1 /* 2 * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoaderDataGraph.hpp" 27 #include "classfile/javaClasses.inline.hpp" 28 #include "classfile/stringTable.hpp" 29 #include "classfile/symbolTable.hpp" 30 #include "classfile/systemDictionary.hpp" 31 #include "code/codeCache.hpp" 32 #include "compiler/oopMap.hpp" 33 #include "gc/parallel/objectStartArray.inline.hpp" 34 #include "gc/parallel/parallelArguments.hpp" 35 #include "gc/parallel/parallelScavengeHeap.inline.hpp" 36 #include "gc/parallel/parMarkBitMap.inline.hpp" 37 #include "gc/parallel/psAdaptiveSizePolicy.hpp" 38 #include "gc/parallel/psCompactionManager.inline.hpp" 39 #include "gc/parallel/psOldGen.hpp" 40 #include "gc/parallel/psParallelCompact.inline.hpp" 41 #include "gc/parallel/psPromotionManager.inline.hpp" 42 #include "gc/parallel/psRootType.hpp" 43 #include "gc/parallel/psScavenge.hpp" 44 #include "gc/parallel/psStringDedup.hpp" 45 #include "gc/parallel/psYoungGen.hpp" 46 #include "gc/shared/classUnloadingContext.hpp" 47 #include "gc/shared/gcCause.hpp" 48 #include "gc/shared/gcHeapSummary.hpp" 49 #include "gc/shared/gcId.hpp" 50 #include "gc/shared/gcLocker.hpp" 51 #include "gc/shared/gcTimer.hpp" 52 #include "gc/shared/gcTrace.hpp" 53 #include "gc/shared/gcTraceTime.inline.hpp" 54 #include "gc/shared/gcVMOperations.hpp" 55 #include "gc/shared/isGCActiveMark.hpp" 56 #include "gc/shared/oopStorage.inline.hpp" 57 #include "gc/shared/oopStorageSet.inline.hpp" 58 #include "gc/shared/oopStorageSetParState.inline.hpp" 59 #include "gc/shared/preservedMarks.inline.hpp" 60 #include "gc/shared/referencePolicy.hpp" 61 #include "gc/shared/referenceProcessor.hpp" 62 #include "gc/shared/referenceProcessorPhaseTimes.hpp" 63 #include "gc/shared/strongRootsScope.hpp" 64 #include "gc/shared/taskTerminator.hpp" 65 #include "gc/shared/weakProcessor.inline.hpp" 66 #include "gc/shared/workerPolicy.hpp" 67 #include "gc/shared/workerThread.hpp" 68 #include "gc/shared/workerUtils.hpp" 69 #include "logging/log.hpp" 70 #include "memory/iterator.inline.hpp" 71 #include "memory/metaspaceUtils.hpp" 72 #include "memory/resourceArea.hpp" 73 #include "memory/universe.hpp" 74 #include "nmt/memTracker.hpp" 75 #include "oops/access.inline.hpp" 76 #include "oops/instanceClassLoaderKlass.inline.hpp" 77 #include "oops/instanceKlass.inline.hpp" 78 #include "oops/instanceMirrorKlass.inline.hpp" 79 #include "oops/methodData.hpp" 80 #include "oops/objArrayKlass.inline.hpp" 81 #include "oops/oop.inline.hpp" 82 #include "runtime/atomic.hpp" 83 #include "runtime/handles.inline.hpp" 84 #include "runtime/java.hpp" 85 #include "runtime/safepoint.hpp" 86 #include "runtime/threads.hpp" 87 #include "runtime/vmThread.hpp" 88 #include "services/memoryService.hpp" 89 #include "utilities/align.hpp" 90 #include "utilities/debug.hpp" 91 #include "utilities/events.hpp" 92 #include "utilities/formatBuffer.hpp" 93 #include "utilities/macros.hpp" 94 #include "utilities/stack.inline.hpp" 95 #if INCLUDE_JVMCI 96 #include "jvmci/jvmci.hpp" 97 #endif 98 99 #include <math.h> 100 101 // All sizes are in HeapWords. 102 const size_t ParallelCompactData::Log2RegionSize = 16; // 64K words 103 const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize; 104 static_assert(ParallelCompactData::RegionSize >= BitsPerWord, "region-start bit word-aligned"); 105 const size_t ParallelCompactData::RegionSizeBytes = 106 RegionSize << LogHeapWordSize; 107 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1; 108 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1; 109 const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask; 110 111 const ParallelCompactData::RegionData::region_sz_t 112 ParallelCompactData::RegionData::dc_shift = 27; 113 114 const ParallelCompactData::RegionData::region_sz_t 115 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift; 116 117 const ParallelCompactData::RegionData::region_sz_t 118 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift; 119 120 const ParallelCompactData::RegionData::region_sz_t 121 ParallelCompactData::RegionData::los_mask = ~dc_mask; 122 123 const ParallelCompactData::RegionData::region_sz_t 124 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift; 125 126 const ParallelCompactData::RegionData::region_sz_t 127 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift; 128 129 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id]; 130 131 SpanSubjectToDiscoveryClosure PSParallelCompact::_span_based_discoverer; 132 ReferenceProcessor* PSParallelCompact::_ref_processor = nullptr; 133 134 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size, 135 HeapWord* destination) 136 { 137 assert(src_region_idx != 0, "invalid src_region_idx"); 138 assert(partial_obj_size != 0, "invalid partial_obj_size argument"); 139 assert(destination != nullptr, "invalid destination argument"); 140 141 _src_region_idx = src_region_idx; 142 _partial_obj_size = partial_obj_size; 143 _destination = destination; 144 145 // These fields may not be updated below, so make sure they're clear. 146 assert(_dest_region_addr == nullptr, "should have been cleared"); 147 assert(_first_src_addr == nullptr, "should have been cleared"); 148 149 // Determine the number of destination regions for the partial object. 150 HeapWord* const last_word = destination + partial_obj_size - 1; 151 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 152 HeapWord* const beg_region_addr = sd.region_align_down(destination); 153 HeapWord* const end_region_addr = sd.region_align_down(last_word); 154 155 if (beg_region_addr == end_region_addr) { 156 // One destination region. 157 _destination_count = 1; 158 if (end_region_addr == destination) { 159 // The destination falls on a region boundary, thus the first word of the 160 // partial object will be the first word copied to the destination region. 161 _dest_region_addr = end_region_addr; 162 _first_src_addr = sd.region_to_addr(src_region_idx); 163 } 164 } else { 165 // Two destination regions. When copied, the partial object will cross a 166 // destination region boundary, so a word somewhere within the partial 167 // object will be the first word copied to the second destination region. 168 _destination_count = 2; 169 _dest_region_addr = end_region_addr; 170 const size_t ofs = pointer_delta(end_region_addr, destination); 171 assert(ofs < _partial_obj_size, "sanity"); 172 _first_src_addr = sd.region_to_addr(src_region_idx) + ofs; 173 } 174 } 175 176 void SplitInfo::clear() 177 { 178 _src_region_idx = 0; 179 _partial_obj_size = 0; 180 _destination = nullptr; 181 _destination_count = 0; 182 _dest_region_addr = nullptr; 183 _first_src_addr = nullptr; 184 assert(!is_valid(), "sanity"); 185 } 186 187 #ifdef ASSERT 188 void SplitInfo::verify_clear() 189 { 190 assert(_src_region_idx == 0, "not clear"); 191 assert(_partial_obj_size == 0, "not clear"); 192 assert(_destination == nullptr, "not clear"); 193 assert(_destination_count == 0, "not clear"); 194 assert(_dest_region_addr == nullptr, "not clear"); 195 assert(_first_src_addr == nullptr, "not clear"); 196 } 197 #endif // #ifdef ASSERT 198 199 200 void PSParallelCompact::print_on_error(outputStream* st) { 201 _mark_bitmap.print_on_error(st); 202 } 203 204 ParallelCompactData::ParallelCompactData() : 205 _heap_start(nullptr), 206 DEBUG_ONLY(_heap_end(nullptr) COMMA) 207 _region_vspace(nullptr), 208 _reserved_byte_size(0), 209 _region_data(nullptr), 210 _region_count(0) {} 211 212 bool ParallelCompactData::initialize(MemRegion reserved_heap) 213 { 214 _heap_start = reserved_heap.start(); 215 const size_t heap_size = reserved_heap.word_size(); 216 DEBUG_ONLY(_heap_end = _heap_start + heap_size;) 217 218 assert(region_align_down(_heap_start) == _heap_start, 219 "region start not aligned"); 220 221 return initialize_region_data(heap_size); 222 } 223 224 PSVirtualSpace* 225 ParallelCompactData::create_vspace(size_t count, size_t element_size) 226 { 227 const size_t raw_bytes = count * element_size; 228 const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10); 229 const size_t granularity = os::vm_allocation_granularity(); 230 _reserved_byte_size = align_up(raw_bytes, MAX2(page_sz, granularity)); 231 232 const size_t rs_align = page_sz == os::vm_page_size() ? 0 : 233 MAX2(page_sz, granularity); 234 ReservedSpace rs(_reserved_byte_size, rs_align, page_sz); 235 os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, rs.base(), 236 rs.size(), page_sz); 237 238 MemTracker::record_virtual_memory_tag((address)rs.base(), mtGC); 239 240 PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz); 241 if (vspace != nullptr) { 242 if (vspace->expand_by(_reserved_byte_size)) { 243 return vspace; 244 } 245 delete vspace; 246 // Release memory reserved in the space. 247 rs.release(); 248 } 249 250 return nullptr; 251 } 252 253 bool ParallelCompactData::initialize_region_data(size_t heap_size) 254 { 255 assert(is_aligned(heap_size, RegionSize), "precondition"); 256 257 const size_t count = heap_size >> Log2RegionSize; 258 _region_vspace = create_vspace(count, sizeof(RegionData)); 259 if (_region_vspace != nullptr) { 260 _region_data = (RegionData*)_region_vspace->reserved_low_addr(); 261 _region_count = count; 262 return true; 263 } 264 return false; 265 } 266 267 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) { 268 assert(beg_region <= _region_count, "beg_region out of range"); 269 assert(end_region <= _region_count, "end_region out of range"); 270 271 const size_t region_cnt = end_region - beg_region; 272 memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData)); 273 } 274 275 void 276 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end) 277 { 278 assert(is_region_aligned(beg), "not RegionSize aligned"); 279 assert(is_region_aligned(end), "not RegionSize aligned"); 280 281 size_t cur_region = addr_to_region_idx(beg); 282 const size_t end_region = addr_to_region_idx(end); 283 HeapWord* addr = beg; 284 while (cur_region < end_region) { 285 _region_data[cur_region].set_destination(addr); 286 _region_data[cur_region].set_destination_count(0); 287 _region_data[cur_region].set_source_region(cur_region); 288 289 // Update live_obj_size so the region appears completely full. 290 size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size(); 291 _region_data[cur_region].set_live_obj_size(live_size); 292 293 ++cur_region; 294 addr += RegionSize; 295 } 296 } 297 298 // Find the point at which a space can be split and, if necessary, record the 299 // split point. 300 // 301 // If the current src region (which overflowed the destination space) doesn't 302 // have a partial object, the split point is at the beginning of the current src 303 // region (an "easy" split, no extra bookkeeping required). 304 // 305 // If the current src region has a partial object, the split point is in the 306 // region where that partial object starts (call it the split_region). If 307 // split_region has a partial object, then the split point is just after that 308 // partial object (a "hard" split where we have to record the split data and 309 // zero the partial_obj_size field). With a "hard" split, we know that the 310 // partial_obj ends within split_region because the partial object that caused 311 // the overflow starts in split_region. If split_region doesn't have a partial 312 // obj, then the split is at the beginning of split_region (another "easy" 313 // split). 314 HeapWord* 315 ParallelCompactData::summarize_split_space(size_t src_region, 316 SplitInfo& split_info, 317 HeapWord* destination, 318 HeapWord* target_end, 319 HeapWord** target_next) 320 { 321 assert(destination <= target_end, "sanity"); 322 assert(destination + _region_data[src_region].data_size() > target_end, 323 "region should not fit into target space"); 324 assert(is_region_aligned(target_end), "sanity"); 325 326 size_t split_region = src_region; 327 HeapWord* split_destination = destination; 328 size_t partial_obj_size = _region_data[src_region].partial_obj_size(); 329 330 if (destination + partial_obj_size > target_end) { 331 // The split point is just after the partial object (if any) in the 332 // src_region that contains the start of the object that overflowed the 333 // destination space. 334 // 335 // Find the start of the "overflow" object and set split_region to the 336 // region containing it. 337 HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr(); 338 split_region = addr_to_region_idx(overflow_obj); 339 340 // Clear the source_region field of all destination regions whose first word 341 // came from data after the split point (a non-null source_region field 342 // implies a region must be filled). 343 // 344 // An alternative to the simple loop below: clear during post_compact(), 345 // which uses memcpy instead of individual stores, and is easy to 346 // parallelize. (The downside is that it clears the entire RegionData 347 // object as opposed to just one field.) 348 // 349 // post_compact() would have to clear the summary data up to the highest 350 // address that was written during the summary phase, which would be 351 // 352 // max(top, max(new_top, clear_top)) 353 // 354 // where clear_top is a new field in SpaceInfo. Would have to set clear_top 355 // to target_end. 356 const RegionData* const sr = region(split_region); 357 const size_t beg_idx = 358 addr_to_region_idx(region_align_up(sr->destination() + 359 sr->partial_obj_size())); 360 const size_t end_idx = addr_to_region_idx(target_end); 361 362 log_develop_trace(gc, compaction)("split: clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx); 363 for (size_t idx = beg_idx; idx < end_idx; ++idx) { 364 _region_data[idx].set_source_region(0); 365 } 366 367 // Set split_destination and partial_obj_size to reflect the split region. 368 split_destination = sr->destination(); 369 partial_obj_size = sr->partial_obj_size(); 370 } 371 372 // The split is recorded only if a partial object extends onto the region. 373 if (partial_obj_size != 0) { 374 _region_data[split_region].set_partial_obj_size(0); 375 split_info.record(split_region, partial_obj_size, split_destination); 376 } 377 378 // Setup the continuation addresses. 379 *target_next = split_destination + partial_obj_size; 380 HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size; 381 382 if (log_develop_is_enabled(Trace, gc, compaction)) { 383 const char * split_type = partial_obj_size == 0 ? "easy" : "hard"; 384 log_develop_trace(gc, compaction)("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT, 385 split_type, p2i(source_next), split_region, partial_obj_size); 386 log_develop_trace(gc, compaction)("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT, 387 split_type, p2i(split_destination), 388 addr_to_region_idx(split_destination), 389 p2i(*target_next)); 390 391 if (partial_obj_size != 0) { 392 HeapWord* const po_beg = split_info.destination(); 393 HeapWord* const po_end = po_beg + split_info.partial_obj_size(); 394 log_develop_trace(gc, compaction)("%s split: po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT, 395 split_type, 396 p2i(po_beg), addr_to_region_idx(po_beg), 397 p2i(po_end), addr_to_region_idx(po_end)); 398 } 399 } 400 401 return source_next; 402 } 403 404 size_t ParallelCompactData::live_words_in_space(const MutableSpace* space, 405 HeapWord** full_region_prefix_end) { 406 size_t cur_region = addr_to_region_idx(space->bottom()); 407 const size_t end_region = addr_to_region_idx(region_align_up(space->top())); 408 size_t live_words = 0; 409 if (full_region_prefix_end == nullptr) { 410 for (/* empty */; cur_region < end_region; ++cur_region) { 411 live_words += _region_data[cur_region].data_size(); 412 } 413 } else { 414 bool first_set = false; 415 for (/* empty */; cur_region < end_region; ++cur_region) { 416 size_t live_words_in_region = _region_data[cur_region].data_size(); 417 if (!first_set && live_words_in_region < RegionSize) { 418 *full_region_prefix_end = region_to_addr(cur_region); 419 first_set = true; 420 } 421 live_words += live_words_in_region; 422 } 423 if (!first_set) { 424 // All regions are full of live objs. 425 assert(is_region_aligned(space->top()), "inv"); 426 *full_region_prefix_end = space->top(); 427 } 428 assert(*full_region_prefix_end != nullptr, "postcondition"); 429 assert(is_region_aligned(*full_region_prefix_end), "inv"); 430 assert(*full_region_prefix_end >= space->bottom(), "in-range"); 431 assert(*full_region_prefix_end <= space->top(), "in-range"); 432 } 433 return live_words; 434 } 435 436 bool ParallelCompactData::summarize(SplitInfo& split_info, 437 HeapWord* source_beg, HeapWord* source_end, 438 HeapWord** source_next, 439 HeapWord* target_beg, HeapWord* target_end, 440 HeapWord** target_next) 441 { 442 HeapWord* const source_next_val = source_next == nullptr ? nullptr : *source_next; 443 log_develop_trace(gc, compaction)( 444 "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT 445 "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT, 446 p2i(source_beg), p2i(source_end), p2i(source_next_val), 447 p2i(target_beg), p2i(target_end), p2i(*target_next)); 448 449 size_t cur_region = addr_to_region_idx(source_beg); 450 const size_t end_region = addr_to_region_idx(region_align_up(source_end)); 451 452 HeapWord *dest_addr = target_beg; 453 while (cur_region < end_region) { 454 // The destination must be set even if the region has no data. 455 _region_data[cur_region].set_destination(dest_addr); 456 457 size_t words = _region_data[cur_region].data_size(); 458 if (words > 0) { 459 // If cur_region does not fit entirely into the target space, find a point 460 // at which the source space can be 'split' so that part is copied to the 461 // target space and the rest is copied elsewhere. 462 if (dest_addr + words > target_end) { 463 assert(source_next != nullptr, "source_next is null when splitting"); 464 *source_next = summarize_split_space(cur_region, split_info, dest_addr, 465 target_end, target_next); 466 return false; 467 } 468 469 // Compute the destination_count for cur_region, and if necessary, update 470 // source_region for a destination region. The source_region field is 471 // updated if cur_region is the first (left-most) region to be copied to a 472 // destination region. 473 // 474 // The destination_count calculation is a bit subtle. A region that has 475 // data that compacts into itself does not count itself as a destination. 476 // This maintains the invariant that a zero count means the region is 477 // available and can be claimed and then filled. 478 uint destination_count = 0; 479 if (split_info.is_split(cur_region)) { 480 // The current region has been split: the partial object will be copied 481 // to one destination space and the remaining data will be copied to 482 // another destination space. Adjust the initial destination_count and, 483 // if necessary, set the source_region field if the partial object will 484 // cross a destination region boundary. 485 destination_count = split_info.destination_count(); 486 if (destination_count == 2) { 487 size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr()); 488 _region_data[dest_idx].set_source_region(cur_region); 489 } 490 } 491 492 HeapWord* const last_addr = dest_addr + words - 1; 493 const size_t dest_region_1 = addr_to_region_idx(dest_addr); 494 const size_t dest_region_2 = addr_to_region_idx(last_addr); 495 496 // Initially assume that the destination regions will be the same and 497 // adjust the value below if necessary. Under this assumption, if 498 // cur_region == dest_region_2, then cur_region will be compacted 499 // completely into itself. 500 destination_count += cur_region == dest_region_2 ? 0 : 1; 501 if (dest_region_1 != dest_region_2) { 502 // Destination regions differ; adjust destination_count. 503 destination_count += 1; 504 // Data from cur_region will be copied to the start of dest_region_2. 505 _region_data[dest_region_2].set_source_region(cur_region); 506 } else if (is_region_aligned(dest_addr)) { 507 // Data from cur_region will be copied to the start of the destination 508 // region. 509 _region_data[dest_region_1].set_source_region(cur_region); 510 } 511 512 _region_data[cur_region].set_destination_count(destination_count); 513 dest_addr += words; 514 } 515 516 ++cur_region; 517 } 518 519 *target_next = dest_addr; 520 return true; 521 } 522 523 #ifdef ASSERT 524 void ParallelCompactData::verify_clear() 525 { 526 const size_t* const beg = (const size_t*) _region_vspace->committed_low_addr(); 527 const size_t* const end = (const size_t*) _region_vspace->committed_high_addr(); 528 for (const size_t* p = beg; p < end; ++p) { 529 assert(*p == 0, "not zero"); 530 } 531 } 532 #endif // #ifdef ASSERT 533 534 STWGCTimer PSParallelCompact::_gc_timer; 535 ParallelOldTracer PSParallelCompact::_gc_tracer; 536 elapsedTimer PSParallelCompact::_accumulated_time; 537 unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0; 538 CollectorCounters* PSParallelCompact::_counters = nullptr; 539 ParMarkBitMap PSParallelCompact::_mark_bitmap; 540 ParallelCompactData PSParallelCompact::_summary_data; 541 542 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure; 543 544 class PCAdjustPointerClosure: public BasicOopIterateClosure { 545 template <typename T> 546 void do_oop_work(T* p) { PSParallelCompact::adjust_pointer(p); } 547 548 public: 549 virtual void do_oop(oop* p) { do_oop_work(p); } 550 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 551 552 virtual ReferenceIterationMode reference_iteration_mode() { return DO_FIELDS; } 553 }; 554 555 static PCAdjustPointerClosure pc_adjust_pointer_closure; 556 557 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); } 558 559 void PSParallelCompact::post_initialize() { 560 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 561 _span_based_discoverer.set_span(heap->reserved_region()); 562 _ref_processor = 563 new ReferenceProcessor(&_span_based_discoverer, 564 ParallelGCThreads, // mt processing degree 565 ParallelGCThreads, // mt discovery degree 566 false, // concurrent_discovery 567 &_is_alive_closure); // non-header is alive closure 568 569 _counters = new CollectorCounters("Parallel full collection pauses", 1); 570 571 // Initialize static fields in ParCompactionManager. 572 ParCompactionManager::initialize(mark_bitmap()); 573 } 574 575 bool PSParallelCompact::initialize_aux_data() { 576 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 577 MemRegion mr = heap->reserved_region(); 578 assert(mr.byte_size() != 0, "heap should be reserved"); 579 580 initialize_space_info(); 581 582 if (!_mark_bitmap.initialize(mr)) { 583 vm_shutdown_during_initialization( 584 err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel " 585 "garbage collection for the requested " SIZE_FORMAT "KB heap.", 586 _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K)); 587 return false; 588 } 589 590 if (!_summary_data.initialize(mr)) { 591 vm_shutdown_during_initialization( 592 err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel " 593 "garbage collection for the requested " SIZE_FORMAT "KB heap.", 594 _summary_data.reserved_byte_size()/K, mr.byte_size()/K)); 595 return false; 596 } 597 598 return true; 599 } 600 601 void PSParallelCompact::initialize_space_info() 602 { 603 memset(&_space_info, 0, sizeof(_space_info)); 604 605 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 606 PSYoungGen* young_gen = heap->young_gen(); 607 608 _space_info[old_space_id].set_space(heap->old_gen()->object_space()); 609 _space_info[eden_space_id].set_space(young_gen->eden_space()); 610 _space_info[from_space_id].set_space(young_gen->from_space()); 611 _space_info[to_space_id].set_space(young_gen->to_space()); 612 613 _space_info[old_space_id].set_start_array(heap->old_gen()->start_array()); 614 } 615 616 void 617 PSParallelCompact::clear_data_covering_space(SpaceId id) 618 { 619 // At this point, top is the value before GC, new_top() is the value that will 620 // be set at the end of GC. The marking bitmap is cleared to top; nothing 621 // should be marked above top. The summary data is cleared to the larger of 622 // top & new_top. 623 MutableSpace* const space = _space_info[id].space(); 624 HeapWord* const bot = space->bottom(); 625 HeapWord* const top = space->top(); 626 HeapWord* const max_top = MAX2(top, _space_info[id].new_top()); 627 628 _mark_bitmap.clear_range(bot, top); 629 630 const size_t beg_region = _summary_data.addr_to_region_idx(bot); 631 const size_t end_region = 632 _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top)); 633 _summary_data.clear_range(beg_region, end_region); 634 635 // Clear the data used to 'split' regions. 636 SplitInfo& split_info = _space_info[id].split_info(); 637 if (split_info.is_valid()) { 638 split_info.clear(); 639 } 640 DEBUG_ONLY(split_info.verify_clear();) 641 } 642 643 void PSParallelCompact::pre_compact() 644 { 645 // Update the from & to space pointers in space_info, since they are swapped 646 // at each young gen gc. Do the update unconditionally (even though a 647 // promotion failure does not swap spaces) because an unknown number of young 648 // collections will have swapped the spaces an unknown number of times. 649 GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer); 650 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 651 _space_info[from_space_id].set_space(heap->young_gen()->from_space()); 652 _space_info[to_space_id].set_space(heap->young_gen()->to_space()); 653 654 // Increment the invocation count 655 heap->increment_total_collections(true); 656 657 CodeCache::on_gc_marking_cycle_start(); 658 659 heap->print_heap_before_gc(); 660 heap->trace_heap_before_gc(&_gc_tracer); 661 662 // Fill in TLABs 663 heap->ensure_parsability(true); // retire TLABs 664 665 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) { 666 Universe::verify("Before GC"); 667 } 668 669 DEBUG_ONLY(mark_bitmap()->verify_clear();) 670 DEBUG_ONLY(summary_data().verify_clear();) 671 } 672 673 void PSParallelCompact::post_compact() 674 { 675 GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer); 676 ParCompactionManager::remove_all_shadow_regions(); 677 678 CodeCache::on_gc_marking_cycle_finish(); 679 CodeCache::arm_all_nmethods(); 680 681 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 682 // Clear the marking bitmap, summary data and split info. 683 clear_data_covering_space(SpaceId(id)); 684 { 685 MutableSpace* space = _space_info[id].space(); 686 HeapWord* top = space->top(); 687 HeapWord* new_top = _space_info[id].new_top(); 688 if (ZapUnusedHeapArea && new_top < top) { 689 space->mangle_region(MemRegion(new_top, top)); 690 } 691 // Update top(). Must be done after clearing the bitmap and summary data. 692 space->set_top(new_top); 693 } 694 } 695 696 ParCompactionManager::flush_all_string_dedup_requests(); 697 698 MutableSpace* const eden_space = _space_info[eden_space_id].space(); 699 MutableSpace* const from_space = _space_info[from_space_id].space(); 700 MutableSpace* const to_space = _space_info[to_space_id].space(); 701 702 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 703 bool eden_empty = eden_space->is_empty(); 704 705 // Update heap occupancy information which is used as input to the soft ref 706 // clearing policy at the next gc. 707 Universe::heap()->update_capacity_and_used_at_gc(); 708 709 bool young_gen_empty = eden_empty && from_space->is_empty() && 710 to_space->is_empty(); 711 712 PSCardTable* ct = heap->card_table(); 713 MemRegion old_mr = heap->old_gen()->committed(); 714 if (young_gen_empty) { 715 ct->clear_MemRegion(old_mr); 716 } else { 717 ct->dirty_MemRegion(old_mr); 718 } 719 720 { 721 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 722 GCTraceTime(Debug, gc, phases) t("Purge Class Loader Data", gc_timer()); 723 ClassLoaderDataGraph::purge(true /* at_safepoint */); 724 DEBUG_ONLY(MetaspaceUtils::verify();) 725 } 726 727 // Need to clear claim bits for the next mark. 728 ClassLoaderDataGraph::clear_claimed_marks(); 729 730 heap->prune_scavengable_nmethods(); 731 732 #if COMPILER2_OR_JVMCI 733 DerivedPointerTable::update_pointers(); 734 #endif 735 736 // Signal that we have completed a visit to all live objects. 737 Universe::heap()->record_whole_heap_examined_timestamp(); 738 } 739 740 HeapWord* PSParallelCompact::compute_dense_prefix_for_old_space(MutableSpace* old_space, 741 HeapWord* full_region_prefix_end) { 742 const size_t region_size = ParallelCompactData::RegionSize; 743 const ParallelCompactData& sd = summary_data(); 744 745 // Iteration starts with the region *after* the full-region-prefix-end. 746 const RegionData* const start_region = sd.addr_to_region_ptr(full_region_prefix_end); 747 // If final region is not full, iteration stops before that region, 748 // because fill_dense_prefix_end assumes that prefix_end <= top. 749 const RegionData* const end_region = sd.addr_to_region_ptr(old_space->top()); 750 assert(start_region <= end_region, "inv"); 751 752 size_t max_waste = old_space->capacity_in_words() * (MarkSweepDeadRatio / 100.0); 753 const RegionData* cur_region = start_region; 754 for (/* empty */; cur_region < end_region; ++cur_region) { 755 assert(region_size >= cur_region->data_size(), "inv"); 756 size_t dead_size = region_size - cur_region->data_size(); 757 if (max_waste < dead_size) { 758 break; 759 } 760 max_waste -= dead_size; 761 } 762 763 HeapWord* const prefix_end = sd.region_to_addr(cur_region); 764 assert(sd.is_region_aligned(prefix_end), "postcondition"); 765 assert(prefix_end >= full_region_prefix_end, "in-range"); 766 assert(prefix_end <= old_space->top(), "in-range"); 767 return prefix_end; 768 } 769 770 void PSParallelCompact::fill_dense_prefix_end(SpaceId id) { 771 // Comparing two sizes to decide if filling is required: 772 // 773 // The size of the filler (min-obj-size) is 2 heap words with the default 774 // MinObjAlignment, since both markword and klass take 1 heap word. 775 // 776 // The size of the gap (if any) right before dense-prefix-end is 777 // MinObjAlignment. 778 // 779 // Need to fill in the gap only if it's smaller than min-obj-size, and the 780 // filler obj will extend to next region. 781 782 // Note: If min-fill-size decreases to 1, this whole method becomes redundant. 783 assert(CollectedHeap::min_fill_size() >= 2, "inv"); 784 #ifndef _LP64 785 // In 32-bit system, each heap word is 4 bytes, so MinObjAlignment == 2. 786 // The gap is always equal to min-fill-size, so nothing to do. 787 return; 788 #endif 789 if (MinObjAlignment > 1) { 790 return; 791 } 792 assert(CollectedHeap::min_fill_size() == 2, "inv"); 793 HeapWord* const dense_prefix_end = dense_prefix(id); 794 assert(_summary_data.is_region_aligned(dense_prefix_end), "precondition"); 795 assert(dense_prefix_end <= space(id)->top(), "precondition"); 796 if (dense_prefix_end == space(id)->top()) { 797 // Must not have single-word gap right before prefix-end/top. 798 return; 799 } 800 RegionData* const region_after_dense_prefix = _summary_data.addr_to_region_ptr(dense_prefix_end); 801 802 if (region_after_dense_prefix->partial_obj_size() != 0 || 803 _mark_bitmap.is_marked(dense_prefix_end)) { 804 // The region after the dense prefix starts with live bytes. 805 return; 806 } 807 808 HeapWord* block_start = start_array(id)->block_start_reaching_into_card(dense_prefix_end); 809 if (block_start == dense_prefix_end - 1) { 810 assert(!_mark_bitmap.is_marked(block_start), "inv"); 811 // There is exactly one heap word gap right before the dense prefix end, so we need a filler object. 812 // The filler object will extend into region_after_dense_prefix. 813 const size_t obj_len = 2; // min-fill-size 814 HeapWord* const obj_beg = dense_prefix_end - 1; 815 CollectedHeap::fill_with_object(obj_beg, obj_len); 816 _mark_bitmap.mark_obj(obj_beg); 817 _summary_data.addr_to_region_ptr(obj_beg)->add_live_obj(1); 818 region_after_dense_prefix->set_partial_obj_size(1); 819 region_after_dense_prefix->set_partial_obj_addr(obj_beg); 820 assert(start_array(id) != nullptr, "sanity"); 821 start_array(id)->update_for_block(obj_beg, obj_beg + obj_len); 822 } 823 } 824 825 bool PSParallelCompact::check_maximum_compaction(size_t total_live_words, 826 MutableSpace* const old_space, 827 HeapWord* full_region_prefix_end) { 828 829 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 830 831 // Check System.GC 832 bool is_max_on_system_gc = UseMaximumCompactionOnSystemGC 833 && GCCause::is_user_requested_gc(heap->gc_cause()); 834 835 // Check if all live objs are larger than old-gen. 836 const bool is_old_gen_overflowing = (total_live_words > old_space->capacity_in_words()); 837 838 // JVM flags 839 const uint total_invocations = heap->total_full_collections(); 840 assert(total_invocations >= _maximum_compaction_gc_num, "sanity"); 841 const size_t gcs_since_max = total_invocations - _maximum_compaction_gc_num; 842 const bool is_interval_ended = gcs_since_max > HeapMaximumCompactionInterval; 843 844 // If all regions in old-gen are full 845 const bool is_region_full = 846 full_region_prefix_end >= _summary_data.region_align_down(old_space->top()); 847 848 if (is_max_on_system_gc || is_old_gen_overflowing || is_interval_ended || is_region_full) { 849 _maximum_compaction_gc_num = total_invocations; 850 return true; 851 } 852 853 return false; 854 } 855 856 void PSParallelCompact::summary_phase() 857 { 858 GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer); 859 860 MutableSpace* const old_space = _space_info[old_space_id].space(); 861 { 862 size_t total_live_words = 0; 863 HeapWord* full_region_prefix_end = nullptr; 864 { 865 // old-gen 866 size_t live_words = _summary_data.live_words_in_space(old_space, 867 &full_region_prefix_end); 868 total_live_words += live_words; 869 } 870 // young-gen 871 for (uint i = eden_space_id; i < last_space_id; ++i) { 872 const MutableSpace* space = _space_info[i].space(); 873 size_t live_words = _summary_data.live_words_in_space(space); 874 total_live_words += live_words; 875 _space_info[i].set_new_top(space->bottom() + live_words); 876 _space_info[i].set_dense_prefix(space->bottom()); 877 } 878 879 bool maximum_compaction = check_maximum_compaction(total_live_words, 880 old_space, 881 full_region_prefix_end); 882 HeapWord* dense_prefix_end = 883 maximum_compaction ? full_region_prefix_end 884 : compute_dense_prefix_for_old_space(old_space, 885 full_region_prefix_end); 886 SpaceId id = old_space_id; 887 _space_info[id].set_dense_prefix(dense_prefix_end); 888 889 if (dense_prefix_end != old_space->bottom()) { 890 fill_dense_prefix_end(id); 891 _summary_data.summarize_dense_prefix(old_space->bottom(), dense_prefix_end); 892 } 893 _summary_data.summarize(_space_info[id].split_info(), 894 dense_prefix_end, old_space->top(), nullptr, 895 dense_prefix_end, old_space->end(), 896 _space_info[id].new_top_addr()); 897 } 898 899 // Summarize the remaining spaces in the young gen. The initial target space 900 // is the old gen. If a space does not fit entirely into the target, then the 901 // remainder is compacted into the space itself and that space becomes the new 902 // target. 903 SpaceId dst_space_id = old_space_id; 904 HeapWord* dst_space_end = old_space->end(); 905 HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr(); 906 for (unsigned int id = eden_space_id; id < last_space_id; ++id) { 907 const MutableSpace* space = _space_info[id].space(); 908 const size_t live = pointer_delta(_space_info[id].new_top(), 909 space->bottom()); 910 const size_t available = pointer_delta(dst_space_end, *new_top_addr); 911 912 if (live > 0 && live <= available) { 913 // All the live data will fit. 914 bool done = _summary_data.summarize(_space_info[id].split_info(), 915 space->bottom(), space->top(), 916 nullptr, 917 *new_top_addr, dst_space_end, 918 new_top_addr); 919 assert(done, "space must fit into old gen"); 920 921 // Reset the new_top value for the space. 922 _space_info[id].set_new_top(space->bottom()); 923 } else if (live > 0) { 924 // Attempt to fit part of the source space into the target space. 925 HeapWord* next_src_addr = nullptr; 926 bool done = _summary_data.summarize(_space_info[id].split_info(), 927 space->bottom(), space->top(), 928 &next_src_addr, 929 *new_top_addr, dst_space_end, 930 new_top_addr); 931 assert(!done, "space should not fit into old gen"); 932 assert(next_src_addr != nullptr, "sanity"); 933 934 // The source space becomes the new target, so the remainder is compacted 935 // within the space itself. 936 dst_space_id = SpaceId(id); 937 dst_space_end = space->end(); 938 new_top_addr = _space_info[id].new_top_addr(); 939 done = _summary_data.summarize(_space_info[id].split_info(), 940 next_src_addr, space->top(), 941 nullptr, 942 space->bottom(), dst_space_end, 943 new_top_addr); 944 assert(done, "space must fit when compacted into itself"); 945 assert(*new_top_addr <= space->top(), "usage should not grow"); 946 } 947 } 948 } 949 950 // This method should contain all heap-specific policy for invoking a full 951 // collection. invoke_no_policy() will only attempt to compact the heap; it 952 // will do nothing further. If we need to bail out for policy reasons, scavenge 953 // before full gc, or any other specialized behavior, it needs to be added here. 954 // 955 // Note that this method should only be called from the vm_thread while at a 956 // safepoint. 957 // 958 // Note that the all_soft_refs_clear flag in the soft ref policy 959 // may be true because this method can be called without intervening 960 // activity. For example when the heap space is tight and full measure 961 // are being taken to free space. 962 bool PSParallelCompact::invoke(bool clear_all_soft_refs) { 963 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); 964 assert(Thread::current() == (Thread*)VMThread::vm_thread(), 965 "should be in vm thread"); 966 967 SvcGCMarker sgcm(SvcGCMarker::FULL); 968 IsSTWGCActiveMark mark; 969 970 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 971 clear_all_soft_refs = clear_all_soft_refs 972 || heap->soft_ref_policy()->should_clear_all_soft_refs(); 973 974 return PSParallelCompact::invoke_no_policy(clear_all_soft_refs); 975 } 976 977 // This method contains no policy. You should probably 978 // be calling invoke() instead. 979 bool PSParallelCompact::invoke_no_policy(bool clear_all_soft_refs) { 980 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); 981 assert(ref_processor() != nullptr, "Sanity"); 982 983 if (GCLocker::check_active_before_gc()) { 984 return false; 985 } 986 987 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 988 989 GCIdMark gc_id_mark; 990 _gc_timer.register_gc_start(); 991 _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start()); 992 993 GCCause::Cause gc_cause = heap->gc_cause(); 994 PSYoungGen* young_gen = heap->young_gen(); 995 PSOldGen* old_gen = heap->old_gen(); 996 PSAdaptiveSizePolicy* size_policy = heap->size_policy(); 997 998 // The scope of casr should end after code that can change 999 // SoftRefPolicy::_should_clear_all_soft_refs. 1000 ClearedAllSoftRefs casr(clear_all_soft_refs, 1001 heap->soft_ref_policy()); 1002 1003 // Make sure data structures are sane, make the heap parsable, and do other 1004 // miscellaneous bookkeeping. 1005 pre_compact(); 1006 1007 const PreGenGCValues pre_gc_values = heap->get_pre_gc_values(); 1008 1009 { 1010 const uint active_workers = 1011 WorkerPolicy::calc_active_workers(ParallelScavengeHeap::heap()->workers().max_workers(), 1012 ParallelScavengeHeap::heap()->workers().active_workers(), 1013 Threads::number_of_non_daemon_threads()); 1014 ParallelScavengeHeap::heap()->workers().set_active_workers(active_workers); 1015 1016 GCTraceCPUTime tcpu(&_gc_tracer); 1017 GCTraceTime(Info, gc) tm("Pause Full", nullptr, gc_cause, true); 1018 1019 heap->pre_full_gc_dump(&_gc_timer); 1020 1021 TraceCollectorStats tcs(counters()); 1022 TraceMemoryManagerStats tms(heap->old_gc_manager(), gc_cause, "end of major GC"); 1023 1024 if (log_is_enabled(Debug, gc, heap, exit)) { 1025 accumulated_time()->start(); 1026 } 1027 1028 // Let the size policy know we're starting 1029 size_policy->major_collection_begin(); 1030 1031 #if COMPILER2_OR_JVMCI 1032 DerivedPointerTable::clear(); 1033 #endif 1034 1035 ref_processor()->start_discovery(clear_all_soft_refs); 1036 1037 ClassUnloadingContext ctx(1 /* num_nmethod_unlink_workers */, 1038 false /* unregister_nmethods_during_purge */, 1039 false /* lock_nmethod_free_separately */); 1040 1041 marking_phase(&_gc_tracer); 1042 1043 summary_phase(); 1044 1045 #if COMPILER2_OR_JVMCI 1046 assert(DerivedPointerTable::is_active(), "Sanity"); 1047 DerivedPointerTable::set_active(false); 1048 #endif 1049 1050 forward_to_new_addr(); 1051 1052 adjust_pointers(); 1053 1054 compact(); 1055 1056 ParCompactionManager::_preserved_marks_set->restore(&ParallelScavengeHeap::heap()->workers()); 1057 1058 ParCompactionManager::verify_all_region_stack_empty(); 1059 1060 // Reset the mark bitmap, summary data, and do other bookkeeping. Must be 1061 // done before resizing. 1062 post_compact(); 1063 1064 // Let the size policy know we're done 1065 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause); 1066 1067 if (UseAdaptiveSizePolicy) { 1068 log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections()); 1069 log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT, 1070 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes()); 1071 1072 // Don't check if the size_policy is ready here. Let 1073 // the size_policy check that internally. 1074 if (UseAdaptiveGenerationSizePolicyAtMajorCollection && 1075 AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) { 1076 // Swap the survivor spaces if from_space is empty. The 1077 // resize_young_gen() called below is normally used after 1078 // a successful young GC and swapping of survivor spaces; 1079 // otherwise, it will fail to resize the young gen with 1080 // the current implementation. 1081 if (young_gen->from_space()->is_empty()) { 1082 young_gen->from_space()->clear(SpaceDecorator::Mangle); 1083 young_gen->swap_spaces(); 1084 } 1085 1086 // Calculate optimal free space amounts 1087 assert(young_gen->max_gen_size() > 1088 young_gen->from_space()->capacity_in_bytes() + 1089 young_gen->to_space()->capacity_in_bytes(), 1090 "Sizes of space in young gen are out-of-bounds"); 1091 1092 size_t young_live = young_gen->used_in_bytes(); 1093 size_t eden_live = young_gen->eden_space()->used_in_bytes(); 1094 size_t old_live = old_gen->used_in_bytes(); 1095 size_t cur_eden = young_gen->eden_space()->capacity_in_bytes(); 1096 size_t max_old_gen_size = old_gen->max_gen_size(); 1097 size_t max_eden_size = young_gen->max_gen_size() - 1098 young_gen->from_space()->capacity_in_bytes() - 1099 young_gen->to_space()->capacity_in_bytes(); 1100 1101 // Used for diagnostics 1102 size_policy->clear_generation_free_space_flags(); 1103 1104 size_policy->compute_generations_free_space(young_live, 1105 eden_live, 1106 old_live, 1107 cur_eden, 1108 max_old_gen_size, 1109 max_eden_size, 1110 true /* full gc*/); 1111 1112 size_policy->check_gc_overhead_limit(eden_live, 1113 max_old_gen_size, 1114 max_eden_size, 1115 true /* full gc*/, 1116 gc_cause, 1117 heap->soft_ref_policy()); 1118 1119 size_policy->decay_supplemental_growth(true /* full gc*/); 1120 1121 heap->resize_old_gen( 1122 size_policy->calculated_old_free_size_in_bytes()); 1123 1124 heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(), 1125 size_policy->calculated_survivor_size_in_bytes()); 1126 } 1127 1128 log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections()); 1129 } 1130 1131 if (UsePerfData) { 1132 PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters(); 1133 counters->update_counters(); 1134 counters->update_old_capacity(old_gen->capacity_in_bytes()); 1135 counters->update_young_capacity(young_gen->capacity_in_bytes()); 1136 } 1137 1138 heap->resize_all_tlabs(); 1139 1140 // Resize the metaspace capacity after a collection 1141 MetaspaceGC::compute_new_size(); 1142 1143 if (log_is_enabled(Debug, gc, heap, exit)) { 1144 accumulated_time()->stop(); 1145 } 1146 1147 heap->print_heap_change(pre_gc_values); 1148 1149 // Track memory usage and detect low memory 1150 MemoryService::track_memory_usage(); 1151 heap->update_counters(); 1152 1153 heap->post_full_gc_dump(&_gc_timer); 1154 } 1155 1156 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) { 1157 Universe::verify("After GC"); 1158 } 1159 1160 heap->print_heap_after_gc(); 1161 heap->trace_heap_after_gc(&_gc_tracer); 1162 1163 AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections()); 1164 1165 _gc_timer.register_gc_end(); 1166 1167 _gc_tracer.report_dense_prefix(dense_prefix(old_space_id)); 1168 _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions()); 1169 1170 return true; 1171 } 1172 1173 class PCAddThreadRootsMarkingTaskClosure : public ThreadClosure { 1174 private: 1175 uint _worker_id; 1176 1177 public: 1178 PCAddThreadRootsMarkingTaskClosure(uint worker_id) : _worker_id(worker_id) { } 1179 void do_thread(Thread* thread) { 1180 assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc"); 1181 1182 ResourceMark rm; 1183 1184 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(_worker_id); 1185 1186 MarkingNMethodClosure mark_and_push_in_blobs(&cm->_mark_and_push_closure, 1187 !NMethodToOopClosure::FixRelocations, 1188 true /* keepalive nmethods */); 1189 1190 thread->oops_do(&cm->_mark_and_push_closure, &mark_and_push_in_blobs); 1191 1192 // Do the real work 1193 cm->follow_marking_stacks(); 1194 } 1195 }; 1196 1197 void steal_marking_work(TaskTerminator& terminator, uint worker_id) { 1198 assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc"); 1199 1200 ParCompactionManager* cm = 1201 ParCompactionManager::gc_thread_compaction_manager(worker_id); 1202 1203 do { 1204 oop obj = nullptr; 1205 ObjArrayTask task; 1206 if (ParCompactionManager::steal_objarray(worker_id, task)) { 1207 cm->follow_array((objArrayOop)task.obj(), task.index()); 1208 } else if (ParCompactionManager::steal(worker_id, obj)) { 1209 cm->follow_contents(obj); 1210 } 1211 cm->follow_marking_stacks(); 1212 } while (!terminator.offer_termination()); 1213 } 1214 1215 class MarkFromRootsTask : public WorkerTask { 1216 StrongRootsScope _strong_roots_scope; // needed for Threads::possibly_parallel_threads_do 1217 OopStorageSetStrongParState<false /* concurrent */, false /* is_const */> _oop_storage_set_par_state; 1218 TaskTerminator _terminator; 1219 uint _active_workers; 1220 1221 public: 1222 MarkFromRootsTask(uint active_workers) : 1223 WorkerTask("MarkFromRootsTask"), 1224 _strong_roots_scope(active_workers), 1225 _terminator(active_workers, ParCompactionManager::oop_task_queues()), 1226 _active_workers(active_workers) {} 1227 1228 virtual void work(uint worker_id) { 1229 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id); 1230 cm->create_marking_stats_cache(); 1231 { 1232 CLDToOopClosure cld_closure(&cm->_mark_and_push_closure, ClassLoaderData::_claim_stw_fullgc_mark); 1233 ClassLoaderDataGraph::always_strong_cld_do(&cld_closure); 1234 1235 // Do the real work 1236 cm->follow_marking_stacks(); 1237 } 1238 1239 { 1240 PCAddThreadRootsMarkingTaskClosure closure(worker_id); 1241 Threads::possibly_parallel_threads_do(_active_workers > 1 /* is_par */, &closure); 1242 } 1243 1244 // Mark from OopStorages 1245 { 1246 _oop_storage_set_par_state.oops_do(&cm->_mark_and_push_closure); 1247 // Do the real work 1248 cm->follow_marking_stacks(); 1249 } 1250 1251 if (_active_workers > 1) { 1252 steal_marking_work(_terminator, worker_id); 1253 } 1254 } 1255 }; 1256 1257 class ParallelCompactRefProcProxyTask : public RefProcProxyTask { 1258 TaskTerminator _terminator; 1259 1260 public: 1261 ParallelCompactRefProcProxyTask(uint max_workers) 1262 : RefProcProxyTask("ParallelCompactRefProcProxyTask", max_workers), 1263 _terminator(_max_workers, ParCompactionManager::oop_task_queues()) {} 1264 1265 void work(uint worker_id) override { 1266 assert(worker_id < _max_workers, "sanity"); 1267 ParCompactionManager* cm = (_tm == RefProcThreadModel::Single) ? ParCompactionManager::get_vmthread_cm() : ParCompactionManager::gc_thread_compaction_manager(worker_id); 1268 BarrierEnqueueDiscoveredFieldClosure enqueue; 1269 ParCompactionManager::FollowStackClosure complete_gc(cm, (_tm == RefProcThreadModel::Single) ? nullptr : &_terminator, worker_id); 1270 _rp_task->rp_work(worker_id, PSParallelCompact::is_alive_closure(), &cm->_mark_and_push_closure, &enqueue, &complete_gc); 1271 } 1272 1273 void prepare_run_task_hook() override { 1274 _terminator.reset_for_reuse(_queue_count); 1275 } 1276 }; 1277 1278 static void flush_marking_stats_cache(const uint num_workers) { 1279 for (uint i = 0; i < num_workers; ++i) { 1280 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(i); 1281 cm->flush_and_destroy_marking_stats_cache(); 1282 } 1283 } 1284 1285 void PSParallelCompact::marking_phase(ParallelOldTracer *gc_tracer) { 1286 // Recursively traverse all live objects and mark them 1287 GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer); 1288 1289 uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers(); 1290 1291 ClassLoaderDataGraph::verify_claimed_marks_cleared(ClassLoaderData::_claim_stw_fullgc_mark); 1292 { 1293 GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer); 1294 1295 MarkFromRootsTask task(active_gc_threads); 1296 ParallelScavengeHeap::heap()->workers().run_task(&task); 1297 } 1298 1299 // Process reference objects found during marking 1300 { 1301 GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer); 1302 1303 ReferenceProcessorStats stats; 1304 ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->max_num_queues()); 1305 1306 ref_processor()->set_active_mt_degree(active_gc_threads); 1307 ParallelCompactRefProcProxyTask task(ref_processor()->max_num_queues()); 1308 stats = ref_processor()->process_discovered_references(task, pt); 1309 1310 gc_tracer->report_gc_reference_stats(stats); 1311 pt.print_all_references(); 1312 } 1313 1314 { 1315 GCTraceTime(Debug, gc, phases) tm("Flush Marking Stats", &_gc_timer); 1316 1317 flush_marking_stats_cache(active_gc_threads); 1318 } 1319 1320 // This is the point where the entire marking should have completed. 1321 ParCompactionManager::verify_all_marking_stack_empty(); 1322 1323 { 1324 GCTraceTime(Debug, gc, phases) tm("Weak Processing", &_gc_timer); 1325 WeakProcessor::weak_oops_do(&ParallelScavengeHeap::heap()->workers(), 1326 is_alive_closure(), 1327 &do_nothing_cl, 1328 1); 1329 } 1330 1331 { 1332 GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer); 1333 1334 ClassUnloadingContext* ctx = ClassUnloadingContext::context(); 1335 1336 bool unloading_occurred; 1337 { 1338 CodeCache::UnlinkingScope scope(is_alive_closure()); 1339 1340 // Follow system dictionary roots and unload classes. 1341 unloading_occurred = SystemDictionary::do_unloading(&_gc_timer); 1342 1343 // Unload nmethods. 1344 CodeCache::do_unloading(unloading_occurred); 1345 } 1346 1347 { 1348 GCTraceTime(Debug, gc, phases) t("Purge Unlinked NMethods", gc_timer()); 1349 // Release unloaded nmethod's memory. 1350 ctx->purge_nmethods(); 1351 } 1352 { 1353 GCTraceTime(Debug, gc, phases) ur("Unregister NMethods", &_gc_timer); 1354 ParallelScavengeHeap::heap()->prune_unlinked_nmethods(); 1355 } 1356 { 1357 GCTraceTime(Debug, gc, phases) t("Free Code Blobs", gc_timer()); 1358 ctx->free_nmethods(); 1359 } 1360 1361 // Prune dead klasses from subklass/sibling/implementor lists. 1362 Klass::clean_weak_klass_links(unloading_occurred); 1363 1364 // Clean JVMCI metadata handles. 1365 JVMCI_ONLY(JVMCI::do_unloading(unloading_occurred)); 1366 } 1367 1368 { 1369 GCTraceTime(Debug, gc, phases) tm("Report Object Count", &_gc_timer); 1370 _gc_tracer.report_object_count_after_gc(is_alive_closure(), &ParallelScavengeHeap::heap()->workers()); 1371 } 1372 #if TASKQUEUE_STATS 1373 ParCompactionManager::oop_task_queues()->print_and_reset_taskqueue_stats("Oop Queue"); 1374 ParCompactionManager::_objarray_task_queues->print_and_reset_taskqueue_stats("ObjArrayOop Queue"); 1375 #endif 1376 } 1377 1378 template<typename Func> 1379 void PSParallelCompact::adjust_in_space_helper(SpaceId id, volatile uint* claim_counter, Func&& on_stripe) { 1380 MutableSpace* sp = PSParallelCompact::space(id); 1381 HeapWord* const bottom = sp->bottom(); 1382 HeapWord* const top = sp->top(); 1383 if (bottom == top) { 1384 return; 1385 } 1386 1387 const uint num_regions_per_stripe = 2; 1388 const size_t region_size = ParallelCompactData::RegionSize; 1389 const size_t stripe_size = num_regions_per_stripe * region_size; 1390 1391 while (true) { 1392 uint counter = Atomic::fetch_then_add(claim_counter, num_regions_per_stripe); 1393 HeapWord* cur_stripe = bottom + counter * region_size; 1394 if (cur_stripe >= top) { 1395 break; 1396 } 1397 HeapWord* stripe_end = MIN2(cur_stripe + stripe_size, top); 1398 on_stripe(cur_stripe, stripe_end); 1399 } 1400 } 1401 1402 void PSParallelCompact::adjust_in_old_space(volatile uint* claim_counter) { 1403 // Regions in old-space shouldn't be split. 1404 assert(!_space_info[old_space_id].split_info().is_valid(), "inv"); 1405 1406 auto scan_obj_with_limit = [&] (HeapWord* obj_start, HeapWord* left, HeapWord* right) { 1407 assert(mark_bitmap()->is_marked(obj_start), "inv"); 1408 oop obj = cast_to_oop(obj_start); 1409 return obj->oop_iterate_size(&pc_adjust_pointer_closure, MemRegion(left, right)); 1410 }; 1411 1412 adjust_in_space_helper(old_space_id, claim_counter, [&] (HeapWord* stripe_start, HeapWord* stripe_end) { 1413 assert(_summary_data.is_region_aligned(stripe_start), "inv"); 1414 RegionData* cur_region = _summary_data.addr_to_region_ptr(stripe_start); 1415 HeapWord* obj_start; 1416 if (cur_region->partial_obj_size() != 0) { 1417 obj_start = cur_region->partial_obj_addr(); 1418 obj_start += scan_obj_with_limit(obj_start, stripe_start, stripe_end); 1419 } else { 1420 obj_start = stripe_start; 1421 } 1422 1423 while (obj_start < stripe_end) { 1424 obj_start = mark_bitmap()->find_obj_beg(obj_start, stripe_end); 1425 if (obj_start >= stripe_end) { 1426 break; 1427 } 1428 obj_start += scan_obj_with_limit(obj_start, stripe_start, stripe_end); 1429 } 1430 }); 1431 } 1432 1433 void PSParallelCompact::adjust_in_young_space(SpaceId id, volatile uint* claim_counter) { 1434 adjust_in_space_helper(id, claim_counter, [](HeapWord* stripe_start, HeapWord* stripe_end) { 1435 HeapWord* obj_start = stripe_start; 1436 while (obj_start < stripe_end) { 1437 obj_start = mark_bitmap()->find_obj_beg(obj_start, stripe_end); 1438 if (obj_start >= stripe_end) { 1439 break; 1440 } 1441 oop obj = cast_to_oop(obj_start); 1442 obj_start += obj->oop_iterate_size(&pc_adjust_pointer_closure); 1443 } 1444 }); 1445 } 1446 1447 void PSParallelCompact::adjust_pointers_in_spaces(uint worker_id, volatile uint* claim_counters) { 1448 auto start_time = Ticks::now(); 1449 adjust_in_old_space(&claim_counters[0]); 1450 for (uint id = eden_space_id; id < last_space_id; ++id) { 1451 adjust_in_young_space(SpaceId(id), &claim_counters[id]); 1452 } 1453 log_trace(gc, phases)("adjust_pointers_in_spaces worker %u: %.3f ms", worker_id, (Ticks::now() - start_time).seconds() * 1000); 1454 } 1455 1456 class PSAdjustTask final : public WorkerTask { 1457 SubTasksDone _sub_tasks; 1458 WeakProcessor::Task _weak_proc_task; 1459 OopStorageSetStrongParState<false, false> _oop_storage_iter; 1460 uint _nworkers; 1461 volatile uint _claim_counters[PSParallelCompact::last_space_id] = {}; 1462 1463 enum PSAdjustSubTask { 1464 PSAdjustSubTask_code_cache, 1465 1466 PSAdjustSubTask_num_elements 1467 }; 1468 1469 public: 1470 PSAdjustTask(uint nworkers) : 1471 WorkerTask("PSAdjust task"), 1472 _sub_tasks(PSAdjustSubTask_num_elements), 1473 _weak_proc_task(nworkers), 1474 _nworkers(nworkers) { 1475 1476 ClassLoaderDataGraph::verify_claimed_marks_cleared(ClassLoaderData::_claim_stw_fullgc_adjust); 1477 if (nworkers > 1) { 1478 Threads::change_thread_claim_token(); 1479 } 1480 } 1481 1482 ~PSAdjustTask() { 1483 Threads::assert_all_threads_claimed(); 1484 } 1485 1486 void work(uint worker_id) { 1487 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id); 1488 cm->preserved_marks()->adjust_during_full_gc(); 1489 { 1490 // adjust pointers in all spaces 1491 PSParallelCompact::adjust_pointers_in_spaces(worker_id, _claim_counters); 1492 } 1493 { 1494 ResourceMark rm; 1495 Threads::possibly_parallel_oops_do(_nworkers > 1, &pc_adjust_pointer_closure, nullptr); 1496 } 1497 _oop_storage_iter.oops_do(&pc_adjust_pointer_closure); 1498 { 1499 CLDToOopClosure cld_closure(&pc_adjust_pointer_closure, ClassLoaderData::_claim_stw_fullgc_adjust); 1500 ClassLoaderDataGraph::cld_do(&cld_closure); 1501 } 1502 { 1503 AlwaysTrueClosure always_alive; 1504 _weak_proc_task.work(worker_id, &always_alive, &pc_adjust_pointer_closure); 1505 } 1506 if (_sub_tasks.try_claim_task(PSAdjustSubTask_code_cache)) { 1507 NMethodToOopClosure adjust_code(&pc_adjust_pointer_closure, NMethodToOopClosure::FixRelocations); 1508 CodeCache::nmethods_do(&adjust_code); 1509 } 1510 _sub_tasks.all_tasks_claimed(); 1511 } 1512 }; 1513 1514 void PSParallelCompact::adjust_pointers() { 1515 // Adjust the pointers to reflect the new locations 1516 GCTraceTime(Info, gc, phases) tm("Adjust Pointers", &_gc_timer); 1517 uint nworkers = ParallelScavengeHeap::heap()->workers().active_workers(); 1518 PSAdjustTask task(nworkers); 1519 ParallelScavengeHeap::heap()->workers().run_task(&task); 1520 } 1521 1522 // Split [start, end) evenly for a number of workers and return the 1523 // range for worker_id. 1524 static void split_regions_for_worker(size_t start, size_t end, 1525 uint worker_id, uint num_workers, 1526 size_t* worker_start, size_t* worker_end) { 1527 assert(start < end, "precondition"); 1528 assert(num_workers > 0, "precondition"); 1529 assert(worker_id < num_workers, "precondition"); 1530 1531 size_t num_regions = end - start; 1532 size_t num_regions_per_worker = num_regions / num_workers; 1533 size_t remainder = num_regions % num_workers; 1534 // The first few workers will get one extra. 1535 *worker_start = start + worker_id * num_regions_per_worker 1536 + MIN2(checked_cast<size_t>(worker_id), remainder); 1537 *worker_end = *worker_start + num_regions_per_worker 1538 + (worker_id < remainder ? 1 : 0); 1539 } 1540 1541 void PSParallelCompact::forward_to_new_addr() { 1542 GCTraceTime(Info, gc, phases) tm("Forward", &_gc_timer); 1543 uint nworkers = ParallelScavengeHeap::heap()->workers().active_workers(); 1544 1545 struct ForwardTask final : public WorkerTask { 1546 uint _num_workers; 1547 1548 explicit ForwardTask(uint num_workers) : 1549 WorkerTask("PSForward task"), 1550 _num_workers(num_workers) {} 1551 1552 void work(uint worker_id) override { 1553 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id); 1554 for (uint id = old_space_id; id < last_space_id; ++id) { 1555 MutableSpace* sp = PSParallelCompact::space(SpaceId(id)); 1556 HeapWord* dense_prefix_addr = dense_prefix(SpaceId(id)); 1557 HeapWord* top = sp->top(); 1558 1559 if (dense_prefix_addr == top) { 1560 continue; 1561 } 1562 1563 size_t dense_prefix_region = _summary_data.addr_to_region_idx(dense_prefix_addr); 1564 size_t top_region = _summary_data.addr_to_region_idx(_summary_data.region_align_up(top)); 1565 size_t start_region; 1566 size_t end_region; 1567 split_regions_for_worker(dense_prefix_region, top_region, 1568 worker_id, _num_workers, 1569 &start_region, &end_region); 1570 for (size_t cur_region = start_region; cur_region < end_region; ++cur_region) { 1571 RegionData* region_ptr = _summary_data.region(cur_region); 1572 size_t live_words = region_ptr->partial_obj_size(); 1573 1574 if (live_words == ParallelCompactData::RegionSize) { 1575 // No obj-start 1576 continue; 1577 } 1578 1579 HeapWord* region_start = _summary_data.region_to_addr(cur_region); 1580 HeapWord* region_end = region_start + ParallelCompactData::RegionSize; 1581 1582 HeapWord* cur_addr = region_start + live_words; 1583 1584 HeapWord* destination = region_ptr->destination(); 1585 while (cur_addr < region_end) { 1586 cur_addr = mark_bitmap()->find_obj_beg(cur_addr, region_end); 1587 if (cur_addr >= region_end) { 1588 break; 1589 } 1590 assert(mark_bitmap()->is_marked(cur_addr), "inv"); 1591 HeapWord* new_addr = destination + live_words; 1592 oop obj = cast_to_oop(cur_addr); 1593 if (new_addr != cur_addr) { 1594 cm->preserved_marks()->push_if_necessary(obj, obj->mark()); 1595 obj->forward_to(cast_to_oop(new_addr)); 1596 } 1597 size_t obj_size = obj->size(); 1598 live_words += obj_size; 1599 cur_addr += obj_size; 1600 } 1601 } 1602 } 1603 } 1604 } task(nworkers); 1605 1606 ParallelScavengeHeap::heap()->workers().run_task(&task); 1607 debug_only(verify_forward();) 1608 } 1609 1610 #ifdef ASSERT 1611 void PSParallelCompact::verify_forward() { 1612 HeapWord* old_dense_prefix_addr = dense_prefix(SpaceId(old_space_id)); 1613 RegionData* old_region = _summary_data.region(_summary_data.addr_to_region_idx(old_dense_prefix_addr)); 1614 HeapWord* bump_ptr = old_region->partial_obj_size() != 0 1615 ? old_dense_prefix_addr + old_region->partial_obj_size() 1616 : old_dense_prefix_addr; 1617 SpaceId bump_ptr_space = old_space_id; 1618 1619 for (uint id = old_space_id; id < last_space_id; ++id) { 1620 MutableSpace* sp = PSParallelCompact::space(SpaceId(id)); 1621 HeapWord* dense_prefix_addr = dense_prefix(SpaceId(id)); 1622 HeapWord* top = sp->top(); 1623 HeapWord* cur_addr = dense_prefix_addr; 1624 1625 while (cur_addr < top) { 1626 cur_addr = mark_bitmap()->find_obj_beg(cur_addr, top); 1627 if (cur_addr >= top) { 1628 break; 1629 } 1630 assert(mark_bitmap()->is_marked(cur_addr), "inv"); 1631 // Move to the space containing cur_addr 1632 if (bump_ptr == _space_info[bump_ptr_space].new_top()) { 1633 bump_ptr = space(space_id(cur_addr))->bottom(); 1634 bump_ptr_space = space_id(bump_ptr); 1635 } 1636 oop obj = cast_to_oop(cur_addr); 1637 if (cur_addr != bump_ptr) { 1638 assert(obj->forwardee() == cast_to_oop(bump_ptr), "inv"); 1639 } 1640 bump_ptr += obj->size(); 1641 cur_addr += obj->size(); 1642 } 1643 } 1644 } 1645 #endif 1646 1647 // Helper class to print 8 region numbers per line and then print the total at the end. 1648 class FillableRegionLogger : public StackObj { 1649 private: 1650 Log(gc, compaction) log; 1651 static const int LineLength = 8; 1652 size_t _regions[LineLength]; 1653 int _next_index; 1654 bool _enabled; 1655 size_t _total_regions; 1656 public: 1657 FillableRegionLogger() : _next_index(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)), _total_regions(0) { } 1658 ~FillableRegionLogger() { 1659 log.trace(SIZE_FORMAT " initially fillable regions", _total_regions); 1660 } 1661 1662 void print_line() { 1663 if (!_enabled || _next_index == 0) { 1664 return; 1665 } 1666 FormatBuffer<> line("Fillable: "); 1667 for (int i = 0; i < _next_index; i++) { 1668 line.append(" " SIZE_FORMAT_W(7), _regions[i]); 1669 } 1670 log.trace("%s", line.buffer()); 1671 _next_index = 0; 1672 } 1673 1674 void handle(size_t region) { 1675 if (!_enabled) { 1676 return; 1677 } 1678 _regions[_next_index++] = region; 1679 if (_next_index == LineLength) { 1680 print_line(); 1681 } 1682 _total_regions++; 1683 } 1684 }; 1685 1686 void PSParallelCompact::prepare_region_draining_tasks(uint parallel_gc_threads) 1687 { 1688 GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer); 1689 1690 // Find the threads that are active 1691 uint worker_id = 0; 1692 1693 // Find all regions that are available (can be filled immediately) and 1694 // distribute them to the thread stacks. The iteration is done in reverse 1695 // order (high to low) so the regions will be removed in ascending order. 1696 1697 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 1698 1699 // id + 1 is used to test termination so unsigned can 1700 // be used with an old_space_id == 0. 1701 FillableRegionLogger region_logger; 1702 for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) { 1703 SpaceInfo* const space_info = _space_info + id; 1704 HeapWord* const new_top = space_info->new_top(); 1705 1706 const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix()); 1707 const size_t end_region = 1708 sd.addr_to_region_idx(sd.region_align_up(new_top)); 1709 1710 for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) { 1711 if (sd.region(cur)->claim_unsafe()) { 1712 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id); 1713 bool result = sd.region(cur)->mark_normal(); 1714 assert(result, "Must succeed at this point."); 1715 cm->region_stack()->push(cur); 1716 region_logger.handle(cur); 1717 // Assign regions to tasks in round-robin fashion. 1718 if (++worker_id == parallel_gc_threads) { 1719 worker_id = 0; 1720 } 1721 } 1722 } 1723 region_logger.print_line(); 1724 } 1725 } 1726 1727 static void compaction_with_stealing_work(TaskTerminator* terminator, uint worker_id) { 1728 assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc"); 1729 1730 ParCompactionManager* cm = 1731 ParCompactionManager::gc_thread_compaction_manager(worker_id); 1732 1733 // Drain the stacks that have been preloaded with regions 1734 // that are ready to fill. 1735 1736 cm->drain_region_stacks(); 1737 1738 guarantee(cm->region_stack()->is_empty(), "Not empty"); 1739 1740 size_t region_index = 0; 1741 1742 while (true) { 1743 if (ParCompactionManager::steal(worker_id, region_index)) { 1744 PSParallelCompact::fill_and_update_region(cm, region_index); 1745 cm->drain_region_stacks(); 1746 } else if (PSParallelCompact::steal_unavailable_region(cm, region_index)) { 1747 // Fill and update an unavailable region with the help of a shadow region 1748 PSParallelCompact::fill_and_update_shadow_region(cm, region_index); 1749 cm->drain_region_stacks(); 1750 } else { 1751 if (terminator->offer_termination()) { 1752 break; 1753 } 1754 // Go around again. 1755 } 1756 } 1757 } 1758 1759 class FillDensePrefixAndCompactionTask: public WorkerTask { 1760 uint _num_workers; 1761 TaskTerminator _terminator; 1762 1763 public: 1764 FillDensePrefixAndCompactionTask(uint active_workers) : 1765 WorkerTask("FillDensePrefixAndCompactionTask"), 1766 _num_workers(active_workers), 1767 _terminator(active_workers, ParCompactionManager::region_task_queues()) { 1768 } 1769 1770 virtual void work(uint worker_id) { 1771 { 1772 auto start = Ticks::now(); 1773 PSParallelCompact::fill_dead_objs_in_dense_prefix(worker_id, _num_workers); 1774 log_trace(gc, phases)("Fill dense prefix by worker %u: %.3f ms", worker_id, (Ticks::now() - start).seconds() * 1000); 1775 } 1776 compaction_with_stealing_work(&_terminator, worker_id); 1777 } 1778 }; 1779 1780 void PSParallelCompact::fill_range_in_dense_prefix(HeapWord* start, HeapWord* end) { 1781 #ifdef ASSERT 1782 { 1783 assert(start < end, "precondition"); 1784 assert(mark_bitmap()->find_obj_beg(start, end) == end, "precondition"); 1785 HeapWord* bottom = _space_info[old_space_id].space()->bottom(); 1786 if (start != bottom) { 1787 HeapWord* obj_start = mark_bitmap()->find_obj_beg_reverse(bottom, start); 1788 HeapWord* after_obj = obj_start + cast_to_oop(obj_start)->size(); 1789 assert(after_obj == start, "precondition"); 1790 } 1791 } 1792 #endif 1793 1794 CollectedHeap::fill_with_objects(start, pointer_delta(end, start)); 1795 HeapWord* addr = start; 1796 do { 1797 size_t size = cast_to_oop(addr)->size(); 1798 start_array(old_space_id)->update_for_block(addr, addr + size); 1799 addr += size; 1800 } while (addr < end); 1801 } 1802 1803 void PSParallelCompact::fill_dead_objs_in_dense_prefix(uint worker_id, uint num_workers) { 1804 ParMarkBitMap* bitmap = mark_bitmap(); 1805 1806 HeapWord* const bottom = _space_info[old_space_id].space()->bottom(); 1807 HeapWord* const prefix_end = dense_prefix(old_space_id); 1808 1809 if (bottom == prefix_end) { 1810 return; 1811 } 1812 1813 size_t bottom_region = _summary_data.addr_to_region_idx(bottom); 1814 size_t prefix_end_region = _summary_data.addr_to_region_idx(prefix_end); 1815 1816 size_t start_region; 1817 size_t end_region; 1818 split_regions_for_worker(bottom_region, prefix_end_region, 1819 worker_id, num_workers, 1820 &start_region, &end_region); 1821 1822 if (start_region == end_region) { 1823 return; 1824 } 1825 1826 HeapWord* const start_addr = _summary_data.region_to_addr(start_region); 1827 HeapWord* const end_addr = _summary_data.region_to_addr(end_region); 1828 1829 // Skip live partial obj (if any) from previous region. 1830 HeapWord* cur_addr; 1831 RegionData* start_region_ptr = _summary_data.region(start_region); 1832 if (start_region_ptr->partial_obj_size() != 0) { 1833 HeapWord* partial_obj_start = start_region_ptr->partial_obj_addr(); 1834 assert(bitmap->is_marked(partial_obj_start), "inv"); 1835 cur_addr = partial_obj_start + cast_to_oop(partial_obj_start)->size(); 1836 } else { 1837 cur_addr = start_addr; 1838 } 1839 1840 // end_addr is inclusive to handle regions starting with dead space. 1841 while (cur_addr <= end_addr) { 1842 // Use prefix_end to handle trailing obj in each worker region-chunk. 1843 HeapWord* live_start = bitmap->find_obj_beg(cur_addr, prefix_end); 1844 if (cur_addr != live_start) { 1845 // Only worker 0 handles proceeding dead space. 1846 if (cur_addr != start_addr || worker_id == 0) { 1847 fill_range_in_dense_prefix(cur_addr, live_start); 1848 } 1849 } 1850 if (live_start >= end_addr) { 1851 break; 1852 } 1853 assert(bitmap->is_marked(live_start), "inv"); 1854 cur_addr = live_start + cast_to_oop(live_start)->size(); 1855 } 1856 } 1857 1858 void PSParallelCompact::compact() { 1859 GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer); 1860 1861 uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers(); 1862 1863 initialize_shadow_regions(active_gc_threads); 1864 prepare_region_draining_tasks(active_gc_threads); 1865 1866 { 1867 GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer); 1868 1869 FillDensePrefixAndCompactionTask task(active_gc_threads); 1870 ParallelScavengeHeap::heap()->workers().run_task(&task); 1871 1872 #ifdef ASSERT 1873 verify_filler_in_dense_prefix(); 1874 1875 // Verify that all regions have been processed. 1876 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 1877 verify_complete(SpaceId(id)); 1878 } 1879 #endif 1880 } 1881 } 1882 1883 #ifdef ASSERT 1884 void PSParallelCompact::verify_filler_in_dense_prefix() { 1885 HeapWord* bottom = _space_info[old_space_id].space()->bottom(); 1886 HeapWord* dense_prefix_end = dense_prefix(old_space_id); 1887 HeapWord* cur_addr = bottom; 1888 while (cur_addr < dense_prefix_end) { 1889 oop obj = cast_to_oop(cur_addr); 1890 oopDesc::verify(obj); 1891 if (!mark_bitmap()->is_marked(cur_addr)) { 1892 Klass* k = cast_to_oop(cur_addr)->klass_without_asserts(); 1893 assert(k == Universe::fillerArrayKlass() || k == vmClasses::FillerObject_klass(), "inv"); 1894 } 1895 cur_addr += obj->size(); 1896 } 1897 } 1898 1899 void PSParallelCompact::verify_complete(SpaceId space_id) { 1900 // All Regions served as compaction targets, from dense_prefix() to 1901 // new_top(), should be marked as filled and all Regions between new_top() 1902 // and top() should be available (i.e., should have been emptied). 1903 ParallelCompactData& sd = summary_data(); 1904 SpaceInfo si = _space_info[space_id]; 1905 HeapWord* new_top_addr = sd.region_align_up(si.new_top()); 1906 HeapWord* old_top_addr = sd.region_align_up(si.space()->top()); 1907 const size_t beg_region = sd.addr_to_region_idx(si.dense_prefix()); 1908 const size_t new_top_region = sd.addr_to_region_idx(new_top_addr); 1909 const size_t old_top_region = sd.addr_to_region_idx(old_top_addr); 1910 1911 size_t cur_region; 1912 for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) { 1913 const RegionData* const c = sd.region(cur_region); 1914 if (!c->completed()) { 1915 log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u", 1916 cur_region, c->destination_count()); 1917 } 1918 } 1919 1920 for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) { 1921 const RegionData* const c = sd.region(cur_region); 1922 if (!c->available()) { 1923 log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u", 1924 cur_region, c->destination_count()); 1925 } 1926 } 1927 } 1928 #endif // #ifdef ASSERT 1929 1930 // Return the SpaceId for the space containing addr. If addr is not in the 1931 // heap, last_space_id is returned. In debug mode it expects the address to be 1932 // in the heap and asserts such. 1933 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) { 1934 assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap"); 1935 1936 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 1937 if (_space_info[id].space()->contains(addr)) { 1938 return SpaceId(id); 1939 } 1940 } 1941 1942 assert(false, "no space contains the addr"); 1943 return last_space_id; 1944 } 1945 1946 // Skip over count live words starting from beg, and return the address of the 1947 // next live word. Unless marked, the word corresponding to beg is assumed to 1948 // be dead. Callers must either ensure beg does not correspond to the middle of 1949 // an object, or account for those live words in some other way. Callers must 1950 // also ensure that there are enough live words in the range [beg, end) to skip. 1951 HeapWord* 1952 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count) 1953 { 1954 assert(count > 0, "sanity"); 1955 1956 ParMarkBitMap* m = mark_bitmap(); 1957 HeapWord* cur_addr = beg; 1958 while (true) { 1959 cur_addr = m->find_obj_beg(cur_addr, end); 1960 assert(cur_addr < end, "inv"); 1961 size_t obj_size = cast_to_oop(cur_addr)->size(); 1962 // Strictly greater-than 1963 if (obj_size > count) { 1964 return cur_addr + count; 1965 } 1966 count -= obj_size; 1967 cur_addr += obj_size; 1968 } 1969 } 1970 1971 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr, 1972 SpaceId src_space_id, 1973 size_t src_region_idx) 1974 { 1975 assert(summary_data().is_region_aligned(dest_addr), "not aligned"); 1976 1977 const SplitInfo& split_info = _space_info[src_space_id].split_info(); 1978 if (split_info.dest_region_addr() == dest_addr) { 1979 // The partial object ending at the split point contains the first word to 1980 // be copied to dest_addr. 1981 return split_info.first_src_addr(); 1982 } 1983 1984 const ParallelCompactData& sd = summary_data(); 1985 ParMarkBitMap* const bitmap = mark_bitmap(); 1986 const size_t RegionSize = ParallelCompactData::RegionSize; 1987 1988 assert(sd.is_region_aligned(dest_addr), "not aligned"); 1989 const RegionData* const src_region_ptr = sd.region(src_region_idx); 1990 const size_t partial_obj_size = src_region_ptr->partial_obj_size(); 1991 HeapWord* const src_region_destination = src_region_ptr->destination(); 1992 1993 assert(dest_addr >= src_region_destination, "wrong src region"); 1994 assert(src_region_ptr->data_size() > 0, "src region cannot be empty"); 1995 1996 HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx); 1997 HeapWord* const src_region_end = src_region_beg + RegionSize; 1998 1999 HeapWord* addr = src_region_beg; 2000 if (dest_addr == src_region_destination) { 2001 // Return the first live word in the source region. 2002 if (partial_obj_size == 0) { 2003 addr = bitmap->find_obj_beg(addr, src_region_end); 2004 assert(addr < src_region_end, "no objects start in src region"); 2005 } 2006 return addr; 2007 } 2008 2009 // Must skip some live data. 2010 size_t words_to_skip = dest_addr - src_region_destination; 2011 assert(src_region_ptr->data_size() > words_to_skip, "wrong src region"); 2012 2013 if (partial_obj_size >= words_to_skip) { 2014 // All the live words to skip are part of the partial object. 2015 addr += words_to_skip; 2016 if (partial_obj_size == words_to_skip) { 2017 // Find the first live word past the partial object. 2018 addr = bitmap->find_obj_beg(addr, src_region_end); 2019 assert(addr < src_region_end, "wrong src region"); 2020 } 2021 return addr; 2022 } 2023 2024 // Skip over the partial object (if any). 2025 if (partial_obj_size != 0) { 2026 words_to_skip -= partial_obj_size; 2027 addr += partial_obj_size; 2028 } 2029 2030 // Skip over live words due to objects that start in the region. 2031 addr = skip_live_words(addr, src_region_end, words_to_skip); 2032 assert(addr < src_region_end, "wrong src region"); 2033 return addr; 2034 } 2035 2036 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm, 2037 SpaceId src_space_id, 2038 size_t beg_region, 2039 HeapWord* end_addr) 2040 { 2041 ParallelCompactData& sd = summary_data(); 2042 2043 #ifdef ASSERT 2044 MutableSpace* const src_space = _space_info[src_space_id].space(); 2045 HeapWord* const beg_addr = sd.region_to_addr(beg_region); 2046 assert(src_space->contains(beg_addr) || beg_addr == src_space->end(), 2047 "src_space_id does not match beg_addr"); 2048 assert(src_space->contains(end_addr) || end_addr == src_space->end(), 2049 "src_space_id does not match end_addr"); 2050 #endif // #ifdef ASSERT 2051 2052 RegionData* const beg = sd.region(beg_region); 2053 RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr)); 2054 2055 // Regions up to new_top() are enqueued if they become available. 2056 HeapWord* const new_top = _space_info[src_space_id].new_top(); 2057 RegionData* const enqueue_end = 2058 sd.addr_to_region_ptr(sd.region_align_up(new_top)); 2059 2060 for (RegionData* cur = beg; cur < end; ++cur) { 2061 assert(cur->data_size() > 0, "region must have live data"); 2062 cur->decrement_destination_count(); 2063 if (cur < enqueue_end && cur->available() && cur->claim()) { 2064 if (cur->mark_normal()) { 2065 cm->push_region(sd.region(cur)); 2066 } else if (cur->mark_copied()) { 2067 // Try to copy the content of the shadow region back to its corresponding 2068 // heap region if the shadow region is filled. Otherwise, the GC thread 2069 // fills the shadow region will copy the data back (see 2070 // MoveAndUpdateShadowClosure::complete_region). 2071 copy_back(sd.region_to_addr(cur->shadow_region()), sd.region_to_addr(cur)); 2072 ParCompactionManager::push_shadow_region_mt_safe(cur->shadow_region()); 2073 cur->set_completed(); 2074 } 2075 } 2076 } 2077 } 2078 2079 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure, 2080 SpaceId& src_space_id, 2081 HeapWord*& src_space_top, 2082 HeapWord* end_addr) 2083 { 2084 typedef ParallelCompactData::RegionData RegionData; 2085 2086 ParallelCompactData& sd = PSParallelCompact::summary_data(); 2087 const size_t region_size = ParallelCompactData::RegionSize; 2088 2089 size_t src_region_idx = 0; 2090 2091 // Skip empty regions (if any) up to the top of the space. 2092 HeapWord* const src_aligned_up = sd.region_align_up(end_addr); 2093 RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up); 2094 HeapWord* const top_aligned_up = sd.region_align_up(src_space_top); 2095 const RegionData* const top_region_ptr = 2096 sd.addr_to_region_ptr(top_aligned_up); 2097 while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) { 2098 ++src_region_ptr; 2099 } 2100 2101 if (src_region_ptr < top_region_ptr) { 2102 // The next source region is in the current space. Update src_region_idx 2103 // and the source address to match src_region_ptr. 2104 src_region_idx = sd.region(src_region_ptr); 2105 HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx); 2106 if (src_region_addr > closure.source()) { 2107 closure.set_source(src_region_addr); 2108 } 2109 return src_region_idx; 2110 } 2111 2112 // Switch to a new source space and find the first non-empty region. 2113 unsigned int space_id = src_space_id + 1; 2114 assert(space_id < last_space_id, "not enough spaces"); 2115 2116 HeapWord* const destination = closure.destination(); 2117 2118 do { 2119 MutableSpace* space = _space_info[space_id].space(); 2120 HeapWord* const bottom = space->bottom(); 2121 const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom); 2122 2123 // Iterate over the spaces that do not compact into themselves. 2124 if (bottom_cp->destination() != bottom) { 2125 HeapWord* const top_aligned_up = sd.region_align_up(space->top()); 2126 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up); 2127 2128 for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) { 2129 if (src_cp->live_obj_size() > 0) { 2130 // Found it. 2131 assert(src_cp->destination() == destination, 2132 "first live obj in the space must match the destination"); 2133 assert(src_cp->partial_obj_size() == 0, 2134 "a space cannot begin with a partial obj"); 2135 2136 src_space_id = SpaceId(space_id); 2137 src_space_top = space->top(); 2138 const size_t src_region_idx = sd.region(src_cp); 2139 closure.set_source(sd.region_to_addr(src_region_idx)); 2140 return src_region_idx; 2141 } else { 2142 assert(src_cp->data_size() == 0, "sanity"); 2143 } 2144 } 2145 } 2146 } while (++space_id < last_space_id); 2147 2148 assert(false, "no source region was found"); 2149 return 0; 2150 } 2151 2152 HeapWord* PSParallelCompact::partial_obj_end(HeapWord* region_start_addr) { 2153 ParallelCompactData& sd = summary_data(); 2154 assert(sd.is_region_aligned(region_start_addr), "precondition"); 2155 2156 // Use per-region partial_obj_size to locate the end of the obj, that extends to region_start_addr. 2157 SplitInfo& split_info = _space_info[space_id(region_start_addr)].split_info(); 2158 size_t start_region_idx = sd.addr_to_region_idx(region_start_addr); 2159 size_t end_region_idx = sd.region_count(); 2160 size_t accumulated_size = 0; 2161 for (size_t region_idx = start_region_idx; region_idx < end_region_idx; ++region_idx) { 2162 if (split_info.is_split(region_idx)) { 2163 accumulated_size += split_info.partial_obj_size(); 2164 break; 2165 } 2166 size_t cur_partial_obj_size = sd.region(region_idx)->partial_obj_size(); 2167 accumulated_size += cur_partial_obj_size; 2168 if (cur_partial_obj_size != ParallelCompactData::RegionSize) { 2169 break; 2170 } 2171 } 2172 return region_start_addr + accumulated_size; 2173 } 2174 2175 void PSParallelCompact::fill_region(ParCompactionManager* cm, MoveAndUpdateClosure& closure, size_t region_idx) 2176 { 2177 ParMarkBitMap* const bitmap = mark_bitmap(); 2178 ParallelCompactData& sd = summary_data(); 2179 RegionData* const region_ptr = sd.region(region_idx); 2180 2181 // Get the source region and related info. 2182 size_t src_region_idx = region_ptr->source_region(); 2183 SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx)); 2184 HeapWord* src_space_top = _space_info[src_space_id].space()->top(); 2185 HeapWord* dest_addr = sd.region_to_addr(region_idx); 2186 2187 closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx)); 2188 2189 // Adjust src_region_idx to prepare for decrementing destination counts (the 2190 // destination count is not decremented when a region is copied to itself). 2191 if (src_region_idx == region_idx) { 2192 src_region_idx += 1; 2193 } 2194 2195 if (bitmap->is_unmarked(closure.source())) { 2196 // The first source word is in the middle of an object; copy the remainder 2197 // of the object or as much as will fit. The fact that pointer updates were 2198 // deferred will be noted when the object header is processed. 2199 HeapWord* const old_src_addr = closure.source(); 2200 { 2201 HeapWord* region_start = sd.region_align_down(closure.source()); 2202 HeapWord* obj_start = bitmap->find_obj_beg_reverse(region_start, closure.source()); 2203 HeapWord* obj_end; 2204 if (bitmap->is_marked(obj_start)) { 2205 HeapWord* next_region_start = region_start + ParallelCompactData::RegionSize; 2206 HeapWord* partial_obj_start = (next_region_start >= src_space_top) 2207 ? nullptr 2208 : sd.addr_to_region_ptr(next_region_start)->partial_obj_addr(); 2209 if (partial_obj_start == obj_start) { 2210 // This obj extends to next region. 2211 obj_end = partial_obj_end(next_region_start); 2212 } else { 2213 // Completely contained in this region; safe to use size(). 2214 obj_end = obj_start + cast_to_oop(obj_start)->size(); 2215 } 2216 } else { 2217 // This obj extends to current region. 2218 obj_end = partial_obj_end(region_start); 2219 } 2220 size_t partial_obj_size = pointer_delta(obj_end, closure.source()); 2221 closure.copy_partial_obj(partial_obj_size); 2222 } 2223 2224 if (closure.is_full()) { 2225 decrement_destination_counts(cm, src_space_id, src_region_idx, 2226 closure.source()); 2227 closure.complete_region(dest_addr, region_ptr); 2228 return; 2229 } 2230 2231 HeapWord* const end_addr = sd.region_align_down(closure.source()); 2232 if (sd.region_align_down(old_src_addr) != end_addr) { 2233 // The partial object was copied from more than one source region. 2234 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); 2235 2236 // Move to the next source region, possibly switching spaces as well. All 2237 // args except end_addr may be modified. 2238 src_region_idx = next_src_region(closure, src_space_id, src_space_top, 2239 end_addr); 2240 } 2241 } 2242 2243 do { 2244 HeapWord* cur_addr = closure.source(); 2245 HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1), 2246 src_space_top); 2247 HeapWord* partial_obj_start = (end_addr == src_space_top) 2248 ? nullptr 2249 : sd.addr_to_region_ptr(end_addr)->partial_obj_addr(); 2250 // apply closure on objs inside [cur_addr, end_addr) 2251 do { 2252 cur_addr = bitmap->find_obj_beg(cur_addr, end_addr); 2253 if (cur_addr == end_addr) { 2254 break; 2255 } 2256 size_t obj_size; 2257 if (partial_obj_start == cur_addr) { 2258 obj_size = pointer_delta(partial_obj_end(end_addr), cur_addr); 2259 } else { 2260 // This obj doesn't extend into next region; size() is safe to use. 2261 obj_size = cast_to_oop(cur_addr)->size(); 2262 } 2263 closure.do_addr(cur_addr, obj_size); 2264 cur_addr += obj_size; 2265 } while (cur_addr < end_addr && !closure.is_full()); 2266 2267 if (closure.is_full()) { 2268 decrement_destination_counts(cm, src_space_id, src_region_idx, 2269 closure.source()); 2270 closure.complete_region(dest_addr, region_ptr); 2271 return; 2272 } 2273 2274 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); 2275 2276 // Move to the next source region, possibly switching spaces as well. All 2277 // args except end_addr may be modified. 2278 src_region_idx = next_src_region(closure, src_space_id, src_space_top, 2279 end_addr); 2280 } while (true); 2281 } 2282 2283 void PSParallelCompact::fill_and_update_region(ParCompactionManager* cm, size_t region_idx) 2284 { 2285 MoveAndUpdateClosure cl(mark_bitmap(), region_idx); 2286 fill_region(cm, cl, region_idx); 2287 } 2288 2289 void PSParallelCompact::fill_and_update_shadow_region(ParCompactionManager* cm, size_t region_idx) 2290 { 2291 // Get a shadow region first 2292 ParallelCompactData& sd = summary_data(); 2293 RegionData* const region_ptr = sd.region(region_idx); 2294 size_t shadow_region = ParCompactionManager::pop_shadow_region_mt_safe(region_ptr); 2295 // The InvalidShadow return value indicates the corresponding heap region is available, 2296 // so use MoveAndUpdateClosure to fill the normal region. Otherwise, use 2297 // MoveAndUpdateShadowClosure to fill the acquired shadow region. 2298 if (shadow_region == ParCompactionManager::InvalidShadow) { 2299 MoveAndUpdateClosure cl(mark_bitmap(), region_idx); 2300 region_ptr->shadow_to_normal(); 2301 return fill_region(cm, cl, region_idx); 2302 } else { 2303 MoveAndUpdateShadowClosure cl(mark_bitmap(), region_idx, shadow_region); 2304 return fill_region(cm, cl, region_idx); 2305 } 2306 } 2307 2308 void PSParallelCompact::copy_back(HeapWord *shadow_addr, HeapWord *region_addr) 2309 { 2310 Copy::aligned_conjoint_words(shadow_addr, region_addr, _summary_data.RegionSize); 2311 } 2312 2313 bool PSParallelCompact::steal_unavailable_region(ParCompactionManager* cm, size_t ®ion_idx) 2314 { 2315 size_t next = cm->next_shadow_region(); 2316 ParallelCompactData& sd = summary_data(); 2317 size_t old_new_top = sd.addr_to_region_idx(_space_info[old_space_id].new_top()); 2318 uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers(); 2319 2320 while (next < old_new_top) { 2321 if (sd.region(next)->mark_shadow()) { 2322 region_idx = next; 2323 return true; 2324 } 2325 next = cm->move_next_shadow_region_by(active_gc_threads); 2326 } 2327 2328 return false; 2329 } 2330 2331 // The shadow region is an optimization to address region dependencies in full GC. The basic 2332 // idea is making more regions available by temporally storing their live objects in empty 2333 // shadow regions to resolve dependencies between them and the destination regions. Therefore, 2334 // GC threads need not wait destination regions to be available before processing sources. 2335 // 2336 // A typical workflow would be: 2337 // After draining its own stack and failing to steal from others, a GC worker would pick an 2338 // unavailable region (destination count > 0) and get a shadow region. Then the worker fills 2339 // the shadow region by copying live objects from source regions of the unavailable one. Once 2340 // the unavailable region becomes available, the data in the shadow region will be copied back. 2341 // Shadow regions are empty regions in the to-space and regions between top and end of other spaces. 2342 void PSParallelCompact::initialize_shadow_regions(uint parallel_gc_threads) 2343 { 2344 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 2345 2346 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2347 SpaceInfo* const space_info = _space_info + id; 2348 MutableSpace* const space = space_info->space(); 2349 2350 const size_t beg_region = 2351 sd.addr_to_region_idx(sd.region_align_up(MAX2(space_info->new_top(), space->top()))); 2352 const size_t end_region = 2353 sd.addr_to_region_idx(sd.region_align_down(space->end())); 2354 2355 for (size_t cur = beg_region; cur < end_region; ++cur) { 2356 ParCompactionManager::push_shadow_region(cur); 2357 } 2358 } 2359 2360 size_t beg_region = sd.addr_to_region_idx(_space_info[old_space_id].dense_prefix()); 2361 for (uint i = 0; i < parallel_gc_threads; i++) { 2362 ParCompactionManager *cm = ParCompactionManager::gc_thread_compaction_manager(i); 2363 cm->set_next_shadow_region(beg_region + i); 2364 } 2365 } 2366 2367 void MoveAndUpdateClosure::copy_partial_obj(size_t partial_obj_size) 2368 { 2369 size_t words = MIN2(partial_obj_size, words_remaining()); 2370 2371 // This test is necessary; if omitted, the pointer updates to a partial object 2372 // that crosses the dense prefix boundary could be overwritten. 2373 if (source() != copy_destination()) { 2374 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 2375 Copy::aligned_conjoint_words(source(), copy_destination(), words); 2376 } 2377 update_state(words); 2378 } 2379 2380 void MoveAndUpdateClosure::complete_region(HeapWord* dest_addr, PSParallelCompact::RegionData* region_ptr) { 2381 assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::NormalRegion, "Region should be finished"); 2382 region_ptr->set_completed(); 2383 } 2384 2385 void MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) { 2386 assert(destination() != nullptr, "sanity"); 2387 _source = addr; 2388 2389 // The start_array must be updated even if the object is not moving. 2390 if (_start_array != nullptr) { 2391 _start_array->update_for_block(destination(), destination() + words); 2392 } 2393 2394 // Avoid overflow 2395 words = MIN2(words, words_remaining()); 2396 assert(words > 0, "inv"); 2397 2398 if (copy_destination() != source()) { 2399 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 2400 assert(source() != destination(), "inv"); 2401 assert(cast_to_oop(source())->is_forwarded(), "inv"); 2402 assert(cast_to_oop(source())->forwardee() == cast_to_oop(destination()), "inv"); 2403 Copy::aligned_conjoint_words(source(), copy_destination(), words); 2404 cast_to_oop(copy_destination())->init_mark(); 2405 } 2406 2407 update_state(words); 2408 } 2409 2410 void MoveAndUpdateShadowClosure::complete_region(HeapWord* dest_addr, PSParallelCompact::RegionData* region_ptr) { 2411 assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::ShadowRegion, "Region should be shadow"); 2412 // Record the shadow region index 2413 region_ptr->set_shadow_region(_shadow); 2414 // Mark the shadow region as filled to indicate the data is ready to be 2415 // copied back 2416 region_ptr->mark_filled(); 2417 // Try to copy the content of the shadow region back to its corresponding 2418 // heap region if available; the GC thread that decreases the destination 2419 // count to zero will do the copying otherwise (see 2420 // PSParallelCompact::decrement_destination_counts). 2421 if (((region_ptr->available() && region_ptr->claim()) || region_ptr->claimed()) && region_ptr->mark_copied()) { 2422 region_ptr->set_completed(); 2423 PSParallelCompact::copy_back(PSParallelCompact::summary_data().region_to_addr(_shadow), dest_addr); 2424 ParCompactionManager::push_shadow_region_mt_safe(_shadow); 2425 } 2426 } 2427