1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/classLoaderDataGraph.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/oopMap.hpp"
  33 #include "gc/parallel/objectStartArray.inline.hpp"
  34 #include "gc/parallel/parallelArguments.hpp"
  35 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  36 #include "gc/parallel/parMarkBitMap.inline.hpp"
  37 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  38 #include "gc/parallel/psCompactionManager.inline.hpp"
  39 #include "gc/parallel/psOldGen.hpp"
  40 #include "gc/parallel/psParallelCompact.inline.hpp"
  41 #include "gc/parallel/psPromotionManager.inline.hpp"
  42 #include "gc/parallel/psRootType.hpp"
  43 #include "gc/parallel/psScavenge.hpp"
  44 #include "gc/parallel/psStringDedup.hpp"
  45 #include "gc/parallel/psYoungGen.hpp"
  46 #include "gc/shared/classUnloadingContext.hpp"
  47 #include "gc/shared/fullGCForwarding.inline.hpp"
  48 #include "gc/shared/gcCause.hpp"
  49 #include "gc/shared/gcHeapSummary.hpp"
  50 #include "gc/shared/gcId.hpp"
  51 #include "gc/shared/gcLocker.hpp"
  52 #include "gc/shared/gcTimer.hpp"
  53 #include "gc/shared/gcTrace.hpp"
  54 #include "gc/shared/gcTraceTime.inline.hpp"
  55 #include "gc/shared/gcVMOperations.hpp"
  56 #include "gc/shared/isGCActiveMark.hpp"
  57 #include "gc/shared/oopStorage.inline.hpp"
  58 #include "gc/shared/oopStorageSet.inline.hpp"
  59 #include "gc/shared/oopStorageSetParState.inline.hpp"
  60 #include "gc/shared/parallelCleaning.hpp"
  61 #include "gc/shared/preservedMarks.inline.hpp"
  62 #include "gc/shared/referencePolicy.hpp"
  63 #include "gc/shared/referenceProcessor.hpp"
  64 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  65 #include "gc/shared/spaceDecorator.hpp"
  66 #include "gc/shared/taskTerminator.hpp"
  67 #include "gc/shared/weakProcessor.inline.hpp"
  68 #include "gc/shared/workerPolicy.hpp"
  69 #include "gc/shared/workerThread.hpp"
  70 #include "gc/shared/workerUtils.hpp"
  71 #include "logging/log.hpp"
  72 #include "memory/iterator.inline.hpp"
  73 #include "memory/memoryReserver.hpp"
  74 #include "memory/metaspaceUtils.hpp"
  75 #include "memory/resourceArea.hpp"
  76 #include "memory/universe.hpp"
  77 #include "nmt/memTracker.hpp"
  78 #include "oops/access.inline.hpp"
  79 #include "oops/instanceClassLoaderKlass.inline.hpp"
  80 #include "oops/instanceKlass.inline.hpp"
  81 #include "oops/instanceMirrorKlass.inline.hpp"
  82 #include "oops/methodData.hpp"
  83 #include "oops/objArrayKlass.inline.hpp"
  84 #include "oops/oop.inline.hpp"
  85 #include "runtime/atomicAccess.hpp"
  86 #include "runtime/handles.inline.hpp"
  87 #include "runtime/java.hpp"
  88 #include "runtime/safepoint.hpp"
  89 #include "runtime/threads.hpp"
  90 #include "runtime/vmThread.hpp"
  91 #include "services/memoryService.hpp"
  92 #include "utilities/align.hpp"
  93 #include "utilities/debug.hpp"
  94 #include "utilities/events.hpp"
  95 #include "utilities/formatBuffer.hpp"
  96 #include "utilities/macros.hpp"
  97 #include "utilities/stack.inline.hpp"
  98 #if INCLUDE_JVMCI
  99 #include "jvmci/jvmci.hpp"
 100 #endif
 101 
 102 #include <math.h>
 103 
 104 // All sizes are in HeapWords.
 105 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
 106 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
 107 static_assert(ParallelCompactData::RegionSize >= BitsPerWord, "region-start bit word-aligned");
 108 const size_t ParallelCompactData::RegionSizeBytes =
 109   RegionSize << LogHeapWordSize;
 110 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
 111 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
 112 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
 113 
 114 const ParallelCompactData::RegionData::region_sz_t
 115 ParallelCompactData::RegionData::dc_shift = 27;
 116 
 117 const ParallelCompactData::RegionData::region_sz_t
 118 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
 119 
 120 const ParallelCompactData::RegionData::region_sz_t
 121 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
 122 
 123 const ParallelCompactData::RegionData::region_sz_t
 124 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 125 
 126 const ParallelCompactData::RegionData::region_sz_t
 127 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 128 
 129 const ParallelCompactData::RegionData::region_sz_t
 130 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 131 
 132 bool ParallelCompactData::RegionData::is_clear() {
 133   return (_destination == nullptr) &&
 134          (_source_region == 0) &&
 135          (_partial_obj_addr == nullptr) &&
 136          (_partial_obj_size == 0) &&
 137          (_dc_and_los == 0) &&
 138          (_shadow_state == 0);
 139 }
 140 
 141 #ifdef ASSERT
 142 void ParallelCompactData::RegionData::verify_clear() {
 143   assert(_destination == nullptr, "inv");
 144   assert(_source_region == 0, "inv");
 145   assert(_partial_obj_addr == nullptr, "inv");
 146   assert(_partial_obj_size == 0, "inv");
 147   assert(_dc_and_los == 0, "inv");
 148   assert(_shadow_state == 0, "inv");
 149 }
 150 #endif
 151 
 152 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 153 
 154 SpanSubjectToDiscoveryClosure PSParallelCompact::_span_based_discoverer;
 155 ReferenceProcessor* PSParallelCompact::_ref_processor = nullptr;
 156 
 157 void SplitInfo::record(size_t split_region_idx, HeapWord* split_point, size_t preceding_live_words) {
 158   assert(split_region_idx != 0, "precondition");
 159 
 160   // Obj denoted by split_point will be deferred to the next space.
 161   assert(split_point != nullptr, "precondition");
 162 
 163   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 164 
 165   PSParallelCompact::RegionData* split_region_ptr = sd.region(split_region_idx);
 166   assert(preceding_live_words < split_region_ptr->data_size(), "inv");
 167 
 168   HeapWord* preceding_destination = split_region_ptr->destination();
 169   assert(preceding_destination != nullptr, "inv");
 170 
 171   // How many regions does the preceding part occupy
 172   uint preceding_destination_count;
 173   if (preceding_live_words == 0) {
 174     preceding_destination_count = 0;
 175   } else {
 176     // -1 so that the ending address doesn't fall on the region-boundary
 177     if (sd.region_align_down(preceding_destination) ==
 178         sd.region_align_down(preceding_destination + preceding_live_words - 1)) {
 179       preceding_destination_count = 1;
 180     } else {
 181       preceding_destination_count = 2;
 182     }
 183   }
 184 
 185   _split_region_idx = split_region_idx;
 186   _split_point = split_point;
 187   _preceding_live_words = preceding_live_words;
 188   _preceding_destination = preceding_destination;
 189   _preceding_destination_count = preceding_destination_count;
 190 }
 191 
 192 void SplitInfo::clear()
 193 {
 194   _split_region_idx = 0;
 195   _split_point = nullptr;
 196   _preceding_live_words = 0;
 197   _preceding_destination = nullptr;
 198   _preceding_destination_count = 0;
 199   assert(!is_valid(), "sanity");
 200 }
 201 
 202 #ifdef  ASSERT
 203 void SplitInfo::verify_clear()
 204 {
 205   assert(_split_region_idx == 0, "not clear");
 206   assert(_split_point == nullptr, "not clear");
 207   assert(_preceding_live_words == 0, "not clear");
 208   assert(_preceding_destination == nullptr, "not clear");
 209   assert(_preceding_destination_count == 0, "not clear");
 210 }
 211 #endif  // #ifdef ASSERT
 212 
 213 
 214 void PSParallelCompact::print_on(outputStream* st) {
 215   _mark_bitmap.print_on(st);
 216 }
 217 
 218 ParallelCompactData::ParallelCompactData() :
 219   _heap_start(nullptr),
 220   DEBUG_ONLY(_heap_end(nullptr) COMMA)
 221   _region_vspace(nullptr),
 222   _reserved_byte_size(0),
 223   _region_data(nullptr),
 224   _region_count(0) {}
 225 
 226 bool ParallelCompactData::initialize(MemRegion reserved_heap)
 227 {
 228   _heap_start = reserved_heap.start();
 229   const size_t heap_size = reserved_heap.word_size();
 230   DEBUG_ONLY(_heap_end = _heap_start + heap_size;)
 231 
 232   assert(region_align_down(_heap_start) == _heap_start,
 233          "region start not aligned");
 234 
 235   return initialize_region_data(heap_size);
 236 }
 237 
 238 PSVirtualSpace*
 239 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 240 {
 241   const size_t raw_bytes = count * element_size;
 242   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 243   const size_t granularity = os::vm_allocation_granularity();
 244   const size_t rs_align = MAX2(page_sz, granularity);
 245 
 246   _reserved_byte_size = align_up(raw_bytes, rs_align);
 247 
 248   ReservedSpace rs = MemoryReserver::reserve(_reserved_byte_size,
 249                                              rs_align,
 250                                              page_sz,
 251                                              mtGC);
 252 
 253   if (!rs.is_reserved()) {
 254     // Failed to reserve memory.
 255     return nullptr;
 256   }
 257 
 258   os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, rs.base(),
 259                        rs.size(), page_sz);
 260 
 261   MemTracker::record_virtual_memory_tag(rs, mtGC);
 262 
 263   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 264 
 265   if (!vspace->expand_by(_reserved_byte_size)) {
 266     // Failed to commit memory.
 267 
 268     delete vspace;
 269 
 270     // Release memory reserved in the space.
 271     MemoryReserver::release(rs);
 272 
 273     return nullptr;
 274   }
 275 
 276   return vspace;
 277 }
 278 
 279 bool ParallelCompactData::initialize_region_data(size_t heap_size)
 280 {
 281   assert(is_aligned(heap_size, RegionSize), "precondition");
 282 
 283   const size_t count = heap_size >> Log2RegionSize;
 284   _region_vspace = create_vspace(count, sizeof(RegionData));
 285   if (_region_vspace != nullptr) {
 286     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 287     _region_count = count;
 288     return true;
 289   }
 290   return false;
 291 }
 292 
 293 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 294   assert(beg_region <= _region_count, "beg_region out of range");
 295   assert(end_region <= _region_count, "end_region out of range");
 296 
 297   const size_t region_cnt = end_region - beg_region;
 298   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 299 }
 300 
 301 // The total live words on src_region would overflow the target space, so find
 302 // the overflowing object and record the split point. The invariant is that an
 303 // obj should not cross space boundary.
 304 HeapWord* ParallelCompactData::summarize_split_space(size_t src_region,
 305                                                      SplitInfo& split_info,
 306                                                      HeapWord* const destination,
 307                                                      HeapWord* const target_end,
 308                                                      HeapWord** target_next) {
 309   assert(destination <= target_end, "sanity");
 310   assert(destination + _region_data[src_region].data_size() > target_end,
 311     "region should not fit into target space");
 312   assert(is_region_aligned(target_end), "sanity");
 313 
 314   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 315 
 316   if (destination + partial_obj_size > target_end) {
 317     assert(partial_obj_size > 0, "inv");
 318     // The overflowing obj is from a previous region.
 319     //
 320     // source-regions:
 321     //
 322     // ***************
 323     // |     A|AA    |
 324     // ***************
 325     //       ^
 326     //       | split-point
 327     //
 328     // dest-region:
 329     //
 330     // ********
 331     // |~~~~A |
 332     // ********
 333     //       ^^
 334     //       || target-space-end
 335     //       |
 336     //       | destination
 337     //
 338     // AAA would overflow target-space.
 339     //
 340     HeapWord* overflowing_obj = _region_data[src_region].partial_obj_addr();
 341     size_t split_region = addr_to_region_idx(overflowing_obj);
 342 
 343     // The number of live words before the overflowing object on this split region
 344     size_t preceding_live_words;
 345     if (is_region_aligned(overflowing_obj)) {
 346       preceding_live_words = 0;
 347     } else {
 348       // Words accounted by the overflowing object on the split region
 349       size_t overflowing_size = pointer_delta(region_align_up(overflowing_obj), overflowing_obj);
 350       preceding_live_words = region(split_region)->data_size() - overflowing_size;
 351     }
 352 
 353     split_info.record(split_region, overflowing_obj, preceding_live_words);
 354 
 355     // The [overflowing_obj, src_region_start) part has been accounted for, so
 356     // must move back the new_top, now that this overflowing obj is deferred.
 357     HeapWord* new_top = destination - pointer_delta(region_to_addr(src_region), overflowing_obj);
 358 
 359     // If the overflowing obj was relocated to its original destination,
 360     // those destination regions would have their source_region set. Now that
 361     // this overflowing obj is relocated somewhere else, reset the
 362     // source_region.
 363     {
 364       size_t range_start = addr_to_region_idx(region_align_up(new_top));
 365       size_t range_end = addr_to_region_idx(region_align_up(destination));
 366       for (size_t i = range_start; i < range_end; ++i) {
 367         region(i)->set_source_region(0);
 368       }
 369     }
 370 
 371     // Update new top of target space
 372     *target_next = new_top;
 373 
 374     return overflowing_obj;
 375   }
 376 
 377   // Obj-iteration to locate the overflowing obj
 378   HeapWord* region_start = region_to_addr(src_region);
 379   HeapWord* region_end = region_start + RegionSize;
 380   HeapWord* cur_addr = region_start + partial_obj_size;
 381   size_t live_words = partial_obj_size;
 382 
 383   while (true) {
 384     assert(cur_addr < region_end, "inv");
 385     cur_addr = PSParallelCompact::mark_bitmap()->find_obj_beg(cur_addr, region_end);
 386     // There must be an overflowing obj in this region
 387     assert(cur_addr < region_end, "inv");
 388 
 389     oop obj = cast_to_oop(cur_addr);
 390     size_t obj_size = obj->size();
 391     if (destination + live_words + obj_size > target_end) {
 392       // Found the overflowing obj
 393       split_info.record(src_region, cur_addr, live_words);
 394       *target_next = destination + live_words;
 395       return cur_addr;
 396     }
 397 
 398     live_words += obj_size;
 399     cur_addr += obj_size;
 400   }
 401 }
 402 
 403 size_t ParallelCompactData::live_words_in_space(const MutableSpace* space,
 404                                                 HeapWord** full_region_prefix_end) {
 405   size_t cur_region = addr_to_region_idx(space->bottom());
 406   const size_t end_region = addr_to_region_idx(region_align_up(space->top()));
 407   size_t live_words = 0;
 408   if (full_region_prefix_end == nullptr) {
 409     for (/* empty */; cur_region < end_region; ++cur_region) {
 410       live_words += _region_data[cur_region].data_size();
 411     }
 412   } else {
 413     bool first_set = false;
 414     for (/* empty */; cur_region < end_region; ++cur_region) {
 415       size_t live_words_in_region = _region_data[cur_region].data_size();
 416       if (!first_set && live_words_in_region < RegionSize) {
 417         *full_region_prefix_end = region_to_addr(cur_region);
 418         first_set = true;
 419       }
 420       live_words += live_words_in_region;
 421     }
 422     if (!first_set) {
 423       // All regions are full of live objs.
 424       assert(is_region_aligned(space->top()), "inv");
 425       *full_region_prefix_end = space->top();
 426     }
 427     assert(*full_region_prefix_end != nullptr, "postcondition");
 428     assert(is_region_aligned(*full_region_prefix_end), "inv");
 429     assert(*full_region_prefix_end >= space->bottom(), "in-range");
 430     assert(*full_region_prefix_end <= space->top(), "in-range");
 431   }
 432   return live_words;
 433 }
 434 
 435 bool ParallelCompactData::summarize(SplitInfo& split_info,
 436                                     HeapWord* source_beg, HeapWord* source_end,
 437                                     HeapWord** source_next,
 438                                     HeapWord* target_beg, HeapWord* target_end,
 439                                     HeapWord** target_next)
 440 {
 441   HeapWord* const source_next_val = source_next == nullptr ? nullptr : *source_next;
 442   log_develop_trace(gc, compaction)(
 443       "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 444       "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 445       p2i(source_beg), p2i(source_end), p2i(source_next_val),
 446       p2i(target_beg), p2i(target_end), p2i(*target_next));
 447 
 448   size_t cur_region = addr_to_region_idx(source_beg);
 449   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 450 
 451   HeapWord *dest_addr = target_beg;
 452   for (/* empty */; cur_region < end_region; cur_region++) {
 453     size_t words = _region_data[cur_region].data_size();
 454 
 455     // Skip empty ones
 456     if (words == 0) {
 457       continue;
 458     }
 459 
 460     if (split_info.is_split(cur_region)) {
 461       assert(words > split_info.preceding_live_words(), "inv");
 462       words -= split_info.preceding_live_words();
 463     }
 464 
 465     _region_data[cur_region].set_destination(dest_addr);
 466 
 467     // If cur_region does not fit entirely into the target space, find a point
 468     // at which the source space can be 'split' so that part is copied to the
 469     // target space and the rest is copied elsewhere.
 470     if (dest_addr + words > target_end) {
 471       assert(source_next != nullptr, "source_next is null when splitting");
 472       *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 473                                            target_end, target_next);
 474       return false;
 475     }
 476 
 477     uint destination_count = split_info.is_split(cur_region)
 478                              ? split_info.preceding_destination_count()
 479                              : 0;
 480 
 481     HeapWord* const last_addr = dest_addr + words - 1;
 482     const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 483     const size_t dest_region_2 = addr_to_region_idx(last_addr);
 484 
 485     // Initially assume that the destination regions will be the same and
 486     // adjust the value below if necessary.  Under this assumption, if
 487     // cur_region == dest_region_2, then cur_region will be compacted
 488     // completely into itself.
 489     destination_count += cur_region == dest_region_2 ? 0 : 1;
 490     if (dest_region_1 != dest_region_2) {
 491       // Destination regions differ; adjust destination_count.
 492       destination_count += 1;
 493       // Data from cur_region will be copied to the start of dest_region_2.
 494       _region_data[dest_region_2].set_source_region(cur_region);
 495     } else if (is_region_aligned(dest_addr)) {
 496       // Data from cur_region will be copied to the start of the destination
 497       // region.
 498       _region_data[dest_region_1].set_source_region(cur_region);
 499     }
 500 
 501     _region_data[cur_region].set_destination_count(destination_count);
 502     dest_addr += words;
 503   }
 504 
 505   *target_next = dest_addr;
 506   return true;
 507 }
 508 
 509 #ifdef ASSERT
 510 void ParallelCompactData::verify_clear() {
 511   for (uint cur_idx = 0; cur_idx < region_count(); ++cur_idx) {
 512     if (!region(cur_idx)->is_clear()) {
 513       log_warning(gc)("Uncleared Region: %u", cur_idx);
 514       region(cur_idx)->verify_clear();
 515     }
 516   }
 517 }
 518 #endif  // #ifdef ASSERT
 519 
 520 STWGCTimer          PSParallelCompact::_gc_timer;
 521 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 522 elapsedTimer        PSParallelCompact::_accumulated_time;
 523 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 524 CollectorCounters*  PSParallelCompact::_counters = nullptr;
 525 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 526 ParallelCompactData PSParallelCompact::_summary_data;
 527 
 528 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 529 
 530 class PCAdjustPointerClosure: public BasicOopIterateClosure {
 531   template <typename T>
 532   void do_oop_work(T* p) { PSParallelCompact::adjust_pointer(p); }
 533 
 534 public:
 535   virtual void do_oop(oop* p)                { do_oop_work(p); }
 536   virtual void do_oop(narrowOop* p)          { do_oop_work(p); }
 537 
 538   virtual ReferenceIterationMode reference_iteration_mode() { return DO_FIELDS; }
 539 };
 540 
 541 static PCAdjustPointerClosure pc_adjust_pointer_closure;
 542 
 543 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 544 
 545 void PSParallelCompact::post_initialize() {
 546   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 547   _span_based_discoverer.set_span(heap->reserved_region());
 548   _ref_processor =
 549     new ReferenceProcessor(&_span_based_discoverer,
 550                            ParallelGCThreads,   // mt processing degree
 551                            ParallelGCThreads,   // mt discovery degree
 552                            false,               // concurrent_discovery
 553                            &_is_alive_closure); // non-header is alive closure
 554 
 555   _counters = new CollectorCounters("Parallel full collection pauses", 1);
 556 
 557   // Initialize static fields in ParCompactionManager.
 558   ParCompactionManager::initialize(mark_bitmap());
 559 }
 560 
 561 bool PSParallelCompact::initialize_aux_data() {
 562   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 563   MemRegion mr = heap->reserved_region();
 564   assert(mr.byte_size() != 0, "heap should be reserved");
 565 
 566   initialize_space_info();
 567 
 568   if (!_mark_bitmap.initialize(mr)) {
 569     vm_shutdown_during_initialization(
 570       err_msg("Unable to allocate %zuKB bitmaps for parallel "
 571       "garbage collection for the requested %zuKB heap.",
 572       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 573     return false;
 574   }
 575 
 576   if (!_summary_data.initialize(mr)) {
 577     vm_shutdown_during_initialization(
 578       err_msg("Unable to allocate %zuKB card tables for parallel "
 579       "garbage collection for the requested %zuKB heap.",
 580       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 581     return false;
 582   }
 583 
 584   return true;
 585 }
 586 
 587 void PSParallelCompact::initialize_space_info()
 588 {
 589   memset(&_space_info, 0, sizeof(_space_info));
 590 
 591   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 592   PSYoungGen* young_gen = heap->young_gen();
 593 
 594   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 595   _space_info[eden_space_id].set_space(young_gen->eden_space());
 596   _space_info[from_space_id].set_space(young_gen->from_space());
 597   _space_info[to_space_id].set_space(young_gen->to_space());
 598 
 599   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 600 }
 601 
 602 void
 603 PSParallelCompact::clear_data_covering_space(SpaceId id)
 604 {
 605   // At this point, top is the value before GC, new_top() is the value that will
 606   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 607   // should be marked above top.  The summary data is cleared to the larger of
 608   // top & new_top.
 609   MutableSpace* const space = _space_info[id].space();
 610   HeapWord* const bot = space->bottom();
 611   HeapWord* const top = space->top();
 612   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 613 
 614   _mark_bitmap.clear_range(bot, top);
 615 
 616   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 617   const size_t end_region =
 618     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 619   _summary_data.clear_range(beg_region, end_region);
 620 
 621   // Clear the data used to 'split' regions.
 622   SplitInfo& split_info = _space_info[id].split_info();
 623   if (split_info.is_valid()) {
 624     split_info.clear();
 625   }
 626   DEBUG_ONLY(split_info.verify_clear();)
 627 }
 628 
 629 void PSParallelCompact::pre_compact()
 630 {
 631   // Update the from & to space pointers in space_info, since they are swapped
 632   // at each young gen gc.  Do the update unconditionally (even though a
 633   // promotion failure does not swap spaces) because an unknown number of young
 634   // collections will have swapped the spaces an unknown number of times.
 635   GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
 636   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 637   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 638   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 639 
 640   heap->increment_total_collections(true);
 641 
 642   CodeCache::on_gc_marking_cycle_start();
 643 
 644   heap->print_before_gc();
 645   heap->trace_heap_before_gc(&_gc_tracer);
 646 
 647   // Fill in TLABs
 648   heap->ensure_parsability(true);  // retire TLABs
 649 
 650   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 651     Universe::verify("Before GC");
 652   }
 653 
 654   DEBUG_ONLY(mark_bitmap()->verify_clear();)
 655   DEBUG_ONLY(summary_data().verify_clear();)
 656 }
 657 
 658 void PSParallelCompact::post_compact()
 659 {
 660   GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
 661   ParCompactionManager::remove_all_shadow_regions();
 662 
 663   CodeCache::on_gc_marking_cycle_finish();
 664   CodeCache::arm_all_nmethods();
 665 
 666   // Need to clear claim bits for the next full-gc (marking and adjust-pointers).
 667   ClassLoaderDataGraph::clear_claimed_marks();
 668 
 669   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
 670     // Clear the marking bitmap, summary data and split info.
 671     clear_data_covering_space(SpaceId(id));
 672     {
 673       MutableSpace* space = _space_info[id].space();
 674       HeapWord* top = space->top();
 675       HeapWord* new_top = _space_info[id].new_top();
 676       if (ZapUnusedHeapArea && new_top < top) {
 677         space->mangle_region(MemRegion(new_top, top));
 678       }
 679       // Update top().  Must be done after clearing the bitmap and summary data.
 680       space->set_top(new_top);
 681     }
 682   }
 683 
 684 #ifdef ASSERT
 685   {
 686     mark_bitmap()->verify_clear();
 687     summary_data().verify_clear();
 688   }
 689 #endif
 690 
 691   ParCompactionManager::flush_all_string_dedup_requests();
 692 
 693   MutableSpace* const eden_space = _space_info[eden_space_id].space();
 694   MutableSpace* const from_space = _space_info[from_space_id].space();
 695   MutableSpace* const to_space   = _space_info[to_space_id].space();
 696 
 697   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 698   bool eden_empty = eden_space->is_empty();
 699 
 700   // Update heap occupancy information which is used as input to the soft ref
 701   // clearing policy at the next gc.
 702   Universe::heap()->update_capacity_and_used_at_gc();
 703 
 704   bool young_gen_empty = eden_empty && from_space->is_empty() &&
 705     to_space->is_empty();
 706 
 707   PSCardTable* ct = heap->card_table();
 708   MemRegion old_mr = heap->old_gen()->committed();
 709   if (young_gen_empty) {
 710     ct->clear_MemRegion(old_mr);
 711   } else {
 712     ct->dirty_MemRegion(old_mr);
 713   }
 714 
 715   heap->prune_scavengable_nmethods();
 716 
 717 #if COMPILER2_OR_JVMCI
 718   DerivedPointerTable::update_pointers();
 719 #endif
 720 
 721   // Signal that we have completed a visit to all live objects.
 722   Universe::heap()->record_whole_heap_examined_timestamp();
 723 }
 724 
 725 HeapWord* PSParallelCompact::compute_dense_prefix_for_old_space(MutableSpace* old_space,
 726                                                                 HeapWord* full_region_prefix_end) {
 727   const size_t region_size = ParallelCompactData::RegionSize;
 728   const ParallelCompactData& sd = summary_data();
 729 
 730   // Iteration starts with the region *after* the full-region-prefix-end.
 731   const RegionData* const start_region = sd.addr_to_region_ptr(full_region_prefix_end);
 732   // If final region is not full, iteration stops before that region,
 733   // because fill_dense_prefix_end assumes that prefix_end <= top.
 734   const RegionData* const end_region = sd.addr_to_region_ptr(old_space->top());
 735   assert(start_region <= end_region, "inv");
 736 
 737   size_t max_waste = old_space->capacity_in_words() * (MarkSweepDeadRatio / 100.0);
 738   const RegionData* cur_region = start_region;
 739   for (/* empty */; cur_region < end_region; ++cur_region) {
 740     assert(region_size >= cur_region->data_size(), "inv");
 741     size_t dead_size = region_size - cur_region->data_size();
 742     if (max_waste < dead_size) {
 743       break;
 744     }
 745     max_waste -= dead_size;
 746   }
 747 
 748   HeapWord* const prefix_end = sd.region_to_addr(cur_region);
 749   assert(sd.is_region_aligned(prefix_end), "postcondition");
 750   assert(prefix_end >= full_region_prefix_end, "in-range");
 751   assert(prefix_end <= old_space->top(), "in-range");
 752   return prefix_end;
 753 }
 754 
 755 void PSParallelCompact::fill_dense_prefix_end(SpaceId id) {
 756   // Comparing two sizes to decide if filling is required:
 757   //
 758   // The size of the filler (min-obj-size) is 2 heap words with the default
 759   // MinObjAlignment, since both markword and klass take 1 heap word.
 760   // With +UseCompactObjectHeaders, the minimum filler size is only one word,
 761   // because the Klass* gets encoded in the mark-word.
 762   //
 763   // The size of the gap (if any) right before dense-prefix-end is
 764   // MinObjAlignment.
 765   //
 766   // Need to fill in the gap only if it's smaller than min-obj-size, and the
 767   // filler obj will extend to next region.
 768 
 769   if (MinObjAlignment >= checked_cast<int>(CollectedHeap::min_fill_size())) {
 770     return;
 771   }
 772 
 773   assert(!UseCompactObjectHeaders, "Compact headers can allocate small objects");
 774   assert(CollectedHeap::min_fill_size() == 2, "inv");
 775   HeapWord* const dense_prefix_end = dense_prefix(id);
 776   assert(_summary_data.is_region_aligned(dense_prefix_end), "precondition");
 777   assert(dense_prefix_end <= space(id)->top(), "precondition");
 778   if (dense_prefix_end == space(id)->top()) {
 779     // Must not have single-word gap right before prefix-end/top.
 780     return;
 781   }
 782   RegionData* const region_after_dense_prefix = _summary_data.addr_to_region_ptr(dense_prefix_end);
 783 
 784   if (region_after_dense_prefix->partial_obj_size() != 0 ||
 785       _mark_bitmap.is_marked(dense_prefix_end)) {
 786     // The region after the dense prefix starts with live bytes.
 787     return;
 788   }
 789 
 790   HeapWord* block_start = start_array(id)->block_start_reaching_into_card(dense_prefix_end);
 791   if (block_start == dense_prefix_end - 1) {
 792     assert(!_mark_bitmap.is_marked(block_start), "inv");
 793     // There is exactly one heap word gap right before the dense prefix end, so we need a filler object.
 794     // The filler object will extend into region_after_dense_prefix.
 795     const size_t obj_len = 2; // min-fill-size
 796     HeapWord* const obj_beg = dense_prefix_end - 1;
 797     CollectedHeap::fill_with_object(obj_beg, obj_len);
 798     _mark_bitmap.mark_obj(obj_beg);
 799     _summary_data.addr_to_region_ptr(obj_beg)->add_live_obj(1);
 800     region_after_dense_prefix->set_partial_obj_size(1);
 801     region_after_dense_prefix->set_partial_obj_addr(obj_beg);
 802     assert(start_array(id) != nullptr, "sanity");
 803     start_array(id)->update_for_block(obj_beg, obj_beg + obj_len);
 804   }
 805 }
 806 
 807 bool PSParallelCompact::check_maximum_compaction(bool should_do_max_compaction,
 808                                                  size_t total_live_words,
 809                                                  MutableSpace* const old_space,
 810                                                  HeapWord* full_region_prefix_end) {
 811 
 812   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 813 
 814   // Check System.GC
 815   bool is_max_on_system_gc = UseMaximumCompactionOnSystemGC
 816                           && GCCause::is_user_requested_gc(heap->gc_cause());
 817 
 818   // Check if all live objs are too much for old-gen.
 819   const bool is_old_gen_too_full = (total_live_words >= old_space->capacity_in_words());
 820 
 821   // If all regions in old-gen are full
 822   const bool is_region_full =
 823     full_region_prefix_end >= _summary_data.region_align_down(old_space->top());
 824 
 825   return should_do_max_compaction
 826       || is_max_on_system_gc
 827       || is_old_gen_too_full
 828       || is_region_full;
 829 }
 830 
 831 void PSParallelCompact::summary_phase(bool should_do_max_compaction)
 832 {
 833   GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
 834 
 835   MutableSpace* const old_space = _space_info[old_space_id].space();
 836   {
 837     size_t total_live_words = 0;
 838     HeapWord* full_region_prefix_end = nullptr;
 839     {
 840       // old-gen
 841       size_t live_words = _summary_data.live_words_in_space(old_space,
 842                                                             &full_region_prefix_end);
 843       total_live_words += live_words;
 844     }
 845     // young-gen
 846     for (uint i = eden_space_id; i < last_space_id; ++i) {
 847       const MutableSpace* space = _space_info[i].space();
 848       size_t live_words = _summary_data.live_words_in_space(space);
 849       total_live_words += live_words;
 850       _space_info[i].set_new_top(space->bottom() + live_words);
 851       _space_info[i].set_dense_prefix(space->bottom());
 852     }
 853 
 854     should_do_max_compaction = check_maximum_compaction(should_do_max_compaction,
 855                                                         total_live_words,
 856                                                         old_space,
 857                                                         full_region_prefix_end);
 858     {
 859       GCTraceTime(Info, gc, phases) tm("Summary Phase: expand", &_gc_timer);
 860       // Try to expand old-gen in order to fit all live objs and waste.
 861       size_t target_capacity_bytes = total_live_words * HeapWordSize
 862                                    + old_space->capacity_in_bytes() * (MarkSweepDeadRatio / 100);
 863       ParallelScavengeHeap::heap()->old_gen()->try_expand_till_size(target_capacity_bytes);
 864     }
 865 
 866     HeapWord* dense_prefix_end = should_do_max_compaction
 867                                  ? full_region_prefix_end
 868                                  : compute_dense_prefix_for_old_space(old_space,
 869                                                                       full_region_prefix_end);
 870     SpaceId id = old_space_id;
 871     _space_info[id].set_dense_prefix(dense_prefix_end);
 872 
 873     if (dense_prefix_end != old_space->bottom()) {
 874       fill_dense_prefix_end(id);
 875     }
 876 
 877     // Compacting objs in [dense_prefix_end, old_space->top())
 878     _summary_data.summarize(_space_info[id].split_info(),
 879                             dense_prefix_end, old_space->top(), nullptr,
 880                             dense_prefix_end, old_space->end(),
 881                             _space_info[id].new_top_addr());
 882   }
 883 
 884   // Summarize the remaining spaces in the young gen.  The initial target space
 885   // is the old gen.  If a space does not fit entirely into the target, then the
 886   // remainder is compacted into the space itself and that space becomes the new
 887   // target.
 888   SpaceId dst_space_id = old_space_id;
 889   HeapWord* dst_space_end = old_space->end();
 890   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
 891   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
 892     const MutableSpace* space = _space_info[id].space();
 893     const size_t live = pointer_delta(_space_info[id].new_top(),
 894                                       space->bottom());
 895     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
 896 
 897     if (live > 0 && live <= available) {
 898       // All the live data will fit.
 899       bool done = _summary_data.summarize(_space_info[id].split_info(),
 900                                           space->bottom(), space->top(),
 901                                           nullptr,
 902                                           *new_top_addr, dst_space_end,
 903                                           new_top_addr);
 904       assert(done, "space must fit into old gen");
 905 
 906       // Reset the new_top value for the space.
 907       _space_info[id].set_new_top(space->bottom());
 908     } else if (live > 0) {
 909       // Attempt to fit part of the source space into the target space.
 910       HeapWord* next_src_addr = nullptr;
 911       bool done = _summary_data.summarize(_space_info[id].split_info(),
 912                                           space->bottom(), space->top(),
 913                                           &next_src_addr,
 914                                           *new_top_addr, dst_space_end,
 915                                           new_top_addr);
 916       assert(!done, "space should not fit into old gen");
 917       assert(next_src_addr != nullptr, "sanity");
 918 
 919       // The source space becomes the new target, so the remainder is compacted
 920       // within the space itself.
 921       dst_space_id = SpaceId(id);
 922       dst_space_end = space->end();
 923       new_top_addr = _space_info[id].new_top_addr();
 924       done = _summary_data.summarize(_space_info[id].split_info(),
 925                                      next_src_addr, space->top(),
 926                                      nullptr,
 927                                      space->bottom(), dst_space_end,
 928                                      new_top_addr);
 929       assert(done, "space must fit when compacted into itself");
 930       assert(*new_top_addr <= space->top(), "usage should not grow");
 931     }
 932   }
 933 }
 934 
 935 bool PSParallelCompact::invoke(bool clear_all_soft_refs, bool should_do_max_compaction) {
 936   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 937   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
 938          "should be in vm thread");
 939   assert(ref_processor() != nullptr, "Sanity");
 940 
 941   SvcGCMarker sgcm(SvcGCMarker::FULL);
 942   IsSTWGCActiveMark mark;
 943 
 944   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 945 
 946   GCIdMark gc_id_mark;
 947   _gc_timer.register_gc_start();
 948   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
 949 
 950   GCCause::Cause gc_cause = heap->gc_cause();
 951   PSOldGen* old_gen = heap->old_gen();
 952   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 953 
 954   // Make sure data structures are sane, make the heap parsable, and do other
 955   // miscellaneous bookkeeping.
 956   pre_compact();
 957 
 958   const PreGenGCValues pre_gc_values = heap->get_pre_gc_values();
 959 
 960   {
 961     const uint active_workers =
 962       WorkerPolicy::calc_active_workers(ParallelScavengeHeap::heap()->workers().max_workers(),
 963                                         ParallelScavengeHeap::heap()->workers().active_workers(),
 964                                         Threads::number_of_non_daemon_threads());
 965     ParallelScavengeHeap::heap()->workers().set_active_workers(active_workers);
 966 
 967     GCTraceCPUTime tcpu(&_gc_tracer);
 968     GCTraceTime(Info, gc) tm("Pause Full", nullptr, gc_cause, true);
 969 
 970     heap->pre_full_gc_dump(&_gc_timer);
 971 
 972     TraceCollectorStats tcs(counters());
 973     TraceMemoryManagerStats tms(heap->old_gc_manager(), gc_cause, "end of major GC");
 974 
 975     if (log_is_enabled(Debug, gc, heap, exit)) {
 976       accumulated_time()->start();
 977     }
 978 
 979     // Let the size policy know we're starting
 980     size_policy->major_collection_begin();
 981 
 982 #if COMPILER2_OR_JVMCI
 983     DerivedPointerTable::clear();
 984 #endif
 985 
 986     ref_processor()->start_discovery(clear_all_soft_refs);
 987 
 988     marking_phase(&_gc_tracer);
 989 
 990     summary_phase(should_do_max_compaction);
 991 
 992 #if COMPILER2_OR_JVMCI
 993     assert(DerivedPointerTable::is_active(), "Sanity");
 994     DerivedPointerTable::set_active(false);
 995 #endif
 996 
 997     forward_to_new_addr();
 998 
 999     adjust_pointers();
1000 
1001     compact();
1002 
1003     ParCompactionManager::_preserved_marks_set->restore(&ParallelScavengeHeap::heap()->workers());
1004 
1005     ParCompactionManager::verify_all_region_stack_empty();
1006 
1007     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1008     // done before resizing.
1009     post_compact();
1010 
1011     size_policy->major_collection_end();
1012 
1013     size_policy->sample_old_gen_used_bytes(MAX2(pre_gc_values.old_gen_used(), old_gen->used_in_bytes()));
1014 
1015     if (UseAdaptiveSizePolicy) {
1016       heap->resize_after_full_gc();
1017     }
1018 
1019     heap->resize_all_tlabs();
1020 
1021     // Resize the metaspace capacity after a collection
1022     MetaspaceGC::compute_new_size();
1023 
1024     if (log_is_enabled(Debug, gc, heap, exit)) {
1025       accumulated_time()->stop();
1026     }
1027 
1028     heap->print_heap_change(pre_gc_values);
1029 
1030     // Track memory usage and detect low memory
1031     MemoryService::track_memory_usage();
1032     heap->update_counters();
1033 
1034     heap->post_full_gc_dump(&_gc_timer);
1035 
1036     size_policy->record_gc_pause_end_instant();
1037   }
1038 
1039   heap->gc_epilogue(true);
1040 
1041   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1042     Universe::verify("After GC");
1043   }
1044 
1045   heap->print_after_gc();
1046   heap->trace_heap_after_gc(&_gc_tracer);
1047 
1048   _gc_timer.register_gc_end();
1049 
1050   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1051   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1052 
1053   return true;
1054 }
1055 
1056 class PCAddThreadRootsMarkingTaskClosure : public ThreadClosure {
1057   ParCompactionManager* _cm;
1058 
1059 public:
1060   PCAddThreadRootsMarkingTaskClosure(ParCompactionManager* cm) : _cm(cm) { }
1061   void do_thread(Thread* thread) {
1062     ResourceMark rm;
1063 
1064     MarkingNMethodClosure mark_and_push_in_blobs(&_cm->_mark_and_push_closure);
1065 
1066     thread->oops_do(&_cm->_mark_and_push_closure, &mark_and_push_in_blobs);
1067 
1068     // Do the real work
1069     _cm->follow_marking_stacks();
1070   }
1071 };
1072 
1073 void steal_marking_work(TaskTerminator& terminator, uint worker_id) {
1074   assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc");
1075 
1076   ParCompactionManager* cm =
1077     ParCompactionManager::gc_thread_compaction_manager(worker_id);
1078 
1079   do {
1080     ScannerTask task;
1081     if (ParCompactionManager::steal(worker_id, task)) {
1082       cm->follow_contents(task, true);
1083     }
1084     cm->follow_marking_stacks();
1085   } while (!terminator.offer_termination());
1086 }
1087 
1088 class MarkFromRootsTask : public WorkerTask {
1089   NMethodMarkingScope _nmethod_marking_scope;
1090   ThreadsClaimTokenScope _threads_claim_token_scope;
1091   OopStorageSetStrongParState<false /* concurrent */, false /* is_const */> _oop_storage_set_par_state;
1092   TaskTerminator _terminator;
1093   uint _active_workers;
1094 
1095 public:
1096   MarkFromRootsTask(uint active_workers) :
1097       WorkerTask("MarkFromRootsTask"),
1098       _nmethod_marking_scope(),
1099       _threads_claim_token_scope(),
1100       _terminator(active_workers, ParCompactionManager::marking_stacks()),
1101       _active_workers(active_workers) {}
1102 
1103   virtual void work(uint worker_id) {
1104     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
1105     cm->create_marking_stats_cache();
1106     {
1107       CLDToOopClosure cld_closure(&cm->_mark_and_push_closure, ClassLoaderData::_claim_stw_fullgc_mark);
1108       ClassLoaderDataGraph::always_strong_cld_do(&cld_closure);
1109 
1110       // Do the real work
1111       cm->follow_marking_stacks();
1112     }
1113 
1114     {
1115       PCAddThreadRootsMarkingTaskClosure closure(cm);
1116       Threads::possibly_parallel_threads_do(_active_workers > 1 /* is_par */, &closure);
1117     }
1118 
1119     // Mark from OopStorages
1120     {
1121       _oop_storage_set_par_state.oops_do(&cm->_mark_and_push_closure);
1122       // Do the real work
1123       cm->follow_marking_stacks();
1124     }
1125 
1126     if (_active_workers > 1) {
1127       steal_marking_work(_terminator, worker_id);
1128     }
1129   }
1130 };
1131 
1132 class ParallelCompactRefProcProxyTask : public RefProcProxyTask {
1133   TaskTerminator _terminator;
1134 
1135 public:
1136   ParallelCompactRefProcProxyTask(uint max_workers)
1137     : RefProcProxyTask("ParallelCompactRefProcProxyTask", max_workers),
1138       _terminator(_max_workers, ParCompactionManager::marking_stacks()) {}
1139 
1140   void work(uint worker_id) override {
1141     assert(worker_id < _max_workers, "sanity");
1142     ParCompactionManager* cm = (_tm == RefProcThreadModel::Single) ? ParCompactionManager::get_vmthread_cm() : ParCompactionManager::gc_thread_compaction_manager(worker_id);
1143     BarrierEnqueueDiscoveredFieldClosure enqueue;
1144     ParCompactionManager::FollowStackClosure complete_gc(cm, (_tm == RefProcThreadModel::Single) ? nullptr : &_terminator, worker_id);
1145     _rp_task->rp_work(worker_id, PSParallelCompact::is_alive_closure(), &cm->_mark_and_push_closure, &enqueue, &complete_gc);
1146   }
1147 
1148   void prepare_run_task_hook() override {
1149     _terminator.reset_for_reuse(_queue_count);
1150   }
1151 };
1152 
1153 static void flush_marking_stats_cache(const uint num_workers) {
1154   for (uint i = 0; i < num_workers; ++i) {
1155     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(i);
1156     cm->flush_and_destroy_marking_stats_cache();
1157   }
1158 }
1159 
1160 class PSParallelCleaningTask : public WorkerTask {
1161   bool                    _unloading_occurred;
1162   CodeCacheUnloadingTask  _code_cache_task;
1163   // Prune dead klasses from subklass/sibling/implementor lists.
1164   KlassCleaningTask       _klass_cleaning_task;
1165 
1166 public:
1167   PSParallelCleaningTask(bool unloading_occurred) :
1168     WorkerTask("PS Parallel Cleaning"),
1169     _unloading_occurred(unloading_occurred),
1170     _code_cache_task(unloading_occurred),
1171     _klass_cleaning_task() {}
1172 
1173   void work(uint worker_id) {
1174 #if INCLUDE_JVMCI
1175     if (EnableJVMCI && worker_id == 0) {
1176       // Serial work; only first worker.
1177       // Clean JVMCI metadata handles.
1178       JVMCI::do_unloading(_unloading_occurred);
1179     }
1180 #endif
1181 
1182     // Do first pass of code cache cleaning.
1183     _code_cache_task.work(worker_id);
1184 
1185     // Clean all klasses that were not unloaded.
1186     // The weak metadata in klass doesn't need to be
1187     // processed if there was no unloading.
1188     if (_unloading_occurred) {
1189       _klass_cleaning_task.work();
1190     }
1191   }
1192 };
1193 
1194 void PSParallelCompact::marking_phase(ParallelOldTracer *gc_tracer) {
1195   // Recursively traverse all live objects and mark them
1196   GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
1197 
1198   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
1199 
1200   ClassLoaderDataGraph::verify_claimed_marks_cleared(ClassLoaderData::_claim_stw_fullgc_mark);
1201   {
1202     GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
1203 
1204     MarkFromRootsTask task(active_gc_threads);
1205     ParallelScavengeHeap::heap()->workers().run_task(&task);
1206   }
1207 
1208   // Process reference objects found during marking
1209   {
1210     GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
1211 
1212     ReferenceProcessorStats stats;
1213     ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->max_num_queues());
1214 
1215     ParallelCompactRefProcProxyTask task(ref_processor()->max_num_queues());
1216     stats = ref_processor()->process_discovered_references(task, &ParallelScavengeHeap::heap()->workers(), pt);
1217 
1218     gc_tracer->report_gc_reference_stats(stats);
1219     pt.print_all_references();
1220   }
1221 
1222   {
1223     GCTraceTime(Debug, gc, phases) tm("Flush Marking Stats", &_gc_timer);
1224 
1225     flush_marking_stats_cache(active_gc_threads);
1226   }
1227 
1228   // This is the point where the entire marking should have completed.
1229   ParCompactionManager::verify_all_marking_stack_empty();
1230 
1231   {
1232     GCTraceTime(Debug, gc, phases) tm("Weak Processing", &_gc_timer);
1233     WeakProcessor::weak_oops_do(&ParallelScavengeHeap::heap()->workers(),
1234                                 is_alive_closure(),
1235                                 &do_nothing_cl,
1236                                 1);
1237   }
1238 
1239   {
1240     GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
1241 
1242     ClassUnloadingContext ctx(active_gc_threads /* num_nmethod_unlink_workers */,
1243                               false /* unregister_nmethods_during_purge */,
1244                               false /* lock_nmethod_free_separately */);
1245 
1246     {
1247       CodeCache::UnlinkingScope scope(is_alive_closure());
1248 
1249       // Follow system dictionary roots and unload classes.
1250       bool unloading_occurred = SystemDictionary::do_unloading(&_gc_timer);
1251 
1252       PSParallelCleaningTask task{unloading_occurred};
1253       ParallelScavengeHeap::heap()->workers().run_task(&task);
1254     }
1255 
1256     {
1257       GCTraceTime(Debug, gc, phases) t("Purge Unlinked NMethods", gc_timer());
1258       // Release unloaded nmethod's memory.
1259       ctx.purge_nmethods();
1260     }
1261     {
1262       GCTraceTime(Debug, gc, phases) ur("Unregister NMethods", &_gc_timer);
1263       ParallelScavengeHeap::heap()->prune_unlinked_nmethods();
1264     }
1265     {
1266       GCTraceTime(Debug, gc, phases) t("Free Code Blobs", gc_timer());
1267       ctx.free_nmethods();
1268     }
1269     {
1270       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1271       GCTraceTime(Debug, gc, phases) t("Purge Class Loader Data", gc_timer());
1272       ClassLoaderDataGraph::purge(true /* at_safepoint */);
1273       DEBUG_ONLY(MetaspaceUtils::verify();)
1274     }
1275   }
1276 
1277   {
1278     GCTraceTime(Debug, gc, phases) tm("Report Object Count", &_gc_timer);
1279     _gc_tracer.report_object_count_after_gc(is_alive_closure(), &ParallelScavengeHeap::heap()->workers());
1280   }
1281 #if TASKQUEUE_STATS
1282   ParCompactionManager::print_and_reset_taskqueue_stats();
1283 #endif
1284 }
1285 
1286 template<typename Func>
1287 void PSParallelCompact::adjust_in_space_helper(SpaceId id, volatile uint* claim_counter, Func&& on_stripe) {
1288   MutableSpace* sp = PSParallelCompact::space(id);
1289   HeapWord* const bottom = sp->bottom();
1290   HeapWord* const top = sp->top();
1291   if (bottom == top) {
1292     return;
1293   }
1294 
1295   const uint num_regions_per_stripe = 2;
1296   const size_t region_size = ParallelCompactData::RegionSize;
1297   const size_t stripe_size = num_regions_per_stripe * region_size;
1298 
1299   while (true) {
1300     uint counter = AtomicAccess::fetch_then_add(claim_counter, num_regions_per_stripe);
1301     HeapWord* cur_stripe = bottom + counter * region_size;
1302     if (cur_stripe >= top) {
1303       break;
1304     }
1305     HeapWord* stripe_end = MIN2(cur_stripe + stripe_size, top);
1306     on_stripe(cur_stripe, stripe_end);
1307   }
1308 }
1309 
1310 void PSParallelCompact::adjust_in_old_space(volatile uint* claim_counter) {
1311   // Regions in old-space shouldn't be split.
1312   assert(!_space_info[old_space_id].split_info().is_valid(), "inv");
1313 
1314   auto scan_obj_with_limit = [&] (HeapWord* obj_start, HeapWord* left, HeapWord* right) {
1315     assert(mark_bitmap()->is_marked(obj_start), "inv");
1316     oop obj = cast_to_oop(obj_start);
1317     return obj->oop_iterate_size(&pc_adjust_pointer_closure, MemRegion(left, right));
1318   };
1319 
1320   adjust_in_space_helper(old_space_id, claim_counter, [&] (HeapWord* stripe_start, HeapWord* stripe_end) {
1321     assert(_summary_data.is_region_aligned(stripe_start), "inv");
1322     RegionData* cur_region = _summary_data.addr_to_region_ptr(stripe_start);
1323     HeapWord* obj_start;
1324     if (cur_region->partial_obj_size() != 0) {
1325       obj_start = cur_region->partial_obj_addr();
1326       obj_start += scan_obj_with_limit(obj_start, stripe_start, stripe_end);
1327     } else {
1328       obj_start = stripe_start;
1329     }
1330 
1331     while (obj_start < stripe_end) {
1332       obj_start = mark_bitmap()->find_obj_beg(obj_start, stripe_end);
1333       if (obj_start >= stripe_end) {
1334         break;
1335       }
1336       obj_start += scan_obj_with_limit(obj_start, stripe_start, stripe_end);
1337     }
1338   });
1339 }
1340 
1341 void PSParallelCompact::adjust_in_young_space(SpaceId id, volatile uint* claim_counter) {
1342   adjust_in_space_helper(id, claim_counter, [](HeapWord* stripe_start, HeapWord* stripe_end) {
1343     HeapWord* obj_start = stripe_start;
1344     while (obj_start < stripe_end) {
1345       obj_start = mark_bitmap()->find_obj_beg(obj_start, stripe_end);
1346       if (obj_start >= stripe_end) {
1347         break;
1348       }
1349       oop obj = cast_to_oop(obj_start);
1350       obj_start += obj->oop_iterate_size(&pc_adjust_pointer_closure);
1351     }
1352   });
1353 }
1354 
1355 void PSParallelCompact::adjust_pointers_in_spaces(uint worker_id, volatile uint* claim_counters) {
1356   auto start_time = Ticks::now();
1357   adjust_in_old_space(&claim_counters[0]);
1358   for (uint id = eden_space_id; id < last_space_id; ++id) {
1359     adjust_in_young_space(SpaceId(id), &claim_counters[id]);
1360   }
1361   log_trace(gc, phases)("adjust_pointers_in_spaces worker %u: %.3f ms", worker_id, (Ticks::now() - start_time).seconds() * 1000);
1362 }
1363 
1364 class PSAdjustTask final : public WorkerTask {
1365   ThreadsClaimTokenScope                     _threads_claim_token_scope;
1366   WeakProcessor::Task                        _weak_proc_task;
1367   OopStorageSetStrongParState<false, false>  _oop_storage_iter;
1368   uint                                       _nworkers;
1369   volatile bool                              _code_cache_claimed;
1370   volatile uint _claim_counters[PSParallelCompact::last_space_id] = {};
1371 
1372   bool try_claim_code_cache_task() {
1373     return AtomicAccess::load(&_code_cache_claimed) == false
1374         && AtomicAccess::cmpxchg(&_code_cache_claimed, false, true) == false;
1375   }
1376 
1377 public:
1378   PSAdjustTask(uint nworkers) :
1379     WorkerTask("PSAdjust task"),
1380     _threads_claim_token_scope(),
1381     _weak_proc_task(nworkers),
1382     _oop_storage_iter(),
1383     _nworkers(nworkers),
1384     _code_cache_claimed(false) {
1385 
1386     ClassLoaderDataGraph::verify_claimed_marks_cleared(ClassLoaderData::_claim_stw_fullgc_adjust);
1387   }
1388 
1389   void work(uint worker_id) {
1390     {
1391       // Pointers in heap.
1392       ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
1393       cm->preserved_marks()->adjust_during_full_gc();
1394 
1395       PSParallelCompact::adjust_pointers_in_spaces(worker_id, _claim_counters);
1396     }
1397 
1398     {
1399       // All (strong and weak) CLDs.
1400       CLDToOopClosure cld_closure(&pc_adjust_pointer_closure, ClassLoaderData::_claim_stw_fullgc_adjust);
1401       ClassLoaderDataGraph::cld_do(&cld_closure);
1402     }
1403 
1404     {
1405       // Threads stack frames. No need to visit on-stack nmethods, because all
1406       // nmethods are visited in one go via CodeCache::nmethods_do.
1407       ResourceMark rm;
1408       Threads::possibly_parallel_oops_do(_nworkers > 1, &pc_adjust_pointer_closure, nullptr);
1409       if (try_claim_code_cache_task()) {
1410         NMethodToOopClosure adjust_code(&pc_adjust_pointer_closure, NMethodToOopClosure::FixRelocations);
1411         CodeCache::nmethods_do(&adjust_code);
1412       }
1413     }
1414 
1415     {
1416       // VM internal strong and weak roots.
1417       _oop_storage_iter.oops_do(&pc_adjust_pointer_closure);
1418       AlwaysTrueClosure always_alive;
1419       _weak_proc_task.work(worker_id, &always_alive, &pc_adjust_pointer_closure);
1420     }
1421   }
1422 };
1423 
1424 void PSParallelCompact::adjust_pointers() {
1425   // Adjust the pointers to reflect the new locations
1426   GCTraceTime(Info, gc, phases) tm("Adjust Pointers", &_gc_timer);
1427   uint nworkers = ParallelScavengeHeap::heap()->workers().active_workers();
1428   PSAdjustTask task(nworkers);
1429   ParallelScavengeHeap::heap()->workers().run_task(&task);
1430 }
1431 
1432 // Split [start, end) evenly for a number of workers and return the
1433 // range for worker_id.
1434 static void split_regions_for_worker(size_t start, size_t end,
1435                                      uint worker_id, uint num_workers,
1436                                      size_t* worker_start, size_t* worker_end) {
1437   assert(start < end, "precondition");
1438   assert(num_workers > 0, "precondition");
1439   assert(worker_id < num_workers, "precondition");
1440 
1441   size_t num_regions = end - start;
1442   size_t num_regions_per_worker = num_regions / num_workers;
1443   size_t remainder = num_regions % num_workers;
1444   // The first few workers will get one extra.
1445   *worker_start = start + worker_id * num_regions_per_worker
1446                   + MIN2(checked_cast<size_t>(worker_id), remainder);
1447   *worker_end = *worker_start + num_regions_per_worker
1448                 + (worker_id < remainder ? 1 : 0);
1449 }
1450 
1451 void PSParallelCompact::forward_to_new_addr() {
1452   GCTraceTime(Info, gc, phases) tm("Forward", &_gc_timer);
1453   uint nworkers = ParallelScavengeHeap::heap()->workers().active_workers();
1454 
1455   struct ForwardTask final : public WorkerTask {
1456     uint _num_workers;
1457 
1458     explicit ForwardTask(uint num_workers) :
1459       WorkerTask("PSForward task"),
1460       _num_workers(num_workers) {}
1461 
1462     static void forward_objs_in_range(ParCompactionManager* cm,
1463                                       HeapWord* start,
1464                                       HeapWord* end,
1465                                       HeapWord* destination) {
1466       HeapWord* cur_addr = start;
1467       HeapWord* new_addr = destination;
1468 
1469       while (cur_addr < end) {
1470         cur_addr = mark_bitmap()->find_obj_beg(cur_addr, end);
1471         if (cur_addr >= end) {
1472           return;
1473         }
1474         assert(mark_bitmap()->is_marked(cur_addr), "inv");
1475         oop obj = cast_to_oop(cur_addr);
1476         if (new_addr != cur_addr) {
1477           cm->preserved_marks()->push_if_necessary(obj, obj->mark());
1478           FullGCForwarding::forward_to(obj, cast_to_oop(new_addr));
1479         }
1480         size_t obj_size = obj->size();
1481         new_addr += obj_size;
1482         cur_addr += obj_size;
1483       }
1484     }
1485 
1486     void work(uint worker_id) override {
1487       ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
1488       for (uint id = old_space_id; id < last_space_id; ++id) {
1489         MutableSpace* sp = PSParallelCompact::space(SpaceId(id));
1490         HeapWord* dense_prefix_addr = dense_prefix(SpaceId(id));
1491         HeapWord* top = sp->top();
1492 
1493         if (dense_prefix_addr == top) {
1494           // Empty space
1495           continue;
1496         }
1497 
1498         const SplitInfo& split_info = _space_info[SpaceId(id)].split_info();
1499         size_t dense_prefix_region = _summary_data.addr_to_region_idx(dense_prefix_addr);
1500         size_t top_region = _summary_data.addr_to_region_idx(_summary_data.region_align_up(top));
1501         size_t start_region;
1502         size_t end_region;
1503         split_regions_for_worker(dense_prefix_region, top_region,
1504                                  worker_id, _num_workers,
1505                                  &start_region, &end_region);
1506         for (size_t cur_region = start_region; cur_region < end_region; ++cur_region) {
1507           RegionData* region_ptr = _summary_data.region(cur_region);
1508           size_t partial_obj_size = region_ptr->partial_obj_size();
1509 
1510           if (partial_obj_size == ParallelCompactData::RegionSize) {
1511             // No obj-start
1512             continue;
1513           }
1514 
1515           HeapWord* region_start = _summary_data.region_to_addr(cur_region);
1516           HeapWord* region_end = region_start + ParallelCompactData::RegionSize;
1517 
1518           if (split_info.is_split(cur_region)) {
1519             // Part 1: will be relocated to space-1
1520             HeapWord* preceding_destination = split_info.preceding_destination();
1521             HeapWord* split_point = split_info.split_point();
1522             forward_objs_in_range(cm, region_start + partial_obj_size, split_point, preceding_destination + partial_obj_size);
1523 
1524             // Part 2: will be relocated to space-2
1525             HeapWord* destination = region_ptr->destination();
1526             forward_objs_in_range(cm, split_point, region_end, destination);
1527           } else {
1528             HeapWord* destination = region_ptr->destination();
1529             forward_objs_in_range(cm, region_start + partial_obj_size, region_end, destination + partial_obj_size);
1530           }
1531         }
1532       }
1533     }
1534   } task(nworkers);
1535 
1536   ParallelScavengeHeap::heap()->workers().run_task(&task);
1537   DEBUG_ONLY(verify_forward();)
1538 }
1539 
1540 #ifdef ASSERT
1541 void PSParallelCompact::verify_forward() {
1542   HeapWord* const old_dense_prefix_addr = dense_prefix(SpaceId(old_space_id));
1543   // The destination addr for the first live obj after dense-prefix.
1544   HeapWord* bump_ptr = old_dense_prefix_addr
1545                      + _summary_data.addr_to_region_ptr(old_dense_prefix_addr)->partial_obj_size();
1546   SpaceId bump_ptr_space = old_space_id;
1547 
1548   for (uint id = old_space_id; id < last_space_id; ++id) {
1549     MutableSpace* sp = PSParallelCompact::space(SpaceId(id));
1550     // Only verify objs after dense-prefix, because those before dense-prefix are not moved (forwarded).
1551     HeapWord* cur_addr = dense_prefix(SpaceId(id));
1552     HeapWord* top = sp->top();
1553 
1554     while (cur_addr < top) {
1555       cur_addr = mark_bitmap()->find_obj_beg(cur_addr, top);
1556       if (cur_addr >= top) {
1557         break;
1558       }
1559       assert(mark_bitmap()->is_marked(cur_addr), "inv");
1560       assert(bump_ptr <= _space_info[bump_ptr_space].new_top(), "inv");
1561       // Move to the space containing cur_addr
1562       if (bump_ptr == _space_info[bump_ptr_space].new_top()) {
1563         bump_ptr = space(space_id(cur_addr))->bottom();
1564         bump_ptr_space = space_id(bump_ptr);
1565       }
1566       oop obj = cast_to_oop(cur_addr);
1567       if (cur_addr == bump_ptr) {
1568         assert(!FullGCForwarding::is_forwarded(obj), "inv");
1569       } else {
1570         assert(FullGCForwarding::forwardee(obj) == cast_to_oop(bump_ptr), "inv");
1571       }
1572       bump_ptr += obj->size();
1573       cur_addr += obj->size();
1574     }
1575   }
1576 }
1577 #endif
1578 
1579 // Helper class to print 8 region numbers per line and then print the total at the end.
1580 class FillableRegionLogger : public StackObj {
1581 private:
1582   Log(gc, compaction) log;
1583   static const int LineLength = 8;
1584   size_t _regions[LineLength];
1585   int _next_index;
1586   bool _enabled;
1587   size_t _total_regions;
1588 public:
1589   FillableRegionLogger() : _next_index(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)), _total_regions(0) { }
1590   ~FillableRegionLogger() {
1591     log.trace("%zu initially fillable regions", _total_regions);
1592   }
1593 
1594   void print_line() {
1595     if (!_enabled || _next_index == 0) {
1596       return;
1597     }
1598     FormatBuffer<> line("Fillable: ");
1599     for (int i = 0; i < _next_index; i++) {
1600       line.append(" %7zu", _regions[i]);
1601     }
1602     log.trace("%s", line.buffer());
1603     _next_index = 0;
1604   }
1605 
1606   void handle(size_t region) {
1607     if (!_enabled) {
1608       return;
1609     }
1610     _regions[_next_index++] = region;
1611     if (_next_index == LineLength) {
1612       print_line();
1613     }
1614     _total_regions++;
1615   }
1616 };
1617 
1618 void PSParallelCompact::prepare_region_draining_tasks(uint parallel_gc_threads)
1619 {
1620   GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
1621 
1622   // Find the threads that are active
1623   uint worker_id = 0;
1624 
1625   // Find all regions that are available (can be filled immediately) and
1626   // distribute them to the thread stacks.  The iteration is done in reverse
1627   // order (high to low) so the regions will be removed in ascending order.
1628 
1629   const ParallelCompactData& sd = PSParallelCompact::summary_data();
1630 
1631   // id + 1 is used to test termination so unsigned  can
1632   // be used with an old_space_id == 0.
1633   FillableRegionLogger region_logger;
1634   for (unsigned int id = last_space_id - 1; id + 1 > old_space_id; --id) {
1635     SpaceInfo* const space_info = _space_info + id;
1636     HeapWord* const new_top = space_info->new_top();
1637 
1638     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
1639     const size_t end_region =
1640       sd.addr_to_region_idx(sd.region_align_up(new_top));
1641 
1642     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
1643       if (sd.region(cur)->claim_unsafe()) {
1644         ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
1645         bool result = sd.region(cur)->mark_normal();
1646         assert(result, "Must succeed at this point.");
1647         cm->region_stack()->push(cur);
1648         region_logger.handle(cur);
1649         // Assign regions to tasks in round-robin fashion.
1650         if (++worker_id == parallel_gc_threads) {
1651           worker_id = 0;
1652         }
1653       }
1654     }
1655     region_logger.print_line();
1656   }
1657 }
1658 
1659 static void compaction_with_stealing_work(TaskTerminator* terminator, uint worker_id) {
1660   assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc");
1661 
1662   ParCompactionManager* cm =
1663     ParCompactionManager::gc_thread_compaction_manager(worker_id);
1664 
1665   // Drain the stacks that have been preloaded with regions
1666   // that are ready to fill.
1667 
1668   cm->drain_region_stacks();
1669 
1670   guarantee(cm->region_stack()->is_empty(), "Not empty");
1671 
1672   size_t region_index = 0;
1673 
1674   while (true) {
1675     if (ParCompactionManager::steal(worker_id, region_index)) {
1676       PSParallelCompact::fill_and_update_region(cm, region_index);
1677       cm->drain_region_stacks();
1678     } else if (PSParallelCompact::steal_unavailable_region(cm, region_index)) {
1679       // Fill and update an unavailable region with the help of a shadow region
1680       PSParallelCompact::fill_and_update_shadow_region(cm, region_index);
1681       cm->drain_region_stacks();
1682     } else {
1683       if (terminator->offer_termination()) {
1684         break;
1685       }
1686       // Go around again.
1687     }
1688   }
1689 }
1690 
1691 class FillDensePrefixAndCompactionTask: public WorkerTask {
1692   TaskTerminator _terminator;
1693 
1694 public:
1695   FillDensePrefixAndCompactionTask(uint active_workers) :
1696       WorkerTask("FillDensePrefixAndCompactionTask"),
1697       _terminator(active_workers, ParCompactionManager::region_task_queues()) {
1698   }
1699 
1700   virtual void work(uint worker_id) {
1701     if (worker_id == 0) {
1702       auto start = Ticks::now();
1703       PSParallelCompact::fill_dead_objs_in_dense_prefix();
1704       log_trace(gc, phases)("Fill dense prefix by worker 0: %.3f ms", (Ticks::now() - start).seconds() * 1000);
1705     }
1706     compaction_with_stealing_work(&_terminator, worker_id);
1707   }
1708 };
1709 
1710 void PSParallelCompact::fill_range_in_dense_prefix(HeapWord* start, HeapWord* end) {
1711 #ifdef ASSERT
1712   {
1713     assert(start < end, "precondition");
1714     assert(mark_bitmap()->find_obj_beg(start, end) == end, "precondition");
1715     HeapWord* bottom = _space_info[old_space_id].space()->bottom();
1716     if (start != bottom) {
1717       // The preceding live obj.
1718       HeapWord* obj_start = mark_bitmap()->find_obj_beg_reverse(bottom, start);
1719       HeapWord* obj_end = obj_start + cast_to_oop(obj_start)->size();
1720       assert(obj_end == start, "precondition");
1721     }
1722   }
1723 #endif
1724 
1725   CollectedHeap::fill_with_objects(start, pointer_delta(end, start));
1726   HeapWord* addr = start;
1727   do {
1728     size_t size = cast_to_oop(addr)->size();
1729     start_array(old_space_id)->update_for_block(addr, addr + size);
1730     addr += size;
1731   } while (addr < end);
1732 }
1733 
1734 void PSParallelCompact::fill_dead_objs_in_dense_prefix() {
1735   ParMarkBitMap* bitmap = mark_bitmap();
1736 
1737   HeapWord* const bottom = _space_info[old_space_id].space()->bottom();
1738   HeapWord* const prefix_end = dense_prefix(old_space_id);
1739 
1740   const size_t region_size = ParallelCompactData::RegionSize;
1741 
1742   // Fill dead space in [start_addr, end_addr)
1743   HeapWord* const start_addr = bottom;
1744   HeapWord* const end_addr   = prefix_end;
1745 
1746   for (HeapWord* cur_addr = start_addr; cur_addr < end_addr; /* empty */) {
1747     RegionData* cur_region_ptr = _summary_data.addr_to_region_ptr(cur_addr);
1748     if (cur_region_ptr->data_size() == region_size) {
1749       // Full; no dead space. Next region.
1750       if (_summary_data.is_region_aligned(cur_addr)) {
1751         cur_addr += region_size;
1752       } else {
1753         cur_addr = _summary_data.region_align_up(cur_addr);
1754       }
1755       continue;
1756     }
1757 
1758     // Fill dead space inside cur_region.
1759     if (_summary_data.is_region_aligned(cur_addr)) {
1760       cur_addr += cur_region_ptr->partial_obj_size();
1761     }
1762 
1763     HeapWord* region_end_addr = _summary_data.region_align_up(cur_addr + 1);
1764     assert(region_end_addr <= end_addr, "inv");
1765     while (cur_addr < region_end_addr) {
1766       // Use end_addr to allow filler-obj to cross region boundary.
1767       HeapWord* live_start = bitmap->find_obj_beg(cur_addr, end_addr);
1768       if (cur_addr != live_start) {
1769         // Found dead space [cur_addr, live_start).
1770         fill_range_in_dense_prefix(cur_addr, live_start);
1771       }
1772       if (live_start >= region_end_addr) {
1773         cur_addr = live_start;
1774         break;
1775       }
1776       assert(bitmap->is_marked(live_start), "inv");
1777       cur_addr = live_start + cast_to_oop(live_start)->size();
1778     }
1779   }
1780 }
1781 
1782 void PSParallelCompact::compact() {
1783   GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
1784 
1785   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
1786 
1787   initialize_shadow_regions(active_gc_threads);
1788   prepare_region_draining_tasks(active_gc_threads);
1789 
1790   {
1791     GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
1792 
1793     FillDensePrefixAndCompactionTask task(active_gc_threads);
1794     ParallelScavengeHeap::heap()->workers().run_task(&task);
1795 
1796 #ifdef  ASSERT
1797     verify_filler_in_dense_prefix();
1798 
1799     // Verify that all regions have been processed.
1800     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1801       verify_complete(SpaceId(id));
1802     }
1803 #endif
1804   }
1805 }
1806 
1807 #ifdef  ASSERT
1808 void PSParallelCompact::verify_filler_in_dense_prefix() {
1809   HeapWord* bottom = _space_info[old_space_id].space()->bottom();
1810   HeapWord* dense_prefix_end = dense_prefix(old_space_id);
1811 
1812   const size_t region_size = ParallelCompactData::RegionSize;
1813 
1814   for (HeapWord* cur_addr = bottom; cur_addr < dense_prefix_end; /* empty */) {
1815     RegionData* cur_region_ptr = _summary_data.addr_to_region_ptr(cur_addr);
1816     if (cur_region_ptr->data_size() == region_size) {
1817       // Full; no dead space. Next region.
1818       if (_summary_data.is_region_aligned(cur_addr)) {
1819         cur_addr += region_size;
1820       } else {
1821         cur_addr = _summary_data.region_align_up(cur_addr);
1822       }
1823       continue;
1824     }
1825 
1826     // This region contains filler objs.
1827     if (_summary_data.is_region_aligned(cur_addr)) {
1828       cur_addr += cur_region_ptr->partial_obj_size();
1829     }
1830 
1831     HeapWord* region_end_addr = _summary_data.region_align_up(cur_addr + 1);
1832     assert(region_end_addr <= dense_prefix_end, "inv");
1833 
1834     while (cur_addr < region_end_addr) {
1835       oop obj = cast_to_oop(cur_addr);
1836       oopDesc::verify(obj);
1837       if (!mark_bitmap()->is_marked(cur_addr)) {
1838         Klass* k = cast_to_oop(cur_addr)->klass();
1839         assert(k == Universe::fillerArrayKlass() || k == vmClasses::FillerObject_klass(), "inv");
1840       }
1841       cur_addr += obj->size();
1842     }
1843   }
1844 }
1845 
1846 void PSParallelCompact::verify_complete(SpaceId space_id) {
1847   // All Regions served as compaction targets, from dense_prefix() to
1848   // new_top(), should be marked as filled and all Regions between new_top()
1849   // and top() should be available (i.e., should have been emptied).
1850   ParallelCompactData& sd = summary_data();
1851   SpaceInfo si = _space_info[space_id];
1852   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
1853   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
1854   const size_t beg_region = sd.addr_to_region_idx(si.dense_prefix());
1855   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
1856   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
1857 
1858   size_t cur_region;
1859   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
1860     const RegionData* const c = sd.region(cur_region);
1861     assert(c->completed(), "region %zu not filled: destination_count=%u",
1862            cur_region, c->destination_count());
1863   }
1864 
1865   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
1866     const RegionData* const c = sd.region(cur_region);
1867     assert(c->available(), "region %zu not empty: destination_count=%u",
1868            cur_region, c->destination_count());
1869   }
1870 }
1871 #endif  // #ifdef ASSERT
1872 
1873 // Return the SpaceId for the space containing addr.  If addr is not in the
1874 // heap, last_space_id is returned.  In debug mode it expects the address to be
1875 // in the heap and asserts such.
1876 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
1877   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
1878 
1879   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1880     if (_space_info[id].space()->contains(addr)) {
1881       return SpaceId(id);
1882     }
1883   }
1884 
1885   assert(false, "no space contains the addr");
1886   return last_space_id;
1887 }
1888 
1889 // Skip over count live words starting from beg, and return the address of the
1890 // next live word. Callers must also ensure that there are enough live words in
1891 // the range [beg, end) to skip.
1892 HeapWord* PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
1893 {
1894   ParMarkBitMap* m = mark_bitmap();
1895   HeapWord* cur_addr = beg;
1896   while (true) {
1897     cur_addr = m->find_obj_beg(cur_addr, end);
1898     assert(cur_addr < end, "inv");
1899     size_t obj_size = cast_to_oop(cur_addr)->size();
1900     // Strictly greater-than
1901     if (obj_size > count) {
1902       return cur_addr + count;
1903     }
1904     count -= obj_size;
1905     cur_addr += obj_size;
1906   }
1907 }
1908 
1909 // On starting to fill a destination region (dest-region), we need to know the
1910 // location of the word that will be at the start of the dest-region after
1911 // compaction. A dest-region can have one or more source regions, but only the
1912 // first source-region contains this location. This location is retrieved by
1913 // calling `first_src_addr` on a dest-region.
1914 // Conversely, a source-region has a dest-region which holds the destination of
1915 // the first live word on this source-region, based on which the destination
1916 // for the rest of live words can be derived.
1917 //
1918 // Note:
1919 // There is some complication due to space-boundary-fragmentation (an obj can't
1920 // cross space-boundary) -- a source-region may be split and behave like two
1921 // distinct regions with their own dest-region, as depicted below.
1922 //
1923 // source-region: region-n
1924 //
1925 // **********************
1926 // |     A|A~~~~B|B     |
1927 // **********************
1928 //    n-1     n     n+1
1929 //
1930 // AA, BB denote two live objs. ~~~~ denotes unknown number of live objs.
1931 //
1932 // Assuming the dest-region for region-n is the final region before
1933 // old-space-end and its first-live-word is the middle of AA, the heap content
1934 // will look like the following after compaction:
1935 //
1936 // **************                  *************
1937 //      A|A~~~~ |                  |BB    |
1938 // **************                  *************
1939 //              ^                  ^
1940 //              | old-space-end    | eden-space-start
1941 //
1942 // Therefore, in this example, region-n will have two dest-regions:
1943 // 1. the final region in old-space
1944 // 2. the first region in eden-space.
1945 // To handle this special case, we introduce the concept of split-region, whose
1946 // contents are relocated to two spaces. `SplitInfo` captures all necessary
1947 // info about the split, the first part, spliting-point, and the second part.
1948 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
1949                                             SpaceId src_space_id,
1950                                             size_t src_region_idx)
1951 {
1952   const size_t RegionSize = ParallelCompactData::RegionSize;
1953   const ParallelCompactData& sd = summary_data();
1954   assert(sd.is_region_aligned(dest_addr), "precondition");
1955 
1956   const RegionData* const src_region_ptr = sd.region(src_region_idx);
1957   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
1958 
1959   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
1960   HeapWord* const src_region_destination = src_region_ptr->destination();
1961 
1962   HeapWord* const region_start = sd.region_to_addr(src_region_idx);
1963   HeapWord* const region_end = sd.region_to_addr(src_region_idx) + RegionSize;
1964 
1965   // Identify the actual destination for the first live words on this region,
1966   // taking split-region into account.
1967   HeapWord* region_start_destination;
1968   const SplitInfo& split_info = _space_info[src_space_id].split_info();
1969   if (split_info.is_split(src_region_idx)) {
1970     // The second part of this split region; use the recorded split point.
1971     if (dest_addr == src_region_destination) {
1972       return split_info.split_point();
1973     }
1974     region_start_destination = split_info.preceding_destination();
1975   } else {
1976     region_start_destination = src_region_destination;
1977   }
1978 
1979   // Calculate the offset to be skipped
1980   size_t words_to_skip = pointer_delta(dest_addr, region_start_destination);
1981 
1982   HeapWord* result;
1983   if (partial_obj_size > words_to_skip) {
1984     result = region_start + words_to_skip;
1985   } else {
1986     words_to_skip -= partial_obj_size;
1987     result = skip_live_words(region_start + partial_obj_size, region_end, words_to_skip);
1988   }
1989 
1990   if (split_info.is_split(src_region_idx)) {
1991     assert(result < split_info.split_point(), "postcondition");
1992   } else {
1993     assert(result < region_end, "postcondition");
1994   }
1995 
1996   return result;
1997 }
1998 
1999 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2000                                                      SpaceId src_space_id,
2001                                                      size_t beg_region,
2002                                                      HeapWord* end_addr)
2003 {
2004   ParallelCompactData& sd = summary_data();
2005 
2006 #ifdef ASSERT
2007   MutableSpace* const src_space = _space_info[src_space_id].space();
2008   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2009   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2010          "src_space_id does not match beg_addr");
2011   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2012          "src_space_id does not match end_addr");
2013 #endif // #ifdef ASSERT
2014 
2015   RegionData* const beg = sd.region(beg_region);
2016   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2017 
2018   // Regions up to new_top() are enqueued if they become available.
2019   HeapWord* const new_top = _space_info[src_space_id].new_top();
2020   RegionData* const enqueue_end =
2021     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2022 
2023   for (RegionData* cur = beg; cur < end; ++cur) {
2024     assert(cur->data_size() > 0, "region must have live data");
2025     cur->decrement_destination_count();
2026     if (cur < enqueue_end && cur->available() && cur->claim()) {
2027       if (cur->mark_normal()) {
2028         cm->push_region(sd.region(cur));
2029       } else if (cur->mark_copied()) {
2030         // Try to copy the content of the shadow region back to its corresponding
2031         // heap region if the shadow region is filled. Otherwise, the GC thread
2032         // fills the shadow region will copy the data back (see
2033         // MoveAndUpdateShadowClosure::complete_region).
2034         copy_back(sd.region_to_addr(cur->shadow_region()), sd.region_to_addr(cur));
2035         ParCompactionManager::push_shadow_region_mt_safe(cur->shadow_region());
2036         cur->set_completed();
2037       }
2038     }
2039   }
2040 }
2041 
2042 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2043                                           SpaceId& src_space_id,
2044                                           HeapWord*& src_space_top,
2045                                           HeapWord* end_addr)
2046 {
2047   ParallelCompactData& sd = PSParallelCompact::summary_data();
2048 
2049   size_t src_region_idx = 0;
2050 
2051   // Skip empty regions (if any) up to the top of the space.
2052   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2053   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2054   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2055   const RegionData* const top_region_ptr = sd.addr_to_region_ptr(top_aligned_up);
2056 
2057   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2058     ++src_region_ptr;
2059   }
2060 
2061   if (src_region_ptr < top_region_ptr) {
2062     // Found the first non-empty region in the same space.
2063     src_region_idx = sd.region(src_region_ptr);
2064     closure.set_source(sd.region_to_addr(src_region_idx));
2065     return src_region_idx;
2066   }
2067 
2068   // Switch to a new source space and find the first non-empty region.
2069   uint space_id = src_space_id + 1;
2070   assert(space_id < last_space_id, "not enough spaces");
2071 
2072   for (/* empty */; space_id < last_space_id; ++space_id) {
2073     HeapWord* bottom = _space_info[space_id].space()->bottom();
2074     HeapWord* top = _space_info[space_id].space()->top();
2075     // Skip empty space
2076     if (bottom == top) {
2077       continue;
2078     }
2079 
2080     // Identify the first region that contains live words in this space
2081     size_t cur_region = sd.addr_to_region_idx(bottom);
2082     size_t end_region = sd.addr_to_region_idx(sd.region_align_up(top));
2083 
2084     for (/* empty */ ; cur_region < end_region; ++cur_region) {
2085       RegionData* cur = sd.region(cur_region);
2086       if (cur->live_obj_size() > 0) {
2087         HeapWord* region_start_addr = sd.region_to_addr(cur_region);
2088 
2089         src_space_id = SpaceId(space_id);
2090         src_space_top = top;
2091         closure.set_source(region_start_addr);
2092         return cur_region;
2093       }
2094     }
2095   }
2096 
2097   ShouldNotReachHere();
2098 }
2099 
2100 HeapWord* PSParallelCompact::partial_obj_end(HeapWord* region_start_addr) {
2101   ParallelCompactData& sd = summary_data();
2102   assert(sd.is_region_aligned(region_start_addr), "precondition");
2103 
2104   // Use per-region partial_obj_size to locate the end of the obj, that extends
2105   // to region_start_addr.
2106   size_t start_region_idx = sd.addr_to_region_idx(region_start_addr);
2107   size_t end_region_idx = sd.region_count();
2108   size_t accumulated_size = 0;
2109   for (size_t region_idx = start_region_idx; region_idx < end_region_idx; ++region_idx) {
2110     size_t cur_partial_obj_size = sd.region(region_idx)->partial_obj_size();
2111     accumulated_size += cur_partial_obj_size;
2112     if (cur_partial_obj_size != ParallelCompactData::RegionSize) {
2113       break;
2114     }
2115   }
2116   return region_start_addr + accumulated_size;
2117 }
2118 
2119 // Use region_idx as the destination region, and evacuate all live objs on its
2120 // source regions to this destination region.
2121 void PSParallelCompact::fill_region(ParCompactionManager* cm, MoveAndUpdateClosure& closure, size_t region_idx)
2122 {
2123   ParMarkBitMap* const bitmap = mark_bitmap();
2124   ParallelCompactData& sd = summary_data();
2125   RegionData* const region_ptr = sd.region(region_idx);
2126 
2127   // Get the source region and related info.
2128   size_t src_region_idx = region_ptr->source_region();
2129   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2130   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2131   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2132 
2133   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2134 
2135   // Adjust src_region_idx to prepare for decrementing destination counts (the
2136   // destination count is not decremented when a region is copied to itself).
2137   if (src_region_idx == region_idx) {
2138     src_region_idx += 1;
2139   }
2140 
2141   // source-region:
2142   //
2143   // **********
2144   // |   ~~~  |
2145   // **********
2146   //      ^
2147   //      |-- closure.source() / first_src_addr
2148   //
2149   //
2150   // ~~~ : live words
2151   //
2152   // destination-region:
2153   //
2154   // **********
2155   // |        |
2156   // **********
2157   // ^
2158   // |-- region-start
2159   if (bitmap->is_unmarked(closure.source())) {
2160     // An object overflows the previous destination region, so this
2161     // destination region should copy the remainder of the object or as much as
2162     // will fit.
2163     HeapWord* const old_src_addr = closure.source();
2164     {
2165       HeapWord* region_start = sd.region_align_down(closure.source());
2166       HeapWord* obj_start = bitmap->find_obj_beg_reverse(region_start, closure.source());
2167       HeapWord* obj_end;
2168       if (obj_start != closure.source()) {
2169         assert(bitmap->is_marked(obj_start), "inv");
2170         // Found the actual obj-start, try to find the obj-end using either
2171         // size() if this obj is completely contained in the current region.
2172         HeapWord* next_region_start = region_start + ParallelCompactData::RegionSize;
2173         HeapWord* partial_obj_start = (next_region_start >= src_space_top)
2174                                       ? nullptr
2175                                       : sd.addr_to_region_ptr(next_region_start)->partial_obj_addr();
2176         // This obj extends to next region iff partial_obj_addr of the *next*
2177         // region is the same as obj-start.
2178         if (partial_obj_start == obj_start) {
2179           // This obj extends to next region.
2180           obj_end = partial_obj_end(next_region_start);
2181         } else {
2182           // Completely contained in this region; safe to use size().
2183           obj_end = obj_start + cast_to_oop(obj_start)->size();
2184         }
2185       } else {
2186         // This obj extends to current region.
2187         obj_end = partial_obj_end(region_start);
2188       }
2189       size_t partial_obj_size = pointer_delta(obj_end, closure.source());
2190       closure.copy_partial_obj(partial_obj_size);
2191     }
2192 
2193     if (closure.is_full()) {
2194       decrement_destination_counts(cm, src_space_id, src_region_idx, closure.source());
2195       closure.complete_region(dest_addr, region_ptr);
2196       return;
2197     }
2198 
2199     // Finished copying without using up the current destination-region
2200     HeapWord* const end_addr = sd.region_align_down(closure.source());
2201     if (sd.region_align_down(old_src_addr) != end_addr) {
2202       assert(sd.region_align_up(old_src_addr) == end_addr, "only one region");
2203       // The partial object was copied from more than one source region.
2204       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2205 
2206       // Move to the next source region, possibly switching spaces as well.  All
2207       // args except end_addr may be modified.
2208       src_region_idx = next_src_region(closure, src_space_id, src_space_top, end_addr);
2209     }
2210   }
2211 
2212   // Handle the rest obj-by-obj, where we know obj-start.
2213   do {
2214     HeapWord* cur_addr = closure.source();
2215     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
2216                                     src_space_top);
2217     // To handle the case where the final obj in source region extends to next region.
2218     HeapWord* final_obj_start = (end_addr == src_space_top)
2219                                 ? nullptr
2220                                 : sd.addr_to_region_ptr(end_addr)->partial_obj_addr();
2221     // Apply closure on objs inside [cur_addr, end_addr)
2222     do {
2223       cur_addr = bitmap->find_obj_beg(cur_addr, end_addr);
2224       if (cur_addr == end_addr) {
2225         break;
2226       }
2227       size_t obj_size;
2228       if (final_obj_start == cur_addr) {
2229         obj_size = pointer_delta(partial_obj_end(end_addr), cur_addr);
2230       } else {
2231         // This obj doesn't extend into next region; size() is safe to use.
2232         obj_size = cast_to_oop(cur_addr)->size();
2233       }
2234       closure.do_addr(cur_addr, obj_size);
2235       cur_addr += obj_size;
2236     } while (cur_addr < end_addr && !closure.is_full());
2237 
2238     if (closure.is_full()) {
2239       decrement_destination_counts(cm, src_space_id, src_region_idx, closure.source());
2240       closure.complete_region(dest_addr, region_ptr);
2241       return;
2242     }
2243 
2244     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2245 
2246     // Move to the next source region, possibly switching spaces as well.  All
2247     // args except end_addr may be modified.
2248     src_region_idx = next_src_region(closure, src_space_id, src_space_top, end_addr);
2249   } while (true);
2250 }
2251 
2252 void PSParallelCompact::fill_and_update_region(ParCompactionManager* cm, size_t region_idx)
2253 {
2254   MoveAndUpdateClosure cl(mark_bitmap(), region_idx);
2255   fill_region(cm, cl, region_idx);
2256 }
2257 
2258 void PSParallelCompact::fill_and_update_shadow_region(ParCompactionManager* cm, size_t region_idx)
2259 {
2260   // Get a shadow region first
2261   ParallelCompactData& sd = summary_data();
2262   RegionData* const region_ptr = sd.region(region_idx);
2263   size_t shadow_region = ParCompactionManager::pop_shadow_region_mt_safe(region_ptr);
2264   // The InvalidShadow return value indicates the corresponding heap region is available,
2265   // so use MoveAndUpdateClosure to fill the normal region. Otherwise, use
2266   // MoveAndUpdateShadowClosure to fill the acquired shadow region.
2267   if (shadow_region == ParCompactionManager::InvalidShadow) {
2268     MoveAndUpdateClosure cl(mark_bitmap(), region_idx);
2269     region_ptr->shadow_to_normal();
2270     return fill_region(cm, cl, region_idx);
2271   } else {
2272     MoveAndUpdateShadowClosure cl(mark_bitmap(), region_idx, shadow_region);
2273     return fill_region(cm, cl, region_idx);
2274   }
2275 }
2276 
2277 void PSParallelCompact::copy_back(HeapWord *shadow_addr, HeapWord *region_addr)
2278 {
2279   Copy::aligned_conjoint_words(shadow_addr, region_addr, _summary_data.RegionSize);
2280 }
2281 
2282 bool PSParallelCompact::steal_unavailable_region(ParCompactionManager* cm, size_t &region_idx)
2283 {
2284   size_t next = cm->next_shadow_region();
2285   ParallelCompactData& sd = summary_data();
2286   size_t old_new_top = sd.addr_to_region_idx(_space_info[old_space_id].new_top());
2287   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
2288 
2289   while (next < old_new_top) {
2290     if (sd.region(next)->mark_shadow()) {
2291       region_idx = next;
2292       return true;
2293     }
2294     next = cm->move_next_shadow_region_by(active_gc_threads);
2295   }
2296 
2297   return false;
2298 }
2299 
2300 // The shadow region is an optimization to address region dependencies in full GC. The basic
2301 // idea is making more regions available by temporally storing their live objects in empty
2302 // shadow regions to resolve dependencies between them and the destination regions. Therefore,
2303 // GC threads need not wait destination regions to be available before processing sources.
2304 //
2305 // A typical workflow would be:
2306 // After draining its own stack and failing to steal from others, a GC worker would pick an
2307 // unavailable region (destination count > 0) and get a shadow region. Then the worker fills
2308 // the shadow region by copying live objects from source regions of the unavailable one. Once
2309 // the unavailable region becomes available, the data in the shadow region will be copied back.
2310 // Shadow regions are empty regions in the to-space and regions between top and end of other spaces.
2311 void PSParallelCompact::initialize_shadow_regions(uint parallel_gc_threads)
2312 {
2313   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2314 
2315   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2316     SpaceInfo* const space_info = _space_info + id;
2317     MutableSpace* const space = space_info->space();
2318 
2319     const size_t beg_region =
2320       sd.addr_to_region_idx(sd.region_align_up(MAX2(space_info->new_top(), space->top())));
2321     const size_t end_region =
2322       sd.addr_to_region_idx(sd.region_align_down(space->end()));
2323 
2324     for (size_t cur = beg_region; cur < end_region; ++cur) {
2325       ParCompactionManager::push_shadow_region(cur);
2326     }
2327   }
2328 
2329   size_t beg_region = sd.addr_to_region_idx(_space_info[old_space_id].dense_prefix());
2330   for (uint i = 0; i < parallel_gc_threads; i++) {
2331     ParCompactionManager *cm = ParCompactionManager::gc_thread_compaction_manager(i);
2332     cm->set_next_shadow_region(beg_region + i);
2333   }
2334 }
2335 
2336 void MoveAndUpdateClosure::copy_partial_obj(size_t partial_obj_size)
2337 {
2338   size_t words = MIN2(partial_obj_size, words_remaining());
2339 
2340   // This test is necessary; if omitted, the pointer updates to a partial object
2341   // that crosses the dense prefix boundary could be overwritten.
2342   if (source() != copy_destination()) {
2343     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
2344     Copy::aligned_conjoint_words(source(), copy_destination(), words);
2345   }
2346   update_state(words);
2347 }
2348 
2349 void MoveAndUpdateClosure::complete_region(HeapWord* dest_addr, PSParallelCompact::RegionData* region_ptr) {
2350   assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::NormalRegion, "Region should be finished");
2351   region_ptr->set_completed();
2352 }
2353 
2354 void MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
2355   assert(destination() != nullptr, "sanity");
2356   _source = addr;
2357 
2358   // The start_array must be updated even if the object is not moving.
2359   if (_start_array != nullptr) {
2360     _start_array->update_for_block(destination(), destination() + words);
2361   }
2362 
2363   // Avoid overflow
2364   words = MIN2(words, words_remaining());
2365   assert(words > 0, "inv");
2366 
2367   if (copy_destination() != source()) {
2368     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
2369     assert(source() != destination(), "inv");
2370     assert(FullGCForwarding::is_forwarded(cast_to_oop(source())), "inv");
2371     assert(FullGCForwarding::forwardee(cast_to_oop(source())) == cast_to_oop(destination()), "inv");
2372     Copy::aligned_conjoint_words(source(), copy_destination(), words);
2373     cast_to_oop(copy_destination())->init_mark();
2374   }
2375 
2376   update_state(words);
2377 }
2378 
2379 void MoveAndUpdateShadowClosure::complete_region(HeapWord* dest_addr, PSParallelCompact::RegionData* region_ptr) {
2380   assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::ShadowRegion, "Region should be shadow");
2381   // Record the shadow region index
2382   region_ptr->set_shadow_region(_shadow);
2383   // Mark the shadow region as filled to indicate the data is ready to be
2384   // copied back
2385   region_ptr->mark_filled();
2386   // Try to copy the content of the shadow region back to its corresponding
2387   // heap region if available; the GC thread that decreases the destination
2388   // count to zero will do the copying otherwise (see
2389   // PSParallelCompact::decrement_destination_counts).
2390   if (((region_ptr->available() && region_ptr->claim()) || region_ptr->claimed()) && region_ptr->mark_copied()) {
2391     region_ptr->set_completed();
2392     PSParallelCompact::copy_back(PSParallelCompact::summary_data().region_to_addr(_shadow), dest_addr);
2393     ParCompactionManager::push_shadow_region_mt_safe(_shadow);
2394   }
2395 }