1 /* 2 * Copyright (c) 2018, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.hpp" 27 #include "classfile/vmClasses.hpp" 28 #include "gc/shared/allocTracer.hpp" 29 #include "gc/shared/collectedHeap.hpp" 30 #include "gc/shared/memAllocator.hpp" 31 #include "gc/shared/threadLocalAllocBuffer.inline.hpp" 32 #include "gc/shared/tlab_globals.hpp" 33 #include "memory/universe.hpp" 34 #include "oops/arrayOop.hpp" 35 #include "oops/oop.inline.hpp" 36 #include "prims/jvmtiExport.hpp" 37 #include "runtime/continuationJavaClasses.inline.hpp" 38 #include "runtime/handles.inline.hpp" 39 #include "runtime/sharedRuntime.hpp" 40 #include "runtime/javaThread.hpp" 41 #include "services/lowMemoryDetector.hpp" 42 #include "utilities/align.hpp" 43 #include "utilities/copy.hpp" 44 #include "utilities/globalDefinitions.hpp" 45 46 class MemAllocator::Allocation: StackObj { 47 friend class MemAllocator; 48 49 const MemAllocator& _allocator; 50 JavaThread* _thread; 51 oop* _obj_ptr; 52 bool _overhead_limit_exceeded; 53 bool _allocated_outside_tlab; 54 size_t _allocated_tlab_size; 55 bool _tlab_end_reset_for_sample; 56 57 bool check_out_of_memory(); 58 void verify_before(); 59 void verify_after(); 60 void notify_allocation(); 61 void notify_allocation_jvmti_sampler(); 62 void notify_allocation_low_memory_detector(); 63 void notify_allocation_jfr_sampler(); 64 void notify_allocation_dtrace_sampler(); 65 #ifdef ASSERT 66 void check_for_valid_allocation_state() const; 67 #endif 68 69 class PreserveObj; 70 71 public: 72 Allocation(const MemAllocator& allocator, oop* obj_ptr) 73 : _allocator(allocator), 74 _thread(JavaThread::cast(allocator._thread)), // Do not use Allocation in non-JavaThreads. 75 _obj_ptr(obj_ptr), 76 _overhead_limit_exceeded(false), 77 _allocated_outside_tlab(false), 78 _allocated_tlab_size(0), 79 _tlab_end_reset_for_sample(false) 80 { 81 assert(Thread::current() == allocator._thread, "do not pass MemAllocator across threads"); 82 verify_before(); 83 } 84 85 ~Allocation() { 86 if (!check_out_of_memory()) { 87 notify_allocation(); 88 } 89 } 90 91 oop obj() const { return *_obj_ptr; } 92 }; 93 94 class MemAllocator::Allocation::PreserveObj: StackObj { 95 HandleMark _handle_mark; 96 Handle _handle; 97 oop* const _obj_ptr; 98 99 public: 100 PreserveObj(JavaThread* thread, oop* obj_ptr) 101 : _handle_mark(thread), 102 _handle(thread, *obj_ptr), 103 _obj_ptr(obj_ptr) 104 { 105 *obj_ptr = nullptr; 106 } 107 108 ~PreserveObj() { 109 *_obj_ptr = _handle(); 110 } 111 112 oop operator()() const { 113 return _handle(); 114 } 115 }; 116 117 bool MemAllocator::Allocation::check_out_of_memory() { 118 JavaThread* THREAD = _thread; // For exception macros. 119 assert(!HAS_PENDING_EXCEPTION, "Unexpected exception, will result in uninitialized storage"); 120 121 if (obj() != nullptr) { 122 return false; 123 } 124 125 const char* message = _overhead_limit_exceeded ? "GC overhead limit exceeded" : "Java heap space"; 126 if (!_thread->is_in_internal_oome_mark()) { 127 // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support 128 report_java_out_of_memory(message); 129 if (JvmtiExport::should_post_resource_exhausted()) { 130 JvmtiExport::post_resource_exhausted( 131 JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR | JVMTI_RESOURCE_EXHAUSTED_JAVA_HEAP, 132 message); 133 } 134 135 oop exception = _overhead_limit_exceeded ? 136 Universe::out_of_memory_error_gc_overhead_limit() : 137 Universe::out_of_memory_error_java_heap(); 138 THROW_OOP_(exception, true); 139 } else { 140 THROW_OOP_(Universe::out_of_memory_error_java_heap_without_backtrace(), true); 141 } 142 } 143 144 void MemAllocator::Allocation::verify_before() { 145 // Clear unhandled oops for memory allocation. Memory allocation might 146 // not take out a lock if from tlab, so clear here. 147 JavaThread* THREAD = _thread; // For exception macros. 148 assert(!HAS_PENDING_EXCEPTION, "Should not allocate with exception pending"); 149 debug_only(check_for_valid_allocation_state()); 150 assert(!Universe::heap()->is_stw_gc_active(), "Allocation during GC pause not allowed"); 151 } 152 153 #ifdef ASSERT 154 void MemAllocator::Allocation::check_for_valid_allocation_state() const { 155 // How to choose between a pending exception and a potential 156 // OutOfMemoryError? Don't allow pending exceptions. 157 // This is a VM policy failure, so how do we exhaustively test it? 158 assert(!_thread->has_pending_exception(), 159 "shouldn't be allocating with pending exception"); 160 // Allocation of an oop can always invoke a safepoint. 161 _thread->check_for_valid_safepoint_state(); 162 } 163 #endif 164 165 void MemAllocator::Allocation::notify_allocation_jvmti_sampler() { 166 // support for JVMTI VMObjectAlloc event (no-op if not enabled) 167 JvmtiExport::vm_object_alloc_event_collector(obj()); 168 169 if (!JvmtiExport::should_post_sampled_object_alloc()) { 170 // Sampling disabled 171 return; 172 } 173 174 if (!_allocated_outside_tlab && _allocated_tlab_size == 0 && !_tlab_end_reset_for_sample) { 175 // Sample if it's a non-TLAB allocation, or a TLAB allocation that either refills the TLAB 176 // or expands it due to taking a sampler induced slow path. 177 return; 178 } 179 180 // If we want to be sampling, protect the allocated object with a Handle 181 // before doing the callback. The callback is done in the destructor of 182 // the JvmtiSampledObjectAllocEventCollector. 183 size_t bytes_since_last = 0; 184 185 { 186 PreserveObj obj_h(_thread, _obj_ptr); 187 JvmtiSampledObjectAllocEventCollector collector; 188 size_t size_in_bytes = _allocator._word_size * HeapWordSize; 189 ThreadLocalAllocBuffer& tlab = _thread->tlab(); 190 191 if (!_allocated_outside_tlab) { 192 bytes_since_last = tlab.bytes_since_last_sample_point(); 193 } 194 195 _thread->heap_sampler().check_for_sampling(obj_h(), size_in_bytes, bytes_since_last); 196 } 197 198 if (_tlab_end_reset_for_sample || _allocated_tlab_size != 0) { 199 // Tell tlab to forget bytes_since_last if we passed it to the heap sampler. 200 _thread->tlab().set_sample_end(bytes_since_last != 0); 201 } 202 } 203 204 void MemAllocator::Allocation::notify_allocation_low_memory_detector() { 205 // support low memory notifications (no-op if not enabled) 206 LowMemoryDetector::detect_low_memory_for_collected_pools(); 207 } 208 209 void MemAllocator::Allocation::notify_allocation_jfr_sampler() { 210 HeapWord* mem = cast_from_oop<HeapWord*>(obj()); 211 size_t size_in_bytes = _allocator._word_size * HeapWordSize; 212 213 if (_allocated_outside_tlab) { 214 AllocTracer::send_allocation_outside_tlab(obj()->klass(), mem, size_in_bytes, _thread); 215 } else if (_allocated_tlab_size != 0) { 216 // TLAB was refilled 217 AllocTracer::send_allocation_in_new_tlab(obj()->klass(), mem, _allocated_tlab_size * HeapWordSize, 218 size_in_bytes, _thread); 219 } 220 } 221 222 void MemAllocator::Allocation::notify_allocation_dtrace_sampler() { 223 if (DTraceAllocProbes) { 224 // support for Dtrace object alloc event (no-op most of the time) 225 Klass* klass = obj()->klass(); 226 size_t word_size = _allocator._word_size; 227 if (klass != nullptr && klass->name() != nullptr) { 228 SharedRuntime::dtrace_object_alloc(_thread, obj(), word_size); 229 } 230 } 231 } 232 233 void MemAllocator::Allocation::notify_allocation() { 234 notify_allocation_low_memory_detector(); 235 notify_allocation_jfr_sampler(); 236 notify_allocation_dtrace_sampler(); 237 notify_allocation_jvmti_sampler(); 238 } 239 240 HeapWord* MemAllocator::mem_allocate_outside_tlab(Allocation& allocation) const { 241 allocation._allocated_outside_tlab = true; 242 HeapWord* mem = Universe::heap()->mem_allocate(_word_size, &allocation._overhead_limit_exceeded); 243 if (mem == nullptr) { 244 return mem; 245 } 246 247 size_t size_in_bytes = _word_size * HeapWordSize; 248 _thread->incr_allocated_bytes(size_in_bytes); 249 250 return mem; 251 } 252 253 HeapWord* MemAllocator::mem_allocate_inside_tlab_fast() const { 254 return _thread->tlab().allocate(_word_size); 255 } 256 257 HeapWord* MemAllocator::mem_allocate_inside_tlab_slow(Allocation& allocation) const { 258 HeapWord* mem = nullptr; 259 ThreadLocalAllocBuffer& tlab = _thread->tlab(); 260 261 if (JvmtiExport::should_post_sampled_object_alloc()) { 262 tlab.set_back_allocation_end(); 263 mem = tlab.allocate(_word_size); 264 265 // We set back the allocation sample point to try to allocate this, reset it 266 // when done. 267 allocation._tlab_end_reset_for_sample = true; 268 269 if (mem != nullptr) { 270 return mem; 271 } 272 } 273 274 // Retain tlab and allocate object in shared space if 275 // the amount free in the tlab is too large to discard. 276 if (tlab.free() > tlab.refill_waste_limit()) { 277 tlab.record_slow_allocation(_word_size); 278 return nullptr; 279 } 280 281 // Discard tlab and allocate a new one. 282 // To minimize fragmentation, the last TLAB may be smaller than the rest. 283 size_t new_tlab_size = tlab.compute_size(_word_size); 284 285 tlab.retire_before_allocation(); 286 287 if (new_tlab_size == 0) { 288 return nullptr; 289 } 290 291 // Allocate a new TLAB requesting new_tlab_size. Any size 292 // between minimal and new_tlab_size is accepted. 293 size_t min_tlab_size = ThreadLocalAllocBuffer::compute_min_size(_word_size); 294 mem = Universe::heap()->allocate_new_tlab(min_tlab_size, new_tlab_size, &allocation._allocated_tlab_size); 295 if (mem == nullptr) { 296 assert(allocation._allocated_tlab_size == 0, 297 "Allocation failed, but actual size was updated. min: " SIZE_FORMAT 298 ", desired: " SIZE_FORMAT ", actual: " SIZE_FORMAT, 299 min_tlab_size, new_tlab_size, allocation._allocated_tlab_size); 300 return nullptr; 301 } 302 assert(allocation._allocated_tlab_size != 0, "Allocation succeeded but actual size not updated. mem at: " 303 PTR_FORMAT " min: " SIZE_FORMAT ", desired: " SIZE_FORMAT, 304 p2i(mem), min_tlab_size, new_tlab_size); 305 306 // ...and clear or zap just allocated TLAB, if needed. 307 if (ZeroTLAB) { 308 Copy::zero_to_words(mem, allocation._allocated_tlab_size); 309 } else if (ZapTLAB) { 310 // Skip mangling the space corresponding to the object header to 311 // ensure that the returned space is not considered parsable by 312 // any concurrent GC thread. 313 size_t hdr_size = oopDesc::header_size(); 314 Copy::fill_to_words(mem + hdr_size, allocation._allocated_tlab_size - hdr_size, badHeapWordVal); 315 } 316 317 tlab.fill(mem, mem + _word_size, allocation._allocated_tlab_size); 318 return mem; 319 } 320 321 HeapWord* MemAllocator::mem_allocate(Allocation& allocation) const { 322 if (UseTLAB) { 323 // Try allocating from an existing TLAB. 324 HeapWord* mem = mem_allocate_inside_tlab_fast(); 325 if (mem != nullptr) { 326 return mem; 327 } 328 } 329 330 // Allocation of an oop can always invoke a safepoint. 331 debug_only(allocation._thread->check_for_valid_safepoint_state()); 332 333 if (UseTLAB) { 334 // Try refilling the TLAB and allocating the object in it. 335 HeapWord* mem = mem_allocate_inside_tlab_slow(allocation); 336 if (mem != nullptr) { 337 return mem; 338 } 339 } 340 341 return mem_allocate_outside_tlab(allocation); 342 } 343 344 oop MemAllocator::allocate() const { 345 oop obj = nullptr; 346 { 347 Allocation allocation(*this, &obj); 348 HeapWord* mem = mem_allocate(allocation); 349 if (mem != nullptr) { 350 obj = initialize(mem); 351 } else { 352 // The unhandled oop detector will poison local variable obj, 353 // so reset it to null if mem is null. 354 obj = nullptr; 355 } 356 } 357 return obj; 358 } 359 360 void MemAllocator::mem_clear(HeapWord* mem) const { 361 assert(mem != nullptr, "cannot initialize null object"); 362 const size_t hs = oopDesc::header_size(); 363 assert(_word_size >= hs, "unexpected object size"); 364 oopDesc::set_klass_gap(mem, 0); 365 Copy::fill_to_aligned_words(mem + hs, _word_size - hs); 366 } 367 368 oop MemAllocator::finish(HeapWord* mem) const { 369 assert(mem != nullptr, "null object pointer"); 370 oopDesc::set_mark(mem, Klass::default_prototype_header(_klass)); 371 // Need a release store to ensure array/class length, mark word, and 372 // object zeroing are visible before setting the klass non-null, for 373 // concurrent collectors. 374 oopDesc::release_set_klass(mem, _klass); 375 return cast_to_oop(mem); 376 } 377 378 oop ObjAllocator::initialize(HeapWord* mem) const { 379 mem_clear(mem); 380 return finish(mem); 381 } 382 383 oop ObjBufferAllocator::initialize(HeapWord* mem) const { 384 oopDesc::set_klass_gap(mem, 0); 385 return finish(mem); 386 } 387 388 389 oop ObjArrayAllocator::initialize(HeapWord* mem) const { 390 // Set array length before setting the _klass field because a 391 // non-null klass field indicates that the object is parsable by 392 // concurrent GC. 393 assert(_length >= 0, "length should be non-negative"); 394 if (_do_zero) { 395 mem_clear(mem); 396 mem_zap_start_padding(mem); 397 mem_zap_end_padding(mem); 398 } 399 arrayOopDesc::set_length(mem, _length); 400 return finish(mem); 401 } 402 403 #ifndef PRODUCT 404 void ObjArrayAllocator::mem_zap_start_padding(HeapWord* mem) const { 405 const BasicType element_type = ArrayKlass::cast(_klass)->element_type(); 406 const size_t base_offset_in_bytes = arrayOopDesc::base_offset_in_bytes(element_type); 407 const size_t header_size_in_bytes = arrayOopDesc::header_size_in_bytes(); 408 409 const address base = reinterpret_cast<address>(mem) + base_offset_in_bytes; 410 const address header_end = reinterpret_cast<address>(mem) + header_size_in_bytes; 411 412 if (header_end < base) { 413 const size_t padding_in_bytes = base - header_end; 414 Copy::fill_to_bytes(header_end, padding_in_bytes, heapPaddingByteVal); 415 } 416 } 417 418 void ObjArrayAllocator::mem_zap_end_padding(HeapWord* mem) const { 419 const size_t length_in_bytes = static_cast<size_t>(_length) << ArrayKlass::cast(_klass)->log2_element_size(); 420 const BasicType element_type = ArrayKlass::cast(_klass)->element_type(); 421 const size_t base_offset_in_bytes = arrayOopDesc::base_offset_in_bytes(element_type); 422 const size_t size_in_bytes = _word_size * BytesPerWord; 423 424 const address obj_end = reinterpret_cast<address>(mem) + size_in_bytes; 425 const address base = reinterpret_cast<address>(mem) + base_offset_in_bytes; 426 const address elements_end = base + length_in_bytes; 427 assert(elements_end <= obj_end, "payload must fit in object"); 428 if (elements_end < obj_end) { 429 const size_t padding_in_bytes = obj_end - elements_end; 430 Copy::fill_to_bytes(elements_end, padding_in_bytes, heapPaddingByteVal); 431 } 432 } 433 #endif 434 435 oop ClassAllocator::initialize(HeapWord* mem) const { 436 // Set oop_size field before setting the _klass field because a 437 // non-null _klass field indicates that the object is parsable by 438 // concurrent GC. 439 assert(_word_size > 0, "oop_size must be positive."); 440 mem_clear(mem); 441 java_lang_Class::set_oop_size(mem, _word_size); 442 return finish(mem); 443 }