1 /*
  2  * Copyright (c) 2014, 2024, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "gc/g1/g1Allocator.inline.hpp"
 27 #include "gc/g1/g1CollectedHeap.inline.hpp"
 28 #include "gc/g1/g1CollectionSet.hpp"
 29 #include "gc/g1/g1EvacFailureRegions.inline.hpp"
 30 #include "gc/g1/g1HeapRegionPrinter.hpp"
 31 #include "gc/g1/g1OopClosures.inline.hpp"
 32 #include "gc/g1/g1ParScanThreadState.inline.hpp"
 33 #include "gc/g1/g1RootClosures.hpp"
 34 #include "gc/g1/g1StringDedup.hpp"
 35 #include "gc/g1/g1Trace.hpp"
 36 #include "gc/g1/g1YoungGCAllocationFailureInjector.inline.hpp"
 37 #include "gc/shared/continuationGCSupport.inline.hpp"
 38 #include "gc/shared/partialArrayState.hpp"
 39 #include "gc/shared/partialArrayTaskStepper.inline.hpp"
 40 #include "gc/shared/preservedMarks.inline.hpp"
 41 #include "gc/shared/stringdedup/stringDedup.hpp"
 42 #include "gc/shared/taskqueue.inline.hpp"
 43 #include "memory/allocation.inline.hpp"
 44 #include "oops/access.inline.hpp"
 45 #include "oops/oop.inline.hpp"
 46 #include "runtime/atomic.hpp"
 47 #include "runtime/mutexLocker.hpp"
 48 #include "runtime/prefetch.inline.hpp"
 49 #include "utilities/globalDefinitions.hpp"
 50 #include "utilities/macros.hpp"
 51 
 52 // In fastdebug builds the code size can get out of hand, potentially
 53 // tripping over compiler limits (which may be bugs, but nevertheless
 54 // need to be taken into consideration).  A side benefit of limiting
 55 // inlining is that we get more call frames that might aid debugging.
 56 // And the fastdebug compile time for this file is much reduced.
 57 // Explicit NOINLINE to block ATTRIBUTE_FLATTENing.
 58 #define MAYBE_INLINE_EVACUATION NOT_DEBUG(inline) DEBUG_ONLY(NOINLINE)
 59 
 60 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h,
 61                                            G1RedirtyCardsQueueSet* rdcqs,
 62                                            PreservedMarks* preserved_marks,
 63                                            uint worker_id,
 64                                            uint num_workers,
 65                                            G1CollectionSet* collection_set,
 66                                            G1EvacFailureRegions* evac_failure_regions,
 67                                            PartialArrayStateAllocator* pas_allocator)
 68   : _g1h(g1h),
 69     _task_queue(g1h->task_queue(worker_id)),
 70     _rdc_local_qset(rdcqs),
 71     _ct(g1h->card_table()),
 72     _closures(nullptr),
 73     _plab_allocator(nullptr),
 74     _age_table(false),
 75     _tenuring_threshold(g1h->policy()->tenuring_threshold()),
 76     _scanner(g1h, this),
 77     _worker_id(worker_id),
 78     _last_enqueued_card(SIZE_MAX),
 79     _stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1),
 80     _stack_trim_lower_threshold(GCDrainStackTargetSize),
 81     _trim_ticks(),
 82     _surviving_young_words_base(nullptr),
 83     _surviving_young_words(nullptr),
 84     _surviving_words_length(collection_set->young_region_length() + 1),
 85     _old_gen_is_full(false),
 86     _partial_array_state_allocator(pas_allocator),
 87     _partial_array_stepper(num_workers, ParGCArrayScanChunk),
 88     _string_dedup_requests(),
 89     _max_num_optional_regions(collection_set->optional_region_length()),
 90     _numa(g1h->numa()),
 91     _obj_alloc_stat(nullptr),
 92     ALLOCATION_FAILURE_INJECTOR_ONLY(_allocation_failure_inject_counter(0) COMMA)
 93     _preserved_marks(preserved_marks),
 94     _evacuation_failed_info(),
 95     _evac_failure_regions(evac_failure_regions),
 96     _evac_failure_enqueued_cards(0)
 97 {
 98   // We allocate number of young gen regions in the collection set plus one
 99   // entries, since entry 0 keeps track of surviving bytes for non-young regions.
100   // We also add a few elements at the beginning and at the end in
101   // an attempt to eliminate cache contention
102   const size_t padding_elem_num = (DEFAULT_PADDING_SIZE / sizeof(size_t));
103   size_t array_length = padding_elem_num + _surviving_words_length + padding_elem_num;
104 
105   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
106   _surviving_young_words = _surviving_young_words_base + padding_elem_num;
107   memset(_surviving_young_words, 0, _surviving_words_length * sizeof(size_t));
108 
109   _plab_allocator = new G1PLABAllocator(_g1h->allocator());
110 
111   _closures = G1EvacuationRootClosures::create_root_closures(_g1h,
112                                                              this,
113                                                              collection_set->only_contains_young_regions());
114 
115   _oops_into_optional_regions = new G1OopStarChunkedList[_max_num_optional_regions];
116 
117   initialize_numa_stats();
118 }
119 
120 size_t G1ParScanThreadState::flush_stats(size_t* surviving_young_words, uint num_workers, BufferNodeList* rdc_buffers) {
121   *rdc_buffers = _rdc_local_qset.flush();
122   flush_numa_stats();
123   // Update allocation statistics.
124   _plab_allocator->flush_and_retire_stats(num_workers);
125   _g1h->policy()->record_age_table(&_age_table);
126 
127   if (_evacuation_failed_info.has_failed()) {
128     _g1h->gc_tracer_stw()->report_evacuation_failed(_evacuation_failed_info);
129   }
130 
131   size_t sum = 0;
132   for (uint i = 0; i < _surviving_words_length; i++) {
133     surviving_young_words[i] += _surviving_young_words[i];
134     sum += _surviving_young_words[i];
135   }
136   return sum;
137 }
138 
139 G1ParScanThreadState::~G1ParScanThreadState() {
140   delete _plab_allocator;
141   delete _closures;
142   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
143   delete[] _oops_into_optional_regions;
144   FREE_C_HEAP_ARRAY(size_t, _obj_alloc_stat);
145 }
146 
147 size_t G1ParScanThreadState::lab_waste_words() const {
148   return _plab_allocator->waste();
149 }
150 
151 size_t G1ParScanThreadState::lab_undo_waste_words() const {
152   return _plab_allocator->undo_waste();
153 }
154 
155 size_t G1ParScanThreadState::evac_failure_enqueued_cards() const {
156   return _evac_failure_enqueued_cards;
157 }
158 
159 #ifdef ASSERT
160 void G1ParScanThreadState::verify_task(narrowOop* task) const {
161   assert(task != nullptr, "invariant");
162   assert(UseCompressedOops, "sanity");
163   oop p = RawAccess<>::oop_load(task);
164   assert(_g1h->is_in_reserved(p),
165          "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p));
166 }
167 
168 void G1ParScanThreadState::verify_task(oop* task) const {
169   assert(task != nullptr, "invariant");
170   oop p = RawAccess<>::oop_load(task);
171   assert(_g1h->is_in_reserved(p),
172          "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p));
173 }
174 
175 void G1ParScanThreadState::verify_task(PartialArrayState* task) const {
176   // Must be in the collection set--it's already been copied.
177   oop p = task->source();
178   assert(_g1h->is_in_cset(p), "p=" PTR_FORMAT, p2i(p));
179 }
180 
181 void G1ParScanThreadState::verify_task(ScannerTask task) const {
182   if (task.is_narrow_oop_ptr()) {
183     verify_task(task.to_narrow_oop_ptr());
184   } else if (task.is_oop_ptr()) {
185     verify_task(task.to_oop_ptr());
186   } else if (task.is_partial_array_state()) {
187     verify_task(task.to_partial_array_state());
188   } else {
189     ShouldNotReachHere();
190   }
191 }
192 #endif // ASSERT
193 
194 template <class T>
195 MAYBE_INLINE_EVACUATION
196 void G1ParScanThreadState::do_oop_evac(T* p) {
197   // Reference should not be null here as such are never pushed to the task queue.
198   oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
199 
200   // Although we never intentionally push references outside of the collection
201   // set, due to (benign) races in the claim mechanism during RSet scanning more
202   // than one thread might claim the same card. So the same card may be
203   // processed multiple times, and so we might get references into old gen here.
204   // So we need to redo this check.
205   const G1HeapRegionAttr region_attr = _g1h->region_attr(obj);
206   // References pushed onto the work stack should never point to a humongous region
207   // as they are not added to the collection set due to above precondition.
208   assert(!region_attr.is_humongous_candidate(),
209          "Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT,
210          p2i(obj), _g1h->addr_to_region(obj), p2i(p));
211 
212   if (!region_attr.is_in_cset()) {
213     // In this case somebody else already did all the work.
214     return;
215   }
216 
217   markWord m = obj->mark();
218   if (m.is_forwarded()) {
219     obj = m.forwardee();
220   } else {
221     obj = do_copy_to_survivor_space(region_attr, obj, m);
222   }
223   RawAccess<IS_NOT_NULL>::oop_store(p, obj);
224 
225   write_ref_field_post(p, obj);
226 }
227 
228 MAYBE_INLINE_EVACUATION
229 void G1ParScanThreadState::do_partial_array(PartialArrayState* state) {
230   oop to_obj = state->destination();
231 
232 #ifdef ASSERT
233   oop from_obj = state->source();
234   assert(_g1h->is_in_reserved(from_obj), "must be in heap.");
235   assert(from_obj->is_objArray(), "must be obj array");
236   assert(from_obj->is_forwarded(), "must be forwarded");
237   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
238   assert(to_obj->is_objArray(), "must be obj array");
239 #endif // ASSERT
240 
241   objArrayOop to_array = objArrayOop(to_obj);
242 
243   // Claim a chunk and get number of additional tasks to enqueue.
244   PartialArrayTaskStepper::Step step = _partial_array_stepper.next(state);
245   // Push any additional partial scan tasks needed.  Pushed before processing
246   // the claimed chunk to allow other workers to steal while we're processing.
247   if (step._ncreate > 0) {
248     state->add_references(step._ncreate);
249     for (uint i = 0; i < step._ncreate; ++i) {
250       push_on_queue(ScannerTask(state));
251     }
252   }
253 
254   G1HeapRegionAttr dest_attr = _g1h->region_attr(to_array);
255   G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_new_survivor());
256   // Process claimed task.
257   to_array->oop_iterate_range(&_scanner,
258                               checked_cast<int>(step._index),
259                               checked_cast<int>(step._index + _partial_array_stepper.chunk_size()));
260   // Release reference to the state, now that we're done with it.
261   _partial_array_state_allocator->release(_worker_id, state);
262 }
263 
264 MAYBE_INLINE_EVACUATION
265 void G1ParScanThreadState::start_partial_objarray(G1HeapRegionAttr dest_attr,
266                                                   oop from_obj,
267                                                   oop to_obj) {
268   assert(from_obj->is_objArray(), "precondition");
269   assert(from_obj->is_forwarded(), "precondition");
270   assert(from_obj->forwardee() == to_obj, "precondition");
271   assert(to_obj->is_objArray(), "precondition");
272 
273   objArrayOop to_array = objArrayOop(to_obj);
274 
275   size_t array_length = to_array->length();
276   PartialArrayTaskStepper::Step step = _partial_array_stepper.start(array_length);
277 
278   // Push any needed partial scan tasks.  Pushed before processing the
279   // initial chunk to allow other workers to steal while we're processing.
280   if (step._ncreate > 0) {
281     assert(step._index < array_length, "invariant");
282     assert(((array_length - step._index) % _partial_array_stepper.chunk_size()) == 0,
283            "invariant");
284     PartialArrayState* state =
285       _partial_array_state_allocator->allocate(_worker_id,
286                                                from_obj, to_obj,
287                                                step._index,
288                                                array_length,
289                                                step._ncreate);
290     for (uint i = 0; i < step._ncreate; ++i) {
291       push_on_queue(ScannerTask(state));
292     }
293   } else {
294     assert(step._index == array_length, "invariant");
295   }
296 
297   // Skip the card enqueue iff the object (to_array) is in survivor region.
298   // However, G1HeapRegion::is_survivor() is too expensive here.
299   // Instead, we use dest_attr.is_young() because the two values are always
300   // equal: successfully allocated young regions must be survivor regions.
301   assert(dest_attr.is_young() == _g1h->heap_region_containing(to_array)->is_survivor(), "must be");
302   G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young());
303   // Process the initial chunk.  No need to process the type in the
304   // klass, as it will already be handled by processing the built-in
305   // module.
306   to_array->oop_iterate_range(&_scanner, 0, checked_cast<int>(step._index));
307 }
308 
309 MAYBE_INLINE_EVACUATION
310 void G1ParScanThreadState::dispatch_task(ScannerTask task) {
311   verify_task(task);
312   if (task.is_narrow_oop_ptr()) {
313     do_oop_evac(task.to_narrow_oop_ptr());
314   } else if (task.is_oop_ptr()) {
315     do_oop_evac(task.to_oop_ptr());
316   } else {
317     do_partial_array(task.to_partial_array_state());
318   }
319 }
320 
321 // Process tasks until overflow queue is empty and local queue
322 // contains no more than threshold entries.  NOINLINE to prevent
323 // inlining into steal_and_trim_queue.
324 ATTRIBUTE_FLATTEN NOINLINE
325 void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) {
326   ScannerTask task;
327   do {
328     while (_task_queue->pop_overflow(task)) {
329       if (!_task_queue->try_push_to_taskqueue(task)) {
330         dispatch_task(task);
331       }
332     }
333     while (_task_queue->pop_local(task, threshold)) {
334       dispatch_task(task);
335     }
336   } while (!_task_queue->overflow_empty());
337 }
338 
339 ATTRIBUTE_FLATTEN
340 void G1ParScanThreadState::steal_and_trim_queue(G1ScannerTasksQueueSet* task_queues) {
341   ScannerTask stolen_task;
342   while (task_queues->steal(_worker_id, stolen_task)) {
343     dispatch_task(stolen_task);
344     // Processing stolen task may have added tasks to our queue.
345     trim_queue();
346   }
347 }
348 
349 HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest,
350                                                       size_t word_sz,
351                                                       bool previous_plab_refill_failed,
352                                                       uint node_index) {
353 
354   assert(dest->is_in_cset_or_humongous_candidate(), "Unexpected dest: %s region attr", dest->get_type_str());
355 
356   // Right now we only have two types of regions (young / old) so
357   // let's keep the logic here simple. We can generalize it when necessary.
358   if (dest->is_young()) {
359     bool plab_refill_in_old_failed = false;
360     HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old,
361                                                         word_sz,
362                                                         &plab_refill_in_old_failed,
363                                                         node_index);
364     // Make sure that we won't attempt to copy any other objects out
365     // of a survivor region (given that apparently we cannot allocate
366     // any new ones) to avoid coming into this slow path again and again.
367     // Only consider failed PLAB refill here: failed inline allocations are
368     // typically large, so not indicative of remaining space.
369     if (previous_plab_refill_failed) {
370       _tenuring_threshold = 0;
371     }
372 
373     if (obj_ptr != nullptr) {
374       dest->set_old();
375     } else {
376       // We just failed to allocate in old gen. The same idea as explained above
377       // for making survivor gen unavailable for allocation applies for old gen.
378       _old_gen_is_full = plab_refill_in_old_failed;
379     }
380     return obj_ptr;
381   } else {
382     _old_gen_is_full = previous_plab_refill_failed;
383     assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str());
384     // no other space to try.
385     return nullptr;
386   }
387 }
388 
389 G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markWord const m, uint& age) {
390   assert(region_attr.is_young() || region_attr.is_old(), "must be either Young or Old");
391 
392   if (region_attr.is_young()) {
393     age = !m.has_displaced_mark_helper() ? m.age()
394                                          : m.displaced_mark_helper().age();
395     if (age < _tenuring_threshold) {
396       return region_attr;
397     }
398   }
399   // young-to-old (promotion) or old-to-old; destination is old in both cases.
400   return G1HeapRegionAttr::Old;
401 }
402 
403 void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr,
404                                                   oop const old, size_t word_sz, uint age,
405                                                   HeapWord * const obj_ptr, uint node_index) const {
406   PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index);
407   if (alloc_buf->contains(obj_ptr)) {
408     _g1h->gc_tracer_stw()->report_promotion_in_new_plab_event(old->klass(), word_sz * HeapWordSize, age,
409                                                               dest_attr.type() == G1HeapRegionAttr::Old,
410                                                               alloc_buf->word_sz() * HeapWordSize);
411   } else {
412     _g1h->gc_tracer_stw()->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age,
413                                                                dest_attr.type() == G1HeapRegionAttr::Old);
414   }
415 }
416 
417 NOINLINE
418 HeapWord* G1ParScanThreadState::allocate_copy_slow(G1HeapRegionAttr* dest_attr,
419                                                    oop old,
420                                                    size_t word_sz,
421                                                    uint age,
422                                                    uint node_index) {
423   HeapWord* obj_ptr = nullptr;
424   // Try slow-path allocation unless we're allocating old and old is already full.
425   if (!(dest_attr->is_old() && _old_gen_is_full)) {
426     bool plab_refill_failed = false;
427     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(*dest_attr,
428                                                            word_sz,
429                                                            &plab_refill_failed,
430                                                            node_index);
431     if (obj_ptr == nullptr) {
432       obj_ptr = allocate_in_next_plab(dest_attr,
433                                       word_sz,
434                                       plab_refill_failed,
435                                       node_index);
436     }
437   }
438   if (obj_ptr != nullptr) {
439     update_numa_stats(node_index);
440     if (_g1h->gc_tracer_stw()->should_report_promotion_events()) {
441       // The events are checked individually as part of the actual commit
442       report_promotion_event(*dest_attr, old, word_sz, age, obj_ptr, node_index);
443     }
444   }
445   return obj_ptr;
446 }
447 
448 #if ALLOCATION_FAILURE_INJECTOR
449 bool G1ParScanThreadState::inject_allocation_failure(uint region_idx) {
450   return _g1h->allocation_failure_injector()->allocation_should_fail(_allocation_failure_inject_counter, region_idx);
451 }
452 #endif
453 
454 NOINLINE
455 void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr,
456                                            HeapWord* obj_ptr,
457                                            size_t word_sz,
458                                            uint node_index) {
459   _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
460 }
461 
462 void G1ParScanThreadState::update_bot_after_copying(oop obj, size_t word_sz) {
463   HeapWord* obj_start = cast_from_oop<HeapWord*>(obj);
464   G1HeapRegion* region = _g1h->heap_region_containing(obj_start);
465   region->update_bot_for_block(obj_start, obj_start + word_sz);
466 }
467 
468 // Private inline function, for direct internal use and providing the
469 // implementation of the public not-inline function.
470 MAYBE_INLINE_EVACUATION
471 oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr,
472                                                     oop const old,
473                                                     markWord const old_mark) {
474   assert(region_attr.is_in_cset(),
475          "Unexpected region attr type: %s", region_attr.get_type_str());
476 
477   // Get the klass once.  We'll need it again later, and this avoids
478   // re-decoding when it's compressed.
479   Klass* klass = old->klass();
480   const size_t word_sz = old->size_given_klass(klass);
481 
482   // JNI only allows pinning of typeArrays, so we only need to keep those in place.
483   if (region_attr.is_pinned() && klass->is_typeArray_klass()) {
484     return handle_evacuation_failure_par(old, old_mark, word_sz, true /* cause_pinned */);
485   }
486 
487   uint age = 0;
488   G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age);
489   G1HeapRegion* const from_region = _g1h->heap_region_containing(old);
490   uint node_index = from_region->node_index();
491 
492   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index);
493 
494   // PLAB allocations should succeed most of the time, so we'll
495   // normally check against null once and that's it.
496   if (obj_ptr == nullptr) {
497     obj_ptr = allocate_copy_slow(&dest_attr, old, word_sz, age, node_index);
498     if (obj_ptr == nullptr) {
499       // This will either forward-to-self, or detect that someone else has
500       // installed a forwarding pointer.
501       return handle_evacuation_failure_par(old, old_mark, word_sz, false /* cause_pinned */);
502     }
503   }
504 
505   assert(obj_ptr != nullptr, "when we get here, allocation should have succeeded");
506   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
507 
508   // Should this evacuation fail?
509   if (inject_allocation_failure(from_region->hrm_index())) {
510     // Doing this after all the allocation attempts also tests the
511     // undo_allocation() method too.
512     undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
513     return handle_evacuation_failure_par(old, old_mark, word_sz, false /* cause_pinned */);
514   }
515 
516   // We're going to allocate linearly, so might as well prefetch ahead.
517   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
518   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz);
519 
520   const oop obj = cast_to_oop(obj_ptr);
521   // Because the forwarding is done with memory_order_relaxed there is no
522   // ordering with the above copy.  Clients that get the forwardee must not
523   // examine its contents without other synchronization, since the contents
524   // may not be up to date for them.
525   const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed);
526   if (forward_ptr == nullptr) {
527 
528     {
529       const uint young_index = from_region->young_index_in_cset();
530       assert((from_region->is_young() && young_index >  0) ||
531              (!from_region->is_young() && young_index == 0), "invariant" );
532       _surviving_young_words[young_index] += word_sz;
533     }
534 
535     if (dest_attr.is_young()) {
536       if (age < markWord::max_age) {
537         age++;
538         obj->incr_age();
539       }
540       _age_table.add(age, word_sz);
541     } else {
542       update_bot_after_copying(obj, word_sz);
543     }
544 
545     // Most objects are not arrays, so do one array check rather than
546     // checking for each array category for each object.
547     // CMH: Valhalla flat arrays can split this work up, but for now, doesn't
548     if (klass->is_array_klass() && !klass->is_flatArray_klass()) {
549       if (klass->is_objArray_klass()) {
550         start_partial_objarray(dest_attr, old, obj);
551       } else {
552         // Nothing needs to be done for typeArrays.  Body doesn't contain
553         // any oops to scan, and the type in the klass will already be handled
554         // by processing the built-in module.
555         assert(klass->is_typeArray_klass(), "invariant");
556       }
557       return obj;
558     }
559 
560     ContinuationGCSupport::transform_stack_chunk(obj);
561 
562     // Check for deduplicating young Strings.
563     if (G1StringDedup::is_candidate_from_evacuation(klass,
564                                                     region_attr,
565                                                     dest_attr,
566                                                     age)) {
567       // Record old; request adds a new weak reference, which reference
568       // processing expects to refer to a from-space object.
569       _string_dedup_requests.add(old);
570     }
571 
572     // Skip the card enqueue iff the object (obj) is in survivor region.
573     // However, G1HeapRegion::is_survivor() is too expensive here.
574     // Instead, we use dest_attr.is_young() because the two values are always
575     // equal: successfully allocated young regions must be survivor regions.
576     assert(dest_attr.is_young() == _g1h->heap_region_containing(obj)->is_survivor(), "must be");
577     G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young());
578     obj->oop_iterate_backwards(&_scanner, klass);
579     return obj;
580   } else {
581     _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
582     return forward_ptr;
583   }
584 }
585 
586 // Public not-inline entry point.
587 ATTRIBUTE_FLATTEN
588 oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr region_attr,
589                                                  oop old,
590                                                  markWord old_mark) {
591   return do_copy_to_survivor_space(region_attr, old, old_mark);
592 }
593 
594 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
595   assert(worker_id < _num_workers, "out of bounds access");
596   if (_states[worker_id] == nullptr) {
597     _states[worker_id] =
598       new G1ParScanThreadState(_g1h, rdcqs(),
599                                _preserved_marks_set.get(worker_id),
600                                worker_id,
601                                _num_workers,
602                                _collection_set,
603                                _evac_failure_regions,
604                                &_partial_array_state_allocator);
605   }
606   return _states[worker_id];
607 }
608 
609 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
610   assert(_flushed, "thread local state from the per thread states should have been flushed");
611   return _surviving_young_words_total;
612 }
613 
614 void G1ParScanThreadStateSet::flush_stats() {
615   assert(!_flushed, "thread local state from the per thread states should be flushed once");
616   for (uint worker_id = 0; worker_id < _num_workers; ++worker_id) {
617     G1ParScanThreadState* pss = _states[worker_id];
618     assert(pss != nullptr, "must be initialized");
619 
620     G1GCPhaseTimes* p = _g1h->phase_times();
621 
622     // Need to get the following two before the call to G1ParThreadScanState::flush()
623     // because it resets the PLAB allocator where we get this info from.
624     size_t lab_waste_bytes = pss->lab_waste_words() * HeapWordSize;
625     size_t lab_undo_waste_bytes = pss->lab_undo_waste_words() * HeapWordSize;
626     size_t copied_bytes = pss->flush_stats(_surviving_young_words_total, _num_workers, &_rdc_buffers[worker_id]) * HeapWordSize;
627     size_t evac_fail_enqueued_cards = pss->evac_failure_enqueued_cards();
628 
629     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, copied_bytes, G1GCPhaseTimes::MergePSSCopiedBytes);
630     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_waste_bytes, G1GCPhaseTimes::MergePSSLABWasteBytes);
631     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_undo_waste_bytes, G1GCPhaseTimes::MergePSSLABUndoWasteBytes);
632     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, evac_fail_enqueued_cards, G1GCPhaseTimes::MergePSSEvacFailExtra);
633 
634     delete pss;
635     _states[worker_id] = nullptr;
636   }
637 
638   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
639   dcq.merge_bufferlists(rdcqs());
640   rdcqs()->verify_empty();
641 
642   _flushed = true;
643 }
644 
645 void G1ParScanThreadStateSet::record_unused_optional_region(G1HeapRegion* hr) {
646   for (uint worker_index = 0; worker_index < _num_workers; ++worker_index) {
647     G1ParScanThreadState* pss = _states[worker_index];
648     assert(pss != nullptr, "must be initialized");
649 
650     size_t used_memory = pss->oops_into_optional_region(hr)->used_memory();
651     _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory);
652   }
653 }
654 
655 NOINLINE
656 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m, size_t word_sz, bool cause_pinned) {
657   assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
658 
659   oop forward_ptr = old->forward_to_atomic(old, m, memory_order_relaxed);
660   if (forward_ptr == nullptr) {
661     // Forward-to-self succeeded. We are the "owner" of the object.
662     G1HeapRegion* r = _g1h->heap_region_containing(old);
663 
664     if (_evac_failure_regions->record(_worker_id, r->hrm_index(), cause_pinned)) {
665       G1HeapRegionPrinter::evac_failure(r);
666     }
667 
668     // Mark the failing object in the marking bitmap and later use the bitmap to handle
669     // evacuation failure recovery.
670     _g1h->mark_evac_failure_object(_worker_id, old, word_sz);
671 
672     _preserved_marks->push_if_necessary(old, m);
673 
674     ContinuationGCSupport::transform_stack_chunk(old);
675 
676     _evacuation_failed_info.register_copy_failure(word_sz);
677 
678     // For iterating objects that failed evacuation currently we can reuse the
679     // existing closure to scan evacuated objects; since we are iterating from a
680     // collection set region (i.e. never a Survivor region), we always need to
681     // gather cards for this case.
682     G1SkipCardEnqueueSetter x(&_scanner, false /* skip_card_enqueue */);
683     old->oop_iterate_backwards(&_scanner);
684 
685     return old;
686   } else {
687     // Forward-to-self failed. Either someone else managed to allocate
688     // space for this object (old != forward_ptr) or they beat us in
689     // self-forwarding it (old == forward_ptr).
690     assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
691            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
692            "should not be in the CSet",
693            p2i(old), p2i(forward_ptr));
694     return forward_ptr;
695   }
696 }
697 
698 void G1ParScanThreadState::initialize_numa_stats() {
699   if (_numa->is_enabled()) {
700     LogTarget(Info, gc, heap, numa) lt;
701 
702     if (lt.is_enabled()) {
703       uint num_nodes = _numa->num_active_nodes();
704       // Record only if there are multiple active nodes.
705       _obj_alloc_stat = NEW_C_HEAP_ARRAY(size_t, num_nodes, mtGC);
706       memset(_obj_alloc_stat, 0, sizeof(size_t) * num_nodes);
707     }
708   }
709 }
710 
711 void G1ParScanThreadState::flush_numa_stats() {
712   if (_obj_alloc_stat != nullptr) {
713     uint node_index = _numa->index_of_current_thread();
714     _numa->copy_statistics(G1NUMAStats::LocalObjProcessAtCopyToSurv, node_index, _obj_alloc_stat);
715   }
716 }
717 
718 void G1ParScanThreadState::update_numa_stats(uint node_index) {
719   if (_obj_alloc_stat != nullptr) {
720     _obj_alloc_stat[node_index]++;
721   }
722 }
723 
724 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h,
725                                                  uint num_workers,
726                                                  G1CollectionSet* collection_set,
727                                                  G1EvacFailureRegions* evac_failure_regions) :
728     _g1h(g1h),
729     _collection_set(collection_set),
730     _rdcqs(G1BarrierSet::dirty_card_queue_set().allocator()),
731     _preserved_marks_set(true /* in_c_heap */),
732     _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, num_workers, mtGC)),
733     _rdc_buffers(NEW_C_HEAP_ARRAY(BufferNodeList, num_workers, mtGC)),
734     _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, collection_set->young_region_length() + 1, mtGC)),
735     _num_workers(num_workers),
736     _flushed(false),
737     _evac_failure_regions(evac_failure_regions),
738     _partial_array_state_allocator(num_workers)
739 {
740   _preserved_marks_set.init(num_workers);
741   for (uint i = 0; i < num_workers; ++i) {
742     _states[i] = nullptr;
743     _rdc_buffers[i] = BufferNodeList();
744   }
745   memset(_surviving_young_words_total, 0, (collection_set->young_region_length() + 1) * sizeof(size_t));
746 }
747 
748 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() {
749   assert(_flushed, "thread local state from the per thread states should have been flushed");
750   FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states);
751   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total);
752   FREE_C_HEAP_ARRAY(BufferNodeList, _rdc_buffers);
753   _preserved_marks_set.reclaim();
754 }