1 /*
   2  * Copyright (c) 2018, 2023, Red Hat, Inc. All rights reserved.
   3  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "classfile/javaClasses.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
  29 #include "gc/shenandoah/c2/shenandoahSupport.hpp"
  30 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp"
  31 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  32 #include "gc/shenandoah/shenandoahCardTable.hpp"
  33 #include "gc/shenandoah/shenandoahForwarding.hpp"
  34 #include "gc/shenandoah/shenandoahHeap.hpp"
  35 #include "gc/shenandoah/shenandoahRuntime.hpp"
  36 #include "gc/shenandoah/shenandoahThreadLocalData.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/graphKit.hpp"
  40 #include "opto/idealKit.hpp"
  41 #include "opto/macro.hpp"
  42 #include "opto/movenode.hpp"
  43 #include "opto/narrowptrnode.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "opto/runtime.hpp"
  46 
  47 ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() {
  48   return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2());
  49 }
  50 
  51 ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena)
  52   : _load_reference_barriers(new (comp_arena) GrowableArray<ShenandoahLoadReferenceBarrierNode*>(comp_arena, 8,  0, nullptr)) {
  53 }
  54 
  55 int ShenandoahBarrierSetC2State::load_reference_barriers_count() const {
  56   return _load_reference_barriers->length();
  57 }
  58 
  59 ShenandoahLoadReferenceBarrierNode* ShenandoahBarrierSetC2State::load_reference_barrier(int idx) const {
  60   return _load_reference_barriers->at(idx);
  61 }
  62 
  63 void ShenandoahBarrierSetC2State::add_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) {
  64   assert(!_load_reference_barriers->contains(n), "duplicate entry in barrier list");
  65   _load_reference_barriers->append(n);
  66 }
  67 
  68 void ShenandoahBarrierSetC2State::remove_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) {
  69   if (_load_reference_barriers->contains(n)) {
  70     _load_reference_barriers->remove(n);
  71   }
  72 }
  73 
  74 #define __ kit->
  75 
  76 bool ShenandoahBarrierSetC2::satb_can_remove_pre_barrier(GraphKit* kit, PhaseValues* phase, Node* adr,
  77                                                          BasicType bt, uint adr_idx) const {
  78   intptr_t offset = 0;
  79   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  80   AllocateNode* alloc = AllocateNode::Ideal_allocation(base);
  81 
  82   if (offset == Type::OffsetBot) {
  83     return false; // cannot unalias unless there are precise offsets
  84   }
  85 
  86   if (alloc == nullptr) {
  87     return false; // No allocation found
  88   }
  89 
  90   intptr_t size_in_bytes = type2aelembytes(bt);
  91 
  92   Node* mem = __ memory(adr_idx); // start searching here...
  93 
  94   for (int cnt = 0; cnt < 50; cnt++) {
  95 
  96     if (mem->is_Store()) {
  97 
  98       Node* st_adr = mem->in(MemNode::Address);
  99       intptr_t st_offset = 0;
 100       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 101 
 102       if (st_base == nullptr) {
 103         break; // inscrutable pointer
 104       }
 105 
 106       // Break we have found a store with same base and offset as ours so break
 107       if (st_base == base && st_offset == offset) {
 108         break;
 109       }
 110 
 111       if (st_offset != offset && st_offset != Type::OffsetBot) {
 112         const int MAX_STORE = BytesPerLong;
 113         if (st_offset >= offset + size_in_bytes ||
 114             st_offset <= offset - MAX_STORE ||
 115             st_offset <= offset - mem->as_Store()->memory_size()) {
 116           // Success:  The offsets are provably independent.
 117           // (You may ask, why not just test st_offset != offset and be done?
 118           // The answer is that stores of different sizes can co-exist
 119           // in the same sequence of RawMem effects.  We sometimes initialize
 120           // a whole 'tile' of array elements with a single jint or jlong.)
 121           mem = mem->in(MemNode::Memory);
 122           continue; // advance through independent store memory
 123         }
 124       }
 125 
 126       if (st_base != base
 127           && MemNode::detect_ptr_independence(base, alloc, st_base,
 128                                               AllocateNode::Ideal_allocation(st_base),
 129                                               phase)) {
 130         // Success:  The bases are provably independent.
 131         mem = mem->in(MemNode::Memory);
 132         continue; // advance through independent store memory
 133       }
 134     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 135 
 136       InitializeNode* st_init = mem->in(0)->as_Initialize();
 137       AllocateNode* st_alloc = st_init->allocation();
 138 
 139       // Make sure that we are looking at the same allocation site.
 140       // The alloc variable is guaranteed to not be null here from earlier check.
 141       if (alloc == st_alloc) {
 142         // Check that the initialization is storing null so that no previous store
 143         // has been moved up and directly write a reference
 144         Node* captured_store = st_init->find_captured_store(offset,
 145                                                             type2aelembytes(T_OBJECT),
 146                                                             phase);
 147         if (captured_store == nullptr || captured_store == st_init->zero_memory()) {
 148           return true;
 149         }
 150       }
 151     }
 152 
 153     // Unless there is an explicit 'continue', we must bail out here,
 154     // because 'mem' is an inscrutable memory state (e.g., a call).
 155     break;
 156   }
 157 
 158   return false;
 159 }
 160 
 161 #undef __
 162 #define __ ideal.
 163 
 164 void ShenandoahBarrierSetC2::satb_write_barrier_pre(GraphKit* kit,
 165                                                     bool do_load,
 166                                                     Node* obj,
 167                                                     Node* adr,
 168                                                     uint alias_idx,
 169                                                     Node* val,
 170                                                     const TypeOopPtr* val_type,
 171                                                     Node* pre_val,
 172                                                     BasicType bt) const {
 173   // Some sanity checks
 174   // Note: val is unused in this routine.
 175 
 176   if (do_load) {
 177     // We need to generate the load of the previous value
 178     assert(adr != nullptr, "where are loading from?");
 179     assert(pre_val == nullptr, "loaded already?");
 180     assert(val_type != nullptr, "need a type");
 181 
 182     if (ReduceInitialCardMarks
 183         && satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) {
 184       return;
 185     }
 186 
 187   } else {
 188     // In this case both val_type and alias_idx are unused.
 189     assert(pre_val != nullptr, "must be loaded already");
 190     // Nothing to be done if pre_val is null.
 191     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
 192     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
 193   }
 194   assert(bt == T_OBJECT, "or we shouldn't be here");
 195 
 196   IdealKit ideal(kit, true);
 197 
 198   Node* tls = __ thread(); // ThreadLocalStorage
 199 
 200   Node* no_base = __ top();
 201   Node* zero  = __ ConI(0);
 202   Node* zeroX = __ ConX(0);
 203 
 204   float likely  = PROB_LIKELY(0.999);
 205   float unlikely  = PROB_UNLIKELY(0.999);
 206 
 207   // Offsets into the thread
 208   const int index_offset   = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset());
 209   const int buffer_offset  = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
 210 
 211   // Now the actual pointers into the thread
 212   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
 213   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
 214 
 215   // Now some of the values
 216   Node* marking;
 217   Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset())));
 218   Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw);
 219   marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING));
 220   assert(ShenandoahBarrierC2Support::is_gc_state_load(ld), "Should match the shape");
 221 
 222   // if (!marking)
 223   __ if_then(marking, BoolTest::ne, zero, unlikely); {
 224     BasicType index_bt = TypeX_X->basic_type();
 225     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading Shenandoah SATBMarkQueue::_index with wrong size.");
 226     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
 227 
 228     if (do_load) {
 229       // load original value
 230       // alias_idx correct??
 231       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
 232     }
 233 
 234     // if (pre_val != nullptr)
 235     __ if_then(pre_val, BoolTest::ne, kit->null()); {
 236       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
 237 
 238       // is the queue for this thread full?
 239       __ if_then(index, BoolTest::ne, zeroX, likely); {
 240 
 241         // decrement the index
 242         Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
 243 
 244         // Now get the buffer location we will log the previous value into and store it
 245         Node *log_addr = __ AddP(no_base, buffer, next_index);
 246         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
 247         // update the index
 248         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
 249 
 250       } __ else_(); {
 251 
 252         // logging buffer is full, call the runtime
 253         const TypeFunc *tf = ShenandoahBarrierSetC2::write_barrier_pre_Type();
 254         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_barrier_pre), "shenandoah_wb_pre", pre_val);
 255       } __ end_if();  // (!index)
 256     } __ end_if();  // (pre_val != nullptr)
 257   } __ end_if();  // (!marking)
 258 
 259   // Final sync IdealKit and GraphKit.
 260   kit->final_sync(ideal);
 261 
 262   if (ShenandoahSATBBarrier && adr != nullptr) {
 263     Node* c = kit->control();
 264     Node* call = c->in(1)->in(1)->in(1)->in(0);
 265     assert(is_shenandoah_wb_pre_call(call), "shenandoah_wb_pre call expected");
 266     call->add_req(adr);
 267   }
 268 }
 269 
 270 bool ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(Node* call) {
 271   return call->is_CallLeaf() &&
 272          call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_barrier_pre);
 273 }
 274 
 275 bool ShenandoahBarrierSetC2::is_shenandoah_clone_call(Node* call) {
 276   return call->is_CallLeaf() &&
 277          call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::clone_barrier);
 278 }
 279 
 280 bool ShenandoahBarrierSetC2::is_shenandoah_lrb_call(Node* call) {
 281   if (!call->is_CallLeaf()) {
 282     return false;
 283   }
 284 
 285   address entry_point = call->as_CallLeaf()->entry_point();
 286   return (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong)) ||
 287          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong_narrow)) ||
 288          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak)) ||
 289          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak_narrow)) ||
 290          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom)) ||
 291          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom_narrow));
 292 }
 293 
 294 bool ShenandoahBarrierSetC2::is_shenandoah_marking_if(PhaseValues* phase, Node* n) {
 295   if (n->Opcode() != Op_If) {
 296     return false;
 297   }
 298 
 299   Node* bol = n->in(1);
 300   assert(bol->is_Bool(), "");
 301   Node* cmpx = bol->in(1);
 302   if (bol->as_Bool()->_test._test == BoolTest::ne &&
 303       cmpx->is_Cmp() && cmpx->in(2) == phase->intcon(0) &&
 304       is_shenandoah_state_load(cmpx->in(1)->in(1)) &&
 305       cmpx->in(1)->in(2)->is_Con() &&
 306       cmpx->in(1)->in(2) == phase->intcon(ShenandoahHeap::MARKING)) {
 307     return true;
 308   }
 309 
 310   return false;
 311 }
 312 
 313 bool ShenandoahBarrierSetC2::is_shenandoah_state_load(Node* n) {
 314   if (!n->is_Load()) return false;
 315   const int state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset());
 316   return n->in(2)->is_AddP() && n->in(2)->in(2)->Opcode() == Op_ThreadLocal
 317          && n->in(2)->in(3)->is_Con()
 318          && n->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset;
 319 }
 320 
 321 void ShenandoahBarrierSetC2::shenandoah_write_barrier_pre(GraphKit* kit,
 322                                                           bool do_load,
 323                                                           Node* obj,
 324                                                           Node* adr,
 325                                                           uint alias_idx,
 326                                                           Node* val,
 327                                                           const TypeOopPtr* val_type,
 328                                                           Node* pre_val,
 329                                                           BasicType bt) const {
 330   if (ShenandoahSATBBarrier) {
 331     IdealKit ideal(kit);
 332     kit->sync_kit(ideal);
 333 
 334     satb_write_barrier_pre(kit, do_load, obj, adr, alias_idx, val, val_type, pre_val, bt);
 335 
 336     ideal.sync_kit(kit);
 337     kit->final_sync(ideal);
 338   }
 339 }
 340 
 341 // Helper that guards and inserts a pre-barrier.
 342 void ShenandoahBarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset,
 343                                                 Node* pre_val, bool need_mem_bar) const {
 344   // We could be accessing the referent field of a reference object. If so, when Shenandoah
 345   // is enabled, we need to log the value in the referent field in an SATB buffer.
 346   // This routine performs some compile time filters and generates suitable
 347   // runtime filters that guard the pre-barrier code.
 348   // Also add memory barrier for non volatile load from the referent field
 349   // to prevent commoning of loads across safepoint.
 350 
 351   // Some compile time checks.
 352 
 353   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
 354   const TypeX* otype = offset->find_intptr_t_type();
 355   if (otype != nullptr && otype->is_con() &&
 356       otype->get_con() != java_lang_ref_Reference::referent_offset()) {
 357     // Constant offset but not the reference_offset so just return
 358     return;
 359   }
 360 
 361   // We only need to generate the runtime guards for instances.
 362   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
 363   if (btype != nullptr) {
 364     if (btype->isa_aryptr()) {
 365       // Array type so nothing to do
 366       return;
 367     }
 368 
 369     const TypeInstPtr* itype = btype->isa_instptr();
 370     if (itype != nullptr) {
 371       // Can the klass of base_oop be statically determined to be
 372       // _not_ a sub-class of Reference and _not_ Object?
 373       ciKlass* klass = itype->instance_klass();
 374       if (klass->is_loaded() &&
 375           !klass->is_subtype_of(kit->env()->Reference_klass()) &&
 376           !kit->env()->Object_klass()->is_subtype_of(klass)) {
 377         return;
 378       }
 379     }
 380   }
 381 
 382   // The compile time filters did not reject base_oop/offset so
 383   // we need to generate the following runtime filters
 384   //
 385   // if (offset == java_lang_ref_Reference::_reference_offset) {
 386   //   if (instance_of(base, java.lang.ref.Reference)) {
 387   //     pre_barrier(_, pre_val, ...);
 388   //   }
 389   // }
 390 
 391   float likely   = PROB_LIKELY(  0.999);
 392   float unlikely = PROB_UNLIKELY(0.999);
 393 
 394   IdealKit ideal(kit);
 395 
 396   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset());
 397 
 398   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
 399       // Update graphKit memory and control from IdealKit.
 400       kit->sync_kit(ideal);
 401 
 402       Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass()));
 403       Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con);
 404 
 405       // Update IdealKit memory and control from graphKit.
 406       __ sync_kit(kit);
 407 
 408       Node* one = __ ConI(1);
 409       // is_instof == 0 if base_oop == nullptr
 410       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
 411 
 412         // Update graphKit from IdeakKit.
 413         kit->sync_kit(ideal);
 414 
 415         // Use the pre-barrier to record the value in the referent field
 416         satb_write_barrier_pre(kit, false /* do_load */,
 417                                nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */,
 418                                pre_val /* pre_val */,
 419                                T_OBJECT);
 420         if (need_mem_bar) {
 421           // Add memory barrier to prevent commoning reads from this field
 422           // across safepoint since GC can change its value.
 423           kit->insert_mem_bar(Op_MemBarCPUOrder);
 424         }
 425         // Update IdealKit from graphKit.
 426         __ sync_kit(kit);
 427 
 428       } __ end_if(); // _ref_type != ref_none
 429   } __ end_if(); // offset == referent_offset
 430 
 431   // Final sync IdealKit and GraphKit.
 432   kit->final_sync(ideal);
 433 }
 434 
 435 void ShenandoahBarrierSetC2::post_barrier(GraphKit* kit,
 436                                           Node* ctl,
 437                                           Node* oop_store,
 438                                           Node* obj,
 439                                           Node* adr,
 440                                           uint  adr_idx,
 441                                           Node* val,
 442                                           BasicType bt,
 443                                           bool use_precise) const {
 444   assert(ShenandoahCardBarrier, "Should have been checked by caller");
 445 
 446   // No store check needed if we're storing a null.
 447   if (val != nullptr && val->is_Con()) {
 448     // must be either an oop or null
 449     const Type* t = val->bottom_type();
 450     if (t == TypePtr::NULL_PTR || t == Type::TOP)
 451       return;
 452   }
 453 
 454   if (ReduceInitialCardMarks && obj == kit->just_allocated_object(kit->control())) {
 455     // We use card marks to track old to young references in Generational Shenandoah;
 456     // see flag ShenandoahCardBarrier above.
 457     // Objects are always allocated in the young generation and initialized
 458     // before they are promoted. There's always a safepoint (e.g. at final mark)
 459     // before an object is promoted from young to old. Promotion entails dirtying of
 460     // the cards backing promoted objects, so they will be guaranteed to be scanned
 461     // at the next remembered set scan of the old generation.
 462     // Thus, we can safely skip card-marking of initializing stores on a
 463     // freshly-allocated object. If any of the assumptions above change in
 464     // the future, this code will need to be re-examined; see check in
 465     // ShenandoahCardBarrier::on_slowpath_allocation_exit().
 466     return;
 467   }
 468 
 469   if (!use_precise) {
 470     // All card marks for a (non-array) instance are in one place:
 471     adr = obj;
 472   }
 473   // (Else it's an array (or unknown), and we want more precise card marks.)
 474   assert(adr != nullptr, "");
 475 
 476   IdealKit ideal(kit, true);
 477 
 478   Node* tls = __ thread(); // ThreadLocalStorage
 479 
 480   // Convert the pointer to an int prior to doing math on it
 481   Node* cast = __ CastPX(__ ctrl(), adr);
 482 
 483   Node* curr_ct_holder_offset = __ ConX(in_bytes(ShenandoahThreadLocalData::card_table_offset()));
 484   Node* curr_ct_holder_addr  = __ AddP(__ top(), tls, curr_ct_holder_offset);
 485   Node* curr_ct_base_addr = __ load( __ ctrl(), curr_ct_holder_addr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
 486 
 487   // Divide by card size
 488   Node* card_offset = __ URShiftX( cast, __ ConI(CardTable::card_shift()) );
 489 
 490   // Combine card table base and card offset
 491   Node* card_adr = __ AddP(__ top(), curr_ct_base_addr, card_offset);
 492 
 493   // Get the alias_index for raw card-mark memory
 494   int adr_type = Compile::AliasIdxRaw;
 495   Node*   zero = __ ConI(0); // Dirty card value
 496 
 497   if (UseCondCardMark) {
 498     // The classic GC reference write barrier is typically implemented
 499     // as a store into the global card mark table.  Unfortunately
 500     // unconditional stores can result in false sharing and excessive
 501     // coherence traffic as well as false transactional aborts.
 502     // UseCondCardMark enables MP "polite" conditional card mark
 503     // stores.  In theory we could relax the load from ctrl() to
 504     // no_ctrl, but that doesn't buy much latitude.
 505     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, T_BYTE, adr_type);
 506     __ if_then(card_val, BoolTest::ne, zero);
 507   }
 508 
 509   // Smash zero into card
 510   __ store(__ ctrl(), card_adr, zero, T_BYTE, adr_type, MemNode::unordered);
 511 
 512   if (UseCondCardMark) {
 513     __ end_if();
 514   }
 515 
 516   // Final sync IdealKit and GraphKit.
 517   kit->final_sync(ideal);
 518 }
 519 
 520 #undef __
 521 
 522 const TypeFunc* ShenandoahBarrierSetC2::write_barrier_pre_Type() {
 523   const Type **fields = TypeTuple::fields(1);
 524   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 525   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 526 
 527   // create result type (range)
 528   fields = TypeTuple::fields(0);
 529   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 530 
 531   return TypeFunc::make(domain, range);
 532 }
 533 
 534 const TypeFunc* ShenandoahBarrierSetC2::clone_barrier_Type() {
 535   const Type **fields = TypeTuple::fields(1);
 536   fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL; // src oop
 537   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 538 
 539   // create result type (range)
 540   fields = TypeTuple::fields(0);
 541   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 542 
 543   return TypeFunc::make(domain, range);
 544 }
 545 
 546 const TypeFunc* ShenandoahBarrierSetC2::load_reference_barrier_Type() {
 547   const Type **fields = TypeTuple::fields(2);
 548   fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM; // original field value
 549   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // original load address
 550 
 551   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 552 
 553   // create result type (range)
 554   fields = TypeTuple::fields(1);
 555   fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM;
 556   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 557 
 558   return TypeFunc::make(domain, range);
 559 }
 560 
 561 Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
 562   DecoratorSet decorators = access.decorators();
 563 
 564   const TypePtr* adr_type = access.addr().type();
 565   Node* adr = access.addr().node();
 566 
 567   bool no_keepalive = (decorators & AS_NO_KEEPALIVE) != 0;
 568 
 569   if (!access.is_oop()) {
 570     return BarrierSetC2::store_at_resolved(access, val);
 571   }
 572 
 573   if (no_keepalive) {
 574     // No keep-alive means no need for the pre-barrier.
 575     return BarrierSetC2::store_at_resolved(access, val);
 576   }
 577 
 578   if (access.is_parse_access()) {
 579     C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 580     GraphKit* kit = parse_access.kit();
 581 
 582     uint adr_idx = kit->C->get_alias_index(adr_type);
 583     assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
 584     shenandoah_write_barrier_pre(kit, true /* do_load */, /*kit->control(),*/ access.base(), adr, adr_idx, val.node(),
 585                                  static_cast<const TypeOopPtr*>(val.type()), nullptr /* pre_val */, access.type());
 586 
 587     Node* result = BarrierSetC2::store_at_resolved(access, val);
 588 
 589     if (ShenandoahCardBarrier) {
 590       const bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 591       const bool is_array = (decorators & IS_ARRAY) != 0;
 592       const bool use_precise = is_array || anonymous;
 593       post_barrier(kit, kit->control(), access.raw_access(), access.base(),
 594                    adr, adr_idx, val.node(), access.type(), use_precise);
 595     }
 596     return result;
 597   } else {
 598     assert(access.is_opt_access(), "only for optimization passes");
 599     assert(((decorators & C2_TIGHTLY_COUPLED_ALLOC) != 0 || !ShenandoahSATBBarrier) && (decorators & C2_ARRAY_COPY) != 0, "unexpected caller of this code");
 600     return BarrierSetC2::store_at_resolved(access, val);
 601   }
 602 }
 603 
 604 Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
 605   // 1: non-reference load, no additional barrier is needed
 606   if (!access.is_oop()) {
 607     return BarrierSetC2::load_at_resolved(access, val_type);
 608   }
 609 
 610   Node* load = BarrierSetC2::load_at_resolved(access, val_type);
 611   DecoratorSet decorators = access.decorators();
 612   BasicType type = access.type();
 613 
 614   // 2: apply LRB if needed
 615   if (ShenandoahBarrierSet::need_load_reference_barrier(decorators, type)) {
 616     load = new ShenandoahLoadReferenceBarrierNode(nullptr, load, decorators);
 617     if (access.is_parse_access()) {
 618       load = static_cast<C2ParseAccess &>(access).kit()->gvn().transform(load);
 619     } else {
 620       load = static_cast<C2OptAccess &>(access).gvn().transform(load);
 621     }
 622   }
 623 
 624   // 3: apply keep-alive barrier for java.lang.ref.Reference if needed
 625   if (ShenandoahBarrierSet::need_keep_alive_barrier(decorators, type)) {
 626     Node* top = Compile::current()->top();
 627     Node* adr = access.addr().node();
 628     Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top;
 629     Node* obj = access.base();
 630 
 631     bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 632     bool on_weak_ref = (decorators & (ON_WEAK_OOP_REF | ON_PHANTOM_OOP_REF)) != 0;
 633     bool keep_alive = (decorators & AS_NO_KEEPALIVE) == 0;
 634 
 635     // If we are reading the value of the referent field of a Reference
 636     // object (either by using Unsafe directly or through reflection)
 637     // then, if SATB is enabled, we need to record the referent in an
 638     // SATB log buffer using the pre-barrier mechanism.
 639     // Also we need to add memory barrier to prevent commoning reads
 640     // from this field across safepoint since GC can change its value.
 641     if (!on_weak_ref || (unknown && (offset == top || obj == top)) || !keep_alive) {
 642       return load;
 643     }
 644 
 645     assert(access.is_parse_access(), "entry not supported at optimization time");
 646     C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 647     GraphKit* kit = parse_access.kit();
 648     bool mismatched = (decorators & C2_MISMATCHED) != 0;
 649     bool is_unordered = (decorators & MO_UNORDERED) != 0;
 650     bool in_native = (decorators & IN_NATIVE) != 0;
 651     bool need_cpu_mem_bar = !is_unordered || mismatched || in_native;
 652 
 653     if (on_weak_ref) {
 654       // Use the pre-barrier to record the value in the referent field
 655       satb_write_barrier_pre(kit, false /* do_load */,
 656                              nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */,
 657                              load /* pre_val */, T_OBJECT);
 658       // Add memory barrier to prevent commoning reads from this field
 659       // across safepoint since GC can change its value.
 660       kit->insert_mem_bar(Op_MemBarCPUOrder);
 661     } else if (unknown) {
 662       // We do not require a mem bar inside pre_barrier if need_mem_bar
 663       // is set: the barriers would be emitted by us.
 664       insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar);
 665     }
 666   }
 667 
 668   return load;
 669 }
 670 
 671 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
 672                                                              Node* new_val, const Type* value_type) const {
 673   GraphKit* kit = access.kit();
 674   if (access.is_oop()) {
 675     shenandoah_write_barrier_pre(kit, false /* do_load */,
 676                                  nullptr, nullptr, max_juint, nullptr, nullptr,
 677                                  expected_val /* pre_val */, T_OBJECT);
 678 
 679     MemNode::MemOrd mo = access.mem_node_mo();
 680     Node* mem = access.memory();
 681     Node* adr = access.addr().node();
 682     const TypePtr* adr_type = access.addr().type();
 683     Node* load_store = nullptr;
 684 
 685 #ifdef _LP64
 686     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 687       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
 688       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
 689       if (ShenandoahCASBarrier) {
 690         load_store = kit->gvn().transform(new ShenandoahCompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
 691       } else {
 692         load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
 693       }
 694     } else
 695 #endif
 696     {
 697       if (ShenandoahCASBarrier) {
 698         load_store = kit->gvn().transform(new ShenandoahCompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
 699       } else {
 700         load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
 701       }
 702     }
 703 
 704     access.set_raw_access(load_store);
 705     pin_atomic_op(access);
 706 
 707 #ifdef _LP64
 708     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 709       load_store = kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
 710     }
 711 #endif
 712     load_store = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, load_store, access.decorators()));
 713     if (ShenandoahCardBarrier) {
 714       post_barrier(kit, kit->control(), access.raw_access(), access.base(),
 715                    access.addr().node(), access.alias_idx(), new_val, T_OBJECT, true);
 716     }
 717     return load_store;
 718   }
 719   return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
 720 }
 721 
 722 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
 723                                                               Node* new_val, const Type* value_type) const {
 724   GraphKit* kit = access.kit();
 725   if (access.is_oop()) {
 726     shenandoah_write_barrier_pre(kit, false /* do_load */,
 727                                  nullptr, nullptr, max_juint, nullptr, nullptr,
 728                                  expected_val /* pre_val */, T_OBJECT);
 729     DecoratorSet decorators = access.decorators();
 730     MemNode::MemOrd mo = access.mem_node_mo();
 731     Node* mem = access.memory();
 732     bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0;
 733     Node* load_store = nullptr;
 734     Node* adr = access.addr().node();
 735 #ifdef _LP64
 736     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 737       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
 738       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
 739       if (ShenandoahCASBarrier) {
 740         if (is_weak_cas) {
 741           load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 742         } else {
 743           load_store = kit->gvn().transform(new ShenandoahCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 744         }
 745       } else {
 746         if (is_weak_cas) {
 747           load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 748         } else {
 749           load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 750         }
 751       }
 752     } else
 753 #endif
 754     {
 755       if (ShenandoahCASBarrier) {
 756         if (is_weak_cas) {
 757           load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 758         } else {
 759           load_store = kit->gvn().transform(new ShenandoahCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 760         }
 761       } else {
 762         if (is_weak_cas) {
 763           load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 764         } else {
 765           load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 766         }
 767       }
 768     }
 769     access.set_raw_access(load_store);
 770     pin_atomic_op(access);
 771     if (ShenandoahCardBarrier) {
 772       post_barrier(kit, kit->control(), access.raw_access(), access.base(),
 773                    access.addr().node(), access.alias_idx(), new_val, T_OBJECT, true);
 774     }
 775     return load_store;
 776   }
 777   return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
 778 }
 779 
 780 Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const {
 781   GraphKit* kit = access.kit();
 782   Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type);
 783   if (access.is_oop()) {
 784     result = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, result, access.decorators()));
 785     shenandoah_write_barrier_pre(kit, false /* do_load */,
 786                                  nullptr, nullptr, max_juint, nullptr, nullptr,
 787                                  result /* pre_val */, T_OBJECT);
 788     if (ShenandoahCardBarrier) {
 789       post_barrier(kit, kit->control(), access.raw_access(), access.base(),
 790                    access.addr().node(), access.alias_idx(), val, T_OBJECT, true);
 791     }
 792   }
 793   return result;
 794 }
 795 
 796 
 797 bool ShenandoahBarrierSetC2::is_gc_pre_barrier_node(Node* node) const {
 798   return is_shenandoah_wb_pre_call(node);
 799 }
 800 
 801 bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const {
 802   return (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) ||
 803          is_shenandoah_lrb_call(node) ||
 804          is_shenandoah_wb_pre_call(node) ||
 805          is_shenandoah_clone_call(node);
 806 }
 807 
 808 Node* ShenandoahBarrierSetC2::step_over_gc_barrier(Node* c) const {
 809   if (c == nullptr) {
 810     return c;
 811   }
 812   if (c->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 813     return c->in(ShenandoahLoadReferenceBarrierNode::ValueIn);
 814   }
 815   return c;
 816 }
 817 
 818 bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const {
 819   return !ShenandoahBarrierC2Support::expand(C, igvn);
 820 }
 821 
 822 bool ShenandoahBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const {
 823   if (mode == LoopOptsShenandoahExpand) {
 824     assert(UseShenandoahGC, "only for shenandoah");
 825     ShenandoahBarrierC2Support::pin_and_expand(phase);
 826     return true;
 827   }
 828   return false;
 829 }
 830 
 831 bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, bool is_clone_instance, ArrayCopyPhase phase) const {
 832   bool is_oop = is_reference_type(type);
 833   if (!is_oop) {
 834     return false;
 835   }
 836   if (ShenandoahSATBBarrier && tightly_coupled_alloc) {
 837     if (phase == Optimization) {
 838       return false;
 839     }
 840     return !is_clone;
 841   }
 842   return true;
 843 }
 844 
 845 bool ShenandoahBarrierSetC2::clone_needs_barrier(Node* src, PhaseGVN& gvn) {
 846   const TypeOopPtr* src_type = gvn.type(src)->is_oopptr();
 847   if (src_type->isa_instptr() != nullptr) {
 848     ciInstanceKlass* ik = src_type->is_instptr()->instance_klass();
 849     if ((src_type->klass_is_exact() || !ik->has_subklass()) && !ik->has_injected_fields()) {
 850       if (ik->has_object_fields()) {
 851         return true;
 852       } else {
 853         if (!src_type->klass_is_exact()) {
 854           Compile::current()->dependencies()->assert_leaf_type(ik);
 855         }
 856       }
 857     } else {
 858       return true;
 859         }
 860   } else if (src_type->isa_aryptr()) {
 861     BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type();
 862     if (is_reference_type(src_elem, true)) {
 863       return true;
 864     }
 865   } else {
 866     return true;
 867   }
 868   return false;
 869 }
 870 
 871 void ShenandoahBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
 872   Node* ctrl = ac->in(TypeFunc::Control);
 873   Node* mem = ac->in(TypeFunc::Memory);
 874   Node* src_base = ac->in(ArrayCopyNode::Src);
 875   Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
 876   Node* dest_base = ac->in(ArrayCopyNode::Dest);
 877   Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
 878   Node* length = ac->in(ArrayCopyNode::Length);
 879 
 880   Node* src = phase->basic_plus_adr(src_base, src_offset);
 881   Node* dest = phase->basic_plus_adr(dest_base, dest_offset);
 882 
 883   if (ShenandoahCloneBarrier && clone_needs_barrier(src, phase->igvn())) {
 884     // Check if heap is has forwarded objects. If it does, we need to call into the special
 885     // routine that would fix up source references before we can continue.
 886 
 887     enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT };
 888     Node* region = new RegionNode(PATH_LIMIT);
 889     Node* mem_phi = new PhiNode(region, Type::MEMORY, TypeRawPtr::BOTTOM);
 890 
 891     Node* thread = phase->transform_later(new ThreadLocalNode());
 892     Node* offset = phase->igvn().MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
 893     Node* gc_state_addr = phase->transform_later(new AddPNode(phase->C->top(), thread, offset));
 894 
 895     uint gc_state_idx = Compile::AliasIdxRaw;
 896     const TypePtr* gc_state_adr_type = nullptr; // debug-mode-only argument
 897     DEBUG_ONLY(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx));
 898 
 899     Node* gc_state    = phase->transform_later(new LoadBNode(ctrl, mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered));
 900     Node* stable_and  = phase->transform_later(new AndINode(gc_state, phase->igvn().intcon(ShenandoahHeap::HAS_FORWARDED)));
 901     Node* stable_cmp  = phase->transform_later(new CmpINode(stable_and, phase->igvn().zerocon(T_INT)));
 902     Node* stable_test = phase->transform_later(new BoolNode(stable_cmp, BoolTest::ne));
 903 
 904     IfNode* stable_iff  = phase->transform_later(new IfNode(ctrl, stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN))->as_If();
 905     Node* stable_ctrl   = phase->transform_later(new IfFalseNode(stable_iff));
 906     Node* unstable_ctrl = phase->transform_later(new IfTrueNode(stable_iff));
 907 
 908     // Heap is stable, no need to do anything additional
 909     region->init_req(_heap_stable, stable_ctrl);
 910     mem_phi->init_req(_heap_stable, mem);
 911 
 912     // Heap is unstable, call into clone barrier stub
 913     Node* call = phase->make_leaf_call(unstable_ctrl, mem,
 914                                        ShenandoahBarrierSetC2::clone_barrier_Type(),
 915                                        CAST_FROM_FN_PTR(address, ShenandoahRuntime::clone_barrier),
 916                                        "shenandoah_clone",
 917                                        TypeRawPtr::BOTTOM,
 918                                        src_base);
 919     call = phase->transform_later(call);
 920 
 921     ctrl = phase->transform_later(new ProjNode(call, TypeFunc::Control));
 922     mem = phase->transform_later(new ProjNode(call, TypeFunc::Memory));
 923     region->init_req(_heap_unstable, ctrl);
 924     mem_phi->init_req(_heap_unstable, mem);
 925 
 926     // Wire up the actual arraycopy stub now
 927     ctrl = phase->transform_later(region);
 928     mem = phase->transform_later(mem_phi);
 929 
 930     const char* name = "arraycopy";
 931     call = phase->make_leaf_call(ctrl, mem,
 932                                  OptoRuntime::fast_arraycopy_Type(),
 933                                  phase->basictype2arraycopy(T_LONG, nullptr, nullptr, true, name, true),
 934                                  name, TypeRawPtr::BOTTOM,
 935                                  src, dest, length
 936                                  LP64_ONLY(COMMA phase->top()));
 937     call = phase->transform_later(call);
 938 
 939     // Hook up the whole thing into the graph
 940     phase->igvn().replace_node(ac, call);
 941   } else {
 942     BarrierSetC2::clone_at_expansion(phase, ac);
 943   }
 944 }
 945 
 946 
 947 // Support for macro expanded GC barriers
 948 void ShenandoahBarrierSetC2::register_potential_barrier_node(Node* node) const {
 949   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 950     state()->add_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node);
 951   }
 952 }
 953 
 954 void ShenandoahBarrierSetC2::unregister_potential_barrier_node(Node* node) const {
 955   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 956     state()->remove_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node);
 957   }
 958 }
 959 
 960 void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* node) const {
 961   if (is_shenandoah_wb_pre_call(node)) {
 962     shenandoah_eliminate_wb_pre(node, &macro->igvn());
 963   }
 964   if (ShenandoahCardBarrier && node->Opcode() == Op_CastP2X) {
 965     Node* shift = node->unique_out();
 966     Node* addp = shift->unique_out();
 967     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
 968       Node* mem = addp->last_out(j);
 969       if (UseCondCardMark && mem->is_Load()) {
 970         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
 971         // The load is checking if the card has been written so
 972         // replace it with zero to fold the test.
 973         macro->replace_node(mem, macro->intcon(0));
 974         continue;
 975       }
 976       assert(mem->is_Store(), "store required");
 977       macro->replace_node(mem, mem->in(MemNode::Memory));
 978     }
 979   }
 980 }
 981 
 982 void ShenandoahBarrierSetC2::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) const {
 983   assert(UseShenandoahGC && is_shenandoah_wb_pre_call(call), "");
 984   Node* c = call->as_Call()->proj_out(TypeFunc::Control);
 985   c = c->unique_ctrl_out();
 986   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 987   c = c->unique_ctrl_out();
 988   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 989   Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
 990   assert(iff->is_If(), "expect test");
 991   if (!is_shenandoah_marking_if(igvn, iff)) {
 992     c = c->unique_ctrl_out();
 993     assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 994     iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
 995     assert(is_shenandoah_marking_if(igvn, iff), "expect marking test");
 996   }
 997   Node* cmpx = iff->in(1)->in(1);
 998   igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ));
 999   igvn->rehash_node_delayed(call);
1000   call->del_req(call->req()-1);
1001 }
1002 
1003 void ShenandoahBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const {
1004   if (node->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(node)) {
1005     igvn->add_users_to_worklist(node);
1006   }
1007 }
1008 
1009 void ShenandoahBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const {
1010   for (uint i = 0; i < useful.size(); i++) {
1011     Node* n = useful.at(i);
1012     if (n->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(n)) {
1013       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1014         C->record_for_igvn(n->fast_out(i));
1015       }
1016     }
1017   }
1018 
1019   for (int i = state()->load_reference_barriers_count() - 1; i >= 0; i--) {
1020     ShenandoahLoadReferenceBarrierNode* n = state()->load_reference_barrier(i);
1021     if (!useful.member(n)) {
1022       state()->remove_load_reference_barrier(n);
1023     }
1024   }
1025 }
1026 
1027 void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const {
1028   return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena);
1029 }
1030 
1031 ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const {
1032   return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state());
1033 }
1034 
1035 // If the BarrierSetC2 state has kept macro nodes in its compilation unit state to be
1036 // expanded later, then now is the time to do so.
1037 bool ShenandoahBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { return false; }
1038 
1039 #ifdef ASSERT
1040 void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const {
1041   if (ShenandoahVerifyOptoBarriers && phase == BarrierSetC2::BeforeMacroExpand) {
1042     ShenandoahBarrierC2Support::verify(Compile::current()->root());
1043   } else if (phase == BarrierSetC2::BeforeCodeGen) {
1044     // Verify Shenandoah pre-barriers
1045     const int gc_state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset());
1046 
1047     Unique_Node_List visited;
1048     Node_List worklist;
1049     // We're going to walk control flow backwards starting from the Root
1050     worklist.push(compile->root());
1051     while (worklist.size() > 0) {
1052       Node *x = worklist.pop();
1053       if (x == nullptr || x == compile->top()) {
1054         continue;
1055       }
1056 
1057       if (visited.member(x)) {
1058         continue;
1059       } else {
1060         visited.push(x);
1061       }
1062 
1063       if (x->is_Region()) {
1064         for (uint i = 1; i < x->req(); i++) {
1065           worklist.push(x->in(i));
1066         }
1067       } else {
1068         worklist.push(x->in(0));
1069         // We are looking for the pattern:
1070         //                            /->ThreadLocal
1071         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
1072         //              \->ConI(0)
1073         // We want to verify that the If and the LoadB have the same control
1074         // See GraphKit::g1_write_barrier_pre()
1075         if (x->is_If()) {
1076           IfNode *iff = x->as_If();
1077           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
1078             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
1079             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
1080                 && cmp->in(1)->is_Load()) {
1081               LoadNode *load = cmp->in(1)->as_Load();
1082               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
1083                   && load->in(2)->in(3)->is_Con()
1084                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == gc_state_offset) {
1085 
1086                 Node *if_ctrl = iff->in(0);
1087                 Node *load_ctrl = load->in(0);
1088 
1089                 if (if_ctrl != load_ctrl) {
1090                   // Skip possible CProj->NeverBranch in infinite loops
1091                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
1092                       && if_ctrl->in(0)->is_NeverBranch()) {
1093                     if_ctrl = if_ctrl->in(0)->in(0);
1094                   }
1095                 }
1096                 assert(load_ctrl != nullptr && if_ctrl == load_ctrl, "controls must match");
1097               }
1098             }
1099           }
1100         }
1101       }
1102     }
1103   }
1104 }
1105 #endif
1106 
1107 Node* ShenandoahBarrierSetC2::ideal_node(PhaseGVN* phase, Node* n, bool can_reshape) const {
1108   if (is_shenandoah_wb_pre_call(n)) {
1109     uint cnt = ShenandoahBarrierSetC2::write_barrier_pre_Type()->domain()->cnt();
1110     if (n->req() > cnt) {
1111       Node* addp = n->in(cnt);
1112       if (has_only_shenandoah_wb_pre_uses(addp)) {
1113         n->del_req(cnt);
1114         if (can_reshape) {
1115           phase->is_IterGVN()->_worklist.push(addp);
1116         }
1117         return n;
1118       }
1119     }
1120   }
1121   if (n->Opcode() == Op_CmpP) {
1122     Node* in1 = n->in(1);
1123     Node* in2 = n->in(2);
1124 
1125     // If one input is null, then step over the strong LRB barriers on the other input
1126     if (in1->bottom_type() == TypePtr::NULL_PTR &&
1127         !((in2->Opcode() == Op_ShenandoahLoadReferenceBarrier) &&
1128           !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in2)->decorators()))) {
1129       in2 = step_over_gc_barrier(in2);
1130     }
1131     if (in2->bottom_type() == TypePtr::NULL_PTR &&
1132         !((in1->Opcode() == Op_ShenandoahLoadReferenceBarrier) &&
1133           !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in1)->decorators()))) {
1134       in1 = step_over_gc_barrier(in1);
1135     }
1136 
1137     if (in1 != n->in(1)) {
1138       n->set_req_X(1, in1, phase);
1139       assert(in2 == n->in(2), "only one change");
1140       return n;
1141     }
1142     if (in2 != n->in(2)) {
1143       n->set_req_X(2, in2, phase);
1144       return n;
1145     }
1146   } else if (can_reshape &&
1147              n->Opcode() == Op_If &&
1148              ShenandoahBarrierC2Support::is_heap_stable_test(n) &&
1149              n->in(0) != nullptr &&
1150              n->outcnt() == 2) {
1151     Node* dom = n->in(0);
1152     Node* prev_dom = n;
1153     int op = n->Opcode();
1154     int dist = 16;
1155     // Search up the dominator tree for another heap stable test
1156     while (dom->Opcode() != op    ||  // Not same opcode?
1157            !ShenandoahBarrierC2Support::is_heap_stable_test(dom) ||  // Not same input 1?
1158            prev_dom->in(0) != dom) {  // One path of test does not dominate?
1159       if (dist < 0) return nullptr;
1160 
1161       dist--;
1162       prev_dom = dom;
1163       dom = IfNode::up_one_dom(dom);
1164       if (!dom) return nullptr;
1165     }
1166 
1167     // Check that we did not follow a loop back to ourselves
1168     if (n == dom) {
1169       return nullptr;
1170     }
1171 
1172     return n->as_If()->dominated_by(prev_dom, phase->is_IterGVN(), false);
1173   }
1174 
1175   return nullptr;
1176 }
1177 
1178 bool ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(Node* n) {
1179   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1180     Node* u = n->fast_out(i);
1181     if (!is_shenandoah_wb_pre_call(u)) {
1182       return false;
1183     }
1184   }
1185   return n->outcnt() > 0;
1186 }
1187 
1188 bool ShenandoahBarrierSetC2::final_graph_reshaping(Compile* compile, Node* n, uint opcode, Unique_Node_List& dead_nodes) const {
1189   switch (opcode) {
1190     case Op_CallLeaf:
1191     case Op_CallLeafNoFP: {
1192       assert (n->is_Call(), "");
1193       CallNode *call = n->as_Call();
1194       if (ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) {
1195         uint cnt = ShenandoahBarrierSetC2::write_barrier_pre_Type()->domain()->cnt();
1196         if (call->req() > cnt) {
1197           assert(call->req() == cnt + 1, "only one extra input");
1198           Node *addp = call->in(cnt);
1199           assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?");
1200           call->del_req(cnt);
1201         }
1202       }
1203       return false;
1204     }
1205     case Op_ShenandoahCompareAndSwapP:
1206     case Op_ShenandoahCompareAndSwapN:
1207     case Op_ShenandoahWeakCompareAndSwapN:
1208     case Op_ShenandoahWeakCompareAndSwapP:
1209     case Op_ShenandoahCompareAndExchangeP:
1210     case Op_ShenandoahCompareAndExchangeN:
1211       return true;
1212     case Op_ShenandoahLoadReferenceBarrier:
1213       assert(false, "should have been expanded already");
1214       return true;
1215     default:
1216       return false;
1217   }
1218 }
1219 
1220 bool ShenandoahBarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const {
1221   switch (opcode) {
1222     case Op_ShenandoahCompareAndExchangeP:
1223     case Op_ShenandoahCompareAndExchangeN:
1224       conn_graph->add_objload_to_connection_graph(n, delayed_worklist);
1225       // fallthrough
1226     case Op_ShenandoahWeakCompareAndSwapP:
1227     case Op_ShenandoahWeakCompareAndSwapN:
1228     case Op_ShenandoahCompareAndSwapP:
1229     case Op_ShenandoahCompareAndSwapN:
1230       conn_graph->add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
1231       return true;
1232     case Op_StoreP: {
1233       Node* adr = n->in(MemNode::Address);
1234       const Type* adr_type = gvn->type(adr);
1235       // Pointer stores in Shenandoah barriers looks like unsafe access.
1236       // Ignore such stores to be able scalar replace non-escaping
1237       // allocations.
1238       if (adr_type->isa_rawptr() && adr->is_AddP()) {
1239         Node* base = conn_graph->get_addp_base(adr);
1240         if (base->Opcode() == Op_LoadP &&
1241           base->in(MemNode::Address)->is_AddP()) {
1242           adr = base->in(MemNode::Address);
1243           Node* tls = conn_graph->get_addp_base(adr);
1244           if (tls->Opcode() == Op_ThreadLocal) {
1245              int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
1246              const int buf_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
1247              if (offs == buf_offset) {
1248                return true; // Pre barrier previous oop value store.
1249              }
1250           }
1251         }
1252       }
1253       return false;
1254     }
1255     case Op_ShenandoahLoadReferenceBarrier:
1256       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), delayed_worklist);
1257       return true;
1258     default:
1259       // Nothing
1260       break;
1261   }
1262   return false;
1263 }
1264 
1265 bool ShenandoahBarrierSetC2::escape_add_final_edges(ConnectionGraph* conn_graph, PhaseGVN* gvn, Node* n, uint opcode) const {
1266   switch (opcode) {
1267     case Op_ShenandoahCompareAndExchangeP:
1268     case Op_ShenandoahCompareAndExchangeN: {
1269       Node *adr = n->in(MemNode::Address);
1270       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, adr, nullptr);
1271       // fallthrough
1272     }
1273     case Op_ShenandoahCompareAndSwapP:
1274     case Op_ShenandoahCompareAndSwapN:
1275     case Op_ShenandoahWeakCompareAndSwapP:
1276     case Op_ShenandoahWeakCompareAndSwapN:
1277       return conn_graph->add_final_edges_unsafe_access(n, opcode);
1278     case Op_ShenandoahLoadReferenceBarrier:
1279       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), nullptr);
1280       return true;
1281     default:
1282       // Nothing
1283       break;
1284   }
1285   return false;
1286 }
1287 
1288 bool ShenandoahBarrierSetC2::escape_has_out_with_unsafe_object(Node* n) const {
1289   return n->has_out_with(Op_ShenandoahCompareAndExchangeP) || n->has_out_with(Op_ShenandoahCompareAndExchangeN) ||
1290          n->has_out_with(Op_ShenandoahCompareAndSwapP, Op_ShenandoahCompareAndSwapN, Op_ShenandoahWeakCompareAndSwapP, Op_ShenandoahWeakCompareAndSwapN);
1291 
1292 }
1293 
1294 bool ShenandoahBarrierSetC2::matcher_find_shared_post_visit(Matcher* matcher, Node* n, uint opcode) const {
1295   switch (opcode) {
1296     case Op_ShenandoahCompareAndExchangeP:
1297     case Op_ShenandoahCompareAndExchangeN:
1298     case Op_ShenandoahWeakCompareAndSwapP:
1299     case Op_ShenandoahWeakCompareAndSwapN:
1300     case Op_ShenandoahCompareAndSwapP:
1301     case Op_ShenandoahCompareAndSwapN: {   // Convert trinary to binary-tree
1302       Node* newval = n->in(MemNode::ValueIn);
1303       Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
1304       Node* pair = new BinaryNode(oldval, newval);
1305       n->set_req(MemNode::ValueIn,pair);
1306       n->del_req(LoadStoreConditionalNode::ExpectedIn);
1307       return true;
1308     }
1309     default:
1310       break;
1311   }
1312   return false;
1313 }
1314 
1315 bool ShenandoahBarrierSetC2::matcher_is_store_load_barrier(Node* x, uint xop) const {
1316   return xop == Op_ShenandoahCompareAndExchangeP ||
1317          xop == Op_ShenandoahCompareAndExchangeN ||
1318          xop == Op_ShenandoahWeakCompareAndSwapP ||
1319          xop == Op_ShenandoahWeakCompareAndSwapN ||
1320          xop == Op_ShenandoahCompareAndSwapN ||
1321          xop == Op_ShenandoahCompareAndSwapP;
1322 }