1 /*
2 * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_GC_SHARED_COLLECTEDHEAP_HPP
26 #define SHARE_GC_SHARED_COLLECTEDHEAP_HPP
27
28 #include "gc/shared/gcCause.hpp"
29 #include "gc/shared/gcWhen.hpp"
30 #include "gc/shared/verifyOption.hpp"
31 #include "memory/allocation.hpp"
32 #include "memory/metaspace.hpp"
33 #include "memory/universe.hpp"
34 #include "oops/stackChunkOop.hpp"
35 #include "runtime/handles.hpp"
36 #include "runtime/perfDataTypes.hpp"
37 #include "runtime/safepoint.hpp"
38 #include "services/cpuTimeUsage.hpp"
39 #include "services/memoryUsage.hpp"
40 #include "utilities/debug.hpp"
41 #include "utilities/formatBuffer.hpp"
42 #include "utilities/growableArray.hpp"
43
44 // A "CollectedHeap" is an implementation of a java heap for HotSpot. This
45 // is an abstract class: there may be many different kinds of heaps. This
46 // class defines the functions that a heap must implement, and contains
47 // infrastructure common to all heaps.
48
49 class GCHeapLog;
50 class GCHeapSummary;
51 class GCMemoryManager;
52 class GCMetaspaceLog;
53 class GCTimer;
54 class GCTracer;
55 class MemoryPool;
56 class MetaspaceSummary;
57 class ReservedHeapSpace;
58 class Thread;
59 class ThreadClosure;
60 class VirtualSpaceSummary;
61 class WorkerThreads;
62 class nmethod;
63
64 class ParallelObjectIteratorImpl : public CHeapObj<mtGC> {
65 public:
66 virtual ~ParallelObjectIteratorImpl() {}
67 virtual void object_iterate(ObjectClosure* cl, uint worker_id) = 0;
68 };
69
70 // User facing parallel object iterator. This is a StackObj, which ensures that
71 // the _impl is allocated and deleted in the scope of this object. This ensures
72 // the life cycle of the implementation is as required by ThreadsListHandle,
73 // which is sometimes used by the root iterators.
74 class ParallelObjectIterator : public StackObj {
75 ParallelObjectIteratorImpl* _impl;
76
77 public:
78 ParallelObjectIterator(uint thread_num);
79 ~ParallelObjectIterator();
80 void object_iterate(ObjectClosure* cl, uint worker_id);
81 };
82
83 //
84 // CollectedHeap
85 // SerialHeap
86 // G1CollectedHeap
87 // ParallelScavengeHeap
88 // ShenandoahHeap
89 // ZCollectedHeap
90 //
91 class CollectedHeap : public CHeapObj<mtGC> {
92 friend class CPUTimeUsage::GC;
93 friend class VMStructs;
94 friend class JVMCIVMStructs;
95 friend class IsSTWGCActiveMark; // Block structured external access to _is_stw_gc_active
96 friend class MemAllocator;
97
98 private:
99 GCHeapLog* _heap_log;
100 GCMetaspaceLog* _metaspace_log;
101
102 // Historic gc information
103 size_t _capacity_at_last_gc;
104 size_t _used_at_last_gc;
105
106 // First, set it to java_lang_Object.
107 // Then, set it to FillerObject after the FillerObject_klass loading is complete.
108 static Klass* _filler_object_klass;
109
110 protected:
111 // Not used by all GCs
112 MemRegion _reserved;
113
114 bool _is_stw_gc_active;
115
116 // (Minimum) Alignment reserve for TLABs and PLABs.
117 static size_t _lab_alignment_reserve;
118 // Used for filler objects (static, but initialized in ctor).
119 static size_t _filler_array_max_size;
120
121 static size_t _stack_chunk_max_size; // 0 for no limit
122
123 // Last time the whole heap has been examined in support of RMI
124 // MaxObjectInspectionAge.
125 // This timestamp must be monotonically non-decreasing to avoid
126 // time-warp warnings.
127 jlong _last_whole_heap_examined_time_ns;
128
129 unsigned int _total_collections; // ... started
130 unsigned int _total_full_collections; // ... started
131 NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
132 NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
133
134 jlong _vmthread_cpu_time;
135
136 // Reason for current garbage collection. Should be set to
137 // a value reflecting no collection between collections.
138 GCCause::Cause _gc_cause;
139 GCCause::Cause _gc_lastcause;
140 PerfStringVariable* _perf_gc_cause;
141 PerfStringVariable* _perf_gc_lastcause;
142
143 // Constructor
144 CollectedHeap();
145
146 // Create a new tlab. All TLAB allocations must go through this.
147 // To allow more flexible TLAB allocations min_size specifies
148 // the minimum size needed, while requested_size is the requested
149 // size based on ergonomics. The actually allocated size will be
150 // returned in actual_size.
151 virtual HeapWord* allocate_new_tlab(size_t min_size,
152 size_t requested_size,
153 size_t* actual_size) = 0;
154
155 // Reinitialize tlabs before resuming mutators.
156 virtual void resize_all_tlabs();
157
158 // Raw memory allocation facilities
159 // The obj and array allocate methods are covers for these methods.
160 // mem_allocate() should never be
161 // called to allocate TLABs, only individual objects.
162 virtual HeapWord* mem_allocate(size_t size) = 0;
163
164 // Filler object utilities.
165 static inline size_t filler_array_hdr_size();
166
167 static size_t filler_array_min_size();
168
169 protected:
170 static inline void zap_filler_array_with(HeapWord* start, size_t words, juint value);
171 DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
172
173 // Fill with a single array; caller must ensure filler_array_min_size() <=
174 // words <= filler_array_max_size().
175 static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
176
177 // Fill with a single object (either an int array or a java.lang.Object).
178 static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
179
180 virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
181
182 // Verification functions
183 DEBUG_ONLY(static void check_for_valid_allocation_state();)
184
185 public:
186 enum Name {
187 None,
188 Serial,
189 Parallel,
190 G1,
191 Epsilon,
192 Z,
193 Shenandoah
194 };
195
196 protected:
197 // Get a pointer to the derived heap object. Used to implement
198 // derived class heap() functions rather than being called directly.
199 template<typename T>
200 static T* named_heap(Name kind) {
201 CollectedHeap* heap = Universe::heap();
202 assert(heap != nullptr, "Uninitialized heap");
203 assert(kind == heap->kind(), "Heap kind %u should be %u",
204 static_cast<uint>(heap->kind()), static_cast<uint>(kind));
205 return static_cast<T*>(heap);
206 }
207
208 // Print any relevant tracing info that flags imply.
209 // Default implementation does nothing.
210 virtual void print_tracing_info() const = 0;
211
212 // Stop any onging concurrent work and prepare for exit.
213 virtual void stop() = 0;
214
215 public:
216
217 static inline size_t filler_array_max_size() {
218 return _filler_array_max_size;
219 }
220
221 static inline size_t stack_chunk_max_size() {
222 return _stack_chunk_max_size;
223 }
224
225 static inline Klass* filler_object_klass() {
226 return _filler_object_klass;
227 }
228
229 static inline void set_filler_object_klass(Klass* k) {
230 _filler_object_klass = k;
231 }
232
233 virtual Name kind() const = 0;
234
235 virtual const char* name() const = 0;
236
237 /**
238 * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
239 * and JNI_OK on success.
240 */
241 virtual jint initialize() = 0;
242
243 // In many heaps, there will be a need to perform some initialization activities
244 // after the Universe is fully formed, but before general heap allocation is allowed.
245 // This is the correct place to place such initialization methods.
246 virtual void post_initialize();
247
248 bool is_shutting_down() const;
249
250 // If the VM is shutting down, we may have skipped VM_CollectForAllocation.
251 // In this case, stall the allocation request briefly in the hope that
252 // the VM shutdown completes before the allocation request returns.
253 void stall_for_vm_shutdown();
254
255 void before_exit();
256
257 // Stop and resume concurrent GC threads interfering with safepoint operations
258 virtual void safepoint_synchronize_begin() {}
259 virtual void safepoint_synchronize_end() {}
260
261 void add_vmthread_cpu_time(jlong time);
262
263 void initialize_reserved_region(const ReservedHeapSpace& rs);
264
265 virtual size_t capacity() const = 0;
266 virtual size_t used() const = 0;
267
268 // Returns unused capacity.
269 virtual size_t unused() const;
270
271 // Historic gc information
272 size_t free_at_last_gc() const { return _capacity_at_last_gc - _used_at_last_gc; }
273 size_t used_at_last_gc() const { return _used_at_last_gc; }
274 void update_capacity_and_used_at_gc();
275
276 // Support for java.lang.Runtime.maxMemory(): return the maximum amount of
277 // memory that the vm could make available for storing 'normal' java objects.
278 // This is based on the reserved address space, but should not include space
279 // that the vm uses internally for bookkeeping or temporary storage
280 // (e.g., in the case of the young gen, one of the survivor
281 // spaces).
282 virtual size_t max_capacity() const = 0;
283
284 // Returns "TRUE" iff "p" points into the committed areas of the heap.
285 // This method can be expensive so avoid using it in performance critical
286 // code.
287 virtual bool is_in(const void* p) const = 0;
288
289 DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == nullptr || is_in(p); })
290
291 void set_gc_cause(GCCause::Cause v);
292 GCCause::Cause gc_cause() { return _gc_cause; }
293
294 oop obj_allocate(Klass* klass, size_t size, TRAPS);
295 oop obj_buffer_allocate(Klass* klass, size_t size, TRAPS); // doesn't clear memory
296 virtual oop array_allocate(Klass* klass, size_t size, int length, bool do_zero, TRAPS);
297 oop class_allocate(Klass* klass, size_t size, TRAPS);
298
299 // Utilities for turning raw memory into filler objects.
300 //
301 // min_fill_size() is the smallest region that can be filled.
302 // fill_with_objects() can fill arbitrary-sized regions of the heap using
303 // multiple objects. fill_with_object() is for regions known to be smaller
304 // than the largest array of integers; it uses a single object to fill the
305 // region and has slightly less overhead.
306 static size_t min_fill_size() {
307 return size_t(align_object_size(oopDesc::header_size()));
308 }
309
310 static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
311
312 static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
313 static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
314 fill_with_object(start, pointer_delta(end, start), zap);
315 }
316
317 virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap);
318 static size_t min_dummy_object_size() {
319 return oopDesc::header_size();
320 }
321
322 static size_t lab_alignment_reserve() {
323 assert(_lab_alignment_reserve != SIZE_MAX, "uninitialized");
324 return _lab_alignment_reserve;
325 }
326
327 // Some heaps may be in an unparseable state at certain times between
328 // collections. This may be necessary for efficient implementation of
329 // certain allocation-related activities. Calling this function before
330 // attempting to parse a heap ensures that the heap is in a parsable
331 // state (provided other concurrent activity does not introduce
332 // unparsability). It is normally expected, therefore, that this
333 // method is invoked with the world stopped.
334 // NOTE: if you override this method, make sure you call
335 // super::ensure_parsability so that the non-generational
336 // part of the work gets done. See implementation of
337 // CollectedHeap::ensure_parsability and, for instance,
338 // that of ParallelScavengeHeap::ensure_parsability().
339 // The argument "retire_tlabs" controls whether existing TLABs
340 // are merely filled or also retired, thus preventing further
341 // allocation from them and necessitating allocation of new TLABs.
342 virtual void ensure_parsability(bool retire_tlabs);
343
344 // The amount of space available for thread-local allocation buffers.
345 virtual size_t tlab_capacity() const = 0;
346
347 // The amount of space used for thread-local allocation buffers.
348 virtual size_t tlab_used() const = 0;
349
350 virtual size_t max_tlab_size() const;
351
352 // An estimate of the maximum allocation that could be performed
353 // for thread-local allocation buffers without triggering any
354 // collection or expansion activity.
355 virtual size_t unsafe_max_tlab_alloc() const = 0;
356
357 // Perform a collection of the heap; intended for use in implementing
358 // "System.gc". This probably implies as full a collection as the
359 // "CollectedHeap" supports.
360 virtual void collect(GCCause::Cause cause) = 0;
361
362 // Perform a full collection
363 virtual void do_full_collection(bool clear_all_soft_refs) = 0;
364
365 // This interface assumes that it's being called by the
366 // vm thread. It collects the heap assuming that the
367 // heap lock is already held and that we are executing in
368 // the context of the vm thread.
369 virtual void collect_as_vm_thread(GCCause::Cause cause);
370
371 virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
372 size_t size,
373 Metaspace::MetadataType mdtype);
374
375 // Return true, if accesses to the object would require barriers.
376 // This is used by continuations to copy chunks of a thread stack into StackChunk object or out of a StackChunk
377 // object back into the thread stack. These chunks may contain references to objects. It is crucial that
378 // the GC does not attempt to traverse the object while we modify it, because its structure (oopmap) is changed
379 // when stack chunks are stored into it.
380 // StackChunk objects may be reused, the GC must not assume that a StackChunk object is always a freshly
381 // allocated object.
382 virtual bool requires_barriers(stackChunkOop obj) const = 0;
383
384 // Returns "true" iff there is a stop-world GC in progress.
385 bool is_stw_gc_active() const { return _is_stw_gc_active; }
386
387 // Total number of GC collections (started)
388 unsigned int total_collections() const { return _total_collections; }
389 unsigned int total_full_collections() const { return _total_full_collections;}
390
391 // Increment total number of GC collections (started)
392 void increment_total_collections(bool full = false) {
393 _total_collections++;
394 if (full) {
395 _total_full_collections++;
396 }
397 }
398
399 virtual MemoryUsage memory_usage();
400 virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
401 virtual GrowableArray<MemoryPool*> memory_pools() = 0;
402
403 // Iterate over all objects, calling "cl.do_object" on each.
404 virtual void object_iterate(ObjectClosure* cl) = 0;
405
406 virtual ParallelObjectIteratorImpl* parallel_object_iterator(uint thread_num) {
407 return nullptr;
408 }
409
410 // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
411 virtual void keep_alive(oop obj) {}
412
413 // Perform any cleanup actions necessary before allowing a verification.
414 virtual void prepare_for_verify() = 0;
415
416 // Returns the longest time (in ms) that has elapsed since the last
417 // time that the whole heap has been examined by a garbage collection.
418 jlong millis_since_last_whole_heap_examined();
419 // GC should call this when the next whole heap analysis has completed to
420 // satisfy above requirement.
421 void record_whole_heap_examined_timestamp();
422
423 private:
424 // Generate any dumps preceding or following a full gc
425 void full_gc_dump(GCTimer* timer, bool before);
426
427 virtual void initialize_serviceability() = 0;
428
429 void print_relative_to_gc(GCWhen::Type when) const;
430
431 public:
432 void pre_full_gc_dump(GCTimer* timer);
433 void post_full_gc_dump(GCTimer* timer);
434
435 virtual VirtualSpaceSummary create_heap_space_summary();
436 GCHeapSummary create_heap_summary();
437
438 MetaspaceSummary create_metaspace_summary();
439
440 // GCs are free to represent the bit representation for null differently in memory,
441 // which is typically not observable when using the Access API. However, if for
442 // some reason a context doesn't allow using the Access API, then this function
443 // explicitly checks if the given memory location contains a null value.
444 virtual bool contains_null(const oop* p) const;
445
446 void print_invocation_on(outputStream* st, const char* type, GCWhen::Type when) const;
447
448 // Print heap information.
449 virtual void print_heap_on(outputStream* st) const = 0;
450
451 // Print additional information about the GC that is not included in print_heap_on().
452 virtual void print_gc_on(outputStream* st) const = 0;
453
454 // The default behavior is to call print_heap_on() and print_gc_on() on tty.
455 virtual void print() const;
456
457 // Used to print information about locations in the hs_err file.
458 virtual bool print_location(outputStream* st, void* addr) const = 0;
459
460 // Iterator for all GC threads (other than VM thread)
461 virtual void gc_threads_do(ThreadClosure* tc) const = 0;
462
463 void print_before_gc() const;
464 void print_after_gc() const;
465
466 // Registering and unregistering an nmethod (compiled code) with the heap.
467 virtual void register_nmethod(nmethod* nm) = 0;
468 virtual void unregister_nmethod(nmethod* nm) = 0;
469 virtual void verify_nmethod(nmethod* nm) = 0;
470
471 void trace_heap_before_gc(const GCTracer* gc_tracer);
472 void trace_heap_after_gc(const GCTracer* gc_tracer);
473
474 // Heap verification
475 virtual void verify(VerifyOption option) = 0;
476
477 // Return true if concurrent gc control via WhiteBox is supported by
478 // this collector. The default implementation returns false.
479 virtual bool supports_concurrent_gc_breakpoints() const;
480
481 // Workers used in non-GC safepoints for parallel safepoint cleanup. If this
482 // method returns null, cleanup tasks are done serially in the VMThread. See
483 // `SafepointSynchronize::do_cleanup_tasks` for details.
484 // GCs using a GC worker thread pool inside GC safepoints may opt to share
485 // that pool with non-GC safepoints, avoiding creating extraneous threads.
486 // Such sharing is safe, because GC safepoints and non-GC safepoints never
487 // overlap. For example, `G1CollectedHeap::workers()` (for GC safepoints) and
488 // `G1CollectedHeap::safepoint_workers()` (for non-GC safepoints) return the
489 // same thread-pool.
490 virtual WorkerThreads* safepoint_workers() { return nullptr; }
491
492 // Support for object pinning. This is used by JNI Get*Critical()
493 // and Release*Critical() family of functions. The GC must guarantee
494 // that pinned objects never move and don't get reclaimed as garbage.
495 // These functions are potentially safepointing.
496 virtual void pin_object(JavaThread* thread, oop obj) = 0;
497 virtual void unpin_object(JavaThread* thread, oop obj) = 0;
498
499 // Support for loading objects from CDS archive into the heap
500 // (usually as a snapshot of the old generation).
501 virtual bool can_load_archived_objects() const { return false; }
502 virtual HeapWord* allocate_loaded_archive_space(size_t size) { return nullptr; }
503 virtual void complete_loaded_archive_space(MemRegion archive_space) { }
504 virtual size_t bootstrap_max_memory() const;
505
506 virtual bool is_oop(oop object) const;
507 // Non product verification and debugging.
508 #ifndef PRODUCT
509 // Support for PromotionFailureALot. Return true if it's time to cause a
510 // promotion failure. The no-argument version uses
511 // this->_promotion_failure_alot_count as the counter.
512 bool promotion_should_fail(volatile size_t* count);
513 bool promotion_should_fail();
514
515 // Reset the PromotionFailureALot counters. Should be called at the end of a
516 // GC in which promotion failure occurred.
517 void reset_promotion_should_fail(volatile size_t* count);
518 void reset_promotion_should_fail();
519 #endif // #ifndef PRODUCT
520 };
521
522 // Class to set and reset the GC cause for a CollectedHeap.
523
524 class GCCauseSetter : StackObj {
525 CollectedHeap* _heap;
526 GCCause::Cause _previous_cause;
527 public:
528 GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
529 _heap = heap;
530 _previous_cause = _heap->gc_cause();
531 _heap->set_gc_cause(cause);
532 }
533
534 ~GCCauseSetter() {
535 _heap->set_gc_cause(_previous_cause);
536 }
537 };
538
539 #endif // SHARE_GC_SHARED_COLLECTEDHEAP_HPP