1 /*
  2  * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_GC_SHARED_COLLECTEDHEAP_HPP
 26 #define SHARE_GC_SHARED_COLLECTEDHEAP_HPP
 27 
 28 #include "gc/shared/gcCause.hpp"
 29 #include "gc/shared/gcWhen.hpp"
 30 #include "gc/shared/verifyOption.hpp"
 31 #include "memory/allocation.hpp"
 32 #include "memory/metaspace.hpp"
 33 #include "memory/universe.hpp"
 34 #include "oops/stackChunkOop.hpp"
 35 #include "runtime/handles.hpp"
 36 #include "runtime/perfDataTypes.hpp"
 37 #include "runtime/safepoint.hpp"
 38 #include "services/cpuTimeUsage.hpp"
 39 #include "services/memoryUsage.hpp"
 40 #include "utilities/debug.hpp"
 41 #include "utilities/formatBuffer.hpp"
 42 #include "utilities/growableArray.hpp"
 43 
 44 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
 45 // is an abstract class: there may be many different kinds of heaps.  This
 46 // class defines the functions that a heap must implement, and contains
 47 // infrastructure common to all heaps.
 48 
 49 class GCHeapLog;
 50 class GCHeapSummary;
 51 class GCMemoryManager;
 52 class GCMetaspaceLog;
 53 class GCTimer;
 54 class GCTracer;
 55 class MemoryPool;
 56 class MetaspaceSummary;
 57 class ReservedHeapSpace;
 58 class Thread;
 59 class ThreadClosure;
 60 class VirtualSpaceSummary;
 61 class WorkerThreads;
 62 class nmethod;
 63 
 64 class ParallelObjectIteratorImpl : public CHeapObj<mtGC> {
 65 public:
 66   virtual ~ParallelObjectIteratorImpl() {}
 67   virtual void object_iterate(ObjectClosure* cl, uint worker_id) = 0;
 68 };
 69 
 70 // User facing parallel object iterator. This is a StackObj, which ensures that
 71 // the _impl is allocated and deleted in the scope of this object. This ensures
 72 // the life cycle of the implementation is as required by ThreadsListHandle,
 73 // which is sometimes used by the root iterators.
 74 class ParallelObjectIterator : public StackObj {
 75   ParallelObjectIteratorImpl* _impl;
 76 
 77 public:
 78   ParallelObjectIterator(uint thread_num);
 79   ~ParallelObjectIterator();
 80   void object_iterate(ObjectClosure* cl, uint worker_id);
 81 };
 82 
 83 //
 84 // CollectedHeap
 85 //   SerialHeap
 86 //   G1CollectedHeap
 87 //   ParallelScavengeHeap
 88 //   ShenandoahHeap
 89 //   ZCollectedHeap
 90 //
 91 class CollectedHeap : public CHeapObj<mtGC> {
 92   friend class CPUTimeUsage::GC;
 93   friend class VMStructs;
 94   friend class JVMCIVMStructs;
 95   friend class IsSTWGCActiveMark; // Block structured external access to _is_stw_gc_active
 96   friend class MemAllocator;
 97 
 98  private:
 99   GCHeapLog*      _heap_log;
100   GCMetaspaceLog* _metaspace_log;
101 
102   // Historic gc information
103   size_t _capacity_at_last_gc;
104   size_t _used_at_last_gc;
105 
106   // First, set it to java_lang_Object.
107   // Then, set it to FillerObject after the FillerObject_klass loading is complete.
108   static Klass* _filler_object_klass;
109 
110  protected:
111   // Not used by all GCs
112   MemRegion _reserved;
113 
114   bool _is_stw_gc_active;
115 
116   // (Minimum) Alignment reserve for TLABs and PLABs.
117   static size_t _lab_alignment_reserve;
118   // Used for filler objects (static, but initialized in ctor).
119   static size_t _filler_array_max_size;
120 
121   static size_t _stack_chunk_max_size; // 0 for no limit
122 
123   // Last time the whole heap has been examined in support of RMI
124   // MaxObjectInspectionAge.
125   // This timestamp must be monotonically non-decreasing to avoid
126   // time-warp warnings.
127   jlong _last_whole_heap_examined_time_ns;
128 
129   unsigned int _total_collections;          // ... started
130   unsigned int _total_full_collections;     // ... started
131   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
132   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
133 
134   jlong _vmthread_cpu_time;
135 
136   // Reason for current garbage collection.  Should be set to
137   // a value reflecting no collection between collections.
138   GCCause::Cause _gc_cause;
139   GCCause::Cause _gc_lastcause;
140   PerfStringVariable* _perf_gc_cause;
141   PerfStringVariable* _perf_gc_lastcause;
142 
143   // Constructor
144   CollectedHeap();
145 
146   // Create a new tlab. All TLAB allocations must go through this.
147   // To allow more flexible TLAB allocations min_size specifies
148   // the minimum size needed, while requested_size is the requested
149   // size based on ergonomics. The actually allocated size will be
150   // returned in actual_size.
151   virtual HeapWord* allocate_new_tlab(size_t min_size,
152                                       size_t requested_size,
153                                       size_t* actual_size) = 0;
154 
155   // Reinitialize tlabs before resuming mutators.
156   virtual void resize_all_tlabs();
157 
158   // Raw memory allocation facilities
159   // The obj and array allocate methods are covers for these methods.
160   // mem_allocate() should never be
161   // called to allocate TLABs, only individual objects.
162   virtual HeapWord* mem_allocate(size_t size) = 0;
163 
164   // Filler object utilities.
165   static inline size_t filler_array_hdr_size();
166 
167   static size_t filler_array_min_size();
168 
169 protected:
170   static inline void zap_filler_array_with(HeapWord* start, size_t words, juint value);
171   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
172   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
173 
174   // Fill with a single array; caller must ensure filler_array_min_size() <=
175   // words <= filler_array_max_size().
176   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
177 
178   // Fill with a single object (either an int array or a java.lang.Object).
179   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
180 
181   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
182 
183   // Verification functions
184   DEBUG_ONLY(static void check_for_valid_allocation_state();)
185 
186  public:
187   enum Name {
188     None,
189     Serial,
190     Parallel,
191     G1,
192     Epsilon,
193     Z,
194     Shenandoah
195   };
196 
197  protected:
198   // Get a pointer to the derived heap object.  Used to implement
199   // derived class heap() functions rather than being called directly.
200   template<typename T>
201   static T* named_heap(Name kind) {
202     CollectedHeap* heap = Universe::heap();
203     assert(heap != nullptr, "Uninitialized heap");
204     assert(kind == heap->kind(), "Heap kind %u should be %u",
205            static_cast<uint>(heap->kind()), static_cast<uint>(kind));
206     return static_cast<T*>(heap);
207   }
208 
209   // Print any relevant tracing info that flags imply.
210   // Default implementation does nothing.
211   virtual void print_tracing_info() const = 0;
212 
213   // Stop any onging concurrent work and prepare for exit.
214   virtual void stop() = 0;
215 
216  public:
217 
218   static inline size_t filler_array_max_size() {
219     return _filler_array_max_size;
220   }
221 
222   static inline size_t stack_chunk_max_size() {
223     return _stack_chunk_max_size;
224   }
225 
226   static inline Klass* filler_object_klass() {
227     return _filler_object_klass;
228   }
229 
230   static inline void set_filler_object_klass(Klass* k) {
231     _filler_object_klass = k;
232   }
233 
234   virtual Name kind() const = 0;
235 
236   virtual const char* name() const = 0;
237 
238   /**
239    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
240    * and JNI_OK on success.
241    */
242   virtual jint initialize() = 0;
243 
244   // In many heaps, there will be a need to perform some initialization activities
245   // after the Universe is fully formed, but before general heap allocation is allowed.
246   // This is the correct place to place such initialization methods.
247   virtual void post_initialize();
248 
249   bool is_shutting_down() const;
250 
251   // If the VM is shutting down, we may have skipped VM_CollectForAllocation.
252   // In this case, stall the allocation request briefly in the hope that
253   // the VM shutdown completes before the allocation request returns.
254   void stall_for_vm_shutdown();
255 
256   void before_exit();
257 
258   // Stop and resume concurrent GC threads interfering with safepoint operations
259   virtual void safepoint_synchronize_begin() {}
260   virtual void safepoint_synchronize_end() {}
261 
262   void add_vmthread_cpu_time(jlong time);
263 
264   void initialize_reserved_region(const ReservedHeapSpace& rs);
265 
266   virtual size_t capacity() const = 0;
267   virtual size_t used() const = 0;
268 
269   // Returns unused capacity.
270   virtual size_t unused() const;
271 
272   // Historic gc information
273   size_t free_at_last_gc() const { return _capacity_at_last_gc - _used_at_last_gc; }
274   size_t used_at_last_gc() const { return _used_at_last_gc; }
275   void update_capacity_and_used_at_gc();
276 
277   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
278   // memory that the vm could make available for storing 'normal' java objects.
279   // This is based on the reserved address space, but should not include space
280   // that the vm uses internally for bookkeeping or temporary storage
281   // (e.g., in the case of the young gen, one of the survivor
282   // spaces).
283   virtual size_t max_capacity() const = 0;
284 
285   // Returns "TRUE" iff "p" points into the committed areas of the heap.
286   // This method can be expensive so avoid using it in performance critical
287   // code.
288   virtual bool is_in(const void* p) const = 0;
289 
290   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == nullptr || is_in(p); })
291 
292   void set_gc_cause(GCCause::Cause v);
293   GCCause::Cause gc_cause() { return _gc_cause; }
294 
295   oop obj_allocate(Klass* klass, size_t size, TRAPS);
296   virtual oop array_allocate(Klass* klass, size_t size, int length, bool do_zero, TRAPS);
297   oop class_allocate(Klass* klass, size_t size, TRAPS);
298 
299   // Utilities for turning raw memory into filler objects.
300   //
301   // min_fill_size() is the smallest region that can be filled.
302   // fill_with_objects() can fill arbitrary-sized regions of the heap using
303   // multiple objects.  fill_with_object() is for regions known to be smaller
304   // than the largest array of integers; it uses a single object to fill the
305   // region and has slightly less overhead.
306   static size_t min_fill_size() {
307     return size_t(align_object_size(oopDesc::header_size()));
308   }
309 
310   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
311 
312   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
313   static void fill_with_object(MemRegion region, bool zap = true) {
314     fill_with_object(region.start(), region.word_size(), zap);
315   }
316   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
317     fill_with_object(start, pointer_delta(end, start), zap);
318   }
319 
320   virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap);
321   static size_t min_dummy_object_size() {
322     return oopDesc::header_size();
323   }
324 
325   static size_t lab_alignment_reserve() {
326     assert(_lab_alignment_reserve != SIZE_MAX, "uninitialized");
327     return _lab_alignment_reserve;
328   }
329 
330   // Some heaps may be in an unparseable state at certain times between
331   // collections. This may be necessary for efficient implementation of
332   // certain allocation-related activities. Calling this function before
333   // attempting to parse a heap ensures that the heap is in a parsable
334   // state (provided other concurrent activity does not introduce
335   // unparsability). It is normally expected, therefore, that this
336   // method is invoked with the world stopped.
337   // NOTE: if you override this method, make sure you call
338   // super::ensure_parsability so that the non-generational
339   // part of the work gets done. See implementation of
340   // CollectedHeap::ensure_parsability and, for instance,
341   // that of ParallelScavengeHeap::ensure_parsability().
342   // The argument "retire_tlabs" controls whether existing TLABs
343   // are merely filled or also retired, thus preventing further
344   // allocation from them and necessitating allocation of new TLABs.
345   virtual void ensure_parsability(bool retire_tlabs);
346 
347   // The amount of space available for thread-local allocation buffers.
348   virtual size_t tlab_capacity(Thread *thr) const = 0;
349 
350   // The amount of used space for thread-local allocation buffers for the given thread.
351   virtual size_t tlab_used(Thread *thr) const = 0;
352 
353   virtual size_t max_tlab_size() const;
354 
355   // An estimate of the maximum allocation that could be performed
356   // for thread-local allocation buffers without triggering any
357   // collection or expansion activity.
358   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const = 0;
359 
360   // Perform a collection of the heap; intended for use in implementing
361   // "System.gc".  This probably implies as full a collection as the
362   // "CollectedHeap" supports.
363   virtual void collect(GCCause::Cause cause) = 0;
364 
365   // Perform a full collection
366   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
367 
368   // This interface assumes that it's being called by the
369   // vm thread. It collects the heap assuming that the
370   // heap lock is already held and that we are executing in
371   // the context of the vm thread.
372   virtual void collect_as_vm_thread(GCCause::Cause cause);
373 
374   virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
375                                                        size_t size,
376                                                        Metaspace::MetadataType mdtype);
377 
378   // Return true, if accesses to the object would require barriers.
379   // This is used by continuations to copy chunks of a thread stack into StackChunk object or out of a StackChunk
380   // object back into the thread stack. These chunks may contain references to objects. It is crucial that
381   // the GC does not attempt to traverse the object while we modify it, because its structure (oopmap) is changed
382   // when stack chunks are stored into it.
383   // StackChunk objects may be reused, the GC must not assume that a StackChunk object is always a freshly
384   // allocated object.
385   virtual bool requires_barriers(stackChunkOop obj) const = 0;
386 
387   // Returns "true" iff there is a stop-world GC in progress.
388   bool is_stw_gc_active() const { return _is_stw_gc_active; }
389 
390   // Total number of GC collections (started)
391   unsigned int total_collections() const { return _total_collections; }
392   unsigned int total_full_collections() const { return _total_full_collections;}
393 
394   // Increment total number of GC collections (started)
395   void increment_total_collections(bool full = false) {
396     _total_collections++;
397     if (full) {
398       _total_full_collections++;
399     }
400   }
401 
402   virtual MemoryUsage memory_usage();
403   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
404   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
405 
406   // Iterate over all objects, calling "cl.do_object" on each.
407   virtual void object_iterate(ObjectClosure* cl) = 0;
408 
409   virtual ParallelObjectIteratorImpl* parallel_object_iterator(uint thread_num) {
410     return nullptr;
411   }
412 
413   // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
414   virtual void keep_alive(oop obj) {}
415 
416   // Perform any cleanup actions necessary before allowing a verification.
417   virtual void prepare_for_verify() = 0;
418 
419   // Returns the longest time (in ms) that has elapsed since the last
420   // time that the whole heap has been examined by a garbage collection.
421   jlong millis_since_last_whole_heap_examined();
422   // GC should call this when the next whole heap analysis has completed to
423   // satisfy above requirement.
424   void record_whole_heap_examined_timestamp();
425 
426  private:
427   // Generate any dumps preceding or following a full gc
428   void full_gc_dump(GCTimer* timer, bool before);
429 
430   virtual void initialize_serviceability() = 0;
431 
432   void print_relative_to_gc(GCWhen::Type when) const;
433 
434  public:
435   void pre_full_gc_dump(GCTimer* timer);
436   void post_full_gc_dump(GCTimer* timer);
437 
438   virtual VirtualSpaceSummary create_heap_space_summary();
439   GCHeapSummary create_heap_summary();
440 
441   MetaspaceSummary create_metaspace_summary();
442 
443   // GCs are free to represent the bit representation for null differently in memory,
444   // which is typically not observable when using the Access API. However, if for
445   // some reason a context doesn't allow using the Access API, then this function
446   // explicitly checks if the given memory location contains a null value.
447   virtual bool contains_null(const oop* p) const;
448 
449   void print_invocation_on(outputStream* st, const char* type, GCWhen::Type when) const;
450 
451   // Print heap information.
452   virtual void print_heap_on(outputStream* st) const = 0;
453 
454   // Print additional information about the GC that is not included in print_heap_on().
455   virtual void print_gc_on(outputStream* st) const = 0;
456 
457   // The default behavior is to call print_heap_on() and print_gc_on() on tty.
458   virtual void print() const;
459 
460   // Used to print information about locations in the hs_err file.
461   virtual bool print_location(outputStream* st, void* addr) const = 0;
462 
463   // Iterator for all GC threads (other than VM thread)
464   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
465 
466   void print_before_gc() const;
467   void print_after_gc() const;
468 
469   // Registering and unregistering an nmethod (compiled code) with the heap.
470   virtual void register_nmethod(nmethod* nm) = 0;
471   virtual void unregister_nmethod(nmethod* nm) = 0;
472   virtual void verify_nmethod(nmethod* nm) = 0;
473 
474   void trace_heap_before_gc(const GCTracer* gc_tracer);
475   void trace_heap_after_gc(const GCTracer* gc_tracer);
476 
477   // Heap verification
478   virtual void verify(VerifyOption option) = 0;
479 
480   // Return true if concurrent gc control via WhiteBox is supported by
481   // this collector.  The default implementation returns false.
482   virtual bool supports_concurrent_gc_breakpoints() const;
483 
484   // Workers used in non-GC safepoints for parallel safepoint cleanup. If this
485   // method returns null, cleanup tasks are done serially in the VMThread. See
486   // `SafepointSynchronize::do_cleanup_tasks` for details.
487   // GCs using a GC worker thread pool inside GC safepoints may opt to share
488   // that pool with non-GC safepoints, avoiding creating extraneous threads.
489   // Such sharing is safe, because GC safepoints and non-GC safepoints never
490   // overlap. For example, `G1CollectedHeap::workers()` (for GC safepoints) and
491   // `G1CollectedHeap::safepoint_workers()` (for non-GC safepoints) return the
492   // same thread-pool.
493   virtual WorkerThreads* safepoint_workers() { return nullptr; }
494 
495   // Support for object pinning. This is used by JNI Get*Critical()
496   // and Release*Critical() family of functions. The GC must guarantee
497   // that pinned objects never move and don't get reclaimed as garbage.
498   // These functions are potentially safepointing.
499   virtual void pin_object(JavaThread* thread, oop obj) = 0;
500   virtual void unpin_object(JavaThread* thread, oop obj) = 0;
501 
502   // Support for loading objects from CDS archive into the heap
503   // (usually as a snapshot of the old generation).
504   virtual bool can_load_archived_objects() const { return false; }
505   virtual HeapWord* allocate_loaded_archive_space(size_t size) { return nullptr; }
506   virtual void complete_loaded_archive_space(MemRegion archive_space) { }
507 
508   virtual bool is_oop(oop object) const;
509   // Non product verification and debugging.
510 #ifndef PRODUCT
511   // Support for PromotionFailureALot.  Return true if it's time to cause a
512   // promotion failure.  The no-argument version uses
513   // this->_promotion_failure_alot_count as the counter.
514   bool promotion_should_fail(volatile size_t* count);
515   bool promotion_should_fail();
516 
517   // Reset the PromotionFailureALot counters.  Should be called at the end of a
518   // GC in which promotion failure occurred.
519   void reset_promotion_should_fail(volatile size_t* count);
520   void reset_promotion_should_fail();
521 #endif  // #ifndef PRODUCT
522 };
523 
524 // Class to set and reset the GC cause for a CollectedHeap.
525 
526 class GCCauseSetter : StackObj {
527   CollectedHeap* _heap;
528   GCCause::Cause _previous_cause;
529  public:
530   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
531     _heap = heap;
532     _previous_cause = _heap->gc_cause();
533     _heap->set_gc_cause(cause);
534   }
535 
536   ~GCCauseSetter() {
537     _heap->set_gc_cause(_previous_cause);
538   }
539 };
540 
541 #endif // SHARE_GC_SHARED_COLLECTEDHEAP_HPP