1 /*
  2  * Copyright (c) 2014, 2021, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "gc/g1/g1Allocator.inline.hpp"
 27 #include "gc/g1/g1CollectedHeap.inline.hpp"
 28 #include "gc/g1/g1CollectionSet.hpp"
 29 #include "gc/g1/g1EvacFailureRegions.inline.hpp"
 30 #include "gc/g1/g1OopClosures.inline.hpp"
 31 #include "gc/g1/g1ParScanThreadState.inline.hpp"
 32 #include "gc/g1/g1RootClosures.hpp"
 33 #include "gc/g1/g1StringDedup.hpp"
 34 #include "gc/g1/g1Trace.hpp"
 35 #include "gc/g1/g1YoungGCEvacFailureInjector.inline.hpp"
 36 #include "gc/shared/partialArrayTaskStepper.inline.hpp"
 37 #include "gc/shared/preservedMarks.inline.hpp"
 38 #include "gc/shared/stringdedup/stringDedup.hpp"
 39 #include "gc/shared/taskqueue.inline.hpp"
 40 #include "memory/allocation.inline.hpp"
 41 #include "oops/access.inline.hpp"
 42 #include "oops/oop.inline.hpp"
 43 #include "runtime/atomic.hpp"
 44 #include "runtime/prefetch.inline.hpp"
 45 #include "utilities/globalDefinitions.hpp"
 46 #include "utilities/macros.hpp"
 47 
 48 // In fastdebug builds the code size can get out of hand, potentially
 49 // tripping over compiler limits (which may be bugs, but nevertheless
 50 // need to be taken into consideration).  A side benefit of limiting
 51 // inlining is that we get more call frames that might aid debugging.
 52 // And the fastdebug compile time for this file is much reduced.
 53 // Explicit NOINLINE to block ATTRIBUTE_FLATTENing.
 54 #define MAYBE_INLINE_EVACUATION NOT_DEBUG(inline) DEBUG_ONLY(NOINLINE)
 55 
 56 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h,
 57                                            G1RedirtyCardsQueueSet* rdcqs,
 58                                            PreservedMarks* preserved_marks,
 59                                            uint worker_id,
 60                                            uint n_workers,
 61                                            size_t young_cset_length,
 62                                            size_t optional_cset_length,
 63                                            G1EvacFailureRegions* evac_failure_regions)
 64   : _g1h(g1h),
 65     _task_queue(g1h->task_queue(worker_id)),
 66     _rdc_local_qset(rdcqs),
 67     _ct(g1h->card_table()),
 68     _closures(NULL),
 69     _plab_allocator(NULL),
 70     _age_table(false),
 71     _tenuring_threshold(g1h->policy()->tenuring_threshold()),
 72     _scanner(g1h, this),
 73     _worker_id(worker_id),
 74     _last_enqueued_card(SIZE_MAX),
 75     _stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1),
 76     _stack_trim_lower_threshold(GCDrainStackTargetSize),
 77     _trim_ticks(),
 78     _surviving_young_words_base(NULL),
 79     _surviving_young_words(NULL),
 80     _surviving_words_length(young_cset_length + 1),
 81     _old_gen_is_full(false),
 82     _partial_objarray_chunk_size(ParGCArrayScanChunk),
 83     _partial_array_stepper(n_workers),
 84     _string_dedup_requests(),
 85     _num_optional_regions(optional_cset_length),
 86     _numa(g1h->numa()),
 87     _obj_alloc_stat(NULL),
 88     NOT_PRODUCT(_evac_failure_inject_counter(0) COMMA)
 89     _preserved_marks(preserved_marks),
 90     _evacuation_failed_info(),
 91     _evac_failure_regions(evac_failure_regions)
 92 {
 93   // We allocate number of young gen regions in the collection set plus one
 94   // entries, since entry 0 keeps track of surviving bytes for non-young regions.
 95   // We also add a few elements at the beginning and at the end in
 96   // an attempt to eliminate cache contention
 97   const size_t padding_elem_num = (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t));
 98   size_t array_length = padding_elem_num + _surviving_words_length + padding_elem_num;
 99 
100   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
101   _surviving_young_words = _surviving_young_words_base + padding_elem_num;
102   memset(_surviving_young_words, 0, _surviving_words_length * sizeof(size_t));
103 
104   _plab_allocator = new G1PLABAllocator(_g1h->allocator());
105 
106   _closures = G1EvacuationRootClosures::create_root_closures(this, _g1h);
107 
108   _oops_into_optional_regions = new G1OopStarChunkedList[_num_optional_regions];
109 
110   initialize_numa_stats();
111 }
112 
113 size_t G1ParScanThreadState::flush(size_t* surviving_young_words) {
114   _rdc_local_qset.flush();
115   flush_numa_stats();
116   // Update allocation statistics.
117   _plab_allocator->flush_and_retire_stats();
118   _g1h->policy()->record_age_table(&_age_table);
119 
120   if (_evacuation_failed_info.has_failed()) {
121      _g1h->gc_tracer_stw()->report_evacuation_failed(_evacuation_failed_info);
122   }
123 
124   size_t sum = 0;
125   for (uint i = 0; i < _surviving_words_length; i++) {
126     surviving_young_words[i] += _surviving_young_words[i];
127     sum += _surviving_young_words[i];
128   }
129   return sum;
130 }
131 
132 G1ParScanThreadState::~G1ParScanThreadState() {
133   delete _plab_allocator;
134   delete _closures;
135   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
136   delete[] _oops_into_optional_regions;
137   FREE_C_HEAP_ARRAY(size_t, _obj_alloc_stat);
138 }
139 
140 size_t G1ParScanThreadState::lab_waste_words() const {
141   return _plab_allocator->waste();
142 }
143 
144 size_t G1ParScanThreadState::lab_undo_waste_words() const {
145   return _plab_allocator->undo_waste();
146 }
147 
148 #ifdef ASSERT
149 void G1ParScanThreadState::verify_task(narrowOop* task) const {
150   assert(task != NULL, "invariant");
151   assert(UseCompressedOops, "sanity");
152   oop p = RawAccess<>::oop_load(task);
153   assert(_g1h->is_in_reserved(p),
154          "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p));
155 }
156 
157 void G1ParScanThreadState::verify_task(oop* task) const {
158   assert(task != NULL, "invariant");
159   oop p = RawAccess<>::oop_load(task);
160   assert(_g1h->is_in_reserved(p),
161          "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p));
162 }
163 
164 void G1ParScanThreadState::verify_task(PartialArrayScanTask task) const {
165   // Must be in the collection set--it's already been copied.
166   oop p = task.to_source_array();
167   assert(_g1h->is_in_cset(p), "p=" PTR_FORMAT, p2i(p));
168 }
169 
170 void G1ParScanThreadState::verify_task(ScannerTask task) const {
171   if (task.is_narrow_oop_ptr()) {
172     verify_task(task.to_narrow_oop_ptr());
173   } else if (task.is_oop_ptr()) {
174     verify_task(task.to_oop_ptr());
175   } else if (task.is_partial_array_task()) {
176     verify_task(task.to_partial_array_task());
177   } else {
178     ShouldNotReachHere();
179   }
180 }
181 #endif // ASSERT
182 
183 template <class T>
184 MAYBE_INLINE_EVACUATION
185 void G1ParScanThreadState::do_oop_evac(T* p) {
186   // Reference should not be NULL here as such are never pushed to the task queue.
187   oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
188 
189   // Although we never intentionally push references outside of the collection
190   // set, due to (benign) races in the claim mechanism during RSet scanning more
191   // than one thread might claim the same card. So the same card may be
192   // processed multiple times, and so we might get references into old gen here.
193   // So we need to redo this check.
194   const G1HeapRegionAttr region_attr = _g1h->region_attr(obj);
195   // References pushed onto the work stack should never point to a humongous region
196   // as they are not added to the collection set due to above precondition.
197   assert(!region_attr.is_humongous(),
198          "Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT,
199          p2i(obj), _g1h->addr_to_region(cast_from_oop<HeapWord*>(obj)), p2i(p));
200 
201   if (!region_attr.is_in_cset()) {
202     // In this case somebody else already did all the work.
203     return;
204   }
205 
206   markWord m = obj->mark();
207   if (m.is_marked()) {
208     obj = cast_to_oop(m.decode_pointer());
209   } else {
210     obj = do_copy_to_survivor_space(region_attr, obj, m);
211   }
212   RawAccess<IS_NOT_NULL>::oop_store(p, obj);
213 
214   write_ref_field_post(p, obj);
215 }
216 
217 MAYBE_INLINE_EVACUATION
218 void G1ParScanThreadState::do_partial_array(PartialArrayScanTask task) {
219   oop from_obj = task.to_source_array();
220 
221   assert(_g1h->is_in_reserved(from_obj), "must be in heap.");
222   assert(from_obj->is_objArray(), "must be obj array");
223   assert(from_obj->is_forwarded(), "must be forwarded");
224 
225   oop to_obj = from_obj->forwardee();
226   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
227   assert(to_obj->is_objArray(), "must be obj array");
228   objArrayOop to_array = objArrayOop(to_obj);
229 
230   PartialArrayTaskStepper::Step step
231     = _partial_array_stepper.next(objArrayOop(from_obj),
232                                   to_array,
233                                   _partial_objarray_chunk_size);
234   for (uint i = 0; i < step._ncreate; ++i) {
235     push_on_queue(ScannerTask(PartialArrayScanTask(from_obj)));
236   }
237 
238   HeapRegion* hr = _g1h->heap_region_containing(to_array);
239   G1SkipCardEnqueueSetter x(&_scanner, hr->is_young());
240   // Process claimed task.  The length of to_array is not correct, but
241   // fortunately the iteration ignores the length field and just relies
242   // on start/end.
243   to_array->oop_iterate_range(&_scanner,
244                               step._index,
245                               step._index + _partial_objarray_chunk_size);
246 }
247 
248 MAYBE_INLINE_EVACUATION
249 void G1ParScanThreadState::start_partial_objarray(G1HeapRegionAttr dest_attr,
250                                                   oop from_obj,
251                                                   oop to_obj) {
252   assert(from_obj->is_objArray(), "precondition");
253   assert(from_obj->is_forwarded(), "precondition");
254   assert(from_obj->forwardee() == to_obj, "precondition");
255   assert(from_obj != to_obj, "should not be scanning self-forwarded objects");
256   assert(to_obj->is_objArray(), "precondition");
257 
258   objArrayOop to_array = objArrayOop(to_obj);
259 
260   PartialArrayTaskStepper::Step step
261     = _partial_array_stepper.start(objArrayOop(from_obj),
262                                    to_array,
263                                    _partial_objarray_chunk_size);
264 
265   // Push any needed partial scan tasks.  Pushed before processing the
266   // intitial chunk to allow other workers to steal while we're processing.
267   for (uint i = 0; i < step._ncreate; ++i) {
268     push_on_queue(ScannerTask(PartialArrayScanTask(from_obj)));
269   }
270 
271   G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young());
272   // Process the initial chunk.  No need to process the type in the
273   // klass, as it will already be handled by processing the built-in
274   // module. The length of to_array is not correct, but fortunately
275   // the iteration ignores that length field and relies on start/end.
276   to_array->oop_iterate_range(&_scanner, 0, step._index);
277 }
278 
279 MAYBE_INLINE_EVACUATION
280 void G1ParScanThreadState::dispatch_task(ScannerTask task) {
281   verify_task(task);
282   if (task.is_narrow_oop_ptr()) {
283     do_oop_evac(task.to_narrow_oop_ptr());
284   } else if (task.is_oop_ptr()) {
285     do_oop_evac(task.to_oop_ptr());
286   } else {
287     do_partial_array(task.to_partial_array_task());
288   }
289 }
290 
291 // Process tasks until overflow queue is empty and local queue
292 // contains no more than threshold entries.  NOINLINE to prevent
293 // inlining into steal_and_trim_queue.
294 ATTRIBUTE_FLATTEN NOINLINE
295 void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) {
296   ScannerTask task;
297   do {
298     while (_task_queue->pop_overflow(task)) {
299       if (!_task_queue->try_push_to_taskqueue(task)) {
300         dispatch_task(task);
301       }
302     }
303     while (_task_queue->pop_local(task, threshold)) {
304       dispatch_task(task);
305     }
306   } while (!_task_queue->overflow_empty());
307 }
308 
309 ATTRIBUTE_FLATTEN
310 void G1ParScanThreadState::steal_and_trim_queue(G1ScannerTasksQueueSet* task_queues) {
311   ScannerTask stolen_task;
312   while (task_queues->steal(_worker_id, stolen_task)) {
313     dispatch_task(stolen_task);
314     // Processing stolen task may have added tasks to our queue.
315     trim_queue();
316   }
317 }
318 
319 HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest,
320                                                       size_t word_sz,
321                                                       bool previous_plab_refill_failed,
322                                                       uint node_index) {
323 
324   assert(dest->is_in_cset_or_humongous(), "Unexpected dest: %s region attr", dest->get_type_str());
325 
326   // Right now we only have two types of regions (young / old) so
327   // let's keep the logic here simple. We can generalize it when necessary.
328   if (dest->is_young()) {
329     bool plab_refill_in_old_failed = false;
330     HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old,
331                                                         word_sz,
332                                                         &plab_refill_in_old_failed,
333                                                         node_index);
334     // Make sure that we won't attempt to copy any other objects out
335     // of a survivor region (given that apparently we cannot allocate
336     // any new ones) to avoid coming into this slow path again and again.
337     // Only consider failed PLAB refill here: failed inline allocations are
338     // typically large, so not indicative of remaining space.
339     if (previous_plab_refill_failed) {
340       _tenuring_threshold = 0;
341     }
342 
343     if (obj_ptr != NULL) {
344       dest->set_old();
345     } else {
346       // We just failed to allocate in old gen. The same idea as explained above
347       // for making survivor gen unavailable for allocation applies for old gen.
348       _old_gen_is_full = plab_refill_in_old_failed;
349     }
350     return obj_ptr;
351   } else {
352     _old_gen_is_full = previous_plab_refill_failed;
353     assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str());
354     // no other space to try.
355     return NULL;
356   }
357 }
358 
359 G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markWord const m, uint& age) {
360   assert(region_attr.is_young() || region_attr.is_old(), "must be either Young or Old");
361 
362   if (region_attr.is_young()) {
363     age = !m.has_displaced_mark_helper() ? m.age()
364                                          : m.displaced_mark_helper().age();
365     if (age < _tenuring_threshold) {
366       return region_attr;
367     }
368   }
369   // young-to-old (promotion) or old-to-old; destination is old in both cases.
370   return G1HeapRegionAttr::Old;
371 }
372 
373 void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr,
374                                                   oop const old, size_t word_sz, uint age,
375                                                   HeapWord * const obj_ptr, uint node_index) const {
376   PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index);
377   if (alloc_buf->contains(obj_ptr)) {
378     _g1h->gc_tracer_stw()->report_promotion_in_new_plab_event(old->klass(), word_sz * HeapWordSize, age,
379                                                               dest_attr.type() == G1HeapRegionAttr::Old,
380                                                               alloc_buf->word_sz() * HeapWordSize);
381   } else {
382     _g1h->gc_tracer_stw()->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age,
383                                                                dest_attr.type() == G1HeapRegionAttr::Old);
384   }
385 }
386 
387 NOINLINE
388 HeapWord* G1ParScanThreadState::allocate_copy_slow(G1HeapRegionAttr* dest_attr,
389                                                    oop old,
390                                                    size_t word_sz,
391                                                    uint age,
392                                                    uint node_index) {
393   HeapWord* obj_ptr = NULL;
394   // Try slow-path allocation unless we're allocating old and old is already full.
395   if (!(dest_attr->is_old() && _old_gen_is_full)) {
396     bool plab_refill_failed = false;
397     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(*dest_attr,
398                                                            word_sz,
399                                                            &plab_refill_failed,
400                                                            node_index);
401     if (obj_ptr == NULL) {
402       obj_ptr = allocate_in_next_plab(dest_attr,
403                                       word_sz,
404                                       plab_refill_failed,
405                                       node_index);
406     }
407   }
408   if (obj_ptr != NULL) {
409     update_numa_stats(node_index);
410     if (_g1h->gc_tracer_stw()->should_report_promotion_events()) {
411       // The events are checked individually as part of the actual commit
412       report_promotion_event(*dest_attr, old, word_sz, age, obj_ptr, node_index);
413     }
414   }
415   return obj_ptr;
416 }
417 
418 #ifndef PRODUCT
419 bool G1ParScanThreadState::inject_evacuation_failure() {
420   return _g1h->evac_failure_injector()->evacuation_should_fail(_evac_failure_inject_counter);
421 }
422 #endif
423 
424 NOINLINE
425 void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr,
426                                            HeapWord* obj_ptr,
427                                            size_t word_sz,
428                                            uint node_index) {
429   _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
430 }
431 
432 // Private inline function, for direct internal use and providing the
433 // implementation of the public not-inline function.
434 MAYBE_INLINE_EVACUATION
435 oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr,
436                                                     oop const old,
437                                                     markWord const old_mark) {
438   assert(region_attr.is_in_cset(),
439          "Unexpected region attr type: %s", region_attr.get_type_str());
440 
441   // Get the klass once.  We'll need it again later, and this avoids
442   // re-decoding when it's compressed.
443   Klass* klass = old->klass();
444   const size_t word_sz = old->size_given_klass(klass);
445 
446   uint age = 0;
447   G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age);
448   HeapRegion* const from_region = _g1h->heap_region_containing(old);
449   uint node_index = from_region->node_index();
450 
451   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index);
452 
453   // PLAB allocations should succeed most of the time, so we'll
454   // normally check against NULL once and that's it.
455   if (obj_ptr == NULL) {
456     obj_ptr = allocate_copy_slow(&dest_attr, old, word_sz, age, node_index);
457     if (obj_ptr == NULL) {
458       // This will either forward-to-self, or detect that someone else has
459       // installed a forwarding pointer.
460       return handle_evacuation_failure_par(old, old_mark, word_sz);
461     }
462   }
463 
464   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
465   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
466 
467   // Should this evacuation fail?
468   if (inject_evacuation_failure()) {
469     // Doing this after all the allocation attempts also tests the
470     // undo_allocation() method too.
471     undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
472     return handle_evacuation_failure_par(old, old_mark, word_sz);
473   }
474 
475   // We're going to allocate linearly, so might as well prefetch ahead.
476   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
477   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz);
478 
479   const oop obj = cast_to_oop(obj_ptr);
480   const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed);
481   if (forward_ptr == NULL) {
482 
483     {
484       const uint young_index = from_region->young_index_in_cset();
485       assert((from_region->is_young() && young_index >  0) ||
486              (!from_region->is_young() && young_index == 0), "invariant" );
487       _surviving_young_words[young_index] += word_sz;
488     }
489 
490     if (dest_attr.is_young()) {
491       if (age < markWord::max_age) {
492         age++;
493         obj->incr_age();
494       }
495       _age_table.add(age, word_sz);
496     }
497 
498     // Most objects are not arrays, so do one array check rather than
499     // checking for each array category for each object.
500     // CMH: Valhalla flat arrays can split this work up, but for now, doesn't
501     if (klass->is_array_klass() && !klass->is_flatArray_klass()) {
502       if (klass->is_objArray_klass()) {
503         start_partial_objarray(dest_attr, old, obj);
504       } else {
505         // Nothing needs to be done for typeArrays.  Body doesn't contain
506         // any oops to scan, and the type in the klass will already be handled
507         // by processing the built-in module.
508         assert(klass->is_typeArray_klass(), "invariant");
509       }
510       return obj;
511     }
512 
513     // Check for deduplicating young Strings.
514     if (G1StringDedup::is_candidate_from_evacuation(klass,
515                                                     region_attr,
516                                                     dest_attr,
517                                                     age)) {
518       // Record old; request adds a new weak reference, which reference
519       // processing expects to refer to a from-space object.
520       _string_dedup_requests.add(old);
521     }
522 
523     G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young());
524     obj->oop_iterate_backwards(&_scanner, klass);
525     return obj;
526   } else {
527     _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
528     return forward_ptr;
529   }
530 }
531 
532 // Public not-inline entry point.
533 ATTRIBUTE_FLATTEN
534 oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr region_attr,
535                                                  oop old,
536                                                  markWord old_mark) {
537   return do_copy_to_survivor_space(region_attr, old, old_mark);
538 }
539 
540 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
541   assert(worker_id < _n_workers, "out of bounds access");
542   if (_states[worker_id] == NULL) {
543     _states[worker_id] =
544       new G1ParScanThreadState(_g1h, rdcqs(),
545                                _preserved_marks_set->get(worker_id),
546                                worker_id, _n_workers,
547                                _young_cset_length, _optional_cset_length,
548                                _evac_failure_regions);
549   }
550   return _states[worker_id];
551 }
552 
553 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
554   assert(_flushed, "thread local state from the per thread states should have been flushed");
555   return _surviving_young_words_total;
556 }
557 
558 void G1ParScanThreadStateSet::flush() {
559   assert(!_flushed, "thread local state from the per thread states should be flushed once");
560 
561   for (uint worker_id = 0; worker_id < _n_workers; ++worker_id) {
562     G1ParScanThreadState* pss = _states[worker_id];
563     assert(pss != nullptr, "must be initialized");
564 
565     G1GCPhaseTimes* p = _g1h->phase_times();
566 
567     // Need to get the following two before the call to G1ParThreadScanState::flush()
568     // because it resets the PLAB allocator where we get this info from.
569     size_t lab_waste_bytes = pss->lab_waste_words() * HeapWordSize;
570     size_t lab_undo_waste_bytes = pss->lab_undo_waste_words() * HeapWordSize;
571     size_t copied_bytes = pss->flush(_surviving_young_words_total) * HeapWordSize;
572 
573     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, copied_bytes, G1GCPhaseTimes::MergePSSCopiedBytes);
574     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_waste_bytes, G1GCPhaseTimes::MergePSSLABWasteBytes);
575     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_undo_waste_bytes, G1GCPhaseTimes::MergePSSLABUndoWasteBytes);
576 
577     delete pss;
578     _states[worker_id] = NULL;
579   }
580   _flushed = true;
581 }
582 
583 void G1ParScanThreadStateSet::record_unused_optional_region(HeapRegion* hr) {
584   for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
585     G1ParScanThreadState* pss = _states[worker_index];
586     assert(pss != nullptr, "must be initialized");
587 
588     size_t used_memory = pss->oops_into_optional_region(hr)->used_memory();
589     _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory);
590   }
591 }
592 
593 NOINLINE
594 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m, size_t word_sz) {
595   assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
596 
597   oop forward_ptr = old->forward_to_atomic(old, m, memory_order_relaxed);
598   if (forward_ptr == NULL) {
599     // Forward-to-self succeeded. We are the "owner" of the object.
600     HeapRegion* r = _g1h->heap_region_containing(old);
601 
602     if (_evac_failure_regions->record(r->hrm_index())) {
603       _g1h->hr_printer()->evac_failure(r);
604     }
605 
606     _preserved_marks->push_if_necessary(old, m);
607     _evacuation_failed_info.register_copy_failure(word_sz);
608 
609     G1SkipCardEnqueueSetter x(&_scanner, r->is_young());
610     old->oop_iterate_backwards(&_scanner);
611 
612     return old;
613   } else {
614     // Forward-to-self failed. Either someone else managed to allocate
615     // space for this object (old != forward_ptr) or they beat us in
616     // self-forwarding it (old == forward_ptr).
617     assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
618            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
619            "should not be in the CSet",
620            p2i(old), p2i(forward_ptr));
621     return forward_ptr;
622   }
623 }
624 
625 void G1ParScanThreadState::initialize_numa_stats() {
626   if (_numa->is_enabled()) {
627     LogTarget(Info, gc, heap, numa) lt;
628 
629     if (lt.is_enabled()) {
630       uint num_nodes = _numa->num_active_nodes();
631       // Record only if there are multiple active nodes.
632       _obj_alloc_stat = NEW_C_HEAP_ARRAY(size_t, num_nodes, mtGC);
633       memset(_obj_alloc_stat, 0, sizeof(size_t) * num_nodes);
634     }
635   }
636 }
637 
638 void G1ParScanThreadState::flush_numa_stats() {
639   if (_obj_alloc_stat != NULL) {
640     uint node_index = _numa->index_of_current_thread();
641     _numa->copy_statistics(G1NUMAStats::LocalObjProcessAtCopyToSurv, node_index, _obj_alloc_stat);
642   }
643 }
644 
645 void G1ParScanThreadState::update_numa_stats(uint node_index) {
646   if (_obj_alloc_stat != NULL) {
647     _obj_alloc_stat[node_index]++;
648   }
649 }
650 
651 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h,
652                                                  G1RedirtyCardsQueueSet* rdcqs,
653                                                  PreservedMarksSet* preserved_marks_set,
654                                                  uint n_workers,
655                                                  size_t young_cset_length,
656                                                  size_t optional_cset_length,
657                                                  G1EvacFailureRegions* evac_failure_regions) :
658     _g1h(g1h),
659     _rdcqs(rdcqs),
660     _preserved_marks_set(preserved_marks_set),
661     _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC)),
662     _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, young_cset_length + 1, mtGC)),
663     _young_cset_length(young_cset_length),
664     _optional_cset_length(optional_cset_length),
665     _n_workers(n_workers),
666     _flushed(false),
667     _evac_failure_regions(evac_failure_regions) {
668   for (uint i = 0; i < n_workers; ++i) {
669     _states[i] = NULL;
670   }
671   memset(_surviving_young_words_total, 0, (young_cset_length + 1) * sizeof(size_t));
672 }
673 
674 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() {
675   assert(_flushed, "thread local state from the per thread states should have been flushed");
676   FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states);
677   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total);
678 }