1 /* 2 * Copyright (c) 2018, 2023, Red Hat, Inc. All rights reserved. 3 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "classfile/javaClasses.hpp" 27 #include "gc/shared/barrierSet.hpp" 28 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 29 #include "gc/shenandoah/shenandoahCardTable.hpp" 30 #include "gc/shenandoah/shenandoahForwarding.hpp" 31 #include "gc/shenandoah/shenandoahHeap.hpp" 32 #include "gc/shenandoah/shenandoahRuntime.hpp" 33 #include "gc/shenandoah/shenandoahThreadLocalData.hpp" 34 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp" 35 #include "gc/shenandoah/c2/shenandoahSupport.hpp" 36 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/escape.hpp" 39 #include "opto/graphKit.hpp" 40 #include "opto/idealKit.hpp" 41 #include "opto/macro.hpp" 42 #include "opto/movenode.hpp" 43 #include "opto/narrowptrnode.hpp" 44 #include "opto/rootnode.hpp" 45 #include "opto/runtime.hpp" 46 47 ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() { 48 return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2()); 49 } 50 51 ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena) 52 : _load_reference_barriers(new (comp_arena) GrowableArray<ShenandoahLoadReferenceBarrierNode*>(comp_arena, 8, 0, nullptr)) { 53 } 54 55 int ShenandoahBarrierSetC2State::load_reference_barriers_count() const { 56 return _load_reference_barriers->length(); 57 } 58 59 ShenandoahLoadReferenceBarrierNode* ShenandoahBarrierSetC2State::load_reference_barrier(int idx) const { 60 return _load_reference_barriers->at(idx); 61 } 62 63 void ShenandoahBarrierSetC2State::add_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) { 64 assert(!_load_reference_barriers->contains(n), "duplicate entry in barrier list"); 65 _load_reference_barriers->append(n); 66 } 67 68 void ShenandoahBarrierSetC2State::remove_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) { 69 if (_load_reference_barriers->contains(n)) { 70 _load_reference_barriers->remove(n); 71 } 72 } 73 74 #define __ kit-> 75 76 bool ShenandoahBarrierSetC2::satb_can_remove_pre_barrier(GraphKit* kit, PhaseValues* phase, Node* adr, 77 BasicType bt, uint adr_idx) const { 78 intptr_t offset = 0; 79 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 80 AllocateNode* alloc = AllocateNode::Ideal_allocation(base); 81 82 if (offset == Type::OffsetBot) { 83 return false; // cannot unalias unless there are precise offsets 84 } 85 86 if (alloc == nullptr) { 87 return false; // No allocation found 88 } 89 90 intptr_t size_in_bytes = type2aelembytes(bt); 91 92 Node* mem = __ memory(adr_idx); // start searching here... 93 94 for (int cnt = 0; cnt < 50; cnt++) { 95 96 if (mem->is_Store()) { 97 98 Node* st_adr = mem->in(MemNode::Address); 99 intptr_t st_offset = 0; 100 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); 101 102 if (st_base == nullptr) { 103 break; // inscrutable pointer 104 } 105 106 // Break we have found a store with same base and offset as ours so break 107 if (st_base == base && st_offset == offset) { 108 break; 109 } 110 111 if (st_offset != offset && st_offset != Type::OffsetBot) { 112 const int MAX_STORE = BytesPerLong; 113 if (st_offset >= offset + size_in_bytes || 114 st_offset <= offset - MAX_STORE || 115 st_offset <= offset - mem->as_Store()->memory_size()) { 116 // Success: The offsets are provably independent. 117 // (You may ask, why not just test st_offset != offset and be done? 118 // The answer is that stores of different sizes can co-exist 119 // in the same sequence of RawMem effects. We sometimes initialize 120 // a whole 'tile' of array elements with a single jint or jlong.) 121 mem = mem->in(MemNode::Memory); 122 continue; // advance through independent store memory 123 } 124 } 125 126 if (st_base != base 127 && MemNode::detect_ptr_independence(base, alloc, st_base, 128 AllocateNode::Ideal_allocation(st_base), 129 phase)) { 130 // Success: The bases are provably independent. 131 mem = mem->in(MemNode::Memory); 132 continue; // advance through independent store memory 133 } 134 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 135 136 InitializeNode* st_init = mem->in(0)->as_Initialize(); 137 AllocateNode* st_alloc = st_init->allocation(); 138 139 // Make sure that we are looking at the same allocation site. 140 // The alloc variable is guaranteed to not be null here from earlier check. 141 if (alloc == st_alloc) { 142 // Check that the initialization is storing null so that no previous store 143 // has been moved up and directly write a reference 144 Node* captured_store = st_init->find_captured_store(offset, 145 type2aelembytes(T_OBJECT), 146 phase); 147 if (captured_store == nullptr || captured_store == st_init->zero_memory()) { 148 return true; 149 } 150 } 151 } 152 153 // Unless there is an explicit 'continue', we must bail out here, 154 // because 'mem' is an inscrutable memory state (e.g., a call). 155 break; 156 } 157 158 return false; 159 } 160 161 #undef __ 162 #define __ ideal. 163 164 void ShenandoahBarrierSetC2::satb_write_barrier_pre(GraphKit* kit, 165 bool do_load, 166 Node* obj, 167 Node* adr, 168 uint alias_idx, 169 Node* val, 170 const TypeOopPtr* val_type, 171 Node* pre_val, 172 BasicType bt) const { 173 // Some sanity checks 174 // Note: val is unused in this routine. 175 176 if (do_load) { 177 // We need to generate the load of the previous value 178 assert(adr != nullptr, "where are loading from?"); 179 assert(pre_val == nullptr, "loaded already?"); 180 assert(val_type != nullptr, "need a type"); 181 182 if (ReduceInitialCardMarks 183 && satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) { 184 return; 185 } 186 187 } else { 188 // In this case both val_type and alias_idx are unused. 189 assert(pre_val != nullptr, "must be loaded already"); 190 // Nothing to be done if pre_val is null. 191 if (pre_val->bottom_type() == TypePtr::NULL_PTR) return; 192 assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here"); 193 } 194 assert(bt == T_OBJECT, "or we shouldn't be here"); 195 196 IdealKit ideal(kit, true); 197 198 Node* tls = __ thread(); // ThreadLocalStorage 199 200 Node* no_base = __ top(); 201 Node* zero = __ ConI(0); 202 Node* zeroX = __ ConX(0); 203 204 float likely = PROB_LIKELY(0.999); 205 float unlikely = PROB_UNLIKELY(0.999); 206 207 // Offsets into the thread 208 const int index_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset()); 209 const int buffer_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()); 210 211 // Now the actual pointers into the thread 212 Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset)); 213 Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset)); 214 215 // Now some of the values 216 Node* marking; 217 Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()))); 218 Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw); 219 marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING)); 220 assert(ShenandoahBarrierC2Support::is_gc_state_load(ld), "Should match the shape"); 221 222 // if (!marking) 223 __ if_then(marking, BoolTest::ne, zero, unlikely); { 224 BasicType index_bt = TypeX_X->basic_type(); 225 assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading Shenandoah SATBMarkQueue::_index with wrong size."); 226 Node* index = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw); 227 228 if (do_load) { 229 // load original value 230 // alias_idx correct?? 231 pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx); 232 } 233 234 // if (pre_val != nullptr) 235 __ if_then(pre_val, BoolTest::ne, kit->null()); { 236 Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw); 237 238 // is the queue for this thread full? 239 __ if_then(index, BoolTest::ne, zeroX, likely); { 240 241 // decrement the index 242 Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t)))); 243 244 // Now get the buffer location we will log the previous value into and store it 245 Node *log_addr = __ AddP(no_base, buffer, next_index); 246 __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered); 247 // update the index 248 __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered); 249 250 } __ else_(); { 251 252 // logging buffer is full, call the runtime 253 const TypeFunc *tf = ShenandoahBarrierSetC2::write_ref_field_pre_Type(); 254 __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre), "shenandoah_wb_pre", 255 pre_val, tls); 256 } __ end_if(); // (!index) 257 } __ end_if(); // (pre_val != nullptr) 258 } __ end_if(); // (!marking) 259 260 // Final sync IdealKit and GraphKit. 261 kit->final_sync(ideal); 262 263 if (ShenandoahSATBBarrier && adr != nullptr) { 264 Node* c = kit->control(); 265 Node* call = c->in(1)->in(1)->in(1)->in(0); 266 assert(is_shenandoah_wb_pre_call(call), "shenandoah_wb_pre call expected"); 267 call->add_req(adr); 268 } 269 } 270 271 bool ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(Node* call) { 272 return call->is_CallLeaf() && 273 call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre); 274 } 275 276 bool ShenandoahBarrierSetC2::is_shenandoah_clone_call(Node* call) { 277 return call->is_CallLeaf() && 278 call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::clone_barrier); 279 } 280 281 bool ShenandoahBarrierSetC2::is_shenandoah_lrb_call(Node* call) { 282 if (!call->is_CallLeaf()) { 283 return false; 284 } 285 286 address entry_point = call->as_CallLeaf()->entry_point(); 287 return (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong)) || 288 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong_narrow)) || 289 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak)) || 290 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak_narrow)) || 291 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom)) || 292 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom_narrow)); 293 } 294 295 bool ShenandoahBarrierSetC2::is_shenandoah_marking_if(PhaseValues* phase, Node* n) { 296 if (n->Opcode() != Op_If) { 297 return false; 298 } 299 300 Node* bol = n->in(1); 301 assert(bol->is_Bool(), ""); 302 Node* cmpx = bol->in(1); 303 if (bol->as_Bool()->_test._test == BoolTest::ne && 304 cmpx->is_Cmp() && cmpx->in(2) == phase->intcon(0) && 305 is_shenandoah_state_load(cmpx->in(1)->in(1)) && 306 cmpx->in(1)->in(2)->is_Con() && 307 cmpx->in(1)->in(2) == phase->intcon(ShenandoahHeap::MARKING)) { 308 return true; 309 } 310 311 return false; 312 } 313 314 bool ShenandoahBarrierSetC2::is_shenandoah_state_load(Node* n) { 315 if (!n->is_Load()) return false; 316 const int state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset()); 317 return n->in(2)->is_AddP() && n->in(2)->in(2)->Opcode() == Op_ThreadLocal 318 && n->in(2)->in(3)->is_Con() 319 && n->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset; 320 } 321 322 void ShenandoahBarrierSetC2::shenandoah_write_barrier_pre(GraphKit* kit, 323 bool do_load, 324 Node* obj, 325 Node* adr, 326 uint alias_idx, 327 Node* val, 328 const TypeOopPtr* val_type, 329 Node* pre_val, 330 BasicType bt) const { 331 if (ShenandoahSATBBarrier) { 332 IdealKit ideal(kit); 333 kit->sync_kit(ideal); 334 335 satb_write_barrier_pre(kit, do_load, obj, adr, alias_idx, val, val_type, pre_val, bt); 336 337 ideal.sync_kit(kit); 338 kit->final_sync(ideal); 339 } 340 } 341 342 // Helper that guards and inserts a pre-barrier. 343 void ShenandoahBarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset, 344 Node* pre_val, bool need_mem_bar) const { 345 // We could be accessing the referent field of a reference object. If so, when Shenandoah 346 // is enabled, we need to log the value in the referent field in an SATB buffer. 347 // This routine performs some compile time filters and generates suitable 348 // runtime filters that guard the pre-barrier code. 349 // Also add memory barrier for non volatile load from the referent field 350 // to prevent commoning of loads across safepoint. 351 352 // Some compile time checks. 353 354 // If offset is a constant, is it java_lang_ref_Reference::_reference_offset? 355 const TypeX* otype = offset->find_intptr_t_type(); 356 if (otype != nullptr && otype->is_con() && 357 otype->get_con() != java_lang_ref_Reference::referent_offset()) { 358 // Constant offset but not the reference_offset so just return 359 return; 360 } 361 362 // We only need to generate the runtime guards for instances. 363 const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr(); 364 if (btype != nullptr) { 365 if (btype->isa_aryptr()) { 366 // Array type so nothing to do 367 return; 368 } 369 370 const TypeInstPtr* itype = btype->isa_instptr(); 371 if (itype != nullptr) { 372 // Can the klass of base_oop be statically determined to be 373 // _not_ a sub-class of Reference and _not_ Object? 374 ciKlass* klass = itype->instance_klass(); 375 if (klass->is_loaded() && 376 !klass->is_subtype_of(kit->env()->Reference_klass()) && 377 !kit->env()->Object_klass()->is_subtype_of(klass)) { 378 return; 379 } 380 } 381 } 382 383 // The compile time filters did not reject base_oop/offset so 384 // we need to generate the following runtime filters 385 // 386 // if (offset == java_lang_ref_Reference::_reference_offset) { 387 // if (instance_of(base, java.lang.ref.Reference)) { 388 // pre_barrier(_, pre_val, ...); 389 // } 390 // } 391 392 float likely = PROB_LIKELY( 0.999); 393 float unlikely = PROB_UNLIKELY(0.999); 394 395 IdealKit ideal(kit); 396 397 Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset()); 398 399 __ if_then(offset, BoolTest::eq, referent_off, unlikely); { 400 // Update graphKit memory and control from IdealKit. 401 kit->sync_kit(ideal); 402 403 Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass())); 404 Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con); 405 406 // Update IdealKit memory and control from graphKit. 407 __ sync_kit(kit); 408 409 Node* one = __ ConI(1); 410 // is_instof == 0 if base_oop == nullptr 411 __ if_then(is_instof, BoolTest::eq, one, unlikely); { 412 413 // Update graphKit from IdeakKit. 414 kit->sync_kit(ideal); 415 416 // Use the pre-barrier to record the value in the referent field 417 satb_write_barrier_pre(kit, false /* do_load */, 418 nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */, 419 pre_val /* pre_val */, 420 T_OBJECT); 421 if (need_mem_bar) { 422 // Add memory barrier to prevent commoning reads from this field 423 // across safepoint since GC can change its value. 424 kit->insert_mem_bar(Op_MemBarCPUOrder); 425 } 426 // Update IdealKit from graphKit. 427 __ sync_kit(kit); 428 429 } __ end_if(); // _ref_type != ref_none 430 } __ end_if(); // offset == referent_offset 431 432 // Final sync IdealKit and GraphKit. 433 kit->final_sync(ideal); 434 } 435 436 void ShenandoahBarrierSetC2::post_barrier(GraphKit* kit, 437 Node* ctl, 438 Node* oop_store, 439 Node* obj, 440 Node* adr, 441 uint adr_idx, 442 Node* val, 443 BasicType bt, 444 bool use_precise) const { 445 assert(ShenandoahCardBarrier, "Should have been checked by caller"); 446 447 // No store check needed if we're storing a null. 448 if (val != nullptr && val->is_Con()) { 449 // must be either an oop or null 450 const Type* t = val->bottom_type(); 451 if (t == TypePtr::NULL_PTR || t == Type::TOP) 452 return; 453 } 454 455 if (ReduceInitialCardMarks && obj == kit->just_allocated_object(kit->control())) { 456 // We use card marks to track old to young references in Generational Shenandoah; 457 // see flag ShenandoahCardBarrier above. 458 // Objects are always allocated in the young generation and initialized 459 // before they are promoted. There's always a safepoint (e.g. at final mark) 460 // before an object is promoted from young to old. Promotion entails dirtying of 461 // the cards backing promoted objects, so they will be guaranteed to be scanned 462 // at the next remembered set scan of the old generation. 463 // Thus, we can safely skip card-marking of initializing stores on a 464 // freshly-allocated object. If any of the assumptions above change in 465 // the future, this code will need to be re-examined; see check in 466 // ShenandoahCardBarrier::on_slowpath_allocation_exit(). 467 return; 468 } 469 470 if (!use_precise) { 471 // All card marks for a (non-array) instance are in one place: 472 adr = obj; 473 } 474 // (Else it's an array (or unknown), and we want more precise card marks.) 475 assert(adr != nullptr, ""); 476 477 IdealKit ideal(kit, true); 478 479 Node* tls = __ thread(); // ThreadLocalStorage 480 481 // Convert the pointer to an int prior to doing math on it 482 Node* cast = __ CastPX(__ ctrl(), adr); 483 484 Node* curr_ct_holder_offset = __ ConX(in_bytes(ShenandoahThreadLocalData::card_table_offset())); 485 Node* curr_ct_holder_addr = __ AddP(__ top(), tls, curr_ct_holder_offset); 486 Node* curr_ct_base_addr = __ load( __ ctrl(), curr_ct_holder_addr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw); 487 488 // Divide by card size 489 Node* card_offset = __ URShiftX( cast, __ ConI(CardTable::card_shift()) ); 490 491 // Combine card table base and card offset 492 Node* card_adr = __ AddP(__ top(), curr_ct_base_addr, card_offset); 493 494 // Get the alias_index for raw card-mark memory 495 int adr_type = Compile::AliasIdxRaw; 496 Node* zero = __ ConI(0); // Dirty card value 497 498 if (UseCondCardMark) { 499 // The classic GC reference write barrier is typically implemented 500 // as a store into the global card mark table. Unfortunately 501 // unconditional stores can result in false sharing and excessive 502 // coherence traffic as well as false transactional aborts. 503 // UseCondCardMark enables MP "polite" conditional card mark 504 // stores. In theory we could relax the load from ctrl() to 505 // no_ctrl, but that doesn't buy much latitude. 506 Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, T_BYTE, adr_type); 507 __ if_then(card_val, BoolTest::ne, zero); 508 } 509 510 // Smash zero into card 511 __ store(__ ctrl(), card_adr, zero, T_BYTE, adr_type, MemNode::unordered); 512 513 if (UseCondCardMark) { 514 __ end_if(); 515 } 516 517 // Final sync IdealKit and GraphKit. 518 kit->final_sync(ideal); 519 } 520 521 #undef __ 522 523 const TypeFunc* ShenandoahBarrierSetC2::write_ref_field_pre_Type() { 524 const Type **fields = TypeTuple::fields(2); 525 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value 526 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread 527 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 528 529 // create result type (range) 530 fields = TypeTuple::fields(0); 531 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 532 533 return TypeFunc::make(domain, range); 534 } 535 536 const TypeFunc* ShenandoahBarrierSetC2::clone_barrier_Type() { 537 const Type **fields = TypeTuple::fields(1); 538 fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL; // src oop 539 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 540 541 // create result type (range) 542 fields = TypeTuple::fields(0); 543 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 544 545 return TypeFunc::make(domain, range); 546 } 547 548 const TypeFunc* ShenandoahBarrierSetC2::load_reference_barrier_Type() { 549 const Type **fields = TypeTuple::fields(2); 550 fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM; // original field value 551 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // original load address 552 553 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 554 555 // create result type (range) 556 fields = TypeTuple::fields(1); 557 fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM; 558 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 559 560 return TypeFunc::make(domain, range); 561 } 562 563 Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const { 564 DecoratorSet decorators = access.decorators(); 565 566 const TypePtr* adr_type = access.addr().type(); 567 Node* adr = access.addr().node(); 568 569 bool no_keepalive = (decorators & AS_NO_KEEPALIVE) != 0; 570 571 if (!access.is_oop()) { 572 return BarrierSetC2::store_at_resolved(access, val); 573 } 574 575 if (no_keepalive) { 576 // No keep-alive means no need for the pre-barrier. 577 return BarrierSetC2::store_at_resolved(access, val); 578 } 579 580 if (access.is_parse_access()) { 581 C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); 582 GraphKit* kit = parse_access.kit(); 583 584 uint adr_idx = kit->C->get_alias_index(adr_type); 585 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); 586 shenandoah_write_barrier_pre(kit, true /* do_load */, /*kit->control(),*/ access.base(), adr, adr_idx, val.node(), 587 static_cast<const TypeOopPtr*>(val.type()), nullptr /* pre_val */, access.type()); 588 589 Node* result = BarrierSetC2::store_at_resolved(access, val); 590 591 if (ShenandoahCardBarrier) { 592 const bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0; 593 const bool is_array = (decorators & IS_ARRAY) != 0; 594 const bool use_precise = is_array || anonymous; 595 post_barrier(kit, kit->control(), access.raw_access(), access.base(), 596 adr, adr_idx, val.node(), access.type(), use_precise); 597 } 598 return result; 599 } else { 600 assert(access.is_opt_access(), "only for optimization passes"); 601 assert(((decorators & C2_TIGHTLY_COUPLED_ALLOC) != 0 || !ShenandoahSATBBarrier) && (decorators & C2_ARRAY_COPY) != 0, "unexpected caller of this code"); 602 return BarrierSetC2::store_at_resolved(access, val); 603 } 604 } 605 606 Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const { 607 // 1: non-reference load, no additional barrier is needed 608 if (!access.is_oop()) { 609 return BarrierSetC2::load_at_resolved(access, val_type); 610 } 611 612 Node* load = BarrierSetC2::load_at_resolved(access, val_type); 613 DecoratorSet decorators = access.decorators(); 614 BasicType type = access.type(); 615 616 // 2: apply LRB if needed 617 if (ShenandoahBarrierSet::need_load_reference_barrier(decorators, type)) { 618 load = new ShenandoahLoadReferenceBarrierNode(nullptr, load, decorators); 619 if (access.is_parse_access()) { 620 load = static_cast<C2ParseAccess &>(access).kit()->gvn().transform(load); 621 } else { 622 load = static_cast<C2OptAccess &>(access).gvn().transform(load); 623 } 624 } 625 626 // 3: apply keep-alive barrier for java.lang.ref.Reference if needed 627 if (ShenandoahBarrierSet::need_keep_alive_barrier(decorators, type)) { 628 Node* top = Compile::current()->top(); 629 Node* adr = access.addr().node(); 630 Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top; 631 Node* obj = access.base(); 632 633 bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0; 634 bool on_weak_ref = (decorators & (ON_WEAK_OOP_REF | ON_PHANTOM_OOP_REF)) != 0; 635 bool keep_alive = (decorators & AS_NO_KEEPALIVE) == 0; 636 637 // If we are reading the value of the referent field of a Reference 638 // object (either by using Unsafe directly or through reflection) 639 // then, if SATB is enabled, we need to record the referent in an 640 // SATB log buffer using the pre-barrier mechanism. 641 // Also we need to add memory barrier to prevent commoning reads 642 // from this field across safepoint since GC can change its value. 643 if (!on_weak_ref || (unknown && (offset == top || obj == top)) || !keep_alive) { 644 return load; 645 } 646 647 assert(access.is_parse_access(), "entry not supported at optimization time"); 648 C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); 649 GraphKit* kit = parse_access.kit(); 650 bool mismatched = (decorators & C2_MISMATCHED) != 0; 651 bool is_unordered = (decorators & MO_UNORDERED) != 0; 652 bool in_native = (decorators & IN_NATIVE) != 0; 653 bool need_cpu_mem_bar = !is_unordered || mismatched || in_native; 654 655 if (on_weak_ref) { 656 // Use the pre-barrier to record the value in the referent field 657 satb_write_barrier_pre(kit, false /* do_load */, 658 nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */, 659 load /* pre_val */, T_OBJECT); 660 // Add memory barrier to prevent commoning reads from this field 661 // across safepoint since GC can change its value. 662 kit->insert_mem_bar(Op_MemBarCPUOrder); 663 } else if (unknown) { 664 // We do not require a mem bar inside pre_barrier if need_mem_bar 665 // is set: the barriers would be emitted by us. 666 insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar); 667 } 668 } 669 670 return load; 671 } 672 673 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val, 674 Node* new_val, const Type* value_type) const { 675 GraphKit* kit = access.kit(); 676 if (access.is_oop()) { 677 shenandoah_write_barrier_pre(kit, false /* do_load */, 678 nullptr, nullptr, max_juint, nullptr, nullptr, 679 expected_val /* pre_val */, T_OBJECT); 680 681 MemNode::MemOrd mo = access.mem_node_mo(); 682 Node* mem = access.memory(); 683 Node* adr = access.addr().node(); 684 const TypePtr* adr_type = access.addr().type(); 685 Node* load_store = nullptr; 686 687 #ifdef _LP64 688 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 689 Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); 690 Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); 691 if (ShenandoahCASBarrier) { 692 load_store = kit->gvn().transform(new ShenandoahCompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo)); 693 } else { 694 load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo)); 695 } 696 } else 697 #endif 698 { 699 if (ShenandoahCASBarrier) { 700 load_store = kit->gvn().transform(new ShenandoahCompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo)); 701 } else { 702 load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo)); 703 } 704 } 705 706 access.set_raw_access(load_store); 707 pin_atomic_op(access); 708 709 #ifdef _LP64 710 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 711 load_store = kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type())); 712 } 713 #endif 714 load_store = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, load_store, access.decorators())); 715 if (ShenandoahCardBarrier) { 716 post_barrier(kit, kit->control(), access.raw_access(), access.base(), 717 access.addr().node(), access.alias_idx(), new_val, T_OBJECT, true); 718 } 719 return load_store; 720 } 721 return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type); 722 } 723 724 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val, 725 Node* new_val, const Type* value_type) const { 726 GraphKit* kit = access.kit(); 727 if (access.is_oop()) { 728 shenandoah_write_barrier_pre(kit, false /* do_load */, 729 nullptr, nullptr, max_juint, nullptr, nullptr, 730 expected_val /* pre_val */, T_OBJECT); 731 DecoratorSet decorators = access.decorators(); 732 MemNode::MemOrd mo = access.mem_node_mo(); 733 Node* mem = access.memory(); 734 bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0; 735 Node* load_store = nullptr; 736 Node* adr = access.addr().node(); 737 #ifdef _LP64 738 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 739 Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); 740 Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); 741 if (ShenandoahCASBarrier) { 742 if (is_weak_cas) { 743 load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 744 } else { 745 load_store = kit->gvn().transform(new ShenandoahCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 746 } 747 } else { 748 if (is_weak_cas) { 749 load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 750 } else { 751 load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 752 } 753 } 754 } else 755 #endif 756 { 757 if (ShenandoahCASBarrier) { 758 if (is_weak_cas) { 759 load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 760 } else { 761 load_store = kit->gvn().transform(new ShenandoahCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 762 } 763 } else { 764 if (is_weak_cas) { 765 load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 766 } else { 767 load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 768 } 769 } 770 } 771 access.set_raw_access(load_store); 772 pin_atomic_op(access); 773 if (ShenandoahCardBarrier) { 774 post_barrier(kit, kit->control(), access.raw_access(), access.base(), 775 access.addr().node(), access.alias_idx(), new_val, T_OBJECT, true); 776 } 777 return load_store; 778 } 779 return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type); 780 } 781 782 Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const { 783 GraphKit* kit = access.kit(); 784 Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type); 785 if (access.is_oop()) { 786 result = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, result, access.decorators())); 787 shenandoah_write_barrier_pre(kit, false /* do_load */, 788 nullptr, nullptr, max_juint, nullptr, nullptr, 789 result /* pre_val */, T_OBJECT); 790 if (ShenandoahCardBarrier) { 791 post_barrier(kit, kit->control(), access.raw_access(), access.base(), 792 access.addr().node(), access.alias_idx(), val, T_OBJECT, true); 793 } 794 } 795 return result; 796 } 797 798 799 bool ShenandoahBarrierSetC2::is_gc_pre_barrier_node(Node* node) const { 800 return is_shenandoah_wb_pre_call(node); 801 } 802 803 bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const { 804 return (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) || 805 is_shenandoah_lrb_call(node) || 806 is_shenandoah_wb_pre_call(node) || 807 is_shenandoah_clone_call(node); 808 } 809 810 Node* ShenandoahBarrierSetC2::step_over_gc_barrier(Node* c) const { 811 if (c == nullptr) { 812 return c; 813 } 814 if (c->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 815 return c->in(ShenandoahLoadReferenceBarrierNode::ValueIn); 816 } 817 return c; 818 } 819 820 bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const { 821 return !ShenandoahBarrierC2Support::expand(C, igvn); 822 } 823 824 bool ShenandoahBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const { 825 if (mode == LoopOptsShenandoahExpand) { 826 assert(UseShenandoahGC, "only for shenandoah"); 827 ShenandoahBarrierC2Support::pin_and_expand(phase); 828 return true; 829 } else if (mode == LoopOptsShenandoahPostExpand) { 830 assert(UseShenandoahGC, "only for shenandoah"); 831 visited.clear(); 832 ShenandoahBarrierC2Support::optimize_after_expansion(visited, nstack, worklist, phase); 833 return true; 834 } 835 return false; 836 } 837 838 bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, bool is_clone_instance, ArrayCopyPhase phase) const { 839 bool is_oop = is_reference_type(type); 840 if (!is_oop) { 841 return false; 842 } 843 if (ShenandoahSATBBarrier && tightly_coupled_alloc) { 844 if (phase == Optimization) { 845 return false; 846 } 847 return !is_clone; 848 } 849 return true; 850 } 851 852 bool ShenandoahBarrierSetC2::clone_needs_barrier(Node* src, PhaseGVN& gvn) { 853 const TypeOopPtr* src_type = gvn.type(src)->is_oopptr(); 854 if (src_type->isa_instptr() != nullptr) { 855 ciInstanceKlass* ik = src_type->is_instptr()->instance_klass(); 856 if ((src_type->klass_is_exact() || !ik->has_subklass()) && !ik->has_injected_fields()) { 857 if (ik->has_object_fields()) { 858 return true; 859 } else { 860 if (!src_type->klass_is_exact()) { 861 Compile::current()->dependencies()->assert_leaf_type(ik); 862 } 863 } 864 } else { 865 return true; 866 } 867 } else if (src_type->isa_aryptr()) { 868 BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type(); 869 if (is_reference_type(src_elem, true)) { 870 return true; 871 } 872 } else { 873 return true; 874 } 875 return false; 876 } 877 878 void ShenandoahBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const { 879 Node* ctrl = ac->in(TypeFunc::Control); 880 Node* mem = ac->in(TypeFunc::Memory); 881 Node* src_base = ac->in(ArrayCopyNode::Src); 882 Node* src_offset = ac->in(ArrayCopyNode::SrcPos); 883 Node* dest_base = ac->in(ArrayCopyNode::Dest); 884 Node* dest_offset = ac->in(ArrayCopyNode::DestPos); 885 Node* length = ac->in(ArrayCopyNode::Length); 886 887 Node* src = phase->basic_plus_adr(src_base, src_offset); 888 Node* dest = phase->basic_plus_adr(dest_base, dest_offset); 889 890 if (ShenandoahCloneBarrier && clone_needs_barrier(src, phase->igvn())) { 891 // Check if heap is has forwarded objects. If it does, we need to call into the special 892 // routine that would fix up source references before we can continue. 893 894 enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT }; 895 Node* region = new RegionNode(PATH_LIMIT); 896 Node* mem_phi = new PhiNode(region, Type::MEMORY, TypeRawPtr::BOTTOM); 897 898 Node* thread = phase->transform_later(new ThreadLocalNode()); 899 Node* offset = phase->igvn().MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset())); 900 Node* gc_state_addr = phase->transform_later(new AddPNode(phase->C->top(), thread, offset)); 901 902 uint gc_state_idx = Compile::AliasIdxRaw; 903 const TypePtr* gc_state_adr_type = nullptr; // debug-mode-only argument 904 debug_only(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx)); 905 906 Node* gc_state = phase->transform_later(new LoadBNode(ctrl, mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered)); 907 Node* stable_and = phase->transform_later(new AndINode(gc_state, phase->igvn().intcon(ShenandoahHeap::HAS_FORWARDED))); 908 Node* stable_cmp = phase->transform_later(new CmpINode(stable_and, phase->igvn().zerocon(T_INT))); 909 Node* stable_test = phase->transform_later(new BoolNode(stable_cmp, BoolTest::ne)); 910 911 IfNode* stable_iff = phase->transform_later(new IfNode(ctrl, stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN))->as_If(); 912 Node* stable_ctrl = phase->transform_later(new IfFalseNode(stable_iff)); 913 Node* unstable_ctrl = phase->transform_later(new IfTrueNode(stable_iff)); 914 915 // Heap is stable, no need to do anything additional 916 region->init_req(_heap_stable, stable_ctrl); 917 mem_phi->init_req(_heap_stable, mem); 918 919 // Heap is unstable, call into clone barrier stub 920 Node* call = phase->make_leaf_call(unstable_ctrl, mem, 921 ShenandoahBarrierSetC2::clone_barrier_Type(), 922 CAST_FROM_FN_PTR(address, ShenandoahRuntime::clone_barrier), 923 "shenandoah_clone", 924 TypeRawPtr::BOTTOM, 925 src_base); 926 call = phase->transform_later(call); 927 928 ctrl = phase->transform_later(new ProjNode(call, TypeFunc::Control)); 929 mem = phase->transform_later(new ProjNode(call, TypeFunc::Memory)); 930 region->init_req(_heap_unstable, ctrl); 931 mem_phi->init_req(_heap_unstable, mem); 932 933 // Wire up the actual arraycopy stub now 934 ctrl = phase->transform_later(region); 935 mem = phase->transform_later(mem_phi); 936 937 const char* name = "arraycopy"; 938 call = phase->make_leaf_call(ctrl, mem, 939 OptoRuntime::fast_arraycopy_Type(), 940 phase->basictype2arraycopy(T_LONG, nullptr, nullptr, true, name, true), 941 name, TypeRawPtr::BOTTOM, 942 src, dest, length 943 LP64_ONLY(COMMA phase->top())); 944 call = phase->transform_later(call); 945 946 // Hook up the whole thing into the graph 947 phase->igvn().replace_node(ac, call); 948 } else { 949 BarrierSetC2::clone_at_expansion(phase, ac); 950 } 951 } 952 953 954 // Support for macro expanded GC barriers 955 void ShenandoahBarrierSetC2::register_potential_barrier_node(Node* node) const { 956 if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 957 state()->add_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node); 958 } 959 } 960 961 void ShenandoahBarrierSetC2::unregister_potential_barrier_node(Node* node) const { 962 if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 963 state()->remove_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node); 964 } 965 } 966 967 void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* node) const { 968 if (is_shenandoah_wb_pre_call(node)) { 969 shenandoah_eliminate_wb_pre(node, ¯o->igvn()); 970 } 971 if (ShenandoahCardBarrier && node->Opcode() == Op_CastP2X) { 972 Node* shift = node->unique_out(); 973 Node* addp = shift->unique_out(); 974 for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) { 975 Node* mem = addp->last_out(j); 976 if (UseCondCardMark && mem->is_Load()) { 977 assert(mem->Opcode() == Op_LoadB, "unexpected code shape"); 978 // The load is checking if the card has been written so 979 // replace it with zero to fold the test. 980 macro->replace_node(mem, macro->intcon(0)); 981 continue; 982 } 983 assert(mem->is_Store(), "store required"); 984 macro->replace_node(mem, mem->in(MemNode::Memory)); 985 } 986 } 987 } 988 989 void ShenandoahBarrierSetC2::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) const { 990 assert(UseShenandoahGC && is_shenandoah_wb_pre_call(call), ""); 991 Node* c = call->as_Call()->proj_out(TypeFunc::Control); 992 c = c->unique_ctrl_out(); 993 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 994 c = c->unique_ctrl_out(); 995 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 996 Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); 997 assert(iff->is_If(), "expect test"); 998 if (!is_shenandoah_marking_if(igvn, iff)) { 999 c = c->unique_ctrl_out(); 1000 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 1001 iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); 1002 assert(is_shenandoah_marking_if(igvn, iff), "expect marking test"); 1003 } 1004 Node* cmpx = iff->in(1)->in(1); 1005 igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ)); 1006 igvn->rehash_node_delayed(call); 1007 call->del_req(call->req()-1); 1008 } 1009 1010 void ShenandoahBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const { 1011 if (node->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(node)) { 1012 igvn->add_users_to_worklist(node); 1013 } 1014 } 1015 1016 void ShenandoahBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const { 1017 for (uint i = 0; i < useful.size(); i++) { 1018 Node* n = useful.at(i); 1019 if (n->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(n)) { 1020 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1021 C->record_for_igvn(n->fast_out(i)); 1022 } 1023 } 1024 } 1025 1026 for (int i = state()->load_reference_barriers_count() - 1; i >= 0; i--) { 1027 ShenandoahLoadReferenceBarrierNode* n = state()->load_reference_barrier(i); 1028 if (!useful.member(n)) { 1029 state()->remove_load_reference_barrier(n); 1030 } 1031 } 1032 } 1033 1034 void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const { 1035 return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena); 1036 } 1037 1038 ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const { 1039 return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state()); 1040 } 1041 1042 // If the BarrierSetC2 state has kept macro nodes in its compilation unit state to be 1043 // expanded later, then now is the time to do so. 1044 bool ShenandoahBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { return false; } 1045 1046 #ifdef ASSERT 1047 void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const { 1048 if (ShenandoahVerifyOptoBarriers && phase == BarrierSetC2::BeforeMacroExpand) { 1049 ShenandoahBarrierC2Support::verify(Compile::current()->root()); 1050 } else if (phase == BarrierSetC2::BeforeCodeGen) { 1051 // Verify Shenandoah pre-barriers 1052 const int gc_state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset()); 1053 1054 Unique_Node_List visited; 1055 Node_List worklist; 1056 // We're going to walk control flow backwards starting from the Root 1057 worklist.push(compile->root()); 1058 while (worklist.size() > 0) { 1059 Node *x = worklist.pop(); 1060 if (x == nullptr || x == compile->top()) { 1061 continue; 1062 } 1063 1064 if (visited.member(x)) { 1065 continue; 1066 } else { 1067 visited.push(x); 1068 } 1069 1070 if (x->is_Region()) { 1071 for (uint i = 1; i < x->req(); i++) { 1072 worklist.push(x->in(i)); 1073 } 1074 } else { 1075 worklist.push(x->in(0)); 1076 // We are looking for the pattern: 1077 // /->ThreadLocal 1078 // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset) 1079 // \->ConI(0) 1080 // We want to verify that the If and the LoadB have the same control 1081 // See GraphKit::g1_write_barrier_pre() 1082 if (x->is_If()) { 1083 IfNode *iff = x->as_If(); 1084 if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) { 1085 CmpNode *cmp = iff->in(1)->in(1)->as_Cmp(); 1086 if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0 1087 && cmp->in(1)->is_Load()) { 1088 LoadNode *load = cmp->in(1)->as_Load(); 1089 if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal 1090 && load->in(2)->in(3)->is_Con() 1091 && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == gc_state_offset) { 1092 1093 Node *if_ctrl = iff->in(0); 1094 Node *load_ctrl = load->in(0); 1095 1096 if (if_ctrl != load_ctrl) { 1097 // Skip possible CProj->NeverBranch in infinite loops 1098 if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj) 1099 && if_ctrl->in(0)->is_NeverBranch()) { 1100 if_ctrl = if_ctrl->in(0)->in(0); 1101 } 1102 } 1103 assert(load_ctrl != nullptr && if_ctrl == load_ctrl, "controls must match"); 1104 } 1105 } 1106 } 1107 } 1108 } 1109 } 1110 } 1111 } 1112 #endif 1113 1114 Node* ShenandoahBarrierSetC2::ideal_node(PhaseGVN* phase, Node* n, bool can_reshape) const { 1115 if (is_shenandoah_wb_pre_call(n)) { 1116 uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_Type()->domain()->cnt(); 1117 if (n->req() > cnt) { 1118 Node* addp = n->in(cnt); 1119 if (has_only_shenandoah_wb_pre_uses(addp)) { 1120 n->del_req(cnt); 1121 if (can_reshape) { 1122 phase->is_IterGVN()->_worklist.push(addp); 1123 } 1124 return n; 1125 } 1126 } 1127 } 1128 if (n->Opcode() == Op_CmpP) { 1129 Node* in1 = n->in(1); 1130 Node* in2 = n->in(2); 1131 1132 // If one input is null, then step over the strong LRB barriers on the other input 1133 if (in1->bottom_type() == TypePtr::NULL_PTR && 1134 !((in2->Opcode() == Op_ShenandoahLoadReferenceBarrier) && 1135 !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in2)->decorators()))) { 1136 in2 = step_over_gc_barrier(in2); 1137 } 1138 if (in2->bottom_type() == TypePtr::NULL_PTR && 1139 !((in1->Opcode() == Op_ShenandoahLoadReferenceBarrier) && 1140 !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in1)->decorators()))) { 1141 in1 = step_over_gc_barrier(in1); 1142 } 1143 1144 if (in1 != n->in(1)) { 1145 n->set_req_X(1, in1, phase); 1146 assert(in2 == n->in(2), "only one change"); 1147 return n; 1148 } 1149 if (in2 != n->in(2)) { 1150 n->set_req_X(2, in2, phase); 1151 return n; 1152 } 1153 } else if (can_reshape && 1154 n->Opcode() == Op_If && 1155 ShenandoahBarrierC2Support::is_heap_stable_test(n) && 1156 n->in(0) != nullptr && 1157 n->outcnt() == 2) { 1158 Node* dom = n->in(0); 1159 Node* prev_dom = n; 1160 int op = n->Opcode(); 1161 int dist = 16; 1162 // Search up the dominator tree for another heap stable test 1163 while (dom->Opcode() != op || // Not same opcode? 1164 !ShenandoahBarrierC2Support::is_heap_stable_test(dom) || // Not same input 1? 1165 prev_dom->in(0) != dom) { // One path of test does not dominate? 1166 if (dist < 0) return nullptr; 1167 1168 dist--; 1169 prev_dom = dom; 1170 dom = IfNode::up_one_dom(dom); 1171 if (!dom) return nullptr; 1172 } 1173 1174 // Check that we did not follow a loop back to ourselves 1175 if (n == dom) { 1176 return nullptr; 1177 } 1178 1179 return n->as_If()->dominated_by(prev_dom, phase->is_IterGVN(), false); 1180 } 1181 1182 return nullptr; 1183 } 1184 1185 bool ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(Node* n) { 1186 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1187 Node* u = n->fast_out(i); 1188 if (!is_shenandoah_wb_pre_call(u)) { 1189 return false; 1190 } 1191 } 1192 return n->outcnt() > 0; 1193 } 1194 1195 bool ShenandoahBarrierSetC2::final_graph_reshaping(Compile* compile, Node* n, uint opcode, Unique_Node_List& dead_nodes) const { 1196 switch (opcode) { 1197 case Op_CallLeaf: 1198 case Op_CallLeafNoFP: { 1199 assert (n->is_Call(), ""); 1200 CallNode *call = n->as_Call(); 1201 if (ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) { 1202 uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_Type()->domain()->cnt(); 1203 if (call->req() > cnt) { 1204 assert(call->req() == cnt + 1, "only one extra input"); 1205 Node *addp = call->in(cnt); 1206 assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?"); 1207 call->del_req(cnt); 1208 } 1209 } 1210 return false; 1211 } 1212 case Op_ShenandoahCompareAndSwapP: 1213 case Op_ShenandoahCompareAndSwapN: 1214 case Op_ShenandoahWeakCompareAndSwapN: 1215 case Op_ShenandoahWeakCompareAndSwapP: 1216 case Op_ShenandoahCompareAndExchangeP: 1217 case Op_ShenandoahCompareAndExchangeN: 1218 return true; 1219 case Op_ShenandoahLoadReferenceBarrier: 1220 assert(false, "should have been expanded already"); 1221 return true; 1222 default: 1223 return false; 1224 } 1225 } 1226 1227 bool ShenandoahBarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const { 1228 switch (opcode) { 1229 case Op_ShenandoahCompareAndExchangeP: 1230 case Op_ShenandoahCompareAndExchangeN: 1231 conn_graph->add_objload_to_connection_graph(n, delayed_worklist); 1232 // fallthrough 1233 case Op_ShenandoahWeakCompareAndSwapP: 1234 case Op_ShenandoahWeakCompareAndSwapN: 1235 case Op_ShenandoahCompareAndSwapP: 1236 case Op_ShenandoahCompareAndSwapN: 1237 conn_graph->add_to_congraph_unsafe_access(n, opcode, delayed_worklist); 1238 return true; 1239 case Op_StoreP: { 1240 Node* adr = n->in(MemNode::Address); 1241 const Type* adr_type = gvn->type(adr); 1242 // Pointer stores in Shenandoah barriers looks like unsafe access. 1243 // Ignore such stores to be able scalar replace non-escaping 1244 // allocations. 1245 if (adr_type->isa_rawptr() && adr->is_AddP()) { 1246 Node* base = conn_graph->get_addp_base(adr); 1247 if (base->Opcode() == Op_LoadP && 1248 base->in(MemNode::Address)->is_AddP()) { 1249 adr = base->in(MemNode::Address); 1250 Node* tls = conn_graph->get_addp_base(adr); 1251 if (tls->Opcode() == Op_ThreadLocal) { 1252 int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 1253 const int buf_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()); 1254 if (offs == buf_offset) { 1255 return true; // Pre barrier previous oop value store. 1256 } 1257 } 1258 } 1259 } 1260 return false; 1261 } 1262 case Op_ShenandoahLoadReferenceBarrier: 1263 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), delayed_worklist); 1264 return true; 1265 default: 1266 // Nothing 1267 break; 1268 } 1269 return false; 1270 } 1271 1272 bool ShenandoahBarrierSetC2::escape_add_final_edges(ConnectionGraph* conn_graph, PhaseGVN* gvn, Node* n, uint opcode) const { 1273 switch (opcode) { 1274 case Op_ShenandoahCompareAndExchangeP: 1275 case Op_ShenandoahCompareAndExchangeN: { 1276 Node *adr = n->in(MemNode::Address); 1277 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, adr, nullptr); 1278 // fallthrough 1279 } 1280 case Op_ShenandoahCompareAndSwapP: 1281 case Op_ShenandoahCompareAndSwapN: 1282 case Op_ShenandoahWeakCompareAndSwapP: 1283 case Op_ShenandoahWeakCompareAndSwapN: 1284 return conn_graph->add_final_edges_unsafe_access(n, opcode); 1285 case Op_ShenandoahLoadReferenceBarrier: 1286 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), nullptr); 1287 return true; 1288 default: 1289 // Nothing 1290 break; 1291 } 1292 return false; 1293 } 1294 1295 bool ShenandoahBarrierSetC2::escape_has_out_with_unsafe_object(Node* n) const { 1296 return n->has_out_with(Op_ShenandoahCompareAndExchangeP) || n->has_out_with(Op_ShenandoahCompareAndExchangeN) || 1297 n->has_out_with(Op_ShenandoahCompareAndSwapP, Op_ShenandoahCompareAndSwapN, Op_ShenandoahWeakCompareAndSwapP, Op_ShenandoahWeakCompareAndSwapN); 1298 1299 } 1300 1301 bool ShenandoahBarrierSetC2::matcher_find_shared_post_visit(Matcher* matcher, Node* n, uint opcode) const { 1302 switch (opcode) { 1303 case Op_ShenandoahCompareAndExchangeP: 1304 case Op_ShenandoahCompareAndExchangeN: 1305 case Op_ShenandoahWeakCompareAndSwapP: 1306 case Op_ShenandoahWeakCompareAndSwapN: 1307 case Op_ShenandoahCompareAndSwapP: 1308 case Op_ShenandoahCompareAndSwapN: { // Convert trinary to binary-tree 1309 Node* newval = n->in(MemNode::ValueIn); 1310 Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn); 1311 Node* pair = new BinaryNode(oldval, newval); 1312 n->set_req(MemNode::ValueIn,pair); 1313 n->del_req(LoadStoreConditionalNode::ExpectedIn); 1314 return true; 1315 } 1316 default: 1317 break; 1318 } 1319 return false; 1320 } 1321 1322 bool ShenandoahBarrierSetC2::matcher_is_store_load_barrier(Node* x, uint xop) const { 1323 return xop == Op_ShenandoahCompareAndExchangeP || 1324 xop == Op_ShenandoahCompareAndExchangeN || 1325 xop == Op_ShenandoahWeakCompareAndSwapP || 1326 xop == Op_ShenandoahWeakCompareAndSwapN || 1327 xop == Op_ShenandoahCompareAndSwapN || 1328 xop == Op_ShenandoahCompareAndSwapP; 1329 }