1 /*
  2  * Copyright (c) 2014, 2026, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "gc/g1/g1Allocator.inline.hpp"
 26 #include "gc/g1/g1CollectedHeap.inline.hpp"
 27 #include "gc/g1/g1CollectionSet.hpp"
 28 #include "gc/g1/g1EvacFailureRegions.inline.hpp"
 29 #include "gc/g1/g1HeapRegionPrinter.hpp"
 30 #include "gc/g1/g1OopClosures.inline.hpp"
 31 #include "gc/g1/g1ParScanThreadState.inline.hpp"
 32 #include "gc/g1/g1RootClosures.hpp"
 33 #include "gc/g1/g1StringDedup.hpp"
 34 #include "gc/g1/g1Trace.hpp"
 35 #include "gc/g1/g1YoungGCAllocationFailureInjector.inline.hpp"
 36 #include "gc/shared/continuationGCSupport.inline.hpp"
 37 #include "gc/shared/partialArraySplitter.inline.hpp"
 38 #include "gc/shared/partialArrayState.hpp"
 39 #include "gc/shared/partialArrayTaskStats.hpp"
 40 #include "gc/shared/stringdedup/stringDedup.hpp"
 41 #include "gc/shared/taskqueue.inline.hpp"
 42 #include "memory/allocation.inline.hpp"
 43 #include "oops/access.inline.hpp"
 44 #include "oops/oop.inline.hpp"
 45 #include "runtime/mutexLocker.hpp"
 46 #include "runtime/prefetch.inline.hpp"
 47 #include "utilities/globalDefinitions.hpp"
 48 #include "utilities/macros.hpp"
 49 
 50 // In fastdebug builds the code size can get out of hand, potentially
 51 // tripping over compiler limits (which may be bugs, but nevertheless
 52 // need to be taken into consideration).  A side benefit of limiting
 53 // inlining is that we get more call frames that might aid debugging.
 54 // And the fastdebug compile time for this file is much reduced.
 55 // Explicit NOINLINE to block ATTRIBUTE_FLATTENing.
 56 #define MAYBE_INLINE_EVACUATION NOT_DEBUG(inline) DEBUG_ONLY(NOINLINE)
 57 
 58 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h,
 59                                            uint worker_id,
 60                                            uint num_workers,
 61                                            G1CollectionSet* collection_set,
 62                                            G1EvacFailureRegions* evac_failure_regions)
 63   : _g1h(g1h),
 64     _task_queue(g1h->task_queue(worker_id)),
 65     _ct(g1h->refinement_table()),
 66     _closures(nullptr),
 67     _plab_allocator(nullptr),
 68     _age_table(false),
 69     _tenuring_threshold(g1h->policy()->tenuring_threshold()),
 70     _scanner(g1h, this),
 71     _worker_id(worker_id),
 72     _num_cards_marked_dirty(0),
 73     _num_cards_marked_to_cset(0),
 74     _stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1),
 75     _stack_trim_lower_threshold(GCDrainStackTargetSize),
 76     _trim_ticks(),
 77     _surviving_young_words_base(nullptr),
 78     _surviving_young_words(nullptr),
 79     _surviving_words_length(collection_set->young_region_length() + 1),
 80     _old_gen_is_full(false),
 81     _partial_array_splitter(g1h->partial_array_state_manager(), num_workers, ParGCArrayScanChunk),
 82     _string_dedup_requests(),
 83     _max_num_optional_regions(collection_set->num_optional_regions()),
 84     _numa(g1h->numa()),
 85     _obj_alloc_stat(nullptr),
 86     ALLOCATION_FAILURE_INJECTOR_ONLY(_allocation_failure_inject_counter(0) COMMA)
 87     _evacuation_failed_info(),
 88     _evac_failure_regions(evac_failure_regions),
 89     _num_cards_from_evac_failure(0)
 90 {
 91   // We allocate number of young gen regions in the collection set plus one
 92   // entries, since entry 0 keeps track of surviving bytes for non-young regions.
 93   // We also add a few elements at the beginning and at the end in
 94   // an attempt to eliminate cache contention
 95   const size_t padding_elem_num = (DEFAULT_PADDING_SIZE / sizeof(size_t));
 96   size_t array_length = padding_elem_num + _surviving_words_length + padding_elem_num;
 97 
 98   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
 99   _surviving_young_words = _surviving_young_words_base + padding_elem_num;
100   memset(_surviving_young_words, 0, _surviving_words_length * sizeof(size_t));
101 
102   _plab_allocator = new G1PLABAllocator(_g1h->allocator());
103 
104   _closures = G1EvacuationRootClosures::create_root_closures(_g1h,
105                                                              this,
106                                                              collection_set->only_contains_young_regions());
107 
108   _oops_into_optional_regions = new G1OopStarChunkedList[_max_num_optional_regions];
109 
110   initialize_numa_stats();
111 }
112 
113 size_t G1ParScanThreadState::flush_stats(size_t* surviving_young_words, uint num_workers) {
114   flush_numa_stats();
115   // Update allocation statistics.
116   _plab_allocator->flush_and_retire_stats(num_workers);
117   _g1h->policy()->record_age_table(&_age_table);
118 
119   if (_evacuation_failed_info.has_failed()) {
120     _g1h->gc_tracer_stw()->report_evacuation_failed(_evacuation_failed_info);
121   }
122 
123   size_t sum = 0;
124   for (uint i = 0; i < _surviving_words_length; i++) {
125     surviving_young_words[i] += _surviving_young_words[i];
126     sum += _surviving_young_words[i];
127   }
128   return sum;
129 }
130 
131 G1ParScanThreadState::~G1ParScanThreadState() {
132   delete _plab_allocator;
133   delete _closures;
134   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
135   delete[] _oops_into_optional_regions;
136   FREE_C_HEAP_ARRAY(size_t, _obj_alloc_stat);
137 }
138 
139 size_t G1ParScanThreadState::lab_waste_words() const {
140   return _plab_allocator->waste();
141 }
142 
143 size_t G1ParScanThreadState::lab_undo_waste_words() const {
144   return _plab_allocator->undo_waste();
145 }
146 
147 size_t G1ParScanThreadState::num_cards_pending() const {
148   return _num_cards_marked_dirty + _num_cards_from_evac_failure;
149 }
150 
151 size_t G1ParScanThreadState::num_cards_marked() const {
152   return num_cards_pending() + _num_cards_marked_to_cset;
153 }
154 
155 size_t G1ParScanThreadState::num_cards_from_evac_failure() const {
156   return _num_cards_from_evac_failure;
157 }
158 
159 #ifdef ASSERT
160 void G1ParScanThreadState::verify_task(narrowOop* task) const {
161   assert(task != nullptr, "invariant");
162   assert(UseCompressedOops, "sanity");
163   oop p = RawAccess<>::oop_load(task);
164   assert(_g1h->is_in_reserved(p),
165          "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p));
166 }
167 
168 void G1ParScanThreadState::verify_task(oop* task) const {
169   assert(task != nullptr, "invariant");
170   oop p = RawAccess<>::oop_load(task);
171   assert(_g1h->is_in_reserved(p),
172          "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p));
173 }
174 
175 void G1ParScanThreadState::verify_task(PartialArrayState* task) const {
176   assert(task != nullptr, "invariant");
177   // Source isn't used for processing, so not recorded in task.
178   assert(task->source() == nullptr, "invariant");
179   oop p = task->destination();
180   assert(_g1h->is_in_reserved(p),
181          "task=" PTR_FORMAT " dest=" PTR_FORMAT, p2i(task), p2i(p));
182 }
183 
184 void G1ParScanThreadState::verify_task(ScannerTask task) const {
185   if (task.is_narrow_oop_ptr()) {
186     verify_task(task.to_narrow_oop_ptr());
187   } else if (task.is_oop_ptr()) {
188     verify_task(task.to_oop_ptr());
189   } else if (task.is_partial_array_state()) {
190     verify_task(task.to_partial_array_state());
191   } else {
192     ShouldNotReachHere();
193   }
194 }
195 #endif // ASSERT
196 
197 template <class T>
198 MAYBE_INLINE_EVACUATION
199 void G1ParScanThreadState::do_oop_evac(T* p) {
200   // Reference should not be null here as such are never pushed to the task queue.
201   oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
202 
203   // Although we never intentionally push references outside of the collection
204   // set, due to (benign) races in the claim mechanism during RSet scanning more
205   // than one thread might claim the same card. So the same card may be
206   // processed multiple times, and so we might get references into old gen here.
207   // So we need to redo this check.
208   const G1HeapRegionAttr region_attr = _g1h->region_attr(obj);
209   // References pushed onto the work stack should never point to a humongous region
210   // as they are not added to the collection set due to above precondition.
211   assert(!region_attr.is_humongous_candidate(),
212          "Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT,
213          p2i(obj), _g1h->addr_to_region(obj), p2i(p));
214 
215   if (!region_attr.is_in_cset()) {
216     // In this case somebody else already did all the work.
217     return;
218   }
219 
220   markWord m = obj->mark();
221   if (m.is_forwarded()) {
222     obj = obj->forwardee(m);
223   } else {
224     obj = do_copy_to_survivor_space(region_attr, obj, m);
225   }
226   RawAccess<IS_NOT_NULL>::oop_store(p, obj);
227 
228   write_ref_field_post(p, obj);
229 }
230 
231 MAYBE_INLINE_EVACUATION
232 void G1ParScanThreadState::do_partial_array(PartialArrayState* state, bool stolen) {
233   // Access state before release by claim().
234   objArrayOop to_array = objArrayOop(state->destination());
235   PartialArraySplitter::Claim claim =
236     _partial_array_splitter.claim(state, _task_queue, stolen);
237   G1HeapRegionAttr dest_attr = _g1h->region_attr(to_array);
238   G1SkipCardMarkSetter x(&_scanner, dest_attr.is_new_survivor());
239   // Process claimed task.
240   to_array->oop_iterate_elements_range(&_scanner,
241                                        checked_cast<int>(claim._start),
242                                        checked_cast<int>(claim._end));
243 }
244 
245 MAYBE_INLINE_EVACUATION
246 void G1ParScanThreadState::start_partial_objarray(oop from_obj,
247                                                   oop to_obj) {
248   assert(from_obj->is_forwarded(), "precondition");
249   assert(from_obj->forwardee() == to_obj, "precondition");
250   assert(to_obj->is_objArray(), "precondition");
251 
252   objArrayOop to_array = objArrayOop(to_obj);
253   size_t array_length = to_array->length();
254   size_t initial_chunk_size =
255     // The source array is unused when processing states.
256     _partial_array_splitter.start(_task_queue, nullptr, to_array, array_length);
257 
258   assert(_scanner.skip_card_mark_set(), "must be");
259   // Process the initial chunk.  No need to process the type in the
260   // klass, as it will already be handled by processing the built-in
261   // module.
262   to_array->oop_iterate_elements_range(&_scanner, 0, checked_cast<int>(initial_chunk_size));
263 }
264 
265 MAYBE_INLINE_EVACUATION
266 void G1ParScanThreadState::dispatch_task(ScannerTask task, bool stolen) {
267   verify_task(task);
268   if (task.is_narrow_oop_ptr()) {
269     do_oop_evac(task.to_narrow_oop_ptr());
270   } else if (task.is_oop_ptr()) {
271     do_oop_evac(task.to_oop_ptr());
272   } else {
273     do_partial_array(task.to_partial_array_state(), stolen);
274   }
275 }
276 
277 // Process tasks until overflow queue is empty and local queue
278 // contains no more than threshold entries.  NOINLINE to prevent
279 // inlining into steal_and_trim_queue.
280 ATTRIBUTE_FLATTEN NOINLINE
281 void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) {
282   ScannerTask task;
283   do {
284     while (_task_queue->pop_overflow(task)) {
285       if (!_task_queue->try_push_to_taskqueue(task)) {
286         dispatch_task(task, false);
287       }
288     }
289     while (_task_queue->pop_local(task, threshold)) {
290       dispatch_task(task, false);
291     }
292   } while (!_task_queue->overflow_empty());
293 }
294 
295 ATTRIBUTE_FLATTEN
296 void G1ParScanThreadState::steal_and_trim_queue(G1ScannerTasksQueueSet* task_queues) {
297   ScannerTask stolen_task;
298   while (task_queues->steal(_worker_id, stolen_task)) {
299     dispatch_task(stolen_task, true);
300     // Processing stolen task may have added tasks to our queue.
301     trim_queue();
302   }
303 }
304 
305 HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest,
306                                                       size_t word_sz,
307                                                       bool previous_plab_refill_failed,
308                                                       uint node_index) {
309 
310   assert(dest->is_in_cset_or_humongous_candidate(), "Unexpected dest: %s region attr", dest->get_type_str());
311 
312   // Right now we only have two types of regions (young / old) so
313   // let's keep the logic here simple. We can generalize it when necessary.
314   if (dest->is_young()) {
315     bool plab_refill_in_old_failed = false;
316     HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old,
317                                                         word_sz,
318                                                         &plab_refill_in_old_failed,
319                                                         node_index);
320     // Make sure that we won't attempt to copy any other objects out
321     // of a survivor region (given that apparently we cannot allocate
322     // any new ones) to avoid coming into this slow path again and again.
323     // Only consider failed PLAB refill here: failed inline allocations are
324     // typically large, so not indicative of remaining space.
325     if (previous_plab_refill_failed) {
326       _tenuring_threshold = 0;
327     }
328 
329     if (obj_ptr != nullptr) {
330       dest->set_old();
331     } else {
332       // We just failed to allocate in old gen. The same idea as explained above
333       // for making survivor gen unavailable for allocation applies for old gen.
334       _old_gen_is_full = plab_refill_in_old_failed;
335     }
336     return obj_ptr;
337   } else {
338     _old_gen_is_full = previous_plab_refill_failed;
339     assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str());
340     // no other space to try.
341     return nullptr;
342   }
343 }
344 
345 G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markWord const m, uint& age) {
346   assert(region_attr.is_young() || region_attr.is_old(), "must be either Young or Old");
347 
348   if (region_attr.is_young()) {
349     age = !m.has_displaced_mark_helper() ? m.age()
350                                          : m.displaced_mark_helper().age();
351     if (age < _tenuring_threshold) {
352       return region_attr;
353     }
354   }
355   // young-to-old (promotion) or old-to-old; destination is old in both cases.
356   return G1HeapRegionAttr::Old;
357 }
358 
359 void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr,
360                                                   Klass* klass, size_t word_sz, uint age,
361                                                   HeapWord * const obj_ptr, uint node_index) const {
362   PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index);
363   if (alloc_buf->contains(obj_ptr)) {
364     _g1h->gc_tracer_stw()->report_promotion_in_new_plab_event(klass, word_sz * HeapWordSize, age,
365                                                               dest_attr.type() == G1HeapRegionAttr::Old,
366                                                               alloc_buf->word_sz() * HeapWordSize);
367   } else {
368     _g1h->gc_tracer_stw()->report_promotion_outside_plab_event(klass, word_sz * HeapWordSize, age,
369                                                                dest_attr.type() == G1HeapRegionAttr::Old);
370   }
371 }
372 
373 NOINLINE
374 HeapWord* G1ParScanThreadState::allocate_copy_slow(G1HeapRegionAttr* dest_attr,
375                                                    Klass* klass,
376                                                    size_t word_sz,
377                                                    uint age,
378                                                    uint node_index) {
379   HeapWord* obj_ptr = nullptr;
380   // Try slow-path allocation unless we're allocating old and old is already full.
381   if (!(dest_attr->is_old() && _old_gen_is_full)) {
382     bool plab_refill_failed = false;
383     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(*dest_attr,
384                                                            word_sz,
385                                                            &plab_refill_failed,
386                                                            node_index);
387     if (obj_ptr == nullptr) {
388       obj_ptr = allocate_in_next_plab(dest_attr,
389                                       word_sz,
390                                       plab_refill_failed,
391                                       node_index);
392     }
393   }
394   if (obj_ptr != nullptr) {
395     update_numa_stats(node_index);
396     if (_g1h->gc_tracer_stw()->should_report_promotion_events()) {
397       // The events are checked individually as part of the actual commit
398       report_promotion_event(*dest_attr, klass, word_sz, age, obj_ptr, node_index);
399     }
400   }
401   return obj_ptr;
402 }
403 
404 #if ALLOCATION_FAILURE_INJECTOR
405 bool G1ParScanThreadState::inject_allocation_failure(uint region_idx) {
406   return _g1h->allocation_failure_injector()->allocation_should_fail(_allocation_failure_inject_counter, region_idx);
407 }
408 #endif
409 
410 NOINLINE
411 void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr,
412                                            HeapWord* obj_ptr,
413                                            size_t word_sz,
414                                            uint node_index) {
415   _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
416 }
417 
418 void G1ParScanThreadState::update_bot_after_copying(oop obj, size_t word_sz) {
419   HeapWord* obj_start = cast_from_oop<HeapWord*>(obj);
420   G1HeapRegion* region = _g1h->heap_region_containing(obj_start);
421   region->update_bot_for_block(obj_start, obj_start + word_sz);
422 }
423 
424 ALWAYSINLINE
425 void G1ParScanThreadState::do_iterate_object(oop const obj,
426                                              oop const old,
427                                              Klass* const klass,
428                                              G1HeapRegionAttr const region_attr,
429                                              G1HeapRegionAttr const dest_attr,
430                                              uint age) {
431     // Most objects are not arrays, so do one array check rather than
432     // checking for each array category for each object.
433     if (klass->is_array_klass()) {
434       assert(!klass->is_stack_chunk_instance_klass(), "must be");
435 
436       if (klass->is_objArray_klass()) {
437         start_partial_objarray(old, obj);
438       } else {
439         // Nothing needs to be done for typeArrays.  Body doesn't contain
440         // any oops to scan, and the type in the klass will already be handled
441         // by processing the built-in module.
442         assert(klass->is_typeArray_klass(), "invariant");
443       }
444       return;
445     }
446 
447     ContinuationGCSupport::transform_stack_chunk(obj);
448 
449     // Check for deduplicating young Strings.
450     if (G1StringDedup::is_candidate_from_evacuation(klass,
451                                                     region_attr,
452                                                     dest_attr,
453                                                     age)) {
454       // Record old; request adds a new weak reference, which reference
455       // processing expects to refer to a from-space object.
456       _string_dedup_requests.add(old);
457     }
458 
459     assert(_scanner.skip_card_mark_set(), "must be");
460     obj->oop_iterate_backwards(&_scanner, klass);
461 }
462 
463 // Private inline function, for direct internal use and providing the
464 // implementation of the public not-inline function.
465 MAYBE_INLINE_EVACUATION
466 oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr,
467                                                     oop const old,
468                                                     markWord const old_mark) {
469   assert(region_attr.is_in_cset(),
470          "Unexpected region attr type: %s", region_attr.get_type_str());
471 
472   // NOTE: With compact headers, it is not safe to load the Klass* from old, because
473   // that would access the mark-word, that might change at any time by concurrent
474   // workers.
475   // This mark word would refer to a forwardee, which may not yet have completed
476   // copying. Therefore we must load the Klass* from the mark-word that we already
477   // loaded. This is safe, because we only enter here if not yet forwarded.
478   assert(!old_mark.is_forwarded(), "precondition");
479   Klass* klass = UseCompactObjectHeaders
480       ? old_mark.klass()
481       : old->klass();
482 
483   const size_t word_sz = old->size_given_klass(klass);
484 
485   // JNI only allows pinning of typeArrays, so we only need to keep those in place.
486   if (region_attr.is_pinned() && klass->is_typeArray_klass()) {
487     return handle_evacuation_failure_par(old, old_mark, klass, region_attr, word_sz, true /* cause_pinned */);
488   }
489 
490   uint age = 0;
491   G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age);
492   G1HeapRegion* const from_region = _g1h->heap_region_containing(old);
493   uint node_index = from_region->node_index();
494 
495   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index);
496 
497   // PLAB allocations should succeed most of the time, so we'll
498   // normally check against null once and that's it.
499   if (obj_ptr == nullptr) {
500     obj_ptr = allocate_copy_slow(&dest_attr, klass, word_sz, age, node_index);
501     if (obj_ptr == nullptr) {
502       // This will either forward-to-self, or detect that someone else has
503       // installed a forwarding pointer.
504       return handle_evacuation_failure_par(old, old_mark, klass, region_attr, word_sz, false /* cause_pinned */);
505     }
506   }
507 
508   assert(obj_ptr != nullptr, "when we get here, allocation should have succeeded");
509   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
510 
511   // Should this evacuation fail?
512   if (inject_allocation_failure(from_region->hrm_index())) {
513     // Doing this after all the allocation attempts also tests the
514     // undo_allocation() method too.
515     undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
516     return handle_evacuation_failure_par(old, old_mark, klass, region_attr, word_sz, false /* cause_pinned */);
517   }
518 
519   // We're going to allocate linearly, so might as well prefetch ahead.
520   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
521   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz);
522 
523   const oop obj = cast_to_oop(obj_ptr);
524   // Because the forwarding is done with memory_order_relaxed there is no
525   // ordering with the above copy.  Clients that get the forwardee must not
526   // examine its contents without other synchronization, since the contents
527   // may not be up to date for them.
528   const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed);
529   if (forward_ptr == nullptr) {
530 
531     {
532       const uint young_index = from_region->young_index_in_cset();
533       assert((from_region->is_young() && young_index >  0) ||
534              (!from_region->is_young() && young_index == 0), "invariant" );
535       _surviving_young_words[young_index] += word_sz;
536     }
537 
538     if (dest_attr.is_young()) {
539       if (age < markWord::max_age) {
540         age++;
541         obj->incr_age();
542       }
543       _age_table.add(age, word_sz);
544     } else {
545       update_bot_after_copying(obj, word_sz);
546     }
547 
548     {
549       // Skip the card enqueue iff the object (obj) is in survivor region.
550       // However, G1HeapRegion::is_survivor() is too expensive here.
551       // Instead, we use dest_attr.is_young() because the two values are always
552       // equal: successfully allocated young regions must be survivor regions.
553       assert(dest_attr.is_young() == _g1h->heap_region_containing(obj)->is_survivor(), "must be");
554       G1SkipCardMarkSetter x(&_scanner, dest_attr.is_young());
555       do_iterate_object(obj, old, klass, region_attr, dest_attr, age);
556     }
557 
558     return obj;
559   } else {
560     _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
561     return forward_ptr;
562   }
563 }
564 
565 // Public not-inline entry point.
566 ATTRIBUTE_FLATTEN
567 oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr region_attr,
568                                                  oop old,
569                                                  markWord old_mark) {
570   return do_copy_to_survivor_space(region_attr, old, old_mark);
571 }
572 
573 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
574   assert(worker_id < _num_workers, "out of bounds access");
575   if (_states[worker_id] == nullptr) {
576     _states[worker_id] =
577       new G1ParScanThreadState(_g1h,
578                                worker_id,
579                                _num_workers,
580                                _collection_set,
581                                _evac_failure_regions);
582   }
583   return _states[worker_id];
584 }
585 
586 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
587   assert(_flushed, "thread local state from the per thread states should have been flushed");
588   return _surviving_young_words_total;
589 }
590 
591 void G1ParScanThreadStateSet::flush_stats() {
592   assert(!_flushed, "thread local state from the per thread states should be flushed once");
593   for (uint worker_id = 0; worker_id < _num_workers; ++worker_id) {
594     G1ParScanThreadState* pss = _states[worker_id];
595     assert(pss != nullptr, "must be initialized");
596 
597     G1GCPhaseTimes* p = _g1h->phase_times();
598 
599     // Need to get the following two before the call to G1ParThreadScanState::flush()
600     // because it resets the PLAB allocator where we get this info from.
601     size_t lab_waste_bytes = pss->lab_waste_words() * HeapWordSize;
602     size_t lab_undo_waste_bytes = pss->lab_undo_waste_words() * HeapWordSize;
603     size_t copied_bytes = pss->flush_stats(_surviving_young_words_total, _num_workers) * HeapWordSize;
604     size_t pending_cards = pss->num_cards_pending();
605     size_t to_young_gen_cards = pss->num_cards_marked() - pss->num_cards_pending();
606     size_t evac_failure_cards = pss->num_cards_from_evac_failure();
607     size_t marked_cards = pss->num_cards_marked();
608 
609     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, copied_bytes, G1GCPhaseTimes::MergePSSCopiedBytes);
610     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_waste_bytes, G1GCPhaseTimes::MergePSSLABWasteBytes);
611     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_undo_waste_bytes, G1GCPhaseTimes::MergePSSLABUndoWasteBytes);
612     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, pending_cards, G1GCPhaseTimes::MergePSSPendingCards);
613     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, to_young_gen_cards, G1GCPhaseTimes::MergePSSToYoungGenCards);
614     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, evac_failure_cards, G1GCPhaseTimes::MergePSSEvacFail);
615     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, marked_cards, G1GCPhaseTimes::MergePSSMarked);
616 
617     delete pss;
618     _states[worker_id] = nullptr;
619   }
620 
621   _flushed = true;
622 }
623 
624 void G1ParScanThreadStateSet::record_unused_optional_region(G1HeapRegion* hr) {
625   for (uint worker_index = 0; worker_index < _num_workers; ++worker_index) {
626     G1ParScanThreadState* pss = _states[worker_index];
627     assert(pss != nullptr, "must be initialized");
628 
629     size_t used_memory = pss->oops_into_optional_region(hr)->used_memory();
630     _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory);
631   }
632 }
633 
634 void G1ParScanThreadState::record_evacuation_failed_region(G1HeapRegion* r, uint worker_id, bool cause_pinned) {
635   if (_evac_failure_regions->record(worker_id, r->hrm_index(), cause_pinned)) {
636     G1HeapRegionPrinter::evac_failure(r);
637   }
638 }
639 
640 NOINLINE
641 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m, Klass* klass, G1HeapRegionAttr attr, size_t word_sz, bool cause_pinned) {
642   assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
643 
644   oop forward_ptr = old->forward_to_self_atomic(m, memory_order_relaxed);
645   if (forward_ptr == nullptr) {
646     // Forward-to-self succeeded. We are the "owner" of the object.
647     G1HeapRegion* r = _g1h->heap_region_containing(old);
648 
649     record_evacuation_failed_region(r, _worker_id, cause_pinned);
650 
651     // Mark the failing object in the marking bitmap and later use the bitmap to handle
652     // evacuation failure recovery.
653     _g1h->mark_evac_failure_object(_worker_id, old, word_sz);
654 
655     _evacuation_failed_info.register_copy_failure(word_sz);
656 
657     {
658       // For iterating objects that failed evacuation currently we can reuse the
659       // existing closure to scan evacuated objects; since we are iterating from a
660       // collection set region (i.e. never a Survivor region), we always need to
661       // gather cards for this case.
662       G1SkipCardMarkSetter x(&_scanner, false /* skip_card_mark */);
663       do_iterate_object(old, old, klass, attr, attr, m.age());
664     }
665 
666     return old;
667   } else {
668     // Forward-to-self failed. Either someone else managed to allocate
669     // space for this object (old != forward_ptr) or they beat us in
670     // self-forwarding it (old == forward_ptr).
671     assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
672            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
673            "should not be in the CSet",
674            p2i(old), p2i(forward_ptr));
675     return forward_ptr;
676   }
677 }
678 
679 void G1ParScanThreadState::initialize_numa_stats() {
680   if (_numa->is_enabled()) {
681     LogTarget(Info, gc, heap, numa) lt;
682 
683     if (lt.is_enabled()) {
684       uint num_nodes = _numa->num_active_nodes();
685       // Record only if there are multiple active nodes.
686       _obj_alloc_stat = NEW_C_HEAP_ARRAY(size_t, num_nodes, mtGC);
687       memset(_obj_alloc_stat, 0, sizeof(size_t) * num_nodes);
688     }
689   }
690 }
691 
692 void G1ParScanThreadState::flush_numa_stats() {
693   if (_obj_alloc_stat != nullptr) {
694     uint node_index = _numa->index_of_current_thread();
695     _numa->copy_statistics(G1NUMAStats::LocalObjProcessAtCopyToSurv, node_index, _obj_alloc_stat);
696   }
697 }
698 
699 void G1ParScanThreadState::update_numa_stats(uint node_index) {
700   if (_obj_alloc_stat != nullptr) {
701     _obj_alloc_stat[node_index]++;
702   }
703 }
704 
705 #if TASKQUEUE_STATS
706 
707 PartialArrayTaskStats* G1ParScanThreadState::partial_array_task_stats() {
708   return _partial_array_splitter.stats();
709 }
710 
711 #endif // TASKQUEUE_STATS
712 
713 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h,
714                                                  uint num_workers,
715                                                  G1CollectionSet* collection_set,
716                                                  G1EvacFailureRegions* evac_failure_regions) :
717     _g1h(g1h),
718     _collection_set(collection_set),
719     _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, num_workers, mtGC)),
720     _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, collection_set->young_region_length() + 1, mtGC)),
721     _num_workers(num_workers),
722     _flushed(false),
723     _evac_failure_regions(evac_failure_regions)
724 {
725   for (uint i = 0; i < num_workers; ++i) {
726     _states[i] = nullptr;
727   }
728   memset(_surviving_young_words_total, 0, (collection_set->young_region_length() + 1) * sizeof(size_t));
729 }
730 
731 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() {
732   assert(_flushed, "thread local state from the per thread states should have been flushed");
733   FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states);
734   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total);
735 }
736 
737 #if TASKQUEUE_STATS
738 
739 void G1ParScanThreadStateSet::print_partial_array_task_stats() {
740   auto get_stats = [&](uint i) {
741     return state_for_worker(i)->partial_array_task_stats();
742   };
743   PartialArrayTaskStats::log_set(_num_workers, get_stats,
744                                  "Partial Array Task Stats");
745 }
746 
747 #endif // TASKQUEUE_STATS