1 /*
   2  * Copyright (c) 2005, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/javaClasses.inline.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/symbolTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "compiler/oopMap.hpp"
  33 #include "gc/parallel/parallelArguments.hpp"
  34 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  35 #include "gc/parallel/parMarkBitMap.inline.hpp"
  36 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  37 #include "gc/parallel/psCompactionManager.inline.hpp"
  38 #include "gc/parallel/psOldGen.hpp"
  39 #include "gc/parallel/psParallelCompact.inline.hpp"
  40 #include "gc/parallel/psPromotionManager.inline.hpp"
  41 #include "gc/parallel/psRootType.hpp"
  42 #include "gc/parallel/psScavenge.hpp"
  43 #include "gc/parallel/psStringDedup.hpp"
  44 #include "gc/parallel/psYoungGen.hpp"
  45 #include "gc/shared/classUnloadingContext.hpp"
  46 #include "gc/shared/gcCause.hpp"
  47 #include "gc/shared/gcHeapSummary.hpp"
  48 #include "gc/shared/gcId.hpp"
  49 #include "gc/shared/gcLocker.hpp"
  50 #include "gc/shared/gcTimer.hpp"
  51 #include "gc/shared/gcTrace.hpp"
  52 #include "gc/shared/gcTraceTime.inline.hpp"
  53 #include "gc/shared/isGCActiveMark.hpp"
  54 #include "gc/shared/oopStorage.inline.hpp"
  55 #include "gc/shared/oopStorageSet.inline.hpp"
  56 #include "gc/shared/oopStorageSetParState.inline.hpp"
  57 #include "gc/shared/referencePolicy.hpp"
  58 #include "gc/shared/referenceProcessor.hpp"
  59 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  60 #include "gc/shared/spaceDecorator.inline.hpp"
  61 #include "gc/shared/taskTerminator.hpp"
  62 #include "gc/shared/weakProcessor.inline.hpp"
  63 #include "gc/shared/workerPolicy.hpp"
  64 #include "gc/shared/workerThread.hpp"
  65 #include "gc/shared/workerUtils.hpp"
  66 #include "logging/log.hpp"
  67 #include "memory/iterator.inline.hpp"
  68 #include "memory/metaspaceUtils.hpp"
  69 #include "memory/resourceArea.hpp"
  70 #include "memory/universe.hpp"
  71 #include "nmt/memTracker.hpp"
  72 #include "oops/access.inline.hpp"
  73 #include "oops/flatArrayKlass.inline.hpp"
  74 #include "oops/instanceClassLoaderKlass.inline.hpp"
  75 #include "oops/instanceKlass.inline.hpp"
  76 #include "oops/instanceMirrorKlass.inline.hpp"
  77 #include "oops/methodData.hpp"
  78 #include "oops/objArrayKlass.inline.hpp"
  79 #include "oops/oop.inline.hpp"
  80 #include "runtime/atomic.hpp"
  81 #include "runtime/handles.inline.hpp"
  82 #include "runtime/java.hpp"
  83 #include "runtime/safepoint.hpp"
  84 #include "runtime/threads.hpp"
  85 #include "runtime/vmThread.hpp"
  86 #include "services/memoryService.hpp"
  87 #include "utilities/align.hpp"
  88 #include "utilities/debug.hpp"
  89 #include "utilities/events.hpp"
  90 #include "utilities/formatBuffer.hpp"
  91 #include "utilities/macros.hpp"
  92 #include "utilities/stack.inline.hpp"
  93 #if INCLUDE_JVMCI
  94 #include "jvmci/jvmci.hpp"
  95 #endif
  96 
  97 #include <math.h>
  98 
  99 // All sizes are in HeapWords.
 100 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
 101 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
 102 const size_t ParallelCompactData::RegionSizeBytes =
 103   RegionSize << LogHeapWordSize;
 104 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
 105 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
 106 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
 107 
 108 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
 109 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
 110 const size_t ParallelCompactData::BlockSizeBytes  =
 111   BlockSize << LogHeapWordSize;
 112 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
 113 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
 114 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
 115 
 116 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
 117 const size_t ParallelCompactData::Log2BlocksPerRegion =
 118   Log2RegionSize - Log2BlockSize;
 119 
 120 const ParallelCompactData::RegionData::region_sz_t
 121 ParallelCompactData::RegionData::dc_shift = 27;
 122 
 123 const ParallelCompactData::RegionData::region_sz_t
 124 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
 125 
 126 const ParallelCompactData::RegionData::region_sz_t
 127 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
 128 
 129 const ParallelCompactData::RegionData::region_sz_t
 130 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 131 
 132 const ParallelCompactData::RegionData::region_sz_t
 133 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 134 
 135 const ParallelCompactData::RegionData::region_sz_t
 136 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 137 
 138 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 139 
 140 SpanSubjectToDiscoveryClosure PSParallelCompact::_span_based_discoverer;
 141 ReferenceProcessor* PSParallelCompact::_ref_processor = nullptr;
 142 
 143 double PSParallelCompact::_dwl_mean;
 144 double PSParallelCompact::_dwl_std_dev;
 145 double PSParallelCompact::_dwl_first_term;
 146 double PSParallelCompact::_dwl_adjustment;
 147 #ifdef  ASSERT
 148 bool   PSParallelCompact::_dwl_initialized = false;
 149 #endif  // #ifdef ASSERT
 150 
 151 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 152                        HeapWord* destination)
 153 {
 154   assert(src_region_idx != 0, "invalid src_region_idx");
 155   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 156   assert(destination != nullptr, "invalid destination argument");
 157 
 158   _src_region_idx = src_region_idx;
 159   _partial_obj_size = partial_obj_size;
 160   _destination = destination;
 161 
 162   // These fields may not be updated below, so make sure they're clear.
 163   assert(_dest_region_addr == nullptr, "should have been cleared");
 164   assert(_first_src_addr == nullptr, "should have been cleared");
 165 
 166   // Determine the number of destination regions for the partial object.
 167   HeapWord* const last_word = destination + partial_obj_size - 1;
 168   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 169   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 170   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 171 
 172   if (beg_region_addr == end_region_addr) {
 173     // One destination region.
 174     _destination_count = 1;
 175     if (end_region_addr == destination) {
 176       // The destination falls on a region boundary, thus the first word of the
 177       // partial object will be the first word copied to the destination region.
 178       _dest_region_addr = end_region_addr;
 179       _first_src_addr = sd.region_to_addr(src_region_idx);
 180     }
 181   } else {
 182     // Two destination regions.  When copied, the partial object will cross a
 183     // destination region boundary, so a word somewhere within the partial
 184     // object will be the first word copied to the second destination region.
 185     _destination_count = 2;
 186     _dest_region_addr = end_region_addr;
 187     const size_t ofs = pointer_delta(end_region_addr, destination);
 188     assert(ofs < _partial_obj_size, "sanity");
 189     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 190   }
 191 }
 192 
 193 void SplitInfo::clear()
 194 {
 195   _src_region_idx = 0;
 196   _partial_obj_size = 0;
 197   _destination = nullptr;
 198   _destination_count = 0;
 199   _dest_region_addr = nullptr;
 200   _first_src_addr = nullptr;
 201   assert(!is_valid(), "sanity");
 202 }
 203 
 204 #ifdef  ASSERT
 205 void SplitInfo::verify_clear()
 206 {
 207   assert(_src_region_idx == 0, "not clear");
 208   assert(_partial_obj_size == 0, "not clear");
 209   assert(_destination == nullptr, "not clear");
 210   assert(_destination_count == 0, "not clear");
 211   assert(_dest_region_addr == nullptr, "not clear");
 212   assert(_first_src_addr == nullptr, "not clear");
 213 }
 214 #endif  // #ifdef ASSERT
 215 
 216 
 217 void PSParallelCompact::print_on_error(outputStream* st) {
 218   _mark_bitmap.print_on_error(st);
 219 }
 220 
 221 #ifndef PRODUCT
 222 const char* PSParallelCompact::space_names[] = {
 223   "old ", "eden", "from", "to  "
 224 };
 225 
 226 void PSParallelCompact::print_region_ranges() {
 227   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 228     return;
 229   }
 230   Log(gc, compaction) log;
 231   ResourceMark rm;
 232   LogStream ls(log.trace());
 233   Universe::print_on(&ls);
 234   log.trace("space  bottom     top        end        new_top");
 235   log.trace("------ ---------- ---------- ---------- ----------");
 236 
 237   for (unsigned int id = 0; id < last_space_id; ++id) {
 238     const MutableSpace* space = _space_info[id].space();
 239     log.trace("%u %s "
 240               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 241               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 242               id, space_names[id],
 243               summary_data().addr_to_region_idx(space->bottom()),
 244               summary_data().addr_to_region_idx(space->top()),
 245               summary_data().addr_to_region_idx(space->end()),
 246               summary_data().addr_to_region_idx(_space_info[id].new_top()));
 247   }
 248 }
 249 
 250 void
 251 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 252 {
 253 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 254 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 255 
 256   ParallelCompactData& sd = PSParallelCompact::summary_data();
 257   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 258   log_develop_trace(gc, compaction)(
 259       REGION_IDX_FORMAT " " PTR_FORMAT " "
 260       REGION_IDX_FORMAT " " PTR_FORMAT " "
 261       REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 262       REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 263       i, p2i(c->data_location()), dci, p2i(c->destination()),
 264       c->partial_obj_size(), c->live_obj_size(),
 265       c->data_size(), c->source_region(), c->destination_count());
 266 
 267 #undef  REGION_IDX_FORMAT
 268 #undef  REGION_DATA_FORMAT
 269 }
 270 
 271 void
 272 print_generic_summary_data(ParallelCompactData& summary_data,
 273                            HeapWord* const beg_addr,
 274                            HeapWord* const end_addr)
 275 {
 276   size_t total_words = 0;
 277   size_t i = summary_data.addr_to_region_idx(beg_addr);
 278   const size_t last = summary_data.addr_to_region_idx(end_addr);
 279   HeapWord* pdest = 0;
 280 
 281   while (i < last) {
 282     ParallelCompactData::RegionData* c = summary_data.region(i);
 283     if (c->data_size() != 0 || c->destination() != pdest) {
 284       print_generic_summary_region(i, c);
 285       total_words += c->data_size();
 286       pdest = c->destination();
 287     }
 288     ++i;
 289   }
 290 
 291   log_develop_trace(gc, compaction)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 292 }
 293 
 294 void
 295 PSParallelCompact::print_generic_summary_data(ParallelCompactData& summary_data,
 296                                               HeapWord* const beg_addr,
 297                                               HeapWord* const end_addr) {
 298   ::print_generic_summary_data(summary_data,beg_addr, end_addr);
 299 }
 300 
 301 void
 302 print_generic_summary_data(ParallelCompactData& summary_data,
 303                            SpaceInfo* space_info)
 304 {
 305   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 306     return;
 307   }
 308 
 309   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 310     const MutableSpace* space = space_info[id].space();
 311     print_generic_summary_data(summary_data, space->bottom(),
 312                                MAX2(space->top(), space_info[id].new_top()));
 313   }
 314 }
 315 
 316 void
 317 print_initial_summary_data(ParallelCompactData& summary_data,
 318                            const MutableSpace* space) {
 319   if (space->top() == space->bottom()) {
 320     return;
 321   }
 322 
 323   const size_t region_size = ParallelCompactData::RegionSize;
 324   typedef ParallelCompactData::RegionData RegionData;
 325   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 326   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 327   const RegionData* c = summary_data.region(end_region - 1);
 328   HeapWord* end_addr = c->destination() + c->data_size();
 329   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 330 
 331   // Print (and count) the full regions at the beginning of the space.
 332   size_t full_region_count = 0;
 333   size_t i = summary_data.addr_to_region_idx(space->bottom());
 334   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 335     ParallelCompactData::RegionData* c = summary_data.region(i);
 336     log_develop_trace(gc, compaction)(
 337         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 338         i, p2i(c->destination()),
 339         c->partial_obj_size(), c->live_obj_size(),
 340         c->data_size(), c->source_region(), c->destination_count());
 341     ++full_region_count;
 342     ++i;
 343   }
 344 
 345   size_t live_to_right = live_in_space - full_region_count * region_size;
 346 
 347   double max_reclaimed_ratio = 0.0;
 348   size_t max_reclaimed_ratio_region = 0;
 349   size_t max_dead_to_right = 0;
 350   size_t max_live_to_right = 0;
 351 
 352   // Print the 'reclaimed ratio' for regions while there is something live in
 353   // the region or to the right of it.  The remaining regions are empty (and
 354   // uninteresting), and computing the ratio will result in division by 0.
 355   while (i < end_region && live_to_right > 0) {
 356     c = summary_data.region(i);
 357     HeapWord* const region_addr = summary_data.region_to_addr(i);
 358     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 359     const size_t dead_to_right = used_to_right - live_to_right;
 360     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 361 
 362     if (reclaimed_ratio > max_reclaimed_ratio) {
 363             max_reclaimed_ratio = reclaimed_ratio;
 364             max_reclaimed_ratio_region = i;
 365             max_dead_to_right = dead_to_right;
 366             max_live_to_right = live_to_right;
 367     }
 368 
 369     ParallelCompactData::RegionData* c = summary_data.region(i);
 370     log_develop_trace(gc, compaction)(
 371         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d"
 372         "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 373         i, p2i(c->destination()),
 374         c->partial_obj_size(), c->live_obj_size(),
 375         c->data_size(), c->source_region(), c->destination_count(),
 376         reclaimed_ratio, dead_to_right, live_to_right);
 377 
 378 
 379     live_to_right -= c->data_size();
 380     ++i;
 381   }
 382 
 383   // Any remaining regions are empty.  Print one more if there is one.
 384   if (i < end_region) {
 385     ParallelCompactData::RegionData* c = summary_data.region(i);
 386     log_develop_trace(gc, compaction)(
 387         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 388          i, p2i(c->destination()),
 389          c->partial_obj_size(), c->live_obj_size(),
 390          c->data_size(), c->source_region(), c->destination_count());
 391   }
 392 
 393   log_develop_trace(gc, compaction)("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 394                                     max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio);
 395 }
 396 
 397 void
 398 print_initial_summary_data(ParallelCompactData& summary_data,
 399                            SpaceInfo* space_info) {
 400   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 401     return;
 402   }
 403 
 404   unsigned int id = PSParallelCompact::old_space_id;
 405   const MutableSpace* space;
 406   do {
 407     space = space_info[id].space();
 408     print_initial_summary_data(summary_data, space);
 409   } while (++id < PSParallelCompact::eden_space_id);
 410 
 411   do {
 412     space = space_info[id].space();
 413     print_generic_summary_data(summary_data, space->bottom(), space->top());
 414   } while (++id < PSParallelCompact::last_space_id);
 415 }
 416 #endif  // #ifndef PRODUCT
 417 
 418 ParallelCompactData::ParallelCompactData() :
 419   _region_start(nullptr),
 420   DEBUG_ONLY(_region_end(nullptr) COMMA)
 421   _region_vspace(nullptr),
 422   _reserved_byte_size(0),
 423   _region_data(nullptr),
 424   _region_count(0),
 425   _block_vspace(nullptr),
 426   _block_data(nullptr),
 427   _block_count(0) {}
 428 
 429 bool ParallelCompactData::initialize(MemRegion covered_region)
 430 {
 431   _region_start = covered_region.start();
 432   const size_t region_size = covered_region.word_size();
 433   DEBUG_ONLY(_region_end = _region_start + region_size;)
 434 
 435   assert(region_align_down(_region_start) == _region_start,
 436          "region start not aligned");
 437 
 438   bool result = initialize_region_data(region_size) && initialize_block_data();
 439   return result;
 440 }
 441 
 442 PSVirtualSpace*
 443 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 444 {
 445   const size_t raw_bytes = count * element_size;
 446   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 447   const size_t granularity = os::vm_allocation_granularity();
 448   _reserved_byte_size = align_up(raw_bytes, MAX2(page_sz, granularity));
 449 
 450   const size_t rs_align = page_sz == os::vm_page_size() ? 0 :
 451     MAX2(page_sz, granularity);
 452   ReservedSpace rs(_reserved_byte_size, rs_align, page_sz);
 453   os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, rs.base(),
 454                        rs.size(), page_sz);
 455 
 456   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 457 
 458   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 459   if (vspace != 0) {
 460     if (vspace->expand_by(_reserved_byte_size)) {
 461       return vspace;
 462     }
 463     delete vspace;
 464     // Release memory reserved in the space.
 465     rs.release();
 466   }
 467 
 468   return 0;
 469 }
 470 
 471 bool ParallelCompactData::initialize_region_data(size_t region_size)
 472 {
 473   assert((region_size & RegionSizeOffsetMask) == 0,
 474          "region size not a multiple of RegionSize");
 475 
 476   const size_t count = region_size >> Log2RegionSize;
 477   _region_vspace = create_vspace(count, sizeof(RegionData));
 478   if (_region_vspace != 0) {
 479     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 480     _region_count = count;
 481     return true;
 482   }
 483   return false;
 484 }
 485 
 486 bool ParallelCompactData::initialize_block_data()
 487 {
 488   assert(_region_count != 0, "region data must be initialized first");
 489   const size_t count = _region_count << Log2BlocksPerRegion;
 490   _block_vspace = create_vspace(count, sizeof(BlockData));
 491   if (_block_vspace != 0) {
 492     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
 493     _block_count = count;
 494     return true;
 495   }
 496   return false;
 497 }
 498 
 499 void ParallelCompactData::clear()
 500 {
 501   memset(_region_data, 0, _region_vspace->committed_size());
 502   memset(_block_data, 0, _block_vspace->committed_size());
 503 }
 504 
 505 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 506   assert(beg_region <= _region_count, "beg_region out of range");
 507   assert(end_region <= _region_count, "end_region out of range");
 508   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
 509 
 510   const size_t region_cnt = end_region - beg_region;
 511   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 512 
 513   const size_t beg_block = beg_region * BlocksPerRegion;
 514   const size_t block_cnt = region_cnt * BlocksPerRegion;
 515   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
 516 }
 517 
 518 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 519 {
 520   const RegionData* cur_cp = region(region_idx);
 521   const RegionData* const end_cp = region(region_count() - 1);
 522 
 523   HeapWord* result = region_to_addr(region_idx);
 524   if (cur_cp < end_cp) {
 525     do {
 526       result += cur_cp->partial_obj_size();
 527     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 528   }
 529   return result;
 530 }
 531 
 532 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 533 {
 534   const size_t obj_ofs = pointer_delta(addr, _region_start);
 535   const size_t beg_region = obj_ofs >> Log2RegionSize;
 536   // end_region is inclusive
 537   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 538 
 539   if (beg_region == end_region) {
 540     // All in one region.
 541     _region_data[beg_region].add_live_obj(len);
 542     return;
 543   }
 544 
 545   // First region.
 546   const size_t beg_ofs = region_offset(addr);
 547   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 548 
 549   // Middle regions--completely spanned by this object.
 550   for (size_t region = beg_region + 1; region < end_region; ++region) {
 551     _region_data[region].set_partial_obj_size(RegionSize);
 552     _region_data[region].set_partial_obj_addr(addr);
 553   }
 554 
 555   // Last region.
 556   const size_t end_ofs = region_offset(addr + len - 1);
 557   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 558   _region_data[end_region].set_partial_obj_addr(addr);
 559 }
 560 
 561 void
 562 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 563 {
 564   assert(is_region_aligned(beg), "not RegionSize aligned");
 565   assert(is_region_aligned(end), "not RegionSize aligned");
 566 
 567   size_t cur_region = addr_to_region_idx(beg);
 568   const size_t end_region = addr_to_region_idx(end);
 569   HeapWord* addr = beg;
 570   while (cur_region < end_region) {
 571     _region_data[cur_region].set_destination(addr);
 572     _region_data[cur_region].set_destination_count(0);
 573     _region_data[cur_region].set_source_region(cur_region);
 574     _region_data[cur_region].set_data_location(addr);
 575 
 576     // Update live_obj_size so the region appears completely full.
 577     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 578     _region_data[cur_region].set_live_obj_size(live_size);
 579 
 580     ++cur_region;
 581     addr += RegionSize;
 582   }
 583 }
 584 
 585 // Find the point at which a space can be split and, if necessary, record the
 586 // split point.
 587 //
 588 // If the current src region (which overflowed the destination space) doesn't
 589 // have a partial object, the split point is at the beginning of the current src
 590 // region (an "easy" split, no extra bookkeeping required).
 591 //
 592 // If the current src region has a partial object, the split point is in the
 593 // region where that partial object starts (call it the split_region).  If
 594 // split_region has a partial object, then the split point is just after that
 595 // partial object (a "hard" split where we have to record the split data and
 596 // zero the partial_obj_size field).  With a "hard" split, we know that the
 597 // partial_obj ends within split_region because the partial object that caused
 598 // the overflow starts in split_region.  If split_region doesn't have a partial
 599 // obj, then the split is at the beginning of split_region (another "easy"
 600 // split).
 601 HeapWord*
 602 ParallelCompactData::summarize_split_space(size_t src_region,
 603                                            SplitInfo& split_info,
 604                                            HeapWord* destination,
 605                                            HeapWord* target_end,
 606                                            HeapWord** target_next)
 607 {
 608   assert(destination <= target_end, "sanity");
 609   assert(destination + _region_data[src_region].data_size() > target_end,
 610     "region should not fit into target space");
 611   assert(is_region_aligned(target_end), "sanity");
 612 
 613   size_t split_region = src_region;
 614   HeapWord* split_destination = destination;
 615   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 616 
 617   if (destination + partial_obj_size > target_end) {
 618     // The split point is just after the partial object (if any) in the
 619     // src_region that contains the start of the object that overflowed the
 620     // destination space.
 621     //
 622     // Find the start of the "overflow" object and set split_region to the
 623     // region containing it.
 624     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 625     split_region = addr_to_region_idx(overflow_obj);
 626 
 627     // Clear the source_region field of all destination regions whose first word
 628     // came from data after the split point (a non-null source_region field
 629     // implies a region must be filled).
 630     //
 631     // An alternative to the simple loop below:  clear during post_compact(),
 632     // which uses memcpy instead of individual stores, and is easy to
 633     // parallelize.  (The downside is that it clears the entire RegionData
 634     // object as opposed to just one field.)
 635     //
 636     // post_compact() would have to clear the summary data up to the highest
 637     // address that was written during the summary phase, which would be
 638     //
 639     //         max(top, max(new_top, clear_top))
 640     //
 641     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 642     // to target_end.
 643     const RegionData* const sr = region(split_region);
 644     const size_t beg_idx =
 645       addr_to_region_idx(region_align_up(sr->destination() +
 646                                          sr->partial_obj_size()));
 647     const size_t end_idx = addr_to_region_idx(target_end);
 648 
 649     log_develop_trace(gc, compaction)("split:  clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx);
 650     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 651       _region_data[idx].set_source_region(0);
 652     }
 653 
 654     // Set split_destination and partial_obj_size to reflect the split region.
 655     split_destination = sr->destination();
 656     partial_obj_size = sr->partial_obj_size();
 657   }
 658 
 659   // The split is recorded only if a partial object extends onto the region.
 660   if (partial_obj_size != 0) {
 661     _region_data[split_region].set_partial_obj_size(0);
 662     split_info.record(split_region, partial_obj_size, split_destination);
 663   }
 664 
 665   // Setup the continuation addresses.
 666   *target_next = split_destination + partial_obj_size;
 667   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 668 
 669   if (log_develop_is_enabled(Trace, gc, compaction)) {
 670     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 671     log_develop_trace(gc, compaction)("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT,
 672                                       split_type, p2i(source_next), split_region, partial_obj_size);
 673     log_develop_trace(gc, compaction)("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT,
 674                                       split_type, p2i(split_destination),
 675                                       addr_to_region_idx(split_destination),
 676                                       p2i(*target_next));
 677 
 678     if (partial_obj_size != 0) {
 679       HeapWord* const po_beg = split_info.destination();
 680       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 681       log_develop_trace(gc, compaction)("%s split:  po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT,
 682                                         split_type,
 683                                         p2i(po_beg), addr_to_region_idx(po_beg),
 684                                         p2i(po_end), addr_to_region_idx(po_end));
 685     }
 686   }
 687 
 688   return source_next;
 689 }
 690 
 691 bool ParallelCompactData::summarize(SplitInfo& split_info,
 692                                     HeapWord* source_beg, HeapWord* source_end,
 693                                     HeapWord** source_next,
 694                                     HeapWord* target_beg, HeapWord* target_end,
 695                                     HeapWord** target_next)
 696 {
 697   HeapWord* const source_next_val = source_next == nullptr ? nullptr : *source_next;
 698   log_develop_trace(gc, compaction)(
 699       "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 700       "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 701       p2i(source_beg), p2i(source_end), p2i(source_next_val),
 702       p2i(target_beg), p2i(target_end), p2i(*target_next));
 703 
 704   size_t cur_region = addr_to_region_idx(source_beg);
 705   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 706 
 707   HeapWord *dest_addr = target_beg;
 708   while (cur_region < end_region) {
 709     // The destination must be set even if the region has no data.
 710     _region_data[cur_region].set_destination(dest_addr);
 711 
 712     size_t words = _region_data[cur_region].data_size();
 713     if (words > 0) {
 714       // If cur_region does not fit entirely into the target space, find a point
 715       // at which the source space can be 'split' so that part is copied to the
 716       // target space and the rest is copied elsewhere.
 717       if (dest_addr + words > target_end) {
 718         assert(source_next != nullptr, "source_next is null when splitting");
 719         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 720                                              target_end, target_next);
 721         return false;
 722       }
 723 
 724       // Compute the destination_count for cur_region, and if necessary, update
 725       // source_region for a destination region.  The source_region field is
 726       // updated if cur_region is the first (left-most) region to be copied to a
 727       // destination region.
 728       //
 729       // The destination_count calculation is a bit subtle.  A region that has
 730       // data that compacts into itself does not count itself as a destination.
 731       // This maintains the invariant that a zero count means the region is
 732       // available and can be claimed and then filled.
 733       uint destination_count = 0;
 734       if (split_info.is_split(cur_region)) {
 735         // The current region has been split:  the partial object will be copied
 736         // to one destination space and the remaining data will be copied to
 737         // another destination space.  Adjust the initial destination_count and,
 738         // if necessary, set the source_region field if the partial object will
 739         // cross a destination region boundary.
 740         destination_count = split_info.destination_count();
 741         if (destination_count == 2) {
 742           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 743           _region_data[dest_idx].set_source_region(cur_region);
 744         }
 745       }
 746 
 747       HeapWord* const last_addr = dest_addr + words - 1;
 748       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 749       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 750 
 751       // Initially assume that the destination regions will be the same and
 752       // adjust the value below if necessary.  Under this assumption, if
 753       // cur_region == dest_region_2, then cur_region will be compacted
 754       // completely into itself.
 755       destination_count += cur_region == dest_region_2 ? 0 : 1;
 756       if (dest_region_1 != dest_region_2) {
 757         // Destination regions differ; adjust destination_count.
 758         destination_count += 1;
 759         // Data from cur_region will be copied to the start of dest_region_2.
 760         _region_data[dest_region_2].set_source_region(cur_region);
 761       } else if (is_region_aligned(dest_addr)) {
 762         // Data from cur_region will be copied to the start of the destination
 763         // region.
 764         _region_data[dest_region_1].set_source_region(cur_region);
 765       }
 766 
 767       _region_data[cur_region].set_destination_count(destination_count);
 768       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 769       dest_addr += words;
 770     }
 771 
 772     ++cur_region;
 773   }
 774 
 775   *target_next = dest_addr;
 776   return true;
 777 }
 778 
 779 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) const {
 780   assert(addr != nullptr, "Should detect null oop earlier");
 781   assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
 782   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
 783 
 784   // Region covering the object.
 785   RegionData* const region_ptr = addr_to_region_ptr(addr);
 786   HeapWord* result = region_ptr->destination();
 787 
 788   // If the entire Region is live, the new location is region->destination + the
 789   // offset of the object within in the Region.
 790 
 791   // Run some performance tests to determine if this special case pays off.  It
 792   // is worth it for pointers into the dense prefix.  If the optimization to
 793   // avoid pointer updates in regions that only point to the dense prefix is
 794   // ever implemented, this should be revisited.
 795   if (region_ptr->data_size() == RegionSize) {
 796     result += region_offset(addr);
 797     return result;
 798   }
 799 
 800   // Otherwise, the new location is region->destination + block offset + the
 801   // number of live words in the Block that are (a) to the left of addr and (b)
 802   // due to objects that start in the Block.
 803 
 804   // Fill in the block table if necessary.  This is unsynchronized, so multiple
 805   // threads may fill the block table for a region (harmless, since it is
 806   // idempotent).
 807   if (!region_ptr->blocks_filled()) {
 808     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
 809     region_ptr->set_blocks_filled();
 810   }
 811 
 812   HeapWord* const search_start = block_align_down(addr);
 813   const size_t block_offset = addr_to_block_ptr(addr)->offset();
 814 
 815   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 816   const size_t live = bitmap->live_words_in_range(cm, search_start, cast_to_oop(addr));
 817   result += block_offset + live;
 818   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
 819   return result;
 820 }
 821 
 822 #ifdef ASSERT
 823 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 824 {
 825   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 826   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 827   for (const size_t* p = beg; p < end; ++p) {
 828     assert(*p == 0, "not zero");
 829   }
 830 }
 831 
 832 void ParallelCompactData::verify_clear()
 833 {
 834   verify_clear(_region_vspace);
 835   verify_clear(_block_vspace);
 836 }
 837 #endif  // #ifdef ASSERT
 838 
 839 STWGCTimer          PSParallelCompact::_gc_timer;
 840 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 841 elapsedTimer        PSParallelCompact::_accumulated_time;
 842 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 843 CollectorCounters*  PSParallelCompact::_counters = nullptr;
 844 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 845 ParallelCompactData PSParallelCompact::_summary_data;
 846 
 847 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 848 
 849 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 850 
 851 void PSParallelCompact::post_initialize() {
 852   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 853   _span_based_discoverer.set_span(heap->reserved_region());
 854   _ref_processor =
 855     new ReferenceProcessor(&_span_based_discoverer,
 856                            ParallelGCThreads,   // mt processing degree
 857                            ParallelGCThreads,   // mt discovery degree
 858                            false,               // concurrent_discovery
 859                            &_is_alive_closure); // non-header is alive closure
 860 
 861   _counters = new CollectorCounters("Parallel full collection pauses", 1);
 862 
 863   // Initialize static fields in ParCompactionManager.
 864   ParCompactionManager::initialize(mark_bitmap());
 865 }
 866 
 867 bool PSParallelCompact::initialize() {
 868   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 869   MemRegion mr = heap->reserved_region();
 870 
 871   // Was the old gen get allocated successfully?
 872   if (!heap->old_gen()->is_allocated()) {
 873     return false;
 874   }
 875 
 876   initialize_space_info();
 877   initialize_dead_wood_limiter();
 878 
 879   if (!_mark_bitmap.initialize(mr)) {
 880     vm_shutdown_during_initialization(
 881       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
 882       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 883       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 884     return false;
 885   }
 886 
 887   if (!_summary_data.initialize(mr)) {
 888     vm_shutdown_during_initialization(
 889       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
 890       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 891       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 892     return false;
 893   }
 894 
 895   return true;
 896 }
 897 
 898 void PSParallelCompact::initialize_space_info()
 899 {
 900   memset(&_space_info, 0, sizeof(_space_info));
 901 
 902   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 903   PSYoungGen* young_gen = heap->young_gen();
 904 
 905   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 906   _space_info[eden_space_id].set_space(young_gen->eden_space());
 907   _space_info[from_space_id].set_space(young_gen->from_space());
 908   _space_info[to_space_id].set_space(young_gen->to_space());
 909 
 910   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 911 }
 912 
 913 void PSParallelCompact::initialize_dead_wood_limiter()
 914 {
 915   const size_t max = 100;
 916   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 917   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 918   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 919   DEBUG_ONLY(_dwl_initialized = true;)
 920   _dwl_adjustment = normal_distribution(1.0);
 921 }
 922 
 923 void
 924 PSParallelCompact::clear_data_covering_space(SpaceId id)
 925 {
 926   // At this point, top is the value before GC, new_top() is the value that will
 927   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 928   // should be marked above top.  The summary data is cleared to the larger of
 929   // top & new_top.
 930   MutableSpace* const space = _space_info[id].space();
 931   HeapWord* const bot = space->bottom();
 932   HeapWord* const top = space->top();
 933   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 934 
 935   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 936   const idx_t end_bit = _mark_bitmap.align_range_end(_mark_bitmap.addr_to_bit(top));
 937   _mark_bitmap.clear_range(beg_bit, end_bit);
 938 
 939   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 940   const size_t end_region =
 941     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 942   _summary_data.clear_range(beg_region, end_region);
 943 
 944   // Clear the data used to 'split' regions.
 945   SplitInfo& split_info = _space_info[id].split_info();
 946   if (split_info.is_valid()) {
 947     split_info.clear();
 948   }
 949   DEBUG_ONLY(split_info.verify_clear();)
 950 }
 951 
 952 void PSParallelCompact::pre_compact()
 953 {
 954   // Update the from & to space pointers in space_info, since they are swapped
 955   // at each young gen gc.  Do the update unconditionally (even though a
 956   // promotion failure does not swap spaces) because an unknown number of young
 957   // collections will have swapped the spaces an unknown number of times.
 958   GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
 959   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 960   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 961   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 962 
 963   // Increment the invocation count
 964   heap->increment_total_collections(true);
 965 
 966   CodeCache::on_gc_marking_cycle_start();
 967 
 968   heap->print_heap_before_gc();
 969   heap->trace_heap_before_gc(&_gc_tracer);
 970 
 971   // Fill in TLABs
 972   heap->ensure_parsability(true);  // retire TLABs
 973 
 974   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 975     Universe::verify("Before GC");
 976   }
 977 
 978   // Verify object start arrays
 979   if (VerifyObjectStartArray &&
 980       VerifyBeforeGC) {
 981     heap->old_gen()->verify_object_start_array();
 982   }
 983 
 984   DEBUG_ONLY(mark_bitmap()->verify_clear();)
 985   DEBUG_ONLY(summary_data().verify_clear();)
 986 
 987   ParCompactionManager::reset_all_bitmap_query_caches();
 988 }
 989 
 990 void PSParallelCompact::post_compact()
 991 {
 992   GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
 993   ParCompactionManager::remove_all_shadow_regions();
 994 
 995   CodeCache::on_gc_marking_cycle_finish();
 996   CodeCache::arm_all_nmethods();
 997 
 998   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
 999     // Clear the marking bitmap, summary data and split info.
1000     clear_data_covering_space(SpaceId(id));
1001     // Update top().  Must be done after clearing the bitmap and summary data.
1002     _space_info[id].publish_new_top();
1003   }
1004 
1005   ParCompactionManager::flush_all_string_dedup_requests();
1006 
1007   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1008   MutableSpace* const from_space = _space_info[from_space_id].space();
1009   MutableSpace* const to_space   = _space_info[to_space_id].space();
1010 
1011   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1012   bool eden_empty = eden_space->is_empty();
1013 
1014   // Update heap occupancy information which is used as input to the soft ref
1015   // clearing policy at the next gc.
1016   Universe::heap()->update_capacity_and_used_at_gc();
1017 
1018   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1019     to_space->is_empty();
1020 
1021   PSCardTable* ct = heap->card_table();
1022   MemRegion old_mr = heap->old_gen()->committed();
1023   if (young_gen_empty) {
1024     ct->clear_MemRegion(old_mr);
1025   } else {
1026     ct->dirty_MemRegion(old_mr);
1027   }
1028 
1029   {
1030     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1031     GCTraceTime(Debug, gc, phases) t("Purge Class Loader Data", gc_timer());
1032     ClassLoaderDataGraph::purge(true /* at_safepoint */);
1033     DEBUG_ONLY(MetaspaceUtils::verify();)
1034   }
1035 
1036   // Need to clear claim bits for the next mark.
1037   ClassLoaderDataGraph::clear_claimed_marks();
1038 
1039   heap->prune_scavengable_nmethods();
1040 
1041 #if COMPILER2_OR_JVMCI
1042   DerivedPointerTable::update_pointers();
1043 #endif
1044 
1045   if (ZapUnusedHeapArea) {
1046     heap->gen_mangle_unused_area();
1047   }
1048 
1049   // Signal that we have completed a visit to all live objects.
1050   Universe::heap()->record_whole_heap_examined_timestamp();
1051 }
1052 
1053 HeapWord*
1054 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1055                                                     bool maximum_compaction)
1056 {
1057   const size_t region_size = ParallelCompactData::RegionSize;
1058   const ParallelCompactData& sd = summary_data();
1059 
1060   const MutableSpace* const space = _space_info[id].space();
1061   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1062   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1063   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1064 
1065   // Skip full regions at the beginning of the space--they are necessarily part
1066   // of the dense prefix.
1067   size_t full_count = 0;
1068   const RegionData* cp;
1069   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1070     ++full_count;
1071   }
1072 
1073   const uint total_invocations = ParallelScavengeHeap::heap()->total_full_collections();
1074   assert(total_invocations >= _maximum_compaction_gc_num, "sanity");
1075   const size_t gcs_since_max = total_invocations - _maximum_compaction_gc_num;
1076   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1077   if (maximum_compaction || cp == end_cp || interval_ended) {
1078     _maximum_compaction_gc_num = total_invocations;
1079     return sd.region_to_addr(cp);
1080   }
1081 
1082   HeapWord* const new_top = _space_info[id].new_top();
1083   const size_t space_live = pointer_delta(new_top, space->bottom());
1084   const size_t space_used = space->used_in_words();
1085   const size_t space_capacity = space->capacity_in_words();
1086 
1087   const double cur_density = double(space_live) / space_capacity;
1088   const double deadwood_density =
1089     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1090   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1091 
1092   log_develop_debug(gc, compaction)(
1093       "cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1094       cur_density, deadwood_density, deadwood_goal);
1095   log_develop_debug(gc, compaction)(
1096       "space_live=" SIZE_FORMAT " space_used=" SIZE_FORMAT " "
1097       "space_cap=" SIZE_FORMAT,
1098       space_live, space_used,
1099       space_capacity);
1100 
1101   // XXX - Use binary search?
1102   HeapWord* dense_prefix = sd.region_to_addr(cp);
1103   const RegionData* full_cp = cp;
1104   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1105   while (cp < end_cp) {
1106     HeapWord* region_destination = cp->destination();
1107     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1108 
1109     log_develop_trace(gc, compaction)(
1110         "c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1111         "dp=" PTR_FORMAT " cdw=" SIZE_FORMAT_W(8),
1112         sd.region(cp), p2i(region_destination),
1113         p2i(dense_prefix), cur_deadwood);
1114 
1115     if (cur_deadwood >= deadwood_goal) {
1116       // Found the region that has the correct amount of deadwood to the left.
1117       // This typically occurs after crossing a fairly sparse set of regions, so
1118       // iterate backwards over those sparse regions, looking for the region
1119       // that has the lowest density of live objects 'to the right.'
1120       size_t space_to_left = sd.region(cp) * region_size;
1121       size_t live_to_left = space_to_left - cur_deadwood;
1122       size_t space_to_right = space_capacity - space_to_left;
1123       size_t live_to_right = space_live - live_to_left;
1124       double density_to_right = double(live_to_right) / space_to_right;
1125       while (cp > full_cp) {
1126         --cp;
1127         const size_t prev_region_live_to_right = live_to_right -
1128           cp->data_size();
1129         const size_t prev_region_space_to_right = space_to_right + region_size;
1130         double prev_region_density_to_right =
1131           double(prev_region_live_to_right) / prev_region_space_to_right;
1132         if (density_to_right <= prev_region_density_to_right) {
1133           return dense_prefix;
1134         }
1135 
1136         log_develop_trace(gc, compaction)(
1137             "backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1138             "pc_d2r=%10.8f",
1139             sd.region(cp), density_to_right,
1140             prev_region_density_to_right);
1141 
1142         dense_prefix -= region_size;
1143         live_to_right = prev_region_live_to_right;
1144         space_to_right = prev_region_space_to_right;
1145         density_to_right = prev_region_density_to_right;
1146       }
1147       return dense_prefix;
1148     }
1149 
1150     dense_prefix += region_size;
1151     ++cp;
1152   }
1153 
1154   return dense_prefix;
1155 }
1156 
1157 #ifndef PRODUCT
1158 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1159                                                  const SpaceId id,
1160                                                  const bool maximum_compaction,
1161                                                  HeapWord* const addr)
1162 {
1163   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1164   RegionData* const cp = summary_data().region(region_idx);
1165   const MutableSpace* const space = _space_info[id].space();
1166   HeapWord* const new_top = _space_info[id].new_top();
1167 
1168   const size_t space_live = pointer_delta(new_top, space->bottom());
1169   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1170   const size_t space_cap = space->capacity_in_words();
1171   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1172   const size_t live_to_right = new_top - cp->destination();
1173   const size_t dead_to_right = space->top() - addr - live_to_right;
1174 
1175   log_develop_debug(gc, compaction)(
1176       "%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1177       "spl=" SIZE_FORMAT " "
1178       "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1179       "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT " "
1180       "ratio=%10.8f",
1181       algorithm, p2i(addr), region_idx,
1182       space_live,
1183       dead_to_left, dead_to_left_pct,
1184       dead_to_right, live_to_right,
1185       double(dead_to_right) / live_to_right);
1186 }
1187 #endif  // #ifndef PRODUCT
1188 
1189 // Return a fraction indicating how much of the generation can be treated as
1190 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1191 // based on the density of live objects in the generation to determine a limit,
1192 // which is then adjusted so the return value is min_percent when the density is
1193 // 1.
1194 //
1195 // The following table shows some return values for a different values of the
1196 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1197 // min_percent is 1.
1198 //
1199 //                          fraction allowed as dead wood
1200 //         -----------------------------------------------------------------
1201 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1202 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1203 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1204 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1205 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1206 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1207 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1208 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1209 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1210 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1211 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1212 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1213 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1214 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1215 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1216 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1217 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1218 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1219 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1220 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1221 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1222 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1223 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1224 
1225 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1226 {
1227   assert(_dwl_initialized, "uninitialized");
1228 
1229   // The raw limit is the value of the normal distribution at x = density.
1230   const double raw_limit = normal_distribution(density);
1231 
1232   // Adjust the raw limit so it becomes the minimum when the density is 1.
1233   //
1234   // First subtract the adjustment value (which is simply the precomputed value
1235   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1236   // Then add the minimum value, so the minimum is returned when the density is
1237   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1238   const double min = double(min_percent) / 100.0;
1239   const double limit = raw_limit - _dwl_adjustment + min;
1240   return MAX2(limit, 0.0);
1241 }
1242 
1243 ParallelCompactData::RegionData*
1244 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1245                                            const RegionData* end)
1246 {
1247   const size_t region_size = ParallelCompactData::RegionSize;
1248   ParallelCompactData& sd = summary_data();
1249   size_t left = sd.region(beg);
1250   size_t right = end > beg ? sd.region(end) - 1 : left;
1251 
1252   // Binary search.
1253   while (left < right) {
1254     // Equivalent to (left + right) / 2, but does not overflow.
1255     const size_t middle = left + (right - left) / 2;
1256     RegionData* const middle_ptr = sd.region(middle);
1257     HeapWord* const dest = middle_ptr->destination();
1258     HeapWord* const addr = sd.region_to_addr(middle);
1259     assert(dest != nullptr, "sanity");
1260     assert(dest <= addr, "must move left");
1261 
1262     if (middle > left && dest < addr) {
1263       right = middle - 1;
1264     } else if (middle < right && middle_ptr->data_size() == region_size) {
1265       left = middle + 1;
1266     } else {
1267       return middle_ptr;
1268     }
1269   }
1270   return sd.region(left);
1271 }
1272 
1273 ParallelCompactData::RegionData*
1274 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1275                                           const RegionData* end,
1276                                           size_t dead_words)
1277 {
1278   ParallelCompactData& sd = summary_data();
1279   size_t left = sd.region(beg);
1280   size_t right = end > beg ? sd.region(end) - 1 : left;
1281 
1282   // Binary search.
1283   while (left < right) {
1284     // Equivalent to (left + right) / 2, but does not overflow.
1285     const size_t middle = left + (right - left) / 2;
1286     RegionData* const middle_ptr = sd.region(middle);
1287     HeapWord* const dest = middle_ptr->destination();
1288     HeapWord* const addr = sd.region_to_addr(middle);
1289     assert(dest != nullptr, "sanity");
1290     assert(dest <= addr, "must move left");
1291 
1292     const size_t dead_to_left = pointer_delta(addr, dest);
1293     if (middle > left && dead_to_left > dead_words) {
1294       right = middle - 1;
1295     } else if (middle < right && dead_to_left < dead_words) {
1296       left = middle + 1;
1297     } else {
1298       return middle_ptr;
1299     }
1300   }
1301   return sd.region(left);
1302 }
1303 
1304 // The result is valid during the summary phase, after the initial summarization
1305 // of each space into itself, and before final summarization.
1306 inline double
1307 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1308                                    HeapWord* const bottom,
1309                                    HeapWord* const top,
1310                                    HeapWord* const new_top)
1311 {
1312   ParallelCompactData& sd = summary_data();
1313 
1314   assert(cp != nullptr, "sanity");
1315   assert(bottom != nullptr, "sanity");
1316   assert(top != nullptr, "sanity");
1317   assert(new_top != nullptr, "sanity");
1318   assert(top >= new_top, "summary data problem?");
1319   assert(new_top > bottom, "space is empty; should not be here");
1320   assert(new_top >= cp->destination(), "sanity");
1321   assert(top >= sd.region_to_addr(cp), "sanity");
1322 
1323   HeapWord* const destination = cp->destination();
1324   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1325   const size_t compacted_region_live = pointer_delta(new_top, destination);
1326   const size_t compacted_region_used = pointer_delta(top,
1327                                                      sd.region_to_addr(cp));
1328   const size_t reclaimable = compacted_region_used - compacted_region_live;
1329 
1330   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1331   return double(reclaimable) / divisor;
1332 }
1333 
1334 // Return the address of the end of the dense prefix, a.k.a. the start of the
1335 // compacted region.  The address is always on a region boundary.
1336 //
1337 // Completely full regions at the left are skipped, since no compaction can
1338 // occur in those regions.  Then the maximum amount of dead wood to allow is
1339 // computed, based on the density (amount live / capacity) of the generation;
1340 // the region with approximately that amount of dead space to the left is
1341 // identified as the limit region.  Regions between the last completely full
1342 // region and the limit region are scanned and the one that has the best
1343 // (maximum) reclaimed_ratio() is selected.
1344 HeapWord*
1345 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1346                                         bool maximum_compaction)
1347 {
1348   const size_t region_size = ParallelCompactData::RegionSize;
1349   const ParallelCompactData& sd = summary_data();
1350 
1351   const MutableSpace* const space = _space_info[id].space();
1352   HeapWord* const top = space->top();
1353   HeapWord* const top_aligned_up = sd.region_align_up(top);
1354   HeapWord* const new_top = _space_info[id].new_top();
1355   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1356   HeapWord* const bottom = space->bottom();
1357   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1358   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1359   const RegionData* const new_top_cp =
1360     sd.addr_to_region_ptr(new_top_aligned_up);
1361 
1362   // Skip full regions at the beginning of the space--they are necessarily part
1363   // of the dense prefix.
1364   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1365   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1366          space->is_empty(), "no dead space allowed to the left");
1367   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1368          "region must have dead space");
1369 
1370   // The gc number is saved whenever a maximum compaction is done, and used to
1371   // determine when the maximum compaction interval has expired.  This avoids
1372   // successive max compactions for different reasons.
1373   const uint total_invocations = ParallelScavengeHeap::heap()->total_full_collections();
1374   assert(total_invocations >= _maximum_compaction_gc_num, "sanity");
1375   const size_t gcs_since_max = total_invocations - _maximum_compaction_gc_num;
1376   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1377     total_invocations == HeapFirstMaximumCompactionCount;
1378   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1379     _maximum_compaction_gc_num = total_invocations;
1380     return sd.region_to_addr(full_cp);
1381   }
1382 
1383   const size_t space_live = pointer_delta(new_top, bottom);
1384   const size_t space_used = space->used_in_words();
1385   const size_t space_capacity = space->capacity_in_words();
1386 
1387   const double density = double(space_live) / double(space_capacity);
1388   const size_t min_percent_free = MarkSweepDeadRatio;
1389   const double limiter = dead_wood_limiter(density, min_percent_free);
1390   const size_t dead_wood_max = space_used - space_live;
1391   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1392                                       dead_wood_max);
1393 
1394   log_develop_debug(gc, compaction)(
1395       "space_live=" SIZE_FORMAT " space_used=" SIZE_FORMAT " "
1396       "space_cap=" SIZE_FORMAT,
1397       space_live, space_used,
1398       space_capacity);
1399   log_develop_debug(gc, compaction)(
1400       "dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1401       "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1402       density, min_percent_free, limiter,
1403       dead_wood_max, dead_wood_limit);
1404 
1405   // Locate the region with the desired amount of dead space to the left.
1406   const RegionData* const limit_cp =
1407     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1408 
1409   // Scan from the first region with dead space to the limit region and find the
1410   // one with the best (largest) reclaimed ratio.
1411   double best_ratio = 0.0;
1412   const RegionData* best_cp = full_cp;
1413   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1414     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1415     if (tmp_ratio > best_ratio) {
1416       best_cp = cp;
1417       best_ratio = tmp_ratio;
1418     }
1419   }
1420 
1421   return sd.region_to_addr(best_cp);
1422 }
1423 
1424 void PSParallelCompact::summarize_spaces_quick()
1425 {
1426   for (unsigned int i = 0; i < last_space_id; ++i) {
1427     const MutableSpace* space = _space_info[i].space();
1428     HeapWord** nta = _space_info[i].new_top_addr();
1429     bool result = _summary_data.summarize(_space_info[i].split_info(),
1430                                           space->bottom(), space->top(), nullptr,
1431                                           space->bottom(), space->end(), nta);
1432     assert(result, "space must fit into itself");
1433     _space_info[i].set_dense_prefix(space->bottom());
1434   }
1435 }
1436 
1437 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1438 {
1439   HeapWord* const dense_prefix_end = dense_prefix(id);
1440   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1441   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1442   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1443     // Only enough dead space is filled so that any remaining dead space to the
1444     // left is larger than the minimum filler object.  (The remainder is filled
1445     // during the copy/update phase.)
1446     //
1447     // The size of the dead space to the right of the boundary is not a
1448     // concern, since compaction will be able to use whatever space is
1449     // available.
1450     //
1451     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1452     // surrounds the space to be filled with an object.
1453     //
1454     // In the 32-bit VM, each bit represents two 32-bit words:
1455     //                              +---+
1456     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1457     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1458     //                              +---+
1459     //
1460     // In the 64-bit VM, each bit represents one 64-bit word:
1461     //                              +------------+
1462     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1463     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1464     //                              +------------+
1465     //                          +-------+
1466     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1467     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1468     //                          +-------+
1469     //                      +-----------+
1470     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1471     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1472     //                      +-----------+
1473     //                          +-------+
1474     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1475     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1476     //                          +-------+
1477 
1478     // Initially assume case a, c or e will apply.
1479     size_t obj_len = CollectedHeap::min_fill_size();
1480     HeapWord* obj_beg = dense_prefix_end - obj_len;
1481 
1482 #ifdef  _LP64
1483     if (MinObjAlignment > 1) { // object alignment > heap word size
1484       // Cases a, c or e.
1485     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1486       // Case b above.
1487       obj_beg = dense_prefix_end - 1;
1488     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1489                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1490       // Case d above.
1491       obj_beg = dense_prefix_end - 3;
1492       obj_len = 3;
1493     }
1494 #endif  // #ifdef _LP64
1495 
1496     CollectedHeap::fill_with_object(obj_beg, obj_len);
1497     _mark_bitmap.mark_obj(obj_beg, obj_len);
1498     _summary_data.add_obj(obj_beg, obj_len);
1499     assert(start_array(id) != nullptr, "sanity");
1500     start_array(id)->update_for_block(obj_beg, obj_beg + obj_len);
1501   }
1502 }
1503 
1504 void
1505 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1506 {
1507   assert(id < last_space_id, "id out of range");
1508   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
1509          "should have been reset in summarize_spaces_quick()");
1510 
1511   const MutableSpace* space = _space_info[id].space();
1512   if (_space_info[id].new_top() != space->bottom()) {
1513     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1514     _space_info[id].set_dense_prefix(dense_prefix_end);
1515 
1516 #ifndef PRODUCT
1517     if (log_is_enabled(Debug, gc, compaction)) {
1518       print_dense_prefix_stats("ratio", id, maximum_compaction,
1519                                dense_prefix_end);
1520       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1521       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1522     }
1523 #endif  // #ifndef PRODUCT
1524 
1525     // Recompute the summary data, taking into account the dense prefix.  If
1526     // every last byte will be reclaimed, then the existing summary data which
1527     // compacts everything can be left in place.
1528     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1529       // If dead space crosses the dense prefix boundary, it is (at least
1530       // partially) filled with a dummy object, marked live and added to the
1531       // summary data.  This simplifies the copy/update phase and must be done
1532       // before the final locations of objects are determined, to prevent
1533       // leaving a fragment of dead space that is too small to fill.
1534       fill_dense_prefix_end(id);
1535 
1536       // Compute the destination of each Region, and thus each object.
1537       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1538       _summary_data.summarize(_space_info[id].split_info(),
1539                               dense_prefix_end, space->top(), nullptr,
1540                               dense_prefix_end, space->end(),
1541                               _space_info[id].new_top_addr());
1542     }
1543   }
1544 
1545   if (log_develop_is_enabled(Trace, gc, compaction)) {
1546     const size_t region_size = ParallelCompactData::RegionSize;
1547     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1548     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1549     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1550     HeapWord* const new_top = _space_info[id].new_top();
1551     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1552     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1553     log_develop_trace(gc, compaction)(
1554         "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1555         "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1556         "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1557         id, space->capacity_in_words(), p2i(dense_prefix_end),
1558         dp_region, dp_words / region_size,
1559         cr_words / region_size, p2i(new_top));
1560   }
1561 }
1562 
1563 #ifndef PRODUCT
1564 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1565                                           HeapWord* dst_beg, HeapWord* dst_end,
1566                                           SpaceId src_space_id,
1567                                           HeapWord* src_beg, HeapWord* src_end)
1568 {
1569   log_develop_trace(gc, compaction)(
1570       "Summarizing %d [%s] into %d [%s]:  "
1571       "src=" PTR_FORMAT "-" PTR_FORMAT " "
1572       SIZE_FORMAT "-" SIZE_FORMAT " "
1573       "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1574       SIZE_FORMAT "-" SIZE_FORMAT,
1575       src_space_id, space_names[src_space_id],
1576       dst_space_id, space_names[dst_space_id],
1577       p2i(src_beg), p2i(src_end),
1578       _summary_data.addr_to_region_idx(src_beg),
1579       _summary_data.addr_to_region_idx(src_end),
1580       p2i(dst_beg), p2i(dst_end),
1581       _summary_data.addr_to_region_idx(dst_beg),
1582       _summary_data.addr_to_region_idx(dst_end));
1583 }
1584 #endif  // #ifndef PRODUCT
1585 
1586 void PSParallelCompact::summary_phase(bool maximum_compaction)
1587 {
1588   GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
1589 
1590   // Quick summarization of each space into itself, to see how much is live.
1591   summarize_spaces_quick();
1592 
1593   log_develop_trace(gc, compaction)("summary phase:  after summarizing each space to self");
1594   NOT_PRODUCT(print_region_ranges());
1595   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1596 
1597   // The amount of live data that will end up in old space (assuming it fits).
1598   size_t old_space_total_live = 0;
1599   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1600     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1601                                           _space_info[id].space()->bottom());
1602   }
1603 
1604   MutableSpace* const old_space = _space_info[old_space_id].space();
1605   const size_t old_capacity = old_space->capacity_in_words();
1606   if (old_space_total_live > old_capacity) {
1607     // XXX - should also try to expand
1608     maximum_compaction = true;
1609   }
1610 
1611   // Old generations.
1612   summarize_space(old_space_id, maximum_compaction);
1613 
1614   // Summarize the remaining spaces in the young gen.  The initial target space
1615   // is the old gen.  If a space does not fit entirely into the target, then the
1616   // remainder is compacted into the space itself and that space becomes the new
1617   // target.
1618   SpaceId dst_space_id = old_space_id;
1619   HeapWord* dst_space_end = old_space->end();
1620   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1621   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1622     const MutableSpace* space = _space_info[id].space();
1623     const size_t live = pointer_delta(_space_info[id].new_top(),
1624                                       space->bottom());
1625     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1626 
1627     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1628                                   SpaceId(id), space->bottom(), space->top());)
1629     if (live > 0 && live <= available) {
1630       // All the live data will fit.
1631       bool done = _summary_data.summarize(_space_info[id].split_info(),
1632                                           space->bottom(), space->top(),
1633                                           nullptr,
1634                                           *new_top_addr, dst_space_end,
1635                                           new_top_addr);
1636       assert(done, "space must fit into old gen");
1637 
1638       // Reset the new_top value for the space.
1639       _space_info[id].set_new_top(space->bottom());
1640     } else if (live > 0) {
1641       // Attempt to fit part of the source space into the target space.
1642       HeapWord* next_src_addr = nullptr;
1643       bool done = _summary_data.summarize(_space_info[id].split_info(),
1644                                           space->bottom(), space->top(),
1645                                           &next_src_addr,
1646                                           *new_top_addr, dst_space_end,
1647                                           new_top_addr);
1648       assert(!done, "space should not fit into old gen");
1649       assert(next_src_addr != nullptr, "sanity");
1650 
1651       // The source space becomes the new target, so the remainder is compacted
1652       // within the space itself.
1653       dst_space_id = SpaceId(id);
1654       dst_space_end = space->end();
1655       new_top_addr = _space_info[id].new_top_addr();
1656       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1657                                     space->bottom(), dst_space_end,
1658                                     SpaceId(id), next_src_addr, space->top());)
1659       done = _summary_data.summarize(_space_info[id].split_info(),
1660                                      next_src_addr, space->top(),
1661                                      nullptr,
1662                                      space->bottom(), dst_space_end,
1663                                      new_top_addr);
1664       assert(done, "space must fit when compacted into itself");
1665       assert(*new_top_addr <= space->top(), "usage should not grow");
1666     }
1667   }
1668 
1669   log_develop_trace(gc, compaction)("Summary_phase:  after final summarization");
1670   NOT_PRODUCT(print_region_ranges());
1671   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1672 }
1673 
1674 // This method should contain all heap-specific policy for invoking a full
1675 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1676 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1677 // before full gc, or any other specialized behavior, it needs to be added here.
1678 //
1679 // Note that this method should only be called from the vm_thread while at a
1680 // safepoint.
1681 //
1682 // Note that the all_soft_refs_clear flag in the soft ref policy
1683 // may be true because this method can be called without intervening
1684 // activity.  For example when the heap space is tight and full measure
1685 // are being taken to free space.
1686 bool PSParallelCompact::invoke(bool maximum_heap_compaction) {
1687   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1688   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1689          "should be in vm thread");
1690 
1691   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1692   assert(!heap->is_gc_active(), "not reentrant");
1693 
1694   IsGCActiveMark mark;
1695 
1696   if (ScavengeBeforeFullGC) {
1697     PSScavenge::invoke_no_policy();
1698   }
1699 
1700   const bool clear_all_soft_refs =
1701     heap->soft_ref_policy()->should_clear_all_soft_refs();
1702 
1703   return PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1704                                              maximum_heap_compaction);
1705 }
1706 
1707 // This method contains no policy. You should probably
1708 // be calling invoke() instead.
1709 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1710   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1711   assert(ref_processor() != nullptr, "Sanity");
1712 
1713   if (GCLocker::check_active_before_gc()) {
1714     return false;
1715   }
1716 
1717   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1718 
1719   GCIdMark gc_id_mark;
1720   _gc_timer.register_gc_start();
1721   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1722 
1723   GCCause::Cause gc_cause = heap->gc_cause();
1724   PSYoungGen* young_gen = heap->young_gen();
1725   PSOldGen* old_gen = heap->old_gen();
1726   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1727 
1728   // The scope of casr should end after code that can change
1729   // SoftRefPolicy::_should_clear_all_soft_refs.
1730   ClearedAllSoftRefs casr(maximum_heap_compaction,
1731                           heap->soft_ref_policy());
1732 
1733   if (ZapUnusedHeapArea) {
1734     // Save information needed to minimize mangling
1735     heap->record_gen_tops_before_GC();
1736   }
1737 
1738   // Make sure data structures are sane, make the heap parsable, and do other
1739   // miscellaneous bookkeeping.
1740   pre_compact();
1741 
1742   const PreGenGCValues pre_gc_values = heap->get_pre_gc_values();
1743 
1744   {
1745     const uint active_workers =
1746       WorkerPolicy::calc_active_workers(ParallelScavengeHeap::heap()->workers().max_workers(),
1747                                         ParallelScavengeHeap::heap()->workers().active_workers(),
1748                                         Threads::number_of_non_daemon_threads());
1749     ParallelScavengeHeap::heap()->workers().set_active_workers(active_workers);
1750 
1751     GCTraceCPUTime tcpu(&_gc_tracer);
1752     GCTraceTime(Info, gc) tm("Pause Full", nullptr, gc_cause, true);
1753 
1754     heap->pre_full_gc_dump(&_gc_timer);
1755 
1756     TraceCollectorStats tcs(counters());
1757     TraceMemoryManagerStats tms(heap->old_gc_manager(), gc_cause, "end of major GC");
1758 
1759     if (log_is_enabled(Debug, gc, heap, exit)) {
1760       accumulated_time()->start();
1761     }
1762 
1763     // Let the size policy know we're starting
1764     size_policy->major_collection_begin();
1765 
1766 #if COMPILER2_OR_JVMCI
1767     DerivedPointerTable::clear();
1768 #endif
1769 
1770     ref_processor()->start_discovery(maximum_heap_compaction);
1771 
1772     ClassUnloadingContext ctx(1 /* num_nmethod_unlink_workers */,
1773                               false /* lock_codeblob_free_separately */);
1774 
1775     marking_phase(&_gc_tracer);
1776 
1777     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1778       && GCCause::is_user_requested_gc(gc_cause);
1779     summary_phase(maximum_heap_compaction || max_on_system_gc);
1780 
1781 #if COMPILER2_OR_JVMCI
1782     assert(DerivedPointerTable::is_active(), "Sanity");
1783     DerivedPointerTable::set_active(false);
1784 #endif
1785 
1786     // adjust_roots() updates Universe::_intArrayKlassObj which is
1787     // needed by the compaction for filling holes in the dense prefix.
1788     adjust_roots();
1789 
1790     compact();
1791 
1792     ParCompactionManager::verify_all_region_stack_empty();
1793 
1794     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1795     // done before resizing.
1796     post_compact();
1797 
1798     // Let the size policy know we're done
1799     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1800 
1801     if (UseAdaptiveSizePolicy) {
1802       log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
1803       log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
1804                           old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1805 
1806       // Don't check if the size_policy is ready here.  Let
1807       // the size_policy check that internally.
1808       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1809           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1810         // Swap the survivor spaces if from_space is empty. The
1811         // resize_young_gen() called below is normally used after
1812         // a successful young GC and swapping of survivor spaces;
1813         // otherwise, it will fail to resize the young gen with
1814         // the current implementation.
1815         if (young_gen->from_space()->is_empty()) {
1816           young_gen->from_space()->clear(SpaceDecorator::Mangle);
1817           young_gen->swap_spaces();
1818         }
1819 
1820         // Calculate optimal free space amounts
1821         assert(young_gen->max_gen_size() >
1822           young_gen->from_space()->capacity_in_bytes() +
1823           young_gen->to_space()->capacity_in_bytes(),
1824           "Sizes of space in young gen are out-of-bounds");
1825 
1826         size_t young_live = young_gen->used_in_bytes();
1827         size_t eden_live = young_gen->eden_space()->used_in_bytes();
1828         size_t old_live = old_gen->used_in_bytes();
1829         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1830         size_t max_old_gen_size = old_gen->max_gen_size();
1831         size_t max_eden_size = young_gen->max_gen_size() -
1832           young_gen->from_space()->capacity_in_bytes() -
1833           young_gen->to_space()->capacity_in_bytes();
1834 
1835         // Used for diagnostics
1836         size_policy->clear_generation_free_space_flags();
1837 
1838         size_policy->compute_generations_free_space(young_live,
1839                                                     eden_live,
1840                                                     old_live,
1841                                                     cur_eden,
1842                                                     max_old_gen_size,
1843                                                     max_eden_size,
1844                                                     true /* full gc*/);
1845 
1846         size_policy->check_gc_overhead_limit(eden_live,
1847                                              max_old_gen_size,
1848                                              max_eden_size,
1849                                              true /* full gc*/,
1850                                              gc_cause,
1851                                              heap->soft_ref_policy());
1852 
1853         size_policy->decay_supplemental_growth(true /* full gc*/);
1854 
1855         heap->resize_old_gen(
1856           size_policy->calculated_old_free_size_in_bytes());
1857 
1858         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1859                                size_policy->calculated_survivor_size_in_bytes());
1860       }
1861 
1862       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
1863     }
1864 
1865     if (UsePerfData) {
1866       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1867       counters->update_counters();
1868       counters->update_old_capacity(old_gen->capacity_in_bytes());
1869       counters->update_young_capacity(young_gen->capacity_in_bytes());
1870     }
1871 
1872     heap->resize_all_tlabs();
1873 
1874     // Resize the metaspace capacity after a collection
1875     MetaspaceGC::compute_new_size();
1876 
1877     if (log_is_enabled(Debug, gc, heap, exit)) {
1878       accumulated_time()->stop();
1879     }
1880 
1881     heap->print_heap_change(pre_gc_values);
1882 
1883     // Track memory usage and detect low memory
1884     MemoryService::track_memory_usage();
1885     heap->update_counters();
1886 
1887     heap->post_full_gc_dump(&_gc_timer);
1888   }
1889 
1890   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1891     Universe::verify("After GC");
1892   }
1893 
1894   // Re-verify object start arrays
1895   if (VerifyObjectStartArray &&
1896       VerifyAfterGC) {
1897     old_gen->verify_object_start_array();
1898   }
1899 
1900   if (ZapUnusedHeapArea) {
1901     old_gen->object_space()->check_mangled_unused_area_complete();
1902   }
1903 
1904   heap->print_heap_after_gc();
1905   heap->trace_heap_after_gc(&_gc_tracer);
1906 
1907   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
1908 
1909   _gc_timer.register_gc_end();
1910 
1911   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1912   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1913 
1914   return true;
1915 }
1916 
1917 class PCAddThreadRootsMarkingTaskClosure : public ThreadClosure {
1918 private:
1919   uint _worker_id;
1920 
1921 public:
1922   PCAddThreadRootsMarkingTaskClosure(uint worker_id) : _worker_id(worker_id) { }
1923   void do_thread(Thread* thread) {
1924     assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
1925 
1926     ResourceMark rm;
1927 
1928     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(_worker_id);
1929 
1930     PCMarkAndPushClosure mark_and_push_closure(cm);
1931     MarkingCodeBlobClosure mark_and_push_in_blobs(&mark_and_push_closure, !CodeBlobToOopClosure::FixRelocations, true /* keepalive nmethods */);
1932 
1933     thread->oops_do(&mark_and_push_closure, &mark_and_push_in_blobs);
1934 
1935     // Do the real work
1936     cm->follow_marking_stacks();
1937   }
1938 };
1939 
1940 void steal_marking_work(TaskTerminator& terminator, uint worker_id) {
1941   assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
1942 
1943   ParCompactionManager* cm =
1944     ParCompactionManager::gc_thread_compaction_manager(worker_id);
1945 
1946   do {
1947     oop obj = nullptr;
1948     ObjArrayTask task;
1949     if (ParCompactionManager::steal_objarray(worker_id,  task)) {
1950       cm->follow_array((objArrayOop)task.obj(), task.index());
1951     } else if (ParCompactionManager::steal(worker_id, obj)) {
1952       cm->follow_contents(obj);
1953     }
1954     cm->follow_marking_stacks();
1955   } while (!terminator.offer_termination());
1956 }
1957 
1958 class MarkFromRootsTask : public WorkerTask {
1959   StrongRootsScope _strong_roots_scope; // needed for Threads::possibly_parallel_threads_do
1960   OopStorageSetStrongParState<false /* concurrent */, false /* is_const */> _oop_storage_set_par_state;
1961   TaskTerminator _terminator;
1962   uint _active_workers;
1963 
1964 public:
1965   MarkFromRootsTask(uint active_workers) :
1966       WorkerTask("MarkFromRootsTask"),
1967       _strong_roots_scope(active_workers),
1968       _terminator(active_workers, ParCompactionManager::oop_task_queues()),
1969       _active_workers(active_workers) {}
1970 
1971   virtual void work(uint worker_id) {
1972     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
1973     PCMarkAndPushClosure mark_and_push_closure(cm);
1974 
1975     {
1976       CLDToOopClosure cld_closure(&mark_and_push_closure, ClassLoaderData::_claim_stw_fullgc_mark);
1977       ClassLoaderDataGraph::always_strong_cld_do(&cld_closure);
1978 
1979       // Do the real work
1980       cm->follow_marking_stacks();
1981     }
1982 
1983     PCAddThreadRootsMarkingTaskClosure closure(worker_id);
1984     Threads::possibly_parallel_threads_do(true /* is_par */, &closure);
1985 
1986     // Mark from OopStorages
1987     {
1988       _oop_storage_set_par_state.oops_do(&mark_and_push_closure);
1989       // Do the real work
1990       cm->follow_marking_stacks();
1991     }
1992 
1993     if (_active_workers > 1) {
1994       steal_marking_work(_terminator, worker_id);
1995     }
1996   }
1997 };
1998 
1999 class ParallelCompactRefProcProxyTask : public RefProcProxyTask {
2000   TaskTerminator _terminator;
2001 
2002 public:
2003   ParallelCompactRefProcProxyTask(uint max_workers)
2004     : RefProcProxyTask("ParallelCompactRefProcProxyTask", max_workers),
2005       _terminator(_max_workers, ParCompactionManager::oop_task_queues()) {}
2006 
2007   void work(uint worker_id) override {
2008     assert(worker_id < _max_workers, "sanity");
2009     ParCompactionManager* cm = (_tm == RefProcThreadModel::Single) ? ParCompactionManager::get_vmthread_cm() : ParCompactionManager::gc_thread_compaction_manager(worker_id);
2010     PCMarkAndPushClosure keep_alive(cm);
2011     BarrierEnqueueDiscoveredFieldClosure enqueue;
2012     ParCompactionManager::FollowStackClosure complete_gc(cm, (_tm == RefProcThreadModel::Single) ? nullptr : &_terminator, worker_id);
2013     _rp_task->rp_work(worker_id, PSParallelCompact::is_alive_closure(), &keep_alive, &enqueue, &complete_gc);
2014   }
2015 
2016   void prepare_run_task_hook() override {
2017     _terminator.reset_for_reuse(_queue_count);
2018   }
2019 };
2020 
2021 void PSParallelCompact::marking_phase(ParallelOldTracer *gc_tracer) {
2022   // Recursively traverse all live objects and mark them
2023   GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
2024 
2025   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
2026 
2027   ClassLoaderDataGraph::verify_claimed_marks_cleared(ClassLoaderData::_claim_stw_fullgc_mark);
2028   {
2029     GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
2030 
2031     MarkFromRootsTask task(active_gc_threads);
2032     ParallelScavengeHeap::heap()->workers().run_task(&task);
2033   }
2034 
2035   // Process reference objects found during marking
2036   {
2037     GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
2038 
2039     ReferenceProcessorStats stats;
2040     ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->max_num_queues());
2041 
2042     ref_processor()->set_active_mt_degree(active_gc_threads);
2043     ParallelCompactRefProcProxyTask task(ref_processor()->max_num_queues());
2044     stats = ref_processor()->process_discovered_references(task, pt);
2045 
2046     gc_tracer->report_gc_reference_stats(stats);
2047     pt.print_all_references();
2048   }
2049 
2050   // This is the point where the entire marking should have completed.
2051   ParCompactionManager::verify_all_marking_stack_empty();
2052 
2053   {
2054     GCTraceTime(Debug, gc, phases) tm("Weak Processing", &_gc_timer);
2055     WeakProcessor::weak_oops_do(&ParallelScavengeHeap::heap()->workers(),
2056                                 is_alive_closure(),
2057                                 &do_nothing_cl,
2058                                 1);
2059   }
2060 
2061   {
2062     GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
2063 
2064     ClassUnloadingContext* ctx = ClassUnloadingContext::context();
2065 
2066     bool unloading_occurred;
2067     {
2068       CodeCache::UnlinkingScope scope(is_alive_closure());
2069 
2070       // Follow system dictionary roots and unload classes.
2071       unloading_occurred = SystemDictionary::do_unloading(&_gc_timer);
2072 
2073       // Unload nmethods.
2074       CodeCache::do_unloading(unloading_occurred);
2075     }
2076 
2077     {
2078       GCTraceTime(Debug, gc, phases) t("Purge Unlinked NMethods", gc_timer());
2079       // Release unloaded nmethod's memory.
2080       ctx->purge_nmethods();
2081     }
2082     {
2083       GCTraceTime(Debug, gc, phases) t("Free Code Blobs", gc_timer());
2084       ctx->free_code_blobs();
2085     }
2086 
2087     // Prune dead klasses from subklass/sibling/implementor lists.
2088     Klass::clean_weak_klass_links(unloading_occurred);
2089 
2090     // Clean JVMCI metadata handles.
2091     JVMCI_ONLY(JVMCI::do_unloading(unloading_occurred));
2092   }
2093 
2094   {
2095     GCTraceTime(Debug, gc, phases) tm("Report Object Count", &_gc_timer);
2096     _gc_tracer.report_object_count_after_gc(is_alive_closure(), &ParallelScavengeHeap::heap()->workers());
2097   }
2098 #if TASKQUEUE_STATS
2099   ParCompactionManager::oop_task_queues()->print_and_reset_taskqueue_stats("Oop Queue");
2100   ParCompactionManager::_objarray_task_queues->print_and_reset_taskqueue_stats("ObjArrayOop Queue");
2101 #endif
2102 }
2103 
2104 class PSAdjustTask final : public WorkerTask {
2105   SubTasksDone                               _sub_tasks;
2106   WeakProcessor::Task                        _weak_proc_task;
2107   OopStorageSetStrongParState<false, false>  _oop_storage_iter;
2108   uint                                       _nworkers;
2109 
2110   enum PSAdjustSubTask {
2111     PSAdjustSubTask_code_cache,
2112 
2113     PSAdjustSubTask_num_elements
2114   };
2115 
2116 public:
2117   PSAdjustTask(uint nworkers) :
2118     WorkerTask("PSAdjust task"),
2119     _sub_tasks(PSAdjustSubTask_num_elements),
2120     _weak_proc_task(nworkers),
2121     _nworkers(nworkers) {
2122 
2123     ClassLoaderDataGraph::verify_claimed_marks_cleared(ClassLoaderData::_claim_stw_fullgc_adjust);
2124     if (nworkers > 1) {
2125       Threads::change_thread_claim_token();
2126     }
2127   }
2128 
2129   ~PSAdjustTask() {
2130     Threads::assert_all_threads_claimed();
2131   }
2132 
2133   void work(uint worker_id) {
2134     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
2135     PCAdjustPointerClosure adjust(cm);
2136     {
2137       ResourceMark rm;
2138       Threads::possibly_parallel_oops_do(_nworkers > 1, &adjust, nullptr);
2139     }
2140     _oop_storage_iter.oops_do(&adjust);
2141     {
2142       CLDToOopClosure cld_closure(&adjust, ClassLoaderData::_claim_stw_fullgc_adjust);
2143       ClassLoaderDataGraph::cld_do(&cld_closure);
2144     }
2145     {
2146       AlwaysTrueClosure always_alive;
2147       _weak_proc_task.work(worker_id, &always_alive, &adjust);
2148     }
2149     if (_sub_tasks.try_claim_task(PSAdjustSubTask_code_cache)) {
2150       CodeBlobToOopClosure adjust_code(&adjust, CodeBlobToOopClosure::FixRelocations);
2151       CodeCache::blobs_do(&adjust_code);
2152     }
2153     _sub_tasks.all_tasks_claimed();
2154   }
2155 };
2156 
2157 void PSParallelCompact::adjust_roots() {
2158   // Adjust the pointers to reflect the new locations
2159   GCTraceTime(Info, gc, phases) tm("Adjust Roots", &_gc_timer);
2160   uint nworkers = ParallelScavengeHeap::heap()->workers().active_workers();
2161   PSAdjustTask task(nworkers);
2162   ParallelScavengeHeap::heap()->workers().run_task(&task);
2163 }
2164 
2165 // Helper class to print 8 region numbers per line and then print the total at the end.
2166 class FillableRegionLogger : public StackObj {
2167 private:
2168   Log(gc, compaction) log;
2169   static const int LineLength = 8;
2170   size_t _regions[LineLength];
2171   int _next_index;
2172   bool _enabled;
2173   size_t _total_regions;
2174 public:
2175   FillableRegionLogger() : _next_index(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)), _total_regions(0) { }
2176   ~FillableRegionLogger() {
2177     log.trace(SIZE_FORMAT " initially fillable regions", _total_regions);
2178   }
2179 
2180   void print_line() {
2181     if (!_enabled || _next_index == 0) {
2182       return;
2183     }
2184     FormatBuffer<> line("Fillable: ");
2185     for (int i = 0; i < _next_index; i++) {
2186       line.append(" " SIZE_FORMAT_W(7), _regions[i]);
2187     }
2188     log.trace("%s", line.buffer());
2189     _next_index = 0;
2190   }
2191 
2192   void handle(size_t region) {
2193     if (!_enabled) {
2194       return;
2195     }
2196     _regions[_next_index++] = region;
2197     if (_next_index == LineLength) {
2198       print_line();
2199     }
2200     _total_regions++;
2201   }
2202 };
2203 
2204 void PSParallelCompact::prepare_region_draining_tasks(uint parallel_gc_threads)
2205 {
2206   GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
2207 
2208   // Find the threads that are active
2209   uint worker_id = 0;
2210 
2211   // Find all regions that are available (can be filled immediately) and
2212   // distribute them to the thread stacks.  The iteration is done in reverse
2213   // order (high to low) so the regions will be removed in ascending order.
2214 
2215   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2216 
2217   // id + 1 is used to test termination so unsigned  can
2218   // be used with an old_space_id == 0.
2219   FillableRegionLogger region_logger;
2220   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2221     SpaceInfo* const space_info = _space_info + id;
2222     HeapWord* const new_top = space_info->new_top();
2223 
2224     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2225     const size_t end_region =
2226       sd.addr_to_region_idx(sd.region_align_up(new_top));
2227 
2228     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2229       if (sd.region(cur)->claim_unsafe()) {
2230         ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
2231         bool result = sd.region(cur)->mark_normal();
2232         assert(result, "Must succeed at this point.");
2233         cm->region_stack()->push(cur);
2234         region_logger.handle(cur);
2235         // Assign regions to tasks in round-robin fashion.
2236         if (++worker_id == parallel_gc_threads) {
2237           worker_id = 0;
2238         }
2239       }
2240     }
2241     region_logger.print_line();
2242   }
2243 }
2244 
2245 class TaskQueue : StackObj {
2246   volatile uint _counter;
2247   uint _size;
2248   uint _insert_index;
2249   PSParallelCompact::UpdateDensePrefixTask* _backing_array;
2250 public:
2251   explicit TaskQueue(uint size) : _counter(0), _size(size), _insert_index(0), _backing_array(nullptr) {
2252     _backing_array = NEW_C_HEAP_ARRAY(PSParallelCompact::UpdateDensePrefixTask, _size, mtGC);
2253   }
2254   ~TaskQueue() {
2255     assert(_counter >= _insert_index, "not all queue elements were claimed");
2256     FREE_C_HEAP_ARRAY(T, _backing_array);
2257   }
2258 
2259   void push(const PSParallelCompact::UpdateDensePrefixTask& value) {
2260     assert(_insert_index < _size, "too small backing array");
2261     _backing_array[_insert_index++] = value;
2262   }
2263 
2264   bool try_claim(PSParallelCompact::UpdateDensePrefixTask& reference) {
2265     uint claimed = Atomic::fetch_then_add(&_counter, 1u);
2266     if (claimed < _insert_index) {
2267       reference = _backing_array[claimed];
2268       return true;
2269     } else {
2270       return false;
2271     }
2272   }
2273 };
2274 
2275 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2276 
2277 void PSParallelCompact::enqueue_dense_prefix_tasks(TaskQueue& task_queue,
2278                                                    uint parallel_gc_threads) {
2279   GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup", &_gc_timer);
2280 
2281   ParallelCompactData& sd = PSParallelCompact::summary_data();
2282 
2283   // Iterate over all the spaces adding tasks for updating
2284   // regions in the dense prefix.  Assume that 1 gc thread
2285   // will work on opening the gaps and the remaining gc threads
2286   // will work on the dense prefix.
2287   unsigned int space_id;
2288   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2289     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2290     const MutableSpace* const space = _space_info[space_id].space();
2291 
2292     if (dense_prefix_end == space->bottom()) {
2293       // There is no dense prefix for this space.
2294       continue;
2295     }
2296 
2297     // The dense prefix is before this region.
2298     size_t region_index_end_dense_prefix =
2299         sd.addr_to_region_idx(dense_prefix_end);
2300     RegionData* const dense_prefix_cp =
2301       sd.region(region_index_end_dense_prefix);
2302     assert(dense_prefix_end == space->end() ||
2303            dense_prefix_cp->available() ||
2304            dense_prefix_cp->claimed(),
2305            "The region after the dense prefix should always be ready to fill");
2306 
2307     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2308 
2309     // Is there dense prefix work?
2310     size_t total_dense_prefix_regions =
2311       region_index_end_dense_prefix - region_index_start;
2312     // How many regions of the dense prefix should be given to
2313     // each thread?
2314     if (total_dense_prefix_regions > 0) {
2315       uint tasks_for_dense_prefix = 1;
2316       if (total_dense_prefix_regions <=
2317           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2318         // Don't over partition.  This assumes that
2319         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2320         // so there are not many regions to process.
2321         tasks_for_dense_prefix = parallel_gc_threads;
2322       } else {
2323         // Over partition
2324         tasks_for_dense_prefix = parallel_gc_threads *
2325           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2326       }
2327       size_t regions_per_thread = total_dense_prefix_regions /
2328         tasks_for_dense_prefix;
2329       // Give each thread at least 1 region.
2330       if (regions_per_thread == 0) {
2331         regions_per_thread = 1;
2332       }
2333 
2334       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2335         if (region_index_start >= region_index_end_dense_prefix) {
2336           break;
2337         }
2338         // region_index_end is not processed
2339         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2340                                        region_index_end_dense_prefix);
2341         task_queue.push(UpdateDensePrefixTask(SpaceId(space_id),
2342                                               region_index_start,
2343                                               region_index_end));
2344         region_index_start = region_index_end;
2345       }
2346     }
2347     // This gets any part of the dense prefix that did not
2348     // fit evenly.
2349     if (region_index_start < region_index_end_dense_prefix) {
2350       task_queue.push(UpdateDensePrefixTask(SpaceId(space_id),
2351                                             region_index_start,
2352                                             region_index_end_dense_prefix));
2353     }
2354   }
2355 }
2356 
2357 #ifdef ASSERT
2358 // Write a histogram of the number of times the block table was filled for a
2359 // region.
2360 void PSParallelCompact::write_block_fill_histogram()
2361 {
2362   if (!log_develop_is_enabled(Trace, gc, compaction)) {
2363     return;
2364   }
2365 
2366   Log(gc, compaction) log;
2367   ResourceMark rm;
2368   LogStream ls(log.trace());
2369   outputStream* out = &ls;
2370 
2371   typedef ParallelCompactData::RegionData rd_t;
2372   ParallelCompactData& sd = summary_data();
2373 
2374   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2375     MutableSpace* const spc = _space_info[id].space();
2376     if (spc->bottom() != spc->top()) {
2377       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2378       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2379       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2380 
2381       size_t histo[5] = { 0, 0, 0, 0, 0 };
2382       const size_t histo_len = sizeof(histo) / sizeof(size_t);
2383       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2384 
2385       for (const rd_t* cur = beg; cur < end; ++cur) {
2386         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2387       }
2388       out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2389       for (size_t i = 0; i < histo_len; ++i) {
2390         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2391                    histo[i], 100.0 * histo[i] / region_cnt);
2392       }
2393       out->cr();
2394     }
2395   }
2396 }
2397 #endif // #ifdef ASSERT
2398 
2399 static void compaction_with_stealing_work(TaskTerminator* terminator, uint worker_id) {
2400   assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
2401 
2402   ParCompactionManager* cm =
2403     ParCompactionManager::gc_thread_compaction_manager(worker_id);
2404 
2405   // Drain the stacks that have been preloaded with regions
2406   // that are ready to fill.
2407 
2408   cm->drain_region_stacks();
2409 
2410   guarantee(cm->region_stack()->is_empty(), "Not empty");
2411 
2412   size_t region_index = 0;
2413 
2414   while (true) {
2415     if (ParCompactionManager::steal(worker_id, region_index)) {
2416       PSParallelCompact::fill_and_update_region(cm, region_index);
2417       cm->drain_region_stacks();
2418     } else if (PSParallelCompact::steal_unavailable_region(cm, region_index)) {
2419       // Fill and update an unavailable region with the help of a shadow region
2420       PSParallelCompact::fill_and_update_shadow_region(cm, region_index);
2421       cm->drain_region_stacks();
2422     } else {
2423       if (terminator->offer_termination()) {
2424         break;
2425       }
2426       // Go around again.
2427     }
2428   }
2429 }
2430 
2431 class UpdateDensePrefixAndCompactionTask: public WorkerTask {
2432   TaskQueue& _tq;
2433   TaskTerminator _terminator;
2434 
2435 public:
2436   UpdateDensePrefixAndCompactionTask(TaskQueue& tq, uint active_workers) :
2437       WorkerTask("UpdateDensePrefixAndCompactionTask"),
2438       _tq(tq),
2439       _terminator(active_workers, ParCompactionManager::region_task_queues()) {
2440   }
2441   virtual void work(uint worker_id) {
2442     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
2443 
2444     for (PSParallelCompact::UpdateDensePrefixTask task; _tq.try_claim(task); /* empty */) {
2445       PSParallelCompact::update_and_deadwood_in_dense_prefix(cm,
2446                                                              task._space_id,
2447                                                              task._region_index_start,
2448                                                              task._region_index_end);
2449     }
2450 
2451     // Once a thread has drained it's stack, it should try to steal regions from
2452     // other threads.
2453     compaction_with_stealing_work(&_terminator, worker_id);
2454 
2455     // At this point all regions have been compacted, so it's now safe
2456     // to update the deferred objects that cross region boundaries.
2457     cm->drain_deferred_objects();
2458   }
2459 };
2460 
2461 void PSParallelCompact::compact() {
2462   GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
2463 
2464   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2465   PSOldGen* old_gen = heap->old_gen();
2466   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
2467 
2468   // for [0..last_space_id)
2469   //     for [0..active_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)
2470   //         push
2471   //     push
2472   //
2473   // max push count is thus: last_space_id * (active_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING + 1)
2474   TaskQueue task_queue(last_space_id * (active_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING + 1));
2475   initialize_shadow_regions(active_gc_threads);
2476   prepare_region_draining_tasks(active_gc_threads);
2477   enqueue_dense_prefix_tasks(task_queue, active_gc_threads);
2478 
2479   {
2480     GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
2481 
2482     UpdateDensePrefixAndCompactionTask task(task_queue, active_gc_threads);
2483     ParallelScavengeHeap::heap()->workers().run_task(&task);
2484 
2485 #ifdef  ASSERT
2486     // Verify that all regions have been processed.
2487     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2488       verify_complete(SpaceId(id));
2489     }
2490 #endif
2491   }
2492 
2493   DEBUG_ONLY(write_block_fill_histogram());
2494 }
2495 
2496 #ifdef  ASSERT
2497 void PSParallelCompact::verify_complete(SpaceId space_id) {
2498   // All Regions between space bottom() to new_top() should be marked as filled
2499   // and all Regions between new_top() and top() should be available (i.e.,
2500   // should have been emptied).
2501   ParallelCompactData& sd = summary_data();
2502   SpaceInfo si = _space_info[space_id];
2503   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2504   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2505   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2506   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2507   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2508 
2509   bool issued_a_warning = false;
2510 
2511   size_t cur_region;
2512   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2513     const RegionData* const c = sd.region(cur_region);
2514     if (!c->completed()) {
2515       log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u",
2516                       cur_region, c->destination_count());
2517       issued_a_warning = true;
2518     }
2519   }
2520 
2521   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2522     const RegionData* const c = sd.region(cur_region);
2523     if (!c->available()) {
2524       log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u",
2525                       cur_region, c->destination_count());
2526       issued_a_warning = true;
2527     }
2528   }
2529 
2530   if (issued_a_warning) {
2531     print_region_ranges();
2532   }
2533 }
2534 #endif  // #ifdef ASSERT
2535 
2536 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2537   _start_array->update_for_block(addr, addr + cast_to_oop(addr)->size());
2538   compaction_manager()->update_contents(cast_to_oop(addr));
2539 }
2540 
2541 // Update interior oops in the ranges of regions [beg_region, end_region).
2542 void
2543 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2544                                                        SpaceId space_id,
2545                                                        size_t beg_region,
2546                                                        size_t end_region) {
2547   ParallelCompactData& sd = summary_data();
2548   ParMarkBitMap* const mbm = mark_bitmap();
2549 
2550   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2551   HeapWord* const end_addr = sd.region_to_addr(end_region);
2552   assert(beg_region <= end_region, "bad region range");
2553   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2554 
2555 #ifdef  ASSERT
2556   // Claim the regions to avoid triggering an assert when they are marked as
2557   // filled.
2558   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2559     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2560   }
2561 #endif  // #ifdef ASSERT
2562 
2563   if (beg_addr != space(space_id)->bottom()) {
2564     // Find the first live object or block of dead space that *starts* in this
2565     // range of regions.  If a partial object crosses onto the region, skip it;
2566     // it will be marked for 'deferred update' when the object head is
2567     // processed.  If dead space crosses onto the region, it is also skipped; it
2568     // will be filled when the prior region is processed.  If neither of those
2569     // apply, the first word in the region is the start of a live object or dead
2570     // space.
2571     assert(beg_addr > space(space_id)->bottom(), "sanity");
2572     const RegionData* const cp = sd.region(beg_region);
2573     if (cp->partial_obj_size() != 0) {
2574       beg_addr = sd.partial_obj_end(beg_region);
2575     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2576       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2577     }
2578   }
2579 
2580   if (beg_addr < end_addr) {
2581     // A live object or block of dead space starts in this range of Regions.
2582      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2583 
2584     // Create closures and iterate.
2585     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2586     FillClosure fill_closure(cm, space_id);
2587     ParMarkBitMap::IterationStatus status;
2588     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2589                           dense_prefix_end);
2590     if (status == ParMarkBitMap::incomplete) {
2591       update_closure.do_addr(update_closure.source());
2592     }
2593   }
2594 
2595   // Mark the regions as filled.
2596   RegionData* const beg_cp = sd.region(beg_region);
2597   RegionData* const end_cp = sd.region(end_region);
2598   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2599     cp->set_completed();
2600   }
2601 }
2602 
2603 // Return the SpaceId for the space containing addr.  If addr is not in the
2604 // heap, last_space_id is returned.  In debug mode it expects the address to be
2605 // in the heap and asserts such.
2606 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2607   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2608 
2609   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2610     if (_space_info[id].space()->contains(addr)) {
2611       return SpaceId(id);
2612     }
2613   }
2614 
2615   assert(false, "no space contains the addr");
2616   return last_space_id;
2617 }
2618 
2619 void PSParallelCompact::update_deferred_object(ParCompactionManager* cm, HeapWord *addr) {
2620 #ifdef ASSERT
2621   ParallelCompactData& sd = summary_data();
2622   size_t region_idx = sd.addr_to_region_idx(addr);
2623   assert(sd.region(region_idx)->completed(), "first region must be completed before deferred updates");
2624   assert(sd.region(region_idx + 1)->completed(), "second region must be completed before deferred updates");
2625 #endif
2626 
2627   const SpaceInfo* const space_info = _space_info + space_id(addr);
2628   ObjectStartArray* const start_array = space_info->start_array();
2629   if (start_array != nullptr) {
2630     start_array->update_for_block(addr, addr + cast_to_oop(addr)->size());
2631   }
2632 
2633   cm->update_contents(cast_to_oop(addr));
2634   assert(oopDesc::is_oop(cast_to_oop(addr)), "Expected an oop at " PTR_FORMAT, p2i(cast_to_oop(addr)));
2635 }
2636 
2637 // Skip over count live words starting from beg, and return the address of the
2638 // next live word.  Unless marked, the word corresponding to beg is assumed to
2639 // be dead.  Callers must either ensure beg does not correspond to the middle of
2640 // an object, or account for those live words in some other way.  Callers must
2641 // also ensure that there are enough live words in the range [beg, end) to skip.
2642 HeapWord*
2643 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2644 {
2645   assert(count > 0, "sanity");
2646 
2647   ParMarkBitMap* m = mark_bitmap();
2648   idx_t bits_to_skip = m->words_to_bits(count);
2649   idx_t cur_beg = m->addr_to_bit(beg);
2650   const idx_t search_end = m->align_range_end(m->addr_to_bit(end));
2651 
2652   do {
2653     cur_beg = m->find_obj_beg(cur_beg, search_end);
2654     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2655     const size_t obj_bits = cur_end - cur_beg + 1;
2656     if (obj_bits > bits_to_skip) {
2657       return m->bit_to_addr(cur_beg + bits_to_skip);
2658     }
2659     bits_to_skip -= obj_bits;
2660     cur_beg = cur_end + 1;
2661   } while (bits_to_skip > 0);
2662 
2663   // Skipping the desired number of words landed just past the end of an object.
2664   // Find the start of the next object.
2665   cur_beg = m->find_obj_beg(cur_beg, search_end);
2666   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2667   return m->bit_to_addr(cur_beg);
2668 }
2669 
2670 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2671                                             SpaceId src_space_id,
2672                                             size_t src_region_idx)
2673 {
2674   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2675 
2676   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2677   if (split_info.dest_region_addr() == dest_addr) {
2678     // The partial object ending at the split point contains the first word to
2679     // be copied to dest_addr.
2680     return split_info.first_src_addr();
2681   }
2682 
2683   const ParallelCompactData& sd = summary_data();
2684   ParMarkBitMap* const bitmap = mark_bitmap();
2685   const size_t RegionSize = ParallelCompactData::RegionSize;
2686 
2687   assert(sd.is_region_aligned(dest_addr), "not aligned");
2688   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2689   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2690   HeapWord* const src_region_destination = src_region_ptr->destination();
2691 
2692   assert(dest_addr >= src_region_destination, "wrong src region");
2693   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2694 
2695   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2696   HeapWord* const src_region_end = src_region_beg + RegionSize;
2697 
2698   HeapWord* addr = src_region_beg;
2699   if (dest_addr == src_region_destination) {
2700     // Return the first live word in the source region.
2701     if (partial_obj_size == 0) {
2702       addr = bitmap->find_obj_beg(addr, src_region_end);
2703       assert(addr < src_region_end, "no objects start in src region");
2704     }
2705     return addr;
2706   }
2707 
2708   // Must skip some live data.
2709   size_t words_to_skip = dest_addr - src_region_destination;
2710   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2711 
2712   if (partial_obj_size >= words_to_skip) {
2713     // All the live words to skip are part of the partial object.
2714     addr += words_to_skip;
2715     if (partial_obj_size == words_to_skip) {
2716       // Find the first live word past the partial object.
2717       addr = bitmap->find_obj_beg(addr, src_region_end);
2718       assert(addr < src_region_end, "wrong src region");
2719     }
2720     return addr;
2721   }
2722 
2723   // Skip over the partial object (if any).
2724   if (partial_obj_size != 0) {
2725     words_to_skip -= partial_obj_size;
2726     addr += partial_obj_size;
2727   }
2728 
2729   // Skip over live words due to objects that start in the region.
2730   addr = skip_live_words(addr, src_region_end, words_to_skip);
2731   assert(addr < src_region_end, "wrong src region");
2732   return addr;
2733 }
2734 
2735 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2736                                                      SpaceId src_space_id,
2737                                                      size_t beg_region,
2738                                                      HeapWord* end_addr)
2739 {
2740   ParallelCompactData& sd = summary_data();
2741 
2742 #ifdef ASSERT
2743   MutableSpace* const src_space = _space_info[src_space_id].space();
2744   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2745   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2746          "src_space_id does not match beg_addr");
2747   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2748          "src_space_id does not match end_addr");
2749 #endif // #ifdef ASSERT
2750 
2751   RegionData* const beg = sd.region(beg_region);
2752   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2753 
2754   // Regions up to new_top() are enqueued if they become available.
2755   HeapWord* const new_top = _space_info[src_space_id].new_top();
2756   RegionData* const enqueue_end =
2757     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2758 
2759   for (RegionData* cur = beg; cur < end; ++cur) {
2760     assert(cur->data_size() > 0, "region must have live data");
2761     cur->decrement_destination_count();
2762     if (cur < enqueue_end && cur->available() && cur->claim()) {
2763       if (cur->mark_normal()) {
2764         cm->push_region(sd.region(cur));
2765       } else if (cur->mark_copied()) {
2766         // Try to copy the content of the shadow region back to its corresponding
2767         // heap region if the shadow region is filled. Otherwise, the GC thread
2768         // fills the shadow region will copy the data back (see
2769         // MoveAndUpdateShadowClosure::complete_region).
2770         copy_back(sd.region_to_addr(cur->shadow_region()), sd.region_to_addr(cur));
2771         ParCompactionManager::push_shadow_region_mt_safe(cur->shadow_region());
2772         cur->set_completed();
2773       }
2774     }
2775   }
2776 }
2777 
2778 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2779                                           SpaceId& src_space_id,
2780                                           HeapWord*& src_space_top,
2781                                           HeapWord* end_addr)
2782 {
2783   typedef ParallelCompactData::RegionData RegionData;
2784 
2785   ParallelCompactData& sd = PSParallelCompact::summary_data();
2786   const size_t region_size = ParallelCompactData::RegionSize;
2787 
2788   size_t src_region_idx = 0;
2789 
2790   // Skip empty regions (if any) up to the top of the space.
2791   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2792   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2793   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2794   const RegionData* const top_region_ptr =
2795     sd.addr_to_region_ptr(top_aligned_up);
2796   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2797     ++src_region_ptr;
2798   }
2799 
2800   if (src_region_ptr < top_region_ptr) {
2801     // The next source region is in the current space.  Update src_region_idx
2802     // and the source address to match src_region_ptr.
2803     src_region_idx = sd.region(src_region_ptr);
2804     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2805     if (src_region_addr > closure.source()) {
2806       closure.set_source(src_region_addr);
2807     }
2808     return src_region_idx;
2809   }
2810 
2811   // Switch to a new source space and find the first non-empty region.
2812   unsigned int space_id = src_space_id + 1;
2813   assert(space_id < last_space_id, "not enough spaces");
2814 
2815   HeapWord* const destination = closure.destination();
2816 
2817   do {
2818     MutableSpace* space = _space_info[space_id].space();
2819     HeapWord* const bottom = space->bottom();
2820     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2821 
2822     // Iterate over the spaces that do not compact into themselves.
2823     if (bottom_cp->destination() != bottom) {
2824       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2825       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2826 
2827       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2828         if (src_cp->live_obj_size() > 0) {
2829           // Found it.
2830           assert(src_cp->destination() == destination,
2831                  "first live obj in the space must match the destination");
2832           assert(src_cp->partial_obj_size() == 0,
2833                  "a space cannot begin with a partial obj");
2834 
2835           src_space_id = SpaceId(space_id);
2836           src_space_top = space->top();
2837           const size_t src_region_idx = sd.region(src_cp);
2838           closure.set_source(sd.region_to_addr(src_region_idx));
2839           return src_region_idx;
2840         } else {
2841           assert(src_cp->data_size() == 0, "sanity");
2842         }
2843       }
2844     }
2845   } while (++space_id < last_space_id);
2846 
2847   assert(false, "no source region was found");
2848   return 0;
2849 }
2850 
2851 void PSParallelCompact::fill_region(ParCompactionManager* cm, MoveAndUpdateClosure& closure, size_t region_idx)
2852 {
2853   typedef ParMarkBitMap::IterationStatus IterationStatus;
2854   ParMarkBitMap* const bitmap = mark_bitmap();
2855   ParallelCompactData& sd = summary_data();
2856   RegionData* const region_ptr = sd.region(region_idx);
2857 
2858   // Get the source region and related info.
2859   size_t src_region_idx = region_ptr->source_region();
2860   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2861   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2862   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2863 
2864   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2865 
2866   // Adjust src_region_idx to prepare for decrementing destination counts (the
2867   // destination count is not decremented when a region is copied to itself).
2868   if (src_region_idx == region_idx) {
2869     src_region_idx += 1;
2870   }
2871 
2872   if (bitmap->is_unmarked(closure.source())) {
2873     // The first source word is in the middle of an object; copy the remainder
2874     // of the object or as much as will fit.  The fact that pointer updates were
2875     // deferred will be noted when the object header is processed.
2876     HeapWord* const old_src_addr = closure.source();
2877     closure.copy_partial_obj();
2878     if (closure.is_full()) {
2879       decrement_destination_counts(cm, src_space_id, src_region_idx,
2880                                    closure.source());
2881       closure.complete_region(cm, dest_addr, region_ptr);
2882       return;
2883     }
2884 
2885     HeapWord* const end_addr = sd.region_align_down(closure.source());
2886     if (sd.region_align_down(old_src_addr) != end_addr) {
2887       // The partial object was copied from more than one source region.
2888       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2889 
2890       // Move to the next source region, possibly switching spaces as well.  All
2891       // args except end_addr may be modified.
2892       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2893                                        end_addr);
2894     }
2895   }
2896 
2897   do {
2898     HeapWord* const cur_addr = closure.source();
2899     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
2900                                     src_space_top);
2901     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
2902 
2903     if (status == ParMarkBitMap::incomplete) {
2904       // The last obj that starts in the source region does not end in the
2905       // region.
2906       assert(closure.source() < end_addr, "sanity");
2907       HeapWord* const obj_beg = closure.source();
2908       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
2909                                        src_space_top);
2910       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
2911       if (obj_end < range_end) {
2912         // The end was found; the entire object will fit.
2913         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
2914         assert(status != ParMarkBitMap::would_overflow, "sanity");
2915       } else {
2916         // The end was not found; the object will not fit.
2917         assert(range_end < src_space_top, "obj cannot cross space boundary");
2918         status = ParMarkBitMap::would_overflow;
2919       }
2920     }
2921 
2922     if (status == ParMarkBitMap::would_overflow) {
2923       // The last object did not fit.  Note that interior oop updates were
2924       // deferred, then copy enough of the object to fill the region.
2925       cm->push_deferred_object(closure.destination());
2926       status = closure.copy_until_full(); // copies from closure.source()
2927 
2928       decrement_destination_counts(cm, src_space_id, src_region_idx,
2929                                    closure.source());
2930       closure.complete_region(cm, dest_addr, region_ptr);
2931       return;
2932     }
2933 
2934     if (status == ParMarkBitMap::full) {
2935       decrement_destination_counts(cm, src_space_id, src_region_idx,
2936                                    closure.source());
2937       closure.complete_region(cm, dest_addr, region_ptr);
2938       return;
2939     }
2940 
2941     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2942 
2943     // Move to the next source region, possibly switching spaces as well.  All
2944     // args except end_addr may be modified.
2945     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2946                                      end_addr);
2947   } while (true);
2948 }
2949 
2950 void PSParallelCompact::fill_and_update_region(ParCompactionManager* cm, size_t region_idx)
2951 {
2952   MoveAndUpdateClosure cl(mark_bitmap(), cm, region_idx);
2953   fill_region(cm, cl, region_idx);
2954 }
2955 
2956 void PSParallelCompact::fill_and_update_shadow_region(ParCompactionManager* cm, size_t region_idx)
2957 {
2958   // Get a shadow region first
2959   ParallelCompactData& sd = summary_data();
2960   RegionData* const region_ptr = sd.region(region_idx);
2961   size_t shadow_region = ParCompactionManager::pop_shadow_region_mt_safe(region_ptr);
2962   // The InvalidShadow return value indicates the corresponding heap region is available,
2963   // so use MoveAndUpdateClosure to fill the normal region. Otherwise, use
2964   // MoveAndUpdateShadowClosure to fill the acquired shadow region.
2965   if (shadow_region == ParCompactionManager::InvalidShadow) {
2966     MoveAndUpdateClosure cl(mark_bitmap(), cm, region_idx);
2967     region_ptr->shadow_to_normal();
2968     return fill_region(cm, cl, region_idx);
2969   } else {
2970     MoveAndUpdateShadowClosure cl(mark_bitmap(), cm, region_idx, shadow_region);
2971     return fill_region(cm, cl, region_idx);
2972   }
2973 }
2974 
2975 void PSParallelCompact::copy_back(HeapWord *shadow_addr, HeapWord *region_addr)
2976 {
2977   Copy::aligned_conjoint_words(shadow_addr, region_addr, _summary_data.RegionSize);
2978 }
2979 
2980 bool PSParallelCompact::steal_unavailable_region(ParCompactionManager* cm, size_t &region_idx)
2981 {
2982   size_t next = cm->next_shadow_region();
2983   ParallelCompactData& sd = summary_data();
2984   size_t old_new_top = sd.addr_to_region_idx(_space_info[old_space_id].new_top());
2985   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
2986 
2987   while (next < old_new_top) {
2988     if (sd.region(next)->mark_shadow()) {
2989       region_idx = next;
2990       return true;
2991     }
2992     next = cm->move_next_shadow_region_by(active_gc_threads);
2993   }
2994 
2995   return false;
2996 }
2997 
2998 // The shadow region is an optimization to address region dependencies in full GC. The basic
2999 // idea is making more regions available by temporally storing their live objects in empty
3000 // shadow regions to resolve dependencies between them and the destination regions. Therefore,
3001 // GC threads need not wait destination regions to be available before processing sources.
3002 //
3003 // A typical workflow would be:
3004 // After draining its own stack and failing to steal from others, a GC worker would pick an
3005 // unavailable region (destination count > 0) and get a shadow region. Then the worker fills
3006 // the shadow region by copying live objects from source regions of the unavailable one. Once
3007 // the unavailable region becomes available, the data in the shadow region will be copied back.
3008 // Shadow regions are empty regions in the to-space and regions between top and end of other spaces.
3009 void PSParallelCompact::initialize_shadow_regions(uint parallel_gc_threads)
3010 {
3011   const ParallelCompactData& sd = PSParallelCompact::summary_data();
3012 
3013   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
3014     SpaceInfo* const space_info = _space_info + id;
3015     MutableSpace* const space = space_info->space();
3016 
3017     const size_t beg_region =
3018       sd.addr_to_region_idx(sd.region_align_up(MAX2(space_info->new_top(), space->top())));
3019     const size_t end_region =
3020       sd.addr_to_region_idx(sd.region_align_down(space->end()));
3021 
3022     for (size_t cur = beg_region; cur < end_region; ++cur) {
3023       ParCompactionManager::push_shadow_region(cur);
3024     }
3025   }
3026 
3027   size_t beg_region = sd.addr_to_region_idx(_space_info[old_space_id].dense_prefix());
3028   for (uint i = 0; i < parallel_gc_threads; i++) {
3029     ParCompactionManager *cm = ParCompactionManager::gc_thread_compaction_manager(i);
3030     cm->set_next_shadow_region(beg_region + i);
3031   }
3032 }
3033 
3034 void PSParallelCompact::fill_blocks(size_t region_idx)
3035 {
3036   // Fill in the block table elements for the specified region.  Each block
3037   // table element holds the number of live words in the region that are to the
3038   // left of the first object that starts in the block.  Thus only blocks in
3039   // which an object starts need to be filled.
3040   //
3041   // The algorithm scans the section of the bitmap that corresponds to the
3042   // region, keeping a running total of the live words.  When an object start is
3043   // found, if it's the first to start in the block that contains it, the
3044   // current total is written to the block table element.
3045   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
3046   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
3047   const size_t RegionSize = ParallelCompactData::RegionSize;
3048 
3049   ParallelCompactData& sd = summary_data();
3050   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
3051   if (partial_obj_size >= RegionSize) {
3052     return; // No objects start in this region.
3053   }
3054 
3055   // Ensure the first loop iteration decides that the block has changed.
3056   size_t cur_block = sd.block_count();
3057 
3058   const ParMarkBitMap* const bitmap = mark_bitmap();
3059 
3060   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
3061   assert((size_t)1 << Log2BitsPerBlock ==
3062          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
3063 
3064   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
3065   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
3066   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
3067   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
3068   while (beg_bit < range_end) {
3069     const size_t new_block = beg_bit >> Log2BitsPerBlock;
3070     if (new_block != cur_block) {
3071       cur_block = new_block;
3072       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
3073     }
3074 
3075     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
3076     if (end_bit < range_end - 1) {
3077       live_bits += end_bit - beg_bit + 1;
3078       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
3079     } else {
3080       return;
3081     }
3082   }
3083 }
3084 
3085 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3086 {
3087   if (source() != copy_destination()) {
3088     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3089     Copy::aligned_conjoint_words(source(), copy_destination(), words_remaining());
3090   }
3091   update_state(words_remaining());
3092   assert(is_full(), "sanity");
3093   return ParMarkBitMap::full;
3094 }
3095 
3096 void MoveAndUpdateClosure::copy_partial_obj()
3097 {
3098   size_t words = words_remaining();
3099 
3100   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3101   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3102   if (end_addr < range_end) {
3103     words = bitmap()->obj_size(source(), end_addr);
3104   }
3105 
3106   // This test is necessary; if omitted, the pointer updates to a partial object
3107   // that crosses the dense prefix boundary could be overwritten.
3108   if (source() != copy_destination()) {
3109     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3110     Copy::aligned_conjoint_words(source(), copy_destination(), words);
3111   }
3112   update_state(words);
3113 }
3114 
3115 void MoveAndUpdateClosure::complete_region(ParCompactionManager *cm, HeapWord *dest_addr,
3116                                            PSParallelCompact::RegionData *region_ptr) {
3117   assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::NormalRegion, "Region should be finished");
3118   region_ptr->set_completed();
3119 }
3120 
3121 ParMarkBitMapClosure::IterationStatus
3122 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3123   assert(destination() != nullptr, "sanity");
3124   assert(bitmap()->obj_size(addr) == words, "bad size");
3125 
3126   _source = addr;
3127   assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) ==
3128          destination(), "wrong destination");
3129 
3130   if (words > words_remaining()) {
3131     return ParMarkBitMap::would_overflow;
3132   }
3133 
3134   // The start_array must be updated even if the object is not moving.
3135   if (_start_array != nullptr) {
3136     _start_array->update_for_block(destination(), destination() + words);
3137   }
3138 
3139   if (copy_destination() != source()) {
3140     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3141     Copy::aligned_conjoint_words(source(), copy_destination(), words);
3142   }
3143 
3144   oop moved_oop = cast_to_oop(copy_destination());
3145   compaction_manager()->update_contents(moved_oop);
3146   assert(oopDesc::is_oop_or_null(moved_oop), "Expected an oop or null at " PTR_FORMAT, p2i(moved_oop));
3147 
3148   update_state(words);
3149   assert(copy_destination() == cast_from_oop<HeapWord*>(moved_oop) + moved_oop->size(), "sanity");
3150   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3151 }
3152 
3153 void MoveAndUpdateShadowClosure::complete_region(ParCompactionManager *cm, HeapWord *dest_addr,
3154                                                  PSParallelCompact::RegionData *region_ptr) {
3155   assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::ShadowRegion, "Region should be shadow");
3156   // Record the shadow region index
3157   region_ptr->set_shadow_region(_shadow);
3158   // Mark the shadow region as filled to indicate the data is ready to be
3159   // copied back
3160   region_ptr->mark_filled();
3161   // Try to copy the content of the shadow region back to its corresponding
3162   // heap region if available; the GC thread that decreases the destination
3163   // count to zero will do the copying otherwise (see
3164   // PSParallelCompact::decrement_destination_counts).
3165   if (((region_ptr->available() && region_ptr->claim()) || region_ptr->claimed()) && region_ptr->mark_copied()) {
3166     region_ptr->set_completed();
3167     PSParallelCompact::copy_back(PSParallelCompact::summary_data().region_to_addr(_shadow), dest_addr);
3168     ParCompactionManager::push_shadow_region_mt_safe(_shadow);
3169   }
3170 }
3171 
3172 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3173                                      ParCompactionManager* cm,
3174                                      PSParallelCompact::SpaceId space_id) :
3175   ParMarkBitMapClosure(mbm, cm),
3176   _start_array(PSParallelCompact::start_array(space_id))
3177 {
3178 }
3179 
3180 // Updates the references in the object to their new values.
3181 ParMarkBitMapClosure::IterationStatus
3182 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3183   do_addr(addr);
3184   return ParMarkBitMap::incomplete;
3185 }
3186 
3187 FillClosure::FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
3188   ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
3189   _start_array(PSParallelCompact::start_array(space_id))
3190 {
3191   assert(space_id == PSParallelCompact::old_space_id,
3192          "cannot use FillClosure in the young gen");
3193 }
3194 
3195 ParMarkBitMapClosure::IterationStatus
3196 FillClosure::do_addr(HeapWord* addr, size_t size) {
3197   CollectedHeap::fill_with_objects(addr, size);
3198   HeapWord* const end = addr + size;
3199   do {
3200     size_t size = cast_to_oop(addr)->size();
3201     _start_array->update_for_block(addr, addr + size);
3202     addr += size;
3203   } while (addr < end);
3204   return ParMarkBitMap::incomplete;
3205 }