1 /*
  2  * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_GC_SHARED_COLLECTEDHEAP_HPP
 26 #define SHARE_GC_SHARED_COLLECTEDHEAP_HPP
 27 
 28 #include "gc/shared/gcCause.hpp"
 29 #include "gc/shared/gcWhen.hpp"
 30 #include "gc/shared/softRefPolicy.hpp"
 31 #include "gc/shared/verifyOption.hpp"
 32 #include "memory/allocation.hpp"
 33 #include "memory/metaspace.hpp"
 34 #include "memory/universe.hpp"
 35 #include "oops/stackChunkOop.hpp"
 36 #include "runtime/handles.hpp"
 37 #include "runtime/perfDataTypes.hpp"
 38 #include "runtime/safepoint.hpp"
 39 #include "services/memoryUsage.hpp"
 40 #include "utilities/debug.hpp"
 41 #include "utilities/formatBuffer.hpp"
 42 #include "utilities/growableArray.hpp"
 43 
 44 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
 45 // is an abstract class: there may be many different kinds of heaps.  This
 46 // class defines the functions that a heap must implement, and contains
 47 // infrastructure common to all heaps.
 48 
 49 class GCHeapLog;
 50 class GCHeapSummary;
 51 class GCMemoryManager;
 52 class GCMetaspaceLog;
 53 class GCTimer;
 54 class GCTracer;
 55 class MemoryPool;
 56 class MetaspaceSummary;
 57 class ReservedHeapSpace;
 58 class Thread;
 59 class ThreadClosure;
 60 class VirtualSpaceSummary;
 61 class WorkerThreads;
 62 class nmethod;
 63 
 64 class ParallelObjectIteratorImpl : public CHeapObj<mtGC> {
 65 public:
 66   virtual ~ParallelObjectIteratorImpl() {}
 67   virtual void object_iterate(ObjectClosure* cl, uint worker_id) = 0;
 68 };
 69 
 70 // User facing parallel object iterator. This is a StackObj, which ensures that
 71 // the _impl is allocated and deleted in the scope of this object. This ensures
 72 // the life cycle of the implementation is as required by ThreadsListHandle,
 73 // which is sometimes used by the root iterators.
 74 class ParallelObjectIterator : public StackObj {
 75   ParallelObjectIteratorImpl* _impl;
 76 
 77 public:
 78   ParallelObjectIterator(uint thread_num);
 79   ~ParallelObjectIterator();
 80   void object_iterate(ObjectClosure* cl, uint worker_id);
 81 };
 82 
 83 //
 84 // CollectedHeap
 85 //   SerialHeap
 86 //   G1CollectedHeap
 87 //   ParallelScavengeHeap
 88 //   ShenandoahHeap
 89 //   ZCollectedHeap
 90 //
 91 class CollectedHeap : public CHeapObj<mtGC> {
 92   friend class VMStructs;
 93   friend class JVMCIVMStructs;
 94   friend class IsSTWGCActiveMark; // Block structured external access to _is_stw_gc_active
 95   friend class MemAllocator;
 96 
 97  private:
 98   GCHeapLog*      _heap_log;
 99   GCMetaspaceLog* _metaspace_log;
100 
101   // Historic gc information
102   size_t _capacity_at_last_gc;
103   size_t _used_at_last_gc;
104 
105   SoftRefPolicy _soft_ref_policy;
106 
107   // First, set it to java_lang_Object.
108   // Then, set it to FillerObject after the FillerObject_klass loading is complete.
109   static Klass* _filler_object_klass;
110 
111  protected:
112   // Not used by all GCs
113   MemRegion _reserved;
114 
115   bool _is_stw_gc_active;
116 
117   // (Minimum) Alignment reserve for TLABs and PLABs.
118   static size_t _lab_alignment_reserve;
119   // Used for filler objects (static, but initialized in ctor).
120   static size_t _filler_array_max_size;
121 
122   static size_t _stack_chunk_max_size; // 0 for no limit
123 
124   // Last time the whole heap has been examined in support of RMI
125   // MaxObjectInspectionAge.
126   // This timestamp must be monotonically non-decreasing to avoid
127   // time-warp warnings.
128   jlong _last_whole_heap_examined_time_ns;
129 
130   unsigned int _total_collections;          // ... started
131   unsigned int _total_full_collections;     // ... started
132   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
133   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
134 
135   // Reason for current garbage collection.  Should be set to
136   // a value reflecting no collection between collections.
137   GCCause::Cause _gc_cause;
138   GCCause::Cause _gc_lastcause;
139   PerfStringVariable* _perf_gc_cause;
140   PerfStringVariable* _perf_gc_lastcause;
141 
142   // Constructor
143   CollectedHeap();
144 
145   // Create a new tlab. All TLAB allocations must go through this.
146   // To allow more flexible TLAB allocations min_size specifies
147   // the minimum size needed, while requested_size is the requested
148   // size based on ergonomics. The actually allocated size will be
149   // returned in actual_size.
150   virtual HeapWord* allocate_new_tlab(size_t min_size,
151                                       size_t requested_size,
152                                       size_t* actual_size) = 0;
153 
154   // Reinitialize tlabs before resuming mutators.
155   virtual void resize_all_tlabs();
156 
157   // Raw memory allocation facilities
158   // The obj and array allocate methods are covers for these methods.
159   // mem_allocate() should never be
160   // called to allocate TLABs, only individual objects.
161   virtual HeapWord* mem_allocate(size_t size,
162                                  bool* gc_overhead_limit_was_exceeded) = 0;
163 
164   // Filler object utilities.
165   static inline size_t filler_array_hdr_size();
166 
167   static size_t filler_array_min_size();
168 
169 protected:
170   static inline void zap_filler_array_with(HeapWord* start, size_t words, juint value);
171   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
172   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
173 
174   // Fill with a single array; caller must ensure filler_array_min_size() <=
175   // words <= filler_array_max_size().
176   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
177 
178   // Fill with a single object (either an int array or a java.lang.Object).
179   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
180 
181   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
182 
183   // Verification functions
184   DEBUG_ONLY(static void check_for_valid_allocation_state();)
185 
186  public:
187   enum Name {
188     None,
189     Serial,
190     Parallel,
191     G1,
192     Epsilon,
193     Z,
194     Shenandoah
195   };
196 
197  protected:
198   // Get a pointer to the derived heap object.  Used to implement
199   // derived class heap() functions rather than being called directly.
200   template<typename T>
201   static T* named_heap(Name kind) {
202     CollectedHeap* heap = Universe::heap();
203     assert(heap != nullptr, "Uninitialized heap");
204     assert(kind == heap->kind(), "Heap kind %u should be %u",
205            static_cast<uint>(heap->kind()), static_cast<uint>(kind));
206     return static_cast<T*>(heap);
207   }
208 
209  public:
210 
211   static inline size_t filler_array_max_size() {
212     return _filler_array_max_size;
213   }
214 
215   static inline size_t stack_chunk_max_size() {
216     return _stack_chunk_max_size;
217   }
218 
219   static inline Klass* filler_object_klass() {
220     return _filler_object_klass;
221   }
222 
223   static inline void set_filler_object_klass(Klass* k) {
224     _filler_object_klass = k;
225   }
226 
227   virtual Name kind() const = 0;
228 
229   virtual const char* name() const = 0;
230 
231   /**
232    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
233    * and JNI_OK on success.
234    */
235   virtual jint initialize() = 0;
236 
237   // In many heaps, there will be a need to perform some initialization activities
238   // after the Universe is fully formed, but before general heap allocation is allowed.
239   // This is the correct place to place such initialization methods.
240   virtual void post_initialize();
241 
242   // Stop any onging concurrent work and prepare for exit.
243   virtual void stop() {}
244 
245   // Stop and resume concurrent GC threads interfering with safepoint operations
246   virtual void safepoint_synchronize_begin() {}
247   virtual void safepoint_synchronize_end() {}
248 
249   void initialize_reserved_region(const ReservedHeapSpace& rs);
250 
251   virtual size_t capacity() const = 0;
252   virtual size_t used() const = 0;
253 
254   // Returns unused capacity.
255   virtual size_t unused() const;
256 
257   // Historic gc information
258   size_t free_at_last_gc() const { return _capacity_at_last_gc - _used_at_last_gc; }
259   size_t used_at_last_gc() const { return _used_at_last_gc; }
260   void update_capacity_and_used_at_gc();
261 
262   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
263   // memory that the vm could make available for storing 'normal' java objects.
264   // This is based on the reserved address space, but should not include space
265   // that the vm uses internally for bookkeeping or temporary storage
266   // (e.g., in the case of the young gen, one of the survivor
267   // spaces).
268   virtual size_t max_capacity() const = 0;
269 
270   // Returns "TRUE" iff "p" points into the committed areas of the heap.
271   // This method can be expensive so avoid using it in performance critical
272   // code.
273   virtual bool is_in(const void* p) const = 0;
274 
275   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == nullptr || is_in(p); })
276 
277   void set_gc_cause(GCCause::Cause v);
278   GCCause::Cause gc_cause() { return _gc_cause; }
279 
280   oop obj_allocate(Klass* klass, size_t size, TRAPS);
281   virtual oop array_allocate(Klass* klass, size_t size, int length, bool do_zero, TRAPS);
282   oop class_allocate(Klass* klass, size_t size, TRAPS);
283 
284   // Utilities for turning raw memory into filler objects.
285   //
286   // min_fill_size() is the smallest region that can be filled.
287   // fill_with_objects() can fill arbitrary-sized regions of the heap using
288   // multiple objects.  fill_with_object() is for regions known to be smaller
289   // than the largest array of integers; it uses a single object to fill the
290   // region and has slightly less overhead.
291   static size_t min_fill_size() {
292     return size_t(align_object_size(oopDesc::header_size()));
293   }
294 
295   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
296 
297   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
298   static void fill_with_object(MemRegion region, bool zap = true) {
299     fill_with_object(region.start(), region.word_size(), zap);
300   }
301   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
302     fill_with_object(start, pointer_delta(end, start), zap);
303   }
304 
305   virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap);
306   static size_t min_dummy_object_size() {
307     return oopDesc::header_size();
308   }
309 
310   static size_t lab_alignment_reserve() {
311     assert(_lab_alignment_reserve != SIZE_MAX, "uninitialized");
312     return _lab_alignment_reserve;
313   }
314 
315   // Some heaps may be in an unparseable state at certain times between
316   // collections. This may be necessary for efficient implementation of
317   // certain allocation-related activities. Calling this function before
318   // attempting to parse a heap ensures that the heap is in a parsable
319   // state (provided other concurrent activity does not introduce
320   // unparsability). It is normally expected, therefore, that this
321   // method is invoked with the world stopped.
322   // NOTE: if you override this method, make sure you call
323   // super::ensure_parsability so that the non-generational
324   // part of the work gets done. See implementation of
325   // CollectedHeap::ensure_parsability and, for instance,
326   // that of ParallelScavengeHeap::ensure_parsability().
327   // The argument "retire_tlabs" controls whether existing TLABs
328   // are merely filled or also retired, thus preventing further
329   // allocation from them and necessitating allocation of new TLABs.
330   virtual void ensure_parsability(bool retire_tlabs);
331 
332   // The amount of space available for thread-local allocation buffers.
333   virtual size_t tlab_capacity(Thread *thr) const = 0;
334 
335   // The amount of used space for thread-local allocation buffers for the given thread.
336   virtual size_t tlab_used(Thread *thr) const = 0;
337 
338   virtual size_t max_tlab_size() const;
339 
340   // An estimate of the maximum allocation that could be performed
341   // for thread-local allocation buffers without triggering any
342   // collection or expansion activity.
343   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const = 0;
344 
345   // Perform a collection of the heap; intended for use in implementing
346   // "System.gc".  This probably implies as full a collection as the
347   // "CollectedHeap" supports.
348   virtual void collect(GCCause::Cause cause) = 0;
349 
350   // Perform a full collection
351   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
352 
353   // This interface assumes that it's being called by the
354   // vm thread. It collects the heap assuming that the
355   // heap lock is already held and that we are executing in
356   // the context of the vm thread.
357   virtual void collect_as_vm_thread(GCCause::Cause cause);
358 
359   virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
360                                                        size_t size,
361                                                        Metaspace::MetadataType mdtype);
362 
363   // Return true, if accesses to the object would require barriers.
364   // This is used by continuations to copy chunks of a thread stack into StackChunk object or out of a StackChunk
365   // object back into the thread stack. These chunks may contain references to objects. It is crucial that
366   // the GC does not attempt to traverse the object while we modify it, because its structure (oopmap) is changed
367   // when stack chunks are stored into it.
368   // StackChunk objects may be reused, the GC must not assume that a StackChunk object is always a freshly
369   // allocated object.
370   virtual bool requires_barriers(stackChunkOop obj) const = 0;
371 
372   // Returns "true" iff there is a stop-world GC in progress.
373   bool is_stw_gc_active() const { return _is_stw_gc_active; }
374 
375   // Total number of GC collections (started)
376   unsigned int total_collections() const { return _total_collections; }
377   unsigned int total_full_collections() const { return _total_full_collections;}
378 
379   // Increment total number of GC collections (started)
380   void increment_total_collections(bool full = false) {
381     _total_collections++;
382     if (full) {
383       _total_full_collections++;
384     }
385   }
386 
387   // Return the SoftRefPolicy for the heap;
388   SoftRefPolicy* soft_ref_policy() { return &_soft_ref_policy; }
389 
390   virtual MemoryUsage memory_usage();
391   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
392   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
393 
394   // Iterate over all objects, calling "cl.do_object" on each.
395   virtual void object_iterate(ObjectClosure* cl) = 0;
396 
397   virtual ParallelObjectIteratorImpl* parallel_object_iterator(uint thread_num) {
398     return nullptr;
399   }
400 
401   // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
402   virtual void keep_alive(oop obj) {}
403 
404   // Perform any cleanup actions necessary before allowing a verification.
405   virtual void prepare_for_verify() = 0;
406 
407   // Returns the longest time (in ms) that has elapsed since the last
408   // time that the whole heap has been examined by a garbage collection.
409   jlong millis_since_last_whole_heap_examined();
410   // GC should call this when the next whole heap analysis has completed to
411   // satisfy above requirement.
412   void record_whole_heap_examined_timestamp();
413 
414  private:
415   // Generate any dumps preceding or following a full gc
416   void full_gc_dump(GCTimer* timer, bool before);
417 
418   virtual void initialize_serviceability() = 0;
419 
420   void print_relative_to_gc(GCWhen::Type when) const;
421 
422  public:
423   void pre_full_gc_dump(GCTimer* timer);
424   void post_full_gc_dump(GCTimer* timer);
425 
426   virtual VirtualSpaceSummary create_heap_space_summary();
427   GCHeapSummary create_heap_summary();
428 
429   MetaspaceSummary create_metaspace_summary();
430 
431   // GCs are free to represent the bit representation for null differently in memory,
432   // which is typically not observable when using the Access API. However, if for
433   // some reason a context doesn't allow using the Access API, then this function
434   // explicitly checks if the given memory location contains a null value.
435   virtual bool contains_null(const oop* p) const;
436 
437   void print_invocation_on(outputStream* st, const char* type, GCWhen::Type when) const;
438 
439   // Print heap information.
440   virtual void print_heap_on(outputStream* st) const = 0;
441 
442   // Print additional information about the GC that is not included in print_heap_on().
443   virtual void print_gc_on(outputStream* st) const = 0;
444 
445   // The default behavior is to call print_heap_on() and print_gc_on() on tty.
446   virtual void print() const;
447 
448   // Used to print information about locations in the hs_err file.
449   virtual bool print_location(outputStream* st, void* addr) const = 0;
450 
451   // Iterator for all GC threads (other than VM thread)
452   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
453 
454   // Print any relevant tracing info that flags imply.
455   // Default implementation does nothing.
456   virtual void print_tracing_info() const = 0;
457 
458   void print_before_gc() const;
459   void print_after_gc() const;
460 
461   // Registering and unregistering an nmethod (compiled code) with the heap.
462   virtual void register_nmethod(nmethod* nm) = 0;
463   virtual void unregister_nmethod(nmethod* nm) = 0;
464   virtual void verify_nmethod(nmethod* nm) = 0;
465 
466   void trace_heap_before_gc(const GCTracer* gc_tracer);
467   void trace_heap_after_gc(const GCTracer* gc_tracer);
468 
469   // Heap verification
470   virtual void verify(VerifyOption option) = 0;
471 
472   // Return true if concurrent gc control via WhiteBox is supported by
473   // this collector.  The default implementation returns false.
474   virtual bool supports_concurrent_gc_breakpoints() const;
475 
476   // Workers used in non-GC safepoints for parallel safepoint cleanup. If this
477   // method returns null, cleanup tasks are done serially in the VMThread. See
478   // `SafepointSynchronize::do_cleanup_tasks` for details.
479   // GCs using a GC worker thread pool inside GC safepoints may opt to share
480   // that pool with non-GC safepoints, avoiding creating extraneous threads.
481   // Such sharing is safe, because GC safepoints and non-GC safepoints never
482   // overlap. For example, `G1CollectedHeap::workers()` (for GC safepoints) and
483   // `G1CollectedHeap::safepoint_workers()` (for non-GC safepoints) return the
484   // same thread-pool.
485   virtual WorkerThreads* safepoint_workers() { return nullptr; }
486 
487   // Support for object pinning. This is used by JNI Get*Critical()
488   // and Release*Critical() family of functions. The GC must guarantee
489   // that pinned objects never move and don't get reclaimed as garbage.
490   // These functions are potentially safepointing.
491   virtual void pin_object(JavaThread* thread, oop obj) = 0;
492   virtual void unpin_object(JavaThread* thread, oop obj) = 0;
493 
494   // Support for loading objects from CDS archive into the heap
495   // (usually as a snapshot of the old generation).
496   virtual bool can_load_archived_objects() const { return false; }
497   virtual HeapWord* allocate_loaded_archive_space(size_t size) { return nullptr; }
498   virtual void complete_loaded_archive_space(MemRegion archive_space) { }
499 
500   virtual bool is_oop(oop object) const;
501   // Non product verification and debugging.
502 #ifndef PRODUCT
503   // Support for PromotionFailureALot.  Return true if it's time to cause a
504   // promotion failure.  The no-argument version uses
505   // this->_promotion_failure_alot_count as the counter.
506   bool promotion_should_fail(volatile size_t* count);
507   bool promotion_should_fail();
508 
509   // Reset the PromotionFailureALot counters.  Should be called at the end of a
510   // GC in which promotion failure occurred.
511   void reset_promotion_should_fail(volatile size_t* count);
512   void reset_promotion_should_fail();
513 #endif  // #ifndef PRODUCT
514 };
515 
516 // Class to set and reset the GC cause for a CollectedHeap.
517 
518 class GCCauseSetter : StackObj {
519   CollectedHeap* _heap;
520   GCCause::Cause _previous_cause;
521  public:
522   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
523     _heap = heap;
524     _previous_cause = _heap->gc_cause();
525     _heap->set_gc_cause(cause);
526   }
527 
528   ~GCCauseSetter() {
529     _heap->set_gc_cause(_previous_cause);
530   }
531 };
532 
533 #endif // SHARE_GC_SHARED_COLLECTEDHEAP_HPP