1 /* 2 * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoaderDataGraph.hpp" 27 #include "classfile/javaClasses.inline.hpp" 28 #include "classfile/stringTable.hpp" 29 #include "classfile/symbolTable.hpp" 30 #include "classfile/systemDictionary.hpp" 31 #include "code/codeCache.hpp" 32 #include "compiler/oopMap.hpp" 33 #include "gc/parallel/objectStartArray.inline.hpp" 34 #include "gc/parallel/parallelArguments.hpp" 35 #include "gc/parallel/parallelScavengeHeap.inline.hpp" 36 #include "gc/parallel/parMarkBitMap.inline.hpp" 37 #include "gc/parallel/psAdaptiveSizePolicy.hpp" 38 #include "gc/parallel/psCompactionManager.inline.hpp" 39 #include "gc/parallel/psOldGen.hpp" 40 #include "gc/parallel/psParallelCompact.inline.hpp" 41 #include "gc/parallel/psPromotionManager.inline.hpp" 42 #include "gc/parallel/psRootType.hpp" 43 #include "gc/parallel/psScavenge.hpp" 44 #include "gc/parallel/psStringDedup.hpp" 45 #include "gc/parallel/psYoungGen.hpp" 46 #include "gc/shared/classUnloadingContext.hpp" 47 #include "gc/shared/gcCause.hpp" 48 #include "gc/shared/gcHeapSummary.hpp" 49 #include "gc/shared/gcId.hpp" 50 #include "gc/shared/gcLocker.hpp" 51 #include "gc/shared/gcTimer.hpp" 52 #include "gc/shared/gcTrace.hpp" 53 #include "gc/shared/gcTraceTime.inline.hpp" 54 #include "gc/shared/gcVMOperations.hpp" 55 #include "gc/shared/isGCActiveMark.hpp" 56 #include "gc/shared/oopStorage.inline.hpp" 57 #include "gc/shared/oopStorageSet.inline.hpp" 58 #include "gc/shared/oopStorageSetParState.inline.hpp" 59 #include "gc/shared/preservedMarks.inline.hpp" 60 #include "gc/shared/referencePolicy.hpp" 61 #include "gc/shared/referenceProcessor.hpp" 62 #include "gc/shared/referenceProcessorPhaseTimes.hpp" 63 #include "gc/shared/spaceDecorator.hpp" 64 #include "gc/shared/strongRootsScope.hpp" 65 #include "gc/shared/taskTerminator.hpp" 66 #include "gc/shared/weakProcessor.inline.hpp" 67 #include "gc/shared/workerPolicy.hpp" 68 #include "gc/shared/workerThread.hpp" 69 #include "gc/shared/workerUtils.hpp" 70 #include "logging/log.hpp" 71 #include "memory/iterator.inline.hpp" 72 #include "memory/metaspaceUtils.hpp" 73 #include "memory/resourceArea.hpp" 74 #include "memory/universe.hpp" 75 #include "nmt/memTracker.hpp" 76 #include "oops/access.inline.hpp" 77 #include "oops/flatArrayKlass.inline.hpp" 78 #include "oops/instanceClassLoaderKlass.inline.hpp" 79 #include "oops/instanceKlass.inline.hpp" 80 #include "oops/instanceMirrorKlass.inline.hpp" 81 #include "oops/methodData.hpp" 82 #include "oops/objArrayKlass.inline.hpp" 83 #include "oops/oop.inline.hpp" 84 #include "runtime/atomic.hpp" 85 #include "runtime/handles.inline.hpp" 86 #include "runtime/java.hpp" 87 #include "runtime/safepoint.hpp" 88 #include "runtime/threads.hpp" 89 #include "runtime/vmThread.hpp" 90 #include "services/memoryService.hpp" 91 #include "utilities/align.hpp" 92 #include "utilities/debug.hpp" 93 #include "utilities/events.hpp" 94 #include "utilities/formatBuffer.hpp" 95 #include "utilities/macros.hpp" 96 #include "utilities/stack.inline.hpp" 97 #if INCLUDE_JVMCI 98 #include "jvmci/jvmci.hpp" 99 #endif 100 101 #include <math.h> 102 103 // All sizes are in HeapWords. 104 const size_t ParallelCompactData::Log2RegionSize = 16; // 64K words 105 const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize; 106 static_assert(ParallelCompactData::RegionSize >= BitsPerWord, "region-start bit word-aligned"); 107 const size_t ParallelCompactData::RegionSizeBytes = 108 RegionSize << LogHeapWordSize; 109 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1; 110 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1; 111 const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask; 112 113 const ParallelCompactData::RegionData::region_sz_t 114 ParallelCompactData::RegionData::dc_shift = 27; 115 116 const ParallelCompactData::RegionData::region_sz_t 117 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift; 118 119 const ParallelCompactData::RegionData::region_sz_t 120 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift; 121 122 const ParallelCompactData::RegionData::region_sz_t 123 ParallelCompactData::RegionData::los_mask = ~dc_mask; 124 125 const ParallelCompactData::RegionData::region_sz_t 126 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift; 127 128 const ParallelCompactData::RegionData::region_sz_t 129 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift; 130 131 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id]; 132 133 SpanSubjectToDiscoveryClosure PSParallelCompact::_span_based_discoverer; 134 ReferenceProcessor* PSParallelCompact::_ref_processor = nullptr; 135 136 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size, 137 HeapWord* destination) 138 { 139 assert(src_region_idx != 0, "invalid src_region_idx"); 140 assert(partial_obj_size != 0, "invalid partial_obj_size argument"); 141 assert(destination != nullptr, "invalid destination argument"); 142 143 _src_region_idx = src_region_idx; 144 _partial_obj_size = partial_obj_size; 145 _destination = destination; 146 147 // These fields may not be updated below, so make sure they're clear. 148 assert(_dest_region_addr == nullptr, "should have been cleared"); 149 assert(_first_src_addr == nullptr, "should have been cleared"); 150 151 // Determine the number of destination regions for the partial object. 152 HeapWord* const last_word = destination + partial_obj_size - 1; 153 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 154 HeapWord* const beg_region_addr = sd.region_align_down(destination); 155 HeapWord* const end_region_addr = sd.region_align_down(last_word); 156 157 if (beg_region_addr == end_region_addr) { 158 // One destination region. 159 _destination_count = 1; 160 if (end_region_addr == destination) { 161 // The destination falls on a region boundary, thus the first word of the 162 // partial object will be the first word copied to the destination region. 163 _dest_region_addr = end_region_addr; 164 _first_src_addr = sd.region_to_addr(src_region_idx); 165 } 166 } else { 167 // Two destination regions. When copied, the partial object will cross a 168 // destination region boundary, so a word somewhere within the partial 169 // object will be the first word copied to the second destination region. 170 _destination_count = 2; 171 _dest_region_addr = end_region_addr; 172 const size_t ofs = pointer_delta(end_region_addr, destination); 173 assert(ofs < _partial_obj_size, "sanity"); 174 _first_src_addr = sd.region_to_addr(src_region_idx) + ofs; 175 } 176 } 177 178 void SplitInfo::clear() 179 { 180 _src_region_idx = 0; 181 _partial_obj_size = 0; 182 _destination = nullptr; 183 _destination_count = 0; 184 _dest_region_addr = nullptr; 185 _first_src_addr = nullptr; 186 assert(!is_valid(), "sanity"); 187 } 188 189 #ifdef ASSERT 190 void SplitInfo::verify_clear() 191 { 192 assert(_src_region_idx == 0, "not clear"); 193 assert(_partial_obj_size == 0, "not clear"); 194 assert(_destination == nullptr, "not clear"); 195 assert(_destination_count == 0, "not clear"); 196 assert(_dest_region_addr == nullptr, "not clear"); 197 assert(_first_src_addr == nullptr, "not clear"); 198 } 199 #endif // #ifdef ASSERT 200 201 202 void PSParallelCompact::print_on_error(outputStream* st) { 203 _mark_bitmap.print_on_error(st); 204 } 205 206 ParallelCompactData::ParallelCompactData() : 207 _heap_start(nullptr), 208 DEBUG_ONLY(_heap_end(nullptr) COMMA) 209 _region_vspace(nullptr), 210 _reserved_byte_size(0), 211 _region_data(nullptr), 212 _region_count(0) {} 213 214 bool ParallelCompactData::initialize(MemRegion reserved_heap) 215 { 216 _heap_start = reserved_heap.start(); 217 const size_t heap_size = reserved_heap.word_size(); 218 DEBUG_ONLY(_heap_end = _heap_start + heap_size;) 219 220 assert(region_align_down(_heap_start) == _heap_start, 221 "region start not aligned"); 222 223 return initialize_region_data(heap_size); 224 } 225 226 PSVirtualSpace* 227 ParallelCompactData::create_vspace(size_t count, size_t element_size) 228 { 229 const size_t raw_bytes = count * element_size; 230 const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10); 231 const size_t granularity = os::vm_allocation_granularity(); 232 _reserved_byte_size = align_up(raw_bytes, MAX2(page_sz, granularity)); 233 234 const size_t rs_align = page_sz == os::vm_page_size() ? 0 : 235 MAX2(page_sz, granularity); 236 ReservedSpace rs(_reserved_byte_size, rs_align, page_sz); 237 os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, rs.base(), 238 rs.size(), page_sz); 239 240 MemTracker::record_virtual_memory_tag((address)rs.base(), mtGC); 241 242 PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz); 243 if (vspace != nullptr) { 244 if (vspace->expand_by(_reserved_byte_size)) { 245 return vspace; 246 } 247 delete vspace; 248 // Release memory reserved in the space. 249 rs.release(); 250 } 251 252 return nullptr; 253 } 254 255 bool ParallelCompactData::initialize_region_data(size_t heap_size) 256 { 257 assert(is_aligned(heap_size, RegionSize), "precondition"); 258 259 const size_t count = heap_size >> Log2RegionSize; 260 _region_vspace = create_vspace(count, sizeof(RegionData)); 261 if (_region_vspace != nullptr) { 262 _region_data = (RegionData*)_region_vspace->reserved_low_addr(); 263 _region_count = count; 264 return true; 265 } 266 return false; 267 } 268 269 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) { 270 assert(beg_region <= _region_count, "beg_region out of range"); 271 assert(end_region <= _region_count, "end_region out of range"); 272 273 const size_t region_cnt = end_region - beg_region; 274 memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData)); 275 } 276 277 void 278 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end) 279 { 280 assert(is_region_aligned(beg), "not RegionSize aligned"); 281 assert(is_region_aligned(end), "not RegionSize aligned"); 282 283 size_t cur_region = addr_to_region_idx(beg); 284 const size_t end_region = addr_to_region_idx(end); 285 HeapWord* addr = beg; 286 while (cur_region < end_region) { 287 _region_data[cur_region].set_destination(addr); 288 _region_data[cur_region].set_destination_count(0); 289 _region_data[cur_region].set_source_region(cur_region); 290 291 // Update live_obj_size so the region appears completely full. 292 size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size(); 293 _region_data[cur_region].set_live_obj_size(live_size); 294 295 ++cur_region; 296 addr += RegionSize; 297 } 298 } 299 300 // Find the point at which a space can be split and, if necessary, record the 301 // split point. 302 // 303 // If the current src region (which overflowed the destination space) doesn't 304 // have a partial object, the split point is at the beginning of the current src 305 // region (an "easy" split, no extra bookkeeping required). 306 // 307 // If the current src region has a partial object, the split point is in the 308 // region where that partial object starts (call it the split_region). If 309 // split_region has a partial object, then the split point is just after that 310 // partial object (a "hard" split where we have to record the split data and 311 // zero the partial_obj_size field). With a "hard" split, we know that the 312 // partial_obj ends within split_region because the partial object that caused 313 // the overflow starts in split_region. If split_region doesn't have a partial 314 // obj, then the split is at the beginning of split_region (another "easy" 315 // split). 316 HeapWord* 317 ParallelCompactData::summarize_split_space(size_t src_region, 318 SplitInfo& split_info, 319 HeapWord* destination, 320 HeapWord* target_end, 321 HeapWord** target_next) 322 { 323 assert(destination <= target_end, "sanity"); 324 assert(destination + _region_data[src_region].data_size() > target_end, 325 "region should not fit into target space"); 326 assert(is_region_aligned(target_end), "sanity"); 327 328 size_t split_region = src_region; 329 HeapWord* split_destination = destination; 330 size_t partial_obj_size = _region_data[src_region].partial_obj_size(); 331 332 if (destination + partial_obj_size > target_end) { 333 // The split point is just after the partial object (if any) in the 334 // src_region that contains the start of the object that overflowed the 335 // destination space. 336 // 337 // Find the start of the "overflow" object and set split_region to the 338 // region containing it. 339 HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr(); 340 split_region = addr_to_region_idx(overflow_obj); 341 342 // Clear the source_region field of all destination regions whose first word 343 // came from data after the split point (a non-null source_region field 344 // implies a region must be filled). 345 // 346 // An alternative to the simple loop below: clear during post_compact(), 347 // which uses memcpy instead of individual stores, and is easy to 348 // parallelize. (The downside is that it clears the entire RegionData 349 // object as opposed to just one field.) 350 // 351 // post_compact() would have to clear the summary data up to the highest 352 // address that was written during the summary phase, which would be 353 // 354 // max(top, max(new_top, clear_top)) 355 // 356 // where clear_top is a new field in SpaceInfo. Would have to set clear_top 357 // to target_end. 358 const RegionData* const sr = region(split_region); 359 const size_t beg_idx = 360 addr_to_region_idx(region_align_up(sr->destination() + 361 sr->partial_obj_size())); 362 const size_t end_idx = addr_to_region_idx(target_end); 363 364 log_develop_trace(gc, compaction)("split: clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx); 365 for (size_t idx = beg_idx; idx < end_idx; ++idx) { 366 _region_data[idx].set_source_region(0); 367 } 368 369 // Set split_destination and partial_obj_size to reflect the split region. 370 split_destination = sr->destination(); 371 partial_obj_size = sr->partial_obj_size(); 372 } 373 374 // The split is recorded only if a partial object extends onto the region. 375 if (partial_obj_size != 0) { 376 _region_data[split_region].set_partial_obj_size(0); 377 split_info.record(split_region, partial_obj_size, split_destination); 378 } 379 380 // Setup the continuation addresses. 381 *target_next = split_destination + partial_obj_size; 382 HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size; 383 384 if (log_develop_is_enabled(Trace, gc, compaction)) { 385 const char * split_type = partial_obj_size == 0 ? "easy" : "hard"; 386 log_develop_trace(gc, compaction)("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT, 387 split_type, p2i(source_next), split_region, partial_obj_size); 388 log_develop_trace(gc, compaction)("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT, 389 split_type, p2i(split_destination), 390 addr_to_region_idx(split_destination), 391 p2i(*target_next)); 392 393 if (partial_obj_size != 0) { 394 HeapWord* const po_beg = split_info.destination(); 395 HeapWord* const po_end = po_beg + split_info.partial_obj_size(); 396 log_develop_trace(gc, compaction)("%s split: po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT, 397 split_type, 398 p2i(po_beg), addr_to_region_idx(po_beg), 399 p2i(po_end), addr_to_region_idx(po_end)); 400 } 401 } 402 403 return source_next; 404 } 405 406 size_t ParallelCompactData::live_words_in_space(const MutableSpace* space, 407 HeapWord** full_region_prefix_end) { 408 size_t cur_region = addr_to_region_idx(space->bottom()); 409 const size_t end_region = addr_to_region_idx(region_align_up(space->top())); 410 size_t live_words = 0; 411 if (full_region_prefix_end == nullptr) { 412 for (/* empty */; cur_region < end_region; ++cur_region) { 413 live_words += _region_data[cur_region].data_size(); 414 } 415 } else { 416 bool first_set = false; 417 for (/* empty */; cur_region < end_region; ++cur_region) { 418 size_t live_words_in_region = _region_data[cur_region].data_size(); 419 if (!first_set && live_words_in_region < RegionSize) { 420 *full_region_prefix_end = region_to_addr(cur_region); 421 first_set = true; 422 } 423 live_words += live_words_in_region; 424 } 425 if (!first_set) { 426 // All regions are full of live objs. 427 assert(is_region_aligned(space->top()), "inv"); 428 *full_region_prefix_end = space->top(); 429 } 430 assert(*full_region_prefix_end != nullptr, "postcondition"); 431 assert(is_region_aligned(*full_region_prefix_end), "inv"); 432 assert(*full_region_prefix_end >= space->bottom(), "in-range"); 433 assert(*full_region_prefix_end <= space->top(), "in-range"); 434 } 435 return live_words; 436 } 437 438 bool ParallelCompactData::summarize(SplitInfo& split_info, 439 HeapWord* source_beg, HeapWord* source_end, 440 HeapWord** source_next, 441 HeapWord* target_beg, HeapWord* target_end, 442 HeapWord** target_next) 443 { 444 HeapWord* const source_next_val = source_next == nullptr ? nullptr : *source_next; 445 log_develop_trace(gc, compaction)( 446 "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT 447 "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT, 448 p2i(source_beg), p2i(source_end), p2i(source_next_val), 449 p2i(target_beg), p2i(target_end), p2i(*target_next)); 450 451 size_t cur_region = addr_to_region_idx(source_beg); 452 const size_t end_region = addr_to_region_idx(region_align_up(source_end)); 453 454 HeapWord *dest_addr = target_beg; 455 while (cur_region < end_region) { 456 // The destination must be set even if the region has no data. 457 _region_data[cur_region].set_destination(dest_addr); 458 459 size_t words = _region_data[cur_region].data_size(); 460 if (words > 0) { 461 // If cur_region does not fit entirely into the target space, find a point 462 // at which the source space can be 'split' so that part is copied to the 463 // target space and the rest is copied elsewhere. 464 if (dest_addr + words > target_end) { 465 assert(source_next != nullptr, "source_next is null when splitting"); 466 *source_next = summarize_split_space(cur_region, split_info, dest_addr, 467 target_end, target_next); 468 return false; 469 } 470 471 // Compute the destination_count for cur_region, and if necessary, update 472 // source_region for a destination region. The source_region field is 473 // updated if cur_region is the first (left-most) region to be copied to a 474 // destination region. 475 // 476 // The destination_count calculation is a bit subtle. A region that has 477 // data that compacts into itself does not count itself as a destination. 478 // This maintains the invariant that a zero count means the region is 479 // available and can be claimed and then filled. 480 uint destination_count = 0; 481 if (split_info.is_split(cur_region)) { 482 // The current region has been split: the partial object will be copied 483 // to one destination space and the remaining data will be copied to 484 // another destination space. Adjust the initial destination_count and, 485 // if necessary, set the source_region field if the partial object will 486 // cross a destination region boundary. 487 destination_count = split_info.destination_count(); 488 if (destination_count == 2) { 489 size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr()); 490 _region_data[dest_idx].set_source_region(cur_region); 491 } 492 } 493 494 HeapWord* const last_addr = dest_addr + words - 1; 495 const size_t dest_region_1 = addr_to_region_idx(dest_addr); 496 const size_t dest_region_2 = addr_to_region_idx(last_addr); 497 498 // Initially assume that the destination regions will be the same and 499 // adjust the value below if necessary. Under this assumption, if 500 // cur_region == dest_region_2, then cur_region will be compacted 501 // completely into itself. 502 destination_count += cur_region == dest_region_2 ? 0 : 1; 503 if (dest_region_1 != dest_region_2) { 504 // Destination regions differ; adjust destination_count. 505 destination_count += 1; 506 // Data from cur_region will be copied to the start of dest_region_2. 507 _region_data[dest_region_2].set_source_region(cur_region); 508 } else if (is_region_aligned(dest_addr)) { 509 // Data from cur_region will be copied to the start of the destination 510 // region. 511 _region_data[dest_region_1].set_source_region(cur_region); 512 } 513 514 _region_data[cur_region].set_destination_count(destination_count); 515 dest_addr += words; 516 } 517 518 ++cur_region; 519 } 520 521 *target_next = dest_addr; 522 return true; 523 } 524 525 #ifdef ASSERT 526 void ParallelCompactData::verify_clear() 527 { 528 const size_t* const beg = (const size_t*) _region_vspace->committed_low_addr(); 529 const size_t* const end = (const size_t*) _region_vspace->committed_high_addr(); 530 for (const size_t* p = beg; p < end; ++p) { 531 assert(*p == 0, "not zero"); 532 } 533 } 534 #endif // #ifdef ASSERT 535 536 STWGCTimer PSParallelCompact::_gc_timer; 537 ParallelOldTracer PSParallelCompact::_gc_tracer; 538 elapsedTimer PSParallelCompact::_accumulated_time; 539 unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0; 540 CollectorCounters* PSParallelCompact::_counters = nullptr; 541 ParMarkBitMap PSParallelCompact::_mark_bitmap; 542 ParallelCompactData PSParallelCompact::_summary_data; 543 544 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure; 545 546 class PCAdjustPointerClosure: public BasicOopIterateClosure { 547 template <typename T> 548 void do_oop_work(T* p) { PSParallelCompact::adjust_pointer(p); } 549 550 public: 551 virtual void do_oop(oop* p) { do_oop_work(p); } 552 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 553 554 virtual ReferenceIterationMode reference_iteration_mode() { return DO_FIELDS; } 555 }; 556 557 static PCAdjustPointerClosure pc_adjust_pointer_closure; 558 559 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); } 560 561 void PSParallelCompact::post_initialize() { 562 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 563 _span_based_discoverer.set_span(heap->reserved_region()); 564 _ref_processor = 565 new ReferenceProcessor(&_span_based_discoverer, 566 ParallelGCThreads, // mt processing degree 567 ParallelGCThreads, // mt discovery degree 568 false, // concurrent_discovery 569 &_is_alive_closure); // non-header is alive closure 570 571 _counters = new CollectorCounters("Parallel full collection pauses", 1); 572 573 // Initialize static fields in ParCompactionManager. 574 ParCompactionManager::initialize(mark_bitmap()); 575 } 576 577 bool PSParallelCompact::initialize_aux_data() { 578 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 579 MemRegion mr = heap->reserved_region(); 580 assert(mr.byte_size() != 0, "heap should be reserved"); 581 582 initialize_space_info(); 583 584 if (!_mark_bitmap.initialize(mr)) { 585 vm_shutdown_during_initialization( 586 err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel " 587 "garbage collection for the requested " SIZE_FORMAT "KB heap.", 588 _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K)); 589 return false; 590 } 591 592 if (!_summary_data.initialize(mr)) { 593 vm_shutdown_during_initialization( 594 err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel " 595 "garbage collection for the requested " SIZE_FORMAT "KB heap.", 596 _summary_data.reserved_byte_size()/K, mr.byte_size()/K)); 597 return false; 598 } 599 600 return true; 601 } 602 603 void PSParallelCompact::initialize_space_info() 604 { 605 memset(&_space_info, 0, sizeof(_space_info)); 606 607 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 608 PSYoungGen* young_gen = heap->young_gen(); 609 610 _space_info[old_space_id].set_space(heap->old_gen()->object_space()); 611 _space_info[eden_space_id].set_space(young_gen->eden_space()); 612 _space_info[from_space_id].set_space(young_gen->from_space()); 613 _space_info[to_space_id].set_space(young_gen->to_space()); 614 615 _space_info[old_space_id].set_start_array(heap->old_gen()->start_array()); 616 } 617 618 void 619 PSParallelCompact::clear_data_covering_space(SpaceId id) 620 { 621 // At this point, top is the value before GC, new_top() is the value that will 622 // be set at the end of GC. The marking bitmap is cleared to top; nothing 623 // should be marked above top. The summary data is cleared to the larger of 624 // top & new_top. 625 MutableSpace* const space = _space_info[id].space(); 626 HeapWord* const bot = space->bottom(); 627 HeapWord* const top = space->top(); 628 HeapWord* const max_top = MAX2(top, _space_info[id].new_top()); 629 630 _mark_bitmap.clear_range(bot, top); 631 632 const size_t beg_region = _summary_data.addr_to_region_idx(bot); 633 const size_t end_region = 634 _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top)); 635 _summary_data.clear_range(beg_region, end_region); 636 637 // Clear the data used to 'split' regions. 638 SplitInfo& split_info = _space_info[id].split_info(); 639 if (split_info.is_valid()) { 640 split_info.clear(); 641 } 642 DEBUG_ONLY(split_info.verify_clear();) 643 } 644 645 void PSParallelCompact::pre_compact() 646 { 647 // Update the from & to space pointers in space_info, since they are swapped 648 // at each young gen gc. Do the update unconditionally (even though a 649 // promotion failure does not swap spaces) because an unknown number of young 650 // collections will have swapped the spaces an unknown number of times. 651 GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer); 652 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 653 _space_info[from_space_id].set_space(heap->young_gen()->from_space()); 654 _space_info[to_space_id].set_space(heap->young_gen()->to_space()); 655 656 // Increment the invocation count 657 heap->increment_total_collections(true); 658 659 CodeCache::on_gc_marking_cycle_start(); 660 661 heap->print_heap_before_gc(); 662 heap->trace_heap_before_gc(&_gc_tracer); 663 664 // Fill in TLABs 665 heap->ensure_parsability(true); // retire TLABs 666 667 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) { 668 Universe::verify("Before GC"); 669 } 670 671 DEBUG_ONLY(mark_bitmap()->verify_clear();) 672 DEBUG_ONLY(summary_data().verify_clear();) 673 } 674 675 void PSParallelCompact::post_compact() 676 { 677 GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer); 678 ParCompactionManager::remove_all_shadow_regions(); 679 680 CodeCache::on_gc_marking_cycle_finish(); 681 CodeCache::arm_all_nmethods(); 682 683 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 684 // Clear the marking bitmap, summary data and split info. 685 clear_data_covering_space(SpaceId(id)); 686 { 687 MutableSpace* space = _space_info[id].space(); 688 HeapWord* top = space->top(); 689 HeapWord* new_top = _space_info[id].new_top(); 690 if (ZapUnusedHeapArea && new_top < top) { 691 space->mangle_region(MemRegion(new_top, top)); 692 } 693 // Update top(). Must be done after clearing the bitmap and summary data. 694 space->set_top(new_top); 695 } 696 } 697 698 ParCompactionManager::flush_all_string_dedup_requests(); 699 700 MutableSpace* const eden_space = _space_info[eden_space_id].space(); 701 MutableSpace* const from_space = _space_info[from_space_id].space(); 702 MutableSpace* const to_space = _space_info[to_space_id].space(); 703 704 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 705 bool eden_empty = eden_space->is_empty(); 706 707 // Update heap occupancy information which is used as input to the soft ref 708 // clearing policy at the next gc. 709 Universe::heap()->update_capacity_and_used_at_gc(); 710 711 bool young_gen_empty = eden_empty && from_space->is_empty() && 712 to_space->is_empty(); 713 714 PSCardTable* ct = heap->card_table(); 715 MemRegion old_mr = heap->old_gen()->committed(); 716 if (young_gen_empty) { 717 ct->clear_MemRegion(old_mr); 718 } else { 719 ct->dirty_MemRegion(old_mr); 720 } 721 722 { 723 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 724 GCTraceTime(Debug, gc, phases) t("Purge Class Loader Data", gc_timer()); 725 ClassLoaderDataGraph::purge(true /* at_safepoint */); 726 DEBUG_ONLY(MetaspaceUtils::verify();) 727 } 728 729 // Need to clear claim bits for the next mark. 730 ClassLoaderDataGraph::clear_claimed_marks(); 731 732 heap->prune_scavengable_nmethods(); 733 734 #if COMPILER2_OR_JVMCI 735 DerivedPointerTable::update_pointers(); 736 #endif 737 738 // Signal that we have completed a visit to all live objects. 739 Universe::heap()->record_whole_heap_examined_timestamp(); 740 } 741 742 HeapWord* PSParallelCompact::compute_dense_prefix_for_old_space(MutableSpace* old_space, 743 HeapWord* full_region_prefix_end) { 744 const size_t region_size = ParallelCompactData::RegionSize; 745 const ParallelCompactData& sd = summary_data(); 746 747 // Iteration starts with the region *after* the full-region-prefix-end. 748 const RegionData* const start_region = sd.addr_to_region_ptr(full_region_prefix_end); 749 // If final region is not full, iteration stops before that region, 750 // because fill_dense_prefix_end assumes that prefix_end <= top. 751 const RegionData* const end_region = sd.addr_to_region_ptr(old_space->top()); 752 assert(start_region <= end_region, "inv"); 753 754 size_t max_waste = old_space->capacity_in_words() * (MarkSweepDeadRatio / 100.0); 755 const RegionData* cur_region = start_region; 756 for (/* empty */; cur_region < end_region; ++cur_region) { 757 assert(region_size >= cur_region->data_size(), "inv"); 758 size_t dead_size = region_size - cur_region->data_size(); 759 if (max_waste < dead_size) { 760 break; 761 } 762 max_waste -= dead_size; 763 } 764 765 HeapWord* const prefix_end = sd.region_to_addr(cur_region); 766 assert(sd.is_region_aligned(prefix_end), "postcondition"); 767 assert(prefix_end >= full_region_prefix_end, "in-range"); 768 assert(prefix_end <= old_space->top(), "in-range"); 769 return prefix_end; 770 } 771 772 void PSParallelCompact::fill_dense_prefix_end(SpaceId id) { 773 // Comparing two sizes to decide if filling is required: 774 // 775 // The size of the filler (min-obj-size) is 2 heap words with the default 776 // MinObjAlignment, since both markword and klass take 1 heap word. 777 // 778 // The size of the gap (if any) right before dense-prefix-end is 779 // MinObjAlignment. 780 // 781 // Need to fill in the gap only if it's smaller than min-obj-size, and the 782 // filler obj will extend to next region. 783 784 // Note: If min-fill-size decreases to 1, this whole method becomes redundant. 785 assert(CollectedHeap::min_fill_size() >= 2, "inv"); 786 #ifndef _LP64 787 // In 32-bit system, each heap word is 4 bytes, so MinObjAlignment == 2. 788 // The gap is always equal to min-fill-size, so nothing to do. 789 return; 790 #endif 791 if (MinObjAlignment > 1) { 792 return; 793 } 794 assert(CollectedHeap::min_fill_size() == 2, "inv"); 795 HeapWord* const dense_prefix_end = dense_prefix(id); 796 assert(_summary_data.is_region_aligned(dense_prefix_end), "precondition"); 797 assert(dense_prefix_end <= space(id)->top(), "precondition"); 798 if (dense_prefix_end == space(id)->top()) { 799 // Must not have single-word gap right before prefix-end/top. 800 return; 801 } 802 RegionData* const region_after_dense_prefix = _summary_data.addr_to_region_ptr(dense_prefix_end); 803 804 if (region_after_dense_prefix->partial_obj_size() != 0 || 805 _mark_bitmap.is_marked(dense_prefix_end)) { 806 // The region after the dense prefix starts with live bytes. 807 return; 808 } 809 810 HeapWord* block_start = start_array(id)->block_start_reaching_into_card(dense_prefix_end); 811 if (block_start == dense_prefix_end - 1) { 812 assert(!_mark_bitmap.is_marked(block_start), "inv"); 813 // There is exactly one heap word gap right before the dense prefix end, so we need a filler object. 814 // The filler object will extend into region_after_dense_prefix. 815 const size_t obj_len = 2; // min-fill-size 816 HeapWord* const obj_beg = dense_prefix_end - 1; 817 CollectedHeap::fill_with_object(obj_beg, obj_len); 818 _mark_bitmap.mark_obj(obj_beg); 819 _summary_data.addr_to_region_ptr(obj_beg)->add_live_obj(1); 820 region_after_dense_prefix->set_partial_obj_size(1); 821 region_after_dense_prefix->set_partial_obj_addr(obj_beg); 822 assert(start_array(id) != nullptr, "sanity"); 823 start_array(id)->update_for_block(obj_beg, obj_beg + obj_len); 824 } 825 } 826 827 bool PSParallelCompact::check_maximum_compaction(size_t total_live_words, 828 MutableSpace* const old_space, 829 HeapWord* full_region_prefix_end) { 830 831 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 832 833 // Check System.GC 834 bool is_max_on_system_gc = UseMaximumCompactionOnSystemGC 835 && GCCause::is_user_requested_gc(heap->gc_cause()); 836 837 // Check if all live objs are larger than old-gen. 838 const bool is_old_gen_overflowing = (total_live_words > old_space->capacity_in_words()); 839 840 // JVM flags 841 const uint total_invocations = heap->total_full_collections(); 842 assert(total_invocations >= _maximum_compaction_gc_num, "sanity"); 843 const size_t gcs_since_max = total_invocations - _maximum_compaction_gc_num; 844 const bool is_interval_ended = gcs_since_max > HeapMaximumCompactionInterval; 845 846 // If all regions in old-gen are full 847 const bool is_region_full = 848 full_region_prefix_end >= _summary_data.region_align_down(old_space->top()); 849 850 if (is_max_on_system_gc || is_old_gen_overflowing || is_interval_ended || is_region_full) { 851 _maximum_compaction_gc_num = total_invocations; 852 return true; 853 } 854 855 return false; 856 } 857 858 void PSParallelCompact::summary_phase() 859 { 860 GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer); 861 862 MutableSpace* const old_space = _space_info[old_space_id].space(); 863 { 864 size_t total_live_words = 0; 865 HeapWord* full_region_prefix_end = nullptr; 866 { 867 // old-gen 868 size_t live_words = _summary_data.live_words_in_space(old_space, 869 &full_region_prefix_end); 870 total_live_words += live_words; 871 } 872 // young-gen 873 for (uint i = eden_space_id; i < last_space_id; ++i) { 874 const MutableSpace* space = _space_info[i].space(); 875 size_t live_words = _summary_data.live_words_in_space(space); 876 total_live_words += live_words; 877 _space_info[i].set_new_top(space->bottom() + live_words); 878 _space_info[i].set_dense_prefix(space->bottom()); 879 } 880 881 bool maximum_compaction = check_maximum_compaction(total_live_words, 882 old_space, 883 full_region_prefix_end); 884 HeapWord* dense_prefix_end = 885 maximum_compaction ? full_region_prefix_end 886 : compute_dense_prefix_for_old_space(old_space, 887 full_region_prefix_end); 888 SpaceId id = old_space_id; 889 _space_info[id].set_dense_prefix(dense_prefix_end); 890 891 if (dense_prefix_end != old_space->bottom()) { 892 fill_dense_prefix_end(id); 893 _summary_data.summarize_dense_prefix(old_space->bottom(), dense_prefix_end); 894 } 895 _summary_data.summarize(_space_info[id].split_info(), 896 dense_prefix_end, old_space->top(), nullptr, 897 dense_prefix_end, old_space->end(), 898 _space_info[id].new_top_addr()); 899 } 900 901 // Summarize the remaining spaces in the young gen. The initial target space 902 // is the old gen. If a space does not fit entirely into the target, then the 903 // remainder is compacted into the space itself and that space becomes the new 904 // target. 905 SpaceId dst_space_id = old_space_id; 906 HeapWord* dst_space_end = old_space->end(); 907 HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr(); 908 for (unsigned int id = eden_space_id; id < last_space_id; ++id) { 909 const MutableSpace* space = _space_info[id].space(); 910 const size_t live = pointer_delta(_space_info[id].new_top(), 911 space->bottom()); 912 const size_t available = pointer_delta(dst_space_end, *new_top_addr); 913 914 if (live > 0 && live <= available) { 915 // All the live data will fit. 916 bool done = _summary_data.summarize(_space_info[id].split_info(), 917 space->bottom(), space->top(), 918 nullptr, 919 *new_top_addr, dst_space_end, 920 new_top_addr); 921 assert(done, "space must fit into old gen"); 922 923 // Reset the new_top value for the space. 924 _space_info[id].set_new_top(space->bottom()); 925 } else if (live > 0) { 926 // Attempt to fit part of the source space into the target space. 927 HeapWord* next_src_addr = nullptr; 928 bool done = _summary_data.summarize(_space_info[id].split_info(), 929 space->bottom(), space->top(), 930 &next_src_addr, 931 *new_top_addr, dst_space_end, 932 new_top_addr); 933 assert(!done, "space should not fit into old gen"); 934 assert(next_src_addr != nullptr, "sanity"); 935 936 // The source space becomes the new target, so the remainder is compacted 937 // within the space itself. 938 dst_space_id = SpaceId(id); 939 dst_space_end = space->end(); 940 new_top_addr = _space_info[id].new_top_addr(); 941 done = _summary_data.summarize(_space_info[id].split_info(), 942 next_src_addr, space->top(), 943 nullptr, 944 space->bottom(), dst_space_end, 945 new_top_addr); 946 assert(done, "space must fit when compacted into itself"); 947 assert(*new_top_addr <= space->top(), "usage should not grow"); 948 } 949 } 950 } 951 952 // This method should contain all heap-specific policy for invoking a full 953 // collection. invoke_no_policy() will only attempt to compact the heap; it 954 // will do nothing further. If we need to bail out for policy reasons, scavenge 955 // before full gc, or any other specialized behavior, it needs to be added here. 956 // 957 // Note that this method should only be called from the vm_thread while at a 958 // safepoint. 959 // 960 // Note that the all_soft_refs_clear flag in the soft ref policy 961 // may be true because this method can be called without intervening 962 // activity. For example when the heap space is tight and full measure 963 // are being taken to free space. 964 bool PSParallelCompact::invoke(bool clear_all_soft_refs) { 965 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); 966 assert(Thread::current() == (Thread*)VMThread::vm_thread(), 967 "should be in vm thread"); 968 969 SvcGCMarker sgcm(SvcGCMarker::FULL); 970 IsSTWGCActiveMark mark; 971 972 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 973 clear_all_soft_refs = clear_all_soft_refs 974 || heap->soft_ref_policy()->should_clear_all_soft_refs(); 975 976 return PSParallelCompact::invoke_no_policy(clear_all_soft_refs); 977 } 978 979 // This method contains no policy. You should probably 980 // be calling invoke() instead. 981 bool PSParallelCompact::invoke_no_policy(bool clear_all_soft_refs) { 982 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); 983 assert(ref_processor() != nullptr, "Sanity"); 984 985 if (GCLocker::check_active_before_gc()) { 986 return false; 987 } 988 989 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 990 991 GCIdMark gc_id_mark; 992 _gc_timer.register_gc_start(); 993 _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start()); 994 995 GCCause::Cause gc_cause = heap->gc_cause(); 996 PSYoungGen* young_gen = heap->young_gen(); 997 PSOldGen* old_gen = heap->old_gen(); 998 PSAdaptiveSizePolicy* size_policy = heap->size_policy(); 999 1000 // The scope of casr should end after code that can change 1001 // SoftRefPolicy::_should_clear_all_soft_refs. 1002 ClearedAllSoftRefs casr(clear_all_soft_refs, 1003 heap->soft_ref_policy()); 1004 1005 // Make sure data structures are sane, make the heap parsable, and do other 1006 // miscellaneous bookkeeping. 1007 pre_compact(); 1008 1009 const PreGenGCValues pre_gc_values = heap->get_pre_gc_values(); 1010 1011 { 1012 const uint active_workers = 1013 WorkerPolicy::calc_active_workers(ParallelScavengeHeap::heap()->workers().max_workers(), 1014 ParallelScavengeHeap::heap()->workers().active_workers(), 1015 Threads::number_of_non_daemon_threads()); 1016 ParallelScavengeHeap::heap()->workers().set_active_workers(active_workers); 1017 1018 GCTraceCPUTime tcpu(&_gc_tracer); 1019 GCTraceTime(Info, gc) tm("Pause Full", nullptr, gc_cause, true); 1020 1021 heap->pre_full_gc_dump(&_gc_timer); 1022 1023 TraceCollectorStats tcs(counters()); 1024 TraceMemoryManagerStats tms(heap->old_gc_manager(), gc_cause, "end of major GC"); 1025 1026 if (log_is_enabled(Debug, gc, heap, exit)) { 1027 accumulated_time()->start(); 1028 } 1029 1030 // Let the size policy know we're starting 1031 size_policy->major_collection_begin(); 1032 1033 #if COMPILER2_OR_JVMCI 1034 DerivedPointerTable::clear(); 1035 #endif 1036 1037 ref_processor()->start_discovery(clear_all_soft_refs); 1038 1039 ClassUnloadingContext ctx(1 /* num_nmethod_unlink_workers */, 1040 false /* unregister_nmethods_during_purge */, 1041 false /* lock_nmethod_free_separately */); 1042 1043 marking_phase(&_gc_tracer); 1044 1045 summary_phase(); 1046 1047 #if COMPILER2_OR_JVMCI 1048 assert(DerivedPointerTable::is_active(), "Sanity"); 1049 DerivedPointerTable::set_active(false); 1050 #endif 1051 1052 forward_to_new_addr(); 1053 1054 adjust_pointers(); 1055 1056 compact(); 1057 1058 ParCompactionManager::_preserved_marks_set->restore(&ParallelScavengeHeap::heap()->workers()); 1059 1060 ParCompactionManager::verify_all_region_stack_empty(); 1061 1062 // Reset the mark bitmap, summary data, and do other bookkeeping. Must be 1063 // done before resizing. 1064 post_compact(); 1065 1066 // Let the size policy know we're done 1067 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause); 1068 1069 if (UseAdaptiveSizePolicy) { 1070 log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections()); 1071 log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT, 1072 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes()); 1073 1074 // Don't check if the size_policy is ready here. Let 1075 // the size_policy check that internally. 1076 if (UseAdaptiveGenerationSizePolicyAtMajorCollection && 1077 AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) { 1078 // Swap the survivor spaces if from_space is empty. The 1079 // resize_young_gen() called below is normally used after 1080 // a successful young GC and swapping of survivor spaces; 1081 // otherwise, it will fail to resize the young gen with 1082 // the current implementation. 1083 if (young_gen->from_space()->is_empty()) { 1084 young_gen->from_space()->clear(SpaceDecorator::Mangle); 1085 young_gen->swap_spaces(); 1086 } 1087 1088 // Calculate optimal free space amounts 1089 assert(young_gen->max_gen_size() > 1090 young_gen->from_space()->capacity_in_bytes() + 1091 young_gen->to_space()->capacity_in_bytes(), 1092 "Sizes of space in young gen are out-of-bounds"); 1093 1094 size_t young_live = young_gen->used_in_bytes(); 1095 size_t eden_live = young_gen->eden_space()->used_in_bytes(); 1096 size_t old_live = old_gen->used_in_bytes(); 1097 size_t cur_eden = young_gen->eden_space()->capacity_in_bytes(); 1098 size_t max_old_gen_size = old_gen->max_gen_size(); 1099 size_t max_eden_size = young_gen->max_gen_size() - 1100 young_gen->from_space()->capacity_in_bytes() - 1101 young_gen->to_space()->capacity_in_bytes(); 1102 1103 // Used for diagnostics 1104 size_policy->clear_generation_free_space_flags(); 1105 1106 size_policy->compute_generations_free_space(young_live, 1107 eden_live, 1108 old_live, 1109 cur_eden, 1110 max_old_gen_size, 1111 max_eden_size, 1112 true /* full gc*/); 1113 1114 size_policy->check_gc_overhead_limit(eden_live, 1115 max_old_gen_size, 1116 max_eden_size, 1117 true /* full gc*/, 1118 gc_cause, 1119 heap->soft_ref_policy()); 1120 1121 size_policy->decay_supplemental_growth(true /* full gc*/); 1122 1123 heap->resize_old_gen( 1124 size_policy->calculated_old_free_size_in_bytes()); 1125 1126 heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(), 1127 size_policy->calculated_survivor_size_in_bytes()); 1128 } 1129 1130 log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections()); 1131 } 1132 1133 if (UsePerfData) { 1134 PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters(); 1135 counters->update_counters(); 1136 counters->update_old_capacity(old_gen->capacity_in_bytes()); 1137 counters->update_young_capacity(young_gen->capacity_in_bytes()); 1138 } 1139 1140 heap->resize_all_tlabs(); 1141 1142 // Resize the metaspace capacity after a collection 1143 MetaspaceGC::compute_new_size(); 1144 1145 if (log_is_enabled(Debug, gc, heap, exit)) { 1146 accumulated_time()->stop(); 1147 } 1148 1149 heap->print_heap_change(pre_gc_values); 1150 1151 // Track memory usage and detect low memory 1152 MemoryService::track_memory_usage(); 1153 heap->update_counters(); 1154 1155 heap->post_full_gc_dump(&_gc_timer); 1156 } 1157 1158 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) { 1159 Universe::verify("After GC"); 1160 } 1161 1162 heap->print_heap_after_gc(); 1163 heap->trace_heap_after_gc(&_gc_tracer); 1164 1165 AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections()); 1166 1167 _gc_timer.register_gc_end(); 1168 1169 _gc_tracer.report_dense_prefix(dense_prefix(old_space_id)); 1170 _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions()); 1171 1172 return true; 1173 } 1174 1175 class PCAddThreadRootsMarkingTaskClosure : public ThreadClosure { 1176 private: 1177 uint _worker_id; 1178 1179 public: 1180 PCAddThreadRootsMarkingTaskClosure(uint worker_id) : _worker_id(worker_id) { } 1181 void do_thread(Thread* thread) { 1182 assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc"); 1183 1184 ResourceMark rm; 1185 1186 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(_worker_id); 1187 1188 MarkingNMethodClosure mark_and_push_in_blobs(&cm->_mark_and_push_closure, 1189 !NMethodToOopClosure::FixRelocations, 1190 true /* keepalive nmethods */); 1191 1192 thread->oops_do(&cm->_mark_and_push_closure, &mark_and_push_in_blobs); 1193 1194 // Do the real work 1195 cm->follow_marking_stacks(); 1196 } 1197 }; 1198 1199 void steal_marking_work(TaskTerminator& terminator, uint worker_id) { 1200 assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc"); 1201 1202 ParCompactionManager* cm = 1203 ParCompactionManager::gc_thread_compaction_manager(worker_id); 1204 1205 do { 1206 oop obj = nullptr; 1207 ObjArrayTask task; 1208 if (ParCompactionManager::steal_objarray(worker_id, task)) { 1209 cm->follow_array((objArrayOop)task.obj(), task.index()); 1210 } else if (ParCompactionManager::steal(worker_id, obj)) { 1211 cm->follow_contents(obj); 1212 } 1213 cm->follow_marking_stacks(); 1214 } while (!terminator.offer_termination()); 1215 } 1216 1217 class MarkFromRootsTask : public WorkerTask { 1218 StrongRootsScope _strong_roots_scope; // needed for Threads::possibly_parallel_threads_do 1219 OopStorageSetStrongParState<false /* concurrent */, false /* is_const */> _oop_storage_set_par_state; 1220 TaskTerminator _terminator; 1221 uint _active_workers; 1222 1223 public: 1224 MarkFromRootsTask(uint active_workers) : 1225 WorkerTask("MarkFromRootsTask"), 1226 _strong_roots_scope(active_workers), 1227 _terminator(active_workers, ParCompactionManager::oop_task_queues()), 1228 _active_workers(active_workers) {} 1229 1230 virtual void work(uint worker_id) { 1231 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id); 1232 cm->create_marking_stats_cache(); 1233 { 1234 CLDToOopClosure cld_closure(&cm->_mark_and_push_closure, ClassLoaderData::_claim_stw_fullgc_mark); 1235 ClassLoaderDataGraph::always_strong_cld_do(&cld_closure); 1236 1237 // Do the real work 1238 cm->follow_marking_stacks(); 1239 } 1240 1241 { 1242 PCAddThreadRootsMarkingTaskClosure closure(worker_id); 1243 Threads::possibly_parallel_threads_do(_active_workers > 1 /* is_par */, &closure); 1244 } 1245 1246 // Mark from OopStorages 1247 { 1248 _oop_storage_set_par_state.oops_do(&cm->_mark_and_push_closure); 1249 // Do the real work 1250 cm->follow_marking_stacks(); 1251 } 1252 1253 if (_active_workers > 1) { 1254 steal_marking_work(_terminator, worker_id); 1255 } 1256 } 1257 }; 1258 1259 class ParallelCompactRefProcProxyTask : public RefProcProxyTask { 1260 TaskTerminator _terminator; 1261 1262 public: 1263 ParallelCompactRefProcProxyTask(uint max_workers) 1264 : RefProcProxyTask("ParallelCompactRefProcProxyTask", max_workers), 1265 _terminator(_max_workers, ParCompactionManager::oop_task_queues()) {} 1266 1267 void work(uint worker_id) override { 1268 assert(worker_id < _max_workers, "sanity"); 1269 ParCompactionManager* cm = (_tm == RefProcThreadModel::Single) ? ParCompactionManager::get_vmthread_cm() : ParCompactionManager::gc_thread_compaction_manager(worker_id); 1270 BarrierEnqueueDiscoveredFieldClosure enqueue; 1271 ParCompactionManager::FollowStackClosure complete_gc(cm, (_tm == RefProcThreadModel::Single) ? nullptr : &_terminator, worker_id); 1272 _rp_task->rp_work(worker_id, PSParallelCompact::is_alive_closure(), &cm->_mark_and_push_closure, &enqueue, &complete_gc); 1273 } 1274 1275 void prepare_run_task_hook() override { 1276 _terminator.reset_for_reuse(_queue_count); 1277 } 1278 }; 1279 1280 static void flush_marking_stats_cache(const uint num_workers) { 1281 for (uint i = 0; i < num_workers; ++i) { 1282 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(i); 1283 cm->flush_and_destroy_marking_stats_cache(); 1284 } 1285 } 1286 1287 void PSParallelCompact::marking_phase(ParallelOldTracer *gc_tracer) { 1288 // Recursively traverse all live objects and mark them 1289 GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer); 1290 1291 uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers(); 1292 1293 ClassLoaderDataGraph::verify_claimed_marks_cleared(ClassLoaderData::_claim_stw_fullgc_mark); 1294 { 1295 GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer); 1296 1297 MarkFromRootsTask task(active_gc_threads); 1298 ParallelScavengeHeap::heap()->workers().run_task(&task); 1299 } 1300 1301 // Process reference objects found during marking 1302 { 1303 GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer); 1304 1305 ReferenceProcessorStats stats; 1306 ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->max_num_queues()); 1307 1308 ref_processor()->set_active_mt_degree(active_gc_threads); 1309 ParallelCompactRefProcProxyTask task(ref_processor()->max_num_queues()); 1310 stats = ref_processor()->process_discovered_references(task, pt); 1311 1312 gc_tracer->report_gc_reference_stats(stats); 1313 pt.print_all_references(); 1314 } 1315 1316 { 1317 GCTraceTime(Debug, gc, phases) tm("Flush Marking Stats", &_gc_timer); 1318 1319 flush_marking_stats_cache(active_gc_threads); 1320 } 1321 1322 // This is the point where the entire marking should have completed. 1323 ParCompactionManager::verify_all_marking_stack_empty(); 1324 1325 { 1326 GCTraceTime(Debug, gc, phases) tm("Weak Processing", &_gc_timer); 1327 WeakProcessor::weak_oops_do(&ParallelScavengeHeap::heap()->workers(), 1328 is_alive_closure(), 1329 &do_nothing_cl, 1330 1); 1331 } 1332 1333 { 1334 GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer); 1335 1336 ClassUnloadingContext* ctx = ClassUnloadingContext::context(); 1337 1338 bool unloading_occurred; 1339 { 1340 CodeCache::UnlinkingScope scope(is_alive_closure()); 1341 1342 // Follow system dictionary roots and unload classes. 1343 unloading_occurred = SystemDictionary::do_unloading(&_gc_timer); 1344 1345 // Unload nmethods. 1346 CodeCache::do_unloading(unloading_occurred); 1347 } 1348 1349 { 1350 GCTraceTime(Debug, gc, phases) t("Purge Unlinked NMethods", gc_timer()); 1351 // Release unloaded nmethod's memory. 1352 ctx->purge_nmethods(); 1353 } 1354 { 1355 GCTraceTime(Debug, gc, phases) ur("Unregister NMethods", &_gc_timer); 1356 ParallelScavengeHeap::heap()->prune_unlinked_nmethods(); 1357 } 1358 { 1359 GCTraceTime(Debug, gc, phases) t("Free Code Blobs", gc_timer()); 1360 ctx->free_nmethods(); 1361 } 1362 1363 // Prune dead klasses from subklass/sibling/implementor lists. 1364 Klass::clean_weak_klass_links(unloading_occurred); 1365 1366 // Clean JVMCI metadata handles. 1367 JVMCI_ONLY(JVMCI::do_unloading(unloading_occurred)); 1368 } 1369 1370 { 1371 GCTraceTime(Debug, gc, phases) tm("Report Object Count", &_gc_timer); 1372 _gc_tracer.report_object_count_after_gc(is_alive_closure(), &ParallelScavengeHeap::heap()->workers()); 1373 } 1374 #if TASKQUEUE_STATS 1375 ParCompactionManager::oop_task_queues()->print_and_reset_taskqueue_stats("Oop Queue"); 1376 ParCompactionManager::_objarray_task_queues->print_and_reset_taskqueue_stats("ObjArrayOop Queue"); 1377 #endif 1378 } 1379 1380 template<typename Func> 1381 void PSParallelCompact::adjust_in_space_helper(SpaceId id, volatile uint* claim_counter, Func&& on_stripe) { 1382 MutableSpace* sp = PSParallelCompact::space(id); 1383 HeapWord* const bottom = sp->bottom(); 1384 HeapWord* const top = sp->top(); 1385 if (bottom == top) { 1386 return; 1387 } 1388 1389 const uint num_regions_per_stripe = 2; 1390 const size_t region_size = ParallelCompactData::RegionSize; 1391 const size_t stripe_size = num_regions_per_stripe * region_size; 1392 1393 while (true) { 1394 uint counter = Atomic::fetch_then_add(claim_counter, num_regions_per_stripe); 1395 HeapWord* cur_stripe = bottom + counter * region_size; 1396 if (cur_stripe >= top) { 1397 break; 1398 } 1399 HeapWord* stripe_end = MIN2(cur_stripe + stripe_size, top); 1400 on_stripe(cur_stripe, stripe_end); 1401 } 1402 } 1403 1404 void PSParallelCompact::adjust_in_old_space(volatile uint* claim_counter) { 1405 // Regions in old-space shouldn't be split. 1406 assert(!_space_info[old_space_id].split_info().is_valid(), "inv"); 1407 1408 auto scan_obj_with_limit = [&] (HeapWord* obj_start, HeapWord* left, HeapWord* right) { 1409 assert(mark_bitmap()->is_marked(obj_start), "inv"); 1410 oop obj = cast_to_oop(obj_start); 1411 return obj->oop_iterate_size(&pc_adjust_pointer_closure, MemRegion(left, right)); 1412 }; 1413 1414 adjust_in_space_helper(old_space_id, claim_counter, [&] (HeapWord* stripe_start, HeapWord* stripe_end) { 1415 assert(_summary_data.is_region_aligned(stripe_start), "inv"); 1416 RegionData* cur_region = _summary_data.addr_to_region_ptr(stripe_start); 1417 HeapWord* obj_start; 1418 if (cur_region->partial_obj_size() != 0) { 1419 obj_start = cur_region->partial_obj_addr(); 1420 obj_start += scan_obj_with_limit(obj_start, stripe_start, stripe_end); 1421 } else { 1422 obj_start = stripe_start; 1423 } 1424 1425 while (obj_start < stripe_end) { 1426 obj_start = mark_bitmap()->find_obj_beg(obj_start, stripe_end); 1427 if (obj_start >= stripe_end) { 1428 break; 1429 } 1430 obj_start += scan_obj_with_limit(obj_start, stripe_start, stripe_end); 1431 } 1432 }); 1433 } 1434 1435 void PSParallelCompact::adjust_in_young_space(SpaceId id, volatile uint* claim_counter) { 1436 adjust_in_space_helper(id, claim_counter, [](HeapWord* stripe_start, HeapWord* stripe_end) { 1437 HeapWord* obj_start = stripe_start; 1438 while (obj_start < stripe_end) { 1439 obj_start = mark_bitmap()->find_obj_beg(obj_start, stripe_end); 1440 if (obj_start >= stripe_end) { 1441 break; 1442 } 1443 oop obj = cast_to_oop(obj_start); 1444 obj_start += obj->oop_iterate_size(&pc_adjust_pointer_closure); 1445 } 1446 }); 1447 } 1448 1449 void PSParallelCompact::adjust_pointers_in_spaces(uint worker_id, volatile uint* claim_counters) { 1450 auto start_time = Ticks::now(); 1451 adjust_in_old_space(&claim_counters[0]); 1452 for (uint id = eden_space_id; id < last_space_id; ++id) { 1453 adjust_in_young_space(SpaceId(id), &claim_counters[id]); 1454 } 1455 log_trace(gc, phases)("adjust_pointers_in_spaces worker %u: %.3f ms", worker_id, (Ticks::now() - start_time).seconds() * 1000); 1456 } 1457 1458 class PSAdjustTask final : public WorkerTask { 1459 SubTasksDone _sub_tasks; 1460 WeakProcessor::Task _weak_proc_task; 1461 OopStorageSetStrongParState<false, false> _oop_storage_iter; 1462 uint _nworkers; 1463 volatile uint _claim_counters[PSParallelCompact::last_space_id] = {}; 1464 1465 enum PSAdjustSubTask { 1466 PSAdjustSubTask_code_cache, 1467 1468 PSAdjustSubTask_num_elements 1469 }; 1470 1471 public: 1472 PSAdjustTask(uint nworkers) : 1473 WorkerTask("PSAdjust task"), 1474 _sub_tasks(PSAdjustSubTask_num_elements), 1475 _weak_proc_task(nworkers), 1476 _nworkers(nworkers) { 1477 1478 ClassLoaderDataGraph::verify_claimed_marks_cleared(ClassLoaderData::_claim_stw_fullgc_adjust); 1479 if (nworkers > 1) { 1480 Threads::change_thread_claim_token(); 1481 } 1482 } 1483 1484 ~PSAdjustTask() { 1485 Threads::assert_all_threads_claimed(); 1486 } 1487 1488 void work(uint worker_id) { 1489 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id); 1490 cm->preserved_marks()->adjust_during_full_gc(); 1491 { 1492 // adjust pointers in all spaces 1493 PSParallelCompact::adjust_pointers_in_spaces(worker_id, _claim_counters); 1494 } 1495 { 1496 ResourceMark rm; 1497 Threads::possibly_parallel_oops_do(_nworkers > 1, &pc_adjust_pointer_closure, nullptr); 1498 } 1499 _oop_storage_iter.oops_do(&pc_adjust_pointer_closure); 1500 { 1501 CLDToOopClosure cld_closure(&pc_adjust_pointer_closure, ClassLoaderData::_claim_stw_fullgc_adjust); 1502 ClassLoaderDataGraph::cld_do(&cld_closure); 1503 } 1504 { 1505 AlwaysTrueClosure always_alive; 1506 _weak_proc_task.work(worker_id, &always_alive, &pc_adjust_pointer_closure); 1507 } 1508 if (_sub_tasks.try_claim_task(PSAdjustSubTask_code_cache)) { 1509 NMethodToOopClosure adjust_code(&pc_adjust_pointer_closure, NMethodToOopClosure::FixRelocations); 1510 CodeCache::nmethods_do(&adjust_code); 1511 } 1512 _sub_tasks.all_tasks_claimed(); 1513 } 1514 }; 1515 1516 void PSParallelCompact::adjust_pointers() { 1517 // Adjust the pointers to reflect the new locations 1518 GCTraceTime(Info, gc, phases) tm("Adjust Pointers", &_gc_timer); 1519 uint nworkers = ParallelScavengeHeap::heap()->workers().active_workers(); 1520 PSAdjustTask task(nworkers); 1521 ParallelScavengeHeap::heap()->workers().run_task(&task); 1522 } 1523 1524 // Split [start, end) evenly for a number of workers and return the 1525 // range for worker_id. 1526 static void split_regions_for_worker(size_t start, size_t end, 1527 uint worker_id, uint num_workers, 1528 size_t* worker_start, size_t* worker_end) { 1529 assert(start < end, "precondition"); 1530 assert(num_workers > 0, "precondition"); 1531 assert(worker_id < num_workers, "precondition"); 1532 1533 size_t num_regions = end - start; 1534 size_t num_regions_per_worker = num_regions / num_workers; 1535 size_t remainder = num_regions % num_workers; 1536 // The first few workers will get one extra. 1537 *worker_start = start + worker_id * num_regions_per_worker 1538 + MIN2(checked_cast<size_t>(worker_id), remainder); 1539 *worker_end = *worker_start + num_regions_per_worker 1540 + (worker_id < remainder ? 1 : 0); 1541 } 1542 1543 void PSParallelCompact::forward_to_new_addr() { 1544 GCTraceTime(Info, gc, phases) tm("Forward", &_gc_timer); 1545 uint nworkers = ParallelScavengeHeap::heap()->workers().active_workers(); 1546 1547 struct ForwardTask final : public WorkerTask { 1548 uint _num_workers; 1549 1550 explicit ForwardTask(uint num_workers) : 1551 WorkerTask("PSForward task"), 1552 _num_workers(num_workers) {} 1553 1554 void work(uint worker_id) override { 1555 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id); 1556 for (uint id = old_space_id; id < last_space_id; ++id) { 1557 MutableSpace* sp = PSParallelCompact::space(SpaceId(id)); 1558 HeapWord* dense_prefix_addr = dense_prefix(SpaceId(id)); 1559 HeapWord* top = sp->top(); 1560 1561 if (dense_prefix_addr == top) { 1562 continue; 1563 } 1564 1565 size_t dense_prefix_region = _summary_data.addr_to_region_idx(dense_prefix_addr); 1566 size_t top_region = _summary_data.addr_to_region_idx(_summary_data.region_align_up(top)); 1567 size_t start_region; 1568 size_t end_region; 1569 split_regions_for_worker(dense_prefix_region, top_region, 1570 worker_id, _num_workers, 1571 &start_region, &end_region); 1572 for (size_t cur_region = start_region; cur_region < end_region; ++cur_region) { 1573 RegionData* region_ptr = _summary_data.region(cur_region); 1574 size_t live_words = region_ptr->partial_obj_size(); 1575 1576 if (live_words == ParallelCompactData::RegionSize) { 1577 // No obj-start 1578 continue; 1579 } 1580 1581 HeapWord* region_start = _summary_data.region_to_addr(cur_region); 1582 HeapWord* region_end = region_start + ParallelCompactData::RegionSize; 1583 1584 HeapWord* cur_addr = region_start + live_words; 1585 1586 HeapWord* destination = region_ptr->destination(); 1587 while (cur_addr < region_end) { 1588 cur_addr = mark_bitmap()->find_obj_beg(cur_addr, region_end); 1589 if (cur_addr >= region_end) { 1590 break; 1591 } 1592 assert(mark_bitmap()->is_marked(cur_addr), "inv"); 1593 HeapWord* new_addr = destination + live_words; 1594 oop obj = cast_to_oop(cur_addr); 1595 if (new_addr != cur_addr) { 1596 cm->preserved_marks()->push_if_necessary(obj, obj->mark()); 1597 obj->forward_to(cast_to_oop(new_addr)); 1598 } 1599 size_t obj_size = obj->size(); 1600 live_words += obj_size; 1601 cur_addr += obj_size; 1602 } 1603 } 1604 } 1605 } 1606 } task(nworkers); 1607 1608 ParallelScavengeHeap::heap()->workers().run_task(&task); 1609 debug_only(verify_forward();) 1610 } 1611 1612 #ifdef ASSERT 1613 void PSParallelCompact::verify_forward() { 1614 HeapWord* old_dense_prefix_addr = dense_prefix(SpaceId(old_space_id)); 1615 RegionData* old_region = _summary_data.region(_summary_data.addr_to_region_idx(old_dense_prefix_addr)); 1616 HeapWord* bump_ptr = old_region->partial_obj_size() != 0 1617 ? old_dense_prefix_addr + old_region->partial_obj_size() 1618 : old_dense_prefix_addr; 1619 SpaceId bump_ptr_space = old_space_id; 1620 1621 for (uint id = old_space_id; id < last_space_id; ++id) { 1622 MutableSpace* sp = PSParallelCompact::space(SpaceId(id)); 1623 HeapWord* dense_prefix_addr = dense_prefix(SpaceId(id)); 1624 HeapWord* top = sp->top(); 1625 HeapWord* cur_addr = dense_prefix_addr; 1626 1627 while (cur_addr < top) { 1628 cur_addr = mark_bitmap()->find_obj_beg(cur_addr, top); 1629 if (cur_addr >= top) { 1630 break; 1631 } 1632 assert(mark_bitmap()->is_marked(cur_addr), "inv"); 1633 // Move to the space containing cur_addr 1634 if (bump_ptr == _space_info[bump_ptr_space].new_top()) { 1635 bump_ptr = space(space_id(cur_addr))->bottom(); 1636 bump_ptr_space = space_id(bump_ptr); 1637 } 1638 oop obj = cast_to_oop(cur_addr); 1639 if (cur_addr != bump_ptr) { 1640 assert(obj->forwardee() == cast_to_oop(bump_ptr), "inv"); 1641 } 1642 bump_ptr += obj->size(); 1643 cur_addr += obj->size(); 1644 } 1645 } 1646 } 1647 #endif 1648 1649 // Helper class to print 8 region numbers per line and then print the total at the end. 1650 class FillableRegionLogger : public StackObj { 1651 private: 1652 Log(gc, compaction) log; 1653 static const int LineLength = 8; 1654 size_t _regions[LineLength]; 1655 int _next_index; 1656 bool _enabled; 1657 size_t _total_regions; 1658 public: 1659 FillableRegionLogger() : _next_index(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)), _total_regions(0) { } 1660 ~FillableRegionLogger() { 1661 log.trace(SIZE_FORMAT " initially fillable regions", _total_regions); 1662 } 1663 1664 void print_line() { 1665 if (!_enabled || _next_index == 0) { 1666 return; 1667 } 1668 FormatBuffer<> line("Fillable: "); 1669 for (int i = 0; i < _next_index; i++) { 1670 line.append(" " SIZE_FORMAT_W(7), _regions[i]); 1671 } 1672 log.trace("%s", line.buffer()); 1673 _next_index = 0; 1674 } 1675 1676 void handle(size_t region) { 1677 if (!_enabled) { 1678 return; 1679 } 1680 _regions[_next_index++] = region; 1681 if (_next_index == LineLength) { 1682 print_line(); 1683 } 1684 _total_regions++; 1685 } 1686 }; 1687 1688 void PSParallelCompact::prepare_region_draining_tasks(uint parallel_gc_threads) 1689 { 1690 GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer); 1691 1692 // Find the threads that are active 1693 uint worker_id = 0; 1694 1695 // Find all regions that are available (can be filled immediately) and 1696 // distribute them to the thread stacks. The iteration is done in reverse 1697 // order (high to low) so the regions will be removed in ascending order. 1698 1699 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 1700 1701 // id + 1 is used to test termination so unsigned can 1702 // be used with an old_space_id == 0. 1703 FillableRegionLogger region_logger; 1704 for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) { 1705 SpaceInfo* const space_info = _space_info + id; 1706 HeapWord* const new_top = space_info->new_top(); 1707 1708 const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix()); 1709 const size_t end_region = 1710 sd.addr_to_region_idx(sd.region_align_up(new_top)); 1711 1712 for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) { 1713 if (sd.region(cur)->claim_unsafe()) { 1714 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id); 1715 bool result = sd.region(cur)->mark_normal(); 1716 assert(result, "Must succeed at this point."); 1717 cm->region_stack()->push(cur); 1718 region_logger.handle(cur); 1719 // Assign regions to tasks in round-robin fashion. 1720 if (++worker_id == parallel_gc_threads) { 1721 worker_id = 0; 1722 } 1723 } 1724 } 1725 region_logger.print_line(); 1726 } 1727 } 1728 1729 static void compaction_with_stealing_work(TaskTerminator* terminator, uint worker_id) { 1730 assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc"); 1731 1732 ParCompactionManager* cm = 1733 ParCompactionManager::gc_thread_compaction_manager(worker_id); 1734 1735 // Drain the stacks that have been preloaded with regions 1736 // that are ready to fill. 1737 1738 cm->drain_region_stacks(); 1739 1740 guarantee(cm->region_stack()->is_empty(), "Not empty"); 1741 1742 size_t region_index = 0; 1743 1744 while (true) { 1745 if (ParCompactionManager::steal(worker_id, region_index)) { 1746 PSParallelCompact::fill_and_update_region(cm, region_index); 1747 cm->drain_region_stacks(); 1748 } else if (PSParallelCompact::steal_unavailable_region(cm, region_index)) { 1749 // Fill and update an unavailable region with the help of a shadow region 1750 PSParallelCompact::fill_and_update_shadow_region(cm, region_index); 1751 cm->drain_region_stacks(); 1752 } else { 1753 if (terminator->offer_termination()) { 1754 break; 1755 } 1756 // Go around again. 1757 } 1758 } 1759 } 1760 1761 class FillDensePrefixAndCompactionTask: public WorkerTask { 1762 uint _num_workers; 1763 TaskTerminator _terminator; 1764 1765 public: 1766 FillDensePrefixAndCompactionTask(uint active_workers) : 1767 WorkerTask("FillDensePrefixAndCompactionTask"), 1768 _num_workers(active_workers), 1769 _terminator(active_workers, ParCompactionManager::region_task_queues()) { 1770 } 1771 1772 virtual void work(uint worker_id) { 1773 { 1774 auto start = Ticks::now(); 1775 PSParallelCompact::fill_dead_objs_in_dense_prefix(worker_id, _num_workers); 1776 log_trace(gc, phases)("Fill dense prefix by worker %u: %.3f ms", worker_id, (Ticks::now() - start).seconds() * 1000); 1777 } 1778 compaction_with_stealing_work(&_terminator, worker_id); 1779 } 1780 }; 1781 1782 void PSParallelCompact::fill_range_in_dense_prefix(HeapWord* start, HeapWord* end) { 1783 #ifdef ASSERT 1784 { 1785 assert(start < end, "precondition"); 1786 assert(mark_bitmap()->find_obj_beg(start, end) == end, "precondition"); 1787 HeapWord* bottom = _space_info[old_space_id].space()->bottom(); 1788 if (start != bottom) { 1789 HeapWord* obj_start = mark_bitmap()->find_obj_beg_reverse(bottom, start); 1790 HeapWord* after_obj = obj_start + cast_to_oop(obj_start)->size(); 1791 assert(after_obj == start, "precondition"); 1792 } 1793 } 1794 #endif 1795 1796 CollectedHeap::fill_with_objects(start, pointer_delta(end, start)); 1797 HeapWord* addr = start; 1798 do { 1799 size_t size = cast_to_oop(addr)->size(); 1800 start_array(old_space_id)->update_for_block(addr, addr + size); 1801 addr += size; 1802 } while (addr < end); 1803 } 1804 1805 void PSParallelCompact::fill_dead_objs_in_dense_prefix(uint worker_id, uint num_workers) { 1806 ParMarkBitMap* bitmap = mark_bitmap(); 1807 1808 HeapWord* const bottom = _space_info[old_space_id].space()->bottom(); 1809 HeapWord* const prefix_end = dense_prefix(old_space_id); 1810 1811 if (bottom == prefix_end) { 1812 return; 1813 } 1814 1815 size_t bottom_region = _summary_data.addr_to_region_idx(bottom); 1816 size_t prefix_end_region = _summary_data.addr_to_region_idx(prefix_end); 1817 1818 size_t start_region; 1819 size_t end_region; 1820 split_regions_for_worker(bottom_region, prefix_end_region, 1821 worker_id, num_workers, 1822 &start_region, &end_region); 1823 1824 if (start_region == end_region) { 1825 return; 1826 } 1827 1828 HeapWord* const start_addr = _summary_data.region_to_addr(start_region); 1829 HeapWord* const end_addr = _summary_data.region_to_addr(end_region); 1830 1831 // Skip live partial obj (if any) from previous region. 1832 HeapWord* cur_addr; 1833 RegionData* start_region_ptr = _summary_data.region(start_region); 1834 if (start_region_ptr->partial_obj_size() != 0) { 1835 HeapWord* partial_obj_start = start_region_ptr->partial_obj_addr(); 1836 assert(bitmap->is_marked(partial_obj_start), "inv"); 1837 cur_addr = partial_obj_start + cast_to_oop(partial_obj_start)->size(); 1838 } else { 1839 cur_addr = start_addr; 1840 } 1841 1842 // end_addr is inclusive to handle regions starting with dead space. 1843 while (cur_addr <= end_addr) { 1844 // Use prefix_end to handle trailing obj in each worker region-chunk. 1845 HeapWord* live_start = bitmap->find_obj_beg(cur_addr, prefix_end); 1846 if (cur_addr != live_start) { 1847 // Only worker 0 handles proceeding dead space. 1848 if (cur_addr != start_addr || worker_id == 0) { 1849 fill_range_in_dense_prefix(cur_addr, live_start); 1850 } 1851 } 1852 if (live_start >= end_addr) { 1853 break; 1854 } 1855 assert(bitmap->is_marked(live_start), "inv"); 1856 cur_addr = live_start + cast_to_oop(live_start)->size(); 1857 } 1858 } 1859 1860 void PSParallelCompact::compact() { 1861 GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer); 1862 1863 uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers(); 1864 1865 initialize_shadow_regions(active_gc_threads); 1866 prepare_region_draining_tasks(active_gc_threads); 1867 1868 { 1869 GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer); 1870 1871 FillDensePrefixAndCompactionTask task(active_gc_threads); 1872 ParallelScavengeHeap::heap()->workers().run_task(&task); 1873 1874 #ifdef ASSERT 1875 verify_filler_in_dense_prefix(); 1876 1877 // Verify that all regions have been processed. 1878 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 1879 verify_complete(SpaceId(id)); 1880 } 1881 #endif 1882 } 1883 } 1884 1885 #ifdef ASSERT 1886 void PSParallelCompact::verify_filler_in_dense_prefix() { 1887 HeapWord* bottom = _space_info[old_space_id].space()->bottom(); 1888 HeapWord* dense_prefix_end = dense_prefix(old_space_id); 1889 HeapWord* cur_addr = bottom; 1890 while (cur_addr < dense_prefix_end) { 1891 oop obj = cast_to_oop(cur_addr); 1892 oopDesc::verify(obj); 1893 if (!mark_bitmap()->is_marked(cur_addr)) { 1894 Klass* k = cast_to_oop(cur_addr)->klass_without_asserts(); 1895 assert(k == Universe::fillerArrayKlass() || k == vmClasses::FillerObject_klass(), "inv"); 1896 } 1897 cur_addr += obj->size(); 1898 } 1899 } 1900 1901 void PSParallelCompact::verify_complete(SpaceId space_id) { 1902 // All Regions served as compaction targets, from dense_prefix() to 1903 // new_top(), should be marked as filled and all Regions between new_top() 1904 // and top() should be available (i.e., should have been emptied). 1905 ParallelCompactData& sd = summary_data(); 1906 SpaceInfo si = _space_info[space_id]; 1907 HeapWord* new_top_addr = sd.region_align_up(si.new_top()); 1908 HeapWord* old_top_addr = sd.region_align_up(si.space()->top()); 1909 const size_t beg_region = sd.addr_to_region_idx(si.dense_prefix()); 1910 const size_t new_top_region = sd.addr_to_region_idx(new_top_addr); 1911 const size_t old_top_region = sd.addr_to_region_idx(old_top_addr); 1912 1913 size_t cur_region; 1914 for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) { 1915 const RegionData* const c = sd.region(cur_region); 1916 assert(c->completed(), "region %zu not filled: destination_count=%u", 1917 cur_region, c->destination_count()); 1918 } 1919 1920 for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) { 1921 const RegionData* const c = sd.region(cur_region); 1922 assert(c->available(), "region %zu not empty: destination_count=%u", 1923 cur_region, c->destination_count()); 1924 } 1925 } 1926 #endif // #ifdef ASSERT 1927 1928 // Return the SpaceId for the space containing addr. If addr is not in the 1929 // heap, last_space_id is returned. In debug mode it expects the address to be 1930 // in the heap and asserts such. 1931 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) { 1932 assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap"); 1933 1934 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 1935 if (_space_info[id].space()->contains(addr)) { 1936 return SpaceId(id); 1937 } 1938 } 1939 1940 assert(false, "no space contains the addr"); 1941 return last_space_id; 1942 } 1943 1944 // Skip over count live words starting from beg, and return the address of the 1945 // next live word. Unless marked, the word corresponding to beg is assumed to 1946 // be dead. Callers must either ensure beg does not correspond to the middle of 1947 // an object, or account for those live words in some other way. Callers must 1948 // also ensure that there are enough live words in the range [beg, end) to skip. 1949 HeapWord* 1950 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count) 1951 { 1952 assert(count > 0, "sanity"); 1953 1954 ParMarkBitMap* m = mark_bitmap(); 1955 HeapWord* cur_addr = beg; 1956 while (true) { 1957 cur_addr = m->find_obj_beg(cur_addr, end); 1958 assert(cur_addr < end, "inv"); 1959 size_t obj_size = cast_to_oop(cur_addr)->size(); 1960 // Strictly greater-than 1961 if (obj_size > count) { 1962 return cur_addr + count; 1963 } 1964 count -= obj_size; 1965 cur_addr += obj_size; 1966 } 1967 } 1968 1969 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr, 1970 SpaceId src_space_id, 1971 size_t src_region_idx) 1972 { 1973 assert(summary_data().is_region_aligned(dest_addr), "not aligned"); 1974 1975 const SplitInfo& split_info = _space_info[src_space_id].split_info(); 1976 if (split_info.dest_region_addr() == dest_addr) { 1977 // The partial object ending at the split point contains the first word to 1978 // be copied to dest_addr. 1979 return split_info.first_src_addr(); 1980 } 1981 1982 const ParallelCompactData& sd = summary_data(); 1983 ParMarkBitMap* const bitmap = mark_bitmap(); 1984 const size_t RegionSize = ParallelCompactData::RegionSize; 1985 1986 assert(sd.is_region_aligned(dest_addr), "not aligned"); 1987 const RegionData* const src_region_ptr = sd.region(src_region_idx); 1988 const size_t partial_obj_size = src_region_ptr->partial_obj_size(); 1989 HeapWord* const src_region_destination = src_region_ptr->destination(); 1990 1991 assert(dest_addr >= src_region_destination, "wrong src region"); 1992 assert(src_region_ptr->data_size() > 0, "src region cannot be empty"); 1993 1994 HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx); 1995 HeapWord* const src_region_end = src_region_beg + RegionSize; 1996 1997 HeapWord* addr = src_region_beg; 1998 if (dest_addr == src_region_destination) { 1999 // Return the first live word in the source region. 2000 if (partial_obj_size == 0) { 2001 addr = bitmap->find_obj_beg(addr, src_region_end); 2002 assert(addr < src_region_end, "no objects start in src region"); 2003 } 2004 return addr; 2005 } 2006 2007 // Must skip some live data. 2008 size_t words_to_skip = dest_addr - src_region_destination; 2009 assert(src_region_ptr->data_size() > words_to_skip, "wrong src region"); 2010 2011 if (partial_obj_size >= words_to_skip) { 2012 // All the live words to skip are part of the partial object. 2013 addr += words_to_skip; 2014 if (partial_obj_size == words_to_skip) { 2015 // Find the first live word past the partial object. 2016 addr = bitmap->find_obj_beg(addr, src_region_end); 2017 assert(addr < src_region_end, "wrong src region"); 2018 } 2019 return addr; 2020 } 2021 2022 // Skip over the partial object (if any). 2023 if (partial_obj_size != 0) { 2024 words_to_skip -= partial_obj_size; 2025 addr += partial_obj_size; 2026 } 2027 2028 // Skip over live words due to objects that start in the region. 2029 addr = skip_live_words(addr, src_region_end, words_to_skip); 2030 assert(addr < src_region_end, "wrong src region"); 2031 return addr; 2032 } 2033 2034 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm, 2035 SpaceId src_space_id, 2036 size_t beg_region, 2037 HeapWord* end_addr) 2038 { 2039 ParallelCompactData& sd = summary_data(); 2040 2041 #ifdef ASSERT 2042 MutableSpace* const src_space = _space_info[src_space_id].space(); 2043 HeapWord* const beg_addr = sd.region_to_addr(beg_region); 2044 assert(src_space->contains(beg_addr) || beg_addr == src_space->end(), 2045 "src_space_id does not match beg_addr"); 2046 assert(src_space->contains(end_addr) || end_addr == src_space->end(), 2047 "src_space_id does not match end_addr"); 2048 #endif // #ifdef ASSERT 2049 2050 RegionData* const beg = sd.region(beg_region); 2051 RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr)); 2052 2053 // Regions up to new_top() are enqueued if they become available. 2054 HeapWord* const new_top = _space_info[src_space_id].new_top(); 2055 RegionData* const enqueue_end = 2056 sd.addr_to_region_ptr(sd.region_align_up(new_top)); 2057 2058 for (RegionData* cur = beg; cur < end; ++cur) { 2059 assert(cur->data_size() > 0, "region must have live data"); 2060 cur->decrement_destination_count(); 2061 if (cur < enqueue_end && cur->available() && cur->claim()) { 2062 if (cur->mark_normal()) { 2063 cm->push_region(sd.region(cur)); 2064 } else if (cur->mark_copied()) { 2065 // Try to copy the content of the shadow region back to its corresponding 2066 // heap region if the shadow region is filled. Otherwise, the GC thread 2067 // fills the shadow region will copy the data back (see 2068 // MoveAndUpdateShadowClosure::complete_region). 2069 copy_back(sd.region_to_addr(cur->shadow_region()), sd.region_to_addr(cur)); 2070 ParCompactionManager::push_shadow_region_mt_safe(cur->shadow_region()); 2071 cur->set_completed(); 2072 } 2073 } 2074 } 2075 } 2076 2077 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure, 2078 SpaceId& src_space_id, 2079 HeapWord*& src_space_top, 2080 HeapWord* end_addr) 2081 { 2082 typedef ParallelCompactData::RegionData RegionData; 2083 2084 ParallelCompactData& sd = PSParallelCompact::summary_data(); 2085 const size_t region_size = ParallelCompactData::RegionSize; 2086 2087 size_t src_region_idx = 0; 2088 2089 // Skip empty regions (if any) up to the top of the space. 2090 HeapWord* const src_aligned_up = sd.region_align_up(end_addr); 2091 RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up); 2092 HeapWord* const top_aligned_up = sd.region_align_up(src_space_top); 2093 const RegionData* const top_region_ptr = 2094 sd.addr_to_region_ptr(top_aligned_up); 2095 while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) { 2096 ++src_region_ptr; 2097 } 2098 2099 if (src_region_ptr < top_region_ptr) { 2100 // The next source region is in the current space. Update src_region_idx 2101 // and the source address to match src_region_ptr. 2102 src_region_idx = sd.region(src_region_ptr); 2103 HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx); 2104 if (src_region_addr > closure.source()) { 2105 closure.set_source(src_region_addr); 2106 } 2107 return src_region_idx; 2108 } 2109 2110 // Switch to a new source space and find the first non-empty region. 2111 unsigned int space_id = src_space_id + 1; 2112 assert(space_id < last_space_id, "not enough spaces"); 2113 2114 HeapWord* const destination = closure.destination(); 2115 2116 do { 2117 MutableSpace* space = _space_info[space_id].space(); 2118 HeapWord* const bottom = space->bottom(); 2119 const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom); 2120 2121 // Iterate over the spaces that do not compact into themselves. 2122 if (bottom_cp->destination() != bottom) { 2123 HeapWord* const top_aligned_up = sd.region_align_up(space->top()); 2124 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up); 2125 2126 for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) { 2127 if (src_cp->live_obj_size() > 0) { 2128 // Found it. 2129 assert(src_cp->destination() == destination, 2130 "first live obj in the space must match the destination"); 2131 assert(src_cp->partial_obj_size() == 0, 2132 "a space cannot begin with a partial obj"); 2133 2134 src_space_id = SpaceId(space_id); 2135 src_space_top = space->top(); 2136 const size_t src_region_idx = sd.region(src_cp); 2137 closure.set_source(sd.region_to_addr(src_region_idx)); 2138 return src_region_idx; 2139 } else { 2140 assert(src_cp->data_size() == 0, "sanity"); 2141 } 2142 } 2143 } 2144 } while (++space_id < last_space_id); 2145 2146 assert(false, "no source region was found"); 2147 return 0; 2148 } 2149 2150 HeapWord* PSParallelCompact::partial_obj_end(HeapWord* region_start_addr) { 2151 ParallelCompactData& sd = summary_data(); 2152 assert(sd.is_region_aligned(region_start_addr), "precondition"); 2153 2154 // Use per-region partial_obj_size to locate the end of the obj, that extends to region_start_addr. 2155 SplitInfo& split_info = _space_info[space_id(region_start_addr)].split_info(); 2156 size_t start_region_idx = sd.addr_to_region_idx(region_start_addr); 2157 size_t end_region_idx = sd.region_count(); 2158 size_t accumulated_size = 0; 2159 for (size_t region_idx = start_region_idx; region_idx < end_region_idx; ++region_idx) { 2160 if (split_info.is_split(region_idx)) { 2161 accumulated_size += split_info.partial_obj_size(); 2162 break; 2163 } 2164 size_t cur_partial_obj_size = sd.region(region_idx)->partial_obj_size(); 2165 accumulated_size += cur_partial_obj_size; 2166 if (cur_partial_obj_size != ParallelCompactData::RegionSize) { 2167 break; 2168 } 2169 } 2170 return region_start_addr + accumulated_size; 2171 } 2172 2173 void PSParallelCompact::fill_region(ParCompactionManager* cm, MoveAndUpdateClosure& closure, size_t region_idx) 2174 { 2175 ParMarkBitMap* const bitmap = mark_bitmap(); 2176 ParallelCompactData& sd = summary_data(); 2177 RegionData* const region_ptr = sd.region(region_idx); 2178 2179 // Get the source region and related info. 2180 size_t src_region_idx = region_ptr->source_region(); 2181 SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx)); 2182 HeapWord* src_space_top = _space_info[src_space_id].space()->top(); 2183 HeapWord* dest_addr = sd.region_to_addr(region_idx); 2184 2185 closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx)); 2186 2187 // Adjust src_region_idx to prepare for decrementing destination counts (the 2188 // destination count is not decremented when a region is copied to itself). 2189 if (src_region_idx == region_idx) { 2190 src_region_idx += 1; 2191 } 2192 2193 if (bitmap->is_unmarked(closure.source())) { 2194 // The first source word is in the middle of an object; copy the remainder 2195 // of the object or as much as will fit. The fact that pointer updates were 2196 // deferred will be noted when the object header is processed. 2197 HeapWord* const old_src_addr = closure.source(); 2198 { 2199 HeapWord* region_start = sd.region_align_down(closure.source()); 2200 HeapWord* obj_start = bitmap->find_obj_beg_reverse(region_start, closure.source()); 2201 HeapWord* obj_end; 2202 if (bitmap->is_marked(obj_start)) { 2203 HeapWord* next_region_start = region_start + ParallelCompactData::RegionSize; 2204 HeapWord* partial_obj_start = (next_region_start >= src_space_top) 2205 ? nullptr 2206 : sd.addr_to_region_ptr(next_region_start)->partial_obj_addr(); 2207 if (partial_obj_start == obj_start) { 2208 // This obj extends to next region. 2209 obj_end = partial_obj_end(next_region_start); 2210 } else { 2211 // Completely contained in this region; safe to use size(). 2212 obj_end = obj_start + cast_to_oop(obj_start)->size(); 2213 } 2214 } else { 2215 // This obj extends to current region. 2216 obj_end = partial_obj_end(region_start); 2217 } 2218 size_t partial_obj_size = pointer_delta(obj_end, closure.source()); 2219 closure.copy_partial_obj(partial_obj_size); 2220 } 2221 2222 if (closure.is_full()) { 2223 decrement_destination_counts(cm, src_space_id, src_region_idx, 2224 closure.source()); 2225 closure.complete_region(dest_addr, region_ptr); 2226 return; 2227 } 2228 2229 HeapWord* const end_addr = sd.region_align_down(closure.source()); 2230 if (sd.region_align_down(old_src_addr) != end_addr) { 2231 // The partial object was copied from more than one source region. 2232 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); 2233 2234 // Move to the next source region, possibly switching spaces as well. All 2235 // args except end_addr may be modified. 2236 src_region_idx = next_src_region(closure, src_space_id, src_space_top, 2237 end_addr); 2238 } 2239 } 2240 2241 do { 2242 HeapWord* cur_addr = closure.source(); 2243 HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1), 2244 src_space_top); 2245 HeapWord* partial_obj_start = (end_addr == src_space_top) 2246 ? nullptr 2247 : sd.addr_to_region_ptr(end_addr)->partial_obj_addr(); 2248 // apply closure on objs inside [cur_addr, end_addr) 2249 do { 2250 cur_addr = bitmap->find_obj_beg(cur_addr, end_addr); 2251 if (cur_addr == end_addr) { 2252 break; 2253 } 2254 size_t obj_size; 2255 if (partial_obj_start == cur_addr) { 2256 obj_size = pointer_delta(partial_obj_end(end_addr), cur_addr); 2257 } else { 2258 // This obj doesn't extend into next region; size() is safe to use. 2259 obj_size = cast_to_oop(cur_addr)->size(); 2260 } 2261 closure.do_addr(cur_addr, obj_size); 2262 cur_addr += obj_size; 2263 } while (cur_addr < end_addr && !closure.is_full()); 2264 2265 if (closure.is_full()) { 2266 decrement_destination_counts(cm, src_space_id, src_region_idx, 2267 closure.source()); 2268 closure.complete_region(dest_addr, region_ptr); 2269 return; 2270 } 2271 2272 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); 2273 2274 // Move to the next source region, possibly switching spaces as well. All 2275 // args except end_addr may be modified. 2276 src_region_idx = next_src_region(closure, src_space_id, src_space_top, 2277 end_addr); 2278 } while (true); 2279 } 2280 2281 void PSParallelCompact::fill_and_update_region(ParCompactionManager* cm, size_t region_idx) 2282 { 2283 MoveAndUpdateClosure cl(mark_bitmap(), region_idx); 2284 fill_region(cm, cl, region_idx); 2285 } 2286 2287 void PSParallelCompact::fill_and_update_shadow_region(ParCompactionManager* cm, size_t region_idx) 2288 { 2289 // Get a shadow region first 2290 ParallelCompactData& sd = summary_data(); 2291 RegionData* const region_ptr = sd.region(region_idx); 2292 size_t shadow_region = ParCompactionManager::pop_shadow_region_mt_safe(region_ptr); 2293 // The InvalidShadow return value indicates the corresponding heap region is available, 2294 // so use MoveAndUpdateClosure to fill the normal region. Otherwise, use 2295 // MoveAndUpdateShadowClosure to fill the acquired shadow region. 2296 if (shadow_region == ParCompactionManager::InvalidShadow) { 2297 MoveAndUpdateClosure cl(mark_bitmap(), region_idx); 2298 region_ptr->shadow_to_normal(); 2299 return fill_region(cm, cl, region_idx); 2300 } else { 2301 MoveAndUpdateShadowClosure cl(mark_bitmap(), region_idx, shadow_region); 2302 return fill_region(cm, cl, region_idx); 2303 } 2304 } 2305 2306 void PSParallelCompact::copy_back(HeapWord *shadow_addr, HeapWord *region_addr) 2307 { 2308 Copy::aligned_conjoint_words(shadow_addr, region_addr, _summary_data.RegionSize); 2309 } 2310 2311 bool PSParallelCompact::steal_unavailable_region(ParCompactionManager* cm, size_t ®ion_idx) 2312 { 2313 size_t next = cm->next_shadow_region(); 2314 ParallelCompactData& sd = summary_data(); 2315 size_t old_new_top = sd.addr_to_region_idx(_space_info[old_space_id].new_top()); 2316 uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers(); 2317 2318 while (next < old_new_top) { 2319 if (sd.region(next)->mark_shadow()) { 2320 region_idx = next; 2321 return true; 2322 } 2323 next = cm->move_next_shadow_region_by(active_gc_threads); 2324 } 2325 2326 return false; 2327 } 2328 2329 // The shadow region is an optimization to address region dependencies in full GC. The basic 2330 // idea is making more regions available by temporally storing their live objects in empty 2331 // shadow regions to resolve dependencies between them and the destination regions. Therefore, 2332 // GC threads need not wait destination regions to be available before processing sources. 2333 // 2334 // A typical workflow would be: 2335 // After draining its own stack and failing to steal from others, a GC worker would pick an 2336 // unavailable region (destination count > 0) and get a shadow region. Then the worker fills 2337 // the shadow region by copying live objects from source regions of the unavailable one. Once 2338 // the unavailable region becomes available, the data in the shadow region will be copied back. 2339 // Shadow regions are empty regions in the to-space and regions between top and end of other spaces. 2340 void PSParallelCompact::initialize_shadow_regions(uint parallel_gc_threads) 2341 { 2342 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 2343 2344 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2345 SpaceInfo* const space_info = _space_info + id; 2346 MutableSpace* const space = space_info->space(); 2347 2348 const size_t beg_region = 2349 sd.addr_to_region_idx(sd.region_align_up(MAX2(space_info->new_top(), space->top()))); 2350 const size_t end_region = 2351 sd.addr_to_region_idx(sd.region_align_down(space->end())); 2352 2353 for (size_t cur = beg_region; cur < end_region; ++cur) { 2354 ParCompactionManager::push_shadow_region(cur); 2355 } 2356 } 2357 2358 size_t beg_region = sd.addr_to_region_idx(_space_info[old_space_id].dense_prefix()); 2359 for (uint i = 0; i < parallel_gc_threads; i++) { 2360 ParCompactionManager *cm = ParCompactionManager::gc_thread_compaction_manager(i); 2361 cm->set_next_shadow_region(beg_region + i); 2362 } 2363 } 2364 2365 void MoveAndUpdateClosure::copy_partial_obj(size_t partial_obj_size) 2366 { 2367 size_t words = MIN2(partial_obj_size, words_remaining()); 2368 2369 // This test is necessary; if omitted, the pointer updates to a partial object 2370 // that crosses the dense prefix boundary could be overwritten. 2371 if (source() != copy_destination()) { 2372 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 2373 Copy::aligned_conjoint_words(source(), copy_destination(), words); 2374 } 2375 update_state(words); 2376 } 2377 2378 void MoveAndUpdateClosure::complete_region(HeapWord* dest_addr, PSParallelCompact::RegionData* region_ptr) { 2379 assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::NormalRegion, "Region should be finished"); 2380 region_ptr->set_completed(); 2381 } 2382 2383 void MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) { 2384 assert(destination() != nullptr, "sanity"); 2385 _source = addr; 2386 2387 // The start_array must be updated even if the object is not moving. 2388 if (_start_array != nullptr) { 2389 _start_array->update_for_block(destination(), destination() + words); 2390 } 2391 2392 // Avoid overflow 2393 words = MIN2(words, words_remaining()); 2394 assert(words > 0, "inv"); 2395 2396 if (copy_destination() != source()) { 2397 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 2398 assert(source() != destination(), "inv"); 2399 assert(cast_to_oop(source())->is_forwarded(), "inv"); 2400 assert(cast_to_oop(source())->forwardee() == cast_to_oop(destination()), "inv"); 2401 // Read the klass before the copying, since it might destroy the klass (i.e. overlapping copy) 2402 // and if partial copy, the destination klass may not be copied yet 2403 Klass* klass = cast_to_oop(source())->klass(); 2404 Copy::aligned_conjoint_words(source(), copy_destination(), words); 2405 cast_to_oop(copy_destination())->set_mark(Klass::default_prototype_header(klass)); 2406 } 2407 2408 update_state(words); 2409 } 2410 2411 void MoveAndUpdateShadowClosure::complete_region(HeapWord* dest_addr, PSParallelCompact::RegionData* region_ptr) { 2412 assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::ShadowRegion, "Region should be shadow"); 2413 // Record the shadow region index 2414 region_ptr->set_shadow_region(_shadow); 2415 // Mark the shadow region as filled to indicate the data is ready to be 2416 // copied back 2417 region_ptr->mark_filled(); 2418 // Try to copy the content of the shadow region back to its corresponding 2419 // heap region if available; the GC thread that decreases the destination 2420 // count to zero will do the copying otherwise (see 2421 // PSParallelCompact::decrement_destination_counts). 2422 if (((region_ptr->available() && region_ptr->claim()) || region_ptr->claimed()) && region_ptr->mark_copied()) { 2423 region_ptr->set_completed(); 2424 PSParallelCompact::copy_back(PSParallelCompact::summary_data().region_to_addr(_shadow), dest_addr); 2425 ParCompactionManager::push_shadow_region_mt_safe(_shadow); 2426 } 2427 } 2428