1 /* 2 * Copyright (c) 2018, 2023, Red Hat, Inc. All rights reserved. 3 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "classfile/javaClasses.hpp" 27 #include "gc/shared/barrierSet.hpp" 28 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp" 29 #include "gc/shenandoah/c2/shenandoahSupport.hpp" 30 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp" 31 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 32 #include "gc/shenandoah/shenandoahCardTable.hpp" 33 #include "gc/shenandoah/shenandoahForwarding.hpp" 34 #include "gc/shenandoah/shenandoahHeap.hpp" 35 #include "gc/shenandoah/shenandoahRuntime.hpp" 36 #include "gc/shenandoah/shenandoahThreadLocalData.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/escape.hpp" 39 #include "opto/graphKit.hpp" 40 #include "opto/idealKit.hpp" 41 #include "opto/macro.hpp" 42 #include "opto/movenode.hpp" 43 #include "opto/narrowptrnode.hpp" 44 #include "opto/rootnode.hpp" 45 #include "opto/runtime.hpp" 46 47 ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() { 48 return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2()); 49 } 50 51 ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena) 52 : _load_reference_barriers(new (comp_arena) GrowableArray<ShenandoahLoadReferenceBarrierNode*>(comp_arena, 8, 0, nullptr)) { 53 } 54 55 int ShenandoahBarrierSetC2State::load_reference_barriers_count() const { 56 return _load_reference_barriers->length(); 57 } 58 59 ShenandoahLoadReferenceBarrierNode* ShenandoahBarrierSetC2State::load_reference_barrier(int idx) const { 60 return _load_reference_barriers->at(idx); 61 } 62 63 void ShenandoahBarrierSetC2State::add_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) { 64 assert(!_load_reference_barriers->contains(n), "duplicate entry in barrier list"); 65 _load_reference_barriers->append(n); 66 } 67 68 void ShenandoahBarrierSetC2State::remove_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) { 69 if (_load_reference_barriers->contains(n)) { 70 _load_reference_barriers->remove(n); 71 } 72 } 73 74 #define __ kit-> 75 76 bool ShenandoahBarrierSetC2::satb_can_remove_pre_barrier(GraphKit* kit, PhaseValues* phase, Node* adr, 77 BasicType bt, uint adr_idx) const { 78 intptr_t offset = 0; 79 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 80 AllocateNode* alloc = AllocateNode::Ideal_allocation(base); 81 82 if (offset == Type::OffsetBot) { 83 return false; // cannot unalias unless there are precise offsets 84 } 85 86 if (alloc == nullptr) { 87 return false; // No allocation found 88 } 89 90 intptr_t size_in_bytes = type2aelembytes(bt); 91 92 Node* mem = __ memory(adr_idx); // start searching here... 93 94 for (int cnt = 0; cnt < 50; cnt++) { 95 96 if (mem->is_Store()) { 97 98 Node* st_adr = mem->in(MemNode::Address); 99 intptr_t st_offset = 0; 100 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); 101 102 if (st_base == nullptr) { 103 break; // inscrutable pointer 104 } 105 106 // Break we have found a store with same base and offset as ours so break 107 if (st_base == base && st_offset == offset) { 108 break; 109 } 110 111 if (st_offset != offset && st_offset != Type::OffsetBot) { 112 const int MAX_STORE = BytesPerLong; 113 if (st_offset >= offset + size_in_bytes || 114 st_offset <= offset - MAX_STORE || 115 st_offset <= offset - mem->as_Store()->memory_size()) { 116 // Success: The offsets are provably independent. 117 // (You may ask, why not just test st_offset != offset and be done? 118 // The answer is that stores of different sizes can co-exist 119 // in the same sequence of RawMem effects. We sometimes initialize 120 // a whole 'tile' of array elements with a single jint or jlong.) 121 mem = mem->in(MemNode::Memory); 122 continue; // advance through independent store memory 123 } 124 } 125 126 if (st_base != base 127 && MemNode::detect_ptr_independence(base, alloc, st_base, 128 AllocateNode::Ideal_allocation(st_base), 129 phase)) { 130 // Success: The bases are provably independent. 131 mem = mem->in(MemNode::Memory); 132 continue; // advance through independent store memory 133 } 134 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 135 136 InitializeNode* st_init = mem->in(0)->as_Initialize(); 137 AllocateNode* st_alloc = st_init->allocation(); 138 139 // Make sure that we are looking at the same allocation site. 140 // The alloc variable is guaranteed to not be null here from earlier check. 141 if (alloc == st_alloc) { 142 // Check that the initialization is storing null so that no previous store 143 // has been moved up and directly write a reference 144 Node* captured_store = st_init->find_captured_store(offset, 145 type2aelembytes(T_OBJECT), 146 phase); 147 if (captured_store == nullptr || captured_store == st_init->zero_memory()) { 148 return true; 149 } 150 } 151 } 152 153 // Unless there is an explicit 'continue', we must bail out here, 154 // because 'mem' is an inscrutable memory state (e.g., a call). 155 break; 156 } 157 158 return false; 159 } 160 161 #undef __ 162 #define __ ideal. 163 164 void ShenandoahBarrierSetC2::satb_write_barrier_pre(GraphKit* kit, 165 bool do_load, 166 Node* obj, 167 Node* adr, 168 uint alias_idx, 169 Node* val, 170 const TypeOopPtr* val_type, 171 Node* pre_val, 172 BasicType bt) const { 173 // Some sanity checks 174 // Note: val is unused in this routine. 175 176 if (do_load) { 177 // We need to generate the load of the previous value 178 assert(adr != nullptr, "where are loading from?"); 179 assert(pre_val == nullptr, "loaded already?"); 180 assert(val_type != nullptr, "need a type"); 181 182 if (ReduceInitialCardMarks 183 && satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) { 184 return; 185 } 186 187 } else { 188 // In this case both val_type and alias_idx are unused. 189 assert(pre_val != nullptr, "must be loaded already"); 190 // Nothing to be done if pre_val is null. 191 if (pre_val->bottom_type() == TypePtr::NULL_PTR) return; 192 assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here"); 193 } 194 assert(bt == T_OBJECT, "or we shouldn't be here"); 195 196 IdealKit ideal(kit, true); 197 198 Node* tls = __ thread(); // ThreadLocalStorage 199 200 Node* no_base = __ top(); 201 Node* zero = __ ConI(0); 202 Node* zeroX = __ ConX(0); 203 204 float likely = PROB_LIKELY(0.999); 205 float unlikely = PROB_UNLIKELY(0.999); 206 207 // Offsets into the thread 208 const int index_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset()); 209 const int buffer_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()); 210 211 // Now the actual pointers into the thread 212 Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset)); 213 Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset)); 214 215 // Now some of the values 216 Node* marking; 217 Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()))); 218 Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw); 219 marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING)); 220 assert(ShenandoahBarrierC2Support::is_gc_state_load(ld), "Should match the shape"); 221 222 // if (!marking) 223 __ if_then(marking, BoolTest::ne, zero, unlikely); { 224 BasicType index_bt = TypeX_X->basic_type(); 225 assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading Shenandoah SATBMarkQueue::_index with wrong size."); 226 Node* index = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw); 227 228 if (do_load) { 229 // load original value 230 // alias_idx correct?? 231 pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx); 232 } 233 234 // if (pre_val != nullptr) 235 __ if_then(pre_val, BoolTest::ne, kit->null()); { 236 Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw); 237 238 // is the queue for this thread full? 239 __ if_then(index, BoolTest::ne, zeroX, likely); { 240 241 // decrement the index 242 Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t)))); 243 244 // Now get the buffer location we will log the previous value into and store it 245 Node *log_addr = __ AddP(no_base, buffer, next_index); 246 __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered); 247 // update the index 248 __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered); 249 250 } __ else_(); { 251 252 // logging buffer is full, call the runtime 253 const TypeFunc *tf = ShenandoahBarrierSetC2::write_barrier_pre_Type(); 254 __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_barrier_pre), "shenandoah_wb_pre", pre_val); 255 } __ end_if(); // (!index) 256 } __ end_if(); // (pre_val != nullptr) 257 } __ end_if(); // (!marking) 258 259 // Final sync IdealKit and GraphKit. 260 kit->final_sync(ideal); 261 262 if (ShenandoahSATBBarrier && adr != nullptr) { 263 Node* c = kit->control(); 264 Node* call = c->in(1)->in(1)->in(1)->in(0); 265 assert(is_shenandoah_wb_pre_call(call), "shenandoah_wb_pre call expected"); 266 call->add_req(adr); 267 } 268 } 269 270 bool ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(Node* call) { 271 return call->is_CallLeaf() && 272 call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_barrier_pre); 273 } 274 275 bool ShenandoahBarrierSetC2::is_shenandoah_clone_call(Node* call) { 276 return call->is_CallLeaf() && 277 call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::clone_barrier); 278 } 279 280 bool ShenandoahBarrierSetC2::is_shenandoah_lrb_call(Node* call) { 281 if (!call->is_CallLeaf()) { 282 return false; 283 } 284 285 address entry_point = call->as_CallLeaf()->entry_point(); 286 return (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong)) || 287 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong_narrow)) || 288 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak)) || 289 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak_narrow)) || 290 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom)) || 291 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom_narrow)); 292 } 293 294 bool ShenandoahBarrierSetC2::is_shenandoah_marking_if(PhaseValues* phase, Node* n) { 295 if (n->Opcode() != Op_If) { 296 return false; 297 } 298 299 Node* bol = n->in(1); 300 assert(bol->is_Bool(), ""); 301 Node* cmpx = bol->in(1); 302 if (bol->as_Bool()->_test._test == BoolTest::ne && 303 cmpx->is_Cmp() && cmpx->in(2) == phase->intcon(0) && 304 is_shenandoah_state_load(cmpx->in(1)->in(1)) && 305 cmpx->in(1)->in(2)->is_Con() && 306 cmpx->in(1)->in(2) == phase->intcon(ShenandoahHeap::MARKING)) { 307 return true; 308 } 309 310 return false; 311 } 312 313 bool ShenandoahBarrierSetC2::is_shenandoah_state_load(Node* n) { 314 if (!n->is_Load()) return false; 315 const int state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset()); 316 return n->in(2)->is_AddP() && n->in(2)->in(2)->Opcode() == Op_ThreadLocal 317 && n->in(2)->in(3)->is_Con() 318 && n->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset; 319 } 320 321 void ShenandoahBarrierSetC2::shenandoah_write_barrier_pre(GraphKit* kit, 322 bool do_load, 323 Node* obj, 324 Node* adr, 325 uint alias_idx, 326 Node* val, 327 const TypeOopPtr* val_type, 328 Node* pre_val, 329 BasicType bt) const { 330 if (ShenandoahSATBBarrier) { 331 IdealKit ideal(kit); 332 kit->sync_kit(ideal); 333 334 satb_write_barrier_pre(kit, do_load, obj, adr, alias_idx, val, val_type, pre_val, bt); 335 336 ideal.sync_kit(kit); 337 kit->final_sync(ideal); 338 } 339 } 340 341 // Helper that guards and inserts a pre-barrier. 342 void ShenandoahBarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset, 343 Node* pre_val, bool need_mem_bar) const { 344 // We could be accessing the referent field of a reference object. If so, when Shenandoah 345 // is enabled, we need to log the value in the referent field in an SATB buffer. 346 // This routine performs some compile time filters and generates suitable 347 // runtime filters that guard the pre-barrier code. 348 // Also add memory barrier for non volatile load from the referent field 349 // to prevent commoning of loads across safepoint. 350 351 // Some compile time checks. 352 353 // If offset is a constant, is it java_lang_ref_Reference::_reference_offset? 354 const TypeX* otype = offset->find_intptr_t_type(); 355 if (otype != nullptr && otype->is_con() && 356 otype->get_con() != java_lang_ref_Reference::referent_offset()) { 357 // Constant offset but not the reference_offset so just return 358 return; 359 } 360 361 // We only need to generate the runtime guards for instances. 362 const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr(); 363 if (btype != nullptr) { 364 if (btype->isa_aryptr()) { 365 // Array type so nothing to do 366 return; 367 } 368 369 const TypeInstPtr* itype = btype->isa_instptr(); 370 if (itype != nullptr) { 371 // Can the klass of base_oop be statically determined to be 372 // _not_ a sub-class of Reference and _not_ Object? 373 ciKlass* klass = itype->instance_klass(); 374 if (klass->is_loaded() && 375 !klass->is_subtype_of(kit->env()->Reference_klass()) && 376 !kit->env()->Object_klass()->is_subtype_of(klass)) { 377 return; 378 } 379 } 380 } 381 382 // The compile time filters did not reject base_oop/offset so 383 // we need to generate the following runtime filters 384 // 385 // if (offset == java_lang_ref_Reference::_reference_offset) { 386 // if (instance_of(base, java.lang.ref.Reference)) { 387 // pre_barrier(_, pre_val, ...); 388 // } 389 // } 390 391 float likely = PROB_LIKELY( 0.999); 392 float unlikely = PROB_UNLIKELY(0.999); 393 394 IdealKit ideal(kit); 395 396 Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset()); 397 398 __ if_then(offset, BoolTest::eq, referent_off, unlikely); { 399 // Update graphKit memory and control from IdealKit. 400 kit->sync_kit(ideal); 401 402 Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass())); 403 Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con); 404 405 // Update IdealKit memory and control from graphKit. 406 __ sync_kit(kit); 407 408 Node* one = __ ConI(1); 409 // is_instof == 0 if base_oop == nullptr 410 __ if_then(is_instof, BoolTest::eq, one, unlikely); { 411 412 // Update graphKit from IdeakKit. 413 kit->sync_kit(ideal); 414 415 // Use the pre-barrier to record the value in the referent field 416 satb_write_barrier_pre(kit, false /* do_load */, 417 nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */, 418 pre_val /* pre_val */, 419 T_OBJECT); 420 if (need_mem_bar) { 421 // Add memory barrier to prevent commoning reads from this field 422 // across safepoint since GC can change its value. 423 kit->insert_mem_bar(Op_MemBarCPUOrder); 424 } 425 // Update IdealKit from graphKit. 426 __ sync_kit(kit); 427 428 } __ end_if(); // _ref_type != ref_none 429 } __ end_if(); // offset == referent_offset 430 431 // Final sync IdealKit and GraphKit. 432 kit->final_sync(ideal); 433 } 434 435 void ShenandoahBarrierSetC2::post_barrier(GraphKit* kit, 436 Node* ctl, 437 Node* oop_store, 438 Node* obj, 439 Node* adr, 440 uint adr_idx, 441 Node* val, 442 BasicType bt, 443 bool use_precise) const { 444 assert(ShenandoahCardBarrier, "Should have been checked by caller"); 445 446 // No store check needed if we're storing a null. 447 if (val != nullptr && val->is_Con()) { 448 // must be either an oop or null 449 const Type* t = val->bottom_type(); 450 if (t == TypePtr::NULL_PTR || t == Type::TOP) 451 return; 452 } 453 454 if (ReduceInitialCardMarks && obj == kit->just_allocated_object(kit->control())) { 455 // We use card marks to track old to young references in Generational Shenandoah; 456 // see flag ShenandoahCardBarrier above. 457 // Objects are always allocated in the young generation and initialized 458 // before they are promoted. There's always a safepoint (e.g. at final mark) 459 // before an object is promoted from young to old. Promotion entails dirtying of 460 // the cards backing promoted objects, so they will be guaranteed to be scanned 461 // at the next remembered set scan of the old generation. 462 // Thus, we can safely skip card-marking of initializing stores on a 463 // freshly-allocated object. If any of the assumptions above change in 464 // the future, this code will need to be re-examined; see check in 465 // ShenandoahCardBarrier::on_slowpath_allocation_exit(). 466 return; 467 } 468 469 if (!use_precise) { 470 // All card marks for a (non-array) instance are in one place: 471 adr = obj; 472 } 473 // (Else it's an array (or unknown), and we want more precise card marks.) 474 assert(adr != nullptr, ""); 475 476 IdealKit ideal(kit, true); 477 478 Node* tls = __ thread(); // ThreadLocalStorage 479 480 // Convert the pointer to an int prior to doing math on it 481 Node* cast = __ CastPX(__ ctrl(), adr); 482 483 Node* curr_ct_holder_offset = __ ConX(in_bytes(ShenandoahThreadLocalData::card_table_offset())); 484 Node* curr_ct_holder_addr = __ AddP(__ top(), tls, curr_ct_holder_offset); 485 Node* curr_ct_base_addr = __ load( __ ctrl(), curr_ct_holder_addr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw); 486 487 // Divide by card size 488 Node* card_offset = __ URShiftX( cast, __ ConI(CardTable::card_shift()) ); 489 490 // Combine card table base and card offset 491 Node* card_adr = __ AddP(__ top(), curr_ct_base_addr, card_offset); 492 493 // Get the alias_index for raw card-mark memory 494 int adr_type = Compile::AliasIdxRaw; 495 Node* zero = __ ConI(0); // Dirty card value 496 497 if (UseCondCardMark) { 498 // The classic GC reference write barrier is typically implemented 499 // as a store into the global card mark table. Unfortunately 500 // unconditional stores can result in false sharing and excessive 501 // coherence traffic as well as false transactional aborts. 502 // UseCondCardMark enables MP "polite" conditional card mark 503 // stores. In theory we could relax the load from ctrl() to 504 // no_ctrl, but that doesn't buy much latitude. 505 Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, T_BYTE, adr_type); 506 __ if_then(card_val, BoolTest::ne, zero); 507 } 508 509 // Smash zero into card 510 __ store(__ ctrl(), card_adr, zero, T_BYTE, adr_type, MemNode::unordered); 511 512 if (UseCondCardMark) { 513 __ end_if(); 514 } 515 516 // Final sync IdealKit and GraphKit. 517 kit->final_sync(ideal); 518 } 519 520 #undef __ 521 522 const TypeFunc* ShenandoahBarrierSetC2::write_barrier_pre_Type() { 523 const Type **fields = TypeTuple::fields(1); 524 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value 525 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 526 527 // create result type (range) 528 fields = TypeTuple::fields(0); 529 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 530 531 return TypeFunc::make(domain, range); 532 } 533 534 const TypeFunc* ShenandoahBarrierSetC2::clone_barrier_Type() { 535 const Type **fields = TypeTuple::fields(1); 536 fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL; // src oop 537 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 538 539 // create result type (range) 540 fields = TypeTuple::fields(0); 541 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 542 543 return TypeFunc::make(domain, range); 544 } 545 546 const TypeFunc* ShenandoahBarrierSetC2::load_reference_barrier_Type() { 547 const Type **fields = TypeTuple::fields(2); 548 fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM; // original field value 549 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // original load address 550 551 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 552 553 // create result type (range) 554 fields = TypeTuple::fields(1); 555 fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM; 556 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 557 558 return TypeFunc::make(domain, range); 559 } 560 561 Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const { 562 DecoratorSet decorators = access.decorators(); 563 564 const TypePtr* adr_type = access.addr().type(); 565 Node* adr = access.addr().node(); 566 567 bool no_keepalive = (decorators & AS_NO_KEEPALIVE) != 0; 568 569 if (!access.is_oop()) { 570 return BarrierSetC2::store_at_resolved(access, val); 571 } 572 573 if (no_keepalive) { 574 // No keep-alive means no need for the pre-barrier. 575 return BarrierSetC2::store_at_resolved(access, val); 576 } 577 578 if (access.is_parse_access()) { 579 C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); 580 GraphKit* kit = parse_access.kit(); 581 582 uint adr_idx = kit->C->get_alias_index(adr_type); 583 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); 584 shenandoah_write_barrier_pre(kit, true /* do_load */, /*kit->control(),*/ access.base(), adr, adr_idx, val.node(), 585 static_cast<const TypeOopPtr*>(val.type()), nullptr /* pre_val */, access.type()); 586 587 Node* result = BarrierSetC2::store_at_resolved(access, val); 588 589 if (ShenandoahCardBarrier) { 590 const bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0; 591 const bool is_array = (decorators & IS_ARRAY) != 0; 592 const bool use_precise = is_array || anonymous; 593 post_barrier(kit, kit->control(), access.raw_access(), access.base(), 594 adr, adr_idx, val.node(), access.type(), use_precise); 595 } 596 return result; 597 } else { 598 assert(access.is_opt_access(), "only for optimization passes"); 599 assert(((decorators & C2_TIGHTLY_COUPLED_ALLOC) != 0 || !ShenandoahSATBBarrier) && (decorators & C2_ARRAY_COPY) != 0, "unexpected caller of this code"); 600 return BarrierSetC2::store_at_resolved(access, val); 601 } 602 } 603 604 Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const { 605 // 1: non-reference load, no additional barrier is needed 606 if (!access.is_oop()) { 607 return BarrierSetC2::load_at_resolved(access, val_type); 608 } 609 610 Node* load = BarrierSetC2::load_at_resolved(access, val_type); 611 DecoratorSet decorators = access.decorators(); 612 BasicType type = access.type(); 613 614 // 2: apply LRB if needed 615 if (ShenandoahBarrierSet::need_load_reference_barrier(decorators, type)) { 616 load = new ShenandoahLoadReferenceBarrierNode(nullptr, load, decorators); 617 if (access.is_parse_access()) { 618 load = static_cast<C2ParseAccess &>(access).kit()->gvn().transform(load); 619 } else { 620 load = static_cast<C2OptAccess &>(access).gvn().transform(load); 621 } 622 } 623 624 // 3: apply keep-alive barrier for java.lang.ref.Reference if needed 625 if (ShenandoahBarrierSet::need_keep_alive_barrier(decorators, type)) { 626 Node* top = Compile::current()->top(); 627 Node* adr = access.addr().node(); 628 Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top; 629 Node* obj = access.base(); 630 631 bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0; 632 bool on_weak_ref = (decorators & (ON_WEAK_OOP_REF | ON_PHANTOM_OOP_REF)) != 0; 633 bool keep_alive = (decorators & AS_NO_KEEPALIVE) == 0; 634 635 // If we are reading the value of the referent field of a Reference 636 // object (either by using Unsafe directly or through reflection) 637 // then, if SATB is enabled, we need to record the referent in an 638 // SATB log buffer using the pre-barrier mechanism. 639 // Also we need to add memory barrier to prevent commoning reads 640 // from this field across safepoint since GC can change its value. 641 if (!on_weak_ref || (unknown && (offset == top || obj == top)) || !keep_alive) { 642 return load; 643 } 644 645 assert(access.is_parse_access(), "entry not supported at optimization time"); 646 C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); 647 GraphKit* kit = parse_access.kit(); 648 bool mismatched = (decorators & C2_MISMATCHED) != 0; 649 bool is_unordered = (decorators & MO_UNORDERED) != 0; 650 bool in_native = (decorators & IN_NATIVE) != 0; 651 bool need_cpu_mem_bar = !is_unordered || mismatched || in_native; 652 653 if (on_weak_ref) { 654 // Use the pre-barrier to record the value in the referent field 655 satb_write_barrier_pre(kit, false /* do_load */, 656 nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */, 657 load /* pre_val */, T_OBJECT); 658 // Add memory barrier to prevent commoning reads from this field 659 // across safepoint since GC can change its value. 660 kit->insert_mem_bar(Op_MemBarCPUOrder); 661 } else if (unknown) { 662 // We do not require a mem bar inside pre_barrier if need_mem_bar 663 // is set: the barriers would be emitted by us. 664 insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar); 665 } 666 } 667 668 return load; 669 } 670 671 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val, 672 Node* new_val, const Type* value_type) const { 673 GraphKit* kit = access.kit(); 674 if (access.is_oop()) { 675 shenandoah_write_barrier_pre(kit, false /* do_load */, 676 nullptr, nullptr, max_juint, nullptr, nullptr, 677 expected_val /* pre_val */, T_OBJECT); 678 679 MemNode::MemOrd mo = access.mem_node_mo(); 680 Node* mem = access.memory(); 681 Node* adr = access.addr().node(); 682 const TypePtr* adr_type = access.addr().type(); 683 Node* load_store = nullptr; 684 685 #ifdef _LP64 686 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 687 Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); 688 Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); 689 if (ShenandoahCASBarrier) { 690 load_store = kit->gvn().transform(new ShenandoahCompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo)); 691 } else { 692 load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo)); 693 } 694 } else 695 #endif 696 { 697 if (ShenandoahCASBarrier) { 698 load_store = kit->gvn().transform(new ShenandoahCompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo)); 699 } else { 700 load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo)); 701 } 702 } 703 704 access.set_raw_access(load_store); 705 pin_atomic_op(access); 706 707 #ifdef _LP64 708 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 709 load_store = kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type())); 710 } 711 #endif 712 load_store = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, load_store, access.decorators())); 713 if (ShenandoahCardBarrier) { 714 post_barrier(kit, kit->control(), access.raw_access(), access.base(), 715 access.addr().node(), access.alias_idx(), new_val, T_OBJECT, true); 716 } 717 return load_store; 718 } 719 return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type); 720 } 721 722 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val, 723 Node* new_val, const Type* value_type) const { 724 GraphKit* kit = access.kit(); 725 if (access.is_oop()) { 726 shenandoah_write_barrier_pre(kit, false /* do_load */, 727 nullptr, nullptr, max_juint, nullptr, nullptr, 728 expected_val /* pre_val */, T_OBJECT); 729 DecoratorSet decorators = access.decorators(); 730 MemNode::MemOrd mo = access.mem_node_mo(); 731 Node* mem = access.memory(); 732 bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0; 733 Node* load_store = nullptr; 734 Node* adr = access.addr().node(); 735 #ifdef _LP64 736 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 737 Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); 738 Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); 739 if (ShenandoahCASBarrier) { 740 if (is_weak_cas) { 741 load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 742 } else { 743 load_store = kit->gvn().transform(new ShenandoahCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 744 } 745 } else { 746 if (is_weak_cas) { 747 load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 748 } else { 749 load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 750 } 751 } 752 } else 753 #endif 754 { 755 if (ShenandoahCASBarrier) { 756 if (is_weak_cas) { 757 load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 758 } else { 759 load_store = kit->gvn().transform(new ShenandoahCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 760 } 761 } else { 762 if (is_weak_cas) { 763 load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 764 } else { 765 load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 766 } 767 } 768 } 769 access.set_raw_access(load_store); 770 pin_atomic_op(access); 771 if (ShenandoahCardBarrier) { 772 post_barrier(kit, kit->control(), access.raw_access(), access.base(), 773 access.addr().node(), access.alias_idx(), new_val, T_OBJECT, true); 774 } 775 return load_store; 776 } 777 return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type); 778 } 779 780 Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const { 781 GraphKit* kit = access.kit(); 782 Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type); 783 if (access.is_oop()) { 784 result = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, result, access.decorators())); 785 shenandoah_write_barrier_pre(kit, false /* do_load */, 786 nullptr, nullptr, max_juint, nullptr, nullptr, 787 result /* pre_val */, T_OBJECT); 788 if (ShenandoahCardBarrier) { 789 post_barrier(kit, kit->control(), access.raw_access(), access.base(), 790 access.addr().node(), access.alias_idx(), val, T_OBJECT, true); 791 } 792 } 793 return result; 794 } 795 796 797 bool ShenandoahBarrierSetC2::is_gc_pre_barrier_node(Node* node) const { 798 return is_shenandoah_wb_pre_call(node); 799 } 800 801 bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const { 802 return (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) || 803 is_shenandoah_lrb_call(node) || 804 is_shenandoah_wb_pre_call(node) || 805 is_shenandoah_clone_call(node); 806 } 807 808 Node* ShenandoahBarrierSetC2::step_over_gc_barrier(Node* c) const { 809 if (c == nullptr) { 810 return c; 811 } 812 if (c->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 813 return c->in(ShenandoahLoadReferenceBarrierNode::ValueIn); 814 } 815 return c; 816 } 817 818 bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const { 819 return !ShenandoahBarrierC2Support::expand(C, igvn); 820 } 821 822 bool ShenandoahBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const { 823 if (mode == LoopOptsShenandoahExpand) { 824 assert(UseShenandoahGC, "only for shenandoah"); 825 ShenandoahBarrierC2Support::pin_and_expand(phase); 826 return true; 827 } 828 return false; 829 } 830 831 bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, bool is_clone_instance, ArrayCopyPhase phase) const { 832 bool is_oop = is_reference_type(type); 833 if (!is_oop) { 834 return false; 835 } 836 if (ShenandoahSATBBarrier && tightly_coupled_alloc) { 837 if (phase == Optimization) { 838 return false; 839 } 840 return !is_clone; 841 } 842 return true; 843 } 844 845 bool ShenandoahBarrierSetC2::clone_needs_barrier(Node* src, PhaseGVN& gvn) { 846 const TypeOopPtr* src_type = gvn.type(src)->is_oopptr(); 847 if (src_type->isa_instptr() != nullptr) { 848 ciInstanceKlass* ik = src_type->is_instptr()->instance_klass(); 849 if ((src_type->klass_is_exact() || !ik->has_subklass()) && !ik->has_injected_fields()) { 850 if (ik->has_object_fields()) { 851 return true; 852 } else { 853 if (!src_type->klass_is_exact()) { 854 Compile::current()->dependencies()->assert_leaf_type(ik); 855 } 856 } 857 } else { 858 return true; 859 } 860 } else if (src_type->isa_aryptr()) { 861 BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type(); 862 if (is_reference_type(src_elem, true)) { 863 return true; 864 } 865 } else { 866 return true; 867 } 868 return false; 869 } 870 871 void ShenandoahBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const { 872 Node* ctrl = ac->in(TypeFunc::Control); 873 Node* mem = ac->in(TypeFunc::Memory); 874 Node* src_base = ac->in(ArrayCopyNode::Src); 875 Node* src_offset = ac->in(ArrayCopyNode::SrcPos); 876 Node* dest_base = ac->in(ArrayCopyNode::Dest); 877 Node* dest_offset = ac->in(ArrayCopyNode::DestPos); 878 Node* length = ac->in(ArrayCopyNode::Length); 879 880 Node* src = phase->basic_plus_adr(src_base, src_offset); 881 Node* dest = phase->basic_plus_adr(dest_base, dest_offset); 882 883 if (ShenandoahCloneBarrier && clone_needs_barrier(src, phase->igvn())) { 884 // Check if heap is has forwarded objects. If it does, we need to call into the special 885 // routine that would fix up source references before we can continue. 886 887 enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT }; 888 Node* region = new RegionNode(PATH_LIMIT); 889 Node* mem_phi = new PhiNode(region, Type::MEMORY, TypeRawPtr::BOTTOM); 890 891 Node* thread = phase->transform_later(new ThreadLocalNode()); 892 Node* offset = phase->MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset())); 893 Node* gc_state_addr = phase->transform_later(new AddPNode(phase->C->top(), thread, offset)); 894 895 uint gc_state_idx = Compile::AliasIdxRaw; 896 const TypePtr* gc_state_adr_type = nullptr; // debug-mode-only argument 897 DEBUG_ONLY(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx)); 898 899 Node* gc_state = phase->transform_later(new LoadBNode(ctrl, mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered)); 900 Node* stable_and = phase->transform_later(new AndINode(gc_state, phase->igvn().intcon(ShenandoahHeap::HAS_FORWARDED))); 901 Node* stable_cmp = phase->transform_later(new CmpINode(stable_and, phase->igvn().zerocon(T_INT))); 902 Node* stable_test = phase->transform_later(new BoolNode(stable_cmp, BoolTest::ne)); 903 904 IfNode* stable_iff = phase->transform_later(new IfNode(ctrl, stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN))->as_If(); 905 Node* stable_ctrl = phase->transform_later(new IfFalseNode(stable_iff)); 906 Node* unstable_ctrl = phase->transform_later(new IfTrueNode(stable_iff)); 907 908 // Heap is stable, no need to do anything additional 909 region->init_req(_heap_stable, stable_ctrl); 910 mem_phi->init_req(_heap_stable, mem); 911 912 // Heap is unstable, call into clone barrier stub 913 Node* call = phase->make_leaf_call(unstable_ctrl, mem, 914 ShenandoahBarrierSetC2::clone_barrier_Type(), 915 CAST_FROM_FN_PTR(address, ShenandoahRuntime::clone_barrier), 916 "shenandoah_clone", 917 TypeRawPtr::BOTTOM, 918 src_base); 919 call = phase->transform_later(call); 920 921 ctrl = phase->transform_later(new ProjNode(call, TypeFunc::Control)); 922 mem = phase->transform_later(new ProjNode(call, TypeFunc::Memory)); 923 region->init_req(_heap_unstable, ctrl); 924 mem_phi->init_req(_heap_unstable, mem); 925 926 // Wire up the actual arraycopy stub now 927 ctrl = phase->transform_later(region); 928 mem = phase->transform_later(mem_phi); 929 930 const char* name = "arraycopy"; 931 call = phase->make_leaf_call(ctrl, mem, 932 OptoRuntime::fast_arraycopy_Type(), 933 phase->basictype2arraycopy(T_LONG, nullptr, nullptr, true, name, true), 934 name, TypeRawPtr::BOTTOM, 935 src, dest, length 936 LP64_ONLY(COMMA phase->top())); 937 call = phase->transform_later(call); 938 939 // Hook up the whole thing into the graph 940 phase->replace_node(ac, call); 941 } else { 942 BarrierSetC2::clone_at_expansion(phase, ac); 943 } 944 } 945 946 947 // Support for macro expanded GC barriers 948 void ShenandoahBarrierSetC2::register_potential_barrier_node(Node* node) const { 949 if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 950 state()->add_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node); 951 } 952 } 953 954 void ShenandoahBarrierSetC2::unregister_potential_barrier_node(Node* node) const { 955 if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 956 state()->remove_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node); 957 } 958 } 959 960 void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseIterGVN* igvn, Node* node) const { 961 if (is_shenandoah_wb_pre_call(node)) { 962 shenandoah_eliminate_wb_pre(node, igvn); 963 } 964 if (ShenandoahCardBarrier && node->Opcode() == Op_CastP2X) { 965 Node* shift = node->unique_out(); 966 Node* addp = shift->unique_out(); 967 for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) { 968 Node* mem = addp->last_out(j); 969 if (UseCondCardMark && mem->is_Load()) { 970 assert(mem->Opcode() == Op_LoadB, "unexpected code shape"); 971 // The load is checking if the card has been written so 972 // replace it with zero to fold the test. 973 igvn->replace_node(mem, igvn->intcon(0)); 974 continue; 975 } 976 assert(mem->is_Store(), "store required"); 977 igvn->replace_node(mem, mem->in(MemNode::Memory)); 978 } 979 } 980 } 981 982 void ShenandoahBarrierSetC2::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) const { 983 assert(UseShenandoahGC && is_shenandoah_wb_pre_call(call), ""); 984 Node* c = call->as_Call()->proj_out(TypeFunc::Control); 985 c = c->unique_ctrl_out(); 986 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 987 c = c->unique_ctrl_out(); 988 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 989 Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); 990 assert(iff->is_If(), "expect test"); 991 if (!is_shenandoah_marking_if(igvn, iff)) { 992 c = c->unique_ctrl_out(); 993 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 994 iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); 995 assert(is_shenandoah_marking_if(igvn, iff), "expect marking test"); 996 } 997 Node* cmpx = iff->in(1)->in(1); 998 igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ)); 999 igvn->rehash_node_delayed(call); 1000 call->del_req(call->req()-1); 1001 } 1002 1003 void ShenandoahBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const { 1004 if (node->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(node)) { 1005 igvn->add_users_to_worklist(node); 1006 } 1007 } 1008 1009 void ShenandoahBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const { 1010 for (uint i = 0; i < useful.size(); i++) { 1011 Node* n = useful.at(i); 1012 if (n->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(n)) { 1013 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1014 C->record_for_igvn(n->fast_out(i)); 1015 } 1016 } 1017 } 1018 1019 for (int i = state()->load_reference_barriers_count() - 1; i >= 0; i--) { 1020 ShenandoahLoadReferenceBarrierNode* n = state()->load_reference_barrier(i); 1021 if (!useful.member(n)) { 1022 state()->remove_load_reference_barrier(n); 1023 } 1024 } 1025 } 1026 1027 void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const { 1028 return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena); 1029 } 1030 1031 ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const { 1032 return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state()); 1033 } 1034 1035 // If the BarrierSetC2 state has kept macro nodes in its compilation unit state to be 1036 // expanded later, then now is the time to do so. 1037 bool ShenandoahBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { return false; } 1038 1039 #ifdef ASSERT 1040 void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const { 1041 if (ShenandoahVerifyOptoBarriers && phase == BarrierSetC2::BeforeMacroExpand) { 1042 ShenandoahBarrierC2Support::verify(Compile::current()->root()); 1043 } else if (phase == BarrierSetC2::BeforeCodeGen) { 1044 // Verify Shenandoah pre-barriers 1045 const int gc_state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset()); 1046 1047 Unique_Node_List visited; 1048 Node_List worklist; 1049 // We're going to walk control flow backwards starting from the Root 1050 worklist.push(compile->root()); 1051 while (worklist.size() > 0) { 1052 Node *x = worklist.pop(); 1053 if (x == nullptr || x == compile->top()) { 1054 continue; 1055 } 1056 1057 if (visited.member(x)) { 1058 continue; 1059 } else { 1060 visited.push(x); 1061 } 1062 1063 if (x->is_Region()) { 1064 for (uint i = 1; i < x->req(); i++) { 1065 worklist.push(x->in(i)); 1066 } 1067 } else { 1068 worklist.push(x->in(0)); 1069 // We are looking for the pattern: 1070 // /->ThreadLocal 1071 // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset) 1072 // \->ConI(0) 1073 // We want to verify that the If and the LoadB have the same control 1074 // See GraphKit::g1_write_barrier_pre() 1075 if (x->is_If()) { 1076 IfNode *iff = x->as_If(); 1077 if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) { 1078 CmpNode *cmp = iff->in(1)->in(1)->as_Cmp(); 1079 if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0 1080 && cmp->in(1)->is_Load()) { 1081 LoadNode *load = cmp->in(1)->as_Load(); 1082 if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal 1083 && load->in(2)->in(3)->is_Con() 1084 && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == gc_state_offset) { 1085 1086 Node *if_ctrl = iff->in(0); 1087 Node *load_ctrl = load->in(0); 1088 1089 if (if_ctrl != load_ctrl) { 1090 // Skip possible CProj->NeverBranch in infinite loops 1091 if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj) 1092 && if_ctrl->in(0)->is_NeverBranch()) { 1093 if_ctrl = if_ctrl->in(0)->in(0); 1094 } 1095 } 1096 assert(load_ctrl != nullptr && if_ctrl == load_ctrl, "controls must match"); 1097 } 1098 } 1099 } 1100 } 1101 } 1102 } 1103 } 1104 } 1105 #endif 1106 1107 Node* ShenandoahBarrierSetC2::ideal_node(PhaseGVN* phase, Node* n, bool can_reshape) const { 1108 if (is_shenandoah_wb_pre_call(n)) { 1109 uint cnt = ShenandoahBarrierSetC2::write_barrier_pre_Type()->domain_sig()->cnt(); 1110 if (n->req() > cnt) { 1111 Node* addp = n->in(cnt); 1112 if (has_only_shenandoah_wb_pre_uses(addp)) { 1113 n->del_req(cnt); 1114 if (can_reshape) { 1115 phase->is_IterGVN()->_worklist.push(addp); 1116 } 1117 return n; 1118 } 1119 } 1120 } 1121 if (n->Opcode() == Op_CmpP) { 1122 Node* in1 = n->in(1); 1123 Node* in2 = n->in(2); 1124 1125 // If one input is null, then step over the strong LRB barriers on the other input 1126 if (in1->bottom_type() == TypePtr::NULL_PTR && 1127 !((in2->Opcode() == Op_ShenandoahLoadReferenceBarrier) && 1128 !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in2)->decorators()))) { 1129 in2 = step_over_gc_barrier(in2); 1130 } 1131 if (in2->bottom_type() == TypePtr::NULL_PTR && 1132 !((in1->Opcode() == Op_ShenandoahLoadReferenceBarrier) && 1133 !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in1)->decorators()))) { 1134 in1 = step_over_gc_barrier(in1); 1135 } 1136 1137 if (in1 != n->in(1)) { 1138 n->set_req_X(1, in1, phase); 1139 assert(in2 == n->in(2), "only one change"); 1140 return n; 1141 } 1142 if (in2 != n->in(2)) { 1143 n->set_req_X(2, in2, phase); 1144 return n; 1145 } 1146 } else if (can_reshape && 1147 n->Opcode() == Op_If && 1148 ShenandoahBarrierC2Support::is_heap_stable_test(n) && 1149 n->in(0) != nullptr && 1150 n->outcnt() == 2) { 1151 Node* dom = n->in(0); 1152 Node* prev_dom = n; 1153 int op = n->Opcode(); 1154 int dist = 16; 1155 // Search up the dominator tree for another heap stable test 1156 while (dom->Opcode() != op || // Not same opcode? 1157 !ShenandoahBarrierC2Support::is_heap_stable_test(dom) || // Not same input 1? 1158 prev_dom->in(0) != dom) { // One path of test does not dominate? 1159 if (dist < 0) return nullptr; 1160 1161 dist--; 1162 prev_dom = dom; 1163 dom = IfNode::up_one_dom(dom); 1164 if (!dom) return nullptr; 1165 } 1166 1167 // Check that we did not follow a loop back to ourselves 1168 if (n == dom) { 1169 return nullptr; 1170 } 1171 1172 return n->as_If()->dominated_by(prev_dom, phase->is_IterGVN(), false); 1173 } 1174 1175 return nullptr; 1176 } 1177 1178 bool ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(Node* n) { 1179 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1180 Node* u = n->fast_out(i); 1181 if (!is_shenandoah_wb_pre_call(u)) { 1182 return false; 1183 } 1184 } 1185 return n->outcnt() > 0; 1186 } 1187 1188 bool ShenandoahBarrierSetC2::final_graph_reshaping(Compile* compile, Node* n, uint opcode, Unique_Node_List& dead_nodes) const { 1189 switch (opcode) { 1190 case Op_CallLeaf: 1191 case Op_CallLeafNoFP: { 1192 assert (n->is_Call(), ""); 1193 CallNode *call = n->as_Call(); 1194 if (ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) { 1195 uint cnt = ShenandoahBarrierSetC2::write_barrier_pre_Type()->domain_sig()->cnt(); 1196 if (call->req() > cnt) { 1197 assert(call->req() == cnt + 1, "only one extra input"); 1198 Node *addp = call->in(cnt); 1199 assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?"); 1200 call->del_req(cnt); 1201 } 1202 } 1203 return false; 1204 } 1205 case Op_ShenandoahCompareAndSwapP: 1206 case Op_ShenandoahCompareAndSwapN: 1207 case Op_ShenandoahWeakCompareAndSwapN: 1208 case Op_ShenandoahWeakCompareAndSwapP: 1209 case Op_ShenandoahCompareAndExchangeP: 1210 case Op_ShenandoahCompareAndExchangeN: 1211 return true; 1212 case Op_ShenandoahLoadReferenceBarrier: 1213 assert(false, "should have been expanded already"); 1214 return true; 1215 default: 1216 return false; 1217 } 1218 } 1219 1220 bool ShenandoahBarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const { 1221 switch (opcode) { 1222 case Op_ShenandoahCompareAndExchangeP: 1223 case Op_ShenandoahCompareAndExchangeN: 1224 conn_graph->add_objload_to_connection_graph(n, delayed_worklist); 1225 // fallthrough 1226 case Op_ShenandoahWeakCompareAndSwapP: 1227 case Op_ShenandoahWeakCompareAndSwapN: 1228 case Op_ShenandoahCompareAndSwapP: 1229 case Op_ShenandoahCompareAndSwapN: 1230 conn_graph->add_to_congraph_unsafe_access(n, opcode, delayed_worklist); 1231 return true; 1232 case Op_StoreP: { 1233 Node* adr = n->in(MemNode::Address); 1234 const Type* adr_type = gvn->type(adr); 1235 // Pointer stores in Shenandoah barriers looks like unsafe access. 1236 // Ignore such stores to be able scalar replace non-escaping 1237 // allocations. 1238 if (adr_type->isa_rawptr() && adr->is_AddP()) { 1239 Node* base = conn_graph->get_addp_base(adr); 1240 if (base->Opcode() == Op_LoadP && 1241 base->in(MemNode::Address)->is_AddP()) { 1242 adr = base->in(MemNode::Address); 1243 Node* tls = conn_graph->get_addp_base(adr); 1244 if (tls->Opcode() == Op_ThreadLocal) { 1245 int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 1246 const int buf_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()); 1247 if (offs == buf_offset) { 1248 return true; // Pre barrier previous oop value store. 1249 } 1250 } 1251 } 1252 } 1253 return false; 1254 } 1255 case Op_ShenandoahLoadReferenceBarrier: 1256 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), delayed_worklist); 1257 return true; 1258 default: 1259 // Nothing 1260 break; 1261 } 1262 return false; 1263 } 1264 1265 bool ShenandoahBarrierSetC2::escape_add_final_edges(ConnectionGraph* conn_graph, PhaseGVN* gvn, Node* n, uint opcode) const { 1266 switch (opcode) { 1267 case Op_ShenandoahCompareAndExchangeP: 1268 case Op_ShenandoahCompareAndExchangeN: { 1269 Node *adr = n->in(MemNode::Address); 1270 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, adr, nullptr); 1271 // fallthrough 1272 } 1273 case Op_ShenandoahCompareAndSwapP: 1274 case Op_ShenandoahCompareAndSwapN: 1275 case Op_ShenandoahWeakCompareAndSwapP: 1276 case Op_ShenandoahWeakCompareAndSwapN: 1277 return conn_graph->add_final_edges_unsafe_access(n, opcode); 1278 case Op_ShenandoahLoadReferenceBarrier: 1279 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), nullptr); 1280 return true; 1281 default: 1282 // Nothing 1283 break; 1284 } 1285 return false; 1286 } 1287 1288 bool ShenandoahBarrierSetC2::escape_has_out_with_unsafe_object(Node* n) const { 1289 return n->has_out_with(Op_ShenandoahCompareAndExchangeP) || n->has_out_with(Op_ShenandoahCompareAndExchangeN) || 1290 n->has_out_with(Op_ShenandoahCompareAndSwapP, Op_ShenandoahCompareAndSwapN, Op_ShenandoahWeakCompareAndSwapP, Op_ShenandoahWeakCompareAndSwapN); 1291 1292 } 1293 1294 bool ShenandoahBarrierSetC2::matcher_find_shared_post_visit(Matcher* matcher, Node* n, uint opcode) const { 1295 switch (opcode) { 1296 case Op_ShenandoahCompareAndExchangeP: 1297 case Op_ShenandoahCompareAndExchangeN: 1298 case Op_ShenandoahWeakCompareAndSwapP: 1299 case Op_ShenandoahWeakCompareAndSwapN: 1300 case Op_ShenandoahCompareAndSwapP: 1301 case Op_ShenandoahCompareAndSwapN: { // Convert trinary to binary-tree 1302 Node* newval = n->in(MemNode::ValueIn); 1303 Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn); 1304 Node* pair = new BinaryNode(oldval, newval); 1305 n->set_req(MemNode::ValueIn,pair); 1306 n->del_req(LoadStoreConditionalNode::ExpectedIn); 1307 return true; 1308 } 1309 default: 1310 break; 1311 } 1312 return false; 1313 } 1314 1315 bool ShenandoahBarrierSetC2::matcher_is_store_load_barrier(Node* x, uint xop) const { 1316 return xop == Op_ShenandoahCompareAndExchangeP || 1317 xop == Op_ShenandoahCompareAndExchangeN || 1318 xop == Op_ShenandoahWeakCompareAndSwapP || 1319 xop == Op_ShenandoahWeakCompareAndSwapN || 1320 xop == Op_ShenandoahCompareAndSwapN || 1321 xop == Op_ShenandoahCompareAndSwapP; 1322 }