1 /* 2 * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_GC_SHARED_COLLECTEDHEAP_HPP 26 #define SHARE_GC_SHARED_COLLECTEDHEAP_HPP 27 28 #include "gc/shared/gcCause.hpp" 29 #include "gc/shared/gcWhen.hpp" 30 #include "gc/shared/softRefPolicy.hpp" 31 #include "gc/shared/verifyOption.hpp" 32 #include "memory/allocation.hpp" 33 #include "memory/metaspace.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/stackChunkOop.hpp" 36 #include "runtime/handles.hpp" 37 #include "runtime/perfDataTypes.hpp" 38 #include "runtime/safepoint.hpp" 39 #include "services/memoryUsage.hpp" 40 #include "utilities/debug.hpp" 41 #include "utilities/formatBuffer.hpp" 42 #include "utilities/growableArray.hpp" 43 44 // A "CollectedHeap" is an implementation of a java heap for HotSpot. This 45 // is an abstract class: there may be many different kinds of heaps. This 46 // class defines the functions that a heap must implement, and contains 47 // infrastructure common to all heaps. 48 49 class GCHeapLog; 50 class GCHeapSummary; 51 class GCMemoryManager; 52 class GCMetaspaceLog; 53 class GCTimer; 54 class GCTracer; 55 class MemoryPool; 56 class MetaspaceSummary; 57 class ReservedHeapSpace; 58 class Thread; 59 class ThreadClosure; 60 class VirtualSpaceSummary; 61 class WorkerThreads; 62 class nmethod; 63 64 class ParallelObjectIteratorImpl : public CHeapObj<mtGC> { 65 public: 66 virtual ~ParallelObjectIteratorImpl() {} 67 virtual void object_iterate(ObjectClosure* cl, uint worker_id) = 0; 68 }; 69 70 // User facing parallel object iterator. This is a StackObj, which ensures that 71 // the _impl is allocated and deleted in the scope of this object. This ensures 72 // the life cycle of the implementation is as required by ThreadsListHandle, 73 // which is sometimes used by the root iterators. 74 class ParallelObjectIterator : public StackObj { 75 ParallelObjectIteratorImpl* _impl; 76 77 public: 78 ParallelObjectIterator(uint thread_num); 79 ~ParallelObjectIterator(); 80 void object_iterate(ObjectClosure* cl, uint worker_id); 81 }; 82 83 // 84 // CollectedHeap 85 // SerialHeap 86 // G1CollectedHeap 87 // ParallelScavengeHeap 88 // ShenandoahHeap 89 // ZCollectedHeap 90 // 91 class CollectedHeap : public CHeapObj<mtGC> { 92 friend class VMStructs; 93 friend class JVMCIVMStructs; 94 friend class IsSTWGCActiveMark; // Block structured external access to _is_stw_gc_active 95 friend class MemAllocator; 96 97 private: 98 GCHeapLog* _heap_log; 99 GCMetaspaceLog* _metaspace_log; 100 101 // Historic gc information 102 size_t _capacity_at_last_gc; 103 size_t _used_at_last_gc; 104 105 SoftRefPolicy _soft_ref_policy; 106 107 // First, set it to java_lang_Object. 108 // Then, set it to FillerObject after the FillerObject_klass loading is complete. 109 static Klass* _filler_object_klass; 110 111 protected: 112 // Not used by all GCs 113 MemRegion _reserved; 114 115 bool _is_stw_gc_active; 116 117 // (Minimum) Alignment reserve for TLABs and PLABs. 118 static size_t _lab_alignment_reserve; 119 // Used for filler objects (static, but initialized in ctor). 120 static size_t _filler_array_max_size; 121 122 static size_t _stack_chunk_max_size; // 0 for no limit 123 124 // Last time the whole heap has been examined in support of RMI 125 // MaxObjectInspectionAge. 126 // This timestamp must be monotonically non-decreasing to avoid 127 // time-warp warnings. 128 jlong _last_whole_heap_examined_time_ns; 129 130 unsigned int _total_collections; // ... started 131 unsigned int _total_full_collections; // ... started 132 NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;) 133 NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;) 134 135 jlong _vmthread_cpu_time; 136 137 // Reason for current garbage collection. Should be set to 138 // a value reflecting no collection between collections. 139 GCCause::Cause _gc_cause; 140 GCCause::Cause _gc_lastcause; 141 PerfStringVariable* _perf_gc_cause; 142 PerfStringVariable* _perf_gc_lastcause; 143 144 // Constructor 145 CollectedHeap(); 146 147 // Create a new tlab. All TLAB allocations must go through this. 148 // To allow more flexible TLAB allocations min_size specifies 149 // the minimum size needed, while requested_size is the requested 150 // size based on ergonomics. The actually allocated size will be 151 // returned in actual_size. 152 virtual HeapWord* allocate_new_tlab(size_t min_size, 153 size_t requested_size, 154 size_t* actual_size) = 0; 155 156 // Reinitialize tlabs before resuming mutators. 157 virtual void resize_all_tlabs(); 158 159 // Raw memory allocation facilities 160 // The obj and array allocate methods are covers for these methods. 161 // mem_allocate() should never be 162 // called to allocate TLABs, only individual objects. 163 virtual HeapWord* mem_allocate(size_t size, 164 bool* gc_overhead_limit_was_exceeded) = 0; 165 166 // Filler object utilities. 167 static inline size_t filler_array_hdr_size(); 168 169 static size_t filler_array_min_size(); 170 171 protected: 172 static inline void zap_filler_array_with(HeapWord* start, size_t words, juint value); 173 DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);) 174 DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);) 175 176 // Fill with a single array; caller must ensure filler_array_min_size() <= 177 // words <= filler_array_max_size(). 178 static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true); 179 180 // Fill with a single object (either an int array or a java.lang.Object). 181 static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true); 182 183 virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer); 184 185 // Verification functions 186 DEBUG_ONLY(static void check_for_valid_allocation_state();) 187 188 public: 189 enum Name { 190 None, 191 Serial, 192 Parallel, 193 G1, 194 Epsilon, 195 Z, 196 Shenandoah 197 }; 198 199 protected: 200 // Get a pointer to the derived heap object. Used to implement 201 // derived class heap() functions rather than being called directly. 202 template<typename T> 203 static T* named_heap(Name kind) { 204 CollectedHeap* heap = Universe::heap(); 205 assert(heap != nullptr, "Uninitialized heap"); 206 assert(kind == heap->kind(), "Heap kind %u should be %u", 207 static_cast<uint>(heap->kind()), static_cast<uint>(kind)); 208 return static_cast<T*>(heap); 209 } 210 211 // Print any relevant tracing info that flags imply. 212 // Default implementation does nothing. 213 virtual void print_tracing_info() const = 0; 214 215 // Stop any onging concurrent work and prepare for exit. 216 virtual void stop() = 0; 217 218 public: 219 220 static inline size_t filler_array_max_size() { 221 return _filler_array_max_size; 222 } 223 224 static inline size_t stack_chunk_max_size() { 225 return _stack_chunk_max_size; 226 } 227 228 static inline Klass* filler_object_klass() { 229 return _filler_object_klass; 230 } 231 232 static inline void set_filler_object_klass(Klass* k) { 233 _filler_object_klass = k; 234 } 235 236 virtual Name kind() const = 0; 237 238 virtual const char* name() const = 0; 239 240 /** 241 * Returns JNI error code JNI_ENOMEM if memory could not be allocated, 242 * and JNI_OK on success. 243 */ 244 virtual jint initialize() = 0; 245 246 // In many heaps, there will be a need to perform some initialization activities 247 // after the Universe is fully formed, but before general heap allocation is allowed. 248 // This is the correct place to place such initialization methods. 249 virtual void post_initialize(); 250 251 void before_exit(); 252 253 // Stop and resume concurrent GC threads interfering with safepoint operations 254 virtual void safepoint_synchronize_begin() {} 255 virtual void safepoint_synchronize_end() {} 256 257 void add_vmthread_cpu_time(jlong time); 258 259 void initialize_reserved_region(const ReservedHeapSpace& rs); 260 261 virtual size_t capacity() const = 0; 262 virtual size_t used() const = 0; 263 264 // Returns unused capacity. 265 virtual size_t unused() const; 266 267 // Historic gc information 268 size_t free_at_last_gc() const { return _capacity_at_last_gc - _used_at_last_gc; } 269 size_t used_at_last_gc() const { return _used_at_last_gc; } 270 void update_capacity_and_used_at_gc(); 271 272 // Support for java.lang.Runtime.maxMemory(): return the maximum amount of 273 // memory that the vm could make available for storing 'normal' java objects. 274 // This is based on the reserved address space, but should not include space 275 // that the vm uses internally for bookkeeping or temporary storage 276 // (e.g., in the case of the young gen, one of the survivor 277 // spaces). 278 virtual size_t max_capacity() const = 0; 279 280 // Returns "TRUE" iff "p" points into the committed areas of the heap. 281 // This method can be expensive so avoid using it in performance critical 282 // code. 283 virtual bool is_in(const void* p) const = 0; 284 285 DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == nullptr || is_in(p); }) 286 287 void set_gc_cause(GCCause::Cause v); 288 GCCause::Cause gc_cause() { return _gc_cause; } 289 290 oop obj_allocate(Klass* klass, size_t size, TRAPS); 291 oop obj_buffer_allocate(Klass* klass, size_t size, TRAPS); // doesn't clear memory 292 virtual oop array_allocate(Klass* klass, size_t size, int length, bool do_zero, TRAPS); 293 oop class_allocate(Klass* klass, size_t size, TRAPS); 294 295 // Utilities for turning raw memory into filler objects. 296 // 297 // min_fill_size() is the smallest region that can be filled. 298 // fill_with_objects() can fill arbitrary-sized regions of the heap using 299 // multiple objects. fill_with_object() is for regions known to be smaller 300 // than the largest array of integers; it uses a single object to fill the 301 // region and has slightly less overhead. 302 static size_t min_fill_size() { 303 return size_t(align_object_size(oopDesc::header_size())); 304 } 305 306 static void fill_with_objects(HeapWord* start, size_t words, bool zap = true); 307 308 static void fill_with_object(HeapWord* start, size_t words, bool zap = true); 309 static void fill_with_object(MemRegion region, bool zap = true) { 310 fill_with_object(region.start(), region.word_size(), zap); 311 } 312 static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) { 313 fill_with_object(start, pointer_delta(end, start), zap); 314 } 315 316 virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap); 317 static size_t min_dummy_object_size() { 318 return oopDesc::header_size(); 319 } 320 321 static size_t lab_alignment_reserve() { 322 assert(_lab_alignment_reserve != SIZE_MAX, "uninitialized"); 323 return _lab_alignment_reserve; 324 } 325 326 // Some heaps may be in an unparseable state at certain times between 327 // collections. This may be necessary for efficient implementation of 328 // certain allocation-related activities. Calling this function before 329 // attempting to parse a heap ensures that the heap is in a parsable 330 // state (provided other concurrent activity does not introduce 331 // unparsability). It is normally expected, therefore, that this 332 // method is invoked with the world stopped. 333 // NOTE: if you override this method, make sure you call 334 // super::ensure_parsability so that the non-generational 335 // part of the work gets done. See implementation of 336 // CollectedHeap::ensure_parsability and, for instance, 337 // that of ParallelScavengeHeap::ensure_parsability(). 338 // The argument "retire_tlabs" controls whether existing TLABs 339 // are merely filled or also retired, thus preventing further 340 // allocation from them and necessitating allocation of new TLABs. 341 virtual void ensure_parsability(bool retire_tlabs); 342 343 // The amount of space available for thread-local allocation buffers. 344 virtual size_t tlab_capacity(Thread *thr) const = 0; 345 346 // The amount of used space for thread-local allocation buffers for the given thread. 347 virtual size_t tlab_used(Thread *thr) const = 0; 348 349 virtual size_t max_tlab_size() const; 350 351 // An estimate of the maximum allocation that could be performed 352 // for thread-local allocation buffers without triggering any 353 // collection or expansion activity. 354 virtual size_t unsafe_max_tlab_alloc(Thread *thr) const = 0; 355 356 // Perform a collection of the heap; intended for use in implementing 357 // "System.gc". This probably implies as full a collection as the 358 // "CollectedHeap" supports. 359 virtual void collect(GCCause::Cause cause) = 0; 360 361 // Perform a full collection 362 virtual void do_full_collection(bool clear_all_soft_refs) = 0; 363 364 // This interface assumes that it's being called by the 365 // vm thread. It collects the heap assuming that the 366 // heap lock is already held and that we are executing in 367 // the context of the vm thread. 368 virtual void collect_as_vm_thread(GCCause::Cause cause); 369 370 virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 371 size_t size, 372 Metaspace::MetadataType mdtype); 373 374 // Return true, if accesses to the object would require barriers. 375 // This is used by continuations to copy chunks of a thread stack into StackChunk object or out of a StackChunk 376 // object back into the thread stack. These chunks may contain references to objects. It is crucial that 377 // the GC does not attempt to traverse the object while we modify it, because its structure (oopmap) is changed 378 // when stack chunks are stored into it. 379 // StackChunk objects may be reused, the GC must not assume that a StackChunk object is always a freshly 380 // allocated object. 381 virtual bool requires_barriers(stackChunkOop obj) const = 0; 382 383 // Returns "true" iff there is a stop-world GC in progress. 384 bool is_stw_gc_active() const { return _is_stw_gc_active; } 385 386 // Total number of GC collections (started) 387 unsigned int total_collections() const { return _total_collections; } 388 unsigned int total_full_collections() const { return _total_full_collections;} 389 390 // Increment total number of GC collections (started) 391 void increment_total_collections(bool full = false) { 392 _total_collections++; 393 if (full) { 394 _total_full_collections++; 395 } 396 } 397 398 // Return the SoftRefPolicy for the heap; 399 SoftRefPolicy* soft_ref_policy() { return &_soft_ref_policy; } 400 401 virtual MemoryUsage memory_usage(); 402 virtual GrowableArray<GCMemoryManager*> memory_managers() = 0; 403 virtual GrowableArray<MemoryPool*> memory_pools() = 0; 404 405 // Iterate over all objects, calling "cl.do_object" on each. 406 virtual void object_iterate(ObjectClosure* cl) = 0; 407 408 virtual ParallelObjectIteratorImpl* parallel_object_iterator(uint thread_num) { 409 return nullptr; 410 } 411 412 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 413 virtual void keep_alive(oop obj) {} 414 415 // Perform any cleanup actions necessary before allowing a verification. 416 virtual void prepare_for_verify() = 0; 417 418 // Returns the longest time (in ms) that has elapsed since the last 419 // time that the whole heap has been examined by a garbage collection. 420 jlong millis_since_last_whole_heap_examined(); 421 // GC should call this when the next whole heap analysis has completed to 422 // satisfy above requirement. 423 void record_whole_heap_examined_timestamp(); 424 425 private: 426 // Generate any dumps preceding or following a full gc 427 void full_gc_dump(GCTimer* timer, bool before); 428 429 virtual void initialize_serviceability() = 0; 430 431 void print_relative_to_gc(GCWhen::Type when) const; 432 433 void log_gc_cpu_time() const; 434 435 public: 436 void pre_full_gc_dump(GCTimer* timer); 437 void post_full_gc_dump(GCTimer* timer); 438 439 virtual VirtualSpaceSummary create_heap_space_summary(); 440 GCHeapSummary create_heap_summary(); 441 442 MetaspaceSummary create_metaspace_summary(); 443 444 // GCs are free to represent the bit representation for null differently in memory, 445 // which is typically not observable when using the Access API. However, if for 446 // some reason a context doesn't allow using the Access API, then this function 447 // explicitly checks if the given memory location contains a null value. 448 virtual bool contains_null(const oop* p) const; 449 450 void print_invocation_on(outputStream* st, const char* type, GCWhen::Type when) const; 451 452 // Print heap information. 453 virtual void print_heap_on(outputStream* st) const = 0; 454 455 // Print additional information about the GC that is not included in print_heap_on(). 456 virtual void print_gc_on(outputStream* st) const = 0; 457 458 // The default behavior is to call print_heap_on() and print_gc_on() on tty. 459 virtual void print() const; 460 461 // Used to print information about locations in the hs_err file. 462 virtual bool print_location(outputStream* st, void* addr) const = 0; 463 464 // Iterator for all GC threads (other than VM thread) 465 virtual void gc_threads_do(ThreadClosure* tc) const = 0; 466 467 double elapsed_gc_cpu_time() const; 468 469 void print_before_gc() const; 470 void print_after_gc() const; 471 472 // Registering and unregistering an nmethod (compiled code) with the heap. 473 virtual void register_nmethod(nmethod* nm) = 0; 474 virtual void unregister_nmethod(nmethod* nm) = 0; 475 virtual void verify_nmethod(nmethod* nm) = 0; 476 477 void trace_heap_before_gc(const GCTracer* gc_tracer); 478 void trace_heap_after_gc(const GCTracer* gc_tracer); 479 480 // Heap verification 481 virtual void verify(VerifyOption option) = 0; 482 483 // Return true if concurrent gc control via WhiteBox is supported by 484 // this collector. The default implementation returns false. 485 virtual bool supports_concurrent_gc_breakpoints() const; 486 487 // Workers used in non-GC safepoints for parallel safepoint cleanup. If this 488 // method returns null, cleanup tasks are done serially in the VMThread. See 489 // `SafepointSynchronize::do_cleanup_tasks` for details. 490 // GCs using a GC worker thread pool inside GC safepoints may opt to share 491 // that pool with non-GC safepoints, avoiding creating extraneous threads. 492 // Such sharing is safe, because GC safepoints and non-GC safepoints never 493 // overlap. For example, `G1CollectedHeap::workers()` (for GC safepoints) and 494 // `G1CollectedHeap::safepoint_workers()` (for non-GC safepoints) return the 495 // same thread-pool. 496 virtual WorkerThreads* safepoint_workers() { return nullptr; } 497 498 // Support for object pinning. This is used by JNI Get*Critical() 499 // and Release*Critical() family of functions. The GC must guarantee 500 // that pinned objects never move and don't get reclaimed as garbage. 501 // These functions are potentially safepointing. 502 virtual void pin_object(JavaThread* thread, oop obj) = 0; 503 virtual void unpin_object(JavaThread* thread, oop obj) = 0; 504 505 // Support for loading objects from CDS archive into the heap 506 // (usually as a snapshot of the old generation). 507 virtual bool can_load_archived_objects() const { return false; } 508 virtual HeapWord* allocate_loaded_archive_space(size_t size) { return nullptr; } 509 virtual void complete_loaded_archive_space(MemRegion archive_space) { } 510 511 virtual bool is_oop(oop object) const; 512 // Non product verification and debugging. 513 #ifndef PRODUCT 514 // Support for PromotionFailureALot. Return true if it's time to cause a 515 // promotion failure. The no-argument version uses 516 // this->_promotion_failure_alot_count as the counter. 517 bool promotion_should_fail(volatile size_t* count); 518 bool promotion_should_fail(); 519 520 // Reset the PromotionFailureALot counters. Should be called at the end of a 521 // GC in which promotion failure occurred. 522 void reset_promotion_should_fail(volatile size_t* count); 523 void reset_promotion_should_fail(); 524 #endif // #ifndef PRODUCT 525 }; 526 527 // Class to set and reset the GC cause for a CollectedHeap. 528 529 class GCCauseSetter : StackObj { 530 CollectedHeap* _heap; 531 GCCause::Cause _previous_cause; 532 public: 533 GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) { 534 _heap = heap; 535 _previous_cause = _heap->gc_cause(); 536 _heap->set_gc_cause(cause); 537 } 538 539 ~GCCauseSetter() { 540 _heap->set_gc_cause(_previous_cause); 541 } 542 }; 543 544 #endif // SHARE_GC_SHARED_COLLECTEDHEAP_HPP