1 /* 2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/classLoaderDataGraph.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/stringTable.hpp" 28 #include "classfile/symbolTable.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "code/codeCache.hpp" 31 #include "compiler/oopMap.hpp" 32 #include "gc/parallel/objectStartArray.inline.hpp" 33 #include "gc/parallel/parallelArguments.hpp" 34 #include "gc/parallel/parallelScavengeHeap.inline.hpp" 35 #include "gc/parallel/parMarkBitMap.inline.hpp" 36 #include "gc/parallel/psAdaptiveSizePolicy.hpp" 37 #include "gc/parallel/psCompactionManager.inline.hpp" 38 #include "gc/parallel/psOldGen.hpp" 39 #include "gc/parallel/psParallelCompact.inline.hpp" 40 #include "gc/parallel/psPromotionManager.inline.hpp" 41 #include "gc/parallel/psRootType.hpp" 42 #include "gc/parallel/psScavenge.hpp" 43 #include "gc/parallel/psStringDedup.hpp" 44 #include "gc/parallel/psYoungGen.hpp" 45 #include "gc/shared/classUnloadingContext.hpp" 46 #include "gc/shared/fullGCForwarding.inline.hpp" 47 #include "gc/shared/gcCause.hpp" 48 #include "gc/shared/gcHeapSummary.hpp" 49 #include "gc/shared/gcId.hpp" 50 #include "gc/shared/gcLocker.hpp" 51 #include "gc/shared/gcTimer.hpp" 52 #include "gc/shared/gcTrace.hpp" 53 #include "gc/shared/gcTraceTime.inline.hpp" 54 #include "gc/shared/gcVMOperations.hpp" 55 #include "gc/shared/isGCActiveMark.hpp" 56 #include "gc/shared/oopStorage.inline.hpp" 57 #include "gc/shared/oopStorageSet.inline.hpp" 58 #include "gc/shared/oopStorageSetParState.inline.hpp" 59 #include "gc/shared/preservedMarks.inline.hpp" 60 #include "gc/shared/referencePolicy.hpp" 61 #include "gc/shared/referenceProcessor.hpp" 62 #include "gc/shared/referenceProcessorPhaseTimes.hpp" 63 #include "gc/shared/spaceDecorator.hpp" 64 #include "gc/shared/strongRootsScope.hpp" 65 #include "gc/shared/taskTerminator.hpp" 66 #include "gc/shared/weakProcessor.inline.hpp" 67 #include "gc/shared/workerPolicy.hpp" 68 #include "gc/shared/workerThread.hpp" 69 #include "gc/shared/workerUtils.hpp" 70 #include "logging/log.hpp" 71 #include "memory/iterator.inline.hpp" 72 #include "memory/memoryReserver.hpp" 73 #include "memory/metaspaceUtils.hpp" 74 #include "memory/resourceArea.hpp" 75 #include "memory/universe.hpp" 76 #include "nmt/memTracker.hpp" 77 #include "oops/access.inline.hpp" 78 #include "oops/flatArrayKlass.inline.hpp" 79 #include "oops/instanceClassLoaderKlass.inline.hpp" 80 #include "oops/instanceKlass.inline.hpp" 81 #include "oops/instanceMirrorKlass.inline.hpp" 82 #include "oops/methodData.hpp" 83 #include "oops/objArrayKlass.inline.hpp" 84 #include "oops/oop.inline.hpp" 85 #include "runtime/atomic.hpp" 86 #include "runtime/handles.inline.hpp" 87 #include "runtime/java.hpp" 88 #include "runtime/safepoint.hpp" 89 #include "runtime/threads.hpp" 90 #include "runtime/vmThread.hpp" 91 #include "services/memoryService.hpp" 92 #include "utilities/align.hpp" 93 #include "utilities/debug.hpp" 94 #include "utilities/events.hpp" 95 #include "utilities/formatBuffer.hpp" 96 #include "utilities/macros.hpp" 97 #include "utilities/stack.inline.hpp" 98 #if INCLUDE_JVMCI 99 #include "jvmci/jvmci.hpp" 100 #endif 101 102 #include <math.h> 103 104 // All sizes are in HeapWords. 105 const size_t ParallelCompactData::Log2RegionSize = 16; // 64K words 106 const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize; 107 static_assert(ParallelCompactData::RegionSize >= BitsPerWord, "region-start bit word-aligned"); 108 const size_t ParallelCompactData::RegionSizeBytes = 109 RegionSize << LogHeapWordSize; 110 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1; 111 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1; 112 const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask; 113 114 const ParallelCompactData::RegionData::region_sz_t 115 ParallelCompactData::RegionData::dc_shift = 27; 116 117 const ParallelCompactData::RegionData::region_sz_t 118 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift; 119 120 const ParallelCompactData::RegionData::region_sz_t 121 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift; 122 123 const ParallelCompactData::RegionData::region_sz_t 124 ParallelCompactData::RegionData::los_mask = ~dc_mask; 125 126 const ParallelCompactData::RegionData::region_sz_t 127 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift; 128 129 const ParallelCompactData::RegionData::region_sz_t 130 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift; 131 132 bool ParallelCompactData::RegionData::is_clear() { 133 return (_destination == nullptr) && 134 (_source_region == 0) && 135 (_partial_obj_addr == nullptr) && 136 (_partial_obj_size == 0) && 137 (_dc_and_los == 0) && 138 (_shadow_state == 0); 139 } 140 141 #ifdef ASSERT 142 void ParallelCompactData::RegionData::verify_clear() { 143 assert(_destination == nullptr, "inv"); 144 assert(_source_region == 0, "inv"); 145 assert(_partial_obj_addr == nullptr, "inv"); 146 assert(_partial_obj_size == 0, "inv"); 147 assert(_dc_and_los == 0, "inv"); 148 assert(_shadow_state == 0, "inv"); 149 } 150 #endif 151 152 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id]; 153 154 SpanSubjectToDiscoveryClosure PSParallelCompact::_span_based_discoverer; 155 ReferenceProcessor* PSParallelCompact::_ref_processor = nullptr; 156 157 void SplitInfo::record(size_t split_region_idx, HeapWord* split_point, size_t preceding_live_words) { 158 assert(split_region_idx != 0, "precondition"); 159 160 // Obj denoted by split_point will be deferred to the next space. 161 assert(split_point != nullptr, "precondition"); 162 163 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 164 165 PSParallelCompact::RegionData* split_region_ptr = sd.region(split_region_idx); 166 assert(preceding_live_words < split_region_ptr->data_size(), "inv"); 167 168 HeapWord* preceding_destination = split_region_ptr->destination(); 169 assert(preceding_destination != nullptr, "inv"); 170 171 // How many regions does the preceding part occupy 172 uint preceding_destination_count; 173 if (preceding_live_words == 0) { 174 preceding_destination_count = 0; 175 } else { 176 // -1 so that the ending address doesn't fall on the region-boundary 177 if (sd.region_align_down(preceding_destination) == 178 sd.region_align_down(preceding_destination + preceding_live_words - 1)) { 179 preceding_destination_count = 1; 180 } else { 181 preceding_destination_count = 2; 182 } 183 } 184 185 _split_region_idx = split_region_idx; 186 _split_point = split_point; 187 _preceding_live_words = preceding_live_words; 188 _preceding_destination = preceding_destination; 189 _preceding_destination_count = preceding_destination_count; 190 } 191 192 void SplitInfo::clear() 193 { 194 _split_region_idx = 0; 195 _split_point = nullptr; 196 _preceding_live_words = 0; 197 _preceding_destination = nullptr; 198 _preceding_destination_count = 0; 199 assert(!is_valid(), "sanity"); 200 } 201 202 #ifdef ASSERT 203 void SplitInfo::verify_clear() 204 { 205 assert(_split_region_idx == 0, "not clear"); 206 assert(_split_point == nullptr, "not clear"); 207 assert(_preceding_live_words == 0, "not clear"); 208 assert(_preceding_destination == nullptr, "not clear"); 209 assert(_preceding_destination_count == 0, "not clear"); 210 } 211 #endif // #ifdef ASSERT 212 213 214 void PSParallelCompact::print_on(outputStream* st) { 215 _mark_bitmap.print_on(st); 216 } 217 218 ParallelCompactData::ParallelCompactData() : 219 _heap_start(nullptr), 220 DEBUG_ONLY(_heap_end(nullptr) COMMA) 221 _region_vspace(nullptr), 222 _reserved_byte_size(0), 223 _region_data(nullptr), 224 _region_count(0) {} 225 226 bool ParallelCompactData::initialize(MemRegion reserved_heap) 227 { 228 _heap_start = reserved_heap.start(); 229 const size_t heap_size = reserved_heap.word_size(); 230 DEBUG_ONLY(_heap_end = _heap_start + heap_size;) 231 232 assert(region_align_down(_heap_start) == _heap_start, 233 "region start not aligned"); 234 235 return initialize_region_data(heap_size); 236 } 237 238 PSVirtualSpace* 239 ParallelCompactData::create_vspace(size_t count, size_t element_size) 240 { 241 const size_t raw_bytes = count * element_size; 242 const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10); 243 const size_t granularity = os::vm_allocation_granularity(); 244 const size_t rs_align = MAX2(page_sz, granularity); 245 246 _reserved_byte_size = align_up(raw_bytes, rs_align); 247 248 ReservedSpace rs = MemoryReserver::reserve(_reserved_byte_size, 249 rs_align, 250 page_sz, 251 mtGC); 252 253 if (!rs.is_reserved()) { 254 // Failed to reserve memory. 255 return nullptr; 256 } 257 258 os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, rs.base(), 259 rs.size(), page_sz); 260 261 MemTracker::record_virtual_memory_tag(rs, mtGC); 262 263 PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz); 264 265 if (!vspace->expand_by(_reserved_byte_size)) { 266 // Failed to commit memory. 267 268 delete vspace; 269 270 // Release memory reserved in the space. 271 MemoryReserver::release(rs); 272 273 return nullptr; 274 } 275 276 return vspace; 277 } 278 279 bool ParallelCompactData::initialize_region_data(size_t heap_size) 280 { 281 assert(is_aligned(heap_size, RegionSize), "precondition"); 282 283 const size_t count = heap_size >> Log2RegionSize; 284 _region_vspace = create_vspace(count, sizeof(RegionData)); 285 if (_region_vspace != nullptr) { 286 _region_data = (RegionData*)_region_vspace->reserved_low_addr(); 287 _region_count = count; 288 return true; 289 } 290 return false; 291 } 292 293 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) { 294 assert(beg_region <= _region_count, "beg_region out of range"); 295 assert(end_region <= _region_count, "end_region out of range"); 296 297 const size_t region_cnt = end_region - beg_region; 298 memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData)); 299 } 300 301 void 302 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end) 303 { 304 assert(is_region_aligned(beg), "not RegionSize aligned"); 305 assert(is_region_aligned(end), "not RegionSize aligned"); 306 307 size_t cur_region = addr_to_region_idx(beg); 308 const size_t end_region = addr_to_region_idx(end); 309 HeapWord* addr = beg; 310 while (cur_region < end_region) { 311 _region_data[cur_region].set_destination(addr); 312 _region_data[cur_region].set_destination_count(0); 313 _region_data[cur_region].set_source_region(cur_region); 314 315 // Update live_obj_size so the region appears completely full. 316 size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size(); 317 _region_data[cur_region].set_live_obj_size(live_size); 318 319 ++cur_region; 320 addr += RegionSize; 321 } 322 } 323 324 // The total live words on src_region would overflow the target space, so find 325 // the overflowing object and record the split point. The invariant is that an 326 // obj should not cross space boundary. 327 HeapWord* ParallelCompactData::summarize_split_space(size_t src_region, 328 SplitInfo& split_info, 329 HeapWord* const destination, 330 HeapWord* const target_end, 331 HeapWord** target_next) { 332 assert(destination <= target_end, "sanity"); 333 assert(destination + _region_data[src_region].data_size() > target_end, 334 "region should not fit into target space"); 335 assert(is_region_aligned(target_end), "sanity"); 336 337 size_t partial_obj_size = _region_data[src_region].partial_obj_size(); 338 339 if (destination + partial_obj_size > target_end) { 340 assert(partial_obj_size > 0, "inv"); 341 // The overflowing obj is from a previous region. 342 // 343 // source-regions: 344 // 345 // *************** 346 // | A|AA | 347 // *************** 348 // ^ 349 // | split-point 350 // 351 // dest-region: 352 // 353 // ******** 354 // |~~~~A | 355 // ******** 356 // ^^ 357 // || target-space-end 358 // | 359 // | destination 360 // 361 // AAA would overflow target-space. 362 // 363 HeapWord* overflowing_obj = _region_data[src_region].partial_obj_addr(); 364 size_t split_region = addr_to_region_idx(overflowing_obj); 365 366 // The number of live words before the overflowing object on this split region 367 size_t preceding_live_words; 368 if (is_region_aligned(overflowing_obj)) { 369 preceding_live_words = 0; 370 } else { 371 // Words accounted by the overflowing object on the split region 372 size_t overflowing_size = pointer_delta(region_align_up(overflowing_obj), overflowing_obj); 373 preceding_live_words = region(split_region)->data_size() - overflowing_size; 374 } 375 376 split_info.record(split_region, overflowing_obj, preceding_live_words); 377 378 // The [overflowing_obj, src_region_start) part has been accounted for, so 379 // must move back the new_top, now that this overflowing obj is deferred. 380 HeapWord* new_top = destination - pointer_delta(region_to_addr(src_region), overflowing_obj); 381 382 // If the overflowing obj was relocated to its original destination, 383 // those destination regions would have their source_region set. Now that 384 // this overflowing obj is relocated somewhere else, reset the 385 // source_region. 386 { 387 size_t range_start = addr_to_region_idx(region_align_up(new_top)); 388 size_t range_end = addr_to_region_idx(region_align_up(destination)); 389 for (size_t i = range_start; i < range_end; ++i) { 390 region(i)->set_source_region(0); 391 } 392 } 393 394 // Update new top of target space 395 *target_next = new_top; 396 397 return overflowing_obj; 398 } 399 400 // Obj-iteration to locate the overflowing obj 401 HeapWord* region_start = region_to_addr(src_region); 402 HeapWord* region_end = region_start + RegionSize; 403 HeapWord* cur_addr = region_start + partial_obj_size; 404 size_t live_words = partial_obj_size; 405 406 while (true) { 407 assert(cur_addr < region_end, "inv"); 408 cur_addr = PSParallelCompact::mark_bitmap()->find_obj_beg(cur_addr, region_end); 409 // There must be an overflowing obj in this region 410 assert(cur_addr < region_end, "inv"); 411 412 oop obj = cast_to_oop(cur_addr); 413 size_t obj_size = obj->size(); 414 if (destination + live_words + obj_size > target_end) { 415 // Found the overflowing obj 416 split_info.record(src_region, cur_addr, live_words); 417 *target_next = destination + live_words; 418 return cur_addr; 419 } 420 421 live_words += obj_size; 422 cur_addr += obj_size; 423 } 424 } 425 426 size_t ParallelCompactData::live_words_in_space(const MutableSpace* space, 427 HeapWord** full_region_prefix_end) { 428 size_t cur_region = addr_to_region_idx(space->bottom()); 429 const size_t end_region = addr_to_region_idx(region_align_up(space->top())); 430 size_t live_words = 0; 431 if (full_region_prefix_end == nullptr) { 432 for (/* empty */; cur_region < end_region; ++cur_region) { 433 live_words += _region_data[cur_region].data_size(); 434 } 435 } else { 436 bool first_set = false; 437 for (/* empty */; cur_region < end_region; ++cur_region) { 438 size_t live_words_in_region = _region_data[cur_region].data_size(); 439 if (!first_set && live_words_in_region < RegionSize) { 440 *full_region_prefix_end = region_to_addr(cur_region); 441 first_set = true; 442 } 443 live_words += live_words_in_region; 444 } 445 if (!first_set) { 446 // All regions are full of live objs. 447 assert(is_region_aligned(space->top()), "inv"); 448 *full_region_prefix_end = space->top(); 449 } 450 assert(*full_region_prefix_end != nullptr, "postcondition"); 451 assert(is_region_aligned(*full_region_prefix_end), "inv"); 452 assert(*full_region_prefix_end >= space->bottom(), "in-range"); 453 assert(*full_region_prefix_end <= space->top(), "in-range"); 454 } 455 return live_words; 456 } 457 458 bool ParallelCompactData::summarize(SplitInfo& split_info, 459 HeapWord* source_beg, HeapWord* source_end, 460 HeapWord** source_next, 461 HeapWord* target_beg, HeapWord* target_end, 462 HeapWord** target_next) 463 { 464 HeapWord* const source_next_val = source_next == nullptr ? nullptr : *source_next; 465 log_develop_trace(gc, compaction)( 466 "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT 467 "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT, 468 p2i(source_beg), p2i(source_end), p2i(source_next_val), 469 p2i(target_beg), p2i(target_end), p2i(*target_next)); 470 471 size_t cur_region = addr_to_region_idx(source_beg); 472 const size_t end_region = addr_to_region_idx(region_align_up(source_end)); 473 474 HeapWord *dest_addr = target_beg; 475 for (/* empty */; cur_region < end_region; cur_region++) { 476 size_t words = _region_data[cur_region].data_size(); 477 478 // Skip empty ones 479 if (words == 0) { 480 continue; 481 } 482 483 if (split_info.is_split(cur_region)) { 484 assert(words > split_info.preceding_live_words(), "inv"); 485 words -= split_info.preceding_live_words(); 486 } 487 488 _region_data[cur_region].set_destination(dest_addr); 489 490 // If cur_region does not fit entirely into the target space, find a point 491 // at which the source space can be 'split' so that part is copied to the 492 // target space and the rest is copied elsewhere. 493 if (dest_addr + words > target_end) { 494 assert(source_next != nullptr, "source_next is null when splitting"); 495 *source_next = summarize_split_space(cur_region, split_info, dest_addr, 496 target_end, target_next); 497 return false; 498 } 499 500 uint destination_count = split_info.is_split(cur_region) 501 ? split_info.preceding_destination_count() 502 : 0; 503 504 HeapWord* const last_addr = dest_addr + words - 1; 505 const size_t dest_region_1 = addr_to_region_idx(dest_addr); 506 const size_t dest_region_2 = addr_to_region_idx(last_addr); 507 508 // Initially assume that the destination regions will be the same and 509 // adjust the value below if necessary. Under this assumption, if 510 // cur_region == dest_region_2, then cur_region will be compacted 511 // completely into itself. 512 destination_count += cur_region == dest_region_2 ? 0 : 1; 513 if (dest_region_1 != dest_region_2) { 514 // Destination regions differ; adjust destination_count. 515 destination_count += 1; 516 // Data from cur_region will be copied to the start of dest_region_2. 517 _region_data[dest_region_2].set_source_region(cur_region); 518 } else if (is_region_aligned(dest_addr)) { 519 // Data from cur_region will be copied to the start of the destination 520 // region. 521 _region_data[dest_region_1].set_source_region(cur_region); 522 } 523 524 _region_data[cur_region].set_destination_count(destination_count); 525 dest_addr += words; 526 } 527 528 *target_next = dest_addr; 529 return true; 530 } 531 532 #ifdef ASSERT 533 void ParallelCompactData::verify_clear() { 534 for (uint cur_idx = 0; cur_idx < region_count(); ++cur_idx) { 535 if (!region(cur_idx)->is_clear()) { 536 log_warning(gc)("Uncleared Region: %u", cur_idx); 537 region(cur_idx)->verify_clear(); 538 } 539 } 540 } 541 #endif // #ifdef ASSERT 542 543 STWGCTimer PSParallelCompact::_gc_timer; 544 ParallelOldTracer PSParallelCompact::_gc_tracer; 545 elapsedTimer PSParallelCompact::_accumulated_time; 546 unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0; 547 CollectorCounters* PSParallelCompact::_counters = nullptr; 548 ParMarkBitMap PSParallelCompact::_mark_bitmap; 549 ParallelCompactData PSParallelCompact::_summary_data; 550 551 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure; 552 553 class PCAdjustPointerClosure: public BasicOopIterateClosure { 554 template <typename T> 555 void do_oop_work(T* p) { PSParallelCompact::adjust_pointer(p); } 556 557 public: 558 virtual void do_oop(oop* p) { do_oop_work(p); } 559 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 560 561 virtual ReferenceIterationMode reference_iteration_mode() { return DO_FIELDS; } 562 }; 563 564 static PCAdjustPointerClosure pc_adjust_pointer_closure; 565 566 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); } 567 568 void PSParallelCompact::post_initialize() { 569 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 570 _span_based_discoverer.set_span(heap->reserved_region()); 571 _ref_processor = 572 new ReferenceProcessor(&_span_based_discoverer, 573 ParallelGCThreads, // mt processing degree 574 ParallelGCThreads, // mt discovery degree 575 false, // concurrent_discovery 576 &_is_alive_closure); // non-header is alive closure 577 578 _counters = new CollectorCounters("Parallel full collection pauses", 1); 579 580 // Initialize static fields in ParCompactionManager. 581 ParCompactionManager::initialize(mark_bitmap()); 582 } 583 584 bool PSParallelCompact::initialize_aux_data() { 585 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 586 MemRegion mr = heap->reserved_region(); 587 assert(mr.byte_size() != 0, "heap should be reserved"); 588 589 initialize_space_info(); 590 591 if (!_mark_bitmap.initialize(mr)) { 592 vm_shutdown_during_initialization( 593 err_msg("Unable to allocate %zuKB bitmaps for parallel " 594 "garbage collection for the requested %zuKB heap.", 595 _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K)); 596 return false; 597 } 598 599 if (!_summary_data.initialize(mr)) { 600 vm_shutdown_during_initialization( 601 err_msg("Unable to allocate %zuKB card tables for parallel " 602 "garbage collection for the requested %zuKB heap.", 603 _summary_data.reserved_byte_size()/K, mr.byte_size()/K)); 604 return false; 605 } 606 607 return true; 608 } 609 610 void PSParallelCompact::initialize_space_info() 611 { 612 memset(&_space_info, 0, sizeof(_space_info)); 613 614 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 615 PSYoungGen* young_gen = heap->young_gen(); 616 617 _space_info[old_space_id].set_space(heap->old_gen()->object_space()); 618 _space_info[eden_space_id].set_space(young_gen->eden_space()); 619 _space_info[from_space_id].set_space(young_gen->from_space()); 620 _space_info[to_space_id].set_space(young_gen->to_space()); 621 622 _space_info[old_space_id].set_start_array(heap->old_gen()->start_array()); 623 } 624 625 void 626 PSParallelCompact::clear_data_covering_space(SpaceId id) 627 { 628 // At this point, top is the value before GC, new_top() is the value that will 629 // be set at the end of GC. The marking bitmap is cleared to top; nothing 630 // should be marked above top. The summary data is cleared to the larger of 631 // top & new_top. 632 MutableSpace* const space = _space_info[id].space(); 633 HeapWord* const bot = space->bottom(); 634 HeapWord* const top = space->top(); 635 HeapWord* const max_top = MAX2(top, _space_info[id].new_top()); 636 637 _mark_bitmap.clear_range(bot, top); 638 639 const size_t beg_region = _summary_data.addr_to_region_idx(bot); 640 const size_t end_region = 641 _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top)); 642 _summary_data.clear_range(beg_region, end_region); 643 644 // Clear the data used to 'split' regions. 645 SplitInfo& split_info = _space_info[id].split_info(); 646 if (split_info.is_valid()) { 647 split_info.clear(); 648 } 649 DEBUG_ONLY(split_info.verify_clear();) 650 } 651 652 void PSParallelCompact::pre_compact() 653 { 654 // Update the from & to space pointers in space_info, since they are swapped 655 // at each young gen gc. Do the update unconditionally (even though a 656 // promotion failure does not swap spaces) because an unknown number of young 657 // collections will have swapped the spaces an unknown number of times. 658 GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer); 659 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 660 _space_info[from_space_id].set_space(heap->young_gen()->from_space()); 661 _space_info[to_space_id].set_space(heap->young_gen()->to_space()); 662 663 // Increment the invocation count 664 heap->increment_total_collections(true); 665 666 CodeCache::on_gc_marking_cycle_start(); 667 668 heap->print_heap_before_gc(); 669 heap->trace_heap_before_gc(&_gc_tracer); 670 671 // Fill in TLABs 672 heap->ensure_parsability(true); // retire TLABs 673 674 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) { 675 Universe::verify("Before GC"); 676 } 677 678 DEBUG_ONLY(mark_bitmap()->verify_clear();) 679 DEBUG_ONLY(summary_data().verify_clear();) 680 } 681 682 void PSParallelCompact::post_compact() 683 { 684 GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer); 685 ParCompactionManager::remove_all_shadow_regions(); 686 687 CodeCache::on_gc_marking_cycle_finish(); 688 CodeCache::arm_all_nmethods(); 689 690 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 691 // Clear the marking bitmap, summary data and split info. 692 clear_data_covering_space(SpaceId(id)); 693 { 694 MutableSpace* space = _space_info[id].space(); 695 HeapWord* top = space->top(); 696 HeapWord* new_top = _space_info[id].new_top(); 697 if (ZapUnusedHeapArea && new_top < top) { 698 space->mangle_region(MemRegion(new_top, top)); 699 } 700 // Update top(). Must be done after clearing the bitmap and summary data. 701 space->set_top(new_top); 702 } 703 } 704 705 #ifdef ASSERT 706 { 707 mark_bitmap()->verify_clear(); 708 summary_data().verify_clear(); 709 } 710 #endif 711 712 ParCompactionManager::flush_all_string_dedup_requests(); 713 714 MutableSpace* const eden_space = _space_info[eden_space_id].space(); 715 MutableSpace* const from_space = _space_info[from_space_id].space(); 716 MutableSpace* const to_space = _space_info[to_space_id].space(); 717 718 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 719 bool eden_empty = eden_space->is_empty(); 720 721 // Update heap occupancy information which is used as input to the soft ref 722 // clearing policy at the next gc. 723 Universe::heap()->update_capacity_and_used_at_gc(); 724 725 bool young_gen_empty = eden_empty && from_space->is_empty() && 726 to_space->is_empty(); 727 728 PSCardTable* ct = heap->card_table(); 729 MemRegion old_mr = heap->old_gen()->committed(); 730 if (young_gen_empty) { 731 ct->clear_MemRegion(old_mr); 732 } else { 733 ct->dirty_MemRegion(old_mr); 734 } 735 736 { 737 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 738 GCTraceTime(Debug, gc, phases) t("Purge Class Loader Data", gc_timer()); 739 ClassLoaderDataGraph::purge(true /* at_safepoint */); 740 DEBUG_ONLY(MetaspaceUtils::verify();) 741 } 742 743 // Need to clear claim bits for the next mark. 744 ClassLoaderDataGraph::clear_claimed_marks(); 745 746 heap->prune_scavengable_nmethods(); 747 748 #if COMPILER2_OR_JVMCI 749 DerivedPointerTable::update_pointers(); 750 #endif 751 752 // Signal that we have completed a visit to all live objects. 753 Universe::heap()->record_whole_heap_examined_timestamp(); 754 } 755 756 HeapWord* PSParallelCompact::compute_dense_prefix_for_old_space(MutableSpace* old_space, 757 HeapWord* full_region_prefix_end) { 758 const size_t region_size = ParallelCompactData::RegionSize; 759 const ParallelCompactData& sd = summary_data(); 760 761 // Iteration starts with the region *after* the full-region-prefix-end. 762 const RegionData* const start_region = sd.addr_to_region_ptr(full_region_prefix_end); 763 // If final region is not full, iteration stops before that region, 764 // because fill_dense_prefix_end assumes that prefix_end <= top. 765 const RegionData* const end_region = sd.addr_to_region_ptr(old_space->top()); 766 assert(start_region <= end_region, "inv"); 767 768 size_t max_waste = old_space->capacity_in_words() * (MarkSweepDeadRatio / 100.0); 769 const RegionData* cur_region = start_region; 770 for (/* empty */; cur_region < end_region; ++cur_region) { 771 assert(region_size >= cur_region->data_size(), "inv"); 772 size_t dead_size = region_size - cur_region->data_size(); 773 if (max_waste < dead_size) { 774 break; 775 } 776 max_waste -= dead_size; 777 } 778 779 HeapWord* const prefix_end = sd.region_to_addr(cur_region); 780 assert(sd.is_region_aligned(prefix_end), "postcondition"); 781 assert(prefix_end >= full_region_prefix_end, "in-range"); 782 assert(prefix_end <= old_space->top(), "in-range"); 783 return prefix_end; 784 } 785 786 void PSParallelCompact::fill_dense_prefix_end(SpaceId id) { 787 // Comparing two sizes to decide if filling is required: 788 // 789 // The size of the filler (min-obj-size) is 2 heap words with the default 790 // MinObjAlignment, since both markword and klass take 1 heap word. 791 // With +UseCompactObjectHeaders, the minimum filler size is only one word, 792 // because the Klass* gets encoded in the mark-word. 793 // 794 // The size of the gap (if any) right before dense-prefix-end is 795 // MinObjAlignment. 796 // 797 // Need to fill in the gap only if it's smaller than min-obj-size, and the 798 // filler obj will extend to next region. 799 800 if (MinObjAlignment >= checked_cast<int>(CollectedHeap::min_fill_size())) { 801 return; 802 } 803 804 assert(!UseCompactObjectHeaders, "Compact headers can allocate small objects"); 805 assert(CollectedHeap::min_fill_size() == 2, "inv"); 806 HeapWord* const dense_prefix_end = dense_prefix(id); 807 assert(_summary_data.is_region_aligned(dense_prefix_end), "precondition"); 808 assert(dense_prefix_end <= space(id)->top(), "precondition"); 809 if (dense_prefix_end == space(id)->top()) { 810 // Must not have single-word gap right before prefix-end/top. 811 return; 812 } 813 RegionData* const region_after_dense_prefix = _summary_data.addr_to_region_ptr(dense_prefix_end); 814 815 if (region_after_dense_prefix->partial_obj_size() != 0 || 816 _mark_bitmap.is_marked(dense_prefix_end)) { 817 // The region after the dense prefix starts with live bytes. 818 return; 819 } 820 821 HeapWord* block_start = start_array(id)->block_start_reaching_into_card(dense_prefix_end); 822 if (block_start == dense_prefix_end - 1) { 823 assert(!_mark_bitmap.is_marked(block_start), "inv"); 824 // There is exactly one heap word gap right before the dense prefix end, so we need a filler object. 825 // The filler object will extend into region_after_dense_prefix. 826 const size_t obj_len = 2; // min-fill-size 827 HeapWord* const obj_beg = dense_prefix_end - 1; 828 CollectedHeap::fill_with_object(obj_beg, obj_len); 829 _mark_bitmap.mark_obj(obj_beg); 830 _summary_data.addr_to_region_ptr(obj_beg)->add_live_obj(1); 831 region_after_dense_prefix->set_partial_obj_size(1); 832 region_after_dense_prefix->set_partial_obj_addr(obj_beg); 833 assert(start_array(id) != nullptr, "sanity"); 834 start_array(id)->update_for_block(obj_beg, obj_beg + obj_len); 835 } 836 } 837 838 bool PSParallelCompact::check_maximum_compaction(size_t total_live_words, 839 MutableSpace* const old_space, 840 HeapWord* full_region_prefix_end) { 841 842 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 843 844 // Check System.GC 845 bool is_max_on_system_gc = UseMaximumCompactionOnSystemGC 846 && GCCause::is_user_requested_gc(heap->gc_cause()); 847 848 // Check if all live objs are larger than old-gen. 849 const bool is_old_gen_overflowing = (total_live_words > old_space->capacity_in_words()); 850 851 // JVM flags 852 const uint total_invocations = heap->total_full_collections(); 853 assert(total_invocations >= _maximum_compaction_gc_num, "sanity"); 854 const size_t gcs_since_max = total_invocations - _maximum_compaction_gc_num; 855 const bool is_interval_ended = gcs_since_max > HeapMaximumCompactionInterval; 856 857 // If all regions in old-gen are full 858 const bool is_region_full = 859 full_region_prefix_end >= _summary_data.region_align_down(old_space->top()); 860 861 if (is_max_on_system_gc || is_old_gen_overflowing || is_interval_ended || is_region_full) { 862 _maximum_compaction_gc_num = total_invocations; 863 return true; 864 } 865 866 return false; 867 } 868 869 void PSParallelCompact::summary_phase() 870 { 871 GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer); 872 873 MutableSpace* const old_space = _space_info[old_space_id].space(); 874 { 875 size_t total_live_words = 0; 876 HeapWord* full_region_prefix_end = nullptr; 877 { 878 // old-gen 879 size_t live_words = _summary_data.live_words_in_space(old_space, 880 &full_region_prefix_end); 881 total_live_words += live_words; 882 } 883 // young-gen 884 for (uint i = eden_space_id; i < last_space_id; ++i) { 885 const MutableSpace* space = _space_info[i].space(); 886 size_t live_words = _summary_data.live_words_in_space(space); 887 total_live_words += live_words; 888 _space_info[i].set_new_top(space->bottom() + live_words); 889 _space_info[i].set_dense_prefix(space->bottom()); 890 } 891 892 bool maximum_compaction = check_maximum_compaction(total_live_words, 893 old_space, 894 full_region_prefix_end); 895 HeapWord* dense_prefix_end = maximum_compaction 896 ? full_region_prefix_end 897 : compute_dense_prefix_for_old_space(old_space, 898 full_region_prefix_end); 899 SpaceId id = old_space_id; 900 _space_info[id].set_dense_prefix(dense_prefix_end); 901 902 if (dense_prefix_end != old_space->bottom()) { 903 fill_dense_prefix_end(id); 904 _summary_data.summarize_dense_prefix(old_space->bottom(), dense_prefix_end); 905 } 906 907 // Compacting objs in [dense_prefix_end, old_space->top()) 908 _summary_data.summarize(_space_info[id].split_info(), 909 dense_prefix_end, old_space->top(), nullptr, 910 dense_prefix_end, old_space->end(), 911 _space_info[id].new_top_addr()); 912 } 913 914 // Summarize the remaining spaces in the young gen. The initial target space 915 // is the old gen. If a space does not fit entirely into the target, then the 916 // remainder is compacted into the space itself and that space becomes the new 917 // target. 918 SpaceId dst_space_id = old_space_id; 919 HeapWord* dst_space_end = old_space->end(); 920 HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr(); 921 for (unsigned int id = eden_space_id; id < last_space_id; ++id) { 922 const MutableSpace* space = _space_info[id].space(); 923 const size_t live = pointer_delta(_space_info[id].new_top(), 924 space->bottom()); 925 const size_t available = pointer_delta(dst_space_end, *new_top_addr); 926 927 if (live > 0 && live <= available) { 928 // All the live data will fit. 929 bool done = _summary_data.summarize(_space_info[id].split_info(), 930 space->bottom(), space->top(), 931 nullptr, 932 *new_top_addr, dst_space_end, 933 new_top_addr); 934 assert(done, "space must fit into old gen"); 935 936 // Reset the new_top value for the space. 937 _space_info[id].set_new_top(space->bottom()); 938 } else if (live > 0) { 939 // Attempt to fit part of the source space into the target space. 940 HeapWord* next_src_addr = nullptr; 941 bool done = _summary_data.summarize(_space_info[id].split_info(), 942 space->bottom(), space->top(), 943 &next_src_addr, 944 *new_top_addr, dst_space_end, 945 new_top_addr); 946 assert(!done, "space should not fit into old gen"); 947 assert(next_src_addr != nullptr, "sanity"); 948 949 // The source space becomes the new target, so the remainder is compacted 950 // within the space itself. 951 dst_space_id = SpaceId(id); 952 dst_space_end = space->end(); 953 new_top_addr = _space_info[id].new_top_addr(); 954 done = _summary_data.summarize(_space_info[id].split_info(), 955 next_src_addr, space->top(), 956 nullptr, 957 space->bottom(), dst_space_end, 958 new_top_addr); 959 assert(done, "space must fit when compacted into itself"); 960 assert(*new_top_addr <= space->top(), "usage should not grow"); 961 } 962 } 963 } 964 965 // This method should contain all heap-specific policy for invoking a full 966 // collection. invoke_no_policy() will only attempt to compact the heap; it 967 // will do nothing further. If we need to bail out for policy reasons, scavenge 968 // before full gc, or any other specialized behavior, it needs to be added here. 969 // 970 // Note that this method should only be called from the vm_thread while at a 971 // safepoint. 972 // 973 // Note that the all_soft_refs_clear flag in the soft ref policy 974 // may be true because this method can be called without intervening 975 // activity. For example when the heap space is tight and full measure 976 // are being taken to free space. 977 bool PSParallelCompact::invoke(bool clear_all_soft_refs) { 978 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); 979 assert(Thread::current() == (Thread*)VMThread::vm_thread(), 980 "should be in vm thread"); 981 982 SvcGCMarker sgcm(SvcGCMarker::FULL); 983 IsSTWGCActiveMark mark; 984 985 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 986 clear_all_soft_refs = clear_all_soft_refs 987 || heap->soft_ref_policy()->should_clear_all_soft_refs(); 988 989 return PSParallelCompact::invoke_no_policy(clear_all_soft_refs); 990 } 991 992 // This method contains no policy. You should probably 993 // be calling invoke() instead. 994 bool PSParallelCompact::invoke_no_policy(bool clear_all_soft_refs) { 995 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); 996 assert(ref_processor() != nullptr, "Sanity"); 997 998 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 999 1000 GCIdMark gc_id_mark; 1001 _gc_timer.register_gc_start(); 1002 _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start()); 1003 1004 GCCause::Cause gc_cause = heap->gc_cause(); 1005 PSYoungGen* young_gen = heap->young_gen(); 1006 PSOldGen* old_gen = heap->old_gen(); 1007 PSAdaptiveSizePolicy* size_policy = heap->size_policy(); 1008 1009 // The scope of casr should end after code that can change 1010 // SoftRefPolicy::_should_clear_all_soft_refs. 1011 ClearedAllSoftRefs casr(clear_all_soft_refs, 1012 heap->soft_ref_policy()); 1013 1014 // Make sure data structures are sane, make the heap parsable, and do other 1015 // miscellaneous bookkeeping. 1016 pre_compact(); 1017 1018 const PreGenGCValues pre_gc_values = heap->get_pre_gc_values(); 1019 1020 { 1021 const uint active_workers = 1022 WorkerPolicy::calc_active_workers(ParallelScavengeHeap::heap()->workers().max_workers(), 1023 ParallelScavengeHeap::heap()->workers().active_workers(), 1024 Threads::number_of_non_daemon_threads()); 1025 ParallelScavengeHeap::heap()->workers().set_active_workers(active_workers); 1026 1027 GCTraceCPUTime tcpu(&_gc_tracer); 1028 GCTraceTime(Info, gc) tm("Pause Full", nullptr, gc_cause, true); 1029 1030 heap->pre_full_gc_dump(&_gc_timer); 1031 1032 TraceCollectorStats tcs(counters()); 1033 TraceMemoryManagerStats tms(heap->old_gc_manager(), gc_cause, "end of major GC"); 1034 1035 if (log_is_enabled(Debug, gc, heap, exit)) { 1036 accumulated_time()->start(); 1037 } 1038 1039 // Let the size policy know we're starting 1040 size_policy->major_collection_begin(); 1041 1042 #if COMPILER2_OR_JVMCI 1043 DerivedPointerTable::clear(); 1044 #endif 1045 1046 ref_processor()->start_discovery(clear_all_soft_refs); 1047 1048 ClassUnloadingContext ctx(1 /* num_nmethod_unlink_workers */, 1049 false /* unregister_nmethods_during_purge */, 1050 false /* lock_nmethod_free_separately */); 1051 1052 marking_phase(&_gc_tracer); 1053 1054 summary_phase(); 1055 1056 #if COMPILER2_OR_JVMCI 1057 assert(DerivedPointerTable::is_active(), "Sanity"); 1058 DerivedPointerTable::set_active(false); 1059 #endif 1060 1061 forward_to_new_addr(); 1062 1063 adjust_pointers(); 1064 1065 compact(); 1066 1067 ParCompactionManager::_preserved_marks_set->restore(&ParallelScavengeHeap::heap()->workers()); 1068 1069 ParCompactionManager::verify_all_region_stack_empty(); 1070 1071 // Reset the mark bitmap, summary data, and do other bookkeeping. Must be 1072 // done before resizing. 1073 post_compact(); 1074 1075 // Let the size policy know we're done 1076 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause); 1077 1078 if (UseAdaptiveSizePolicy) { 1079 log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections()); 1080 log_trace(gc, ergo)("old_gen_capacity: %zu young_gen_capacity: %zu", 1081 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes()); 1082 1083 // Don't check if the size_policy is ready here. Let 1084 // the size_policy check that internally. 1085 if (UseAdaptiveGenerationSizePolicyAtMajorCollection && 1086 AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) { 1087 // Swap the survivor spaces if from_space is empty. The 1088 // resize_young_gen() called below is normally used after 1089 // a successful young GC and swapping of survivor spaces; 1090 // otherwise, it will fail to resize the young gen with 1091 // the current implementation. 1092 if (young_gen->from_space()->is_empty()) { 1093 young_gen->from_space()->clear(SpaceDecorator::Mangle); 1094 young_gen->swap_spaces(); 1095 } 1096 1097 // Calculate optimal free space amounts 1098 assert(young_gen->max_gen_size() > 1099 young_gen->from_space()->capacity_in_bytes() + 1100 young_gen->to_space()->capacity_in_bytes(), 1101 "Sizes of space in young gen are out-of-bounds"); 1102 1103 size_t young_live = young_gen->used_in_bytes(); 1104 size_t eden_live = young_gen->eden_space()->used_in_bytes(); 1105 size_t old_live = old_gen->used_in_bytes(); 1106 size_t cur_eden = young_gen->eden_space()->capacity_in_bytes(); 1107 size_t max_old_gen_size = old_gen->max_gen_size(); 1108 size_t max_eden_size = young_gen->max_gen_size() - 1109 young_gen->from_space()->capacity_in_bytes() - 1110 young_gen->to_space()->capacity_in_bytes(); 1111 1112 // Used for diagnostics 1113 size_policy->clear_generation_free_space_flags(); 1114 1115 size_policy->compute_generations_free_space(young_live, 1116 eden_live, 1117 old_live, 1118 cur_eden, 1119 max_old_gen_size, 1120 max_eden_size, 1121 true /* full gc*/); 1122 1123 size_policy->check_gc_overhead_limit(eden_live, 1124 max_old_gen_size, 1125 max_eden_size, 1126 true /* full gc*/, 1127 gc_cause, 1128 heap->soft_ref_policy()); 1129 1130 size_policy->decay_supplemental_growth(true /* full gc*/); 1131 1132 heap->resize_old_gen( 1133 size_policy->calculated_old_free_size_in_bytes()); 1134 1135 heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(), 1136 size_policy->calculated_survivor_size_in_bytes()); 1137 } 1138 1139 log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections()); 1140 } 1141 1142 if (UsePerfData) { 1143 PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters(); 1144 counters->update_counters(); 1145 counters->update_old_capacity(old_gen->capacity_in_bytes()); 1146 counters->update_young_capacity(young_gen->capacity_in_bytes()); 1147 } 1148 1149 heap->resize_all_tlabs(); 1150 1151 // Resize the metaspace capacity after a collection 1152 MetaspaceGC::compute_new_size(); 1153 1154 if (log_is_enabled(Debug, gc, heap, exit)) { 1155 accumulated_time()->stop(); 1156 } 1157 1158 heap->print_heap_change(pre_gc_values); 1159 1160 // Track memory usage and detect low memory 1161 MemoryService::track_memory_usage(); 1162 heap->update_counters(); 1163 1164 heap->post_full_gc_dump(&_gc_timer); 1165 } 1166 1167 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) { 1168 Universe::verify("After GC"); 1169 } 1170 1171 heap->print_heap_after_gc(); 1172 heap->trace_heap_after_gc(&_gc_tracer); 1173 1174 AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections()); 1175 1176 _gc_timer.register_gc_end(); 1177 1178 _gc_tracer.report_dense_prefix(dense_prefix(old_space_id)); 1179 _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions()); 1180 1181 return true; 1182 } 1183 1184 class PCAddThreadRootsMarkingTaskClosure : public ThreadClosure { 1185 private: 1186 uint _worker_id; 1187 1188 public: 1189 PCAddThreadRootsMarkingTaskClosure(uint worker_id) : _worker_id(worker_id) { } 1190 void do_thread(Thread* thread) { 1191 assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc"); 1192 1193 ResourceMark rm; 1194 1195 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(_worker_id); 1196 1197 MarkingNMethodClosure mark_and_push_in_blobs(&cm->_mark_and_push_closure, 1198 !NMethodToOopClosure::FixRelocations, 1199 true /* keepalive nmethods */); 1200 1201 thread->oops_do(&cm->_mark_and_push_closure, &mark_and_push_in_blobs); 1202 1203 // Do the real work 1204 cm->follow_marking_stacks(); 1205 } 1206 }; 1207 1208 void steal_marking_work(TaskTerminator& terminator, uint worker_id) { 1209 assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc"); 1210 1211 ParCompactionManager* cm = 1212 ParCompactionManager::gc_thread_compaction_manager(worker_id); 1213 1214 do { 1215 ScannerTask task; 1216 if (ParCompactionManager::steal(worker_id, task)) { 1217 cm->follow_contents(task, true); 1218 } 1219 cm->follow_marking_stacks(); 1220 } while (!terminator.offer_termination()); 1221 } 1222 1223 class MarkFromRootsTask : public WorkerTask { 1224 StrongRootsScope _strong_roots_scope; // needed for Threads::possibly_parallel_threads_do 1225 OopStorageSetStrongParState<false /* concurrent */, false /* is_const */> _oop_storage_set_par_state; 1226 TaskTerminator _terminator; 1227 uint _active_workers; 1228 1229 public: 1230 MarkFromRootsTask(uint active_workers) : 1231 WorkerTask("MarkFromRootsTask"), 1232 _strong_roots_scope(active_workers), 1233 _terminator(active_workers, ParCompactionManager::marking_stacks()), 1234 _active_workers(active_workers) {} 1235 1236 virtual void work(uint worker_id) { 1237 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id); 1238 cm->create_marking_stats_cache(); 1239 { 1240 CLDToOopClosure cld_closure(&cm->_mark_and_push_closure, ClassLoaderData::_claim_stw_fullgc_mark); 1241 ClassLoaderDataGraph::always_strong_cld_do(&cld_closure); 1242 1243 // Do the real work 1244 cm->follow_marking_stacks(); 1245 } 1246 1247 { 1248 PCAddThreadRootsMarkingTaskClosure closure(worker_id); 1249 Threads::possibly_parallel_threads_do(_active_workers > 1 /* is_par */, &closure); 1250 } 1251 1252 // Mark from OopStorages 1253 { 1254 _oop_storage_set_par_state.oops_do(&cm->_mark_and_push_closure); 1255 // Do the real work 1256 cm->follow_marking_stacks(); 1257 } 1258 1259 if (_active_workers > 1) { 1260 steal_marking_work(_terminator, worker_id); 1261 } 1262 } 1263 }; 1264 1265 class ParallelCompactRefProcProxyTask : public RefProcProxyTask { 1266 TaskTerminator _terminator; 1267 1268 public: 1269 ParallelCompactRefProcProxyTask(uint max_workers) 1270 : RefProcProxyTask("ParallelCompactRefProcProxyTask", max_workers), 1271 _terminator(_max_workers, ParCompactionManager::marking_stacks()) {} 1272 1273 void work(uint worker_id) override { 1274 assert(worker_id < _max_workers, "sanity"); 1275 ParCompactionManager* cm = (_tm == RefProcThreadModel::Single) ? ParCompactionManager::get_vmthread_cm() : ParCompactionManager::gc_thread_compaction_manager(worker_id); 1276 BarrierEnqueueDiscoveredFieldClosure enqueue; 1277 ParCompactionManager::FollowStackClosure complete_gc(cm, (_tm == RefProcThreadModel::Single) ? nullptr : &_terminator, worker_id); 1278 _rp_task->rp_work(worker_id, PSParallelCompact::is_alive_closure(), &cm->_mark_and_push_closure, &enqueue, &complete_gc); 1279 } 1280 1281 void prepare_run_task_hook() override { 1282 _terminator.reset_for_reuse(_queue_count); 1283 } 1284 }; 1285 1286 static void flush_marking_stats_cache(const uint num_workers) { 1287 for (uint i = 0; i < num_workers; ++i) { 1288 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(i); 1289 cm->flush_and_destroy_marking_stats_cache(); 1290 } 1291 } 1292 1293 void PSParallelCompact::marking_phase(ParallelOldTracer *gc_tracer) { 1294 // Recursively traverse all live objects and mark them 1295 GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer); 1296 1297 uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers(); 1298 1299 ClassLoaderDataGraph::verify_claimed_marks_cleared(ClassLoaderData::_claim_stw_fullgc_mark); 1300 { 1301 GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer); 1302 1303 MarkFromRootsTask task(active_gc_threads); 1304 ParallelScavengeHeap::heap()->workers().run_task(&task); 1305 } 1306 1307 // Process reference objects found during marking 1308 { 1309 GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer); 1310 1311 ReferenceProcessorStats stats; 1312 ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->max_num_queues()); 1313 1314 ref_processor()->set_active_mt_degree(active_gc_threads); 1315 ParallelCompactRefProcProxyTask task(ref_processor()->max_num_queues()); 1316 stats = ref_processor()->process_discovered_references(task, pt); 1317 1318 gc_tracer->report_gc_reference_stats(stats); 1319 pt.print_all_references(); 1320 } 1321 1322 { 1323 GCTraceTime(Debug, gc, phases) tm("Flush Marking Stats", &_gc_timer); 1324 1325 flush_marking_stats_cache(active_gc_threads); 1326 } 1327 1328 // This is the point where the entire marking should have completed. 1329 ParCompactionManager::verify_all_marking_stack_empty(); 1330 1331 { 1332 GCTraceTime(Debug, gc, phases) tm("Weak Processing", &_gc_timer); 1333 WeakProcessor::weak_oops_do(&ParallelScavengeHeap::heap()->workers(), 1334 is_alive_closure(), 1335 &do_nothing_cl, 1336 1); 1337 } 1338 1339 { 1340 GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer); 1341 1342 ClassUnloadingContext* ctx = ClassUnloadingContext::context(); 1343 1344 bool unloading_occurred; 1345 { 1346 CodeCache::UnlinkingScope scope(is_alive_closure()); 1347 1348 // Follow system dictionary roots and unload classes. 1349 unloading_occurred = SystemDictionary::do_unloading(&_gc_timer); 1350 1351 // Unload nmethods. 1352 CodeCache::do_unloading(unloading_occurred); 1353 } 1354 1355 { 1356 GCTraceTime(Debug, gc, phases) t("Purge Unlinked NMethods", gc_timer()); 1357 // Release unloaded nmethod's memory. 1358 ctx->purge_nmethods(); 1359 } 1360 { 1361 GCTraceTime(Debug, gc, phases) ur("Unregister NMethods", &_gc_timer); 1362 ParallelScavengeHeap::heap()->prune_unlinked_nmethods(); 1363 } 1364 { 1365 GCTraceTime(Debug, gc, phases) t("Free Code Blobs", gc_timer()); 1366 ctx->free_nmethods(); 1367 } 1368 1369 // Prune dead klasses from subklass/sibling/implementor lists. 1370 Klass::clean_weak_klass_links(unloading_occurred); 1371 1372 // Clean JVMCI metadata handles. 1373 JVMCI_ONLY(JVMCI::do_unloading(unloading_occurred)); 1374 } 1375 1376 { 1377 GCTraceTime(Debug, gc, phases) tm("Report Object Count", &_gc_timer); 1378 _gc_tracer.report_object_count_after_gc(is_alive_closure(), &ParallelScavengeHeap::heap()->workers()); 1379 } 1380 #if TASKQUEUE_STATS 1381 ParCompactionManager::print_and_reset_taskqueue_stats(); 1382 #endif 1383 } 1384 1385 template<typename Func> 1386 void PSParallelCompact::adjust_in_space_helper(SpaceId id, volatile uint* claim_counter, Func&& on_stripe) { 1387 MutableSpace* sp = PSParallelCompact::space(id); 1388 HeapWord* const bottom = sp->bottom(); 1389 HeapWord* const top = sp->top(); 1390 if (bottom == top) { 1391 return; 1392 } 1393 1394 const uint num_regions_per_stripe = 2; 1395 const size_t region_size = ParallelCompactData::RegionSize; 1396 const size_t stripe_size = num_regions_per_stripe * region_size; 1397 1398 while (true) { 1399 uint counter = Atomic::fetch_then_add(claim_counter, num_regions_per_stripe); 1400 HeapWord* cur_stripe = bottom + counter * region_size; 1401 if (cur_stripe >= top) { 1402 break; 1403 } 1404 HeapWord* stripe_end = MIN2(cur_stripe + stripe_size, top); 1405 on_stripe(cur_stripe, stripe_end); 1406 } 1407 } 1408 1409 void PSParallelCompact::adjust_in_old_space(volatile uint* claim_counter) { 1410 // Regions in old-space shouldn't be split. 1411 assert(!_space_info[old_space_id].split_info().is_valid(), "inv"); 1412 1413 auto scan_obj_with_limit = [&] (HeapWord* obj_start, HeapWord* left, HeapWord* right) { 1414 assert(mark_bitmap()->is_marked(obj_start), "inv"); 1415 oop obj = cast_to_oop(obj_start); 1416 return obj->oop_iterate_size(&pc_adjust_pointer_closure, MemRegion(left, right)); 1417 }; 1418 1419 adjust_in_space_helper(old_space_id, claim_counter, [&] (HeapWord* stripe_start, HeapWord* stripe_end) { 1420 assert(_summary_data.is_region_aligned(stripe_start), "inv"); 1421 RegionData* cur_region = _summary_data.addr_to_region_ptr(stripe_start); 1422 HeapWord* obj_start; 1423 if (cur_region->partial_obj_size() != 0) { 1424 obj_start = cur_region->partial_obj_addr(); 1425 obj_start += scan_obj_with_limit(obj_start, stripe_start, stripe_end); 1426 } else { 1427 obj_start = stripe_start; 1428 } 1429 1430 while (obj_start < stripe_end) { 1431 obj_start = mark_bitmap()->find_obj_beg(obj_start, stripe_end); 1432 if (obj_start >= stripe_end) { 1433 break; 1434 } 1435 obj_start += scan_obj_with_limit(obj_start, stripe_start, stripe_end); 1436 } 1437 }); 1438 } 1439 1440 void PSParallelCompact::adjust_in_young_space(SpaceId id, volatile uint* claim_counter) { 1441 adjust_in_space_helper(id, claim_counter, [](HeapWord* stripe_start, HeapWord* stripe_end) { 1442 HeapWord* obj_start = stripe_start; 1443 while (obj_start < stripe_end) { 1444 obj_start = mark_bitmap()->find_obj_beg(obj_start, stripe_end); 1445 if (obj_start >= stripe_end) { 1446 break; 1447 } 1448 oop obj = cast_to_oop(obj_start); 1449 obj_start += obj->oop_iterate_size(&pc_adjust_pointer_closure); 1450 } 1451 }); 1452 } 1453 1454 void PSParallelCompact::adjust_pointers_in_spaces(uint worker_id, volatile uint* claim_counters) { 1455 auto start_time = Ticks::now(); 1456 adjust_in_old_space(&claim_counters[0]); 1457 for (uint id = eden_space_id; id < last_space_id; ++id) { 1458 adjust_in_young_space(SpaceId(id), &claim_counters[id]); 1459 } 1460 log_trace(gc, phases)("adjust_pointers_in_spaces worker %u: %.3f ms", worker_id, (Ticks::now() - start_time).seconds() * 1000); 1461 } 1462 1463 class PSAdjustTask final : public WorkerTask { 1464 SubTasksDone _sub_tasks; 1465 WeakProcessor::Task _weak_proc_task; 1466 OopStorageSetStrongParState<false, false> _oop_storage_iter; 1467 uint _nworkers; 1468 volatile uint _claim_counters[PSParallelCompact::last_space_id] = {}; 1469 1470 enum PSAdjustSubTask { 1471 PSAdjustSubTask_code_cache, 1472 1473 PSAdjustSubTask_num_elements 1474 }; 1475 1476 public: 1477 PSAdjustTask(uint nworkers) : 1478 WorkerTask("PSAdjust task"), 1479 _sub_tasks(PSAdjustSubTask_num_elements), 1480 _weak_proc_task(nworkers), 1481 _nworkers(nworkers) { 1482 1483 ClassLoaderDataGraph::verify_claimed_marks_cleared(ClassLoaderData::_claim_stw_fullgc_adjust); 1484 if (nworkers > 1) { 1485 Threads::change_thread_claim_token(); 1486 } 1487 } 1488 1489 ~PSAdjustTask() { 1490 Threads::assert_all_threads_claimed(); 1491 } 1492 1493 void work(uint worker_id) { 1494 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id); 1495 cm->preserved_marks()->adjust_during_full_gc(); 1496 { 1497 // adjust pointers in all spaces 1498 PSParallelCompact::adjust_pointers_in_spaces(worker_id, _claim_counters); 1499 } 1500 { 1501 ResourceMark rm; 1502 Threads::possibly_parallel_oops_do(_nworkers > 1, &pc_adjust_pointer_closure, nullptr); 1503 } 1504 _oop_storage_iter.oops_do(&pc_adjust_pointer_closure); 1505 { 1506 CLDToOopClosure cld_closure(&pc_adjust_pointer_closure, ClassLoaderData::_claim_stw_fullgc_adjust); 1507 ClassLoaderDataGraph::cld_do(&cld_closure); 1508 } 1509 { 1510 AlwaysTrueClosure always_alive; 1511 _weak_proc_task.work(worker_id, &always_alive, &pc_adjust_pointer_closure); 1512 } 1513 if (_sub_tasks.try_claim_task(PSAdjustSubTask_code_cache)) { 1514 NMethodToOopClosure adjust_code(&pc_adjust_pointer_closure, NMethodToOopClosure::FixRelocations); 1515 CodeCache::nmethods_do(&adjust_code); 1516 } 1517 _sub_tasks.all_tasks_claimed(); 1518 } 1519 }; 1520 1521 void PSParallelCompact::adjust_pointers() { 1522 // Adjust the pointers to reflect the new locations 1523 GCTraceTime(Info, gc, phases) tm("Adjust Pointers", &_gc_timer); 1524 uint nworkers = ParallelScavengeHeap::heap()->workers().active_workers(); 1525 PSAdjustTask task(nworkers); 1526 ParallelScavengeHeap::heap()->workers().run_task(&task); 1527 } 1528 1529 // Split [start, end) evenly for a number of workers and return the 1530 // range for worker_id. 1531 static void split_regions_for_worker(size_t start, size_t end, 1532 uint worker_id, uint num_workers, 1533 size_t* worker_start, size_t* worker_end) { 1534 assert(start < end, "precondition"); 1535 assert(num_workers > 0, "precondition"); 1536 assert(worker_id < num_workers, "precondition"); 1537 1538 size_t num_regions = end - start; 1539 size_t num_regions_per_worker = num_regions / num_workers; 1540 size_t remainder = num_regions % num_workers; 1541 // The first few workers will get one extra. 1542 *worker_start = start + worker_id * num_regions_per_worker 1543 + MIN2(checked_cast<size_t>(worker_id), remainder); 1544 *worker_end = *worker_start + num_regions_per_worker 1545 + (worker_id < remainder ? 1 : 0); 1546 } 1547 1548 void PSParallelCompact::forward_to_new_addr() { 1549 GCTraceTime(Info, gc, phases) tm("Forward", &_gc_timer); 1550 uint nworkers = ParallelScavengeHeap::heap()->workers().active_workers(); 1551 1552 struct ForwardTask final : public WorkerTask { 1553 uint _num_workers; 1554 1555 explicit ForwardTask(uint num_workers) : 1556 WorkerTask("PSForward task"), 1557 _num_workers(num_workers) {} 1558 1559 static void forward_objs_in_range(ParCompactionManager* cm, 1560 HeapWord* start, 1561 HeapWord* end, 1562 HeapWord* destination) { 1563 HeapWord* cur_addr = start; 1564 HeapWord* new_addr = destination; 1565 1566 while (cur_addr < end) { 1567 cur_addr = mark_bitmap()->find_obj_beg(cur_addr, end); 1568 if (cur_addr >= end) { 1569 return; 1570 } 1571 assert(mark_bitmap()->is_marked(cur_addr), "inv"); 1572 oop obj = cast_to_oop(cur_addr); 1573 if (new_addr != cur_addr) { 1574 cm->preserved_marks()->push_if_necessary(obj, obj->mark()); 1575 FullGCForwarding::forward_to(obj, cast_to_oop(new_addr)); 1576 } 1577 size_t obj_size = obj->size(); 1578 new_addr += obj_size; 1579 cur_addr += obj_size; 1580 } 1581 } 1582 1583 void work(uint worker_id) override { 1584 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id); 1585 for (uint id = old_space_id; id < last_space_id; ++id) { 1586 MutableSpace* sp = PSParallelCompact::space(SpaceId(id)); 1587 HeapWord* dense_prefix_addr = dense_prefix(SpaceId(id)); 1588 HeapWord* top = sp->top(); 1589 1590 if (dense_prefix_addr == top) { 1591 continue; 1592 } 1593 1594 const SplitInfo& split_info = _space_info[SpaceId(id)].split_info(); 1595 1596 size_t dense_prefix_region = _summary_data.addr_to_region_idx(dense_prefix_addr); 1597 size_t top_region = _summary_data.addr_to_region_idx(_summary_data.region_align_up(top)); 1598 size_t start_region; 1599 size_t end_region; 1600 split_regions_for_worker(dense_prefix_region, top_region, 1601 worker_id, _num_workers, 1602 &start_region, &end_region); 1603 for (size_t cur_region = start_region; cur_region < end_region; ++cur_region) { 1604 RegionData* region_ptr = _summary_data.region(cur_region); 1605 size_t partial_obj_size = region_ptr->partial_obj_size(); 1606 1607 if (partial_obj_size == ParallelCompactData::RegionSize) { 1608 // No obj-start 1609 continue; 1610 } 1611 1612 HeapWord* region_start = _summary_data.region_to_addr(cur_region); 1613 HeapWord* region_end = region_start + ParallelCompactData::RegionSize; 1614 1615 if (split_info.is_split(cur_region)) { 1616 // Part 1: will be relocated to space-1 1617 HeapWord* preceding_destination = split_info.preceding_destination(); 1618 HeapWord* split_point = split_info.split_point(); 1619 forward_objs_in_range(cm, region_start + partial_obj_size, split_point, preceding_destination + partial_obj_size); 1620 1621 // Part 2: will be relocated to space-2 1622 HeapWord* destination = region_ptr->destination(); 1623 forward_objs_in_range(cm, split_point, region_end, destination); 1624 } else { 1625 HeapWord* destination = region_ptr->destination(); 1626 forward_objs_in_range(cm, region_start + partial_obj_size, region_end, destination + partial_obj_size); 1627 } 1628 } 1629 } 1630 } 1631 } task(nworkers); 1632 1633 ParallelScavengeHeap::heap()->workers().run_task(&task); 1634 DEBUG_ONLY(verify_forward();) 1635 } 1636 1637 #ifdef ASSERT 1638 void PSParallelCompact::verify_forward() { 1639 HeapWord* old_dense_prefix_addr = dense_prefix(SpaceId(old_space_id)); 1640 RegionData* old_region = _summary_data.region(_summary_data.addr_to_region_idx(old_dense_prefix_addr)); 1641 HeapWord* bump_ptr = old_region->partial_obj_size() != 0 1642 ? old_dense_prefix_addr + old_region->partial_obj_size() 1643 : old_dense_prefix_addr; 1644 SpaceId bump_ptr_space = old_space_id; 1645 1646 for (uint id = old_space_id; id < last_space_id; ++id) { 1647 MutableSpace* sp = PSParallelCompact::space(SpaceId(id)); 1648 HeapWord* dense_prefix_addr = dense_prefix(SpaceId(id)); 1649 HeapWord* top = sp->top(); 1650 HeapWord* cur_addr = dense_prefix_addr; 1651 1652 while (cur_addr < top) { 1653 cur_addr = mark_bitmap()->find_obj_beg(cur_addr, top); 1654 if (cur_addr >= top) { 1655 break; 1656 } 1657 assert(mark_bitmap()->is_marked(cur_addr), "inv"); 1658 assert(bump_ptr <= _space_info[bump_ptr_space].new_top(), "inv"); 1659 // Move to the space containing cur_addr 1660 if (bump_ptr == _space_info[bump_ptr_space].new_top()) { 1661 bump_ptr = space(space_id(cur_addr))->bottom(); 1662 bump_ptr_space = space_id(bump_ptr); 1663 } 1664 oop obj = cast_to_oop(cur_addr); 1665 if (cur_addr == bump_ptr) { 1666 assert(!FullGCForwarding::is_forwarded(obj), "inv"); 1667 } else { 1668 assert(FullGCForwarding::forwardee(obj) == cast_to_oop(bump_ptr), "inv"); 1669 } 1670 bump_ptr += obj->size(); 1671 cur_addr += obj->size(); 1672 } 1673 } 1674 } 1675 #endif 1676 1677 // Helper class to print 8 region numbers per line and then print the total at the end. 1678 class FillableRegionLogger : public StackObj { 1679 private: 1680 Log(gc, compaction) log; 1681 static const int LineLength = 8; 1682 size_t _regions[LineLength]; 1683 int _next_index; 1684 bool _enabled; 1685 size_t _total_regions; 1686 public: 1687 FillableRegionLogger() : _next_index(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)), _total_regions(0) { } 1688 ~FillableRegionLogger() { 1689 log.trace("%zu initially fillable regions", _total_regions); 1690 } 1691 1692 void print_line() { 1693 if (!_enabled || _next_index == 0) { 1694 return; 1695 } 1696 FormatBuffer<> line("Fillable: "); 1697 for (int i = 0; i < _next_index; i++) { 1698 line.append(" %7zu", _regions[i]); 1699 } 1700 log.trace("%s", line.buffer()); 1701 _next_index = 0; 1702 } 1703 1704 void handle(size_t region) { 1705 if (!_enabled) { 1706 return; 1707 } 1708 _regions[_next_index++] = region; 1709 if (_next_index == LineLength) { 1710 print_line(); 1711 } 1712 _total_regions++; 1713 } 1714 }; 1715 1716 void PSParallelCompact::prepare_region_draining_tasks(uint parallel_gc_threads) 1717 { 1718 GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer); 1719 1720 // Find the threads that are active 1721 uint worker_id = 0; 1722 1723 // Find all regions that are available (can be filled immediately) and 1724 // distribute them to the thread stacks. The iteration is done in reverse 1725 // order (high to low) so the regions will be removed in ascending order. 1726 1727 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 1728 1729 // id + 1 is used to test termination so unsigned can 1730 // be used with an old_space_id == 0. 1731 FillableRegionLogger region_logger; 1732 for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) { 1733 SpaceInfo* const space_info = _space_info + id; 1734 HeapWord* const new_top = space_info->new_top(); 1735 1736 const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix()); 1737 const size_t end_region = 1738 sd.addr_to_region_idx(sd.region_align_up(new_top)); 1739 1740 for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) { 1741 if (sd.region(cur)->claim_unsafe()) { 1742 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id); 1743 bool result = sd.region(cur)->mark_normal(); 1744 assert(result, "Must succeed at this point."); 1745 cm->region_stack()->push(cur); 1746 region_logger.handle(cur); 1747 // Assign regions to tasks in round-robin fashion. 1748 if (++worker_id == parallel_gc_threads) { 1749 worker_id = 0; 1750 } 1751 } 1752 } 1753 region_logger.print_line(); 1754 } 1755 } 1756 1757 static void compaction_with_stealing_work(TaskTerminator* terminator, uint worker_id) { 1758 assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc"); 1759 1760 ParCompactionManager* cm = 1761 ParCompactionManager::gc_thread_compaction_manager(worker_id); 1762 1763 // Drain the stacks that have been preloaded with regions 1764 // that are ready to fill. 1765 1766 cm->drain_region_stacks(); 1767 1768 guarantee(cm->region_stack()->is_empty(), "Not empty"); 1769 1770 size_t region_index = 0; 1771 1772 while (true) { 1773 if (ParCompactionManager::steal(worker_id, region_index)) { 1774 PSParallelCompact::fill_and_update_region(cm, region_index); 1775 cm->drain_region_stacks(); 1776 } else if (PSParallelCompact::steal_unavailable_region(cm, region_index)) { 1777 // Fill and update an unavailable region with the help of a shadow region 1778 PSParallelCompact::fill_and_update_shadow_region(cm, region_index); 1779 cm->drain_region_stacks(); 1780 } else { 1781 if (terminator->offer_termination()) { 1782 break; 1783 } 1784 // Go around again. 1785 } 1786 } 1787 } 1788 1789 class FillDensePrefixAndCompactionTask: public WorkerTask { 1790 uint _num_workers; 1791 TaskTerminator _terminator; 1792 1793 public: 1794 FillDensePrefixAndCompactionTask(uint active_workers) : 1795 WorkerTask("FillDensePrefixAndCompactionTask"), 1796 _num_workers(active_workers), 1797 _terminator(active_workers, ParCompactionManager::region_task_queues()) { 1798 } 1799 1800 virtual void work(uint worker_id) { 1801 { 1802 auto start = Ticks::now(); 1803 PSParallelCompact::fill_dead_objs_in_dense_prefix(worker_id, _num_workers); 1804 log_trace(gc, phases)("Fill dense prefix by worker %u: %.3f ms", worker_id, (Ticks::now() - start).seconds() * 1000); 1805 } 1806 compaction_with_stealing_work(&_terminator, worker_id); 1807 } 1808 }; 1809 1810 void PSParallelCompact::fill_range_in_dense_prefix(HeapWord* start, HeapWord* end) { 1811 #ifdef ASSERT 1812 { 1813 assert(start < end, "precondition"); 1814 assert(mark_bitmap()->find_obj_beg(start, end) == end, "precondition"); 1815 HeapWord* bottom = _space_info[old_space_id].space()->bottom(); 1816 if (start != bottom) { 1817 HeapWord* obj_start = mark_bitmap()->find_obj_beg_reverse(bottom, start); 1818 HeapWord* after_obj = obj_start + cast_to_oop(obj_start)->size(); 1819 assert(after_obj == start, "precondition"); 1820 } 1821 } 1822 #endif 1823 1824 CollectedHeap::fill_with_objects(start, pointer_delta(end, start)); 1825 HeapWord* addr = start; 1826 do { 1827 size_t size = cast_to_oop(addr)->size(); 1828 start_array(old_space_id)->update_for_block(addr, addr + size); 1829 addr += size; 1830 } while (addr < end); 1831 } 1832 1833 void PSParallelCompact::fill_dead_objs_in_dense_prefix(uint worker_id, uint num_workers) { 1834 ParMarkBitMap* bitmap = mark_bitmap(); 1835 1836 HeapWord* const bottom = _space_info[old_space_id].space()->bottom(); 1837 HeapWord* const prefix_end = dense_prefix(old_space_id); 1838 1839 if (bottom == prefix_end) { 1840 return; 1841 } 1842 1843 size_t bottom_region = _summary_data.addr_to_region_idx(bottom); 1844 size_t prefix_end_region = _summary_data.addr_to_region_idx(prefix_end); 1845 1846 size_t start_region; 1847 size_t end_region; 1848 split_regions_for_worker(bottom_region, prefix_end_region, 1849 worker_id, num_workers, 1850 &start_region, &end_region); 1851 1852 if (start_region == end_region) { 1853 return; 1854 } 1855 1856 HeapWord* const start_addr = _summary_data.region_to_addr(start_region); 1857 HeapWord* const end_addr = _summary_data.region_to_addr(end_region); 1858 1859 // Skip live partial obj (if any) from previous region. 1860 HeapWord* cur_addr; 1861 RegionData* start_region_ptr = _summary_data.region(start_region); 1862 if (start_region_ptr->partial_obj_size() != 0) { 1863 HeapWord* partial_obj_start = start_region_ptr->partial_obj_addr(); 1864 assert(bitmap->is_marked(partial_obj_start), "inv"); 1865 cur_addr = partial_obj_start + cast_to_oop(partial_obj_start)->size(); 1866 } else { 1867 cur_addr = start_addr; 1868 } 1869 1870 // end_addr is inclusive to handle regions starting with dead space. 1871 while (cur_addr <= end_addr) { 1872 // Use prefix_end to handle trailing obj in each worker region-chunk. 1873 HeapWord* live_start = bitmap->find_obj_beg(cur_addr, prefix_end); 1874 if (cur_addr != live_start) { 1875 // Only worker 0 handles proceeding dead space. 1876 if (cur_addr != start_addr || worker_id == 0) { 1877 fill_range_in_dense_prefix(cur_addr, live_start); 1878 } 1879 } 1880 if (live_start >= end_addr) { 1881 break; 1882 } 1883 assert(bitmap->is_marked(live_start), "inv"); 1884 cur_addr = live_start + cast_to_oop(live_start)->size(); 1885 } 1886 } 1887 1888 void PSParallelCompact::compact() { 1889 GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer); 1890 1891 uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers(); 1892 1893 initialize_shadow_regions(active_gc_threads); 1894 prepare_region_draining_tasks(active_gc_threads); 1895 1896 { 1897 GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer); 1898 1899 FillDensePrefixAndCompactionTask task(active_gc_threads); 1900 ParallelScavengeHeap::heap()->workers().run_task(&task); 1901 1902 #ifdef ASSERT 1903 verify_filler_in_dense_prefix(); 1904 1905 // Verify that all regions have been processed. 1906 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 1907 verify_complete(SpaceId(id)); 1908 } 1909 #endif 1910 } 1911 } 1912 1913 #ifdef ASSERT 1914 void PSParallelCompact::verify_filler_in_dense_prefix() { 1915 HeapWord* bottom = _space_info[old_space_id].space()->bottom(); 1916 HeapWord* dense_prefix_end = dense_prefix(old_space_id); 1917 HeapWord* cur_addr = bottom; 1918 while (cur_addr < dense_prefix_end) { 1919 oop obj = cast_to_oop(cur_addr); 1920 oopDesc::verify(obj); 1921 if (!mark_bitmap()->is_marked(cur_addr)) { 1922 Klass* k = cast_to_oop(cur_addr)->klass(); 1923 assert(k == Universe::fillerArrayKlass() || k == vmClasses::FillerObject_klass(), "inv"); 1924 } 1925 cur_addr += obj->size(); 1926 } 1927 } 1928 1929 void PSParallelCompact::verify_complete(SpaceId space_id) { 1930 // All Regions served as compaction targets, from dense_prefix() to 1931 // new_top(), should be marked as filled and all Regions between new_top() 1932 // and top() should be available (i.e., should have been emptied). 1933 ParallelCompactData& sd = summary_data(); 1934 SpaceInfo si = _space_info[space_id]; 1935 HeapWord* new_top_addr = sd.region_align_up(si.new_top()); 1936 HeapWord* old_top_addr = sd.region_align_up(si.space()->top()); 1937 const size_t beg_region = sd.addr_to_region_idx(si.dense_prefix()); 1938 const size_t new_top_region = sd.addr_to_region_idx(new_top_addr); 1939 const size_t old_top_region = sd.addr_to_region_idx(old_top_addr); 1940 1941 size_t cur_region; 1942 for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) { 1943 const RegionData* const c = sd.region(cur_region); 1944 assert(c->completed(), "region %zu not filled: destination_count=%u", 1945 cur_region, c->destination_count()); 1946 } 1947 1948 for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) { 1949 const RegionData* const c = sd.region(cur_region); 1950 assert(c->available(), "region %zu not empty: destination_count=%u", 1951 cur_region, c->destination_count()); 1952 } 1953 } 1954 #endif // #ifdef ASSERT 1955 1956 // Return the SpaceId for the space containing addr. If addr is not in the 1957 // heap, last_space_id is returned. In debug mode it expects the address to be 1958 // in the heap and asserts such. 1959 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) { 1960 assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap"); 1961 1962 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 1963 if (_space_info[id].space()->contains(addr)) { 1964 return SpaceId(id); 1965 } 1966 } 1967 1968 assert(false, "no space contains the addr"); 1969 return last_space_id; 1970 } 1971 1972 // Skip over count live words starting from beg, and return the address of the 1973 // next live word. Callers must also ensure that there are enough live words in 1974 // the range [beg, end) to skip. 1975 HeapWord* PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count) 1976 { 1977 ParMarkBitMap* m = mark_bitmap(); 1978 HeapWord* cur_addr = beg; 1979 while (true) { 1980 cur_addr = m->find_obj_beg(cur_addr, end); 1981 assert(cur_addr < end, "inv"); 1982 size_t obj_size = cast_to_oop(cur_addr)->size(); 1983 // Strictly greater-than 1984 if (obj_size > count) { 1985 return cur_addr + count; 1986 } 1987 count -= obj_size; 1988 cur_addr += obj_size; 1989 } 1990 } 1991 1992 // On starting to fill a destination region (dest-region), we need to know the 1993 // location of the word that will be at the start of the dest-region after 1994 // compaction. A dest-region can have one or more source regions, but only the 1995 // first source-region contains this location. This location is retrieved by 1996 // calling `first_src_addr` on a dest-region. 1997 // Conversely, a source-region has a dest-region which holds the destination of 1998 // the first live word on this source-region, based on which the destination 1999 // for the rest of live words can be derived. 2000 // 2001 // Note: 2002 // There is some complication due to space-boundary-fragmentation (an obj can't 2003 // cross space-boundary) -- a source-region may be split and behave like two 2004 // distinct regions with their own dest-region, as depicted below. 2005 // 2006 // source-region: region-n 2007 // 2008 // ********************** 2009 // | A|A~~~~B|B | 2010 // ********************** 2011 // n-1 n n+1 2012 // 2013 // AA, BB denote two live objs. ~~~~ denotes unknown number of live objs. 2014 // 2015 // Assuming the dest-region for region-n is the final region before 2016 // old-space-end and its first-live-word is the middle of AA, the heap content 2017 // will look like the following after compaction: 2018 // 2019 // ************** ************* 2020 // A|A~~~~ | |BB | 2021 // ************** ************* 2022 // ^ ^ 2023 // | old-space-end | eden-space-start 2024 // 2025 // Therefore, in this example, region-n will have two dest-regions: 2026 // 1. the final region in old-space 2027 // 2. the first region in eden-space. 2028 // To handle this special case, we introduce the concept of split-region, whose 2029 // contents are relocated to two spaces. `SplitInfo` captures all necessary 2030 // info about the split, the first part, spliting-point, and the second part. 2031 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr, 2032 SpaceId src_space_id, 2033 size_t src_region_idx) 2034 { 2035 const size_t RegionSize = ParallelCompactData::RegionSize; 2036 const ParallelCompactData& sd = summary_data(); 2037 assert(sd.is_region_aligned(dest_addr), "precondition"); 2038 2039 const RegionData* const src_region_ptr = sd.region(src_region_idx); 2040 assert(src_region_ptr->data_size() > 0, "src region cannot be empty"); 2041 2042 const size_t partial_obj_size = src_region_ptr->partial_obj_size(); 2043 HeapWord* const src_region_destination = src_region_ptr->destination(); 2044 2045 HeapWord* const region_start = sd.region_to_addr(src_region_idx); 2046 HeapWord* const region_end = sd.region_to_addr(src_region_idx) + RegionSize; 2047 2048 // Identify the actual destination for the first live words on this region, 2049 // taking split-region into account. 2050 HeapWord* region_start_destination; 2051 const SplitInfo& split_info = _space_info[src_space_id].split_info(); 2052 if (split_info.is_split(src_region_idx)) { 2053 // The second part of this split region; use the recorded split point. 2054 if (dest_addr == src_region_destination) { 2055 return split_info.split_point(); 2056 } 2057 region_start_destination = split_info.preceding_destination(); 2058 } else { 2059 region_start_destination = src_region_destination; 2060 } 2061 2062 // Calculate the offset to be skipped 2063 size_t words_to_skip = pointer_delta(dest_addr, region_start_destination); 2064 2065 HeapWord* result; 2066 if (partial_obj_size > words_to_skip) { 2067 result = region_start + words_to_skip; 2068 } else { 2069 words_to_skip -= partial_obj_size; 2070 result = skip_live_words(region_start + partial_obj_size, region_end, words_to_skip); 2071 } 2072 2073 if (split_info.is_split(src_region_idx)) { 2074 assert(result < split_info.split_point(), "postcondition"); 2075 } else { 2076 assert(result < region_end, "postcondition"); 2077 } 2078 2079 return result; 2080 } 2081 2082 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm, 2083 SpaceId src_space_id, 2084 size_t beg_region, 2085 HeapWord* end_addr) 2086 { 2087 ParallelCompactData& sd = summary_data(); 2088 2089 #ifdef ASSERT 2090 MutableSpace* const src_space = _space_info[src_space_id].space(); 2091 HeapWord* const beg_addr = sd.region_to_addr(beg_region); 2092 assert(src_space->contains(beg_addr) || beg_addr == src_space->end(), 2093 "src_space_id does not match beg_addr"); 2094 assert(src_space->contains(end_addr) || end_addr == src_space->end(), 2095 "src_space_id does not match end_addr"); 2096 #endif // #ifdef ASSERT 2097 2098 RegionData* const beg = sd.region(beg_region); 2099 RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr)); 2100 2101 // Regions up to new_top() are enqueued if they become available. 2102 HeapWord* const new_top = _space_info[src_space_id].new_top(); 2103 RegionData* const enqueue_end = 2104 sd.addr_to_region_ptr(sd.region_align_up(new_top)); 2105 2106 for (RegionData* cur = beg; cur < end; ++cur) { 2107 assert(cur->data_size() > 0, "region must have live data"); 2108 cur->decrement_destination_count(); 2109 if (cur < enqueue_end && cur->available() && cur->claim()) { 2110 if (cur->mark_normal()) { 2111 cm->push_region(sd.region(cur)); 2112 } else if (cur->mark_copied()) { 2113 // Try to copy the content of the shadow region back to its corresponding 2114 // heap region if the shadow region is filled. Otherwise, the GC thread 2115 // fills the shadow region will copy the data back (see 2116 // MoveAndUpdateShadowClosure::complete_region). 2117 copy_back(sd.region_to_addr(cur->shadow_region()), sd.region_to_addr(cur)); 2118 ParCompactionManager::push_shadow_region_mt_safe(cur->shadow_region()); 2119 cur->set_completed(); 2120 } 2121 } 2122 } 2123 } 2124 2125 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure, 2126 SpaceId& src_space_id, 2127 HeapWord*& src_space_top, 2128 HeapWord* end_addr) 2129 { 2130 ParallelCompactData& sd = PSParallelCompact::summary_data(); 2131 2132 size_t src_region_idx = 0; 2133 2134 // Skip empty regions (if any) up to the top of the space. 2135 HeapWord* const src_aligned_up = sd.region_align_up(end_addr); 2136 RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up); 2137 HeapWord* const top_aligned_up = sd.region_align_up(src_space_top); 2138 const RegionData* const top_region_ptr = sd.addr_to_region_ptr(top_aligned_up); 2139 2140 while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) { 2141 ++src_region_ptr; 2142 } 2143 2144 if (src_region_ptr < top_region_ptr) { 2145 // Found the first non-empty region in the same space. 2146 src_region_idx = sd.region(src_region_ptr); 2147 closure.set_source(sd.region_to_addr(src_region_idx)); 2148 return src_region_idx; 2149 } 2150 2151 // Switch to a new source space and find the first non-empty region. 2152 uint space_id = src_space_id + 1; 2153 assert(space_id < last_space_id, "not enough spaces"); 2154 2155 for (/* empty */; space_id < last_space_id; ++space_id) { 2156 HeapWord* bottom = _space_info[space_id].space()->bottom(); 2157 HeapWord* top = _space_info[space_id].space()->top(); 2158 // Skip empty space 2159 if (bottom == top) { 2160 continue; 2161 } 2162 2163 // Identify the first region that contains live words in this space 2164 size_t cur_region = sd.addr_to_region_idx(bottom); 2165 size_t end_region = sd.addr_to_region_idx(sd.region_align_up(top)); 2166 2167 for (/* empty */ ; cur_region < end_region; ++cur_region) { 2168 RegionData* cur = sd.region(cur_region); 2169 if (cur->live_obj_size() > 0) { 2170 HeapWord* region_start_addr = sd.region_to_addr(cur_region); 2171 2172 src_space_id = SpaceId(space_id); 2173 src_space_top = top; 2174 closure.set_source(region_start_addr); 2175 return cur_region; 2176 } 2177 } 2178 } 2179 2180 ShouldNotReachHere(); 2181 } 2182 2183 HeapWord* PSParallelCompact::partial_obj_end(HeapWord* region_start_addr) { 2184 ParallelCompactData& sd = summary_data(); 2185 assert(sd.is_region_aligned(region_start_addr), "precondition"); 2186 2187 // Use per-region partial_obj_size to locate the end of the obj, that extends 2188 // to region_start_addr. 2189 size_t start_region_idx = sd.addr_to_region_idx(region_start_addr); 2190 size_t end_region_idx = sd.region_count(); 2191 size_t accumulated_size = 0; 2192 for (size_t region_idx = start_region_idx; region_idx < end_region_idx; ++region_idx) { 2193 size_t cur_partial_obj_size = sd.region(region_idx)->partial_obj_size(); 2194 accumulated_size += cur_partial_obj_size; 2195 if (cur_partial_obj_size != ParallelCompactData::RegionSize) { 2196 break; 2197 } 2198 } 2199 return region_start_addr + accumulated_size; 2200 } 2201 2202 // Use region_idx as the destination region, and evacuate all live objs on its 2203 // source regions to this destination region. 2204 void PSParallelCompact::fill_region(ParCompactionManager* cm, MoveAndUpdateClosure& closure, size_t region_idx) 2205 { 2206 ParMarkBitMap* const bitmap = mark_bitmap(); 2207 ParallelCompactData& sd = summary_data(); 2208 RegionData* const region_ptr = sd.region(region_idx); 2209 2210 // Get the source region and related info. 2211 size_t src_region_idx = region_ptr->source_region(); 2212 SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx)); 2213 HeapWord* src_space_top = _space_info[src_space_id].space()->top(); 2214 HeapWord* dest_addr = sd.region_to_addr(region_idx); 2215 2216 closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx)); 2217 2218 // Adjust src_region_idx to prepare for decrementing destination counts (the 2219 // destination count is not decremented when a region is copied to itself). 2220 if (src_region_idx == region_idx) { 2221 src_region_idx += 1; 2222 } 2223 2224 // source-region: 2225 // 2226 // ********** 2227 // | ~~~ | 2228 // ********** 2229 // ^ 2230 // |-- closure.source() / first_src_addr 2231 // 2232 // 2233 // ~~~ : live words 2234 // 2235 // destination-region: 2236 // 2237 // ********** 2238 // | | 2239 // ********** 2240 // ^ 2241 // |-- region-start 2242 if (bitmap->is_unmarked(closure.source())) { 2243 // An object overflows the previous destination region, so this 2244 // destination region should copy the remainder of the object or as much as 2245 // will fit. 2246 HeapWord* const old_src_addr = closure.source(); 2247 { 2248 HeapWord* region_start = sd.region_align_down(closure.source()); 2249 HeapWord* obj_start = bitmap->find_obj_beg_reverse(region_start, closure.source()); 2250 HeapWord* obj_end; 2251 if (obj_start != closure.source()) { 2252 assert(bitmap->is_marked(obj_start), "inv"); 2253 // Found the actual obj-start, try to find the obj-end using either 2254 // size() if this obj is completely contained in the current region. 2255 HeapWord* next_region_start = region_start + ParallelCompactData::RegionSize; 2256 HeapWord* partial_obj_start = (next_region_start >= src_space_top) 2257 ? nullptr 2258 : sd.addr_to_region_ptr(next_region_start)->partial_obj_addr(); 2259 // This obj extends to next region iff partial_obj_addr of the *next* 2260 // region is the same as obj-start. 2261 if (partial_obj_start == obj_start) { 2262 // This obj extends to next region. 2263 obj_end = partial_obj_end(next_region_start); 2264 } else { 2265 // Completely contained in this region; safe to use size(). 2266 obj_end = obj_start + cast_to_oop(obj_start)->size(); 2267 } 2268 } else { 2269 // This obj extends to current region. 2270 obj_end = partial_obj_end(region_start); 2271 } 2272 size_t partial_obj_size = pointer_delta(obj_end, closure.source()); 2273 closure.copy_partial_obj(partial_obj_size); 2274 } 2275 2276 if (closure.is_full()) { 2277 decrement_destination_counts(cm, src_space_id, src_region_idx, closure.source()); 2278 closure.complete_region(dest_addr, region_ptr); 2279 return; 2280 } 2281 2282 // Finished copying without using up the current destination-region 2283 HeapWord* const end_addr = sd.region_align_down(closure.source()); 2284 if (sd.region_align_down(old_src_addr) != end_addr) { 2285 assert(sd.region_align_up(old_src_addr) == end_addr, "only one region"); 2286 // The partial object was copied from more than one source region. 2287 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); 2288 2289 // Move to the next source region, possibly switching spaces as well. All 2290 // args except end_addr may be modified. 2291 src_region_idx = next_src_region(closure, src_space_id, src_space_top, end_addr); 2292 } 2293 } 2294 2295 // Handle the rest obj-by-obj, where we know obj-start. 2296 do { 2297 HeapWord* cur_addr = closure.source(); 2298 HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1), 2299 src_space_top); 2300 // To handle the case where the final obj in source region extends to next region. 2301 HeapWord* final_obj_start = (end_addr == src_space_top) 2302 ? nullptr 2303 : sd.addr_to_region_ptr(end_addr)->partial_obj_addr(); 2304 // Apply closure on objs inside [cur_addr, end_addr) 2305 do { 2306 cur_addr = bitmap->find_obj_beg(cur_addr, end_addr); 2307 if (cur_addr == end_addr) { 2308 break; 2309 } 2310 size_t obj_size; 2311 if (final_obj_start == cur_addr) { 2312 obj_size = pointer_delta(partial_obj_end(end_addr), cur_addr); 2313 } else { 2314 // This obj doesn't extend into next region; size() is safe to use. 2315 obj_size = cast_to_oop(cur_addr)->size(); 2316 } 2317 closure.do_addr(cur_addr, obj_size); 2318 cur_addr += obj_size; 2319 } while (cur_addr < end_addr && !closure.is_full()); 2320 2321 if (closure.is_full()) { 2322 decrement_destination_counts(cm, src_space_id, src_region_idx, closure.source()); 2323 closure.complete_region(dest_addr, region_ptr); 2324 return; 2325 } 2326 2327 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); 2328 2329 // Move to the next source region, possibly switching spaces as well. All 2330 // args except end_addr may be modified. 2331 src_region_idx = next_src_region(closure, src_space_id, src_space_top, end_addr); 2332 } while (true); 2333 } 2334 2335 void PSParallelCompact::fill_and_update_region(ParCompactionManager* cm, size_t region_idx) 2336 { 2337 MoveAndUpdateClosure cl(mark_bitmap(), region_idx); 2338 fill_region(cm, cl, region_idx); 2339 } 2340 2341 void PSParallelCompact::fill_and_update_shadow_region(ParCompactionManager* cm, size_t region_idx) 2342 { 2343 // Get a shadow region first 2344 ParallelCompactData& sd = summary_data(); 2345 RegionData* const region_ptr = sd.region(region_idx); 2346 size_t shadow_region = ParCompactionManager::pop_shadow_region_mt_safe(region_ptr); 2347 // The InvalidShadow return value indicates the corresponding heap region is available, 2348 // so use MoveAndUpdateClosure to fill the normal region. Otherwise, use 2349 // MoveAndUpdateShadowClosure to fill the acquired shadow region. 2350 if (shadow_region == ParCompactionManager::InvalidShadow) { 2351 MoveAndUpdateClosure cl(mark_bitmap(), region_idx); 2352 region_ptr->shadow_to_normal(); 2353 return fill_region(cm, cl, region_idx); 2354 } else { 2355 MoveAndUpdateShadowClosure cl(mark_bitmap(), region_idx, shadow_region); 2356 return fill_region(cm, cl, region_idx); 2357 } 2358 } 2359 2360 void PSParallelCompact::copy_back(HeapWord *shadow_addr, HeapWord *region_addr) 2361 { 2362 Copy::aligned_conjoint_words(shadow_addr, region_addr, _summary_data.RegionSize); 2363 } 2364 2365 bool PSParallelCompact::steal_unavailable_region(ParCompactionManager* cm, size_t ®ion_idx) 2366 { 2367 size_t next = cm->next_shadow_region(); 2368 ParallelCompactData& sd = summary_data(); 2369 size_t old_new_top = sd.addr_to_region_idx(_space_info[old_space_id].new_top()); 2370 uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers(); 2371 2372 while (next < old_new_top) { 2373 if (sd.region(next)->mark_shadow()) { 2374 region_idx = next; 2375 return true; 2376 } 2377 next = cm->move_next_shadow_region_by(active_gc_threads); 2378 } 2379 2380 return false; 2381 } 2382 2383 // The shadow region is an optimization to address region dependencies in full GC. The basic 2384 // idea is making more regions available by temporally storing their live objects in empty 2385 // shadow regions to resolve dependencies between them and the destination regions. Therefore, 2386 // GC threads need not wait destination regions to be available before processing sources. 2387 // 2388 // A typical workflow would be: 2389 // After draining its own stack and failing to steal from others, a GC worker would pick an 2390 // unavailable region (destination count > 0) and get a shadow region. Then the worker fills 2391 // the shadow region by copying live objects from source regions of the unavailable one. Once 2392 // the unavailable region becomes available, the data in the shadow region will be copied back. 2393 // Shadow regions are empty regions in the to-space and regions between top and end of other spaces. 2394 void PSParallelCompact::initialize_shadow_regions(uint parallel_gc_threads) 2395 { 2396 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 2397 2398 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2399 SpaceInfo* const space_info = _space_info + id; 2400 MutableSpace* const space = space_info->space(); 2401 2402 const size_t beg_region = 2403 sd.addr_to_region_idx(sd.region_align_up(MAX2(space_info->new_top(), space->top()))); 2404 const size_t end_region = 2405 sd.addr_to_region_idx(sd.region_align_down(space->end())); 2406 2407 for (size_t cur = beg_region; cur < end_region; ++cur) { 2408 ParCompactionManager::push_shadow_region(cur); 2409 } 2410 } 2411 2412 size_t beg_region = sd.addr_to_region_idx(_space_info[old_space_id].dense_prefix()); 2413 for (uint i = 0; i < parallel_gc_threads; i++) { 2414 ParCompactionManager *cm = ParCompactionManager::gc_thread_compaction_manager(i); 2415 cm->set_next_shadow_region(beg_region + i); 2416 } 2417 } 2418 2419 void MoveAndUpdateClosure::copy_partial_obj(size_t partial_obj_size) 2420 { 2421 size_t words = MIN2(partial_obj_size, words_remaining()); 2422 2423 // This test is necessary; if omitted, the pointer updates to a partial object 2424 // that crosses the dense prefix boundary could be overwritten. 2425 if (source() != copy_destination()) { 2426 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 2427 Copy::aligned_conjoint_words(source(), copy_destination(), words); 2428 } 2429 update_state(words); 2430 } 2431 2432 void MoveAndUpdateClosure::complete_region(HeapWord* dest_addr, PSParallelCompact::RegionData* region_ptr) { 2433 assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::NormalRegion, "Region should be finished"); 2434 region_ptr->set_completed(); 2435 } 2436 2437 void MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) { 2438 assert(destination() != nullptr, "sanity"); 2439 _source = addr; 2440 2441 // The start_array must be updated even if the object is not moving. 2442 if (_start_array != nullptr) { 2443 _start_array->update_for_block(destination(), destination() + words); 2444 } 2445 2446 // Avoid overflow 2447 words = MIN2(words, words_remaining()); 2448 assert(words > 0, "inv"); 2449 2450 if (copy_destination() != source()) { 2451 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 2452 assert(source() != destination(), "inv"); 2453 assert(FullGCForwarding::is_forwarded(cast_to_oop(source())), "inv"); 2454 assert(FullGCForwarding::forwardee(cast_to_oop(source())) == cast_to_oop(destination()), "inv"); 2455 // Read the klass before the copying, since it might destroy the klass (i.e. overlapping copy) 2456 // and if partial copy, the destination klass may not be copied yet 2457 Klass* klass = cast_to_oop(source())->klass(); 2458 Copy::aligned_conjoint_words(source(), copy_destination(), words); 2459 cast_to_oop(copy_destination())->set_mark(Klass::default_prototype_header(klass)); 2460 } 2461 2462 update_state(words); 2463 } 2464 2465 void MoveAndUpdateShadowClosure::complete_region(HeapWord* dest_addr, PSParallelCompact::RegionData* region_ptr) { 2466 assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::ShadowRegion, "Region should be shadow"); 2467 // Record the shadow region index 2468 region_ptr->set_shadow_region(_shadow); 2469 // Mark the shadow region as filled to indicate the data is ready to be 2470 // copied back 2471 region_ptr->mark_filled(); 2472 // Try to copy the content of the shadow region back to its corresponding 2473 // heap region if available; the GC thread that decreases the destination 2474 // count to zero will do the copying otherwise (see 2475 // PSParallelCompact::decrement_destination_counts). 2476 if (((region_ptr->available() && region_ptr->claim()) || region_ptr->claimed()) && region_ptr->mark_copied()) { 2477 region_ptr->set_completed(); 2478 PSParallelCompact::copy_back(PSParallelCompact::summary_data().region_to_addr(_shadow), dest_addr); 2479 ParCompactionManager::push_shadow_region_mt_safe(_shadow); 2480 } 2481 }