1 /* 2 * Copyright (c) 2018, 2023, Red Hat, Inc. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.hpp" 27 #include "gc/shared/barrierSet.hpp" 28 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 29 #include "gc/shenandoah/shenandoahForwarding.hpp" 30 #include "gc/shenandoah/shenandoahHeap.hpp" 31 #include "gc/shenandoah/shenandoahRuntime.hpp" 32 #include "gc/shenandoah/shenandoahThreadLocalData.hpp" 33 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp" 34 #include "gc/shenandoah/c2/shenandoahSupport.hpp" 35 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp" 36 #include "opto/arraycopynode.hpp" 37 #include "opto/escape.hpp" 38 #include "opto/graphKit.hpp" 39 #include "opto/idealKit.hpp" 40 #include "opto/macro.hpp" 41 #include "opto/movenode.hpp" 42 #include "opto/narrowptrnode.hpp" 43 #include "opto/rootnode.hpp" 44 #include "opto/runtime.hpp" 45 46 ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() { 47 return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2()); 48 } 49 50 ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena) 51 : _load_reference_barriers(new (comp_arena) GrowableArray<ShenandoahLoadReferenceBarrierNode*>(comp_arena, 8, 0, nullptr)) { 52 } 53 54 int ShenandoahBarrierSetC2State::load_reference_barriers_count() const { 55 return _load_reference_barriers->length(); 56 } 57 58 ShenandoahLoadReferenceBarrierNode* ShenandoahBarrierSetC2State::load_reference_barrier(int idx) const { 59 return _load_reference_barriers->at(idx); 60 } 61 62 void ShenandoahBarrierSetC2State::add_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) { 63 assert(!_load_reference_barriers->contains(n), "duplicate entry in barrier list"); 64 _load_reference_barriers->append(n); 65 } 66 67 void ShenandoahBarrierSetC2State::remove_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) { 68 if (_load_reference_barriers->contains(n)) { 69 _load_reference_barriers->remove(n); 70 } 71 } 72 73 #define __ kit-> 74 75 bool ShenandoahBarrierSetC2::satb_can_remove_pre_barrier(GraphKit* kit, PhaseValues* phase, Node* adr, 76 BasicType bt, uint adr_idx) const { 77 intptr_t offset = 0; 78 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 79 AllocateNode* alloc = AllocateNode::Ideal_allocation(base); 80 81 if (offset == Type::OffsetBot) { 82 return false; // cannot unalias unless there are precise offsets 83 } 84 85 if (alloc == nullptr) { 86 return false; // No allocation found 87 } 88 89 intptr_t size_in_bytes = type2aelembytes(bt); 90 91 Node* mem = __ memory(adr_idx); // start searching here... 92 93 for (int cnt = 0; cnt < 50; cnt++) { 94 95 if (mem->is_Store()) { 96 97 Node* st_adr = mem->in(MemNode::Address); 98 intptr_t st_offset = 0; 99 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); 100 101 if (st_base == nullptr) { 102 break; // inscrutable pointer 103 } 104 105 // Break we have found a store with same base and offset as ours so break 106 if (st_base == base && st_offset == offset) { 107 break; 108 } 109 110 if (st_offset != offset && st_offset != Type::OffsetBot) { 111 const int MAX_STORE = BytesPerLong; 112 if (st_offset >= offset + size_in_bytes || 113 st_offset <= offset - MAX_STORE || 114 st_offset <= offset - mem->as_Store()->memory_size()) { 115 // Success: The offsets are provably independent. 116 // (You may ask, why not just test st_offset != offset and be done? 117 // The answer is that stores of different sizes can co-exist 118 // in the same sequence of RawMem effects. We sometimes initialize 119 // a whole 'tile' of array elements with a single jint or jlong.) 120 mem = mem->in(MemNode::Memory); 121 continue; // advance through independent store memory 122 } 123 } 124 125 if (st_base != base 126 && MemNode::detect_ptr_independence(base, alloc, st_base, 127 AllocateNode::Ideal_allocation(st_base), 128 phase)) { 129 // Success: The bases are provably independent. 130 mem = mem->in(MemNode::Memory); 131 continue; // advance through independent store memory 132 } 133 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 134 135 InitializeNode* st_init = mem->in(0)->as_Initialize(); 136 AllocateNode* st_alloc = st_init->allocation(); 137 138 // Make sure that we are looking at the same allocation site. 139 // The alloc variable is guaranteed to not be null here from earlier check. 140 if (alloc == st_alloc) { 141 // Check that the initialization is storing null so that no previous store 142 // has been moved up and directly write a reference 143 Node* captured_store = st_init->find_captured_store(offset, 144 type2aelembytes(T_OBJECT), 145 phase); 146 if (captured_store == nullptr || captured_store == st_init->zero_memory()) { 147 return true; 148 } 149 } 150 } 151 152 // Unless there is an explicit 'continue', we must bail out here, 153 // because 'mem' is an inscrutable memory state (e.g., a call). 154 break; 155 } 156 157 return false; 158 } 159 160 #undef __ 161 #define __ ideal. 162 163 void ShenandoahBarrierSetC2::satb_write_barrier_pre(GraphKit* kit, 164 bool do_load, 165 Node* obj, 166 Node* adr, 167 uint alias_idx, 168 Node* val, 169 const TypeOopPtr* val_type, 170 Node* pre_val, 171 BasicType bt) const { 172 // Some sanity checks 173 // Note: val is unused in this routine. 174 175 if (do_load) { 176 // We need to generate the load of the previous value 177 assert(adr != nullptr, "where are loading from?"); 178 assert(pre_val == nullptr, "loaded already?"); 179 assert(val_type != nullptr, "need a type"); 180 181 if (ReduceInitialCardMarks 182 && satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) { 183 return; 184 } 185 186 } else { 187 // In this case both val_type and alias_idx are unused. 188 assert(pre_val != nullptr, "must be loaded already"); 189 // Nothing to be done if pre_val is null. 190 if (pre_val->bottom_type() == TypePtr::NULL_PTR) return; 191 assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here"); 192 } 193 assert(bt == T_OBJECT, "or we shouldn't be here"); 194 195 IdealKit ideal(kit, true); 196 197 Node* tls = __ thread(); // ThreadLocalStorage 198 199 Node* no_base = __ top(); 200 Node* zero = __ ConI(0); 201 Node* zeroX = __ ConX(0); 202 203 float likely = PROB_LIKELY(0.999); 204 float unlikely = PROB_UNLIKELY(0.999); 205 206 // Offsets into the thread 207 const int index_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset()); 208 const int buffer_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()); 209 210 // Now the actual pointers into the thread 211 Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset)); 212 Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset)); 213 214 // Now some of the values 215 Node* marking; 216 Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()))); 217 Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw); 218 marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING)); 219 assert(ShenandoahBarrierC2Support::is_gc_state_load(ld), "Should match the shape"); 220 221 // if (!marking) 222 __ if_then(marking, BoolTest::ne, zero, unlikely); { 223 BasicType index_bt = TypeX_X->basic_type(); 224 assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading Shenandoah SATBMarkQueue::_index with wrong size."); 225 Node* index = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw); 226 227 if (do_load) { 228 // load original value 229 // alias_idx correct?? 230 pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx); 231 } 232 233 // if (pre_val != nullptr) 234 __ if_then(pre_val, BoolTest::ne, kit->null()); { 235 Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw); 236 237 // is the queue for this thread full? 238 __ if_then(index, BoolTest::ne, zeroX, likely); { 239 240 // decrement the index 241 Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t)))); 242 243 // Now get the buffer location we will log the previous value into and store it 244 Node *log_addr = __ AddP(no_base, buffer, next_index); 245 __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered); 246 // update the index 247 __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered); 248 249 } __ else_(); { 250 251 // logging buffer is full, call the runtime 252 const TypeFunc *tf = ShenandoahBarrierSetC2::write_ref_field_pre_Type(); 253 __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre), "shenandoah_wb_pre", 254 pre_val, tls); 255 } __ end_if(); // (!index) 256 } __ end_if(); // (pre_val != nullptr) 257 } __ end_if(); // (!marking) 258 259 // Final sync IdealKit and GraphKit. 260 kit->final_sync(ideal); 261 262 if (ShenandoahSATBBarrier && adr != nullptr) { 263 Node* c = kit->control(); 264 Node* call = c->in(1)->in(1)->in(1)->in(0); 265 assert(is_shenandoah_wb_pre_call(call), "shenandoah_wb_pre call expected"); 266 call->add_req(adr); 267 } 268 } 269 270 bool ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(Node* call) { 271 return call->is_CallLeaf() && 272 call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre); 273 } 274 275 bool ShenandoahBarrierSetC2::is_shenandoah_clone_call(Node* call) { 276 return call->is_CallLeaf() && 277 call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::clone_barrier); 278 } 279 280 bool ShenandoahBarrierSetC2::is_shenandoah_lrb_call(Node* call) { 281 if (!call->is_CallLeaf()) { 282 return false; 283 } 284 285 address entry_point = call->as_CallLeaf()->entry_point(); 286 return (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong)) || 287 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong_narrow)) || 288 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak)) || 289 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak_narrow)) || 290 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom)) || 291 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom_narrow)); 292 } 293 294 bool ShenandoahBarrierSetC2::is_shenandoah_marking_if(PhaseValues* phase, Node* n) { 295 if (n->Opcode() != Op_If) { 296 return false; 297 } 298 299 Node* bol = n->in(1); 300 assert(bol->is_Bool(), ""); 301 Node* cmpx = bol->in(1); 302 if (bol->as_Bool()->_test._test == BoolTest::ne && 303 cmpx->is_Cmp() && cmpx->in(2) == phase->intcon(0) && 304 is_shenandoah_state_load(cmpx->in(1)->in(1)) && 305 cmpx->in(1)->in(2)->is_Con() && 306 cmpx->in(1)->in(2) == phase->intcon(ShenandoahHeap::MARKING)) { 307 return true; 308 } 309 310 return false; 311 } 312 313 bool ShenandoahBarrierSetC2::is_shenandoah_state_load(Node* n) { 314 if (!n->is_Load()) return false; 315 const int state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset()); 316 return n->in(2)->is_AddP() && n->in(2)->in(2)->Opcode() == Op_ThreadLocal 317 && n->in(2)->in(3)->is_Con() 318 && n->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset; 319 } 320 321 void ShenandoahBarrierSetC2::shenandoah_write_barrier_pre(GraphKit* kit, 322 bool do_load, 323 Node* obj, 324 Node* adr, 325 uint alias_idx, 326 Node* val, 327 const TypeOopPtr* val_type, 328 Node* pre_val, 329 BasicType bt) const { 330 if (ShenandoahSATBBarrier) { 331 IdealKit ideal(kit); 332 kit->sync_kit(ideal); 333 334 satb_write_barrier_pre(kit, do_load, obj, adr, alias_idx, val, val_type, pre_val, bt); 335 336 ideal.sync_kit(kit); 337 kit->final_sync(ideal); 338 } 339 } 340 341 // Helper that guards and inserts a pre-barrier. 342 void ShenandoahBarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset, 343 Node* pre_val, bool need_mem_bar) const { 344 // We could be accessing the referent field of a reference object. If so, when Shenandoah 345 // is enabled, we need to log the value in the referent field in an SATB buffer. 346 // This routine performs some compile time filters and generates suitable 347 // runtime filters that guard the pre-barrier code. 348 // Also add memory barrier for non volatile load from the referent field 349 // to prevent commoning of loads across safepoint. 350 351 // Some compile time checks. 352 353 // If offset is a constant, is it java_lang_ref_Reference::_reference_offset? 354 const TypeX* otype = offset->find_intptr_t_type(); 355 if (otype != nullptr && otype->is_con() && 356 otype->get_con() != java_lang_ref_Reference::referent_offset()) { 357 // Constant offset but not the reference_offset so just return 358 return; 359 } 360 361 // We only need to generate the runtime guards for instances. 362 const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr(); 363 if (btype != nullptr) { 364 if (btype->isa_aryptr()) { 365 // Array type so nothing to do 366 return; 367 } 368 369 const TypeInstPtr* itype = btype->isa_instptr(); 370 if (itype != nullptr) { 371 // Can the klass of base_oop be statically determined to be 372 // _not_ a sub-class of Reference and _not_ Object? 373 ciKlass* klass = itype->instance_klass(); 374 if (klass->is_loaded() && 375 !klass->is_subtype_of(kit->env()->Reference_klass()) && 376 !kit->env()->Object_klass()->is_subtype_of(klass)) { 377 return; 378 } 379 } 380 } 381 382 // The compile time filters did not reject base_oop/offset so 383 // we need to generate the following runtime filters 384 // 385 // if (offset == java_lang_ref_Reference::_reference_offset) { 386 // if (instance_of(base, java.lang.ref.Reference)) { 387 // pre_barrier(_, pre_val, ...); 388 // } 389 // } 390 391 float likely = PROB_LIKELY( 0.999); 392 float unlikely = PROB_UNLIKELY(0.999); 393 394 IdealKit ideal(kit); 395 396 Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset()); 397 398 __ if_then(offset, BoolTest::eq, referent_off, unlikely); { 399 // Update graphKit memory and control from IdealKit. 400 kit->sync_kit(ideal); 401 402 Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass())); 403 Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con); 404 405 // Update IdealKit memory and control from graphKit. 406 __ sync_kit(kit); 407 408 Node* one = __ ConI(1); 409 // is_instof == 0 if base_oop == nullptr 410 __ if_then(is_instof, BoolTest::eq, one, unlikely); { 411 412 // Update graphKit from IdeakKit. 413 kit->sync_kit(ideal); 414 415 // Use the pre-barrier to record the value in the referent field 416 satb_write_barrier_pre(kit, false /* do_load */, 417 nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */, 418 pre_val /* pre_val */, 419 T_OBJECT); 420 if (need_mem_bar) { 421 // Add memory barrier to prevent commoning reads from this field 422 // across safepoint since GC can change its value. 423 kit->insert_mem_bar(Op_MemBarCPUOrder); 424 } 425 // Update IdealKit from graphKit. 426 __ sync_kit(kit); 427 428 } __ end_if(); // _ref_type != ref_none 429 } __ end_if(); // offset == referent_offset 430 431 // Final sync IdealKit and GraphKit. 432 kit->final_sync(ideal); 433 } 434 435 #undef __ 436 437 const TypeFunc* ShenandoahBarrierSetC2::write_ref_field_pre_Type() { 438 const Type **fields = TypeTuple::fields(2); 439 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value 440 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread 441 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 442 443 // create result type (range) 444 fields = TypeTuple::fields(0); 445 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 446 447 return TypeFunc::make(domain, range); 448 } 449 450 const TypeFunc* ShenandoahBarrierSetC2::clone_barrier_Type() { 451 const Type **fields = TypeTuple::fields(1); 452 fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL; // src oop 453 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 454 455 // create result type (range) 456 fields = TypeTuple::fields(0); 457 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 458 459 return TypeFunc::make(domain, range); 460 } 461 462 const TypeFunc* ShenandoahBarrierSetC2::load_reference_barrier_Type() { 463 const Type **fields = TypeTuple::fields(2); 464 fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM; // original field value 465 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // original load address 466 467 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 468 469 // create result type (range) 470 fields = TypeTuple::fields(1); 471 fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM; 472 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 473 474 return TypeFunc::make(domain, range); 475 } 476 477 Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const { 478 DecoratorSet decorators = access.decorators(); 479 480 const TypePtr* adr_type = access.addr().type(); 481 Node* adr = access.addr().node(); 482 483 bool no_keepalive = (decorators & AS_NO_KEEPALIVE) != 0; 484 485 if (!access.is_oop()) { 486 return BarrierSetC2::store_at_resolved(access, val); 487 } 488 489 if (no_keepalive) { 490 // No keep-alive means no need for the pre-barrier. 491 return BarrierSetC2::store_at_resolved(access, val); 492 } 493 494 if (access.is_parse_access()) { 495 C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); 496 GraphKit* kit = parse_access.kit(); 497 498 uint adr_idx = kit->C->get_alias_index(adr_type); 499 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); 500 shenandoah_write_barrier_pre(kit, true /* do_load */, /*kit->control(),*/ access.base(), adr, adr_idx, val.node(), 501 static_cast<const TypeOopPtr*>(val.type()), nullptr /* pre_val */, access.type()); 502 } 503 return BarrierSetC2::store_at_resolved(access, val); 504 } 505 506 Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const { 507 // 1: non-reference load, no additional barrier is needed 508 if (!access.is_oop()) { 509 return BarrierSetC2::load_at_resolved(access, val_type); 510 } 511 512 Node* load = BarrierSetC2::load_at_resolved(access, val_type); 513 DecoratorSet decorators = access.decorators(); 514 BasicType type = access.type(); 515 516 // 2: apply LRB if needed 517 if (ShenandoahBarrierSet::need_load_reference_barrier(decorators, type)) { 518 load = new ShenandoahLoadReferenceBarrierNode(nullptr, load, decorators); 519 if (access.is_parse_access()) { 520 load = static_cast<C2ParseAccess &>(access).kit()->gvn().transform(load); 521 } else { 522 load = static_cast<C2OptAccess &>(access).gvn().transform(load); 523 } 524 } 525 526 // 3: apply keep-alive barrier for java.lang.ref.Reference if needed 527 if (ShenandoahBarrierSet::need_keep_alive_barrier(decorators, type)) { 528 Node* top = Compile::current()->top(); 529 Node* adr = access.addr().node(); 530 Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top; 531 Node* obj = access.base(); 532 533 bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0; 534 bool on_weak_ref = (decorators & (ON_WEAK_OOP_REF | ON_PHANTOM_OOP_REF)) != 0; 535 bool keep_alive = (decorators & AS_NO_KEEPALIVE) == 0; 536 537 // If we are reading the value of the referent field of a Reference 538 // object (either by using Unsafe directly or through reflection) 539 // then, if SATB is enabled, we need to record the referent in an 540 // SATB log buffer using the pre-barrier mechanism. 541 // Also we need to add memory barrier to prevent commoning reads 542 // from this field across safepoint since GC can change its value. 543 if (!on_weak_ref || (unknown && (offset == top || obj == top)) || !keep_alive) { 544 return load; 545 } 546 547 assert(access.is_parse_access(), "entry not supported at optimization time"); 548 C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); 549 GraphKit* kit = parse_access.kit(); 550 bool mismatched = (decorators & C2_MISMATCHED) != 0; 551 bool is_unordered = (decorators & MO_UNORDERED) != 0; 552 bool in_native = (decorators & IN_NATIVE) != 0; 553 bool need_cpu_mem_bar = !is_unordered || mismatched || in_native; 554 555 if (on_weak_ref) { 556 // Use the pre-barrier to record the value in the referent field 557 satb_write_barrier_pre(kit, false /* do_load */, 558 nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */, 559 load /* pre_val */, T_OBJECT); 560 // Add memory barrier to prevent commoning reads from this field 561 // across safepoint since GC can change its value. 562 kit->insert_mem_bar(Op_MemBarCPUOrder); 563 } else if (unknown) { 564 // We do not require a mem bar inside pre_barrier if need_mem_bar 565 // is set: the barriers would be emitted by us. 566 insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar); 567 } 568 } 569 570 return load; 571 } 572 573 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val, 574 Node* new_val, const Type* value_type) const { 575 GraphKit* kit = access.kit(); 576 if (access.is_oop()) { 577 shenandoah_write_barrier_pre(kit, false /* do_load */, 578 nullptr, nullptr, max_juint, nullptr, nullptr, 579 expected_val /* pre_val */, T_OBJECT); 580 581 MemNode::MemOrd mo = access.mem_node_mo(); 582 Node* mem = access.memory(); 583 Node* adr = access.addr().node(); 584 const TypePtr* adr_type = access.addr().type(); 585 Node* load_store = nullptr; 586 587 #ifdef _LP64 588 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 589 Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); 590 Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); 591 if (ShenandoahCASBarrier) { 592 load_store = kit->gvn().transform(new ShenandoahCompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo)); 593 } else { 594 load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo)); 595 } 596 } else 597 #endif 598 { 599 if (ShenandoahCASBarrier) { 600 load_store = kit->gvn().transform(new ShenandoahCompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo)); 601 } else { 602 load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo)); 603 } 604 } 605 606 access.set_raw_access(load_store); 607 pin_atomic_op(access); 608 609 #ifdef _LP64 610 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 611 load_store = kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type())); 612 } 613 #endif 614 load_store = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, load_store, access.decorators())); 615 return load_store; 616 } 617 return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type); 618 } 619 620 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val, 621 Node* new_val, const Type* value_type) const { 622 GraphKit* kit = access.kit(); 623 if (access.is_oop()) { 624 shenandoah_write_barrier_pre(kit, false /* do_load */, 625 nullptr, nullptr, max_juint, nullptr, nullptr, 626 expected_val /* pre_val */, T_OBJECT); 627 DecoratorSet decorators = access.decorators(); 628 MemNode::MemOrd mo = access.mem_node_mo(); 629 Node* mem = access.memory(); 630 bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0; 631 Node* load_store = nullptr; 632 Node* adr = access.addr().node(); 633 #ifdef _LP64 634 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 635 Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); 636 Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); 637 if (ShenandoahCASBarrier) { 638 if (is_weak_cas) { 639 load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 640 } else { 641 load_store = kit->gvn().transform(new ShenandoahCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 642 } 643 } else { 644 if (is_weak_cas) { 645 load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 646 } else { 647 load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 648 } 649 } 650 } else 651 #endif 652 { 653 if (ShenandoahCASBarrier) { 654 if (is_weak_cas) { 655 load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 656 } else { 657 load_store = kit->gvn().transform(new ShenandoahCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 658 } 659 } else { 660 if (is_weak_cas) { 661 load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 662 } else { 663 load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 664 } 665 } 666 } 667 access.set_raw_access(load_store); 668 pin_atomic_op(access); 669 return load_store; 670 } 671 return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type); 672 } 673 674 Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const { 675 GraphKit* kit = access.kit(); 676 Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type); 677 if (access.is_oop()) { 678 result = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, result, access.decorators())); 679 shenandoah_write_barrier_pre(kit, false /* do_load */, 680 nullptr, nullptr, max_juint, nullptr, nullptr, 681 result /* pre_val */, T_OBJECT); 682 } 683 return result; 684 } 685 686 687 bool ShenandoahBarrierSetC2::is_gc_pre_barrier_node(Node* node) const { 688 return is_shenandoah_wb_pre_call(node); 689 } 690 691 bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const { 692 return (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) || 693 is_shenandoah_lrb_call(node) || 694 is_shenandoah_wb_pre_call(node) || 695 is_shenandoah_clone_call(node); 696 } 697 698 Node* ShenandoahBarrierSetC2::step_over_gc_barrier(Node* c) const { 699 if (c == nullptr) { 700 return c; 701 } 702 if (c->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 703 return c->in(ShenandoahLoadReferenceBarrierNode::ValueIn); 704 } 705 return c; 706 } 707 708 bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const { 709 return !ShenandoahBarrierC2Support::expand(C, igvn); 710 } 711 712 bool ShenandoahBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const { 713 if (mode == LoopOptsShenandoahExpand) { 714 assert(UseShenandoahGC, "only for shenandoah"); 715 ShenandoahBarrierC2Support::pin_and_expand(phase); 716 return true; 717 } else if (mode == LoopOptsShenandoahPostExpand) { 718 assert(UseShenandoahGC, "only for shenandoah"); 719 visited.clear(); 720 ShenandoahBarrierC2Support::optimize_after_expansion(visited, nstack, worklist, phase); 721 return true; 722 } 723 return false; 724 } 725 726 bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, bool is_clone_instance, ArrayCopyPhase phase) const { 727 bool is_oop = is_reference_type(type); 728 if (!is_oop) { 729 return false; 730 } 731 if (ShenandoahSATBBarrier && tightly_coupled_alloc) { 732 if (phase == Optimization) { 733 return false; 734 } 735 return !is_clone; 736 } 737 return true; 738 } 739 740 bool ShenandoahBarrierSetC2::clone_needs_barrier(Node* src, PhaseGVN& gvn) { 741 const TypeOopPtr* src_type = gvn.type(src)->is_oopptr(); 742 if (src_type->isa_instptr() != nullptr) { 743 ciInstanceKlass* ik = src_type->is_instptr()->instance_klass(); 744 if ((src_type->klass_is_exact() || !ik->has_subklass()) && !ik->has_injected_fields()) { 745 if (ik->has_object_fields()) { 746 return true; 747 } else { 748 if (!src_type->klass_is_exact()) { 749 Compile::current()->dependencies()->assert_leaf_type(ik); 750 } 751 } 752 } else { 753 return true; 754 } 755 } else if (src_type->isa_aryptr()) { 756 BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type(); 757 if (is_reference_type(src_elem, true)) { 758 return true; 759 } 760 } else { 761 return true; 762 } 763 return false; 764 } 765 766 void ShenandoahBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const { 767 Node* ctrl = ac->in(TypeFunc::Control); 768 Node* mem = ac->in(TypeFunc::Memory); 769 Node* src_base = ac->in(ArrayCopyNode::Src); 770 Node* src_offset = ac->in(ArrayCopyNode::SrcPos); 771 Node* dest_base = ac->in(ArrayCopyNode::Dest); 772 Node* dest_offset = ac->in(ArrayCopyNode::DestPos); 773 Node* length = ac->in(ArrayCopyNode::Length); 774 775 Node* src = phase->basic_plus_adr(src_base, src_offset); 776 Node* dest = phase->basic_plus_adr(dest_base, dest_offset); 777 778 if (ShenandoahCloneBarrier && clone_needs_barrier(src, phase->igvn())) { 779 // Check if heap is has forwarded objects. If it does, we need to call into the special 780 // routine that would fix up source references before we can continue. 781 782 enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT }; 783 Node* region = new RegionNode(PATH_LIMIT); 784 Node* mem_phi = new PhiNode(region, Type::MEMORY, TypeRawPtr::BOTTOM); 785 786 Node* thread = phase->transform_later(new ThreadLocalNode()); 787 Node* offset = phase->igvn().MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset())); 788 Node* gc_state_addr = phase->transform_later(new AddPNode(phase->C->top(), thread, offset)); 789 790 uint gc_state_idx = Compile::AliasIdxRaw; 791 const TypePtr* gc_state_adr_type = nullptr; // debug-mode-only argument 792 debug_only(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx)); 793 794 Node* gc_state = phase->transform_later(new LoadBNode(ctrl, mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered)); 795 Node* stable_and = phase->transform_later(new AndINode(gc_state, phase->igvn().intcon(ShenandoahHeap::HAS_FORWARDED))); 796 Node* stable_cmp = phase->transform_later(new CmpINode(stable_and, phase->igvn().zerocon(T_INT))); 797 Node* stable_test = phase->transform_later(new BoolNode(stable_cmp, BoolTest::ne)); 798 799 IfNode* stable_iff = phase->transform_later(new IfNode(ctrl, stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN))->as_If(); 800 Node* stable_ctrl = phase->transform_later(new IfFalseNode(stable_iff)); 801 Node* unstable_ctrl = phase->transform_later(new IfTrueNode(stable_iff)); 802 803 // Heap is stable, no need to do anything additional 804 region->init_req(_heap_stable, stable_ctrl); 805 mem_phi->init_req(_heap_stable, mem); 806 807 // Heap is unstable, call into clone barrier stub 808 Node* call = phase->make_leaf_call(unstable_ctrl, mem, 809 ShenandoahBarrierSetC2::clone_barrier_Type(), 810 CAST_FROM_FN_PTR(address, ShenandoahRuntime::clone_barrier), 811 "shenandoah_clone", 812 TypeRawPtr::BOTTOM, 813 src_base); 814 call = phase->transform_later(call); 815 816 ctrl = phase->transform_later(new ProjNode(call, TypeFunc::Control)); 817 mem = phase->transform_later(new ProjNode(call, TypeFunc::Memory)); 818 region->init_req(_heap_unstable, ctrl); 819 mem_phi->init_req(_heap_unstable, mem); 820 821 // Wire up the actual arraycopy stub now 822 ctrl = phase->transform_later(region); 823 mem = phase->transform_later(mem_phi); 824 825 const char* name = "arraycopy"; 826 call = phase->make_leaf_call(ctrl, mem, 827 OptoRuntime::fast_arraycopy_Type(), 828 phase->basictype2arraycopy(T_LONG, nullptr, nullptr, true, name, true), 829 name, TypeRawPtr::BOTTOM, 830 src, dest, length 831 LP64_ONLY(COMMA phase->top())); 832 call = phase->transform_later(call); 833 834 // Hook up the whole thing into the graph 835 phase->igvn().replace_node(ac, call); 836 } else { 837 BarrierSetC2::clone_at_expansion(phase, ac); 838 } 839 } 840 841 842 // Support for macro expanded GC barriers 843 void ShenandoahBarrierSetC2::register_potential_barrier_node(Node* node) const { 844 if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 845 state()->add_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node); 846 } 847 } 848 849 void ShenandoahBarrierSetC2::unregister_potential_barrier_node(Node* node) const { 850 if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 851 state()->remove_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node); 852 } 853 } 854 855 void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* n) const { 856 if (is_shenandoah_wb_pre_call(n)) { 857 shenandoah_eliminate_wb_pre(n, ¯o->igvn()); 858 } 859 } 860 861 void ShenandoahBarrierSetC2::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) const { 862 assert(UseShenandoahGC && is_shenandoah_wb_pre_call(call), ""); 863 Node* c = call->as_Call()->proj_out(TypeFunc::Control); 864 c = c->unique_ctrl_out(); 865 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 866 c = c->unique_ctrl_out(); 867 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 868 Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); 869 assert(iff->is_If(), "expect test"); 870 if (!is_shenandoah_marking_if(igvn, iff)) { 871 c = c->unique_ctrl_out(); 872 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 873 iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); 874 assert(is_shenandoah_marking_if(igvn, iff), "expect marking test"); 875 } 876 Node* cmpx = iff->in(1)->in(1); 877 igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ)); 878 igvn->rehash_node_delayed(call); 879 call->del_req(call->req()-1); 880 } 881 882 void ShenandoahBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const { 883 if (node->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(node)) { 884 igvn->add_users_to_worklist(node); 885 } 886 } 887 888 void ShenandoahBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const { 889 for (uint i = 0; i < useful.size(); i++) { 890 Node* n = useful.at(i); 891 if (n->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(n)) { 892 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 893 C->record_for_igvn(n->fast_out(i)); 894 } 895 } 896 } 897 898 for (int i = state()->load_reference_barriers_count() - 1; i >= 0; i--) { 899 ShenandoahLoadReferenceBarrierNode* n = state()->load_reference_barrier(i); 900 if (!useful.member(n)) { 901 state()->remove_load_reference_barrier(n); 902 } 903 } 904 } 905 906 void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const { 907 return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena); 908 } 909 910 ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const { 911 return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state()); 912 } 913 914 // If the BarrierSetC2 state has kept macro nodes in its compilation unit state to be 915 // expanded later, then now is the time to do so. 916 bool ShenandoahBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { return false; } 917 918 #ifdef ASSERT 919 void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const { 920 if (ShenandoahVerifyOptoBarriers && phase == BarrierSetC2::BeforeMacroExpand) { 921 ShenandoahBarrierC2Support::verify(Compile::current()->root()); 922 } else if (phase == BarrierSetC2::BeforeCodeGen) { 923 // Verify Shenandoah pre-barriers 924 const int gc_state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset()); 925 926 Unique_Node_List visited; 927 Node_List worklist; 928 // We're going to walk control flow backwards starting from the Root 929 worklist.push(compile->root()); 930 while (worklist.size() > 0) { 931 Node *x = worklist.pop(); 932 if (x == nullptr || x == compile->top()) { 933 continue; 934 } 935 936 if (visited.member(x)) { 937 continue; 938 } else { 939 visited.push(x); 940 } 941 942 if (x->is_Region()) { 943 for (uint i = 1; i < x->req(); i++) { 944 worklist.push(x->in(i)); 945 } 946 } else { 947 worklist.push(x->in(0)); 948 // We are looking for the pattern: 949 // /->ThreadLocal 950 // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset) 951 // \->ConI(0) 952 // We want to verify that the If and the LoadB have the same control 953 // See GraphKit::g1_write_barrier_pre() 954 if (x->is_If()) { 955 IfNode *iff = x->as_If(); 956 if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) { 957 CmpNode *cmp = iff->in(1)->in(1)->as_Cmp(); 958 if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0 959 && cmp->in(1)->is_Load()) { 960 LoadNode *load = cmp->in(1)->as_Load(); 961 if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal 962 && load->in(2)->in(3)->is_Con() 963 && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == gc_state_offset) { 964 965 Node *if_ctrl = iff->in(0); 966 Node *load_ctrl = load->in(0); 967 968 if (if_ctrl != load_ctrl) { 969 // Skip possible CProj->NeverBranch in infinite loops 970 if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj) 971 && if_ctrl->in(0)->is_NeverBranch()) { 972 if_ctrl = if_ctrl->in(0)->in(0); 973 } 974 } 975 assert(load_ctrl != nullptr && if_ctrl == load_ctrl, "controls must match"); 976 } 977 } 978 } 979 } 980 } 981 } 982 } 983 } 984 #endif 985 986 Node* ShenandoahBarrierSetC2::ideal_node(PhaseGVN* phase, Node* n, bool can_reshape) const { 987 if (is_shenandoah_wb_pre_call(n)) { 988 uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_Type()->domain()->cnt(); 989 if (n->req() > cnt) { 990 Node* addp = n->in(cnt); 991 if (has_only_shenandoah_wb_pre_uses(addp)) { 992 n->del_req(cnt); 993 if (can_reshape) { 994 phase->is_IterGVN()->_worklist.push(addp); 995 } 996 return n; 997 } 998 } 999 } 1000 if (n->Opcode() == Op_CmpP) { 1001 Node* in1 = n->in(1); 1002 Node* in2 = n->in(2); 1003 1004 // If one input is null, then step over the strong LRB barriers on the other input 1005 if (in1->bottom_type() == TypePtr::NULL_PTR && 1006 !((in2->Opcode() == Op_ShenandoahLoadReferenceBarrier) && 1007 !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in2)->decorators()))) { 1008 in2 = step_over_gc_barrier(in2); 1009 } 1010 if (in2->bottom_type() == TypePtr::NULL_PTR && 1011 !((in1->Opcode() == Op_ShenandoahLoadReferenceBarrier) && 1012 !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in1)->decorators()))) { 1013 in1 = step_over_gc_barrier(in1); 1014 } 1015 1016 if (in1 != n->in(1)) { 1017 n->set_req_X(1, in1, phase); 1018 assert(in2 == n->in(2), "only one change"); 1019 return n; 1020 } 1021 if (in2 != n->in(2)) { 1022 n->set_req_X(2, in2, phase); 1023 return n; 1024 } 1025 } else if (can_reshape && 1026 n->Opcode() == Op_If && 1027 ShenandoahBarrierC2Support::is_heap_stable_test(n) && 1028 n->in(0) != nullptr && 1029 n->outcnt() == 2) { 1030 Node* dom = n->in(0); 1031 Node* prev_dom = n; 1032 int op = n->Opcode(); 1033 int dist = 16; 1034 // Search up the dominator tree for another heap stable test 1035 while (dom->Opcode() != op || // Not same opcode? 1036 !ShenandoahBarrierC2Support::is_heap_stable_test(dom) || // Not same input 1? 1037 prev_dom->in(0) != dom) { // One path of test does not dominate? 1038 if (dist < 0) return nullptr; 1039 1040 dist--; 1041 prev_dom = dom; 1042 dom = IfNode::up_one_dom(dom); 1043 if (!dom) return nullptr; 1044 } 1045 1046 // Check that we did not follow a loop back to ourselves 1047 if (n == dom) { 1048 return nullptr; 1049 } 1050 1051 return n->as_If()->dominated_by(prev_dom, phase->is_IterGVN(), false); 1052 } 1053 1054 return nullptr; 1055 } 1056 1057 bool ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(Node* n) { 1058 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1059 Node* u = n->fast_out(i); 1060 if (!is_shenandoah_wb_pre_call(u)) { 1061 return false; 1062 } 1063 } 1064 return n->outcnt() > 0; 1065 } 1066 1067 bool ShenandoahBarrierSetC2::final_graph_reshaping(Compile* compile, Node* n, uint opcode, Unique_Node_List& dead_nodes) const { 1068 switch (opcode) { 1069 case Op_CallLeaf: 1070 case Op_CallLeafNoFP: { 1071 assert (n->is_Call(), ""); 1072 CallNode *call = n->as_Call(); 1073 if (ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) { 1074 uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_Type()->domain()->cnt(); 1075 if (call->req() > cnt) { 1076 assert(call->req() == cnt + 1, "only one extra input"); 1077 Node *addp = call->in(cnt); 1078 assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?"); 1079 call->del_req(cnt); 1080 } 1081 } 1082 return false; 1083 } 1084 case Op_ShenandoahCompareAndSwapP: 1085 case Op_ShenandoahCompareAndSwapN: 1086 case Op_ShenandoahWeakCompareAndSwapN: 1087 case Op_ShenandoahWeakCompareAndSwapP: 1088 case Op_ShenandoahCompareAndExchangeP: 1089 case Op_ShenandoahCompareAndExchangeN: 1090 return true; 1091 case Op_ShenandoahLoadReferenceBarrier: 1092 assert(false, "should have been expanded already"); 1093 return true; 1094 default: 1095 return false; 1096 } 1097 } 1098 1099 bool ShenandoahBarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const { 1100 switch (opcode) { 1101 case Op_ShenandoahCompareAndExchangeP: 1102 case Op_ShenandoahCompareAndExchangeN: 1103 conn_graph->add_objload_to_connection_graph(n, delayed_worklist); 1104 // fallthrough 1105 case Op_ShenandoahWeakCompareAndSwapP: 1106 case Op_ShenandoahWeakCompareAndSwapN: 1107 case Op_ShenandoahCompareAndSwapP: 1108 case Op_ShenandoahCompareAndSwapN: 1109 conn_graph->add_to_congraph_unsafe_access(n, opcode, delayed_worklist); 1110 return true; 1111 case Op_StoreP: { 1112 Node* adr = n->in(MemNode::Address); 1113 const Type* adr_type = gvn->type(adr); 1114 // Pointer stores in Shenandoah barriers looks like unsafe access. 1115 // Ignore such stores to be able scalar replace non-escaping 1116 // allocations. 1117 if (adr_type->isa_rawptr() && adr->is_AddP()) { 1118 Node* base = conn_graph->get_addp_base(adr); 1119 if (base->Opcode() == Op_LoadP && 1120 base->in(MemNode::Address)->is_AddP()) { 1121 adr = base->in(MemNode::Address); 1122 Node* tls = conn_graph->get_addp_base(adr); 1123 if (tls->Opcode() == Op_ThreadLocal) { 1124 int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 1125 const int buf_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()); 1126 if (offs == buf_offset) { 1127 return true; // Pre barrier previous oop value store. 1128 } 1129 } 1130 } 1131 } 1132 return false; 1133 } 1134 case Op_ShenandoahLoadReferenceBarrier: 1135 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), delayed_worklist); 1136 return true; 1137 default: 1138 // Nothing 1139 break; 1140 } 1141 return false; 1142 } 1143 1144 bool ShenandoahBarrierSetC2::escape_add_final_edges(ConnectionGraph* conn_graph, PhaseGVN* gvn, Node* n, uint opcode) const { 1145 switch (opcode) { 1146 case Op_ShenandoahCompareAndExchangeP: 1147 case Op_ShenandoahCompareAndExchangeN: { 1148 Node *adr = n->in(MemNode::Address); 1149 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, adr, nullptr); 1150 // fallthrough 1151 } 1152 case Op_ShenandoahCompareAndSwapP: 1153 case Op_ShenandoahCompareAndSwapN: 1154 case Op_ShenandoahWeakCompareAndSwapP: 1155 case Op_ShenandoahWeakCompareAndSwapN: 1156 return conn_graph->add_final_edges_unsafe_access(n, opcode); 1157 case Op_ShenandoahLoadReferenceBarrier: 1158 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), nullptr); 1159 return true; 1160 default: 1161 // Nothing 1162 break; 1163 } 1164 return false; 1165 } 1166 1167 bool ShenandoahBarrierSetC2::escape_has_out_with_unsafe_object(Node* n) const { 1168 return n->has_out_with(Op_ShenandoahCompareAndExchangeP) || n->has_out_with(Op_ShenandoahCompareAndExchangeN) || 1169 n->has_out_with(Op_ShenandoahCompareAndSwapP, Op_ShenandoahCompareAndSwapN, Op_ShenandoahWeakCompareAndSwapP, Op_ShenandoahWeakCompareAndSwapN); 1170 1171 } 1172 1173 bool ShenandoahBarrierSetC2::matcher_find_shared_post_visit(Matcher* matcher, Node* n, uint opcode) const { 1174 switch (opcode) { 1175 case Op_ShenandoahCompareAndExchangeP: 1176 case Op_ShenandoahCompareAndExchangeN: 1177 case Op_ShenandoahWeakCompareAndSwapP: 1178 case Op_ShenandoahWeakCompareAndSwapN: 1179 case Op_ShenandoahCompareAndSwapP: 1180 case Op_ShenandoahCompareAndSwapN: { // Convert trinary to binary-tree 1181 Node* newval = n->in(MemNode::ValueIn); 1182 Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn); 1183 Node* pair = new BinaryNode(oldval, newval); 1184 n->set_req(MemNode::ValueIn,pair); 1185 n->del_req(LoadStoreConditionalNode::ExpectedIn); 1186 return true; 1187 } 1188 default: 1189 break; 1190 } 1191 return false; 1192 } 1193 1194 bool ShenandoahBarrierSetC2::matcher_is_store_load_barrier(Node* x, uint xop) const { 1195 return xop == Op_ShenandoahCompareAndExchangeP || 1196 xop == Op_ShenandoahCompareAndExchangeN || 1197 xop == Op_ShenandoahWeakCompareAndSwapP || 1198 xop == Op_ShenandoahWeakCompareAndSwapN || 1199 xop == Op_ShenandoahCompareAndSwapN || 1200 xop == Op_ShenandoahCompareAndSwapP; 1201 }