1 /*
  2  * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_GC_SHARED_COLLECTEDHEAP_HPP
 26 #define SHARE_GC_SHARED_COLLECTEDHEAP_HPP
 27 
 28 #include "gc/shared/gcCause.hpp"
 29 #include "gc/shared/gcWhen.hpp"
 30 #include "gc/shared/verifyOption.hpp"
 31 #include "memory/allocation.hpp"
 32 #include "memory/metaspace.hpp"
 33 #include "memory/universe.hpp"
 34 #include "oops/stackChunkOop.hpp"
 35 #include "runtime/handles.hpp"
 36 #include "runtime/perfDataTypes.hpp"
 37 #include "runtime/safepoint.hpp"
 38 #include "services/cpuTimeUsage.hpp"
 39 #include "services/memoryUsage.hpp"
 40 #include "utilities/debug.hpp"
 41 #include "utilities/formatBuffer.hpp"
 42 #include "utilities/growableArray.hpp"
 43 
 44 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
 45 // is an abstract class: there may be many different kinds of heaps.  This
 46 // class defines the functions that a heap must implement, and contains
 47 // infrastructure common to all heaps.
 48 
 49 class GCHeapLog;
 50 class GCHeapSummary;
 51 class GCMemoryManager;
 52 class GCMetaspaceLog;
 53 class GCTimer;
 54 class GCTracer;
 55 class MemoryPool;
 56 class MetaspaceSummary;
 57 class ReservedHeapSpace;
 58 class Thread;
 59 class ThreadClosure;
 60 class VirtualSpaceSummary;
 61 class WorkerThreads;
 62 class nmethod;
 63 
 64 class ParallelObjectIteratorImpl : public CHeapObj<mtGC> {
 65 public:
 66   virtual ~ParallelObjectIteratorImpl() {}
 67   virtual void object_iterate(ObjectClosure* cl, uint worker_id) = 0;
 68 };
 69 
 70 // User facing parallel object iterator. This is a StackObj, which ensures that
 71 // the _impl is allocated and deleted in the scope of this object. This ensures
 72 // the life cycle of the implementation is as required by ThreadsListHandle,
 73 // which is sometimes used by the root iterators.
 74 class ParallelObjectIterator : public StackObj {
 75   ParallelObjectIteratorImpl* _impl;
 76 
 77 public:
 78   ParallelObjectIterator(uint thread_num);
 79   ~ParallelObjectIterator();
 80   void object_iterate(ObjectClosure* cl, uint worker_id);
 81 };
 82 
 83 //
 84 // CollectedHeap
 85 //   SerialHeap
 86 //   G1CollectedHeap
 87 //   ParallelScavengeHeap
 88 //   ShenandoahHeap
 89 //   ZCollectedHeap
 90 //
 91 class CollectedHeap : public CHeapObj<mtGC> {
 92   friend class CPUTimeUsage::GC;
 93   friend class VMStructs;
 94   friend class JVMCIVMStructs;
 95   friend class IsSTWGCActiveMark; // Block structured external access to _is_stw_gc_active
 96   friend class MemAllocator;
 97 
 98  private:
 99   static bool _is_shutting_down;
100 
101   GCHeapLog*      _heap_log;
102   GCMetaspaceLog* _metaspace_log;
103 
104   // Historic gc information
105   size_t _capacity_at_last_gc;
106   size_t _used_at_last_gc;
107 
108   // First, set it to java_lang_Object.
109   // Then, set it to FillerObject after the FillerObject_klass loading is complete.
110   static Klass* _filler_object_klass;
111 
112  protected:
113   // Not used by all GCs
114   MemRegion _reserved;
115 
116   bool _is_stw_gc_active;
117 
118   // (Minimum) Alignment reserve for TLABs and PLABs.
119   static size_t _lab_alignment_reserve;
120   // Used for filler objects (static, but initialized in ctor).
121   static size_t _filler_array_max_size;
122 
123   static size_t _stack_chunk_max_size; // 0 for no limit
124 
125   // Last time the whole heap has been examined in support of RMI
126   // MaxObjectInspectionAge.
127   // This timestamp must be monotonically non-decreasing to avoid
128   // time-warp warnings.
129   jlong _last_whole_heap_examined_time_ns;
130 
131   unsigned int _total_collections;          // ... started
132   unsigned int _total_full_collections;     // ... started
133   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
134   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
135 
136   jlong _vmthread_cpu_time;
137 
138   // Reason for current garbage collection.  Should be set to
139   // a value reflecting no collection between collections.
140   GCCause::Cause _gc_cause;
141   GCCause::Cause _gc_lastcause;
142   PerfStringVariable* _perf_gc_cause;
143   PerfStringVariable* _perf_gc_lastcause;
144 
145   // Constructor
146   CollectedHeap();
147 
148   // Create a new tlab. All TLAB allocations must go through this.
149   // To allow more flexible TLAB allocations min_size specifies
150   // the minimum size needed, while requested_size is the requested
151   // size based on ergonomics. The actually allocated size will be
152   // returned in actual_size.
153   virtual HeapWord* allocate_new_tlab(size_t min_size,
154                                       size_t requested_size,
155                                       size_t* actual_size) = 0;
156 
157   // Reinitialize tlabs before resuming mutators.
158   virtual void resize_all_tlabs();
159 
160   // Raw memory allocation facilities
161   // The obj and array allocate methods are covers for these methods.
162   // mem_allocate() should never be
163   // called to allocate TLABs, only individual objects.
164   virtual HeapWord* mem_allocate(size_t size) = 0;
165 
166   // Filler object utilities.
167   static inline size_t filler_array_hdr_size();
168 
169   static size_t filler_array_min_size();
170 
171 protected:
172   static inline void zap_filler_array_with(HeapWord* start, size_t words, juint value);
173   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
174 
175   // Fill with a single array; caller must ensure filler_array_min_size() <=
176   // words <= filler_array_max_size().
177   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
178 
179   // Fill with a single object (either an int array or a java.lang.Object).
180   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
181 
182   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
183 
184   // Verification functions
185   DEBUG_ONLY(static void check_for_valid_allocation_state();)
186 
187  public:
188   enum Name {
189     None,
190     Serial,
191     Parallel,
192     G1,
193     Epsilon,
194     Z,
195     Shenandoah
196   };
197 
198  protected:
199   // Get a pointer to the derived heap object.  Used to implement
200   // derived class heap() functions rather than being called directly.
201   template<typename T>
202   static T* named_heap(Name kind) {
203     CollectedHeap* heap = Universe::heap();
204     assert(heap != nullptr, "Uninitialized heap");
205     assert(kind == heap->kind(), "Heap kind %u should be %u",
206            static_cast<uint>(heap->kind()), static_cast<uint>(kind));
207     return static_cast<T*>(heap);
208   }
209 
210   // Print any relevant tracing info that flags imply.
211   // Default implementation does nothing.
212   virtual void print_tracing_info() const = 0;
213 
214  public:
215   // Stop any onging concurrent work and prepare for exit.
216   virtual void stop() = 0;
217 
218   static inline size_t filler_array_max_size() {
219     return _filler_array_max_size;
220   }
221 
222   static inline size_t stack_chunk_max_size() {
223     return _stack_chunk_max_size;
224   }
225 
226   static inline Klass* filler_object_klass() {
227     return _filler_object_klass;
228   }
229 
230   static inline void set_filler_object_klass(Klass* k) {
231     _filler_object_klass = k;
232   }
233 
234   virtual Name kind() const = 0;
235 
236   virtual const char* name() const = 0;
237 
238   /**
239    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
240    * and JNI_OK on success.
241    */
242   virtual jint initialize() = 0;
243 
244   // In many heaps, there will be a need to perform some initialization activities
245   // after the Universe is fully formed, but before general heap allocation is allowed.
246   // This is the correct place to place such initialization methods.
247   virtual void post_initialize();
248 
249   static bool is_shutting_down();
250 
251   void initiate_shutdown();
252 
253   // Stop and resume concurrent GC threads interfering with safepoint operations
254   virtual void safepoint_synchronize_begin() {}
255   virtual void safepoint_synchronize_end() {}
256 
257   void add_vmthread_cpu_time(jlong time);
258 
259   void initialize_reserved_region(const ReservedHeapSpace& rs);
260 
261   virtual size_t capacity() const = 0;
262   virtual size_t used() const = 0;
263 
264   // Returns unused capacity.
265   virtual size_t unused() const;
266 
267   // Historic gc information
268   size_t free_at_last_gc() const { return _capacity_at_last_gc - _used_at_last_gc; }
269   size_t used_at_last_gc() const { return _used_at_last_gc; }
270   void update_capacity_and_used_at_gc();
271 
272   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
273   // memory that the vm could make available for storing 'normal' java objects.
274   // This is based on the reserved address space, but should not include space
275   // that the vm uses internally for bookkeeping or temporary storage
276   // (e.g., in the case of the young gen, one of the survivor
277   // spaces).
278   virtual size_t max_capacity() const = 0;
279 
280   // Returns "TRUE" iff "p" points into the committed areas of the heap.
281   // This method can be expensive so avoid using it in performance critical
282   // code.
283   virtual bool is_in(const void* p) const = 0;
284 
285   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == nullptr || is_in(p); })
286 
287   void set_gc_cause(GCCause::Cause v);
288   GCCause::Cause gc_cause() { return _gc_cause; }
289 
290   oop obj_allocate(Klass* klass, size_t size, TRAPS);

291   virtual oop array_allocate(Klass* klass, size_t size, int length, bool do_zero, TRAPS);
292   oop class_allocate(Klass* klass, size_t size, TRAPS);
293 
294   // Utilities for turning raw memory into filler objects.
295   //
296   // min_fill_size() is the smallest region that can be filled.
297   // fill_with_objects() can fill arbitrary-sized regions of the heap using
298   // multiple objects.  fill_with_object() is for regions known to be smaller
299   // than the largest array of integers; it uses a single object to fill the
300   // region and has slightly less overhead.
301   static size_t min_fill_size() {
302     return size_t(align_object_size(oopDesc::header_size()));
303   }
304 
305   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
306 
307   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
308   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
309     fill_with_object(start, pointer_delta(end, start), zap);
310   }
311 
312   virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap);
313   static size_t min_dummy_object_size() {
314     return oopDesc::header_size();
315   }
316 
317   static size_t lab_alignment_reserve() {
318     assert(_lab_alignment_reserve != SIZE_MAX, "uninitialized");
319     return _lab_alignment_reserve;
320   }
321 
322   // Some heaps may be in an unparseable state at certain times between
323   // collections. This may be necessary for efficient implementation of
324   // certain allocation-related activities. Calling this function before
325   // attempting to parse a heap ensures that the heap is in a parsable
326   // state (provided other concurrent activity does not introduce
327   // unparsability). It is normally expected, therefore, that this
328   // method is invoked with the world stopped.
329   // NOTE: if you override this method, make sure you call
330   // super::ensure_parsability so that the non-generational
331   // part of the work gets done. See implementation of
332   // CollectedHeap::ensure_parsability and, for instance,
333   // that of ParallelScavengeHeap::ensure_parsability().
334   // The argument "retire_tlabs" controls whether existing TLABs
335   // are merely filled or also retired, thus preventing further
336   // allocation from them and necessitating allocation of new TLABs.
337   virtual void ensure_parsability(bool retire_tlabs);
338 
339   // The amount of space available for thread-local allocation buffers.
340   virtual size_t tlab_capacity() const = 0;
341 
342   // The amount of space used for thread-local allocation buffers.
343   virtual size_t tlab_used() const = 0;
344 
345   virtual size_t max_tlab_size() const;
346 
347   // An estimate of the maximum allocation that could be performed
348   // for thread-local allocation buffers without triggering any
349   // collection or expansion activity.
350   virtual size_t unsafe_max_tlab_alloc() const = 0;
351 
352   // Perform a collection of the heap of a type depending on the given cause.
353   virtual void collect(GCCause::Cause cause) = 0;
354 
355   // Perform a full collection
356   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
357 
358   // This interface assumes that it's being called by the
359   // vm thread. It collects the heap assuming that the
360   // heap lock is already held and that we are executing in
361   // the context of the vm thread.
362   virtual void collect_as_vm_thread(GCCause::Cause cause);
363 
364   virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
365                                                        size_t size,
366                                                        Metaspace::MetadataType mdtype);
367 
368   // Return true, if accesses to the object would require barriers.
369   // This is used by continuations to copy chunks of a thread stack into StackChunk object or out of a StackChunk
370   // object back into the thread stack. These chunks may contain references to objects. It is crucial that
371   // the GC does not attempt to traverse the object while we modify it, because its structure (oopmap) is changed
372   // when stack chunks are stored into it.
373   // StackChunk objects may be reused, the GC must not assume that a StackChunk object is always a freshly
374   // allocated object.
375   virtual bool requires_barriers(stackChunkOop obj) const = 0;
376 
377   // Returns "true" iff there is a stop-world GC in progress.
378   bool is_stw_gc_active() const { return _is_stw_gc_active; }
379 
380   // Total number of GC collections (started)
381   unsigned int total_collections() const { return _total_collections; }
382   unsigned int total_full_collections() const { return _total_full_collections;}
383 
384   // Increment total number of GC collections (started)
385   void increment_total_collections(bool full = false) {
386     _total_collections++;
387     if (full) {
388       _total_full_collections++;
389     }
390   }
391 
392   virtual MemoryUsage memory_usage();
393   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
394   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
395 
396   // Iterate over all objects, calling "cl.do_object" on each.
397   virtual void object_iterate(ObjectClosure* cl) = 0;
398 
399   virtual ParallelObjectIteratorImpl* parallel_object_iterator(uint thread_num) {
400     return nullptr;
401   }
402 
403   // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
404   virtual void keep_alive(oop obj) {}
405 
406   // Perform any cleanup actions necessary before allowing a verification.
407   virtual void prepare_for_verify() = 0;
408 
409   // Returns the longest time (in ms) that has elapsed since the last
410   // time that the whole heap has been examined by a garbage collection.
411   jlong millis_since_last_whole_heap_examined();
412   // GC should call this when the next whole heap analysis has completed to
413   // satisfy above requirement.
414   void record_whole_heap_examined_timestamp();
415 
416  private:
417   // Generate any dumps preceding or following a full gc
418   void full_gc_dump(GCTimer* timer, bool before);
419 
420   virtual void initialize_serviceability() = 0;
421 
422   void print_relative_to_gc(GCWhen::Type when) const;
423 
424  public:
425   void pre_full_gc_dump(GCTimer* timer);
426   void post_full_gc_dump(GCTimer* timer);
427 
428   virtual VirtualSpaceSummary create_heap_space_summary();
429   GCHeapSummary create_heap_summary();
430 
431   MetaspaceSummary create_metaspace_summary();
432 
433   // GCs are free to represent the bit representation for null differently in memory,
434   // which is typically not observable when using the Access API. However, if for
435   // some reason a context doesn't allow using the Access API, then this function
436   // explicitly checks if the given memory location contains a null value.
437   virtual bool contains_null(const oop* p) const;
438 
439   void print_invocation_on(outputStream* st, const char* type, GCWhen::Type when) const;
440 
441   // Print heap information.
442   virtual void print_heap_on(outputStream* st) const = 0;
443 
444   // Print additional information about the GC that is not included in print_heap_on().
445   virtual void print_gc_on(outputStream* st) const = 0;
446 
447   // The default behavior is to call print_heap_on() and print_gc_on() on tty.
448   virtual void print() const;
449 
450   // Used to print information about locations in the hs_err file.
451   virtual bool print_location(outputStream* st, void* addr) const = 0;
452 
453   // Iterator for all GC threads (other than VM thread)
454   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
455 
456   void print_before_gc() const;
457   void print_after_gc() const;
458 
459   // Registering and unregistering an nmethod (compiled code) with the heap.
460   virtual void register_nmethod(nmethod* nm) = 0;
461   virtual void unregister_nmethod(nmethod* nm) = 0;
462   virtual void verify_nmethod(nmethod* nm) = 0;
463 
464   void trace_heap_before_gc(const GCTracer* gc_tracer);
465   void trace_heap_after_gc(const GCTracer* gc_tracer);
466 
467   // Heap verification
468   virtual void verify(VerifyOption option) = 0;
469 
470   // Return true if concurrent gc control via WhiteBox is supported by
471   // this collector.  The default implementation returns false.
472   virtual bool supports_concurrent_gc_breakpoints() const;
473 
474   // Workers used in non-GC safepoints for parallel safepoint cleanup. If this
475   // method returns null, cleanup tasks are done serially in the VMThread. See
476   // `SafepointSynchronize::do_cleanup_tasks` for details.
477   // GCs using a GC worker thread pool inside GC safepoints may opt to share
478   // that pool with non-GC safepoints, avoiding creating extraneous threads.
479   // Such sharing is safe, because GC safepoints and non-GC safepoints never
480   // overlap. For example, `G1CollectedHeap::workers()` (for GC safepoints) and
481   // `G1CollectedHeap::safepoint_workers()` (for non-GC safepoints) return the
482   // same thread-pool.
483   virtual WorkerThreads* safepoint_workers() { return nullptr; }
484 
485   // Support for object pinning. This is used by JNI Get*Critical()
486   // and Release*Critical() family of functions. The GC must guarantee
487   // that pinned objects never move and don't get reclaimed as garbage.
488   // These functions are potentially safepointing.
489   virtual void pin_object(JavaThread* thread, oop obj) = 0;
490   virtual void unpin_object(JavaThread* thread, oop obj) = 0;
491 
492   // Support for loading objects from CDS archive into the heap
493   // (usually as a snapshot of the old generation).
494   virtual bool can_load_archived_objects() const { return false; }
495   virtual HeapWord* allocate_loaded_archive_space(size_t size) { return nullptr; }
496   virtual void complete_loaded_archive_space(MemRegion archive_space) { }
497   virtual size_t bootstrap_max_memory() const;
498 
499   virtual bool is_oop(oop object) const;
500   // Non product verification and debugging.
501 #ifndef PRODUCT
502   // Support for PromotionFailureALot.  Return true if it's time to cause a
503   // promotion failure.  The no-argument version uses
504   // this->_promotion_failure_alot_count as the counter.
505   bool promotion_should_fail(volatile size_t* count);
506   bool promotion_should_fail();
507 
508   // Reset the PromotionFailureALot counters.  Should be called at the end of a
509   // GC in which promotion failure occurred.
510   void reset_promotion_should_fail(volatile size_t* count);
511   void reset_promotion_should_fail();
512 #endif  // #ifndef PRODUCT
513 };
514 
515 // Class to set and reset the GC cause for a CollectedHeap.
516 
517 class GCCauseSetter : StackObj {
518   CollectedHeap* _heap;
519   GCCause::Cause _previous_cause;
520  public:
521   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
522     _heap = heap;
523     _previous_cause = _heap->gc_cause();
524     _heap->set_gc_cause(cause);
525   }
526 
527   ~GCCauseSetter() {
528     _heap->set_gc_cause(_previous_cause);
529   }
530 };
531 
532 #endif // SHARE_GC_SHARED_COLLECTEDHEAP_HPP
--- EOF ---