1 /*
  2  * Copyright (c) 2018, 2023, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "code/vmreg.inline.hpp"
 27 #include "gc/shared/barrierSet.hpp"
 28 #include "gc/shared/tlab_globals.hpp"
 29 #include "gc/shared/c2/barrierSetC2.hpp"
 30 #include "opto/arraycopynode.hpp"
 31 #include "opto/block.hpp"
 32 #include "opto/convertnode.hpp"
 33 #include "opto/graphKit.hpp"
 34 #include "opto/idealKit.hpp"
 35 #include "opto/macro.hpp"
 36 #include "opto/narrowptrnode.hpp"
 37 #include "opto/output.hpp"
 38 #include "opto/regalloc.hpp"
 39 #include "opto/runtime.hpp"
 40 #include "utilities/macros.hpp"
 41 #include CPU_HEADER(gc/shared/barrierSetAssembler)
 42 
 43 // By default this is a no-op.
 44 void BarrierSetC2::resolve_address(C2Access& access) const { }
 45 
 46 void* C2ParseAccess::barrier_set_state() const {
 47   return _kit->barrier_set_state();
 48 }
 49 
 50 PhaseGVN& C2ParseAccess::gvn() const { return _kit->gvn(); }
 51 
 52 bool C2Access::needs_cpu_membar() const {
 53   bool mismatched   = (_decorators & C2_MISMATCHED) != 0;
 54   bool is_unordered = (_decorators & MO_UNORDERED) != 0;
 55 
 56   bool anonymous = (_decorators & C2_UNSAFE_ACCESS) != 0;
 57   bool in_heap   = (_decorators & IN_HEAP) != 0;
 58   bool in_native = (_decorators & IN_NATIVE) != 0;
 59   bool is_mixed  = !in_heap && !in_native;
 60 
 61   bool is_write  = (_decorators & C2_WRITE_ACCESS) != 0;
 62   bool is_read   = (_decorators & C2_READ_ACCESS) != 0;
 63   bool is_atomic = is_read && is_write;
 64 
 65   if (is_atomic) {
 66     // Atomics always need to be wrapped in CPU membars
 67     return true;
 68   }
 69 
 70   if (anonymous) {
 71     // We will need memory barriers unless we can determine a unique
 72     // alias category for this reference.  (Note:  If for some reason
 73     // the barriers get omitted and the unsafe reference begins to "pollute"
 74     // the alias analysis of the rest of the graph, either Compile::can_alias
 75     // or Compile::must_alias will throw a diagnostic assert.)
 76     if (is_mixed || !is_unordered || (mismatched && !_addr.type()->isa_aryptr())) {
 77       return true;
 78     }
 79   } else {
 80     assert(!is_mixed, "not unsafe");
 81   }
 82 
 83   return false;
 84 }
 85 
 86 static BarrierSetC2State* barrier_set_state() {
 87   return reinterpret_cast<BarrierSetC2State*>(Compile::current()->barrier_set_state());
 88 }
 89 
 90 RegMask& BarrierStubC2::live() const {
 91   return *barrier_set_state()->live(_node);
 92 }
 93 
 94 BarrierStubC2::BarrierStubC2(const MachNode* node)
 95   : _node(node),
 96     _entry(),
 97     _continuation(),
 98     _preserve(live()) {}
 99 
100 Label* BarrierStubC2::entry() {
101   // The _entry will never be bound when in_scratch_emit_size() is true.
102   // However, we still need to return a label that is not bound now, but
103   // will eventually be bound. Any eventually bound label will do, as it
104   // will only act as a placeholder, so we return the _continuation label.
105   return Compile::current()->output()->in_scratch_emit_size() ? &_continuation : &_entry;
106 }
107 
108 Label* BarrierStubC2::continuation() {
109   return &_continuation;
110 }
111 
112 uint8_t BarrierStubC2::barrier_data() const {
113   return _node->barrier_data();
114 }
115 
116 void BarrierStubC2::preserve(Register r) {
117   const VMReg vm_reg = r->as_VMReg();
118   assert(vm_reg->is_Register(), "r must be a general-purpose register");
119   _preserve.Insert(OptoReg::as_OptoReg(vm_reg));
120 }
121 
122 void BarrierStubC2::dont_preserve(Register r) {
123   VMReg vm_reg = r->as_VMReg();
124   assert(vm_reg->is_Register(), "r must be a general-purpose register");
125   // Subtract the given register and all its sub-registers (e.g. {R11, R11_H}
126   // for r11 in aarch64).
127   do {
128     _preserve.Remove(OptoReg::as_OptoReg(vm_reg));
129     vm_reg = vm_reg->next();
130   } while (vm_reg->is_Register() && !vm_reg->is_concrete());
131 }
132 
133 const RegMask& BarrierStubC2::preserve_set() const {
134   return _preserve;
135 }
136 
137 Node* BarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
138   DecoratorSet decorators = access.decorators();
139 
140   bool mismatched = (decorators & C2_MISMATCHED) != 0;
141   bool unaligned = (decorators & C2_UNALIGNED) != 0;
142   bool unsafe = (decorators & C2_UNSAFE_ACCESS) != 0;
143   bool requires_atomic_access = (decorators & MO_UNORDERED) == 0;
144 
145   MemNode::MemOrd mo = access.mem_node_mo();
146 
147   Node* store;
148   BasicType bt = access.type();
149   if (access.is_parse_access()) {
150     C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
151 
152     GraphKit* kit = parse_access.kit();
153     if (bt == T_DOUBLE) {
154       Node* new_val = kit->dprecision_rounding(val.node());
155       val.set_node(new_val);
156     }
157 
158     store = kit->store_to_memory(kit->control(), access.addr().node(), val.node(), bt,
159                                  access.addr().type(), mo, requires_atomic_access, unaligned,
160                                  mismatched, unsafe, access.barrier_data());
161   } else {
162     assert(access.is_opt_access(), "either parse or opt access");
163     C2OptAccess& opt_access = static_cast<C2OptAccess&>(access);
164     Node* ctl = opt_access.ctl();
165     MergeMemNode* mm = opt_access.mem();
166     PhaseGVN& gvn = opt_access.gvn();
167     const TypePtr* adr_type = access.addr().type();
168     int alias = gvn.C->get_alias_index(adr_type);
169     Node* mem = mm->memory_at(alias);
170 
171     StoreNode* st = StoreNode::make(gvn, ctl, mem, access.addr().node(), adr_type, val.node(), bt, mo, requires_atomic_access);
172     if (unaligned) {
173       st->set_unaligned_access();
174     }
175     if (mismatched) {
176       st->set_mismatched_access();
177     }
178     st->set_barrier_data(access.barrier_data());
179     store = gvn.transform(st);
180     if (store == st) {
181       mm->set_memory_at(alias, st);
182     }
183   }
184   access.set_raw_access(store);
185 
186   return store;
187 }
188 
189 Node* BarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
190   DecoratorSet decorators = access.decorators();
191 
192   Node* adr = access.addr().node();
193   const TypePtr* adr_type = access.addr().type();
194 
195   bool mismatched = (decorators & C2_MISMATCHED) != 0;
196   bool requires_atomic_access = (decorators & MO_UNORDERED) == 0;
197   bool unaligned = (decorators & C2_UNALIGNED) != 0;
198   bool control_dependent = (decorators & C2_CONTROL_DEPENDENT_LOAD) != 0;
199   bool unknown_control = (decorators & C2_UNKNOWN_CONTROL_LOAD) != 0;
200   bool unsafe = (decorators & C2_UNSAFE_ACCESS) != 0;
201   bool immutable = (decorators & C2_IMMUTABLE_MEMORY) != 0;
202 
203   MemNode::MemOrd mo = access.mem_node_mo();
204   LoadNode::ControlDependency dep = unknown_control ? LoadNode::UnknownControl : LoadNode::DependsOnlyOnTest;
205 
206   Node* load;
207   if (access.is_parse_access()) {
208     C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
209     GraphKit* kit = parse_access.kit();
210     Node* control = control_dependent ? kit->control() : nullptr;
211 
212     if (immutable) {
213       Compile* C = Compile::current();
214       Node* mem = kit->immutable_memory();
215       load = LoadNode::make(kit->gvn(), control, mem, adr,
216                             adr_type, val_type, access.type(), mo, dep, requires_atomic_access,
217                             unaligned, mismatched, unsafe, access.barrier_data());
218       load = kit->gvn().transform(load);
219     } else {
220       load = kit->make_load(control, adr, val_type, access.type(), adr_type, mo,
221                             dep, requires_atomic_access, unaligned, mismatched, unsafe,
222                             access.barrier_data());
223     }
224   } else {
225     assert(access.is_opt_access(), "either parse or opt access");
226     C2OptAccess& opt_access = static_cast<C2OptAccess&>(access);
227     Node* control = control_dependent ? opt_access.ctl() : nullptr;
228     MergeMemNode* mm = opt_access.mem();
229     PhaseGVN& gvn = opt_access.gvn();
230     Node* mem = mm->memory_at(gvn.C->get_alias_index(adr_type));
231     load = LoadNode::make(gvn, control, mem, adr, adr_type, val_type, access.type(), mo, dep,
232                           requires_atomic_access, unaligned, mismatched, unsafe, access.barrier_data());
233     load = gvn.transform(load);
234   }
235   access.set_raw_access(load);
236 
237   return load;
238 }
239 
240 class C2AccessFence: public StackObj {
241   C2Access& _access;
242   Node* _leading_membar;
243 
244 public:
245   C2AccessFence(C2Access& access) :
246     _access(access), _leading_membar(nullptr) {
247     GraphKit* kit = nullptr;
248     if (access.is_parse_access()) {
249       C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
250       kit = parse_access.kit();
251     }
252     DecoratorSet decorators = access.decorators();
253 
254     bool is_write = (decorators & C2_WRITE_ACCESS) != 0;
255     bool is_read = (decorators & C2_READ_ACCESS) != 0;
256     bool is_atomic = is_read && is_write;
257 
258     bool is_volatile = (decorators & MO_SEQ_CST) != 0;
259     bool is_release = (decorators & MO_RELEASE) != 0;
260 
261     if (is_atomic) {
262       assert(kit != nullptr, "unsupported at optimization time");
263       // Memory-model-wise, a LoadStore acts like a little synchronized
264       // block, so needs barriers on each side.  These don't translate
265       // into actual barriers on most machines, but we still need rest of
266       // compiler to respect ordering.
267       if (is_release) {
268         _leading_membar = kit->insert_mem_bar(Op_MemBarRelease);
269       } else if (is_volatile) {
270         if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
271           _leading_membar = kit->insert_mem_bar(Op_MemBarVolatile);
272         } else {
273           _leading_membar = kit->insert_mem_bar(Op_MemBarRelease);
274         }
275       }
276     } else if (is_write) {
277       // If reference is volatile, prevent following memory ops from
278       // floating down past the volatile write.  Also prevents commoning
279       // another volatile read.
280       if (is_volatile || is_release) {
281         assert(kit != nullptr, "unsupported at optimization time");
282         _leading_membar = kit->insert_mem_bar(Op_MemBarRelease);
283       }
284     } else {
285       // Memory barrier to prevent normal and 'unsafe' accesses from
286       // bypassing each other.  Happens after null checks, so the
287       // exception paths do not take memory state from the memory barrier,
288       // so there's no problems making a strong assert about mixing users
289       // of safe & unsafe memory.
290       if (is_volatile && support_IRIW_for_not_multiple_copy_atomic_cpu) {
291         assert(kit != nullptr, "unsupported at optimization time");
292         _leading_membar = kit->insert_mem_bar(Op_MemBarVolatile);
293       }
294     }
295 
296     if (access.needs_cpu_membar()) {
297       assert(kit != nullptr, "unsupported at optimization time");
298       kit->insert_mem_bar(Op_MemBarCPUOrder);
299     }
300 
301     if (is_atomic) {
302       // 4984716: MemBars must be inserted before this
303       //          memory node in order to avoid a false
304       //          dependency which will confuse the scheduler.
305       access.set_memory();
306     }
307   }
308 
309   ~C2AccessFence() {
310     GraphKit* kit = nullptr;
311     if (_access.is_parse_access()) {
312       C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(_access);
313       kit = parse_access.kit();
314     }
315     DecoratorSet decorators = _access.decorators();
316 
317     bool is_write = (decorators & C2_WRITE_ACCESS) != 0;
318     bool is_read = (decorators & C2_READ_ACCESS) != 0;
319     bool is_atomic = is_read && is_write;
320 
321     bool is_volatile = (decorators & MO_SEQ_CST) != 0;
322     bool is_acquire = (decorators & MO_ACQUIRE) != 0;
323 
324     // If reference is volatile, prevent following volatiles ops from
325     // floating up before the volatile access.
326     if (_access.needs_cpu_membar()) {
327       kit->insert_mem_bar(Op_MemBarCPUOrder);
328     }
329 
330     if (is_atomic) {
331       assert(kit != nullptr, "unsupported at optimization time");
332       if (is_acquire || is_volatile) {
333         Node* n = _access.raw_access();
334         Node* mb = kit->insert_mem_bar(Op_MemBarAcquire, n);
335         if (_leading_membar != nullptr) {
336           MemBarNode::set_load_store_pair(_leading_membar->as_MemBar(), mb->as_MemBar());
337         }
338       }
339     } else if (is_write) {
340       // If not multiple copy atomic, we do the MemBarVolatile before the load.
341       if (is_volatile && !support_IRIW_for_not_multiple_copy_atomic_cpu) {
342         assert(kit != nullptr, "unsupported at optimization time");
343         Node* n = _access.raw_access();
344         Node* mb = kit->insert_mem_bar(Op_MemBarVolatile, n); // Use fat membar
345         if (_leading_membar != nullptr) {
346           MemBarNode::set_store_pair(_leading_membar->as_MemBar(), mb->as_MemBar());
347         }
348       }
349     } else {
350       if (is_volatile || is_acquire) {
351         assert(kit != nullptr, "unsupported at optimization time");
352         Node* n = _access.raw_access();
353         assert(_leading_membar == nullptr || support_IRIW_for_not_multiple_copy_atomic_cpu, "no leading membar expected");
354         Node* mb = kit->insert_mem_bar(Op_MemBarAcquire, n);
355         mb->as_MemBar()->set_trailing_load();
356       }
357     }
358   }
359 };
360 
361 Node* BarrierSetC2::store_at(C2Access& access, C2AccessValue& val) const {
362   C2AccessFence fence(access);
363   resolve_address(access);
364   return store_at_resolved(access, val);
365 }
366 
367 Node* BarrierSetC2::load_at(C2Access& access, const Type* val_type) const {
368   C2AccessFence fence(access);
369   resolve_address(access);
370   return load_at_resolved(access, val_type);
371 }
372 
373 MemNode::MemOrd C2Access::mem_node_mo() const {
374   bool is_write = (_decorators & C2_WRITE_ACCESS) != 0;
375   bool is_read = (_decorators & C2_READ_ACCESS) != 0;
376   if ((_decorators & MO_SEQ_CST) != 0) {
377     if (is_write && is_read) {
378       // For atomic operations
379       return MemNode::seqcst;
380     } else if (is_write) {
381       return MemNode::release;
382     } else {
383       assert(is_read, "what else?");
384       return MemNode::acquire;
385     }
386   } else if ((_decorators & MO_RELEASE) != 0) {
387     return MemNode::release;
388   } else if ((_decorators & MO_ACQUIRE) != 0) {
389     return MemNode::acquire;
390   } else if (is_write) {
391     // Volatile fields need releasing stores.
392     // Non-volatile fields also need releasing stores if they hold an
393     // object reference, because the object reference might point to
394     // a freshly created object.
395     // Conservatively release stores of object references.
396     return StoreNode::release_if_reference(_type);
397   } else {
398     return MemNode::unordered;
399   }
400 }
401 
402 void C2Access::fixup_decorators() {
403   bool default_mo = (_decorators & MO_DECORATOR_MASK) == 0;
404   bool is_unordered = (_decorators & MO_UNORDERED) != 0 || default_mo;
405   bool anonymous = (_decorators & C2_UNSAFE_ACCESS) != 0;
406 
407   bool is_read = (_decorators & C2_READ_ACCESS) != 0;
408   bool is_write = (_decorators & C2_WRITE_ACCESS) != 0;
409 
410   if (AlwaysAtomicAccesses && is_unordered) {
411     _decorators &= ~MO_DECORATOR_MASK; // clear the MO bits
412     _decorators |= MO_RELAXED; // Force the MO_RELAXED decorator with AlwaysAtomicAccess
413   }
414 
415   _decorators = AccessInternal::decorator_fixup(_decorators, _type);
416 
417   if (is_read && !is_write && anonymous) {
418     // To be valid, unsafe loads may depend on other conditions than
419     // the one that guards them: pin the Load node
420     _decorators |= C2_CONTROL_DEPENDENT_LOAD;
421     _decorators |= C2_UNKNOWN_CONTROL_LOAD;
422     const TypePtr* adr_type = _addr.type();
423     Node* adr = _addr.node();
424     if (!needs_cpu_membar() && adr_type->isa_instptr()) {
425       assert(adr_type->meet(TypePtr::NULL_PTR) != adr_type->remove_speculative(), "should be not null");
426       intptr_t offset = Type::OffsetBot;
427       AddPNode::Ideal_base_and_offset(adr, &gvn(), offset);
428       if (offset >= 0) {
429         int s = Klass::layout_helper_size_in_bytes(adr_type->isa_instptr()->instance_klass()->layout_helper());
430         if (offset < s) {
431           // Guaranteed to be a valid access, no need to pin it
432           _decorators ^= C2_CONTROL_DEPENDENT_LOAD;
433           _decorators ^= C2_UNKNOWN_CONTROL_LOAD;
434         }
435       }
436     }
437   }
438 }
439 
440 //--------------------------- atomic operations---------------------------------
441 
442 void BarrierSetC2::pin_atomic_op(C2AtomicParseAccess& access) const {
443   // SCMemProjNodes represent the memory state of a LoadStore. Their
444   // main role is to prevent LoadStore nodes from being optimized away
445   // when their results aren't used.
446   assert(access.is_parse_access(), "entry not supported at optimization time");
447   C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
448   GraphKit* kit = parse_access.kit();
449   Node* load_store = access.raw_access();
450   assert(load_store != nullptr, "must pin atomic op");
451   Node* proj = kit->gvn().transform(new SCMemProjNode(load_store));
452   kit->set_memory(proj, access.alias_idx());
453 }
454 
455 void C2AtomicParseAccess::set_memory() {
456   Node *mem = _kit->memory(_alias_idx);
457   _memory = mem;
458 }
459 
460 Node* BarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
461                                                    Node* new_val, const Type* value_type) const {
462   GraphKit* kit = access.kit();
463   MemNode::MemOrd mo = access.mem_node_mo();
464   Node* mem = access.memory();
465 
466   Node* adr = access.addr().node();
467   const TypePtr* adr_type = access.addr().type();
468 
469   Node* load_store = nullptr;
470 
471   if (access.is_oop()) {
472 #ifdef _LP64
473     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
474       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
475       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
476       load_store = new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo);
477     } else
478 #endif
479     {
480       load_store = new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo);
481     }
482   } else {
483     switch (access.type()) {
484       case T_BYTE: {
485         load_store = new CompareAndExchangeBNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo);
486         break;
487       }
488       case T_SHORT: {
489         load_store = new CompareAndExchangeSNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo);
490         break;
491       }
492       case T_INT: {
493         load_store = new CompareAndExchangeINode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo);
494         break;
495       }
496       case T_LONG: {
497         load_store = new CompareAndExchangeLNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo);
498         break;
499       }
500       default:
501         ShouldNotReachHere();
502     }
503   }
504 
505   load_store->as_LoadStore()->set_barrier_data(access.barrier_data());
506   load_store = kit->gvn().transform(load_store);
507 
508   access.set_raw_access(load_store);
509   pin_atomic_op(access);
510 
511 #ifdef _LP64
512   if (access.is_oop() && adr->bottom_type()->is_ptr_to_narrowoop()) {
513     return kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
514   }
515 #endif
516 
517   return load_store;
518 }
519 
520 Node* BarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
521                                                     Node* new_val, const Type* value_type) const {
522   GraphKit* kit = access.kit();
523   DecoratorSet decorators = access.decorators();
524   MemNode::MemOrd mo = access.mem_node_mo();
525   Node* mem = access.memory();
526   bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0;
527   Node* load_store = nullptr;
528   Node* adr = access.addr().node();
529 
530   if (access.is_oop()) {
531 #ifdef _LP64
532     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
533       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
534       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
535       if (is_weak_cas) {
536         load_store = new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo);
537       } else {
538         load_store = new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo);
539       }
540     } else
541 #endif
542     {
543       if (is_weak_cas) {
544         load_store = new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo);
545       } else {
546         load_store = new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo);
547       }
548     }
549   } else {
550     switch(access.type()) {
551       case T_BYTE: {
552         if (is_weak_cas) {
553           load_store = new WeakCompareAndSwapBNode(kit->control(), mem, adr, new_val, expected_val, mo);
554         } else {
555           load_store = new CompareAndSwapBNode(kit->control(), mem, adr, new_val, expected_val, mo);
556         }
557         break;
558       }
559       case T_SHORT: {
560         if (is_weak_cas) {
561           load_store = new WeakCompareAndSwapSNode(kit->control(), mem, adr, new_val, expected_val, mo);
562         } else {
563           load_store = new CompareAndSwapSNode(kit->control(), mem, adr, new_val, expected_val, mo);
564         }
565         break;
566       }
567       case T_INT: {
568         if (is_weak_cas) {
569           load_store = new WeakCompareAndSwapINode(kit->control(), mem, adr, new_val, expected_val, mo);
570         } else {
571           load_store = new CompareAndSwapINode(kit->control(), mem, adr, new_val, expected_val, mo);
572         }
573         break;
574       }
575       case T_LONG: {
576         if (is_weak_cas) {
577           load_store = new WeakCompareAndSwapLNode(kit->control(), mem, adr, new_val, expected_val, mo);
578         } else {
579           load_store = new CompareAndSwapLNode(kit->control(), mem, adr, new_val, expected_val, mo);
580         }
581         break;
582       }
583       default:
584         ShouldNotReachHere();
585     }
586   }
587 
588   load_store->as_LoadStore()->set_barrier_data(access.barrier_data());
589   load_store = kit->gvn().transform(load_store);
590 
591   access.set_raw_access(load_store);
592   pin_atomic_op(access);
593 
594   return load_store;
595 }
596 
597 Node* BarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* new_val, const Type* value_type) const {
598   GraphKit* kit = access.kit();
599   Node* mem = access.memory();
600   Node* adr = access.addr().node();
601   const TypePtr* adr_type = access.addr().type();
602   Node* load_store = nullptr;
603 
604   if (access.is_oop()) {
605 #ifdef _LP64
606     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
607       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
608       load_store = kit->gvn().transform(new GetAndSetNNode(kit->control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
609     } else
610 #endif
611     {
612       load_store = new GetAndSetPNode(kit->control(), mem, adr, new_val, adr_type, value_type->is_oopptr());
613     }
614   } else  {
615     switch (access.type()) {
616       case T_BYTE:
617         load_store = new GetAndSetBNode(kit->control(), mem, adr, new_val, adr_type);
618         break;
619       case T_SHORT:
620         load_store = new GetAndSetSNode(kit->control(), mem, adr, new_val, adr_type);
621         break;
622       case T_INT:
623         load_store = new GetAndSetINode(kit->control(), mem, adr, new_val, adr_type);
624         break;
625       case T_LONG:
626         load_store = new GetAndSetLNode(kit->control(), mem, adr, new_val, adr_type);
627         break;
628       default:
629         ShouldNotReachHere();
630     }
631   }
632 
633   load_store->as_LoadStore()->set_barrier_data(access.barrier_data());
634   load_store = kit->gvn().transform(load_store);
635 
636   access.set_raw_access(load_store);
637   pin_atomic_op(access);
638 
639 #ifdef _LP64
640   if (access.is_oop() && adr->bottom_type()->is_ptr_to_narrowoop()) {
641     return kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
642   }
643 #endif
644 
645   return load_store;
646 }
647 
648 Node* BarrierSetC2::atomic_add_at_resolved(C2AtomicParseAccess& access, Node* new_val, const Type* value_type) const {
649   Node* load_store = nullptr;
650   GraphKit* kit = access.kit();
651   Node* adr = access.addr().node();
652   const TypePtr* adr_type = access.addr().type();
653   Node* mem = access.memory();
654 
655   switch(access.type()) {
656     case T_BYTE:
657       load_store = new GetAndAddBNode(kit->control(), mem, adr, new_val, adr_type);
658       break;
659     case T_SHORT:
660       load_store = new GetAndAddSNode(kit->control(), mem, adr, new_val, adr_type);
661       break;
662     case T_INT:
663       load_store = new GetAndAddINode(kit->control(), mem, adr, new_val, adr_type);
664       break;
665     case T_LONG:
666       load_store = new GetAndAddLNode(kit->control(), mem, adr, new_val, adr_type);
667       break;
668     default:
669       ShouldNotReachHere();
670   }
671 
672   load_store->as_LoadStore()->set_barrier_data(access.barrier_data());
673   load_store = kit->gvn().transform(load_store);
674 
675   access.set_raw_access(load_store);
676   pin_atomic_op(access);
677 
678   return load_store;
679 }
680 
681 Node* BarrierSetC2::atomic_cmpxchg_val_at(C2AtomicParseAccess& access, Node* expected_val,
682                                           Node* new_val, const Type* value_type) const {
683   C2AccessFence fence(access);
684   resolve_address(access);
685   return atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
686 }
687 
688 Node* BarrierSetC2::atomic_cmpxchg_bool_at(C2AtomicParseAccess& access, Node* expected_val,
689                                            Node* new_val, const Type* value_type) const {
690   C2AccessFence fence(access);
691   resolve_address(access);
692   return atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
693 }
694 
695 Node* BarrierSetC2::atomic_xchg_at(C2AtomicParseAccess& access, Node* new_val, const Type* value_type) const {
696   C2AccessFence fence(access);
697   resolve_address(access);
698   return atomic_xchg_at_resolved(access, new_val, value_type);
699 }
700 
701 Node* BarrierSetC2::atomic_add_at(C2AtomicParseAccess& access, Node* new_val, const Type* value_type) const {
702   C2AccessFence fence(access);
703   resolve_address(access);
704   return atomic_add_at_resolved(access, new_val, value_type);
705 }
706 
707 int BarrierSetC2::arraycopy_payload_base_offset(bool is_array) {
708   // Exclude the header but include array length to copy by 8 bytes words.
709   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
710   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
711                             instanceOopDesc::base_offset_in_bytes();
712   // base_off:
713   // 8  - 32-bit VM
714   // 12 - 64-bit VM, compressed klass
715   // 16 - 64-bit VM, normal klass
716   if (base_off % BytesPerLong != 0) {
717     assert(UseCompressedClassPointers, "");
718     if (is_array) {
719       // Exclude length to copy by 8 bytes words.
720       base_off += sizeof(int);
721     } else {
722       // Include klass to copy by 8 bytes words.
723       base_off = instanceOopDesc::klass_offset_in_bytes();
724     }
725     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
726   }
727   return base_off;
728 }
729 
730 void BarrierSetC2::clone(GraphKit* kit, Node* src_base, Node* dst_base, Node* size, bool is_array) const {
731   int base_off = arraycopy_payload_base_offset(is_array);
732   Node* payload_size = size;
733   Node* offset = kit->MakeConX(base_off);
734   payload_size = kit->gvn().transform(new SubXNode(payload_size, offset));
735   if (is_array) {
736     // Ensure the array payload size is rounded up to the next BytesPerLong
737     // multiple when converting to double-words. This is necessary because array
738     // size does not include object alignment padding, so it might not be a
739     // multiple of BytesPerLong for sub-long element types.
740     payload_size = kit->gvn().transform(new AddXNode(payload_size, kit->MakeConX(BytesPerLong - 1)));
741   }
742   payload_size = kit->gvn().transform(new URShiftXNode(payload_size, kit->intcon(LogBytesPerLong)));
743   ArrayCopyNode* ac = ArrayCopyNode::make(kit, false, src_base, offset, dst_base, offset, payload_size, true, false);
744   if (is_array) {
745     ac->set_clone_array();
746   } else {
747     ac->set_clone_inst();
748   }
749   Node* n = kit->gvn().transform(ac);
750   if (n == ac) {
751     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
752     ac->set_adr_type(TypeRawPtr::BOTTOM);
753     kit->set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
754   } else {
755     kit->set_all_memory(n);
756   }
757 }
758 
759 Node* BarrierSetC2::obj_allocate(PhaseMacroExpand* macro, Node* mem, Node* toobig_false, Node* size_in_bytes,
760                                  Node*& i_o, Node*& needgc_ctrl,
761                                  Node*& fast_oop_ctrl, Node*& fast_oop_rawmem,
762                                  intx prefetch_lines) const {
763   assert(UseTLAB, "Only for TLAB enabled allocations");
764 
765   Node* thread = macro->transform_later(new ThreadLocalNode());
766   Node* tlab_top_adr = macro->basic_plus_adr(macro->top()/*not oop*/, thread, in_bytes(JavaThread::tlab_top_offset()));
767   Node* tlab_end_adr = macro->basic_plus_adr(macro->top()/*not oop*/, thread, in_bytes(JavaThread::tlab_end_offset()));
768 
769   // Load TLAB end.
770   //
771   // Note: We set the control input on "tlab_end" and "old_tlab_top" to work around
772   //       a bug where these values were being moved across
773   //       a safepoint.  These are not oops, so they cannot be include in the oop
774   //       map, but they can be changed by a GC.   The proper way to fix this would
775   //       be to set the raw memory state when generating a  SafepointNode.  However
776   //       this will require extensive changes to the loop optimization in order to
777   //       prevent a degradation of the optimization.
778   //       See comment in memnode.hpp, around line 227 in class LoadPNode.
779   Node* tlab_end = macro->make_load(toobig_false, mem, tlab_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
780 
781   // Load the TLAB top.
782   Node* old_tlab_top = new LoadPNode(toobig_false, mem, tlab_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered);
783   macro->transform_later(old_tlab_top);
784 
785   // Add to heap top to get a new TLAB top
786   Node* new_tlab_top = new AddPNode(macro->top(), old_tlab_top, size_in_bytes);
787   macro->transform_later(new_tlab_top);
788 
789   // Check against TLAB end
790   Node* tlab_full = new CmpPNode(new_tlab_top, tlab_end);
791   macro->transform_later(tlab_full);
792 
793   Node* needgc_bol = new BoolNode(tlab_full, BoolTest::ge);
794   macro->transform_later(needgc_bol);
795   IfNode* needgc_iff = new IfNode(toobig_false, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
796   macro->transform_later(needgc_iff);
797 
798   // Plug the failing-heap-space-need-gc test into the slow-path region
799   Node* needgc_true = new IfTrueNode(needgc_iff);
800   macro->transform_later(needgc_true);
801   needgc_ctrl = needgc_true;
802 
803   // No need for a GC.
804   Node* needgc_false = new IfFalseNode(needgc_iff);
805   macro->transform_later(needgc_false);
806 
807   // Fast path:
808   i_o = macro->prefetch_allocation(i_o, needgc_false, mem,
809                                    old_tlab_top, new_tlab_top, prefetch_lines);
810 
811   // Store the modified TLAB top back down.
812   Node* store_tlab_top = new StorePNode(needgc_false, mem, tlab_top_adr,
813                    TypeRawPtr::BOTTOM, new_tlab_top, MemNode::unordered);
814   macro->transform_later(store_tlab_top);
815 
816   fast_oop_ctrl = needgc_false;
817   fast_oop_rawmem = store_tlab_top;
818   return old_tlab_top;
819 }
820 
821 static const TypeFunc* clone_type() {
822   // Create input type (domain)
823   int argcnt = NOT_LP64(3) LP64_ONLY(4);
824   const Type** const domain_fields = TypeTuple::fields(argcnt);
825   int argp = TypeFunc::Parms;
826   domain_fields[argp++] = TypeInstPtr::NOTNULL;  // src
827   domain_fields[argp++] = TypeInstPtr::NOTNULL;  // dst
828   domain_fields[argp++] = TypeX_X;               // size lower
829   LP64_ONLY(domain_fields[argp++] = Type::HALF); // size upper
830   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
831   const TypeTuple* const domain = TypeTuple::make(TypeFunc::Parms + argcnt, domain_fields);
832 
833   // Create result type (range)
834   const Type** const range_fields = TypeTuple::fields(0);
835   const TypeTuple* const range = TypeTuple::make(TypeFunc::Parms + 0, range_fields);
836 
837   return TypeFunc::make(domain, range);
838 }
839 
840 #define XTOP LP64_ONLY(COMMA phase->top())
841 
842 void BarrierSetC2::clone_in_runtime(PhaseMacroExpand* phase, ArrayCopyNode* ac,
843                                     address clone_addr, const char* clone_name) const {
844   Node* const ctrl = ac->in(TypeFunc::Control);
845   Node* const mem  = ac->in(TypeFunc::Memory);
846   Node* const src  = ac->in(ArrayCopyNode::Src);
847   Node* const dst  = ac->in(ArrayCopyNode::Dest);
848   Node* const size = ac->in(ArrayCopyNode::Length);
849 
850   assert(size->bottom_type()->base() == Type_X,
851          "Should be of object size type (int for 32 bits, long for 64 bits)");
852 
853   // The native clone we are calling here expects the object size in words.
854   // Add header/offset size to payload size to get object size.
855   Node* const base_offset = phase->MakeConX(arraycopy_payload_base_offset(ac->is_clone_array()) >> LogBytesPerLong);
856   Node* const full_size = phase->transform_later(new AddXNode(size, base_offset));
857   // HeapAccess<>::clone expects size in heap words.
858   // For 64-bits platforms, this is a no-operation.
859   // For 32-bits platforms, we need to multiply full_size by HeapWordsPerLong (2).
860   Node* const full_size_in_heap_words = phase->transform_later(new LShiftXNode(full_size, phase->intcon(LogHeapWordsPerLong)));
861 
862   Node* const call = phase->make_leaf_call(ctrl,
863                                            mem,
864                                            clone_type(),
865                                            clone_addr,
866                                            clone_name,
867                                            TypeRawPtr::BOTTOM,
868                                            src, dst, full_size_in_heap_words XTOP);
869   phase->transform_later(call);
870   phase->igvn().replace_node(ac, call);
871 }
872 
873 void BarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
874   Node* ctrl = ac->in(TypeFunc::Control);
875   Node* mem = ac->in(TypeFunc::Memory);
876   Node* src = ac->in(ArrayCopyNode::Src);
877   Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
878   Node* dest = ac->in(ArrayCopyNode::Dest);
879   Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
880   Node* length = ac->in(ArrayCopyNode::Length);
881 
882   Node* payload_src = phase->basic_plus_adr(src, src_offset);
883   Node* payload_dst = phase->basic_plus_adr(dest, dest_offset);
884 
885   const char* copyfunc_name = "arraycopy";
886   address     copyfunc_addr = phase->basictype2arraycopy(T_LONG, nullptr, nullptr, true, copyfunc_name, true);
887 
888   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
889   const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type();
890 
891   Node* call = phase->make_leaf_call(ctrl, mem, call_type, copyfunc_addr, copyfunc_name, raw_adr_type, payload_src, payload_dst, length XTOP);
892   phase->transform_later(call);
893 
894   phase->igvn().replace_node(ac, call);
895 }
896 
897 #undef XTOP
898 
899 void BarrierSetC2::compute_liveness_at_stubs() const {
900   ResourceMark rm;
901   Compile* const C = Compile::current();
902   Arena* const A = Thread::current()->resource_area();
903   PhaseCFG* const cfg = C->cfg();
904   PhaseRegAlloc* const regalloc = C->regalloc();
905   RegMask* const live = NEW_ARENA_ARRAY(A, RegMask, cfg->number_of_blocks() * sizeof(RegMask));
906   BarrierSetAssembler* const bs = BarrierSet::barrier_set()->barrier_set_assembler();
907   BarrierSetC2State* bs_state = barrier_set_state();
908   Block_List worklist;
909 
910   for (uint i = 0; i < cfg->number_of_blocks(); ++i) {
911     new ((void*)(live + i)) RegMask();
912     worklist.push(cfg->get_block(i));
913   }
914 
915   while (worklist.size() > 0) {
916     const Block* const block = worklist.pop();
917     RegMask& old_live = live[block->_pre_order];
918     RegMask new_live;
919 
920     // Initialize to union of successors
921     for (uint i = 0; i < block->_num_succs; i++) {
922       const uint succ_id = block->_succs[i]->_pre_order;
923       new_live.OR(live[succ_id]);
924     }
925 
926     // Walk block backwards, computing liveness
927     for (int i = block->number_of_nodes() - 1; i >= 0; --i) {
928       const Node* const node = block->get_node(i);
929 
930       // If this node tracks out-liveness, update it
931       if (!bs_state->needs_livein_data()) {
932         RegMask* const regs = bs_state->live(node);
933         if (regs != nullptr) {
934           regs->OR(new_live);
935         }
936       }
937 
938       // Remove def bits
939       const OptoReg::Name first = bs->refine_register(node, regalloc->get_reg_first(node));
940       const OptoReg::Name second = bs->refine_register(node, regalloc->get_reg_second(node));
941       if (first != OptoReg::Bad) {
942         new_live.Remove(first);
943       }
944       if (second != OptoReg::Bad) {
945         new_live.Remove(second);
946       }
947 
948       // Add use bits
949       for (uint j = 1; j < node->req(); ++j) {
950         const Node* const use = node->in(j);
951         const OptoReg::Name first = bs->refine_register(use, regalloc->get_reg_first(use));
952         const OptoReg::Name second = bs->refine_register(use, regalloc->get_reg_second(use));
953         if (first != OptoReg::Bad) {
954           new_live.Insert(first);
955         }
956         if (second != OptoReg::Bad) {
957           new_live.Insert(second);
958         }
959       }
960 
961       // If this node tracks in-liveness, update it
962       if (bs_state->needs_livein_data()) {
963         RegMask* const regs = bs_state->live(node);
964         if (regs != nullptr) {
965           regs->OR(new_live);
966         }
967       }
968     }
969 
970     // Now at block top, see if we have any changes
971     new_live.SUBTRACT(old_live);
972     if (new_live.is_NotEmpty()) {
973       // Liveness has refined, update and propagate to prior blocks
974       old_live.OR(new_live);
975       for (uint i = 1; i < block->num_preds(); ++i) {
976         Block* const pred = cfg->get_block_for_node(block->pred(i));
977         worklist.push(pred);
978       }
979     }
980   }
981 }