1 /*
  2  * Copyright (c) 2018, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "classfile/javaClasses.hpp"
 26 #include "classfile/vmClasses.hpp"
 27 #include "gc/shared/allocTracer.hpp"
 28 #include "gc/shared/collectedHeap.hpp"
 29 #include "gc/shared/memAllocator.hpp"
 30 #include "gc/shared/threadLocalAllocBuffer.inline.hpp"
 31 #include "gc/shared/tlab_globals.hpp"
 32 #include "memory/universe.hpp"
 33 #include "oops/arrayOop.hpp"
 34 #include "oops/oop.inline.hpp"
 35 #include "prims/jvmtiExport.hpp"
 36 #include "runtime/continuationJavaClasses.inline.hpp"
 37 #include "runtime/handles.inline.hpp"
 38 #include "runtime/javaThread.hpp"
 39 #include "runtime/sharedRuntime.hpp"
 40 #include "services/lowMemoryDetector.hpp"
 41 #include "utilities/align.hpp"
 42 #include "utilities/copy.hpp"
 43 #include "utilities/globalDefinitions.hpp"
 44 
 45 class MemAllocator::Allocation: StackObj {
 46   friend class MemAllocator;
 47 
 48   const MemAllocator& _allocator;
 49   JavaThread*         _thread;
 50   oop*                _obj_ptr;
 51   bool                _allocated_outside_tlab;
 52   size_t              _allocated_tlab_size;
 53 
 54   bool check_out_of_memory();
 55   void verify_before();
 56   void verify_after();
 57   void notify_allocation();
 58   void notify_allocation_jvmti_sampler();
 59   void notify_allocation_low_memory_detector();
 60   void notify_allocation_jfr_sampler();
 61   void notify_allocation_dtrace_sampler();
 62 #ifdef ASSERT
 63   void check_for_valid_allocation_state() const;
 64 #endif
 65 
 66   class PreserveObj;
 67 
 68 public:
 69   Allocation(const MemAllocator& allocator, oop* obj_ptr)
 70     : _allocator(allocator),
 71       _thread(JavaThread::cast(allocator._thread)), // Do not use Allocation in non-JavaThreads.
 72       _obj_ptr(obj_ptr),
 73       _allocated_outside_tlab(false),
 74       _allocated_tlab_size(0)
 75   {
 76     assert(Thread::current() == allocator._thread, "do not pass MemAllocator across threads");
 77     verify_before();
 78   }
 79 
 80   ~Allocation() {
 81     if (!check_out_of_memory()) {
 82       notify_allocation();
 83     }
 84   }
 85 
 86   oop obj() const { return *_obj_ptr; }
 87 };
 88 
 89 class MemAllocator::Allocation::PreserveObj: StackObj {
 90   HandleMark _handle_mark;
 91   Handle     _handle;
 92   oop* const _obj_ptr;
 93 
 94 public:
 95   PreserveObj(JavaThread* thread, oop* obj_ptr)
 96     : _handle_mark(thread),
 97       _handle(thread, *obj_ptr),
 98       _obj_ptr(obj_ptr)
 99   {
100     *obj_ptr = nullptr;
101   }
102 
103   ~PreserveObj() {
104     *_obj_ptr = _handle();
105   }
106 
107   oop operator()() const {
108     return _handle();
109   }
110 };
111 
112 bool MemAllocator::Allocation::check_out_of_memory() {
113   JavaThread* THREAD = _thread; // For exception macros.
114   assert(!HAS_PENDING_EXCEPTION, "Unexpected exception, will result in uninitialized storage");
115 
116   if (obj() != nullptr) {
117     return false;
118   }
119 
120   const char* message = "Java heap space";
121   if (!_thread->is_in_internal_oome_mark()) {
122     // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
123     report_java_out_of_memory(message);
124     if (JvmtiExport::should_post_resource_exhausted()) {
125 #ifdef CHECK_UNHANDLED_OOPS
126       // obj is null, no need to handle, but CheckUnhandledOops is not aware about null
127       THREAD->allow_unhandled_oop(_obj_ptr);
128 #endif // CHECK_UNHANDLED_OOPS
129       JvmtiExport::post_resource_exhausted(
130         JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR | JVMTI_RESOURCE_EXHAUSTED_JAVA_HEAP,
131         message);
132     }
133 
134     THROW_OOP_(Universe::out_of_memory_error_java_heap(), true);
135   } else {
136     THROW_OOP_(Universe::out_of_memory_error_java_heap_without_backtrace(), true);
137   }
138 }
139 
140 void MemAllocator::Allocation::verify_before() {
141   // Clear unhandled oops for memory allocation.  Memory allocation might
142   // not take out a lock if from tlab, so clear here.
143   JavaThread* THREAD = _thread; // For exception macros.
144   assert(!HAS_PENDING_EXCEPTION, "Should not allocate with exception pending");
145   DEBUG_ONLY(check_for_valid_allocation_state());
146   assert(!Universe::heap()->is_stw_gc_active(), "Allocation during GC pause not allowed");
147 }
148 
149 #ifdef ASSERT
150 void MemAllocator::Allocation::check_for_valid_allocation_state() const {
151   // How to choose between a pending exception and a potential
152   // OutOfMemoryError?  Don't allow pending exceptions.
153   // This is a VM policy failure, so how do we exhaustively test it?
154   assert(!_thread->has_pending_exception(),
155          "shouldn't be allocating with pending exception");
156   // Allocation of an oop can always invoke a safepoint.
157   _thread->check_for_valid_safepoint_state();
158 }
159 #endif
160 
161 void MemAllocator::Allocation::notify_allocation_jvmti_sampler() {
162   // support for JVMTI VMObjectAlloc event (no-op if not enabled)
163   JvmtiExport::vm_object_alloc_event_collector(obj());
164 
165   if (!JvmtiExport::should_post_sampled_object_alloc()) {
166     // Sampling disabled
167     return;
168   }
169 
170   ThreadHeapSampler& heap_sampler = _thread->heap_sampler();
171   ThreadLocalAllocBuffer& tlab = _thread->tlab();
172 
173   // Log sample decision
174   heap_sampler.log_sample_decision(tlab.top());
175 
176   if (heap_sampler.should_sample(tlab.top())) {
177     // If we want to be sampling, protect the allocated object with a Handle
178     // before doing the callback. The callback is done in the destructor of
179     // the JvmtiSampledObjectAllocEventCollector.
180     PreserveObj obj_h(_thread, _obj_ptr);
181     JvmtiSampledObjectAllocEventCollector collector;
182 
183     // Perform the sampling
184     heap_sampler.sample(obj_h(), tlab.top());
185 
186     // Note that after this point all the TLAB can have been retired, and agent
187     // code can run and allocate, don't rely on earlier calculations involving
188     // the TLAB.
189   }
190 
191   // Set a new sampling point in the TLAB if it fits in the current TLAB
192   const size_t words_until_sample = heap_sampler.bytes_until_sample(tlab.top()) / HeapWordSize;
193   if (words_until_sample <= tlab.free()) {
194     tlab.set_sampling_point(tlab.top() + words_until_sample);
195   }
196 }
197 
198 void MemAllocator::Allocation::notify_allocation_low_memory_detector() {
199   // support low memory notifications (no-op if not enabled)
200   LowMemoryDetector::detect_low_memory_for_collected_pools();
201 }
202 
203 void MemAllocator::Allocation::notify_allocation_jfr_sampler() {
204   HeapWord* mem = cast_from_oop<HeapWord*>(obj());
205   size_t size_in_bytes = _allocator._word_size * HeapWordSize;
206 
207   if (_allocated_outside_tlab) {
208     AllocTracer::send_allocation_outside_tlab(obj()->klass(), mem, size_in_bytes, _thread);
209   } else if (_allocated_tlab_size != 0) {
210     // TLAB was refilled
211     AllocTracer::send_allocation_in_new_tlab(obj()->klass(), mem, _allocated_tlab_size * HeapWordSize,
212                                              size_in_bytes, _thread);
213   }
214 }
215 
216 void MemAllocator::Allocation::notify_allocation_dtrace_sampler() {
217   if (DTraceAllocProbes) {
218     // support for Dtrace object alloc event (no-op most of the time)
219     Klass* klass = obj()->klass();
220     size_t word_size = _allocator._word_size;
221     if (klass != nullptr && klass->name() != nullptr) {
222       SharedRuntime::dtrace_object_alloc(_thread, obj(), word_size);
223     }
224   }
225 }
226 
227 void MemAllocator::Allocation::notify_allocation() {
228   notify_allocation_low_memory_detector();
229   notify_allocation_jfr_sampler();
230   notify_allocation_dtrace_sampler();
231   notify_allocation_jvmti_sampler();
232 }
233 
234 HeapWord* MemAllocator::mem_allocate_outside_tlab(Allocation& allocation) const {
235   allocation._allocated_outside_tlab = true;
236   HeapWord* mem = Universe::heap()->mem_allocate(_word_size);
237   if (mem == nullptr) {
238     return mem;
239   }
240 
241   size_t size_in_bytes = _word_size * HeapWordSize;
242   _thread->incr_allocated_bytes(size_in_bytes);
243   _thread->heap_sampler().inc_outside_tlab_bytes(size_in_bytes);
244 
245   return mem;
246 }
247 
248 HeapWord* MemAllocator::mem_allocate_inside_tlab_fast() const {
249   return _thread->tlab().allocate(_word_size);
250 }
251 
252 HeapWord* MemAllocator::mem_allocate_inside_tlab_slow(Allocation& allocation) const {
253   HeapWord* mem = nullptr;
254   ThreadLocalAllocBuffer& tlab = _thread->tlab();
255 
256   if (JvmtiExport::should_post_sampled_object_alloc()) {
257     // When sampling we artificially set the TLAB end to the sample point.
258     // When we hit that point it looks like the TLAB is full, but it's
259     // not necessarily the case. Set the real end and retry the allocation.
260 
261     // Undo previous adjustment of end.
262     // Note that notify_allocation_jvmti_sampler will set a new sample point.
263     tlab.set_back_allocation_end();
264 
265     // Retry the TLAB allocation with the proper end
266     mem = tlab.allocate(_word_size);
267 
268     if (mem != nullptr) {
269       return mem;
270     }
271   }
272 
273   // Retain tlab and allocate object in shared space if
274   // the amount free in the tlab is too large to discard.
275   if (tlab.free() > tlab.refill_waste_limit()) {
276     tlab.record_slow_allocation(_word_size);
277     return nullptr;
278   }
279 
280   // Discard tlab and allocate a new one.
281 
282   // Record the amount wasted
283   tlab.record_refill_waste();
284 
285   // Retire the current TLAB
286   _thread->retire_tlab();
287 
288   // To minimize fragmentation, the last TLAB may be smaller than the rest.
289   size_t new_tlab_size = tlab.compute_size(_word_size);
290 
291   if (new_tlab_size == 0) {
292     return nullptr;
293   }
294 
295   // Allocate a new TLAB requesting new_tlab_size. Any size
296   // between minimal and new_tlab_size is accepted.
297   size_t min_tlab_size = ThreadLocalAllocBuffer::compute_min_size(_word_size);
298   mem = Universe::heap()->allocate_new_tlab(min_tlab_size, new_tlab_size, &allocation._allocated_tlab_size);
299   if (mem == nullptr) {
300     assert(allocation._allocated_tlab_size == 0,
301            "Allocation failed, but actual size was updated. min: %zu"
302            ", desired: %zu, actual: %zu",
303            min_tlab_size, new_tlab_size, allocation._allocated_tlab_size);
304     return nullptr;
305   }
306   assert(allocation._allocated_tlab_size != 0, "Allocation succeeded but actual size not updated. mem at: "
307          PTR_FORMAT " min: %zu, desired: %zu",
308          p2i(mem), min_tlab_size, new_tlab_size);
309 
310   // ...and clear or zap just allocated TLAB, if needed.
311   if (ZeroTLAB) {
312     Copy::zero_to_words(mem, allocation._allocated_tlab_size);
313   } else if (ZapTLAB) {
314     // Skip mangling the space corresponding to the object header to
315     // ensure that the returned space is not considered parsable by
316     // any concurrent GC thread.
317     size_t hdr_size = oopDesc::header_size();
318     Copy::fill_to_words(mem + hdr_size, allocation._allocated_tlab_size - hdr_size, badHeapWordVal);
319   }
320 
321   _thread->fill_tlab(mem, _word_size, allocation._allocated_tlab_size);
322 
323   return mem;
324 }
325 
326 HeapWord* MemAllocator::mem_allocate(Allocation& allocation) const {
327   if (UseTLAB) {
328     // Try allocating from an existing TLAB.
329     HeapWord* mem = mem_allocate_inside_tlab_fast();
330     if (mem != nullptr) {
331       return mem;
332     }
333   }
334 
335   // Allocation of an oop can always invoke a safepoint.
336   DEBUG_ONLY(allocation._thread->check_for_valid_safepoint_state());
337 
338   if (UseTLAB) {
339     // Try refilling the TLAB and allocating the object in it.
340     HeapWord* mem = mem_allocate_inside_tlab_slow(allocation);
341     if (mem != nullptr) {
342       return mem;
343     }
344   }
345 
346   return mem_allocate_outside_tlab(allocation);
347 }
348 
349 oop MemAllocator::allocate() const {
350   oop obj = nullptr;
351   {
352     Allocation allocation(*this, &obj);
353     HeapWord* mem = mem_allocate(allocation);
354     if (mem != nullptr) {
355       obj = initialize(mem);
356     } else {
357       // The unhandled oop detector will poison local variable obj,
358       // so reset it to null if mem is null.
359       obj = nullptr;
360     }
361   }
362   return obj;
363 }
364 
365 void MemAllocator::mem_clear(HeapWord* mem) const {
366   assert(mem != nullptr, "cannot initialize null object");
367   const size_t hs = oopDesc::header_size();
368   assert(_word_size >= hs, "unexpected object size");
369   if (oopDesc::has_klass_gap()) {
370     oopDesc::set_klass_gap(mem, 0);
371   }
372   Copy::fill_to_aligned_words(mem + hs, _word_size - hs);
373 }
374 
375 oop MemAllocator::finish(HeapWord* mem) const {
376   assert(mem != nullptr, "null object pointer");
377   // Need a release store to ensure array/class length, mark word, and
378   // object zeroing are visible before setting the klass non-null, for
379   // concurrent collectors.
380   if (UseCompactObjectHeaders) {
381     oopDesc::release_set_mark(mem, _klass->prototype_header());
382   } else {
383     oopDesc::set_mark(mem, markWord::prototype());




384     oopDesc::release_set_klass(mem, _klass);
385   }
386   return cast_to_oop(mem);
387 }
388 
389 oop ObjAllocator::initialize(HeapWord* mem) const {
390   mem_clear(mem);
391   return finish(mem);
392 }
393 






394 oop ObjArrayAllocator::initialize(HeapWord* mem) const {
395   // Set array length before setting the _klass field because a
396   // non-null klass field indicates that the object is parsable by
397   // concurrent GC.
398   assert(_length >= 0, "length should be non-negative");
399   if (_do_zero) {
400     mem_clear(mem);
401     mem_zap_start_padding(mem);
402     mem_zap_end_padding(mem);
403   }
404   arrayOopDesc::set_length(mem, _length);
405   return finish(mem);
406 }
407 
408 #ifndef PRODUCT
409 void ObjArrayAllocator::mem_zap_start_padding(HeapWord* mem) const {
410   const BasicType element_type = ArrayKlass::cast(_klass)->element_type();
411   const size_t base_offset_in_bytes = arrayOopDesc::base_offset_in_bytes(element_type);
412   const size_t header_size_in_bytes = arrayOopDesc::header_size_in_bytes();
413 
414   const address base = reinterpret_cast<address>(mem) + base_offset_in_bytes;
415   const address header_end = reinterpret_cast<address>(mem) + header_size_in_bytes;
416 
417   if (header_end < base) {
418     const size_t padding_in_bytes = base - header_end;
419     Copy::fill_to_bytes(header_end, padding_in_bytes, heapPaddingByteVal);
420   }
421 }
422 
423 void ObjArrayAllocator::mem_zap_end_padding(HeapWord* mem) const {
424   const size_t length_in_bytes = static_cast<size_t>(_length) << ArrayKlass::cast(_klass)->log2_element_size();
425   const BasicType element_type = ArrayKlass::cast(_klass)->element_type();
426   const size_t base_offset_in_bytes = arrayOopDesc::base_offset_in_bytes(element_type);
427   const size_t size_in_bytes = _word_size * BytesPerWord;
428 
429   const address obj_end = reinterpret_cast<address>(mem) + size_in_bytes;
430   const address base = reinterpret_cast<address>(mem) + base_offset_in_bytes;
431   const address elements_end = base + length_in_bytes;
432   assert(elements_end <= obj_end, "payload must fit in object");
433   if (elements_end < obj_end) {
434     const size_t padding_in_bytes = obj_end - elements_end;
435     Copy::fill_to_bytes(elements_end, padding_in_bytes, heapPaddingByteVal);
436   }
437 }
438 #endif
439 
440 oop ClassAllocator::initialize(HeapWord* mem) const {
441   // Set oop_size field before setting the _klass field because a
442   // non-null _klass field indicates that the object is parsable by
443   // concurrent GC.
444   assert(_word_size > 0, "oop_size must be positive.");
445   mem_clear(mem);
446   java_lang_Class::set_oop_size(mem, _word_size);
447   return finish(mem);
448 }
--- EOF ---