1 /*
  2  * Copyright (c) 2001, 2024, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_GC_SHARED_COLLECTEDHEAP_HPP
 26 #define SHARE_GC_SHARED_COLLECTEDHEAP_HPP
 27 
 28 #include "gc/shared/gcCause.hpp"
 29 #include "gc/shared/gcWhen.hpp"
 30 #include "gc/shared/softRefPolicy.hpp"
 31 #include "gc/shared/verifyOption.hpp"
 32 #include "memory/allocation.hpp"
 33 #include "memory/metaspace.hpp"
 34 #include "memory/universe.hpp"
 35 #include "oops/stackChunkOop.hpp"
 36 #include "runtime/handles.hpp"
 37 #include "runtime/perfDataTypes.hpp"
 38 #include "runtime/safepoint.hpp"
 39 #include "services/memoryUsage.hpp"
 40 #include "utilities/debug.hpp"
 41 #include "utilities/formatBuffer.hpp"
 42 #include "utilities/growableArray.hpp"
 43 
 44 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
 45 // is an abstract class: there may be many different kinds of heaps.  This
 46 // class defines the functions that a heap must implement, and contains
 47 // infrastructure common to all heaps.
 48 
 49 class GCHeapLog;
 50 class GCHeapSummary;
 51 class GCTimer;
 52 class GCTracer;
 53 class GCMemoryManager;
 54 class MemoryPool;
 55 class MetaspaceSummary;
 56 class ReservedHeapSpace;
 57 class Thread;
 58 class ThreadClosure;
 59 class VirtualSpaceSummary;
 60 class WorkerThreads;
 61 class nmethod;
 62 
 63 class ParallelObjectIteratorImpl : public CHeapObj<mtGC> {
 64 public:
 65   virtual ~ParallelObjectIteratorImpl() {}
 66   virtual void object_iterate(ObjectClosure* cl, uint worker_id) = 0;
 67 };
 68 
 69 // User facing parallel object iterator. This is a StackObj, which ensures that
 70 // the _impl is allocated and deleted in the scope of this object. This ensures
 71 // the life cycle of the implementation is as required by ThreadsListHandle,
 72 // which is sometimes used by the root iterators.
 73 class ParallelObjectIterator : public StackObj {
 74   ParallelObjectIteratorImpl* _impl;
 75 
 76 public:
 77   ParallelObjectIterator(uint thread_num);
 78   ~ParallelObjectIterator();
 79   void object_iterate(ObjectClosure* cl, uint worker_id);
 80 };
 81 
 82 //
 83 // CollectedHeap
 84 //   SerialHeap
 85 //   G1CollectedHeap
 86 //   ParallelScavengeHeap
 87 //   ShenandoahHeap
 88 //   ZCollectedHeap
 89 //
 90 class CollectedHeap : public CHeapObj<mtGC> {
 91   friend class VMStructs;
 92   friend class JVMCIVMStructs;
 93   friend class IsSTWGCActiveMark; // Block structured external access to _is_stw_gc_active
 94   friend class MemAllocator;
 95 
 96  private:
 97   GCHeapLog* _gc_heap_log;
 98 
 99   // Historic gc information
100   size_t _capacity_at_last_gc;
101   size_t _used_at_last_gc;
102 
103   SoftRefPolicy _soft_ref_policy;
104 
105   // First, set it to java_lang_Object.
106   // Then, set it to FillerObject after the FillerObject_klass loading is complete.
107   static Klass* _filler_object_klass;
108 
109  protected:
110   // Not used by all GCs
111   MemRegion _reserved;
112 
113   bool _is_stw_gc_active;
114 
115   // (Minimum) Alignment reserve for TLABs and PLABs.
116   static size_t _lab_alignment_reserve;
117   // Used for filler objects (static, but initialized in ctor).
118   static size_t _filler_array_max_size;
119 
120   static size_t _stack_chunk_max_size; // 0 for no limit
121 
122   // Last time the whole heap has been examined in support of RMI
123   // MaxObjectInspectionAge.
124   // This timestamp must be monotonically non-decreasing to avoid
125   // time-warp warnings.
126   jlong _last_whole_heap_examined_time_ns;
127 
128   unsigned int _total_collections;          // ... started
129   unsigned int _total_full_collections;     // ... started
130   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
131   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
132 
133   // Reason for current garbage collection.  Should be set to
134   // a value reflecting no collection between collections.
135   GCCause::Cause _gc_cause;
136   GCCause::Cause _gc_lastcause;
137   PerfStringVariable* _perf_gc_cause;
138   PerfStringVariable* _perf_gc_lastcause;
139 
140   // Constructor
141   CollectedHeap();
142 
143   // Create a new tlab. All TLAB allocations must go through this.
144   // To allow more flexible TLAB allocations min_size specifies
145   // the minimum size needed, while requested_size is the requested
146   // size based on ergonomics. The actually allocated size will be
147   // returned in actual_size.
148   virtual HeapWord* allocate_new_tlab(size_t min_size,
149                                       size_t requested_size,
150                                       size_t* actual_size) = 0;
151 
152   // Reinitialize tlabs before resuming mutators.
153   virtual void resize_all_tlabs();
154 
155   // Raw memory allocation facilities
156   // The obj and array allocate methods are covers for these methods.
157   // mem_allocate() should never be
158   // called to allocate TLABs, only individual objects.
159   virtual HeapWord* mem_allocate(size_t size,
160                                  bool* gc_overhead_limit_was_exceeded) = 0;
161 
162   // Filler object utilities.
163   static inline size_t filler_array_hdr_size();
164 
165   static size_t filler_array_min_size();
166 
167 protected:
168   static inline void zap_filler_array_with(HeapWord* start, size_t words, juint value);
169   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
170   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
171 
172   // Fill with a single array; caller must ensure filler_array_min_size() <=
173   // words <= filler_array_max_size().
174   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
175 
176   // Fill with a single object (either an int array or a java.lang.Object).
177   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
178 
179   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
180 
181   // Verification functions
182   debug_only(static void check_for_valid_allocation_state();)
183 
184  public:
185   enum Name {
186     None,
187     Serial,
188     Parallel,
189     G1,
190     Epsilon,
191     Z,
192     Shenandoah
193   };
194 
195  protected:
196   // Get a pointer to the derived heap object.  Used to implement
197   // derived class heap() functions rather than being called directly.
198   template<typename T>
199   static T* named_heap(Name kind) {
200     CollectedHeap* heap = Universe::heap();
201     assert(heap != nullptr, "Uninitialized heap");
202     assert(kind == heap->kind(), "Heap kind %u should be %u",
203            static_cast<uint>(heap->kind()), static_cast<uint>(kind));
204     return static_cast<T*>(heap);
205   }
206 
207  public:
208 
209   static inline size_t filler_array_max_size() {
210     return _filler_array_max_size;
211   }
212 
213   static inline size_t stack_chunk_max_size() {
214     return _stack_chunk_max_size;
215   }
216 
217   static inline Klass* filler_object_klass() {
218     return _filler_object_klass;
219   }
220 
221   static inline void set_filler_object_klass(Klass* k) {
222     _filler_object_klass = k;
223   }
224 
225   virtual Name kind() const = 0;
226 
227   virtual const char* name() const = 0;
228 
229   /**
230    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
231    * and JNI_OK on success.
232    */
233   virtual jint initialize() = 0;
234 
235   // In many heaps, there will be a need to perform some initialization activities
236   // after the Universe is fully formed, but before general heap allocation is allowed.
237   // This is the correct place to place such initialization methods.
238   virtual void post_initialize();
239 
240   // Stop any onging concurrent work and prepare for exit.
241   virtual void stop() {}
242 
243   // Stop and resume concurrent GC threads interfering with safepoint operations
244   virtual void safepoint_synchronize_begin() {}
245   virtual void safepoint_synchronize_end() {}
246 
247   void initialize_reserved_region(const ReservedHeapSpace& rs);
248 
249   virtual size_t capacity() const = 0;
250   virtual size_t used() const = 0;
251 
252   // Returns unused capacity.
253   virtual size_t unused() const;
254 
255   // Historic gc information
256   size_t free_at_last_gc() const { return _capacity_at_last_gc - _used_at_last_gc; }
257   size_t used_at_last_gc() const { return _used_at_last_gc; }
258   void update_capacity_and_used_at_gc();
259 
260   // Return "true" if the part of the heap that allocates Java
261   // objects has reached the maximal committed limit that it can
262   // reach, without a garbage collection.
263   virtual bool is_maximal_no_gc() const = 0;
264 
265   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
266   // memory that the vm could make available for storing 'normal' java objects.
267   // This is based on the reserved address space, but should not include space
268   // that the vm uses internally for bookkeeping or temporary storage
269   // (e.g., in the case of the young gen, one of the survivor
270   // spaces).
271   virtual size_t max_capacity() const = 0;
272 
273   // Returns "TRUE" iff "p" points into the committed areas of the heap.
274   // This method can be expensive so avoid using it in performance critical
275   // code.
276   virtual bool is_in(const void* p) const = 0;
277 
278   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == nullptr || is_in(p); })
279 
280   void set_gc_cause(GCCause::Cause v);
281   GCCause::Cause gc_cause() { return _gc_cause; }
282 
283   oop obj_allocate(Klass* klass, size_t size, TRAPS);
284   oop obj_buffer_allocate(Klass* klass, size_t size, TRAPS); // doesn't clear memory
285   virtual oop array_allocate(Klass* klass, size_t size, int length, bool do_zero, TRAPS);
286   oop class_allocate(Klass* klass, size_t size, TRAPS);
287 
288   // Utilities for turning raw memory into filler objects.
289   //
290   // min_fill_size() is the smallest region that can be filled.
291   // fill_with_objects() can fill arbitrary-sized regions of the heap using
292   // multiple objects.  fill_with_object() is for regions known to be smaller
293   // than the largest array of integers; it uses a single object to fill the
294   // region and has slightly less overhead.
295   static size_t min_fill_size() {
296     return size_t(align_object_size(oopDesc::header_size()));
297   }
298 
299   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
300 
301   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
302   static void fill_with_object(MemRegion region, bool zap = true) {
303     fill_with_object(region.start(), region.word_size(), zap);
304   }
305   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
306     fill_with_object(start, pointer_delta(end, start), zap);
307   }
308 
309   virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap);
310   static constexpr size_t min_dummy_object_size() {
311     return oopDesc::header_size();
312   }
313 
314   static size_t lab_alignment_reserve() {
315     assert(_lab_alignment_reserve != SIZE_MAX, "uninitialized");
316     return _lab_alignment_reserve;
317   }
318 
319   // Some heaps may be in an unparseable state at certain times between
320   // collections. This may be necessary for efficient implementation of
321   // certain allocation-related activities. Calling this function before
322   // attempting to parse a heap ensures that the heap is in a parsable
323   // state (provided other concurrent activity does not introduce
324   // unparsability). It is normally expected, therefore, that this
325   // method is invoked with the world stopped.
326   // NOTE: if you override this method, make sure you call
327   // super::ensure_parsability so that the non-generational
328   // part of the work gets done. See implementation of
329   // CollectedHeap::ensure_parsability and, for instance,
330   // that of ParallelScavengeHeap::ensure_parsability().
331   // The argument "retire_tlabs" controls whether existing TLABs
332   // are merely filled or also retired, thus preventing further
333   // allocation from them and necessitating allocation of new TLABs.
334   virtual void ensure_parsability(bool retire_tlabs);
335 
336   // The amount of space available for thread-local allocation buffers.
337   virtual size_t tlab_capacity(Thread *thr) const = 0;
338 
339   // The amount of used space for thread-local allocation buffers for the given thread.
340   virtual size_t tlab_used(Thread *thr) const = 0;
341 
342   virtual size_t max_tlab_size() const;
343 
344   // An estimate of the maximum allocation that could be performed
345   // for thread-local allocation buffers without triggering any
346   // collection or expansion activity.
347   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const = 0;
348 
349   // Perform a collection of the heap; intended for use in implementing
350   // "System.gc".  This probably implies as full a collection as the
351   // "CollectedHeap" supports.
352   virtual void collect(GCCause::Cause cause) = 0;
353 
354   // Perform a full collection
355   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
356 
357   // This interface assumes that it's being called by the
358   // vm thread. It collects the heap assuming that the
359   // heap lock is already held and that we are executing in
360   // the context of the vm thread.
361   virtual void collect_as_vm_thread(GCCause::Cause cause);
362 
363   virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
364                                                        size_t size,
365                                                        Metaspace::MetadataType mdtype);
366 
367   // Return true, if accesses to the object would require barriers.
368   // This is used by continuations to copy chunks of a thread stack into StackChunk object or out of a StackChunk
369   // object back into the thread stack. These chunks may contain references to objects. It is crucial that
370   // the GC does not attempt to traverse the object while we modify it, because its structure (oopmap) is changed
371   // when stack chunks are stored into it.
372   // StackChunk objects may be reused, the GC must not assume that a StackChunk object is always a freshly
373   // allocated object.
374   virtual bool requires_barriers(stackChunkOop obj) const = 0;
375 
376   // Returns "true" iff there is a stop-world GC in progress.
377   bool is_stw_gc_active() const { return _is_stw_gc_active; }
378 
379   // Total number of GC collections (started)
380   unsigned int total_collections() const { return _total_collections; }
381   unsigned int total_full_collections() const { return _total_full_collections;}
382 
383   // Increment total number of GC collections (started)
384   void increment_total_collections(bool full = false) {
385     _total_collections++;
386     if (full) {
387       increment_total_full_collections();
388     }
389   }
390 
391   void increment_total_full_collections() { _total_full_collections++; }
392 
393   // Return the SoftRefPolicy for the heap;
394   SoftRefPolicy* soft_ref_policy() { return &_soft_ref_policy; }
395 
396   virtual MemoryUsage memory_usage();
397   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
398   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
399 
400   // Iterate over all objects, calling "cl.do_object" on each.
401   virtual void object_iterate(ObjectClosure* cl) = 0;
402 
403   virtual ParallelObjectIteratorImpl* parallel_object_iterator(uint thread_num) {
404     return nullptr;
405   }
406 
407   // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
408   virtual void keep_alive(oop obj) {}
409 
410   // Perform any cleanup actions necessary before allowing a verification.
411   virtual void prepare_for_verify() = 0;
412 
413   // Returns the longest time (in ms) that has elapsed since the last
414   // time that the whole heap has been examined by a garbage collection.
415   jlong millis_since_last_whole_heap_examined();
416   // GC should call this when the next whole heap analysis has completed to
417   // satisfy above requirement.
418   void record_whole_heap_examined_timestamp();
419 
420  private:
421   // Generate any dumps preceding or following a full gc
422   void full_gc_dump(GCTimer* timer, bool before);
423 
424   virtual void initialize_serviceability() = 0;
425 
426  public:
427   void pre_full_gc_dump(GCTimer* timer);
428   void post_full_gc_dump(GCTimer* timer);
429 
430   virtual VirtualSpaceSummary create_heap_space_summary();
431   GCHeapSummary create_heap_summary();
432 
433   MetaspaceSummary create_metaspace_summary();
434 
435   // GCs are free to represent the bit representation for null differently in memory,
436   // which is typically not observable when using the Access API. However, if for
437   // some reason a context doesn't allow using the Access API, then this function
438   // explicitly checks if the given memory location contains a null value.
439   virtual bool contains_null(const oop* p) const;
440 
441   // Print heap information on the given outputStream.
442   virtual void print_on(outputStream* st) const = 0;
443   // The default behavior is to call print_on() on tty.
444   virtual void print() const;
445 
446   // Print more detailed heap information on the given
447   // outputStream. The default behavior is to call print_on(). It is
448   // up to each subclass to override it and add any additional output
449   // it needs.
450   virtual void print_extended_on(outputStream* st) const {
451     print_on(st);
452   }
453 
454   virtual void print_on_error(outputStream* st) const;
455 
456   // Used to print information about locations in the hs_err file.
457   virtual bool print_location(outputStream* st, void* addr) const = 0;
458 
459   // Iterator for all GC threads (other than VM thread)
460   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
461 
462   // Print any relevant tracing info that flags imply.
463   // Default implementation does nothing.
464   virtual void print_tracing_info() const = 0;
465 
466   void print_heap_before_gc();
467   void print_heap_after_gc();
468 
469   // Registering and unregistering an nmethod (compiled code) with the heap.
470   virtual void register_nmethod(nmethod* nm) = 0;
471   virtual void unregister_nmethod(nmethod* nm) = 0;
472   virtual void verify_nmethod(nmethod* nm) = 0;
473 
474   void trace_heap_before_gc(const GCTracer* gc_tracer);
475   void trace_heap_after_gc(const GCTracer* gc_tracer);
476 
477   // Heap verification
478   virtual void verify(VerifyOption option) = 0;
479 
480   // Return true if concurrent gc control via WhiteBox is supported by
481   // this collector.  The default implementation returns false.
482   virtual bool supports_concurrent_gc_breakpoints() const;
483 
484   // Workers used in non-GC safepoints for parallel safepoint cleanup. If this
485   // method returns null, cleanup tasks are done serially in the VMThread. See
486   // `SafepointSynchronize::do_cleanup_tasks` for details.
487   // GCs using a GC worker thread pool inside GC safepoints may opt to share
488   // that pool with non-GC safepoints, avoiding creating extraneous threads.
489   // Such sharing is safe, because GC safepoints and non-GC safepoints never
490   // overlap. For example, `G1CollectedHeap::workers()` (for GC safepoints) and
491   // `G1CollectedHeap::safepoint_workers()` (for non-GC safepoints) return the
492   // same thread-pool.
493   virtual WorkerThreads* safepoint_workers() { return nullptr; }
494 
495   // Support for object pinning. This is used by JNI Get*Critical()
496   // and Release*Critical() family of functions. The GC must guarantee
497   // that pinned objects never move and don't get reclaimed as garbage.
498   // These functions are potentially safepointing.
499   virtual void pin_object(JavaThread* thread, oop obj) = 0;
500   virtual void unpin_object(JavaThread* thread, oop obj) = 0;
501 
502   // Support for loading objects from CDS archive into the heap
503   // (usually as a snapshot of the old generation).
504   virtual bool can_load_archived_objects() const { return false; }
505   virtual HeapWord* allocate_loaded_archive_space(size_t size) { return nullptr; }
506   virtual void complete_loaded_archive_space(MemRegion archive_space) { }
507 
508   virtual bool is_oop(oop object) const;
509   // Non product verification and debugging.
510 #ifndef PRODUCT
511   // Support for PromotionFailureALot.  Return true if it's time to cause a
512   // promotion failure.  The no-argument version uses
513   // this->_promotion_failure_alot_count as the counter.
514   bool promotion_should_fail(volatile size_t* count);
515   bool promotion_should_fail();
516 
517   // Reset the PromotionFailureALot counters.  Should be called at the end of a
518   // GC in which promotion failure occurred.
519   void reset_promotion_should_fail(volatile size_t* count);
520   void reset_promotion_should_fail();
521 #endif  // #ifndef PRODUCT
522 };
523 
524 // Class to set and reset the GC cause for a CollectedHeap.
525 
526 class GCCauseSetter : StackObj {
527   CollectedHeap* _heap;
528   GCCause::Cause _previous_cause;
529  public:
530   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
531     _heap = heap;
532     _previous_cause = _heap->gc_cause();
533     _heap->set_gc_cause(cause);
534   }
535 
536   ~GCCauseSetter() {
537     _heap->set_gc_cause(_previous_cause);
538   }
539 };
540 
541 #endif // SHARE_GC_SHARED_COLLECTEDHEAP_HPP