1 /*
  2  * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_GC_SHARED_COLLECTEDHEAP_HPP
 26 #define SHARE_GC_SHARED_COLLECTEDHEAP_HPP
 27 
 28 #include "gc/shared/gcCause.hpp"
 29 #include "gc/shared/gcWhen.hpp"
 30 #include "gc/shared/verifyOption.hpp"
 31 #include "memory/allocation.hpp"
 32 #include "memory/metaspace.hpp"
 33 #include "memory/universe.hpp"
 34 #include "oops/stackChunkOop.hpp"
 35 #include "runtime/handles.hpp"
 36 #include "runtime/perfDataTypes.hpp"
 37 #include "runtime/safepoint.hpp"
 38 #include "services/cpuTimeUsage.hpp"
 39 #include "services/memoryUsage.hpp"
 40 #include "utilities/debug.hpp"
 41 #include "utilities/formatBuffer.hpp"
 42 #include "utilities/growableArray.hpp"
 43 
 44 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
 45 // is an abstract class: there may be many different kinds of heaps.  This
 46 // class defines the functions that a heap must implement, and contains
 47 // infrastructure common to all heaps.
 48 
 49 class GCHeapLog;
 50 class GCHeapSummary;
 51 class GCMemoryManager;
 52 class GCMetaspaceLog;
 53 class GCTimer;
 54 class GCTracer;
 55 class MemoryPool;
 56 class MetaspaceSummary;
 57 class ReservedHeapSpace;
 58 class Thread;
 59 class ThreadClosure;
 60 class VirtualSpaceSummary;
 61 class WorkerThreads;
 62 class nmethod;
 63 
 64 class ParallelObjectIteratorImpl : public CHeapObj<mtGC> {
 65 public:
 66   virtual ~ParallelObjectIteratorImpl() {}
 67   virtual void object_iterate(ObjectClosure* cl, uint worker_id) = 0;
 68 };
 69 
 70 // User facing parallel object iterator. This is a StackObj, which ensures that
 71 // the _impl is allocated and deleted in the scope of this object. This ensures
 72 // the life cycle of the implementation is as required by ThreadsListHandle,
 73 // which is sometimes used by the root iterators.
 74 class ParallelObjectIterator : public StackObj {
 75   ParallelObjectIteratorImpl* _impl;
 76 
 77 public:
 78   ParallelObjectIterator(uint thread_num);
 79   ~ParallelObjectIterator();
 80   void object_iterate(ObjectClosure* cl, uint worker_id);
 81 };
 82 
 83 //
 84 // CollectedHeap
 85 //   SerialHeap
 86 //   G1CollectedHeap
 87 //   ParallelScavengeHeap
 88 //   ShenandoahHeap
 89 //   ZCollectedHeap
 90 //
 91 class CollectedHeap : public CHeapObj<mtGC> {
 92   friend class CPUTimeUsage::GC;
 93   friend class VMStructs;
 94   friend class JVMCIVMStructs;
 95   friend class IsSTWGCActiveMark; // Block structured external access to _is_stw_gc_active
 96   friend class MemAllocator;
 97 
 98  private:
 99   GCHeapLog*      _heap_log;
100   GCMetaspaceLog* _metaspace_log;
101 
102   // Historic gc information
103   size_t _capacity_at_last_gc;
104   size_t _used_at_last_gc;
105 
106   // First, set it to java_lang_Object.
107   // Then, set it to FillerObject after the FillerObject_klass loading is complete.
108   static Klass* _filler_object_klass;
109 
110  protected:
111   // Not used by all GCs
112   MemRegion _reserved;
113 
114   bool _is_stw_gc_active;
115 
116   // (Minimum) Alignment reserve for TLABs and PLABs.
117   static size_t _lab_alignment_reserve;
118   // Used for filler objects (static, but initialized in ctor).
119   static size_t _filler_array_max_size;
120 
121   static size_t _stack_chunk_max_size; // 0 for no limit
122 
123   // Last time the whole heap has been examined in support of RMI
124   // MaxObjectInspectionAge.
125   // This timestamp must be monotonically non-decreasing to avoid
126   // time-warp warnings.
127   jlong _last_whole_heap_examined_time_ns;
128 
129   unsigned int _total_collections;          // ... started
130   unsigned int _total_full_collections;     // ... started
131   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
132   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
133 
134   jlong _vmthread_cpu_time;
135 
136   // Reason for current garbage collection.  Should be set to
137   // a value reflecting no collection between collections.
138   GCCause::Cause _gc_cause;
139   GCCause::Cause _gc_lastcause;
140   PerfStringVariable* _perf_gc_cause;
141   PerfStringVariable* _perf_gc_lastcause;
142 
143   // Constructor
144   CollectedHeap();
145 
146   // Create a new tlab. All TLAB allocations must go through this.
147   // To allow more flexible TLAB allocations min_size specifies
148   // the minimum size needed, while requested_size is the requested
149   // size based on ergonomics. The actually allocated size will be
150   // returned in actual_size.
151   virtual HeapWord* allocate_new_tlab(size_t min_size,
152                                       size_t requested_size,
153                                       size_t* actual_size) = 0;
154 
155   // Reinitialize tlabs before resuming mutators.
156   virtual void resize_all_tlabs();
157 
158   // Raw memory allocation facilities
159   // The obj and array allocate methods are covers for these methods.
160   // mem_allocate() should never be
161   // called to allocate TLABs, only individual objects.
162   virtual HeapWord* mem_allocate(size_t size) = 0;
163 
164   // Filler object utilities.
165   static inline size_t filler_array_hdr_size();
166 
167   static size_t filler_array_min_size();
168 
169 protected:
170   static inline void zap_filler_array_with(HeapWord* start, size_t words, juint value);
171   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
172 
173   // Fill with a single array; caller must ensure filler_array_min_size() <=
174   // words <= filler_array_max_size().
175   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
176 
177   // Fill with a single object (either an int array or a java.lang.Object).
178   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
179 
180   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
181 
182   // Verification functions
183   DEBUG_ONLY(static void check_for_valid_allocation_state();)
184 
185  public:
186   enum Name {
187     None,
188     Serial,
189     Parallel,
190     G1,
191     Epsilon,
192     Z,
193     Shenandoah
194   };
195 
196  protected:
197   // Get a pointer to the derived heap object.  Used to implement
198   // derived class heap() functions rather than being called directly.
199   template<typename T>
200   static T* named_heap(Name kind) {
201     CollectedHeap* heap = Universe::heap();
202     assert(heap != nullptr, "Uninitialized heap");
203     assert(kind == heap->kind(), "Heap kind %u should be %u",
204            static_cast<uint>(heap->kind()), static_cast<uint>(kind));
205     return static_cast<T*>(heap);
206   }
207 
208   // Print any relevant tracing info that flags imply.
209   // Default implementation does nothing.
210   virtual void print_tracing_info() const = 0;
211 
212   // Stop any onging concurrent work and prepare for exit.
213   virtual void stop() = 0;
214 
215  public:
216 
217   static inline size_t filler_array_max_size() {
218     return _filler_array_max_size;
219   }
220 
221   static inline size_t stack_chunk_max_size() {
222     return _stack_chunk_max_size;
223   }
224 
225   static inline Klass* filler_object_klass() {
226     return _filler_object_klass;
227   }
228 
229   static inline void set_filler_object_klass(Klass* k) {
230     _filler_object_klass = k;
231   }
232 
233   virtual Name kind() const = 0;
234 
235   virtual const char* name() const = 0;
236 
237   /**
238    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
239    * and JNI_OK on success.
240    */
241   virtual jint initialize() = 0;
242 
243   // In many heaps, there will be a need to perform some initialization activities
244   // after the Universe is fully formed, but before general heap allocation is allowed.
245   // This is the correct place to place such initialization methods.
246   virtual void post_initialize();
247 
248   bool is_shutting_down() const;
249 
250   // If the VM is shutting down, we may have skipped VM_CollectForAllocation.
251   // In this case, stall the allocation request briefly in the hope that
252   // the VM shutdown completes before the allocation request returns.
253   void stall_for_vm_shutdown();
254 
255   void before_exit();
256 
257   // Stop and resume concurrent GC threads interfering with safepoint operations
258   virtual void safepoint_synchronize_begin() {}
259   virtual void safepoint_synchronize_end() {}
260 
261   void add_vmthread_cpu_time(jlong time);
262 
263   void initialize_reserved_region(const ReservedHeapSpace& rs);
264 
265   virtual size_t capacity() const = 0;
266   virtual size_t used() const = 0;
267 
268   // Returns unused capacity.
269   virtual size_t unused() const;
270 
271   // Historic gc information
272   size_t free_at_last_gc() const { return _capacity_at_last_gc - _used_at_last_gc; }
273   size_t used_at_last_gc() const { return _used_at_last_gc; }
274   void update_capacity_and_used_at_gc();
275 
276   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
277   // memory that the vm could make available for storing 'normal' java objects.
278   // This is based on the reserved address space, but should not include space
279   // that the vm uses internally for bookkeeping or temporary storage
280   // (e.g., in the case of the young gen, one of the survivor
281   // spaces).
282   virtual size_t max_capacity() const = 0;
283 
284   // Returns "TRUE" iff "p" points into the committed areas of the heap.
285   // This method can be expensive so avoid using it in performance critical
286   // code.
287   virtual bool is_in(const void* p) const = 0;
288 
289   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == nullptr || is_in(p); })
290 
291   void set_gc_cause(GCCause::Cause v);
292   GCCause::Cause gc_cause() { return _gc_cause; }
293 
294   oop obj_allocate(Klass* klass, size_t size, TRAPS);

295   virtual oop array_allocate(Klass* klass, size_t size, int length, bool do_zero, TRAPS);
296   oop class_allocate(Klass* klass, size_t size, TRAPS);
297 
298   // Utilities for turning raw memory into filler objects.
299   //
300   // min_fill_size() is the smallest region that can be filled.
301   // fill_with_objects() can fill arbitrary-sized regions of the heap using
302   // multiple objects.  fill_with_object() is for regions known to be smaller
303   // than the largest array of integers; it uses a single object to fill the
304   // region and has slightly less overhead.
305   static size_t min_fill_size() {
306     return size_t(align_object_size(oopDesc::header_size()));
307   }
308 
309   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
310 
311   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
312   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
313     fill_with_object(start, pointer_delta(end, start), zap);
314   }
315 
316   virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap);
317   static size_t min_dummy_object_size() {
318     return oopDesc::header_size();
319   }
320 
321   static size_t lab_alignment_reserve() {
322     assert(_lab_alignment_reserve != SIZE_MAX, "uninitialized");
323     return _lab_alignment_reserve;
324   }
325 
326   // Some heaps may be in an unparseable state at certain times between
327   // collections. This may be necessary for efficient implementation of
328   // certain allocation-related activities. Calling this function before
329   // attempting to parse a heap ensures that the heap is in a parsable
330   // state (provided other concurrent activity does not introduce
331   // unparsability). It is normally expected, therefore, that this
332   // method is invoked with the world stopped.
333   // NOTE: if you override this method, make sure you call
334   // super::ensure_parsability so that the non-generational
335   // part of the work gets done. See implementation of
336   // CollectedHeap::ensure_parsability and, for instance,
337   // that of ParallelScavengeHeap::ensure_parsability().
338   // The argument "retire_tlabs" controls whether existing TLABs
339   // are merely filled or also retired, thus preventing further
340   // allocation from them and necessitating allocation of new TLABs.
341   virtual void ensure_parsability(bool retire_tlabs);
342 
343   // The amount of space available for thread-local allocation buffers.
344   virtual size_t tlab_capacity() const = 0;
345 
346   // The amount of space used for thread-local allocation buffers.
347   virtual size_t tlab_used() const = 0;
348 
349   virtual size_t max_tlab_size() const;
350 
351   // An estimate of the maximum allocation that could be performed
352   // for thread-local allocation buffers without triggering any
353   // collection or expansion activity.
354   virtual size_t unsafe_max_tlab_alloc() const = 0;
355 
356   // Perform a collection of the heap; intended for use in implementing
357   // "System.gc".  This probably implies as full a collection as the
358   // "CollectedHeap" supports.
359   virtual void collect(GCCause::Cause cause) = 0;
360 
361   // Perform a full collection
362   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
363 
364   // This interface assumes that it's being called by the
365   // vm thread. It collects the heap assuming that the
366   // heap lock is already held and that we are executing in
367   // the context of the vm thread.
368   virtual void collect_as_vm_thread(GCCause::Cause cause);
369 
370   virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
371                                                        size_t size,
372                                                        Metaspace::MetadataType mdtype);
373 
374   // Return true, if accesses to the object would require barriers.
375   // This is used by continuations to copy chunks of a thread stack into StackChunk object or out of a StackChunk
376   // object back into the thread stack. These chunks may contain references to objects. It is crucial that
377   // the GC does not attempt to traverse the object while we modify it, because its structure (oopmap) is changed
378   // when stack chunks are stored into it.
379   // StackChunk objects may be reused, the GC must not assume that a StackChunk object is always a freshly
380   // allocated object.
381   virtual bool requires_barriers(stackChunkOop obj) const = 0;
382 
383   // Returns "true" iff there is a stop-world GC in progress.
384   bool is_stw_gc_active() const { return _is_stw_gc_active; }
385 
386   // Total number of GC collections (started)
387   unsigned int total_collections() const { return _total_collections; }
388   unsigned int total_full_collections() const { return _total_full_collections;}
389 
390   // Increment total number of GC collections (started)
391   void increment_total_collections(bool full = false) {
392     _total_collections++;
393     if (full) {
394       _total_full_collections++;
395     }
396   }
397 
398   virtual MemoryUsage memory_usage();
399   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
400   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
401 
402   // Iterate over all objects, calling "cl.do_object" on each.
403   virtual void object_iterate(ObjectClosure* cl) = 0;
404 
405   virtual ParallelObjectIteratorImpl* parallel_object_iterator(uint thread_num) {
406     return nullptr;
407   }
408 
409   // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
410   virtual void keep_alive(oop obj) {}
411 
412   // Perform any cleanup actions necessary before allowing a verification.
413   virtual void prepare_for_verify() = 0;
414 
415   // Returns the longest time (in ms) that has elapsed since the last
416   // time that the whole heap has been examined by a garbage collection.
417   jlong millis_since_last_whole_heap_examined();
418   // GC should call this when the next whole heap analysis has completed to
419   // satisfy above requirement.
420   void record_whole_heap_examined_timestamp();
421 
422  private:
423   // Generate any dumps preceding or following a full gc
424   void full_gc_dump(GCTimer* timer, bool before);
425 
426   virtual void initialize_serviceability() = 0;
427 
428   void print_relative_to_gc(GCWhen::Type when) const;
429 
430  public:
431   void pre_full_gc_dump(GCTimer* timer);
432   void post_full_gc_dump(GCTimer* timer);
433 
434   virtual VirtualSpaceSummary create_heap_space_summary();
435   GCHeapSummary create_heap_summary();
436 
437   MetaspaceSummary create_metaspace_summary();
438 
439   // GCs are free to represent the bit representation for null differently in memory,
440   // which is typically not observable when using the Access API. However, if for
441   // some reason a context doesn't allow using the Access API, then this function
442   // explicitly checks if the given memory location contains a null value.
443   virtual bool contains_null(const oop* p) const;
444 
445   void print_invocation_on(outputStream* st, const char* type, GCWhen::Type when) const;
446 
447   // Print heap information.
448   virtual void print_heap_on(outputStream* st) const = 0;
449 
450   // Print additional information about the GC that is not included in print_heap_on().
451   virtual void print_gc_on(outputStream* st) const = 0;
452 
453   // The default behavior is to call print_heap_on() and print_gc_on() on tty.
454   virtual void print() const;
455 
456   // Used to print information about locations in the hs_err file.
457   virtual bool print_location(outputStream* st, void* addr) const = 0;
458 
459   // Iterator for all GC threads (other than VM thread)
460   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
461 
462   void print_before_gc() const;
463   void print_after_gc() const;
464 
465   // Registering and unregistering an nmethod (compiled code) with the heap.
466   virtual void register_nmethod(nmethod* nm) = 0;
467   virtual void unregister_nmethod(nmethod* nm) = 0;
468   virtual void verify_nmethod(nmethod* nm) = 0;
469 
470   void trace_heap_before_gc(const GCTracer* gc_tracer);
471   void trace_heap_after_gc(const GCTracer* gc_tracer);
472 
473   // Heap verification
474   virtual void verify(VerifyOption option) = 0;
475 
476   // Return true if concurrent gc control via WhiteBox is supported by
477   // this collector.  The default implementation returns false.
478   virtual bool supports_concurrent_gc_breakpoints() const;
479 
480   // Workers used in non-GC safepoints for parallel safepoint cleanup. If this
481   // method returns null, cleanup tasks are done serially in the VMThread. See
482   // `SafepointSynchronize::do_cleanup_tasks` for details.
483   // GCs using a GC worker thread pool inside GC safepoints may opt to share
484   // that pool with non-GC safepoints, avoiding creating extraneous threads.
485   // Such sharing is safe, because GC safepoints and non-GC safepoints never
486   // overlap. For example, `G1CollectedHeap::workers()` (for GC safepoints) and
487   // `G1CollectedHeap::safepoint_workers()` (for non-GC safepoints) return the
488   // same thread-pool.
489   virtual WorkerThreads* safepoint_workers() { return nullptr; }
490 
491   // Support for object pinning. This is used by JNI Get*Critical()
492   // and Release*Critical() family of functions. The GC must guarantee
493   // that pinned objects never move and don't get reclaimed as garbage.
494   // These functions are potentially safepointing.
495   virtual void pin_object(JavaThread* thread, oop obj) = 0;
496   virtual void unpin_object(JavaThread* thread, oop obj) = 0;
497 
498   // Support for loading objects from CDS archive into the heap
499   // (usually as a snapshot of the old generation).
500   virtual bool can_load_archived_objects() const { return false; }
501   virtual HeapWord* allocate_loaded_archive_space(size_t size) { return nullptr; }
502   virtual void complete_loaded_archive_space(MemRegion archive_space) { }
503 
504   virtual bool is_oop(oop object) const;
505   // Non product verification and debugging.
506 #ifndef PRODUCT
507   // Support for PromotionFailureALot.  Return true if it's time to cause a
508   // promotion failure.  The no-argument version uses
509   // this->_promotion_failure_alot_count as the counter.
510   bool promotion_should_fail(volatile size_t* count);
511   bool promotion_should_fail();
512 
513   // Reset the PromotionFailureALot counters.  Should be called at the end of a
514   // GC in which promotion failure occurred.
515   void reset_promotion_should_fail(volatile size_t* count);
516   void reset_promotion_should_fail();
517 #endif  // #ifndef PRODUCT
518 };
519 
520 // Class to set and reset the GC cause for a CollectedHeap.
521 
522 class GCCauseSetter : StackObj {
523   CollectedHeap* _heap;
524   GCCause::Cause _previous_cause;
525  public:
526   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
527     _heap = heap;
528     _previous_cause = _heap->gc_cause();
529     _heap->set_gc_cause(cause);
530   }
531 
532   ~GCCauseSetter() {
533     _heap->set_gc_cause(_previous_cause);
534   }
535 };
536 
537 #endif // SHARE_GC_SHARED_COLLECTEDHEAP_HPP
--- EOF ---