // Pre-barriers are unnecessary for tightly-coupled initialization stores. 336 access.set_barrier_data(access.barrier_data() & ~G1C2BarrierPre); 337 } 338 } 339 if (no_keepalive) { 340 // No keep-alive means no need for the pre-barrier. 341 access.set_barrier_data(access.barrier_data() & ~G1C2BarrierPre); 342 } 343 return BarrierSetC2::store_at_resolved(access, val); 344 } 345 346 Node* G1BarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val, 347 Node* new_val, const Type* value_type) const { 348 GraphKit* kit = access.kit(); 349 if (!access.is_oop()) { 350 return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type); 351 } 352 access.set_barrier_data(G1C2BarrierPre | G1C2BarrierPost); 353 return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type); 354 } 355 356 Node* G1BarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val, 357 Node* new_val, const Type* value_type) const { 358 GraphKit* kit = access.kit(); 359 if (!access.is_oop()) { 360 return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type); 361 } 362 access.set_barrier_data(G1C2BarrierPre | G1C2BarrierPost); 363 return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type); 364 } 365 366 Node* G1BarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* new_val, const Type* value_type) const { 367 GraphKit* kit = access.kit(); 368 if (!access.is_oop()) { 369 return BarrierSetC2::atomic_xchg_at_resolved(access, new_val, value_type); 370 } 371 access.set_barrier_data(G1C2BarrierPre | G1C2BarrierPost); 372 return BarrierSetC2::atomic_xchg_at_resolved(access, new_val, value_type); 373 } 374 375 class G1BarrierSetC2State : public BarrierSetC2State { 376 private: 377 GrowableArray<G1BarrierStubC2*>* _stubs; 378 379 public: 380 G1BarrierSetC2State(Arena* arena) 381 : BarrierSetC2State(arena), 382 _stubs(new (arena) GrowableArray<G1BarrierStubC2*>(arena, 8, 0, nullptr)) {} 383 384 GrowableArray<G1BarrierStubC2*>* stubs() { 385 return _stubs; 386 } 387 388 bool needs_liveness_data(const MachNode* mach) const { 389 return G1PreBarrierStubC2::needs_barrier(mach) || 390 G1PostBarrierStubC2::needs_barrier(mach); 391 } 392 393 bool needs_livein_data() const { 394 return false; 395 } 396 }; 397 398 static G1BarrierSetC2State* barrier_set_state() { 399 return reinterpret_cast<G1BarrierSetC2State*>(Compile::current()->barrier_set_state()); 400 } 401 402 G1BarrierStubC2::G1BarrierStubC2(const MachNode* node) : BarrierStubC2(node) {} 403 404 G1PreBarrierStubC2::G1PreBarrierStubC2(const MachNode* node) : G1BarrierStubC2(node) {} 405 406 bool G1PreBarrierStubC2::needs_barrier(const MachNode* node) { 407 return (node->barrier_data() & G1C2BarrierPre) != 0; 408 } 409 410 G1PreBarrierStubC2* G1PreBarrierStubC2::create(const MachNode* node) { 411 G1PreBarrierStubC2* const stub = new (Compile::current()->comp_arena()) G1PreBarrierStubC2(node); 412 if (!Compile::current()->output()->in_scratch_emit_size()) { 413 barrier_set_state()->stubs()->append(stub); 414 } 415 return stub; 416 } 417 418 void G1PreBarrierStubC2::initialize_registers(Register obj, Register pre_val, Register thread, Register tmp1, Register tmp2) { 419 _obj = obj; 420 _pre_val = pre_val; 421 _thread = thread; 422 _tmp1 = tmp1; 423 _tmp2 = tmp2; 424 } 425 426 Register G1PreBarrierStubC2::obj() const { 427 return _obj; 428 } 429 430 Register G1PreBarrierStubC2::pre_val() const { 431 return _pre_val; 432 } 433 434 Register G1PreBarrierStubC2::thread() const { 435 return _thread; 436 } 437 438 Register G1PreBarrierStubC2::tmp1() const { 439 return _tmp1; 440 } 441 442 Register G1PreBarrierStubC2::tmp2() const { 443 return _tmp2; 444 } 445 446 void G1PreBarrierStubC2::emit_code(MacroAssembler& masm) { 447 G1BarrierSetAssembler* bs = static_cast<G1BarrierSetAssembler*>(BarrierSet::barrier_set()->barrier_set_assembler()); 448 bs->generate_c2_pre_barrier_stub(&masm, this); 449 } 450 451 G1PostBarrierStubC2::G1PostBarrierStubC2(const MachNode* node) : G1BarrierStubC2(node) {} 452 453 bool G1PostBarrierStubC2::needs_barrier(const MachNode* node) { 454 return (node->barrier_data() & G1C2BarrierPost) != 0; 455 } 456 457 G1PostBarrierStubC2* G1PostBarrierStubC2::create(const MachNode* node) { 458 G1PostBarrierStubC2* const stub = new (Compile::current()->comp_arena()) G1PostBarrierStubC2(node); 459 if (!Compile::current()->output()->in_scratch_emit_size()) { 460 barrier_set_state()->stubs()->append(stub); 461 } 462 return stub; 463 } 464 465 void G1PostBarrierStubC2::initialize_registers(Register thread, Register tmp1, Register tmp2, Register tmp3) { 466 _thread = thread; 467 _tmp1 = tmp1; 468 _tmp2 = tmp2; 469 _tmp3 = tmp3; 470 } 471 472 Register G1PostBarrierStubC2::thread() const { 473 return _thread; 474 } 475 476 Register G1PostBarrierStubC2::tmp1() const { 477 return _tmp1; 478 } 479 480 Register G1PostBarrierStubC2::tmp2() const { 481 return _tmp2; 482 } 483 484 Register G1PostBarrierStubC2::tmp3() const { 485 return _tmp3; 486 } 487 488 void G1PostBarrierStubC2::emit_code(MacroAssembler& masm) { 489 G1BarrierSetAssembler* bs = static_cast<G1BarrierSetAssembler*>(BarrierSet::barrier_set()->barrier_set_assembler()); 490 bs->generate_c2_post_barrier_stub(&masm, this); 491 } 492 493 void* G1BarrierSetC2::create_barrier_state(Arena* comp_arena) const { 494 return new (comp_arena) G1BarrierSetC2State(comp_arena); 495 } 496 497 int G1BarrierSetC2::get_store_barrier(C2Access& access) const { 498 if (!access.is_parse_access()) { 499 // Only support for eliding barriers at parse time for now. 500 return G1C2BarrierPre | G1C2BarrierPost; 501 } 502 GraphKit* kit = (static_cast<C2ParseAccess&>(access)).kit(); 503 Node* ctl = kit->control(); 504 Node* adr = access.addr().node(); 505 uint adr_idx = kit->C->get_alias_index(access.addr().type()); 506 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory"); 507 508 bool can_remove_pre_barrier = g1_can_remove_pre_barrier(kit, &kit->gvn(), adr, access.type(), adr_idx); 509 510 // We can skip marks on a freshly-allocated object in Eden. Keep this code in 511 // sync with CardTableBarrierSet::on_slowpath_allocation_exit. That routine 512 // informs GC to take appropriate compensating steps, upon a slow-path 513 // allocation, so as to make this card-mark elision safe. 514 // The post-barrier can also be removed if null is written. This case is 515 // handled by G1BarrierSetC2::expand_barriers, which runs at the end of C2's 516 // platform-independent optimizations to exploit stronger type information. 517 bool can_remove_post_barrier = use_ReduceInitialCardMarks() && 518 ((access.base() == kit->just_allocated_object(ctl)) || 519 g1_can_remove_post_barrier(kit, &kit->gvn(), ctl, adr)); 520 521 int barriers = 0; 522 if (!can_remove_pre_barrier) { 523 barriers |= G1C2BarrierPre; 524 } 525 if (!can_remove_post_barrier) { 526 barriers |= G1C2BarrierPost; 527 } 528 529 return barriers; 530 } 531 532 void G1BarrierSetC2::late_barrier_analysis() const { 533 compute_liveness_at_stubs(); 534 } 535 536 void G1BarrierSetC2::emit_stubs(CodeBuffer& cb) const { 537 MacroAssembler masm(&cb); 538 GrowableArray<G1BarrierStubC2*>* const stubs = barrier_set_state()->stubs(); 539 for (int i = 0; i < stubs->length(); i++) { 540 // Make sure there is enough space in the code buffer 541 if (cb.insts()->maybe_expand_to_ensure_remaining(PhaseOutput::MAX_inst_size) && cb.blob() == nullptr) { 542 ciEnv::current()->record_failure("CodeCache is full"); 543 return; 544 } 545 stubs->at(i)->emit_code(masm); 546 } 547 masm.flush(); 548 } 549 550 #ifndef PRODUCT 551 void G1BarrierSetC2::dump_barrier_data(const MachNode* mach, outputStream* st) const { 552 if ((mach->barrier_data() & G1C2BarrierPre) != 0) { 553 st->print("pre "); 554 } 555 if ((mach->barrier_data() & G1C2BarrierPost) != 0) { 556 st->print("post "); 557 } 558 if ((mach->barrier_data() & G1C2BarrierPostNotNull) != 0) { 559 st->print("notnull "); 560 } 561 } 562 #endif // !PRODUCT