1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/classLoaderDataGraph.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "gc/parallel/objectStartArray.inline.hpp"
  33 #include "gc/parallel/parallelArguments.hpp"
  34 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  35 #include "gc/parallel/parMarkBitMap.inline.hpp"
  36 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  37 #include "gc/parallel/psCompactionManager.inline.hpp"
  38 #include "gc/parallel/psOldGen.hpp"
  39 #include "gc/parallel/psParallelCompact.inline.hpp"
  40 #include "gc/parallel/psPromotionManager.inline.hpp"
  41 #include "gc/parallel/psRootType.hpp"
  42 #include "gc/parallel/psScavenge.hpp"
  43 #include "gc/parallel/psStringDedup.hpp"
  44 #include "gc/parallel/psYoungGen.hpp"
  45 #include "gc/shared/classUnloadingContext.hpp"
  46 #include "gc/shared/fullGCForwarding.inline.hpp"
  47 #include "gc/shared/gcCause.hpp"
  48 #include "gc/shared/gcHeapSummary.hpp"
  49 #include "gc/shared/gcId.hpp"
  50 #include "gc/shared/gcLocker.hpp"
  51 #include "gc/shared/gcTimer.hpp"
  52 #include "gc/shared/gcTrace.hpp"
  53 #include "gc/shared/gcTraceTime.inline.hpp"
  54 #include "gc/shared/gcVMOperations.hpp"
  55 #include "gc/shared/isGCActiveMark.hpp"
  56 #include "gc/shared/oopStorage.inline.hpp"
  57 #include "gc/shared/oopStorageSet.inline.hpp"
  58 #include "gc/shared/oopStorageSetParState.inline.hpp"
  59 #include "gc/shared/preservedMarks.inline.hpp"
  60 #include "gc/shared/referencePolicy.hpp"
  61 #include "gc/shared/referenceProcessor.hpp"
  62 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  63 #include "gc/shared/spaceDecorator.hpp"
  64 #include "gc/shared/strongRootsScope.hpp"
  65 #include "gc/shared/taskTerminator.hpp"
  66 #include "gc/shared/weakProcessor.inline.hpp"
  67 #include "gc/shared/workerPolicy.hpp"
  68 #include "gc/shared/workerThread.hpp"
  69 #include "gc/shared/workerUtils.hpp"
  70 #include "logging/log.hpp"
  71 #include "memory/iterator.inline.hpp"
  72 #include "memory/memoryReserver.hpp"
  73 #include "memory/metaspaceUtils.hpp"
  74 #include "memory/resourceArea.hpp"
  75 #include "memory/universe.hpp"
  76 #include "nmt/memTracker.hpp"
  77 #include "oops/access.inline.hpp"
  78 #include "oops/flatArrayKlass.inline.hpp"
  79 #include "oops/instanceClassLoaderKlass.inline.hpp"
  80 #include "oops/instanceKlass.inline.hpp"
  81 #include "oops/instanceMirrorKlass.inline.hpp"
  82 #include "oops/methodData.hpp"
  83 #include "oops/objArrayKlass.inline.hpp"
  84 #include "oops/oop.inline.hpp"
  85 #include "runtime/atomic.hpp"
  86 #include "runtime/handles.inline.hpp"
  87 #include "runtime/java.hpp"
  88 #include "runtime/safepoint.hpp"
  89 #include "runtime/threads.hpp"
  90 #include "runtime/vmThread.hpp"
  91 #include "services/memoryService.hpp"
  92 #include "utilities/align.hpp"
  93 #include "utilities/debug.hpp"
  94 #include "utilities/events.hpp"
  95 #include "utilities/formatBuffer.hpp"
  96 #include "utilities/macros.hpp"
  97 #include "utilities/stack.inline.hpp"
  98 #if INCLUDE_JVMCI
  99 #include "jvmci/jvmci.hpp"
 100 #endif
 101 
 102 #include <math.h>
 103 
 104 // All sizes are in HeapWords.
 105 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
 106 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
 107 static_assert(ParallelCompactData::RegionSize >= BitsPerWord, "region-start bit word-aligned");
 108 const size_t ParallelCompactData::RegionSizeBytes =
 109   RegionSize << LogHeapWordSize;
 110 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
 111 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
 112 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
 113 
 114 const ParallelCompactData::RegionData::region_sz_t
 115 ParallelCompactData::RegionData::dc_shift = 27;
 116 
 117 const ParallelCompactData::RegionData::region_sz_t
 118 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
 119 
 120 const ParallelCompactData::RegionData::region_sz_t
 121 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
 122 
 123 const ParallelCompactData::RegionData::region_sz_t
 124 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 125 
 126 const ParallelCompactData::RegionData::region_sz_t
 127 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 128 
 129 const ParallelCompactData::RegionData::region_sz_t
 130 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 131 
 132 bool ParallelCompactData::RegionData::is_clear() {
 133   return (_destination == nullptr) &&
 134          (_source_region == 0) &&
 135          (_partial_obj_addr == nullptr) &&
 136          (_partial_obj_size == 0) &&
 137          (_dc_and_los == 0) &&
 138          (_shadow_state == 0);
 139 }
 140 
 141 #ifdef ASSERT
 142 void ParallelCompactData::RegionData::verify_clear() {
 143   assert(_destination == nullptr, "inv");
 144   assert(_source_region == 0, "inv");
 145   assert(_partial_obj_addr == nullptr, "inv");
 146   assert(_partial_obj_size == 0, "inv");
 147   assert(_dc_and_los == 0, "inv");
 148   assert(_shadow_state == 0, "inv");
 149 }
 150 #endif
 151 
 152 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 153 
 154 SpanSubjectToDiscoveryClosure PSParallelCompact::_span_based_discoverer;
 155 ReferenceProcessor* PSParallelCompact::_ref_processor = nullptr;
 156 
 157 void SplitInfo::record(size_t split_region_idx, HeapWord* split_point, size_t preceding_live_words) {
 158   assert(split_region_idx != 0, "precondition");
 159 
 160   // Obj denoted by split_point will be deferred to the next space.
 161   assert(split_point != nullptr, "precondition");
 162 
 163   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 164 
 165   PSParallelCompact::RegionData* split_region_ptr = sd.region(split_region_idx);
 166   assert(preceding_live_words < split_region_ptr->data_size(), "inv");
 167 
 168   HeapWord* preceding_destination = split_region_ptr->destination();
 169   assert(preceding_destination != nullptr, "inv");
 170 
 171   // How many regions does the preceding part occupy
 172   uint preceding_destination_count;
 173   if (preceding_live_words == 0) {
 174     preceding_destination_count = 0;
 175   } else {
 176     // -1 so that the ending address doesn't fall on the region-boundary
 177     if (sd.region_align_down(preceding_destination) ==
 178         sd.region_align_down(preceding_destination + preceding_live_words - 1)) {
 179       preceding_destination_count = 1;
 180     } else {
 181       preceding_destination_count = 2;
 182     }
 183   }
 184 
 185   _split_region_idx = split_region_idx;
 186   _split_point = split_point;
 187   _preceding_live_words = preceding_live_words;
 188   _preceding_destination = preceding_destination;
 189   _preceding_destination_count = preceding_destination_count;
 190 }
 191 
 192 void SplitInfo::clear()
 193 {
 194   _split_region_idx = 0;
 195   _split_point = nullptr;
 196   _preceding_live_words = 0;
 197   _preceding_destination = nullptr;
 198   _preceding_destination_count = 0;
 199   assert(!is_valid(), "sanity");
 200 }
 201 
 202 #ifdef  ASSERT
 203 void SplitInfo::verify_clear()
 204 {
 205   assert(_split_region_idx == 0, "not clear");
 206   assert(_split_point == nullptr, "not clear");
 207   assert(_preceding_live_words == 0, "not clear");
 208   assert(_preceding_destination == nullptr, "not clear");
 209   assert(_preceding_destination_count == 0, "not clear");
 210 }
 211 #endif  // #ifdef ASSERT
 212 
 213 
 214 void PSParallelCompact::print_on(outputStream* st) {
 215   _mark_bitmap.print_on(st);
 216 }
 217 
 218 ParallelCompactData::ParallelCompactData() :
 219   _heap_start(nullptr),
 220   DEBUG_ONLY(_heap_end(nullptr) COMMA)
 221   _region_vspace(nullptr),
 222   _reserved_byte_size(0),
 223   _region_data(nullptr),
 224   _region_count(0) {}
 225 
 226 bool ParallelCompactData::initialize(MemRegion reserved_heap)
 227 {
 228   _heap_start = reserved_heap.start();
 229   const size_t heap_size = reserved_heap.word_size();
 230   DEBUG_ONLY(_heap_end = _heap_start + heap_size;)
 231 
 232   assert(region_align_down(_heap_start) == _heap_start,
 233          "region start not aligned");
 234 
 235   return initialize_region_data(heap_size);
 236 }
 237 
 238 PSVirtualSpace*
 239 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 240 {
 241   const size_t raw_bytes = count * element_size;
 242   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 243   const size_t granularity = os::vm_allocation_granularity();
 244   const size_t rs_align = MAX2(page_sz, granularity);
 245 
 246   _reserved_byte_size = align_up(raw_bytes, rs_align);
 247 
 248   ReservedSpace rs = MemoryReserver::reserve(_reserved_byte_size,
 249                                              rs_align,
 250                                              page_sz,
 251                                              mtGC);
 252 
 253   if (!rs.is_reserved()) {
 254     // Failed to reserve memory.
 255     return nullptr;
 256   }
 257 
 258   os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, rs.base(),
 259                        rs.size(), page_sz);
 260 
 261   MemTracker::record_virtual_memory_tag(rs, mtGC);
 262 
 263   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 264 
 265   if (!vspace->expand_by(_reserved_byte_size)) {
 266     // Failed to commit memory.
 267 
 268     delete vspace;
 269 
 270     // Release memory reserved in the space.
 271     MemoryReserver::release(rs);
 272 
 273     return nullptr;
 274   }
 275 
 276   return vspace;
 277 }
 278 
 279 bool ParallelCompactData::initialize_region_data(size_t heap_size)
 280 {
 281   assert(is_aligned(heap_size, RegionSize), "precondition");
 282 
 283   const size_t count = heap_size >> Log2RegionSize;
 284   _region_vspace = create_vspace(count, sizeof(RegionData));
 285   if (_region_vspace != nullptr) {
 286     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 287     _region_count = count;
 288     return true;
 289   }
 290   return false;
 291 }
 292 
 293 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 294   assert(beg_region <= _region_count, "beg_region out of range");
 295   assert(end_region <= _region_count, "end_region out of range");
 296 
 297   const size_t region_cnt = end_region - beg_region;
 298   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 299 }
 300 
 301 void
 302 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 303 {
 304   assert(is_region_aligned(beg), "not RegionSize aligned");
 305   assert(is_region_aligned(end), "not RegionSize aligned");
 306 
 307   size_t cur_region = addr_to_region_idx(beg);
 308   const size_t end_region = addr_to_region_idx(end);
 309   HeapWord* addr = beg;
 310   while (cur_region < end_region) {
 311     _region_data[cur_region].set_destination(addr);
 312     _region_data[cur_region].set_destination_count(0);
 313     _region_data[cur_region].set_source_region(cur_region);
 314 
 315     // Update live_obj_size so the region appears completely full.
 316     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 317     _region_data[cur_region].set_live_obj_size(live_size);
 318 
 319     ++cur_region;
 320     addr += RegionSize;
 321   }
 322 }
 323 
 324 // The total live words on src_region would overflow the target space, so find
 325 // the overflowing object and record the split point. The invariant is that an
 326 // obj should not cross space boundary.
 327 HeapWord* ParallelCompactData::summarize_split_space(size_t src_region,
 328                                                      SplitInfo& split_info,
 329                                                      HeapWord* const destination,
 330                                                      HeapWord* const target_end,
 331                                                      HeapWord** target_next) {
 332   assert(destination <= target_end, "sanity");
 333   assert(destination + _region_data[src_region].data_size() > target_end,
 334     "region should not fit into target space");
 335   assert(is_region_aligned(target_end), "sanity");
 336 
 337   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 338 
 339   if (destination + partial_obj_size > target_end) {
 340     assert(partial_obj_size > 0, "inv");
 341     // The overflowing obj is from a previous region.
 342     //
 343     // source-regions:
 344     //
 345     // ***************
 346     // |     A|AA    |
 347     // ***************
 348     //       ^
 349     //       | split-point
 350     //
 351     // dest-region:
 352     //
 353     // ********
 354     // |~~~~A |
 355     // ********
 356     //       ^^
 357     //       || target-space-end
 358     //       |
 359     //       | destination
 360     //
 361     // AAA would overflow target-space.
 362     //
 363     HeapWord* overflowing_obj = _region_data[src_region].partial_obj_addr();
 364     size_t split_region = addr_to_region_idx(overflowing_obj);
 365 
 366     // The number of live words before the overflowing object on this split region
 367     size_t preceding_live_words;
 368     if (is_region_aligned(overflowing_obj)) {
 369       preceding_live_words = 0;
 370     } else {
 371       // Words accounted by the overflowing object on the split region
 372       size_t overflowing_size = pointer_delta(region_align_up(overflowing_obj), overflowing_obj);
 373       preceding_live_words = region(split_region)->data_size() - overflowing_size;
 374     }
 375 
 376     split_info.record(split_region, overflowing_obj, preceding_live_words);
 377 
 378     // The [overflowing_obj, src_region_start) part has been accounted for, so
 379     // must move back the new_top, now that this overflowing obj is deferred.
 380     HeapWord* new_top = destination - pointer_delta(region_to_addr(src_region), overflowing_obj);
 381 
 382     // If the overflowing obj was relocated to its original destination,
 383     // those destination regions would have their source_region set. Now that
 384     // this overflowing obj is relocated somewhere else, reset the
 385     // source_region.
 386     {
 387       size_t range_start = addr_to_region_idx(region_align_up(new_top));
 388       size_t range_end = addr_to_region_idx(region_align_up(destination));
 389       for (size_t i = range_start; i < range_end; ++i) {
 390         region(i)->set_source_region(0);
 391       }
 392     }
 393 
 394     // Update new top of target space
 395     *target_next = new_top;
 396 
 397     return overflowing_obj;
 398   }
 399 
 400   // Obj-iteration to locate the overflowing obj
 401   HeapWord* region_start = region_to_addr(src_region);
 402   HeapWord* region_end = region_start + RegionSize;
 403   HeapWord* cur_addr = region_start + partial_obj_size;
 404   size_t live_words = partial_obj_size;
 405 
 406   while (true) {
 407     assert(cur_addr < region_end, "inv");
 408     cur_addr = PSParallelCompact::mark_bitmap()->find_obj_beg(cur_addr, region_end);
 409     // There must be an overflowing obj in this region
 410     assert(cur_addr < region_end, "inv");
 411 
 412     oop obj = cast_to_oop(cur_addr);
 413     size_t obj_size = obj->size();
 414     if (destination + live_words + obj_size > target_end) {
 415       // Found the overflowing obj
 416       split_info.record(src_region, cur_addr, live_words);
 417       *target_next = destination + live_words;
 418       return cur_addr;
 419     }
 420 
 421     live_words += obj_size;
 422     cur_addr += obj_size;
 423   }
 424 }
 425 
 426 size_t ParallelCompactData::live_words_in_space(const MutableSpace* space,
 427                                                 HeapWord** full_region_prefix_end) {
 428   size_t cur_region = addr_to_region_idx(space->bottom());
 429   const size_t end_region = addr_to_region_idx(region_align_up(space->top()));
 430   size_t live_words = 0;
 431   if (full_region_prefix_end == nullptr) {
 432     for (/* empty */; cur_region < end_region; ++cur_region) {
 433       live_words += _region_data[cur_region].data_size();
 434     }
 435   } else {
 436     bool first_set = false;
 437     for (/* empty */; cur_region < end_region; ++cur_region) {
 438       size_t live_words_in_region = _region_data[cur_region].data_size();
 439       if (!first_set && live_words_in_region < RegionSize) {
 440         *full_region_prefix_end = region_to_addr(cur_region);
 441         first_set = true;
 442       }
 443       live_words += live_words_in_region;
 444     }
 445     if (!first_set) {
 446       // All regions are full of live objs.
 447       assert(is_region_aligned(space->top()), "inv");
 448       *full_region_prefix_end = space->top();
 449     }
 450     assert(*full_region_prefix_end != nullptr, "postcondition");
 451     assert(is_region_aligned(*full_region_prefix_end), "inv");
 452     assert(*full_region_prefix_end >= space->bottom(), "in-range");
 453     assert(*full_region_prefix_end <= space->top(), "in-range");
 454   }
 455   return live_words;
 456 }
 457 
 458 bool ParallelCompactData::summarize(SplitInfo& split_info,
 459                                     HeapWord* source_beg, HeapWord* source_end,
 460                                     HeapWord** source_next,
 461                                     HeapWord* target_beg, HeapWord* target_end,
 462                                     HeapWord** target_next)
 463 {
 464   HeapWord* const source_next_val = source_next == nullptr ? nullptr : *source_next;
 465   log_develop_trace(gc, compaction)(
 466       "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 467       "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 468       p2i(source_beg), p2i(source_end), p2i(source_next_val),
 469       p2i(target_beg), p2i(target_end), p2i(*target_next));
 470 
 471   size_t cur_region = addr_to_region_idx(source_beg);
 472   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 473 
 474   HeapWord *dest_addr = target_beg;
 475   for (/* empty */; cur_region < end_region; cur_region++) {
 476     size_t words = _region_data[cur_region].data_size();
 477 
 478     // Skip empty ones
 479     if (words == 0) {
 480       continue;
 481     }
 482 
 483     if (split_info.is_split(cur_region)) {
 484       assert(words > split_info.preceding_live_words(), "inv");
 485       words -= split_info.preceding_live_words();
 486     }
 487 
 488     _region_data[cur_region].set_destination(dest_addr);
 489 
 490     // If cur_region does not fit entirely into the target space, find a point
 491     // at which the source space can be 'split' so that part is copied to the
 492     // target space and the rest is copied elsewhere.
 493     if (dest_addr + words > target_end) {
 494       assert(source_next != nullptr, "source_next is null when splitting");
 495       *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 496                                            target_end, target_next);
 497       return false;
 498     }
 499 
 500     uint destination_count = split_info.is_split(cur_region)
 501                              ? split_info.preceding_destination_count()
 502                              : 0;
 503 
 504     HeapWord* const last_addr = dest_addr + words - 1;
 505     const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 506     const size_t dest_region_2 = addr_to_region_idx(last_addr);
 507 
 508     // Initially assume that the destination regions will be the same and
 509     // adjust the value below if necessary.  Under this assumption, if
 510     // cur_region == dest_region_2, then cur_region will be compacted
 511     // completely into itself.
 512     destination_count += cur_region == dest_region_2 ? 0 : 1;
 513     if (dest_region_1 != dest_region_2) {
 514       // Destination regions differ; adjust destination_count.
 515       destination_count += 1;
 516       // Data from cur_region will be copied to the start of dest_region_2.
 517       _region_data[dest_region_2].set_source_region(cur_region);
 518     } else if (is_region_aligned(dest_addr)) {
 519       // Data from cur_region will be copied to the start of the destination
 520       // region.
 521       _region_data[dest_region_1].set_source_region(cur_region);
 522     }
 523 
 524     _region_data[cur_region].set_destination_count(destination_count);
 525     dest_addr += words;
 526   }
 527 
 528   *target_next = dest_addr;
 529   return true;
 530 }
 531 
 532 #ifdef ASSERT
 533 void ParallelCompactData::verify_clear() {
 534   for (uint cur_idx = 0; cur_idx < region_count(); ++cur_idx) {
 535     if (!region(cur_idx)->is_clear()) {
 536       log_warning(gc)("Uncleared Region: %u", cur_idx);
 537       region(cur_idx)->verify_clear();
 538     }
 539   }
 540 }
 541 #endif  // #ifdef ASSERT
 542 
 543 STWGCTimer          PSParallelCompact::_gc_timer;
 544 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 545 elapsedTimer        PSParallelCompact::_accumulated_time;
 546 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 547 CollectorCounters*  PSParallelCompact::_counters = nullptr;
 548 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 549 ParallelCompactData PSParallelCompact::_summary_data;
 550 
 551 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 552 
 553 class PCAdjustPointerClosure: public BasicOopIterateClosure {
 554   template <typename T>
 555   void do_oop_work(T* p) { PSParallelCompact::adjust_pointer(p); }
 556 
 557 public:
 558   virtual void do_oop(oop* p)                { do_oop_work(p); }
 559   virtual void do_oop(narrowOop* p)          { do_oop_work(p); }
 560 
 561   virtual ReferenceIterationMode reference_iteration_mode() { return DO_FIELDS; }
 562 };
 563 
 564 static PCAdjustPointerClosure pc_adjust_pointer_closure;
 565 
 566 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 567 
 568 void PSParallelCompact::post_initialize() {
 569   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 570   _span_based_discoverer.set_span(heap->reserved_region());
 571   _ref_processor =
 572     new ReferenceProcessor(&_span_based_discoverer,
 573                            ParallelGCThreads,   // mt processing degree
 574                            ParallelGCThreads,   // mt discovery degree
 575                            false,               // concurrent_discovery
 576                            &_is_alive_closure); // non-header is alive closure
 577 
 578   _counters = new CollectorCounters("Parallel full collection pauses", 1);
 579 
 580   // Initialize static fields in ParCompactionManager.
 581   ParCompactionManager::initialize(mark_bitmap());
 582 }
 583 
 584 bool PSParallelCompact::initialize_aux_data() {
 585   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 586   MemRegion mr = heap->reserved_region();
 587   assert(mr.byte_size() != 0, "heap should be reserved");
 588 
 589   initialize_space_info();
 590 
 591   if (!_mark_bitmap.initialize(mr)) {
 592     vm_shutdown_during_initialization(
 593       err_msg("Unable to allocate %zuKB bitmaps for parallel "
 594       "garbage collection for the requested %zuKB heap.",
 595       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 596     return false;
 597   }
 598 
 599   if (!_summary_data.initialize(mr)) {
 600     vm_shutdown_during_initialization(
 601       err_msg("Unable to allocate %zuKB card tables for parallel "
 602       "garbage collection for the requested %zuKB heap.",
 603       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 604     return false;
 605   }
 606 
 607   return true;
 608 }
 609 
 610 void PSParallelCompact::initialize_space_info()
 611 {
 612   memset(&_space_info, 0, sizeof(_space_info));
 613 
 614   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 615   PSYoungGen* young_gen = heap->young_gen();
 616 
 617   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 618   _space_info[eden_space_id].set_space(young_gen->eden_space());
 619   _space_info[from_space_id].set_space(young_gen->from_space());
 620   _space_info[to_space_id].set_space(young_gen->to_space());
 621 
 622   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 623 }
 624 
 625 void
 626 PSParallelCompact::clear_data_covering_space(SpaceId id)
 627 {
 628   // At this point, top is the value before GC, new_top() is the value that will
 629   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 630   // should be marked above top.  The summary data is cleared to the larger of
 631   // top & new_top.
 632   MutableSpace* const space = _space_info[id].space();
 633   HeapWord* const bot = space->bottom();
 634   HeapWord* const top = space->top();
 635   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 636 
 637   _mark_bitmap.clear_range(bot, top);
 638 
 639   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 640   const size_t end_region =
 641     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 642   _summary_data.clear_range(beg_region, end_region);
 643 
 644   // Clear the data used to 'split' regions.
 645   SplitInfo& split_info = _space_info[id].split_info();
 646   if (split_info.is_valid()) {
 647     split_info.clear();
 648   }
 649   DEBUG_ONLY(split_info.verify_clear();)
 650 }
 651 
 652 void PSParallelCompact::pre_compact()
 653 {
 654   // Update the from & to space pointers in space_info, since they are swapped
 655   // at each young gen gc.  Do the update unconditionally (even though a
 656   // promotion failure does not swap spaces) because an unknown number of young
 657   // collections will have swapped the spaces an unknown number of times.
 658   GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
 659   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 660   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 661   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 662 
 663   heap->increment_total_collections(true);
 664 
 665   CodeCache::on_gc_marking_cycle_start();
 666 
 667   heap->print_before_gc();
 668   heap->trace_heap_before_gc(&_gc_tracer);
 669 
 670   // Fill in TLABs
 671   heap->ensure_parsability(true);  // retire TLABs
 672 
 673   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 674     Universe::verify("Before GC");
 675   }
 676 
 677   DEBUG_ONLY(mark_bitmap()->verify_clear();)
 678   DEBUG_ONLY(summary_data().verify_clear();)
 679 }
 680 
 681 void PSParallelCompact::post_compact()
 682 {
 683   GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
 684   ParCompactionManager::remove_all_shadow_regions();
 685 
 686   CodeCache::on_gc_marking_cycle_finish();
 687   CodeCache::arm_all_nmethods();
 688 
 689   // Need to clear claim bits for the next full-gc (marking and adjust-pointers).
 690   ClassLoaderDataGraph::clear_claimed_marks();
 691 
 692   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
 693     // Clear the marking bitmap, summary data and split info.
 694     clear_data_covering_space(SpaceId(id));
 695     {
 696       MutableSpace* space = _space_info[id].space();
 697       HeapWord* top = space->top();
 698       HeapWord* new_top = _space_info[id].new_top();
 699       if (ZapUnusedHeapArea && new_top < top) {
 700         space->mangle_region(MemRegion(new_top, top));
 701       }
 702       // Update top().  Must be done after clearing the bitmap and summary data.
 703       space->set_top(new_top);
 704     }
 705   }
 706 
 707 #ifdef ASSERT
 708   {
 709     mark_bitmap()->verify_clear();
 710     summary_data().verify_clear();
 711   }
 712 #endif
 713 
 714   ParCompactionManager::flush_all_string_dedup_requests();
 715 
 716   MutableSpace* const eden_space = _space_info[eden_space_id].space();
 717   MutableSpace* const from_space = _space_info[from_space_id].space();
 718   MutableSpace* const to_space   = _space_info[to_space_id].space();
 719 
 720   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 721   bool eden_empty = eden_space->is_empty();
 722 
 723   // Update heap occupancy information which is used as input to the soft ref
 724   // clearing policy at the next gc.
 725   Universe::heap()->update_capacity_and_used_at_gc();
 726 
 727   bool young_gen_empty = eden_empty && from_space->is_empty() &&
 728     to_space->is_empty();
 729 
 730   PSCardTable* ct = heap->card_table();
 731   MemRegion old_mr = heap->old_gen()->committed();
 732   if (young_gen_empty) {
 733     ct->clear_MemRegion(old_mr);
 734   } else {
 735     ct->dirty_MemRegion(old_mr);
 736   }
 737 
 738   heap->prune_scavengable_nmethods();
 739 
 740 #if COMPILER2_OR_JVMCI
 741   DerivedPointerTable::update_pointers();
 742 #endif
 743 
 744   // Signal that we have completed a visit to all live objects.
 745   Universe::heap()->record_whole_heap_examined_timestamp();
 746 }
 747 
 748 HeapWord* PSParallelCompact::compute_dense_prefix_for_old_space(MutableSpace* old_space,
 749                                                                 HeapWord* full_region_prefix_end) {
 750   const size_t region_size = ParallelCompactData::RegionSize;
 751   const ParallelCompactData& sd = summary_data();
 752 
 753   // Iteration starts with the region *after* the full-region-prefix-end.
 754   const RegionData* const start_region = sd.addr_to_region_ptr(full_region_prefix_end);
 755   // If final region is not full, iteration stops before that region,
 756   // because fill_dense_prefix_end assumes that prefix_end <= top.
 757   const RegionData* const end_region = sd.addr_to_region_ptr(old_space->top());
 758   assert(start_region <= end_region, "inv");
 759 
 760   size_t max_waste = old_space->capacity_in_words() * (MarkSweepDeadRatio / 100.0);
 761   const RegionData* cur_region = start_region;
 762   for (/* empty */; cur_region < end_region; ++cur_region) {
 763     assert(region_size >= cur_region->data_size(), "inv");
 764     size_t dead_size = region_size - cur_region->data_size();
 765     if (max_waste < dead_size) {
 766       break;
 767     }
 768     max_waste -= dead_size;
 769   }
 770 
 771   HeapWord* const prefix_end = sd.region_to_addr(cur_region);
 772   assert(sd.is_region_aligned(prefix_end), "postcondition");
 773   assert(prefix_end >= full_region_prefix_end, "in-range");
 774   assert(prefix_end <= old_space->top(), "in-range");
 775   return prefix_end;
 776 }
 777 
 778 void PSParallelCompact::fill_dense_prefix_end(SpaceId id) {
 779   // Comparing two sizes to decide if filling is required:
 780   //
 781   // The size of the filler (min-obj-size) is 2 heap words with the default
 782   // MinObjAlignment, since both markword and klass take 1 heap word.
 783   // With +UseCompactObjectHeaders, the minimum filler size is only one word,
 784   // because the Klass* gets encoded in the mark-word.
 785   //
 786   // The size of the gap (if any) right before dense-prefix-end is
 787   // MinObjAlignment.
 788   //
 789   // Need to fill in the gap only if it's smaller than min-obj-size, and the
 790   // filler obj will extend to next region.
 791 
 792   if (MinObjAlignment >= checked_cast<int>(CollectedHeap::min_fill_size())) {
 793     return;
 794   }
 795 
 796   assert(!UseCompactObjectHeaders, "Compact headers can allocate small objects");
 797   assert(CollectedHeap::min_fill_size() == 2, "inv");
 798   HeapWord* const dense_prefix_end = dense_prefix(id);
 799   assert(_summary_data.is_region_aligned(dense_prefix_end), "precondition");
 800   assert(dense_prefix_end <= space(id)->top(), "precondition");
 801   if (dense_prefix_end == space(id)->top()) {
 802     // Must not have single-word gap right before prefix-end/top.
 803     return;
 804   }
 805   RegionData* const region_after_dense_prefix = _summary_data.addr_to_region_ptr(dense_prefix_end);
 806 
 807   if (region_after_dense_prefix->partial_obj_size() != 0 ||
 808       _mark_bitmap.is_marked(dense_prefix_end)) {
 809     // The region after the dense prefix starts with live bytes.
 810     return;
 811   }
 812 
 813   HeapWord* block_start = start_array(id)->block_start_reaching_into_card(dense_prefix_end);
 814   if (block_start == dense_prefix_end - 1) {
 815     assert(!_mark_bitmap.is_marked(block_start), "inv");
 816     // There is exactly one heap word gap right before the dense prefix end, so we need a filler object.
 817     // The filler object will extend into region_after_dense_prefix.
 818     const size_t obj_len = 2; // min-fill-size
 819     HeapWord* const obj_beg = dense_prefix_end - 1;
 820     CollectedHeap::fill_with_object(obj_beg, obj_len);
 821     _mark_bitmap.mark_obj(obj_beg);
 822     _summary_data.addr_to_region_ptr(obj_beg)->add_live_obj(1);
 823     region_after_dense_prefix->set_partial_obj_size(1);
 824     region_after_dense_prefix->set_partial_obj_addr(obj_beg);
 825     assert(start_array(id) != nullptr, "sanity");
 826     start_array(id)->update_for_block(obj_beg, obj_beg + obj_len);
 827   }
 828 }
 829 
 830 bool PSParallelCompact::check_maximum_compaction(size_t total_live_words,
 831                                                  MutableSpace* const old_space,
 832                                                  HeapWord* full_region_prefix_end) {
 833 
 834   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 835 
 836   // Check System.GC
 837   bool is_max_on_system_gc = UseMaximumCompactionOnSystemGC
 838                           && GCCause::is_user_requested_gc(heap->gc_cause());
 839 
 840   // Check if all live objs are too much for old-gen.
 841   const bool is_old_gen_too_full = (total_live_words >= old_space->capacity_in_words());
 842 
 843   // JVM flags
 844   const uint total_invocations = heap->total_full_collections();
 845   assert(total_invocations >= _maximum_compaction_gc_num, "sanity");
 846   const size_t gcs_since_max = total_invocations - _maximum_compaction_gc_num;
 847   const bool is_interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
 848 
 849   // If all regions in old-gen are full
 850   const bool is_region_full =
 851     full_region_prefix_end >= _summary_data.region_align_down(old_space->top());
 852 
 853   if (is_max_on_system_gc || is_old_gen_too_full || is_interval_ended || is_region_full) {
 854     _maximum_compaction_gc_num = total_invocations;
 855     return true;
 856   }
 857 
 858   return false;
 859 }
 860 
 861 void PSParallelCompact::summary_phase()
 862 {
 863   GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
 864 
 865   MutableSpace* const old_space = _space_info[old_space_id].space();
 866   {
 867     size_t total_live_words = 0;
 868     HeapWord* full_region_prefix_end = nullptr;
 869     {
 870       // old-gen
 871       size_t live_words = _summary_data.live_words_in_space(old_space,
 872                                                             &full_region_prefix_end);
 873       total_live_words += live_words;
 874     }
 875     // young-gen
 876     for (uint i = eden_space_id; i < last_space_id; ++i) {
 877       const MutableSpace* space = _space_info[i].space();
 878       size_t live_words = _summary_data.live_words_in_space(space);
 879       total_live_words += live_words;
 880       _space_info[i].set_new_top(space->bottom() + live_words);
 881       _space_info[i].set_dense_prefix(space->bottom());
 882     }
 883 
 884     bool maximum_compaction = check_maximum_compaction(total_live_words,
 885                                                        old_space,
 886                                                        full_region_prefix_end);
 887     {
 888       GCTraceTime(Info, gc, phases) tm("Summary Phase: expand", &_gc_timer);
 889       // Try to expand old-gen in order to fit all live objs and waste.
 890       size_t target_capacity_bytes = total_live_words * HeapWordSize
 891                                    + old_space->capacity_in_bytes() * (MarkSweepDeadRatio / 100);
 892       ParallelScavengeHeap::heap()->old_gen()->try_expand_till_size(target_capacity_bytes);
 893     }
 894 
 895     HeapWord* dense_prefix_end = maximum_compaction
 896                                  ? full_region_prefix_end
 897                                  : compute_dense_prefix_for_old_space(old_space,
 898                                                                       full_region_prefix_end);
 899     SpaceId id = old_space_id;
 900     _space_info[id].set_dense_prefix(dense_prefix_end);
 901 
 902     if (dense_prefix_end != old_space->bottom()) {
 903       fill_dense_prefix_end(id);
 904       _summary_data.summarize_dense_prefix(old_space->bottom(), dense_prefix_end);
 905     }
 906 
 907     // Compacting objs in [dense_prefix_end, old_space->top())
 908     _summary_data.summarize(_space_info[id].split_info(),
 909                             dense_prefix_end, old_space->top(), nullptr,
 910                             dense_prefix_end, old_space->end(),
 911                             _space_info[id].new_top_addr());
 912   }
 913 
 914   // Summarize the remaining spaces in the young gen.  The initial target space
 915   // is the old gen.  If a space does not fit entirely into the target, then the
 916   // remainder is compacted into the space itself and that space becomes the new
 917   // target.
 918   SpaceId dst_space_id = old_space_id;
 919   HeapWord* dst_space_end = old_space->end();
 920   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
 921   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
 922     const MutableSpace* space = _space_info[id].space();
 923     const size_t live = pointer_delta(_space_info[id].new_top(),
 924                                       space->bottom());
 925     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
 926 
 927     if (live > 0 && live <= available) {
 928       // All the live data will fit.
 929       bool done = _summary_data.summarize(_space_info[id].split_info(),
 930                                           space->bottom(), space->top(),
 931                                           nullptr,
 932                                           *new_top_addr, dst_space_end,
 933                                           new_top_addr);
 934       assert(done, "space must fit into old gen");
 935 
 936       // Reset the new_top value for the space.
 937       _space_info[id].set_new_top(space->bottom());
 938     } else if (live > 0) {
 939       // Attempt to fit part of the source space into the target space.
 940       HeapWord* next_src_addr = nullptr;
 941       bool done = _summary_data.summarize(_space_info[id].split_info(),
 942                                           space->bottom(), space->top(),
 943                                           &next_src_addr,
 944                                           *new_top_addr, dst_space_end,
 945                                           new_top_addr);
 946       assert(!done, "space should not fit into old gen");
 947       assert(next_src_addr != nullptr, "sanity");
 948 
 949       // The source space becomes the new target, so the remainder is compacted
 950       // within the space itself.
 951       dst_space_id = SpaceId(id);
 952       dst_space_end = space->end();
 953       new_top_addr = _space_info[id].new_top_addr();
 954       done = _summary_data.summarize(_space_info[id].split_info(),
 955                                      next_src_addr, space->top(),
 956                                      nullptr,
 957                                      space->bottom(), dst_space_end,
 958                                      new_top_addr);
 959       assert(done, "space must fit when compacted into itself");
 960       assert(*new_top_addr <= space->top(), "usage should not grow");
 961     }
 962   }
 963 }
 964 
 965 // This method invokes a full collection. The argument controls whether
 966 // soft-refs should be cleared or not.
 967 // Note that this method should only be called from the vm_thread while at a
 968 // safepoint.
 969 bool PSParallelCompact::invoke(bool clear_all_soft_refs) {
 970   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 971   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
 972          "should be in vm thread");
 973 
 974   SvcGCMarker sgcm(SvcGCMarker::FULL);
 975   IsSTWGCActiveMark mark;
 976 
 977   return PSParallelCompact::invoke_no_policy(clear_all_soft_refs);
 978 }
 979 
 980 // This method contains no policy. You should probably
 981 // be calling invoke() instead.
 982 bool PSParallelCompact::invoke_no_policy(bool clear_all_soft_refs) {
 983   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
 984   assert(ref_processor() != nullptr, "Sanity");
 985 
 986   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 987 
 988   GCIdMark gc_id_mark;
 989   _gc_timer.register_gc_start();
 990   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
 991 
 992   GCCause::Cause gc_cause = heap->gc_cause();
 993   PSOldGen* old_gen = heap->old_gen();
 994   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 995 
 996   // Make sure data structures are sane, make the heap parsable, and do other
 997   // miscellaneous bookkeeping.
 998   pre_compact();
 999 
1000   const PreGenGCValues pre_gc_values = heap->get_pre_gc_values();
1001 
1002   {
1003     const uint active_workers =
1004       WorkerPolicy::calc_active_workers(ParallelScavengeHeap::heap()->workers().max_workers(),
1005                                         ParallelScavengeHeap::heap()->workers().active_workers(),
1006                                         Threads::number_of_non_daemon_threads());
1007     ParallelScavengeHeap::heap()->workers().set_active_workers(active_workers);
1008 
1009     GCTraceCPUTime tcpu(&_gc_tracer);
1010     GCTraceTime(Info, gc) tm("Pause Full", nullptr, gc_cause, true);
1011 
1012     heap->pre_full_gc_dump(&_gc_timer);
1013 
1014     TraceCollectorStats tcs(counters());
1015     TraceMemoryManagerStats tms(heap->old_gc_manager(), gc_cause, "end of major GC");
1016 
1017     if (log_is_enabled(Debug, gc, heap, exit)) {
1018       accumulated_time()->start();
1019     }
1020 
1021     // Let the size policy know we're starting
1022     size_policy->major_collection_begin();
1023 
1024 #if COMPILER2_OR_JVMCI
1025     DerivedPointerTable::clear();
1026 #endif
1027 
1028     ref_processor()->start_discovery(clear_all_soft_refs);
1029 
1030     marking_phase(&_gc_tracer);
1031 
1032     summary_phase();
1033 
1034 #if COMPILER2_OR_JVMCI
1035     assert(DerivedPointerTable::is_active(), "Sanity");
1036     DerivedPointerTable::set_active(false);
1037 #endif
1038 
1039     forward_to_new_addr();
1040 
1041     adjust_pointers();
1042 
1043     compact();
1044 
1045     ParCompactionManager::_preserved_marks_set->restore(&ParallelScavengeHeap::heap()->workers());
1046 
1047     ParCompactionManager::verify_all_region_stack_empty();
1048 
1049     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1050     // done before resizing.
1051     post_compact();
1052 
1053     size_policy->major_collection_end();
1054 
1055     size_policy->sample_old_gen_used_bytes(MAX2(pre_gc_values.old_gen_used(), old_gen->used_in_bytes()));
1056 
1057     if (UseAdaptiveSizePolicy) {
1058       heap->resize_after_full_gc();
1059     }
1060 
1061     heap->resize_all_tlabs();
1062 
1063     // Resize the metaspace capacity after a collection
1064     MetaspaceGC::compute_new_size();
1065 
1066     if (log_is_enabled(Debug, gc, heap, exit)) {
1067       accumulated_time()->stop();
1068     }
1069 
1070     heap->print_heap_change(pre_gc_values);
1071 
1072     // Track memory usage and detect low memory
1073     MemoryService::track_memory_usage();
1074     heap->update_counters();
1075 
1076     heap->post_full_gc_dump(&_gc_timer);
1077 
1078     size_policy->record_gc_pause_end_instant();
1079   }
1080 
1081   heap->gc_epilogue(true);
1082 
1083   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1084     Universe::verify("After GC");
1085   }
1086 
1087   heap->print_after_gc();
1088   heap->trace_heap_after_gc(&_gc_tracer);
1089 
1090   _gc_timer.register_gc_end();
1091 
1092   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1093   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1094 
1095   return true;
1096 }
1097 
1098 class PCAddThreadRootsMarkingTaskClosure : public ThreadClosure {
1099 private:
1100   uint _worker_id;
1101 
1102 public:
1103   PCAddThreadRootsMarkingTaskClosure(uint worker_id) : _worker_id(worker_id) { }
1104   void do_thread(Thread* thread) {
1105     assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc");
1106 
1107     ResourceMark rm;
1108 
1109     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(_worker_id);
1110 
1111     MarkingNMethodClosure mark_and_push_in_blobs(&cm->_mark_and_push_closure,
1112                                                  !NMethodToOopClosure::FixRelocations,
1113                                                  true /* keepalive nmethods */);
1114 
1115     thread->oops_do(&cm->_mark_and_push_closure, &mark_and_push_in_blobs);
1116 
1117     // Do the real work
1118     cm->follow_marking_stacks();
1119   }
1120 };
1121 
1122 void steal_marking_work(TaskTerminator& terminator, uint worker_id) {
1123   assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc");
1124 
1125   ParCompactionManager* cm =
1126     ParCompactionManager::gc_thread_compaction_manager(worker_id);
1127 
1128   do {
1129     ScannerTask task;
1130     if (ParCompactionManager::steal(worker_id, task)) {
1131       cm->follow_contents(task, true);
1132     }
1133     cm->follow_marking_stacks();
1134   } while (!terminator.offer_termination());
1135 }
1136 
1137 class MarkFromRootsTask : public WorkerTask {
1138   StrongRootsScope _strong_roots_scope; // needed for Threads::possibly_parallel_threads_do
1139   OopStorageSetStrongParState<false /* concurrent */, false /* is_const */> _oop_storage_set_par_state;
1140   TaskTerminator _terminator;
1141   uint _active_workers;
1142 
1143 public:
1144   MarkFromRootsTask(uint active_workers) :
1145       WorkerTask("MarkFromRootsTask"),
1146       _strong_roots_scope(active_workers),
1147       _terminator(active_workers, ParCompactionManager::marking_stacks()),
1148       _active_workers(active_workers) {}
1149 
1150   virtual void work(uint worker_id) {
1151     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
1152     cm->create_marking_stats_cache();
1153     {
1154       CLDToOopClosure cld_closure(&cm->_mark_and_push_closure, ClassLoaderData::_claim_stw_fullgc_mark);
1155       ClassLoaderDataGraph::always_strong_cld_do(&cld_closure);
1156 
1157       // Do the real work
1158       cm->follow_marking_stacks();
1159     }
1160 
1161     {
1162       PCAddThreadRootsMarkingTaskClosure closure(worker_id);
1163       Threads::possibly_parallel_threads_do(_active_workers > 1 /* is_par */, &closure);
1164     }
1165 
1166     // Mark from OopStorages
1167     {
1168       _oop_storage_set_par_state.oops_do(&cm->_mark_and_push_closure);
1169       // Do the real work
1170       cm->follow_marking_stacks();
1171     }
1172 
1173     if (_active_workers > 1) {
1174       steal_marking_work(_terminator, worker_id);
1175     }
1176   }
1177 };
1178 
1179 class ParallelCompactRefProcProxyTask : public RefProcProxyTask {
1180   TaskTerminator _terminator;
1181 
1182 public:
1183   ParallelCompactRefProcProxyTask(uint max_workers)
1184     : RefProcProxyTask("ParallelCompactRefProcProxyTask", max_workers),
1185       _terminator(_max_workers, ParCompactionManager::marking_stacks()) {}
1186 
1187   void work(uint worker_id) override {
1188     assert(worker_id < _max_workers, "sanity");
1189     ParCompactionManager* cm = (_tm == RefProcThreadModel::Single) ? ParCompactionManager::get_vmthread_cm() : ParCompactionManager::gc_thread_compaction_manager(worker_id);
1190     BarrierEnqueueDiscoveredFieldClosure enqueue;
1191     ParCompactionManager::FollowStackClosure complete_gc(cm, (_tm == RefProcThreadModel::Single) ? nullptr : &_terminator, worker_id);
1192     _rp_task->rp_work(worker_id, PSParallelCompact::is_alive_closure(), &cm->_mark_and_push_closure, &enqueue, &complete_gc);
1193   }
1194 
1195   void prepare_run_task_hook() override {
1196     _terminator.reset_for_reuse(_queue_count);
1197   }
1198 };
1199 
1200 static void flush_marking_stats_cache(const uint num_workers) {
1201   for (uint i = 0; i < num_workers; ++i) {
1202     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(i);
1203     cm->flush_and_destroy_marking_stats_cache();
1204   }
1205 }
1206 
1207 void PSParallelCompact::marking_phase(ParallelOldTracer *gc_tracer) {
1208   // Recursively traverse all live objects and mark them
1209   GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
1210 
1211   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
1212 
1213   ClassLoaderDataGraph::verify_claimed_marks_cleared(ClassLoaderData::_claim_stw_fullgc_mark);
1214   {
1215     GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
1216 
1217     MarkFromRootsTask task(active_gc_threads);
1218     ParallelScavengeHeap::heap()->workers().run_task(&task);
1219   }
1220 
1221   // Process reference objects found during marking
1222   {
1223     GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
1224 
1225     ReferenceProcessorStats stats;
1226     ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->max_num_queues());
1227 
1228     ParallelCompactRefProcProxyTask task(ref_processor()->max_num_queues());
1229     stats = ref_processor()->process_discovered_references(task, &ParallelScavengeHeap::heap()->workers(), pt);
1230 
1231     gc_tracer->report_gc_reference_stats(stats);
1232     pt.print_all_references();
1233   }
1234 
1235   {
1236     GCTraceTime(Debug, gc, phases) tm("Flush Marking Stats", &_gc_timer);
1237 
1238     flush_marking_stats_cache(active_gc_threads);
1239   }
1240 
1241   // This is the point where the entire marking should have completed.
1242   ParCompactionManager::verify_all_marking_stack_empty();
1243 
1244   {
1245     GCTraceTime(Debug, gc, phases) tm("Weak Processing", &_gc_timer);
1246     WeakProcessor::weak_oops_do(&ParallelScavengeHeap::heap()->workers(),
1247                                 is_alive_closure(),
1248                                 &do_nothing_cl,
1249                                 1);
1250   }
1251 
1252   {
1253     GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
1254 
1255     ClassUnloadingContext ctx(1 /* num_nmethod_unlink_workers */,
1256                               false /* unregister_nmethods_during_purge */,
1257                               false /* lock_nmethod_free_separately */);
1258 
1259     bool unloading_occurred;
1260     {
1261       CodeCache::UnlinkingScope scope(is_alive_closure());
1262 
1263       // Follow system dictionary roots and unload classes.
1264       unloading_occurred = SystemDictionary::do_unloading(&_gc_timer);
1265 
1266       // Unload nmethods.
1267       CodeCache::do_unloading(unloading_occurred);
1268     }
1269 
1270     {
1271       GCTraceTime(Debug, gc, phases) t("Purge Unlinked NMethods", gc_timer());
1272       // Release unloaded nmethod's memory.
1273       ctx.purge_nmethods();
1274     }
1275     {
1276       GCTraceTime(Debug, gc, phases) ur("Unregister NMethods", &_gc_timer);
1277       ParallelScavengeHeap::heap()->prune_unlinked_nmethods();
1278     }
1279     {
1280       GCTraceTime(Debug, gc, phases) t("Free Code Blobs", gc_timer());
1281       ctx.free_nmethods();
1282     }
1283 
1284     // Prune dead klasses from subklass/sibling/implementor lists.
1285     Klass::clean_weak_klass_links(unloading_occurred);
1286 
1287     // Clean JVMCI metadata handles.
1288     JVMCI_ONLY(JVMCI::do_unloading(unloading_occurred));
1289     {
1290       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1291       GCTraceTime(Debug, gc, phases) t("Purge Class Loader Data", gc_timer());
1292       ClassLoaderDataGraph::purge(true /* at_safepoint */);
1293       DEBUG_ONLY(MetaspaceUtils::verify();)
1294     }
1295   }
1296 
1297   {
1298     GCTraceTime(Debug, gc, phases) tm("Report Object Count", &_gc_timer);
1299     _gc_tracer.report_object_count_after_gc(is_alive_closure(), &ParallelScavengeHeap::heap()->workers());
1300   }
1301 #if TASKQUEUE_STATS
1302   ParCompactionManager::print_and_reset_taskqueue_stats();
1303 #endif
1304 }
1305 
1306 template<typename Func>
1307 void PSParallelCompact::adjust_in_space_helper(SpaceId id, volatile uint* claim_counter, Func&& on_stripe) {
1308   MutableSpace* sp = PSParallelCompact::space(id);
1309   HeapWord* const bottom = sp->bottom();
1310   HeapWord* const top = sp->top();
1311   if (bottom == top) {
1312     return;
1313   }
1314 
1315   const uint num_regions_per_stripe = 2;
1316   const size_t region_size = ParallelCompactData::RegionSize;
1317   const size_t stripe_size = num_regions_per_stripe * region_size;
1318 
1319   while (true) {
1320     uint counter = Atomic::fetch_then_add(claim_counter, num_regions_per_stripe);
1321     HeapWord* cur_stripe = bottom + counter * region_size;
1322     if (cur_stripe >= top) {
1323       break;
1324     }
1325     HeapWord* stripe_end = MIN2(cur_stripe + stripe_size, top);
1326     on_stripe(cur_stripe, stripe_end);
1327   }
1328 }
1329 
1330 void PSParallelCompact::adjust_in_old_space(volatile uint* claim_counter) {
1331   // Regions in old-space shouldn't be split.
1332   assert(!_space_info[old_space_id].split_info().is_valid(), "inv");
1333 
1334   auto scan_obj_with_limit = [&] (HeapWord* obj_start, HeapWord* left, HeapWord* right) {
1335     assert(mark_bitmap()->is_marked(obj_start), "inv");
1336     oop obj = cast_to_oop(obj_start);
1337     return obj->oop_iterate_size(&pc_adjust_pointer_closure, MemRegion(left, right));
1338   };
1339 
1340   adjust_in_space_helper(old_space_id, claim_counter, [&] (HeapWord* stripe_start, HeapWord* stripe_end) {
1341     assert(_summary_data.is_region_aligned(stripe_start), "inv");
1342     RegionData* cur_region = _summary_data.addr_to_region_ptr(stripe_start);
1343     HeapWord* obj_start;
1344     if (cur_region->partial_obj_size() != 0) {
1345       obj_start = cur_region->partial_obj_addr();
1346       obj_start += scan_obj_with_limit(obj_start, stripe_start, stripe_end);
1347     } else {
1348       obj_start = stripe_start;
1349     }
1350 
1351     while (obj_start < stripe_end) {
1352       obj_start = mark_bitmap()->find_obj_beg(obj_start, stripe_end);
1353       if (obj_start >= stripe_end) {
1354         break;
1355       }
1356       obj_start += scan_obj_with_limit(obj_start, stripe_start, stripe_end);
1357     }
1358   });
1359 }
1360 
1361 void PSParallelCompact::adjust_in_young_space(SpaceId id, volatile uint* claim_counter) {
1362   adjust_in_space_helper(id, claim_counter, [](HeapWord* stripe_start, HeapWord* stripe_end) {
1363     HeapWord* obj_start = stripe_start;
1364     while (obj_start < stripe_end) {
1365       obj_start = mark_bitmap()->find_obj_beg(obj_start, stripe_end);
1366       if (obj_start >= stripe_end) {
1367         break;
1368       }
1369       oop obj = cast_to_oop(obj_start);
1370       obj_start += obj->oop_iterate_size(&pc_adjust_pointer_closure);
1371     }
1372   });
1373 }
1374 
1375 void PSParallelCompact::adjust_pointers_in_spaces(uint worker_id, volatile uint* claim_counters) {
1376   auto start_time = Ticks::now();
1377   adjust_in_old_space(&claim_counters[0]);
1378   for (uint id = eden_space_id; id < last_space_id; ++id) {
1379     adjust_in_young_space(SpaceId(id), &claim_counters[id]);
1380   }
1381   log_trace(gc, phases)("adjust_pointers_in_spaces worker %u: %.3f ms", worker_id, (Ticks::now() - start_time).seconds() * 1000);
1382 }
1383 
1384 class PSAdjustTask final : public WorkerTask {
1385   SubTasksDone                               _sub_tasks;
1386   WeakProcessor::Task                        _weak_proc_task;
1387   OopStorageSetStrongParState<false, false>  _oop_storage_iter;
1388   uint                                       _nworkers;
1389   volatile uint _claim_counters[PSParallelCompact::last_space_id] = {};
1390 
1391   enum PSAdjustSubTask {
1392     PSAdjustSubTask_code_cache,
1393 
1394     PSAdjustSubTask_num_elements
1395   };
1396 
1397 public:
1398   PSAdjustTask(uint nworkers) :
1399     WorkerTask("PSAdjust task"),
1400     _sub_tasks(PSAdjustSubTask_num_elements),
1401     _weak_proc_task(nworkers),
1402     _nworkers(nworkers) {
1403 
1404     ClassLoaderDataGraph::verify_claimed_marks_cleared(ClassLoaderData::_claim_stw_fullgc_adjust);
1405     if (nworkers > 1) {
1406       Threads::change_thread_claim_token();
1407     }
1408   }
1409 
1410   ~PSAdjustTask() {
1411     Threads::assert_all_threads_claimed();
1412   }
1413 
1414   void work(uint worker_id) {
1415     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
1416     cm->preserved_marks()->adjust_during_full_gc();
1417     {
1418       // adjust pointers in all spaces
1419       PSParallelCompact::adjust_pointers_in_spaces(worker_id, _claim_counters);
1420     }
1421     {
1422       ResourceMark rm;
1423       Threads::possibly_parallel_oops_do(_nworkers > 1, &pc_adjust_pointer_closure, nullptr);
1424     }
1425     _oop_storage_iter.oops_do(&pc_adjust_pointer_closure);
1426     {
1427       CLDToOopClosure cld_closure(&pc_adjust_pointer_closure, ClassLoaderData::_claim_stw_fullgc_adjust);
1428       ClassLoaderDataGraph::cld_do(&cld_closure);
1429     }
1430     {
1431       AlwaysTrueClosure always_alive;
1432       _weak_proc_task.work(worker_id, &always_alive, &pc_adjust_pointer_closure);
1433     }
1434     if (_sub_tasks.try_claim_task(PSAdjustSubTask_code_cache)) {
1435       NMethodToOopClosure adjust_code(&pc_adjust_pointer_closure, NMethodToOopClosure::FixRelocations);
1436       CodeCache::nmethods_do(&adjust_code);
1437     }
1438     _sub_tasks.all_tasks_claimed();
1439   }
1440 };
1441 
1442 void PSParallelCompact::adjust_pointers() {
1443   // Adjust the pointers to reflect the new locations
1444   GCTraceTime(Info, gc, phases) tm("Adjust Pointers", &_gc_timer);
1445   uint nworkers = ParallelScavengeHeap::heap()->workers().active_workers();
1446   PSAdjustTask task(nworkers);
1447   ParallelScavengeHeap::heap()->workers().run_task(&task);
1448 }
1449 
1450 // Split [start, end) evenly for a number of workers and return the
1451 // range for worker_id.
1452 static void split_regions_for_worker(size_t start, size_t end,
1453                                      uint worker_id, uint num_workers,
1454                                      size_t* worker_start, size_t* worker_end) {
1455   assert(start < end, "precondition");
1456   assert(num_workers > 0, "precondition");
1457   assert(worker_id < num_workers, "precondition");
1458 
1459   size_t num_regions = end - start;
1460   size_t num_regions_per_worker = num_regions / num_workers;
1461   size_t remainder = num_regions % num_workers;
1462   // The first few workers will get one extra.
1463   *worker_start = start + worker_id * num_regions_per_worker
1464                   + MIN2(checked_cast<size_t>(worker_id), remainder);
1465   *worker_end = *worker_start + num_regions_per_worker
1466                 + (worker_id < remainder ? 1 : 0);
1467 }
1468 
1469 void PSParallelCompact::forward_to_new_addr() {
1470   GCTraceTime(Info, gc, phases) tm("Forward", &_gc_timer);
1471   uint nworkers = ParallelScavengeHeap::heap()->workers().active_workers();
1472 
1473   struct ForwardTask final : public WorkerTask {
1474     uint _num_workers;
1475 
1476     explicit ForwardTask(uint num_workers) :
1477       WorkerTask("PSForward task"),
1478       _num_workers(num_workers) {}
1479 
1480     static void forward_objs_in_range(ParCompactionManager* cm,
1481                                       HeapWord* start,
1482                                       HeapWord* end,
1483                                       HeapWord* destination) {
1484       HeapWord* cur_addr = start;
1485       HeapWord* new_addr = destination;
1486 
1487       while (cur_addr < end) {
1488         cur_addr = mark_bitmap()->find_obj_beg(cur_addr, end);
1489         if (cur_addr >= end) {
1490           return;
1491         }
1492         assert(mark_bitmap()->is_marked(cur_addr), "inv");
1493         oop obj = cast_to_oop(cur_addr);
1494         if (new_addr != cur_addr) {
1495           cm->preserved_marks()->push_if_necessary(obj, obj->mark());
1496           FullGCForwarding::forward_to(obj, cast_to_oop(new_addr));
1497         }
1498         size_t obj_size = obj->size();
1499         new_addr += obj_size;
1500         cur_addr += obj_size;
1501       }
1502     }
1503 
1504     void work(uint worker_id) override {
1505       ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
1506       for (uint id = old_space_id; id < last_space_id; ++id) {
1507         MutableSpace* sp = PSParallelCompact::space(SpaceId(id));
1508         HeapWord* dense_prefix_addr = dense_prefix(SpaceId(id));
1509         HeapWord* top = sp->top();
1510 
1511         if (dense_prefix_addr == top) {
1512           // Empty space
1513           continue;
1514         }
1515 
1516         const SplitInfo& split_info = _space_info[SpaceId(id)].split_info();
1517         size_t dense_prefix_region = _summary_data.addr_to_region_idx(dense_prefix_addr);
1518         size_t top_region = _summary_data.addr_to_region_idx(_summary_data.region_align_up(top));
1519         size_t start_region;
1520         size_t end_region;
1521         split_regions_for_worker(dense_prefix_region, top_region,
1522                                  worker_id, _num_workers,
1523                                  &start_region, &end_region);
1524         for (size_t cur_region = start_region; cur_region < end_region; ++cur_region) {
1525           RegionData* region_ptr = _summary_data.region(cur_region);
1526           size_t partial_obj_size = region_ptr->partial_obj_size();
1527 
1528           if (partial_obj_size == ParallelCompactData::RegionSize) {
1529             // No obj-start
1530             continue;
1531           }
1532 
1533           HeapWord* region_start = _summary_data.region_to_addr(cur_region);
1534           HeapWord* region_end = region_start + ParallelCompactData::RegionSize;
1535 
1536           if (split_info.is_split(cur_region)) {
1537             // Part 1: will be relocated to space-1
1538             HeapWord* preceding_destination = split_info.preceding_destination();
1539             HeapWord* split_point = split_info.split_point();
1540             forward_objs_in_range(cm, region_start + partial_obj_size, split_point, preceding_destination + partial_obj_size);
1541 
1542             // Part 2: will be relocated to space-2
1543             HeapWord* destination = region_ptr->destination();
1544             forward_objs_in_range(cm, split_point, region_end, destination);
1545           } else {
1546             HeapWord* destination = region_ptr->destination();
1547             forward_objs_in_range(cm, region_start + partial_obj_size, region_end, destination + partial_obj_size);
1548           }
1549         }
1550       }
1551     }
1552   } task(nworkers);
1553 
1554   ParallelScavengeHeap::heap()->workers().run_task(&task);
1555   DEBUG_ONLY(verify_forward();)
1556 }
1557 
1558 #ifdef ASSERT
1559 void PSParallelCompact::verify_forward() {
1560   HeapWord* const old_dense_prefix_addr = dense_prefix(SpaceId(old_space_id));
1561   RegionData* old_region = _summary_data.region(_summary_data.addr_to_region_idx(old_dense_prefix_addr));
1562   HeapWord* bump_ptr = old_region->partial_obj_size() != 0
1563                        ? old_dense_prefix_addr + old_region->partial_obj_size()
1564                        : old_dense_prefix_addr;
1565   SpaceId bump_ptr_space = old_space_id;
1566 
1567   for (uint id = old_space_id; id < last_space_id; ++id) {
1568     MutableSpace* sp = PSParallelCompact::space(SpaceId(id));
1569     HeapWord* dense_prefix_addr = dense_prefix(SpaceId(id));
1570     HeapWord* top = sp->top();
1571     HeapWord* cur_addr = dense_prefix_addr;
1572 
1573     while (cur_addr < top) {
1574       cur_addr = mark_bitmap()->find_obj_beg(cur_addr, top);
1575       if (cur_addr >= top) {
1576         break;
1577       }
1578       assert(mark_bitmap()->is_marked(cur_addr), "inv");
1579       assert(bump_ptr <= _space_info[bump_ptr_space].new_top(), "inv");
1580       // Move to the space containing cur_addr
1581       if (bump_ptr == _space_info[bump_ptr_space].new_top()) {
1582         bump_ptr = space(space_id(cur_addr))->bottom();
1583         bump_ptr_space = space_id(bump_ptr);
1584       }
1585       oop obj = cast_to_oop(cur_addr);
1586       if (cur_addr == bump_ptr) {
1587         assert(!FullGCForwarding::is_forwarded(obj), "inv");
1588       } else {
1589         assert(FullGCForwarding::forwardee(obj) == cast_to_oop(bump_ptr), "inv");
1590       }
1591       bump_ptr += obj->size();
1592       cur_addr += obj->size();
1593     }
1594   }
1595 }
1596 #endif
1597 
1598 // Helper class to print 8 region numbers per line and then print the total at the end.
1599 class FillableRegionLogger : public StackObj {
1600 private:
1601   Log(gc, compaction) log;
1602   static const int LineLength = 8;
1603   size_t _regions[LineLength];
1604   int _next_index;
1605   bool _enabled;
1606   size_t _total_regions;
1607 public:
1608   FillableRegionLogger() : _next_index(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)), _total_regions(0) { }
1609   ~FillableRegionLogger() {
1610     log.trace("%zu initially fillable regions", _total_regions);
1611   }
1612 
1613   void print_line() {
1614     if (!_enabled || _next_index == 0) {
1615       return;
1616     }
1617     FormatBuffer<> line("Fillable: ");
1618     for (int i = 0; i < _next_index; i++) {
1619       line.append(" %7zu", _regions[i]);
1620     }
1621     log.trace("%s", line.buffer());
1622     _next_index = 0;
1623   }
1624 
1625   void handle(size_t region) {
1626     if (!_enabled) {
1627       return;
1628     }
1629     _regions[_next_index++] = region;
1630     if (_next_index == LineLength) {
1631       print_line();
1632     }
1633     _total_regions++;
1634   }
1635 };
1636 
1637 void PSParallelCompact::prepare_region_draining_tasks(uint parallel_gc_threads)
1638 {
1639   GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
1640 
1641   // Find the threads that are active
1642   uint worker_id = 0;
1643 
1644   // Find all regions that are available (can be filled immediately) and
1645   // distribute them to the thread stacks.  The iteration is done in reverse
1646   // order (high to low) so the regions will be removed in ascending order.
1647 
1648   const ParallelCompactData& sd = PSParallelCompact::summary_data();
1649 
1650   // id + 1 is used to test termination so unsigned  can
1651   // be used with an old_space_id == 0.
1652   FillableRegionLogger region_logger;
1653   for (unsigned int id = last_space_id - 1; id + 1 > old_space_id; --id) {
1654     SpaceInfo* const space_info = _space_info + id;
1655     HeapWord* const new_top = space_info->new_top();
1656 
1657     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
1658     const size_t end_region =
1659       sd.addr_to_region_idx(sd.region_align_up(new_top));
1660 
1661     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
1662       if (sd.region(cur)->claim_unsafe()) {
1663         ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
1664         bool result = sd.region(cur)->mark_normal();
1665         assert(result, "Must succeed at this point.");
1666         cm->region_stack()->push(cur);
1667         region_logger.handle(cur);
1668         // Assign regions to tasks in round-robin fashion.
1669         if (++worker_id == parallel_gc_threads) {
1670           worker_id = 0;
1671         }
1672       }
1673     }
1674     region_logger.print_line();
1675   }
1676 }
1677 
1678 static void compaction_with_stealing_work(TaskTerminator* terminator, uint worker_id) {
1679   assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc");
1680 
1681   ParCompactionManager* cm =
1682     ParCompactionManager::gc_thread_compaction_manager(worker_id);
1683 
1684   // Drain the stacks that have been preloaded with regions
1685   // that are ready to fill.
1686 
1687   cm->drain_region_stacks();
1688 
1689   guarantee(cm->region_stack()->is_empty(), "Not empty");
1690 
1691   size_t region_index = 0;
1692 
1693   while (true) {
1694     if (ParCompactionManager::steal(worker_id, region_index)) {
1695       PSParallelCompact::fill_and_update_region(cm, region_index);
1696       cm->drain_region_stacks();
1697     } else if (PSParallelCompact::steal_unavailable_region(cm, region_index)) {
1698       // Fill and update an unavailable region with the help of a shadow region
1699       PSParallelCompact::fill_and_update_shadow_region(cm, region_index);
1700       cm->drain_region_stacks();
1701     } else {
1702       if (terminator->offer_termination()) {
1703         break;
1704       }
1705       // Go around again.
1706     }
1707   }
1708 }
1709 
1710 class FillDensePrefixAndCompactionTask: public WorkerTask {
1711   uint _num_workers;
1712   TaskTerminator _terminator;
1713 
1714 public:
1715   FillDensePrefixAndCompactionTask(uint active_workers) :
1716       WorkerTask("FillDensePrefixAndCompactionTask"),
1717       _num_workers(active_workers),
1718       _terminator(active_workers, ParCompactionManager::region_task_queues()) {
1719   }
1720 
1721   virtual void work(uint worker_id) {
1722     {
1723       auto start = Ticks::now();
1724       PSParallelCompact::fill_dead_objs_in_dense_prefix(worker_id, _num_workers);
1725       log_trace(gc, phases)("Fill dense prefix by worker %u: %.3f ms", worker_id, (Ticks::now() - start).seconds() * 1000);
1726     }
1727     compaction_with_stealing_work(&_terminator, worker_id);
1728   }
1729 };
1730 
1731 void PSParallelCompact::fill_range_in_dense_prefix(HeapWord* start, HeapWord* end) {
1732 #ifdef ASSERT
1733   {
1734     assert(start < end, "precondition");
1735     assert(mark_bitmap()->find_obj_beg(start, end) == end, "precondition");
1736     HeapWord* bottom = _space_info[old_space_id].space()->bottom();
1737     if (start != bottom) {
1738       HeapWord* obj_start = mark_bitmap()->find_obj_beg_reverse(bottom, start);
1739       HeapWord* after_obj = obj_start + cast_to_oop(obj_start)->size();
1740       assert(after_obj == start, "precondition");
1741     }
1742   }
1743 #endif
1744 
1745   CollectedHeap::fill_with_objects(start, pointer_delta(end, start));
1746   HeapWord* addr = start;
1747   do {
1748     size_t size = cast_to_oop(addr)->size();
1749     start_array(old_space_id)->update_for_block(addr, addr + size);
1750     addr += size;
1751   } while (addr < end);
1752 }
1753 
1754 void PSParallelCompact::fill_dead_objs_in_dense_prefix(uint worker_id, uint num_workers) {
1755   ParMarkBitMap* bitmap = mark_bitmap();
1756 
1757   HeapWord* const bottom = _space_info[old_space_id].space()->bottom();
1758   HeapWord* const prefix_end = dense_prefix(old_space_id);
1759 
1760   if (bottom == prefix_end) {
1761     return;
1762   }
1763 
1764   size_t bottom_region = _summary_data.addr_to_region_idx(bottom);
1765   size_t prefix_end_region = _summary_data.addr_to_region_idx(prefix_end);
1766 
1767   size_t start_region;
1768   size_t end_region;
1769   split_regions_for_worker(bottom_region, prefix_end_region,
1770                            worker_id, num_workers,
1771                            &start_region, &end_region);
1772 
1773   if (start_region == end_region) {
1774     return;
1775   }
1776 
1777   HeapWord* const start_addr = _summary_data.region_to_addr(start_region);
1778   HeapWord* const end_addr = _summary_data.region_to_addr(end_region);
1779 
1780   // Skip live partial obj (if any) from previous region.
1781   HeapWord* cur_addr;
1782   RegionData* start_region_ptr = _summary_data.region(start_region);
1783   if (start_region_ptr->partial_obj_size() != 0) {
1784     HeapWord* partial_obj_start = start_region_ptr->partial_obj_addr();
1785     assert(bitmap->is_marked(partial_obj_start), "inv");
1786     cur_addr = partial_obj_start + cast_to_oop(partial_obj_start)->size();
1787   } else {
1788     cur_addr = start_addr;
1789   }
1790 
1791   // end_addr is inclusive to handle regions starting with dead space.
1792   while (cur_addr <= end_addr) {
1793     // Use prefix_end to handle trailing obj in each worker region-chunk.
1794     HeapWord* live_start = bitmap->find_obj_beg(cur_addr, prefix_end);
1795     if (cur_addr != live_start) {
1796       // Only worker 0 handles proceeding dead space.
1797       if (cur_addr != start_addr || worker_id == 0) {
1798         fill_range_in_dense_prefix(cur_addr, live_start);
1799       }
1800     }
1801     if (live_start >= end_addr) {
1802       break;
1803     }
1804     assert(bitmap->is_marked(live_start), "inv");
1805     cur_addr = live_start + cast_to_oop(live_start)->size();
1806   }
1807 }
1808 
1809 void PSParallelCompact::compact() {
1810   GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
1811 
1812   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
1813 
1814   initialize_shadow_regions(active_gc_threads);
1815   prepare_region_draining_tasks(active_gc_threads);
1816 
1817   {
1818     GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
1819 
1820     FillDensePrefixAndCompactionTask task(active_gc_threads);
1821     ParallelScavengeHeap::heap()->workers().run_task(&task);
1822 
1823 #ifdef  ASSERT
1824     verify_filler_in_dense_prefix();
1825 
1826     // Verify that all regions have been processed.
1827     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1828       verify_complete(SpaceId(id));
1829     }
1830 #endif
1831   }
1832 }
1833 
1834 #ifdef  ASSERT
1835 void PSParallelCompact::verify_filler_in_dense_prefix() {
1836   HeapWord* bottom = _space_info[old_space_id].space()->bottom();
1837   HeapWord* dense_prefix_end = dense_prefix(old_space_id);
1838   HeapWord* cur_addr = bottom;
1839   while (cur_addr < dense_prefix_end) {
1840     oop obj = cast_to_oop(cur_addr);
1841     oopDesc::verify(obj);
1842     if (!mark_bitmap()->is_marked(cur_addr)) {
1843       Klass* k = cast_to_oop(cur_addr)->klass();
1844       assert(k == Universe::fillerArrayKlass() || k == vmClasses::FillerObject_klass(), "inv");
1845     }
1846     cur_addr += obj->size();
1847   }
1848 }
1849 
1850 void PSParallelCompact::verify_complete(SpaceId space_id) {
1851   // All Regions served as compaction targets, from dense_prefix() to
1852   // new_top(), should be marked as filled and all Regions between new_top()
1853   // and top() should be available (i.e., should have been emptied).
1854   ParallelCompactData& sd = summary_data();
1855   SpaceInfo si = _space_info[space_id];
1856   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
1857   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
1858   const size_t beg_region = sd.addr_to_region_idx(si.dense_prefix());
1859   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
1860   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
1861 
1862   size_t cur_region;
1863   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
1864     const RegionData* const c = sd.region(cur_region);
1865     assert(c->completed(), "region %zu not filled: destination_count=%u",
1866            cur_region, c->destination_count());
1867   }
1868 
1869   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
1870     const RegionData* const c = sd.region(cur_region);
1871     assert(c->available(), "region %zu not empty: destination_count=%u",
1872            cur_region, c->destination_count());
1873   }
1874 }
1875 #endif  // #ifdef ASSERT
1876 
1877 // Return the SpaceId for the space containing addr.  If addr is not in the
1878 // heap, last_space_id is returned.  In debug mode it expects the address to be
1879 // in the heap and asserts such.
1880 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
1881   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
1882 
1883   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1884     if (_space_info[id].space()->contains(addr)) {
1885       return SpaceId(id);
1886     }
1887   }
1888 
1889   assert(false, "no space contains the addr");
1890   return last_space_id;
1891 }
1892 
1893 // Skip over count live words starting from beg, and return the address of the
1894 // next live word. Callers must also ensure that there are enough live words in
1895 // the range [beg, end) to skip.
1896 HeapWord* PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
1897 {
1898   ParMarkBitMap* m = mark_bitmap();
1899   HeapWord* cur_addr = beg;
1900   while (true) {
1901     cur_addr = m->find_obj_beg(cur_addr, end);
1902     assert(cur_addr < end, "inv");
1903     size_t obj_size = cast_to_oop(cur_addr)->size();
1904     // Strictly greater-than
1905     if (obj_size > count) {
1906       return cur_addr + count;
1907     }
1908     count -= obj_size;
1909     cur_addr += obj_size;
1910   }
1911 }
1912 
1913 // On starting to fill a destination region (dest-region), we need to know the
1914 // location of the word that will be at the start of the dest-region after
1915 // compaction. A dest-region can have one or more source regions, but only the
1916 // first source-region contains this location. This location is retrieved by
1917 // calling `first_src_addr` on a dest-region.
1918 // Conversely, a source-region has a dest-region which holds the destination of
1919 // the first live word on this source-region, based on which the destination
1920 // for the rest of live words can be derived.
1921 //
1922 // Note:
1923 // There is some complication due to space-boundary-fragmentation (an obj can't
1924 // cross space-boundary) -- a source-region may be split and behave like two
1925 // distinct regions with their own dest-region, as depicted below.
1926 //
1927 // source-region: region-n
1928 //
1929 // **********************
1930 // |     A|A~~~~B|B     |
1931 // **********************
1932 //    n-1     n     n+1
1933 //
1934 // AA, BB denote two live objs. ~~~~ denotes unknown number of live objs.
1935 //
1936 // Assuming the dest-region for region-n is the final region before
1937 // old-space-end and its first-live-word is the middle of AA, the heap content
1938 // will look like the following after compaction:
1939 //
1940 // **************                  *************
1941 //      A|A~~~~ |                  |BB    |
1942 // **************                  *************
1943 //              ^                  ^
1944 //              | old-space-end    | eden-space-start
1945 //
1946 // Therefore, in this example, region-n will have two dest-regions:
1947 // 1. the final region in old-space
1948 // 2. the first region in eden-space.
1949 // To handle this special case, we introduce the concept of split-region, whose
1950 // contents are relocated to two spaces. `SplitInfo` captures all necessary
1951 // info about the split, the first part, spliting-point, and the second part.
1952 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
1953                                             SpaceId src_space_id,
1954                                             size_t src_region_idx)
1955 {
1956   const size_t RegionSize = ParallelCompactData::RegionSize;
1957   const ParallelCompactData& sd = summary_data();
1958   assert(sd.is_region_aligned(dest_addr), "precondition");
1959 
1960   const RegionData* const src_region_ptr = sd.region(src_region_idx);
1961   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
1962 
1963   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
1964   HeapWord* const src_region_destination = src_region_ptr->destination();
1965 
1966   HeapWord* const region_start = sd.region_to_addr(src_region_idx);
1967   HeapWord* const region_end = sd.region_to_addr(src_region_idx) + RegionSize;
1968 
1969   // Identify the actual destination for the first live words on this region,
1970   // taking split-region into account.
1971   HeapWord* region_start_destination;
1972   const SplitInfo& split_info = _space_info[src_space_id].split_info();
1973   if (split_info.is_split(src_region_idx)) {
1974     // The second part of this split region; use the recorded split point.
1975     if (dest_addr == src_region_destination) {
1976       return split_info.split_point();
1977     }
1978     region_start_destination = split_info.preceding_destination();
1979   } else {
1980     region_start_destination = src_region_destination;
1981   }
1982 
1983   // Calculate the offset to be skipped
1984   size_t words_to_skip = pointer_delta(dest_addr, region_start_destination);
1985 
1986   HeapWord* result;
1987   if (partial_obj_size > words_to_skip) {
1988     result = region_start + words_to_skip;
1989   } else {
1990     words_to_skip -= partial_obj_size;
1991     result = skip_live_words(region_start + partial_obj_size, region_end, words_to_skip);
1992   }
1993 
1994   if (split_info.is_split(src_region_idx)) {
1995     assert(result < split_info.split_point(), "postcondition");
1996   } else {
1997     assert(result < region_end, "postcondition");
1998   }
1999 
2000   return result;
2001 }
2002 
2003 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2004                                                      SpaceId src_space_id,
2005                                                      size_t beg_region,
2006                                                      HeapWord* end_addr)
2007 {
2008   ParallelCompactData& sd = summary_data();
2009 
2010 #ifdef ASSERT
2011   MutableSpace* const src_space = _space_info[src_space_id].space();
2012   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2013   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2014          "src_space_id does not match beg_addr");
2015   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2016          "src_space_id does not match end_addr");
2017 #endif // #ifdef ASSERT
2018 
2019   RegionData* const beg = sd.region(beg_region);
2020   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2021 
2022   // Regions up to new_top() are enqueued if they become available.
2023   HeapWord* const new_top = _space_info[src_space_id].new_top();
2024   RegionData* const enqueue_end =
2025     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2026 
2027   for (RegionData* cur = beg; cur < end; ++cur) {
2028     assert(cur->data_size() > 0, "region must have live data");
2029     cur->decrement_destination_count();
2030     if (cur < enqueue_end && cur->available() && cur->claim()) {
2031       if (cur->mark_normal()) {
2032         cm->push_region(sd.region(cur));
2033       } else if (cur->mark_copied()) {
2034         // Try to copy the content of the shadow region back to its corresponding
2035         // heap region if the shadow region is filled. Otherwise, the GC thread
2036         // fills the shadow region will copy the data back (see
2037         // MoveAndUpdateShadowClosure::complete_region).
2038         copy_back(sd.region_to_addr(cur->shadow_region()), sd.region_to_addr(cur));
2039         ParCompactionManager::push_shadow_region_mt_safe(cur->shadow_region());
2040         cur->set_completed();
2041       }
2042     }
2043   }
2044 }
2045 
2046 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2047                                           SpaceId& src_space_id,
2048                                           HeapWord*& src_space_top,
2049                                           HeapWord* end_addr)
2050 {
2051   ParallelCompactData& sd = PSParallelCompact::summary_data();
2052 
2053   size_t src_region_idx = 0;
2054 
2055   // Skip empty regions (if any) up to the top of the space.
2056   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2057   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2058   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2059   const RegionData* const top_region_ptr = sd.addr_to_region_ptr(top_aligned_up);
2060 
2061   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2062     ++src_region_ptr;
2063   }
2064 
2065   if (src_region_ptr < top_region_ptr) {
2066     // Found the first non-empty region in the same space.
2067     src_region_idx = sd.region(src_region_ptr);
2068     closure.set_source(sd.region_to_addr(src_region_idx));
2069     return src_region_idx;
2070   }
2071 
2072   // Switch to a new source space and find the first non-empty region.
2073   uint space_id = src_space_id + 1;
2074   assert(space_id < last_space_id, "not enough spaces");
2075 
2076   for (/* empty */; space_id < last_space_id; ++space_id) {
2077     HeapWord* bottom = _space_info[space_id].space()->bottom();
2078     HeapWord* top = _space_info[space_id].space()->top();
2079     // Skip empty space
2080     if (bottom == top) {
2081       continue;
2082     }
2083 
2084     // Identify the first region that contains live words in this space
2085     size_t cur_region = sd.addr_to_region_idx(bottom);
2086     size_t end_region = sd.addr_to_region_idx(sd.region_align_up(top));
2087 
2088     for (/* empty */ ; cur_region < end_region; ++cur_region) {
2089       RegionData* cur = sd.region(cur_region);
2090       if (cur->live_obj_size() > 0) {
2091         HeapWord* region_start_addr = sd.region_to_addr(cur_region);
2092 
2093         src_space_id = SpaceId(space_id);
2094         src_space_top = top;
2095         closure.set_source(region_start_addr);
2096         return cur_region;
2097       }
2098     }
2099   }
2100 
2101   ShouldNotReachHere();
2102 }
2103 
2104 HeapWord* PSParallelCompact::partial_obj_end(HeapWord* region_start_addr) {
2105   ParallelCompactData& sd = summary_data();
2106   assert(sd.is_region_aligned(region_start_addr), "precondition");
2107 
2108   // Use per-region partial_obj_size to locate the end of the obj, that extends
2109   // to region_start_addr.
2110   size_t start_region_idx = sd.addr_to_region_idx(region_start_addr);
2111   size_t end_region_idx = sd.region_count();
2112   size_t accumulated_size = 0;
2113   for (size_t region_idx = start_region_idx; region_idx < end_region_idx; ++region_idx) {
2114     size_t cur_partial_obj_size = sd.region(region_idx)->partial_obj_size();
2115     accumulated_size += cur_partial_obj_size;
2116     if (cur_partial_obj_size != ParallelCompactData::RegionSize) {
2117       break;
2118     }
2119   }
2120   return region_start_addr + accumulated_size;
2121 }
2122 
2123 // Use region_idx as the destination region, and evacuate all live objs on its
2124 // source regions to this destination region.
2125 void PSParallelCompact::fill_region(ParCompactionManager* cm, MoveAndUpdateClosure& closure, size_t region_idx)
2126 {
2127   ParMarkBitMap* const bitmap = mark_bitmap();
2128   ParallelCompactData& sd = summary_data();
2129   RegionData* const region_ptr = sd.region(region_idx);
2130 
2131   // Get the source region and related info.
2132   size_t src_region_idx = region_ptr->source_region();
2133   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2134   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2135   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2136 
2137   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2138 
2139   // Adjust src_region_idx to prepare for decrementing destination counts (the
2140   // destination count is not decremented when a region is copied to itself).
2141   if (src_region_idx == region_idx) {
2142     src_region_idx += 1;
2143   }
2144 
2145   // source-region:
2146   //
2147   // **********
2148   // |   ~~~  |
2149   // **********
2150   //      ^
2151   //      |-- closure.source() / first_src_addr
2152   //
2153   //
2154   // ~~~ : live words
2155   //
2156   // destination-region:
2157   //
2158   // **********
2159   // |        |
2160   // **********
2161   // ^
2162   // |-- region-start
2163   if (bitmap->is_unmarked(closure.source())) {
2164     // An object overflows the previous destination region, so this
2165     // destination region should copy the remainder of the object or as much as
2166     // will fit.
2167     HeapWord* const old_src_addr = closure.source();
2168     {
2169       HeapWord* region_start = sd.region_align_down(closure.source());
2170       HeapWord* obj_start = bitmap->find_obj_beg_reverse(region_start, closure.source());
2171       HeapWord* obj_end;
2172       if (obj_start != closure.source()) {
2173         assert(bitmap->is_marked(obj_start), "inv");
2174         // Found the actual obj-start, try to find the obj-end using either
2175         // size() if this obj is completely contained in the current region.
2176         HeapWord* next_region_start = region_start + ParallelCompactData::RegionSize;
2177         HeapWord* partial_obj_start = (next_region_start >= src_space_top)
2178                                       ? nullptr
2179                                       : sd.addr_to_region_ptr(next_region_start)->partial_obj_addr();
2180         // This obj extends to next region iff partial_obj_addr of the *next*
2181         // region is the same as obj-start.
2182         if (partial_obj_start == obj_start) {
2183           // This obj extends to next region.
2184           obj_end = partial_obj_end(next_region_start);
2185         } else {
2186           // Completely contained in this region; safe to use size().
2187           obj_end = obj_start + cast_to_oop(obj_start)->size();
2188         }
2189       } else {
2190         // This obj extends to current region.
2191         obj_end = partial_obj_end(region_start);
2192       }
2193       size_t partial_obj_size = pointer_delta(obj_end, closure.source());
2194       closure.copy_partial_obj(partial_obj_size);
2195     }
2196 
2197     if (closure.is_full()) {
2198       decrement_destination_counts(cm, src_space_id, src_region_idx, closure.source());
2199       closure.complete_region(dest_addr, region_ptr);
2200       return;
2201     }
2202 
2203     // Finished copying without using up the current destination-region
2204     HeapWord* const end_addr = sd.region_align_down(closure.source());
2205     if (sd.region_align_down(old_src_addr) != end_addr) {
2206       assert(sd.region_align_up(old_src_addr) == end_addr, "only one region");
2207       // The partial object was copied from more than one source region.
2208       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2209 
2210       // Move to the next source region, possibly switching spaces as well.  All
2211       // args except end_addr may be modified.
2212       src_region_idx = next_src_region(closure, src_space_id, src_space_top, end_addr);
2213     }
2214   }
2215 
2216   // Handle the rest obj-by-obj, where we know obj-start.
2217   do {
2218     HeapWord* cur_addr = closure.source();
2219     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
2220                                     src_space_top);
2221     // To handle the case where the final obj in source region extends to next region.
2222     HeapWord* final_obj_start = (end_addr == src_space_top)
2223                                 ? nullptr
2224                                 : sd.addr_to_region_ptr(end_addr)->partial_obj_addr();
2225     // Apply closure on objs inside [cur_addr, end_addr)
2226     do {
2227       cur_addr = bitmap->find_obj_beg(cur_addr, end_addr);
2228       if (cur_addr == end_addr) {
2229         break;
2230       }
2231       size_t obj_size;
2232       if (final_obj_start == cur_addr) {
2233         obj_size = pointer_delta(partial_obj_end(end_addr), cur_addr);
2234       } else {
2235         // This obj doesn't extend into next region; size() is safe to use.
2236         obj_size = cast_to_oop(cur_addr)->size();
2237       }
2238       closure.do_addr(cur_addr, obj_size);
2239       cur_addr += obj_size;
2240     } while (cur_addr < end_addr && !closure.is_full());
2241 
2242     if (closure.is_full()) {
2243       decrement_destination_counts(cm, src_space_id, src_region_idx, closure.source());
2244       closure.complete_region(dest_addr, region_ptr);
2245       return;
2246     }
2247 
2248     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2249 
2250     // Move to the next source region, possibly switching spaces as well.  All
2251     // args except end_addr may be modified.
2252     src_region_idx = next_src_region(closure, src_space_id, src_space_top, end_addr);
2253   } while (true);
2254 }
2255 
2256 void PSParallelCompact::fill_and_update_region(ParCompactionManager* cm, size_t region_idx)
2257 {
2258   MoveAndUpdateClosure cl(mark_bitmap(), region_idx);
2259   fill_region(cm, cl, region_idx);
2260 }
2261 
2262 void PSParallelCompact::fill_and_update_shadow_region(ParCompactionManager* cm, size_t region_idx)
2263 {
2264   // Get a shadow region first
2265   ParallelCompactData& sd = summary_data();
2266   RegionData* const region_ptr = sd.region(region_idx);
2267   size_t shadow_region = ParCompactionManager::pop_shadow_region_mt_safe(region_ptr);
2268   // The InvalidShadow return value indicates the corresponding heap region is available,
2269   // so use MoveAndUpdateClosure to fill the normal region. Otherwise, use
2270   // MoveAndUpdateShadowClosure to fill the acquired shadow region.
2271   if (shadow_region == ParCompactionManager::InvalidShadow) {
2272     MoveAndUpdateClosure cl(mark_bitmap(), region_idx);
2273     region_ptr->shadow_to_normal();
2274     return fill_region(cm, cl, region_idx);
2275   } else {
2276     MoveAndUpdateShadowClosure cl(mark_bitmap(), region_idx, shadow_region);
2277     return fill_region(cm, cl, region_idx);
2278   }
2279 }
2280 
2281 void PSParallelCompact::copy_back(HeapWord *shadow_addr, HeapWord *region_addr)
2282 {
2283   Copy::aligned_conjoint_words(shadow_addr, region_addr, _summary_data.RegionSize);
2284 }
2285 
2286 bool PSParallelCompact::steal_unavailable_region(ParCompactionManager* cm, size_t &region_idx)
2287 {
2288   size_t next = cm->next_shadow_region();
2289   ParallelCompactData& sd = summary_data();
2290   size_t old_new_top = sd.addr_to_region_idx(_space_info[old_space_id].new_top());
2291   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
2292 
2293   while (next < old_new_top) {
2294     if (sd.region(next)->mark_shadow()) {
2295       region_idx = next;
2296       return true;
2297     }
2298     next = cm->move_next_shadow_region_by(active_gc_threads);
2299   }
2300 
2301   return false;
2302 }
2303 
2304 // The shadow region is an optimization to address region dependencies in full GC. The basic
2305 // idea is making more regions available by temporally storing their live objects in empty
2306 // shadow regions to resolve dependencies between them and the destination regions. Therefore,
2307 // GC threads need not wait destination regions to be available before processing sources.
2308 //
2309 // A typical workflow would be:
2310 // After draining its own stack and failing to steal from others, a GC worker would pick an
2311 // unavailable region (destination count > 0) and get a shadow region. Then the worker fills
2312 // the shadow region by copying live objects from source regions of the unavailable one. Once
2313 // the unavailable region becomes available, the data in the shadow region will be copied back.
2314 // Shadow regions are empty regions in the to-space and regions between top and end of other spaces.
2315 void PSParallelCompact::initialize_shadow_regions(uint parallel_gc_threads)
2316 {
2317   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2318 
2319   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2320     SpaceInfo* const space_info = _space_info + id;
2321     MutableSpace* const space = space_info->space();
2322 
2323     const size_t beg_region =
2324       sd.addr_to_region_idx(sd.region_align_up(MAX2(space_info->new_top(), space->top())));
2325     const size_t end_region =
2326       sd.addr_to_region_idx(sd.region_align_down(space->end()));
2327 
2328     for (size_t cur = beg_region; cur < end_region; ++cur) {
2329       ParCompactionManager::push_shadow_region(cur);
2330     }
2331   }
2332 
2333   size_t beg_region = sd.addr_to_region_idx(_space_info[old_space_id].dense_prefix());
2334   for (uint i = 0; i < parallel_gc_threads; i++) {
2335     ParCompactionManager *cm = ParCompactionManager::gc_thread_compaction_manager(i);
2336     cm->set_next_shadow_region(beg_region + i);
2337   }
2338 }
2339 
2340 void MoveAndUpdateClosure::copy_partial_obj(size_t partial_obj_size)
2341 {
2342   size_t words = MIN2(partial_obj_size, words_remaining());
2343 
2344   // This test is necessary; if omitted, the pointer updates to a partial object
2345   // that crosses the dense prefix boundary could be overwritten.
2346   if (source() != copy_destination()) {
2347     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
2348     Copy::aligned_conjoint_words(source(), copy_destination(), words);
2349   }
2350   update_state(words);
2351 }
2352 
2353 void MoveAndUpdateClosure::complete_region(HeapWord* dest_addr, PSParallelCompact::RegionData* region_ptr) {
2354   assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::NormalRegion, "Region should be finished");
2355   region_ptr->set_completed();
2356 }
2357 
2358 void MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
2359   assert(destination() != nullptr, "sanity");
2360   _source = addr;
2361 
2362   // The start_array must be updated even if the object is not moving.
2363   if (_start_array != nullptr) {
2364     _start_array->update_for_block(destination(), destination() + words);
2365   }
2366 
2367   // Avoid overflow
2368   words = MIN2(words, words_remaining());
2369   assert(words > 0, "inv");
2370 
2371   if (copy_destination() != source()) {
2372     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
2373     assert(source() != destination(), "inv");
2374     assert(FullGCForwarding::is_forwarded(cast_to_oop(source())), "inv");
2375     assert(FullGCForwarding::forwardee(cast_to_oop(source())) == cast_to_oop(destination()), "inv");
2376     Copy::aligned_conjoint_words(source(), copy_destination(), words);
2377     cast_to_oop(copy_destination())->reinit_mark();
2378   }
2379 
2380   update_state(words);
2381 }
2382 
2383 void MoveAndUpdateShadowClosure::complete_region(HeapWord* dest_addr, PSParallelCompact::RegionData* region_ptr) {
2384   assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::ShadowRegion, "Region should be shadow");
2385   // Record the shadow region index
2386   region_ptr->set_shadow_region(_shadow);
2387   // Mark the shadow region as filled to indicate the data is ready to be
2388   // copied back
2389   region_ptr->mark_filled();
2390   // Try to copy the content of the shadow region back to its corresponding
2391   // heap region if available; the GC thread that decreases the destination
2392   // count to zero will do the copying otherwise (see
2393   // PSParallelCompact::decrement_destination_counts).
2394   if (((region_ptr->available() && region_ptr->claim()) || region_ptr->claimed()) && region_ptr->mark_copied()) {
2395     region_ptr->set_completed();
2396     PSParallelCompact::copy_back(PSParallelCompact::summary_data().region_to_addr(_shadow), dest_addr);
2397     ParCompactionManager::push_shadow_region_mt_safe(_shadow);
2398   }
2399 }