1 /* 2 * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_GC_SHARED_COLLECTEDHEAP_HPP 26 #define SHARE_GC_SHARED_COLLECTEDHEAP_HPP 27 28 #include "gc/shared/gcCause.hpp" 29 #include "gc/shared/gcWhen.hpp" 30 #include "gc/shared/softRefPolicy.hpp" 31 #include "gc/shared/verifyOption.hpp" 32 #include "memory/allocation.hpp" 33 #include "memory/metaspace.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/stackChunkOop.hpp" 36 #include "runtime/handles.hpp" 37 #include "runtime/perfDataTypes.hpp" 38 #include "runtime/safepoint.hpp" 39 #include "services/memoryUsage.hpp" 40 #include "utilities/debug.hpp" 41 #include "utilities/formatBuffer.hpp" 42 #include "utilities/growableArray.hpp" 43 44 // A "CollectedHeap" is an implementation of a java heap for HotSpot. This 45 // is an abstract class: there may be many different kinds of heaps. This 46 // class defines the functions that a heap must implement, and contains 47 // infrastructure common to all heaps. 48 49 class GCHeapLog; 50 class GCHeapSummary; 51 class GCMemoryManager; 52 class GCMetaspaceLog; 53 class GCTimer; 54 class GCTracer; 55 class MemoryPool; 56 class MetaspaceSummary; 57 class ReservedHeapSpace; 58 class Thread; 59 class ThreadClosure; 60 class VirtualSpaceSummary; 61 class WorkerThreads; 62 class nmethod; 63 64 class ParallelObjectIteratorImpl : public CHeapObj<mtGC> { 65 public: 66 virtual ~ParallelObjectIteratorImpl() {} 67 virtual void object_iterate(ObjectClosure* cl, uint worker_id) = 0; 68 }; 69 70 // User facing parallel object iterator. This is a StackObj, which ensures that 71 // the _impl is allocated and deleted in the scope of this object. This ensures 72 // the life cycle of the implementation is as required by ThreadsListHandle, 73 // which is sometimes used by the root iterators. 74 class ParallelObjectIterator : public StackObj { 75 ParallelObjectIteratorImpl* _impl; 76 77 public: 78 ParallelObjectIterator(uint thread_num); 79 ~ParallelObjectIterator(); 80 void object_iterate(ObjectClosure* cl, uint worker_id); 81 }; 82 83 // 84 // CollectedHeap 85 // SerialHeap 86 // G1CollectedHeap 87 // ParallelScavengeHeap 88 // ShenandoahHeap 89 // ZCollectedHeap 90 // 91 class CollectedHeap : public CHeapObj<mtGC> { 92 friend class VMStructs; 93 friend class JVMCIVMStructs; 94 friend class IsSTWGCActiveMark; // Block structured external access to _is_stw_gc_active 95 friend class MemAllocator; 96 97 private: 98 GCHeapLog* _heap_log; 99 GCMetaspaceLog* _metaspace_log; 100 101 // Historic gc information 102 size_t _capacity_at_last_gc; 103 size_t _used_at_last_gc; 104 105 SoftRefPolicy _soft_ref_policy; 106 107 // First, set it to java_lang_Object. 108 // Then, set it to FillerObject after the FillerObject_klass loading is complete. 109 static Klass* _filler_object_klass; 110 111 protected: 112 // Not used by all GCs 113 MemRegion _reserved; 114 115 bool _is_stw_gc_active; 116 117 // (Minimum) Alignment reserve for TLABs and PLABs. 118 static size_t _lab_alignment_reserve; 119 // Used for filler objects (static, but initialized in ctor). 120 static size_t _filler_array_max_size; 121 122 static size_t _stack_chunk_max_size; // 0 for no limit 123 124 // Last time the whole heap has been examined in support of RMI 125 // MaxObjectInspectionAge. 126 // This timestamp must be monotonically non-decreasing to avoid 127 // time-warp warnings. 128 jlong _last_whole_heap_examined_time_ns; 129 130 unsigned int _total_collections; // ... started 131 unsigned int _total_full_collections; // ... started 132 NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;) 133 NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;) 134 135 // Reason for current garbage collection. Should be set to 136 // a value reflecting no collection between collections. 137 GCCause::Cause _gc_cause; 138 GCCause::Cause _gc_lastcause; 139 PerfStringVariable* _perf_gc_cause; 140 PerfStringVariable* _perf_gc_lastcause; 141 142 // Constructor 143 CollectedHeap(); 144 145 // Create a new tlab. All TLAB allocations must go through this. 146 // To allow more flexible TLAB allocations min_size specifies 147 // the minimum size needed, while requested_size is the requested 148 // size based on ergonomics. The actually allocated size will be 149 // returned in actual_size. 150 virtual HeapWord* allocate_new_tlab(size_t min_size, 151 size_t requested_size, 152 size_t* actual_size) = 0; 153 154 // Reinitialize tlabs before resuming mutators. 155 virtual void resize_all_tlabs(); 156 157 // Raw memory allocation facilities 158 // The obj and array allocate methods are covers for these methods. 159 // mem_allocate() should never be 160 // called to allocate TLABs, only individual objects. 161 virtual HeapWord* mem_allocate(size_t size, 162 bool* gc_overhead_limit_was_exceeded) = 0; 163 164 // Filler object utilities. 165 static inline size_t filler_array_hdr_size(); 166 167 static size_t filler_array_min_size(); 168 169 protected: 170 static inline void zap_filler_array_with(HeapWord* start, size_t words, juint value); 171 DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);) 172 DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);) 173 174 // Fill with a single array; caller must ensure filler_array_min_size() <= 175 // words <= filler_array_max_size(). 176 static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true); 177 178 // Fill with a single object (either an int array or a java.lang.Object). 179 static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true); 180 181 virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer); 182 183 // Verification functions 184 DEBUG_ONLY(static void check_for_valid_allocation_state();) 185 186 public: 187 enum Name { 188 None, 189 Serial, 190 Parallel, 191 G1, 192 Epsilon, 193 Z, 194 Shenandoah 195 }; 196 197 protected: 198 // Get a pointer to the derived heap object. Used to implement 199 // derived class heap() functions rather than being called directly. 200 template<typename T> 201 static T* named_heap(Name kind) { 202 CollectedHeap* heap = Universe::heap(); 203 assert(heap != nullptr, "Uninitialized heap"); 204 assert(kind == heap->kind(), "Heap kind %u should be %u", 205 static_cast<uint>(heap->kind()), static_cast<uint>(kind)); 206 return static_cast<T*>(heap); 207 } 208 209 public: 210 211 static inline size_t filler_array_max_size() { 212 return _filler_array_max_size; 213 } 214 215 static inline size_t stack_chunk_max_size() { 216 return _stack_chunk_max_size; 217 } 218 219 static inline Klass* filler_object_klass() { 220 return _filler_object_klass; 221 } 222 223 static inline void set_filler_object_klass(Klass* k) { 224 _filler_object_klass = k; 225 } 226 227 virtual Name kind() const = 0; 228 229 virtual const char* name() const = 0; 230 231 /** 232 * Returns JNI error code JNI_ENOMEM if memory could not be allocated, 233 * and JNI_OK on success. 234 */ 235 virtual jint initialize() = 0; 236 237 // In many heaps, there will be a need to perform some initialization activities 238 // after the Universe is fully formed, but before general heap allocation is allowed. 239 // This is the correct place to place such initialization methods. 240 virtual void post_initialize(); 241 242 // Stop any onging concurrent work and prepare for exit. 243 virtual void stop() {} 244 245 // Stop and resume concurrent GC threads interfering with safepoint operations 246 virtual void safepoint_synchronize_begin() {} 247 virtual void safepoint_synchronize_end() {} 248 249 void initialize_reserved_region(const ReservedHeapSpace& rs); 250 251 virtual size_t capacity() const = 0; 252 virtual size_t used() const = 0; 253 254 // Returns unused capacity. 255 virtual size_t unused() const; 256 257 // Historic gc information 258 size_t free_at_last_gc() const { return _capacity_at_last_gc - _used_at_last_gc; } 259 size_t used_at_last_gc() const { return _used_at_last_gc; } 260 void update_capacity_and_used_at_gc(); 261 262 // Support for java.lang.Runtime.maxMemory(): return the maximum amount of 263 // memory that the vm could make available for storing 'normal' java objects. 264 // This is based on the reserved address space, but should not include space 265 // that the vm uses internally for bookkeeping or temporary storage 266 // (e.g., in the case of the young gen, one of the survivor 267 // spaces). 268 virtual size_t max_capacity() const = 0; 269 270 // Returns "TRUE" iff "p" points into the committed areas of the heap. 271 // This method can be expensive so avoid using it in performance critical 272 // code. 273 virtual bool is_in(const void* p) const = 0; 274 275 DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == nullptr || is_in(p); }) 276 277 void set_gc_cause(GCCause::Cause v); 278 GCCause::Cause gc_cause() { return _gc_cause; } 279 280 oop obj_allocate(Klass* klass, size_t size, TRAPS); 281 virtual oop array_allocate(Klass* klass, size_t size, int length, bool do_zero, TRAPS); 282 oop class_allocate(Klass* klass, size_t size, TRAPS); 283 284 // Utilities for turning raw memory into filler objects. 285 // 286 // min_fill_size() is the smallest region that can be filled. 287 // fill_with_objects() can fill arbitrary-sized regions of the heap using 288 // multiple objects. fill_with_object() is for regions known to be smaller 289 // than the largest array of integers; it uses a single object to fill the 290 // region and has slightly less overhead. 291 static size_t min_fill_size() { 292 return size_t(align_object_size(oopDesc::header_size())); 293 } 294 295 static void fill_with_objects(HeapWord* start, size_t words, bool zap = true); 296 297 static void fill_with_object(HeapWord* start, size_t words, bool zap = true); 298 static void fill_with_object(MemRegion region, bool zap = true) { 299 fill_with_object(region.start(), region.word_size(), zap); 300 } 301 static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) { 302 fill_with_object(start, pointer_delta(end, start), zap); 303 } 304 305 virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap); 306 static size_t min_dummy_object_size() { 307 return oopDesc::header_size(); 308 } 309 310 static size_t lab_alignment_reserve() { 311 assert(_lab_alignment_reserve != SIZE_MAX, "uninitialized"); 312 return _lab_alignment_reserve; 313 } 314 315 // Some heaps may be in an unparseable state at certain times between 316 // collections. This may be necessary for efficient implementation of 317 // certain allocation-related activities. Calling this function before 318 // attempting to parse a heap ensures that the heap is in a parsable 319 // state (provided other concurrent activity does not introduce 320 // unparsability). It is normally expected, therefore, that this 321 // method is invoked with the world stopped. 322 // NOTE: if you override this method, make sure you call 323 // super::ensure_parsability so that the non-generational 324 // part of the work gets done. See implementation of 325 // CollectedHeap::ensure_parsability and, for instance, 326 // that of ParallelScavengeHeap::ensure_parsability(). 327 // The argument "retire_tlabs" controls whether existing TLABs 328 // are merely filled or also retired, thus preventing further 329 // allocation from them and necessitating allocation of new TLABs. 330 virtual void ensure_parsability(bool retire_tlabs); 331 332 // The amount of space available for thread-local allocation buffers. 333 virtual size_t tlab_capacity(Thread *thr) const = 0; 334 335 // The amount of used space for thread-local allocation buffers for the given thread. 336 virtual size_t tlab_used(Thread *thr) const = 0; 337 338 virtual size_t max_tlab_size() const; 339 340 // An estimate of the maximum allocation that could be performed 341 // for thread-local allocation buffers without triggering any 342 // collection or expansion activity. 343 virtual size_t unsafe_max_tlab_alloc(Thread *thr) const = 0; 344 345 // Perform a collection of the heap; intended for use in implementing 346 // "System.gc". This probably implies as full a collection as the 347 // "CollectedHeap" supports. 348 virtual void collect(GCCause::Cause cause) = 0; 349 350 // Perform a full collection 351 virtual void do_full_collection(bool clear_all_soft_refs) = 0; 352 353 // This interface assumes that it's being called by the 354 // vm thread. It collects the heap assuming that the 355 // heap lock is already held and that we are executing in 356 // the context of the vm thread. 357 virtual void collect_as_vm_thread(GCCause::Cause cause); 358 359 virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 360 size_t size, 361 Metaspace::MetadataType mdtype); 362 363 // Return true, if accesses to the object would require barriers. 364 // This is used by continuations to copy chunks of a thread stack into StackChunk object or out of a StackChunk 365 // object back into the thread stack. These chunks may contain references to objects. It is crucial that 366 // the GC does not attempt to traverse the object while we modify it, because its structure (oopmap) is changed 367 // when stack chunks are stored into it. 368 // StackChunk objects may be reused, the GC must not assume that a StackChunk object is always a freshly 369 // allocated object. 370 virtual bool requires_barriers(stackChunkOop obj) const = 0; 371 372 // Returns "true" iff there is a stop-world GC in progress. 373 bool is_stw_gc_active() const { return _is_stw_gc_active; } 374 375 // Total number of GC collections (started) 376 unsigned int total_collections() const { return _total_collections; } 377 unsigned int total_full_collections() const { return _total_full_collections;} 378 379 // Increment total number of GC collections (started) 380 void increment_total_collections(bool full = false) { 381 _total_collections++; 382 if (full) { 383 _total_full_collections++; 384 } 385 } 386 387 // Return the SoftRefPolicy for the heap; 388 SoftRefPolicy* soft_ref_policy() { return &_soft_ref_policy; } 389 390 virtual MemoryUsage memory_usage(); 391 virtual GrowableArray<GCMemoryManager*> memory_managers() = 0; 392 virtual GrowableArray<MemoryPool*> memory_pools() = 0; 393 394 // Iterate over all objects, calling "cl.do_object" on each. 395 virtual void object_iterate(ObjectClosure* cl) = 0; 396 397 virtual ParallelObjectIteratorImpl* parallel_object_iterator(uint thread_num) { 398 return nullptr; 399 } 400 401 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 402 virtual void keep_alive(oop obj) {} 403 404 // Perform any cleanup actions necessary before allowing a verification. 405 virtual void prepare_for_verify() = 0; 406 407 // Returns the longest time (in ms) that has elapsed since the last 408 // time that the whole heap has been examined by a garbage collection. 409 jlong millis_since_last_whole_heap_examined(); 410 // GC should call this when the next whole heap analysis has completed to 411 // satisfy above requirement. 412 void record_whole_heap_examined_timestamp(); 413 414 private: 415 // Generate any dumps preceding or following a full gc 416 void full_gc_dump(GCTimer* timer, bool before); 417 418 virtual void initialize_serviceability() = 0; 419 420 void print_relative_to_gc(GCWhen::Type when) const; 421 422 public: 423 void pre_full_gc_dump(GCTimer* timer); 424 void post_full_gc_dump(GCTimer* timer); 425 426 virtual VirtualSpaceSummary create_heap_space_summary(); 427 GCHeapSummary create_heap_summary(); 428 429 MetaspaceSummary create_metaspace_summary(); 430 431 // GCs are free to represent the bit representation for null differently in memory, 432 // which is typically not observable when using the Access API. However, if for 433 // some reason a context doesn't allow using the Access API, then this function 434 // explicitly checks if the given memory location contains a null value. 435 virtual bool contains_null(const oop* p) const; 436 437 void print_invocation_on(outputStream* st, const char* type, GCWhen::Type when) const; 438 439 // Print heap information. 440 virtual void print_heap_on(outputStream* st) const = 0; 441 442 // Print additional information about the GC that is not included in print_heap_on(). 443 virtual void print_gc_on(outputStream* st) const = 0; 444 445 // The default behavior is to call print_heap_on() and print_gc_on() on tty. 446 virtual void print() const; 447 448 // Used to print information about locations in the hs_err file. 449 virtual bool print_location(outputStream* st, void* addr) const = 0; 450 451 // Iterator for all GC threads (other than VM thread) 452 virtual void gc_threads_do(ThreadClosure* tc) const = 0; 453 454 // Print any relevant tracing info that flags imply. 455 // Default implementation does nothing. 456 virtual void print_tracing_info() const = 0; 457 458 void print_before_gc() const; 459 void print_after_gc() const; 460 461 // Registering and unregistering an nmethod (compiled code) with the heap. 462 virtual void register_nmethod(nmethod* nm) = 0; 463 virtual void unregister_nmethod(nmethod* nm) = 0; 464 virtual void verify_nmethod(nmethod* nm) = 0; 465 466 void trace_heap_before_gc(const GCTracer* gc_tracer); 467 void trace_heap_after_gc(const GCTracer* gc_tracer); 468 469 // Heap verification 470 virtual void verify(VerifyOption option) = 0; 471 472 // Return true if concurrent gc control via WhiteBox is supported by 473 // this collector. The default implementation returns false. 474 virtual bool supports_concurrent_gc_breakpoints() const; 475 476 // Workers used in non-GC safepoints for parallel safepoint cleanup. If this 477 // method returns null, cleanup tasks are done serially in the VMThread. See 478 // `SafepointSynchronize::do_cleanup_tasks` for details. 479 // GCs using a GC worker thread pool inside GC safepoints may opt to share 480 // that pool with non-GC safepoints, avoiding creating extraneous threads. 481 // Such sharing is safe, because GC safepoints and non-GC safepoints never 482 // overlap. For example, `G1CollectedHeap::workers()` (for GC safepoints) and 483 // `G1CollectedHeap::safepoint_workers()` (for non-GC safepoints) return the 484 // same thread-pool. 485 virtual WorkerThreads* safepoint_workers() { return nullptr; } 486 487 // Support for object pinning. This is used by JNI Get*Critical() 488 // and Release*Critical() family of functions. The GC must guarantee 489 // that pinned objects never move and don't get reclaimed as garbage. 490 // These functions are potentially safepointing. 491 virtual void pin_object(JavaThread* thread, oop obj) = 0; 492 virtual void unpin_object(JavaThread* thread, oop obj) = 0; 493 494 // Support for loading objects from CDS archive into the heap 495 // (usually as a snapshot of the old generation). 496 virtual bool can_load_archived_objects() const { return false; } 497 virtual HeapWord* allocate_loaded_archive_space(size_t size) { return nullptr; } 498 virtual void complete_loaded_archive_space(MemRegion archive_space) { } 499 500 virtual bool is_oop(oop object) const; 501 // Non product verification and debugging. 502 #ifndef PRODUCT 503 // Support for PromotionFailureALot. Return true if it's time to cause a 504 // promotion failure. The no-argument version uses 505 // this->_promotion_failure_alot_count as the counter. 506 bool promotion_should_fail(volatile size_t* count); 507 bool promotion_should_fail(); 508 509 // Reset the PromotionFailureALot counters. Should be called at the end of a 510 // GC in which promotion failure occurred. 511 void reset_promotion_should_fail(volatile size_t* count); 512 void reset_promotion_should_fail(); 513 #endif // #ifndef PRODUCT 514 }; 515 516 // Class to set and reset the GC cause for a CollectedHeap. 517 518 class GCCauseSetter : StackObj { 519 CollectedHeap* _heap; 520 GCCause::Cause _previous_cause; 521 public: 522 GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) { 523 _heap = heap; 524 _previous_cause = _heap->gc_cause(); 525 _heap->set_gc_cause(cause); 526 } 527 528 ~GCCauseSetter() { 529 _heap->set_gc_cause(_previous_cause); 530 } 531 }; 532 533 #endif // SHARE_GC_SHARED_COLLECTEDHEAP_HPP