1 /*
   2  * Copyright (c) 2018, 2023, Red Hat, Inc. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  29 #include "gc/shenandoah/shenandoahForwarding.hpp"
  30 #include "gc/shenandoah/shenandoahHeap.hpp"
  31 #include "gc/shenandoah/shenandoahRuntime.hpp"
  32 #include "gc/shenandoah/shenandoahThreadLocalData.hpp"
  33 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
  34 #include "gc/shenandoah/c2/shenandoahSupport.hpp"
  35 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp"
  36 #include "opto/arraycopynode.hpp"
  37 #include "opto/escape.hpp"
  38 #include "opto/graphKit.hpp"
  39 #include "opto/idealKit.hpp"
  40 #include "opto/macro.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/narrowptrnode.hpp"
  43 #include "opto/rootnode.hpp"
  44 #include "opto/runtime.hpp"
  45 
  46 ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() {
  47   return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2());
  48 }
  49 
  50 ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena)
  51   : _load_reference_barriers(new (comp_arena) GrowableArray<ShenandoahLoadReferenceBarrierNode*>(comp_arena, 8,  0, nullptr)) {
  52 }
  53 
  54 int ShenandoahBarrierSetC2State::load_reference_barriers_count() const {
  55   return _load_reference_barriers->length();
  56 }
  57 
  58 ShenandoahLoadReferenceBarrierNode* ShenandoahBarrierSetC2State::load_reference_barrier(int idx) const {
  59   return _load_reference_barriers->at(idx);
  60 }
  61 
  62 void ShenandoahBarrierSetC2State::add_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) {
  63   assert(!_load_reference_barriers->contains(n), "duplicate entry in barrier list");
  64   _load_reference_barriers->append(n);
  65 }
  66 
  67 void ShenandoahBarrierSetC2State::remove_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) {
  68   if (_load_reference_barriers->contains(n)) {
  69     _load_reference_barriers->remove(n);
  70   }
  71 }
  72 
  73 #define __ kit->
  74 
  75 bool ShenandoahBarrierSetC2::satb_can_remove_pre_barrier(GraphKit* kit, PhaseValues* phase, Node* adr,
  76                                                          BasicType bt, uint adr_idx) const {
  77   intptr_t offset = 0;
  78   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  79   AllocateNode* alloc = AllocateNode::Ideal_allocation(base);
  80 
  81   if (offset == Type::OffsetBot) {
  82     return false; // cannot unalias unless there are precise offsets
  83   }
  84 
  85   if (alloc == nullptr) {
  86     return false; // No allocation found
  87   }
  88 
  89   intptr_t size_in_bytes = type2aelembytes(bt);
  90 
  91   Node* mem = __ memory(adr_idx); // start searching here...
  92 
  93   for (int cnt = 0; cnt < 50; cnt++) {
  94 
  95     if (mem->is_Store()) {
  96 
  97       Node* st_adr = mem->in(MemNode::Address);
  98       intptr_t st_offset = 0;
  99       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 100 
 101       if (st_base == nullptr) {
 102         break; // inscrutable pointer
 103       }
 104 
 105       // Break we have found a store with same base and offset as ours so break
 106       if (st_base == base && st_offset == offset) {
 107         break;
 108       }
 109 
 110       if (st_offset != offset && st_offset != Type::OffsetBot) {
 111         const int MAX_STORE = BytesPerLong;
 112         if (st_offset >= offset + size_in_bytes ||
 113             st_offset <= offset - MAX_STORE ||
 114             st_offset <= offset - mem->as_Store()->memory_size()) {
 115           // Success:  The offsets are provably independent.
 116           // (You may ask, why not just test st_offset != offset and be done?
 117           // The answer is that stores of different sizes can co-exist
 118           // in the same sequence of RawMem effects.  We sometimes initialize
 119           // a whole 'tile' of array elements with a single jint or jlong.)
 120           mem = mem->in(MemNode::Memory);
 121           continue; // advance through independent store memory
 122         }
 123       }
 124 
 125       if (st_base != base
 126           && MemNode::detect_ptr_independence(base, alloc, st_base,
 127                                               AllocateNode::Ideal_allocation(st_base),
 128                                               phase)) {
 129         // Success:  The bases are provably independent.
 130         mem = mem->in(MemNode::Memory);
 131         continue; // advance through independent store memory
 132       }
 133     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 134 
 135       InitializeNode* st_init = mem->in(0)->as_Initialize();
 136       AllocateNode* st_alloc = st_init->allocation();
 137 
 138       // Make sure that we are looking at the same allocation site.
 139       // The alloc variable is guaranteed to not be null here from earlier check.
 140       if (alloc == st_alloc) {
 141         // Check that the initialization is storing null so that no previous store
 142         // has been moved up and directly write a reference
 143         Node* captured_store = st_init->find_captured_store(offset,
 144                                                             type2aelembytes(T_OBJECT),
 145                                                             phase);
 146         if (captured_store == nullptr || captured_store == st_init->zero_memory()) {
 147           return true;
 148         }
 149       }
 150     }
 151 
 152     // Unless there is an explicit 'continue', we must bail out here,
 153     // because 'mem' is an inscrutable memory state (e.g., a call).
 154     break;
 155   }
 156 
 157   return false;
 158 }
 159 
 160 #undef __
 161 #define __ ideal.
 162 
 163 void ShenandoahBarrierSetC2::satb_write_barrier_pre(GraphKit* kit,
 164                                                     bool do_load,
 165                                                     Node* obj,
 166                                                     Node* adr,
 167                                                     uint alias_idx,
 168                                                     Node* val,
 169                                                     const TypeOopPtr* val_type,
 170                                                     Node* pre_val,
 171                                                     BasicType bt) const {
 172   // Some sanity checks
 173   // Note: val is unused in this routine.
 174 
 175   if (do_load) {
 176     // We need to generate the load of the previous value
 177     assert(adr != nullptr, "where are loading from?");
 178     assert(pre_val == nullptr, "loaded already?");
 179     assert(val_type != nullptr, "need a type");
 180 
 181     if (ReduceInitialCardMarks
 182         && satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) {
 183       return;
 184     }
 185 
 186   } else {
 187     // In this case both val_type and alias_idx are unused.
 188     assert(pre_val != nullptr, "must be loaded already");
 189     // Nothing to be done if pre_val is null.
 190     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
 191     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
 192   }
 193   assert(bt == T_OBJECT, "or we shouldn't be here");
 194 
 195   IdealKit ideal(kit, true);
 196 
 197   Node* tls = __ thread(); // ThreadLocalStorage
 198 
 199   Node* no_base = __ top();
 200   Node* zero  = __ ConI(0);
 201   Node* zeroX = __ ConX(0);
 202 
 203   float likely  = PROB_LIKELY(0.999);
 204   float unlikely  = PROB_UNLIKELY(0.999);
 205 
 206   // Offsets into the thread
 207   const int index_offset   = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset());
 208   const int buffer_offset  = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
 209 
 210   // Now the actual pointers into the thread
 211   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
 212   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
 213 
 214   // Now some of the values
 215   Node* marking;
 216   Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset())));
 217   Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw);
 218   marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING));
 219   assert(ShenandoahBarrierC2Support::is_gc_state_load(ld), "Should match the shape");
 220 
 221   // if (!marking)
 222   __ if_then(marking, BoolTest::ne, zero, unlikely); {
 223     BasicType index_bt = TypeX_X->basic_type();
 224     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading Shenandoah SATBMarkQueue::_index with wrong size.");
 225     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
 226 
 227     if (do_load) {
 228       // load original value
 229       // alias_idx correct??
 230       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
 231     }
 232 
 233     // if (pre_val != nullptr)
 234     __ if_then(pre_val, BoolTest::ne, kit->null()); {
 235       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
 236 
 237       // is the queue for this thread full?
 238       __ if_then(index, BoolTest::ne, zeroX, likely); {
 239 
 240         // decrement the index
 241         Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
 242 
 243         // Now get the buffer location we will log the previous value into and store it
 244         Node *log_addr = __ AddP(no_base, buffer, next_index);
 245         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
 246         // update the index
 247         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
 248 
 249       } __ else_(); {
 250 
 251         // logging buffer is full, call the runtime
 252         const TypeFunc *tf = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type();
 253         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), "shenandoah_wb_pre", pre_val, tls);
 254       } __ end_if();  // (!index)
 255     } __ end_if();  // (pre_val != nullptr)
 256   } __ end_if();  // (!marking)
 257 
 258   // Final sync IdealKit and GraphKit.
 259   kit->final_sync(ideal);
 260 
 261   if (ShenandoahSATBBarrier && adr != nullptr) {
 262     Node* c = kit->control();
 263     Node* call = c->in(1)->in(1)->in(1)->in(0);
 264     assert(is_shenandoah_wb_pre_call(call), "shenandoah_wb_pre call expected");
 265     call->add_req(adr);
 266   }
 267 }
 268 
 269 bool ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(Node* call) {
 270   return call->is_CallLeaf() &&
 271          call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry);
 272 }
 273 
 274 bool ShenandoahBarrierSetC2::is_shenandoah_lrb_call(Node* call) {
 275   if (!call->is_CallLeaf()) {
 276     return false;
 277   }
 278 
 279   address entry_point = call->as_CallLeaf()->entry_point();
 280   return (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong)) ||
 281          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong_narrow)) ||
 282          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak)) ||
 283          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak_narrow)) ||
 284          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom));
 285 }
 286 
 287 bool ShenandoahBarrierSetC2::is_shenandoah_marking_if(PhaseValues* phase, Node* n) {
 288   if (n->Opcode() != Op_If) {
 289     return false;
 290   }
 291 
 292   Node* bol = n->in(1);
 293   assert(bol->is_Bool(), "");
 294   Node* cmpx = bol->in(1);
 295   if (bol->as_Bool()->_test._test == BoolTest::ne &&
 296       cmpx->is_Cmp() && cmpx->in(2) == phase->intcon(0) &&
 297       is_shenandoah_state_load(cmpx->in(1)->in(1)) &&
 298       cmpx->in(1)->in(2)->is_Con() &&
 299       cmpx->in(1)->in(2) == phase->intcon(ShenandoahHeap::MARKING)) {
 300     return true;
 301   }
 302 
 303   return false;
 304 }
 305 
 306 bool ShenandoahBarrierSetC2::is_shenandoah_state_load(Node* n) {
 307   if (!n->is_Load()) return false;
 308   const int state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset());
 309   return n->in(2)->is_AddP() && n->in(2)->in(2)->Opcode() == Op_ThreadLocal
 310          && n->in(2)->in(3)->is_Con()
 311          && n->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset;
 312 }
 313 
 314 void ShenandoahBarrierSetC2::shenandoah_write_barrier_pre(GraphKit* kit,
 315                                                           bool do_load,
 316                                                           Node* obj,
 317                                                           Node* adr,
 318                                                           uint alias_idx,
 319                                                           Node* val,
 320                                                           const TypeOopPtr* val_type,
 321                                                           Node* pre_val,
 322                                                           BasicType bt) const {
 323   if (ShenandoahSATBBarrier) {
 324     IdealKit ideal(kit);
 325     kit->sync_kit(ideal);
 326 
 327     satb_write_barrier_pre(kit, do_load, obj, adr, alias_idx, val, val_type, pre_val, bt);
 328 
 329     ideal.sync_kit(kit);
 330     kit->final_sync(ideal);
 331   }
 332 }
 333 
 334 // Helper that guards and inserts a pre-barrier.
 335 void ShenandoahBarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset,
 336                                                 Node* pre_val, bool need_mem_bar) const {
 337   // We could be accessing the referent field of a reference object. If so, when Shenandoah
 338   // is enabled, we need to log the value in the referent field in an SATB buffer.
 339   // This routine performs some compile time filters and generates suitable
 340   // runtime filters that guard the pre-barrier code.
 341   // Also add memory barrier for non volatile load from the referent field
 342   // to prevent commoning of loads across safepoint.
 343 
 344   // Some compile time checks.
 345 
 346   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
 347   const TypeX* otype = offset->find_intptr_t_type();
 348   if (otype != nullptr && otype->is_con() &&
 349       otype->get_con() != java_lang_ref_Reference::referent_offset()) {
 350     // Constant offset but not the reference_offset so just return
 351     return;
 352   }
 353 
 354   // We only need to generate the runtime guards for instances.
 355   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
 356   if (btype != nullptr) {
 357     if (btype->isa_aryptr()) {
 358       // Array type so nothing to do
 359       return;
 360     }
 361 
 362     const TypeInstPtr* itype = btype->isa_instptr();
 363     if (itype != nullptr) {
 364       // Can the klass of base_oop be statically determined to be
 365       // _not_ a sub-class of Reference and _not_ Object?
 366       ciKlass* klass = itype->instance_klass();
 367       if (klass->is_loaded() &&
 368           !klass->is_subtype_of(kit->env()->Reference_klass()) &&
 369           !kit->env()->Object_klass()->is_subtype_of(klass)) {
 370         return;
 371       }
 372     }
 373   }
 374 
 375   // The compile time filters did not reject base_oop/offset so
 376   // we need to generate the following runtime filters
 377   //
 378   // if (offset == java_lang_ref_Reference::_reference_offset) {
 379   //   if (instance_of(base, java.lang.ref.Reference)) {
 380   //     pre_barrier(_, pre_val, ...);
 381   //   }
 382   // }
 383 
 384   float likely   = PROB_LIKELY(  0.999);
 385   float unlikely = PROB_UNLIKELY(0.999);
 386 
 387   IdealKit ideal(kit);
 388 
 389   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset());
 390 
 391   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
 392       // Update graphKit memory and control from IdealKit.
 393       kit->sync_kit(ideal);
 394 
 395       Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass()));
 396       Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con);
 397 
 398       // Update IdealKit memory and control from graphKit.
 399       __ sync_kit(kit);
 400 
 401       Node* one = __ ConI(1);
 402       // is_instof == 0 if base_oop == nullptr
 403       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
 404 
 405         // Update graphKit from IdeakKit.
 406         kit->sync_kit(ideal);
 407 
 408         // Use the pre-barrier to record the value in the referent field
 409         satb_write_barrier_pre(kit, false /* do_load */,
 410                                nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */,
 411                                pre_val /* pre_val */,
 412                                T_OBJECT);
 413         if (need_mem_bar) {
 414           // Add memory barrier to prevent commoning reads from this field
 415           // across safepoint since GC can change its value.
 416           kit->insert_mem_bar(Op_MemBarCPUOrder);
 417         }
 418         // Update IdealKit from graphKit.
 419         __ sync_kit(kit);
 420 
 421       } __ end_if(); // _ref_type != ref_none
 422   } __ end_if(); // offset == referent_offset
 423 
 424   // Final sync IdealKit and GraphKit.
 425   kit->final_sync(ideal);
 426 }
 427 
 428 #undef __
 429 
 430 const TypeFunc* ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type() {
 431   const Type **fields = TypeTuple::fields(2);
 432   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 433   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 434   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 435 
 436   // create result type (range)
 437   fields = TypeTuple::fields(0);
 438   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 439 
 440   return TypeFunc::make(domain, range);
 441 }
 442 
 443 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type() {
 444   const Type **fields = TypeTuple::fields(1);
 445   fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL; // src oop
 446   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 447 
 448   // create result type (range)
 449   fields = TypeTuple::fields(0);
 450   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 451 
 452   return TypeFunc::make(domain, range);
 453 }
 454 
 455 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_load_reference_barrier_Type() {
 456   const Type **fields = TypeTuple::fields(2);
 457   fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM; // original field value
 458   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // original load address
 459 
 460   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 461 
 462   // create result type (range)
 463   fields = TypeTuple::fields(1);
 464   fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM;
 465   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 466 
 467   return TypeFunc::make(domain, range);
 468 }
 469 
 470 Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
 471   DecoratorSet decorators = access.decorators();
 472 
 473   const TypePtr* adr_type = access.addr().type();
 474   Node* adr = access.addr().node();
 475 
 476   if (!access.is_oop()) {
 477     return BarrierSetC2::store_at_resolved(access, val);
 478   }
 479 
 480   if (access.is_parse_access()) {
 481     C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 482     GraphKit* kit = parse_access.kit();
 483 
 484     uint adr_idx = kit->C->get_alias_index(adr_type);
 485     assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
 486     shenandoah_write_barrier_pre(kit, true /* do_load */, /*kit->control(),*/ access.base(), adr, adr_idx, val.node(),
 487                                  static_cast<const TypeOopPtr*>(val.type()), nullptr /* pre_val */, access.type());
 488   }
 489   return BarrierSetC2::store_at_resolved(access, val);
 490 }
 491 
 492 Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
 493   // 1: non-reference load, no additional barrier is needed
 494   if (!access.is_oop()) {
 495     return BarrierSetC2::load_at_resolved(access, val_type);
 496   }
 497 
 498   Node* load = BarrierSetC2::load_at_resolved(access, val_type);
 499   DecoratorSet decorators = access.decorators();
 500   BasicType type = access.type();
 501 
 502   // 2: apply LRB if needed
 503   if (ShenandoahBarrierSet::need_load_reference_barrier(decorators, type)) {
 504     load = new ShenandoahLoadReferenceBarrierNode(nullptr, load, decorators);
 505     if (access.is_parse_access()) {
 506       load = static_cast<C2ParseAccess &>(access).kit()->gvn().transform(load);
 507     } else {
 508       load = static_cast<C2OptAccess &>(access).gvn().transform(load);
 509     }
 510   }
 511 
 512   // 3: apply keep-alive barrier for java.lang.ref.Reference if needed
 513   if (ShenandoahBarrierSet::need_keep_alive_barrier(decorators, type)) {
 514     Node* top = Compile::current()->top();
 515     Node* adr = access.addr().node();
 516     Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top;
 517     Node* obj = access.base();
 518 
 519     bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 520     bool on_weak_ref = (decorators & (ON_WEAK_OOP_REF | ON_PHANTOM_OOP_REF)) != 0;
 521     bool keep_alive = (decorators & AS_NO_KEEPALIVE) == 0;
 522 
 523     // If we are reading the value of the referent field of a Reference
 524     // object (either by using Unsafe directly or through reflection)
 525     // then, if SATB is enabled, we need to record the referent in an
 526     // SATB log buffer using the pre-barrier mechanism.
 527     // Also we need to add memory barrier to prevent commoning reads
 528     // from this field across safepoint since GC can change its value.
 529     if (!on_weak_ref || (unknown && (offset == top || obj == top)) || !keep_alive) {
 530       return load;
 531     }
 532 
 533     assert(access.is_parse_access(), "entry not supported at optimization time");
 534     C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 535     GraphKit* kit = parse_access.kit();
 536     bool mismatched = (decorators & C2_MISMATCHED) != 0;
 537     bool is_unordered = (decorators & MO_UNORDERED) != 0;
 538     bool in_native = (decorators & IN_NATIVE) != 0;
 539     bool need_cpu_mem_bar = !is_unordered || mismatched || in_native;
 540 
 541     if (on_weak_ref) {
 542       // Use the pre-barrier to record the value in the referent field
 543       satb_write_barrier_pre(kit, false /* do_load */,
 544                              nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */,
 545                              load /* pre_val */, T_OBJECT);
 546       // Add memory barrier to prevent commoning reads from this field
 547       // across safepoint since GC can change its value.
 548       kit->insert_mem_bar(Op_MemBarCPUOrder);
 549     } else if (unknown) {
 550       // We do not require a mem bar inside pre_barrier if need_mem_bar
 551       // is set: the barriers would be emitted by us.
 552       insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar);
 553     }
 554   }
 555 
 556   return load;
 557 }
 558 
 559 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
 560                                                    Node* new_val, const Type* value_type) const {
 561   GraphKit* kit = access.kit();
 562   if (access.is_oop()) {
 563     shenandoah_write_barrier_pre(kit, false /* do_load */,
 564                                  nullptr, nullptr, max_juint, nullptr, nullptr,
 565                                  expected_val /* pre_val */, T_OBJECT);
 566 
 567     MemNode::MemOrd mo = access.mem_node_mo();
 568     Node* mem = access.memory();
 569     Node* adr = access.addr().node();
 570     const TypePtr* adr_type = access.addr().type();
 571     Node* load_store = nullptr;
 572 
 573 #ifdef _LP64
 574     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 575       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
 576       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
 577       if (ShenandoahCASBarrier) {
 578         load_store = kit->gvn().transform(new ShenandoahCompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
 579       } else {
 580         load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
 581       }
 582     } else
 583 #endif
 584     {
 585       if (ShenandoahCASBarrier) {
 586         load_store = kit->gvn().transform(new ShenandoahCompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
 587       } else {
 588         load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
 589       }
 590     }
 591 
 592     access.set_raw_access(load_store);
 593     pin_atomic_op(access);
 594 
 595 #ifdef _LP64
 596     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 597       load_store = kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
 598     }
 599 #endif
 600     load_store = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, load_store, access.decorators()));
 601     return load_store;
 602   }
 603   return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
 604 }
 605 
 606 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
 607                                                               Node* new_val, const Type* value_type) const {
 608   GraphKit* kit = access.kit();
 609   if (access.is_oop()) {
 610     shenandoah_write_barrier_pre(kit, false /* do_load */,
 611                                  nullptr, nullptr, max_juint, nullptr, nullptr,
 612                                  expected_val /* pre_val */, T_OBJECT);
 613     DecoratorSet decorators = access.decorators();
 614     MemNode::MemOrd mo = access.mem_node_mo();
 615     Node* mem = access.memory();
 616     bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0;
 617     Node* load_store = nullptr;
 618     Node* adr = access.addr().node();
 619 #ifdef _LP64
 620     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 621       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
 622       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
 623       if (ShenandoahCASBarrier) {
 624         if (is_weak_cas) {
 625           load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 626         } else {
 627           load_store = kit->gvn().transform(new ShenandoahCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 628         }
 629       } else {
 630         if (is_weak_cas) {
 631           load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 632         } else {
 633           load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 634         }
 635       }
 636     } else
 637 #endif
 638     {
 639       if (ShenandoahCASBarrier) {
 640         if (is_weak_cas) {
 641           load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 642         } else {
 643           load_store = kit->gvn().transform(new ShenandoahCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 644         }
 645       } else {
 646         if (is_weak_cas) {
 647           load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 648         } else {
 649           load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 650         }
 651       }
 652     }
 653     access.set_raw_access(load_store);
 654     pin_atomic_op(access);
 655     return load_store;
 656   }
 657   return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
 658 }
 659 
 660 Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const {
 661   GraphKit* kit = access.kit();
 662   Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type);
 663   if (access.is_oop()) {
 664     result = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, result, access.decorators()));
 665     shenandoah_write_barrier_pre(kit, false /* do_load */,
 666                                  nullptr, nullptr, max_juint, nullptr, nullptr,
 667                                  result /* pre_val */, T_OBJECT);
 668   }
 669   return result;
 670 }
 671 
 672 
 673 bool ShenandoahBarrierSetC2::is_gc_pre_barrier_node(Node* node) const {
 674   return is_shenandoah_wb_pre_call(node);
 675 }
 676 
 677 // Support for GC barriers emitted during parsing
 678 bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const {
 679   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) return true;
 680   if (node->Opcode() != Op_CallLeaf && node->Opcode() != Op_CallLeafNoFP) {
 681     return false;
 682   }
 683   CallLeafNode *call = node->as_CallLeaf();
 684   if (call->_name == nullptr) {
 685     return false;
 686   }
 687 
 688   return strcmp(call->_name, "shenandoah_clone_barrier") == 0 ||
 689          strcmp(call->_name, "shenandoah_cas_obj") == 0 ||
 690          strcmp(call->_name, "shenandoah_wb_pre") == 0;
 691 }
 692 
 693 Node* ShenandoahBarrierSetC2::step_over_gc_barrier(Node* c) const {
 694   if (c == nullptr) {
 695     return c;
 696   }
 697   if (c->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 698     return c->in(ShenandoahLoadReferenceBarrierNode::ValueIn);
 699   }
 700   return c;
 701 }
 702 
 703 bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const {
 704   return !ShenandoahBarrierC2Support::expand(C, igvn);
 705 }
 706 
 707 bool ShenandoahBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const {
 708   if (mode == LoopOptsShenandoahExpand) {
 709     assert(UseShenandoahGC, "only for shenandoah");
 710     ShenandoahBarrierC2Support::pin_and_expand(phase);
 711     return true;
 712   } else if (mode == LoopOptsShenandoahPostExpand) {
 713     assert(UseShenandoahGC, "only for shenandoah");
 714     visited.clear();
 715     ShenandoahBarrierC2Support::optimize_after_expansion(visited, nstack, worklist, phase);
 716     return true;
 717   }
 718   return false;
 719 }
 720 
 721 bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, bool is_clone_instance, ArrayCopyPhase phase) const {
 722   bool is_oop = is_reference_type(type);
 723   if (!is_oop) {
 724     return false;
 725   }
 726   if (ShenandoahSATBBarrier && tightly_coupled_alloc) {
 727     if (phase == Optimization) {
 728       return false;
 729     }
 730     return !is_clone;
 731   }
 732   return true;
 733 }
 734 
 735 bool ShenandoahBarrierSetC2::clone_needs_barrier(Node* src, PhaseGVN& gvn) {
 736   const TypeOopPtr* src_type = gvn.type(src)->is_oopptr();
 737   if (src_type->isa_instptr() != nullptr) {
 738     ciInstanceKlass* ik = src_type->is_instptr()->instance_klass();
 739     if ((src_type->klass_is_exact() || !ik->has_subklass()) && !ik->has_injected_fields()) {
 740       if (ik->has_object_fields()) {
 741         return true;
 742       } else {
 743         if (!src_type->klass_is_exact()) {
 744           Compile::current()->dependencies()->assert_leaf_type(ik);
 745         }
 746       }
 747     } else {
 748       return true;
 749         }
 750   } else if (src_type->isa_aryptr()) {
 751     BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type();
 752     if (is_reference_type(src_elem, true)) {
 753       return true;
 754     }
 755   } else {
 756     return true;
 757   }
 758   return false;
 759 }
 760 
 761 void ShenandoahBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
 762   Node* ctrl = ac->in(TypeFunc::Control);
 763   Node* mem = ac->in(TypeFunc::Memory);
 764   Node* src_base = ac->in(ArrayCopyNode::Src);
 765   Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
 766   Node* dest_base = ac->in(ArrayCopyNode::Dest);
 767   Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
 768   Node* length = ac->in(ArrayCopyNode::Length);
 769 
 770   Node* src = phase->basic_plus_adr(src_base, src_offset);
 771   Node* dest = phase->basic_plus_adr(dest_base, dest_offset);
 772 
 773   if (ShenandoahCloneBarrier && clone_needs_barrier(src, phase->igvn())) {
 774     // Check if heap is has forwarded objects. If it does, we need to call into the special
 775     // routine that would fix up source references before we can continue.
 776 
 777     enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT };
 778     Node* region = new RegionNode(PATH_LIMIT);
 779     Node* mem_phi = new PhiNode(region, Type::MEMORY, TypeRawPtr::BOTTOM);
 780 
 781     Node* thread = phase->transform_later(new ThreadLocalNode());
 782     Node* offset = phase->MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
 783     Node* gc_state_addr = phase->transform_later(new AddPNode(phase->C->top(), thread, offset));
 784 
 785     uint gc_state_idx = Compile::AliasIdxRaw;
 786     const TypePtr* gc_state_adr_type = nullptr; // debug-mode-only argument
 787     debug_only(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx));
 788 
 789     Node* gc_state    = phase->transform_later(new LoadBNode(ctrl, mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered));
 790     Node* stable_and  = phase->transform_later(new AndINode(gc_state, phase->igvn().intcon(ShenandoahHeap::HAS_FORWARDED)));
 791     Node* stable_cmp  = phase->transform_later(new CmpINode(stable_and, phase->igvn().zerocon(T_INT)));
 792     Node* stable_test = phase->transform_later(new BoolNode(stable_cmp, BoolTest::ne));
 793 
 794     IfNode* stable_iff  = phase->transform_later(new IfNode(ctrl, stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN))->as_If();
 795     Node* stable_ctrl   = phase->transform_later(new IfFalseNode(stable_iff));
 796     Node* unstable_ctrl = phase->transform_later(new IfTrueNode(stable_iff));
 797 
 798     // Heap is stable, no need to do anything additional
 799     region->init_req(_heap_stable, stable_ctrl);
 800     mem_phi->init_req(_heap_stable, mem);
 801 
 802     // Heap is unstable, call into clone barrier stub
 803     Node* call = phase->make_leaf_call(unstable_ctrl, mem,
 804                     ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type(),
 805                     CAST_FROM_FN_PTR(address, ShenandoahRuntime::shenandoah_clone_barrier),
 806                     "shenandoah_clone",
 807                     TypeRawPtr::BOTTOM,
 808                     src_base);
 809     call = phase->transform_later(call);
 810 
 811     ctrl = phase->transform_later(new ProjNode(call, TypeFunc::Control));
 812     mem = phase->transform_later(new ProjNode(call, TypeFunc::Memory));
 813     region->init_req(_heap_unstable, ctrl);
 814     mem_phi->init_req(_heap_unstable, mem);
 815 
 816     // Wire up the actual arraycopy stub now
 817     ctrl = phase->transform_later(region);
 818     mem = phase->transform_later(mem_phi);
 819 
 820     const char* name = "arraycopy";
 821     call = phase->make_leaf_call(ctrl, mem,
 822                                  OptoRuntime::fast_arraycopy_Type(),
 823                                  phase->basictype2arraycopy(T_LONG, nullptr, nullptr, true, name, true),
 824                                  name, TypeRawPtr::BOTTOM,
 825                                  src, dest, length
 826                                  LP64_ONLY(COMMA phase->top()));
 827     call = phase->transform_later(call);
 828 
 829     // Hook up the whole thing into the graph
 830     phase->replace_node(ac, call);
 831   } else {
 832     BarrierSetC2::clone_at_expansion(phase, ac);
 833   }
 834 }
 835 
 836 
 837 // Support for macro expanded GC barriers
 838 void ShenandoahBarrierSetC2::register_potential_barrier_node(Node* node) const {
 839   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 840     state()->add_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node);
 841   }
 842 }
 843 
 844 void ShenandoahBarrierSetC2::unregister_potential_barrier_node(Node* node) const {
 845   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 846     state()->remove_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node);
 847   }
 848 }
 849 
 850 void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseIterGVN* igvn, Node* n) const {
 851   if (is_shenandoah_wb_pre_call(n)) {
 852     shenandoah_eliminate_wb_pre(n, igvn);
 853   }
 854 }
 855 
 856 void ShenandoahBarrierSetC2::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) const {
 857   assert(UseShenandoahGC && is_shenandoah_wb_pre_call(call), "");
 858   Node* c = call->as_Call()->proj_out(TypeFunc::Control);
 859   c = c->unique_ctrl_out();
 860   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 861   c = c->unique_ctrl_out();
 862   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 863   Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
 864   assert(iff->is_If(), "expect test");
 865   if (!is_shenandoah_marking_if(igvn, iff)) {
 866     c = c->unique_ctrl_out();
 867     assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 868     iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
 869     assert(is_shenandoah_marking_if(igvn, iff), "expect marking test");
 870   }
 871   Node* cmpx = iff->in(1)->in(1);
 872   igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ));
 873   igvn->rehash_node_delayed(call);
 874   call->del_req(call->req()-1);
 875 }
 876 
 877 void ShenandoahBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const {
 878   if (node->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(node)) {
 879     igvn->add_users_to_worklist(node);
 880   }
 881 }
 882 
 883 void ShenandoahBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const {
 884   for (uint i = 0; i < useful.size(); i++) {
 885     Node* n = useful.at(i);
 886     if (n->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(n)) {
 887       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 888         C->record_for_igvn(n->fast_out(i));
 889       }
 890     }
 891   }
 892 
 893   for (int i = state()->load_reference_barriers_count() - 1; i >= 0; i--) {
 894     ShenandoahLoadReferenceBarrierNode* n = state()->load_reference_barrier(i);
 895     if (!useful.member(n)) {
 896       state()->remove_load_reference_barrier(n);
 897     }
 898   }
 899 }
 900 
 901 void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const {
 902   return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena);
 903 }
 904 
 905 ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const {
 906   return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state());
 907 }
 908 
 909 // If the BarrierSetC2 state has kept macro nodes in its compilation unit state to be
 910 // expanded later, then now is the time to do so.
 911 bool ShenandoahBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { return false; }
 912 
 913 #ifdef ASSERT
 914 void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const {
 915   if (ShenandoahVerifyOptoBarriers && phase == BarrierSetC2::BeforeMacroExpand) {
 916     ShenandoahBarrierC2Support::verify(Compile::current()->root());
 917   } else if (phase == BarrierSetC2::BeforeCodeGen) {
 918     // Verify Shenandoah pre-barriers
 919     const int gc_state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset());
 920 
 921     Unique_Node_List visited;
 922     Node_List worklist;
 923     // We're going to walk control flow backwards starting from the Root
 924     worklist.push(compile->root());
 925     while (worklist.size() > 0) {
 926       Node *x = worklist.pop();
 927       if (x == nullptr || x == compile->top()) {
 928         continue;
 929       }
 930 
 931       if (visited.member(x)) {
 932         continue;
 933       } else {
 934         visited.push(x);
 935       }
 936 
 937       if (x->is_Region()) {
 938         for (uint i = 1; i < x->req(); i++) {
 939           worklist.push(x->in(i));
 940         }
 941       } else {
 942         worklist.push(x->in(0));
 943         // We are looking for the pattern:
 944         //                            /->ThreadLocal
 945         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
 946         //              \->ConI(0)
 947         // We want to verify that the If and the LoadB have the same control
 948         // See GraphKit::g1_write_barrier_pre()
 949         if (x->is_If()) {
 950           IfNode *iff = x->as_If();
 951           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
 952             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
 953             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
 954                 && cmp->in(1)->is_Load()) {
 955               LoadNode *load = cmp->in(1)->as_Load();
 956               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
 957                   && load->in(2)->in(3)->is_Con()
 958                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == gc_state_offset) {
 959 
 960                 Node *if_ctrl = iff->in(0);
 961                 Node *load_ctrl = load->in(0);
 962 
 963                 if (if_ctrl != load_ctrl) {
 964                   // Skip possible CProj->NeverBranch in infinite loops
 965                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
 966                       && if_ctrl->in(0)->is_NeverBranch()) {
 967                     if_ctrl = if_ctrl->in(0)->in(0);
 968                   }
 969                 }
 970                 assert(load_ctrl != nullptr && if_ctrl == load_ctrl, "controls must match");
 971               }
 972             }
 973           }
 974         }
 975       }
 976     }
 977   }
 978 }
 979 #endif
 980 
 981 Node* ShenandoahBarrierSetC2::ideal_node(PhaseGVN* phase, Node* n, bool can_reshape) const {
 982   if (is_shenandoah_wb_pre_call(n)) {
 983     uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain_sig()->cnt();
 984     if (n->req() > cnt) {
 985       Node* addp = n->in(cnt);
 986       if (has_only_shenandoah_wb_pre_uses(addp)) {
 987         n->del_req(cnt);
 988         if (can_reshape) {
 989           phase->is_IterGVN()->_worklist.push(addp);
 990         }
 991         return n;
 992       }
 993     }
 994   }
 995   if (n->Opcode() == Op_CmpP) {
 996     Node* in1 = n->in(1);
 997     Node* in2 = n->in(2);
 998 
 999     // If one input is null, then step over the strong LRB barriers on the other input
1000     if (in1->bottom_type() == TypePtr::NULL_PTR &&
1001         !((in2->Opcode() == Op_ShenandoahLoadReferenceBarrier) &&
1002           !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in2)->decorators()))) {
1003       in2 = step_over_gc_barrier(in2);
1004     }
1005     if (in2->bottom_type() == TypePtr::NULL_PTR &&
1006         !((in1->Opcode() == Op_ShenandoahLoadReferenceBarrier) &&
1007           !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in1)->decorators()))) {
1008       in1 = step_over_gc_barrier(in1);
1009     }
1010 
1011     if (in1 != n->in(1)) {
1012       n->set_req_X(1, in1, phase);
1013       assert(in2 == n->in(2), "only one change");
1014       return n;
1015     }
1016     if (in2 != n->in(2)) {
1017       n->set_req_X(2, in2, phase);
1018       return n;
1019     }
1020   } else if (can_reshape &&
1021              n->Opcode() == Op_If &&
1022              ShenandoahBarrierC2Support::is_heap_stable_test(n) &&
1023              n->in(0) != nullptr &&
1024              n->outcnt() == 2) {
1025     Node* dom = n->in(0);
1026     Node* prev_dom = n;
1027     int op = n->Opcode();
1028     int dist = 16;
1029     // Search up the dominator tree for another heap stable test
1030     while (dom->Opcode() != op    ||  // Not same opcode?
1031            !ShenandoahBarrierC2Support::is_heap_stable_test(dom) ||  // Not same input 1?
1032            prev_dom->in(0) != dom) {  // One path of test does not dominate?
1033       if (dist < 0) return nullptr;
1034 
1035       dist--;
1036       prev_dom = dom;
1037       dom = IfNode::up_one_dom(dom);
1038       if (!dom) return nullptr;
1039     }
1040 
1041     // Check that we did not follow a loop back to ourselves
1042     if (n == dom) {
1043       return nullptr;
1044     }
1045 
1046     return n->as_If()->dominated_by(prev_dom, phase->is_IterGVN(), false);
1047   }
1048 
1049   return nullptr;
1050 }
1051 
1052 bool ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(Node* n) {
1053   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1054     Node* u = n->fast_out(i);
1055     if (!is_shenandoah_wb_pre_call(u)) {
1056       return false;
1057     }
1058   }
1059   return n->outcnt() > 0;
1060 }
1061 
1062 bool ShenandoahBarrierSetC2::final_graph_reshaping(Compile* compile, Node* n, uint opcode, Unique_Node_List& dead_nodes) const {
1063   switch (opcode) {
1064     case Op_CallLeaf:
1065     case Op_CallLeafNoFP: {
1066       assert (n->is_Call(), "");
1067       CallNode *call = n->as_Call();
1068       if (ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) {
1069         uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain_sig()->cnt();
1070         if (call->req() > cnt) {
1071           assert(call->req() == cnt + 1, "only one extra input");
1072           Node *addp = call->in(cnt);
1073           assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?");
1074           call->del_req(cnt);
1075         }
1076       }
1077       return false;
1078     }
1079     case Op_ShenandoahCompareAndSwapP:
1080     case Op_ShenandoahCompareAndSwapN:
1081     case Op_ShenandoahWeakCompareAndSwapN:
1082     case Op_ShenandoahWeakCompareAndSwapP:
1083     case Op_ShenandoahCompareAndExchangeP:
1084     case Op_ShenandoahCompareAndExchangeN:
1085       return true;
1086     case Op_ShenandoahLoadReferenceBarrier:
1087       assert(false, "should have been expanded already");
1088       return true;
1089     default:
1090       return false;
1091   }
1092 }
1093 
1094 bool ShenandoahBarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const {
1095   switch (opcode) {
1096     case Op_ShenandoahCompareAndExchangeP:
1097     case Op_ShenandoahCompareAndExchangeN:
1098       conn_graph->add_objload_to_connection_graph(n, delayed_worklist);
1099       // fallthrough
1100     case Op_ShenandoahWeakCompareAndSwapP:
1101     case Op_ShenandoahWeakCompareAndSwapN:
1102     case Op_ShenandoahCompareAndSwapP:
1103     case Op_ShenandoahCompareAndSwapN:
1104       conn_graph->add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
1105       return true;
1106     case Op_StoreP: {
1107       Node* adr = n->in(MemNode::Address);
1108       const Type* adr_type = gvn->type(adr);
1109       // Pointer stores in Shenandoah barriers looks like unsafe access.
1110       // Ignore such stores to be able scalar replace non-escaping
1111       // allocations.
1112       if (adr_type->isa_rawptr() && adr->is_AddP()) {
1113         Node* base = conn_graph->get_addp_base(adr);
1114         if (base->Opcode() == Op_LoadP &&
1115           base->in(MemNode::Address)->is_AddP()) {
1116           adr = base->in(MemNode::Address);
1117           Node* tls = conn_graph->get_addp_base(adr);
1118           if (tls->Opcode() == Op_ThreadLocal) {
1119              int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
1120              const int buf_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
1121              if (offs == buf_offset) {
1122                return true; // Pre barrier previous oop value store.
1123              }
1124           }
1125         }
1126       }
1127       return false;
1128     }
1129     case Op_ShenandoahLoadReferenceBarrier:
1130       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), delayed_worklist);
1131       return true;
1132     default:
1133       // Nothing
1134       break;
1135   }
1136   return false;
1137 }
1138 
1139 bool ShenandoahBarrierSetC2::escape_add_final_edges(ConnectionGraph* conn_graph, PhaseGVN* gvn, Node* n, uint opcode) const {
1140   switch (opcode) {
1141     case Op_ShenandoahCompareAndExchangeP:
1142     case Op_ShenandoahCompareAndExchangeN: {
1143       Node *adr = n->in(MemNode::Address);
1144       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, adr, nullptr);
1145       // fallthrough
1146     }
1147     case Op_ShenandoahCompareAndSwapP:
1148     case Op_ShenandoahCompareAndSwapN:
1149     case Op_ShenandoahWeakCompareAndSwapP:
1150     case Op_ShenandoahWeakCompareAndSwapN:
1151       return conn_graph->add_final_edges_unsafe_access(n, opcode);
1152     case Op_ShenandoahLoadReferenceBarrier:
1153       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), nullptr);
1154       return true;
1155     default:
1156       // Nothing
1157       break;
1158   }
1159   return false;
1160 }
1161 
1162 bool ShenandoahBarrierSetC2::escape_has_out_with_unsafe_object(Node* n) const {
1163   return n->has_out_with(Op_ShenandoahCompareAndExchangeP) || n->has_out_with(Op_ShenandoahCompareAndExchangeN) ||
1164          n->has_out_with(Op_ShenandoahCompareAndSwapP, Op_ShenandoahCompareAndSwapN, Op_ShenandoahWeakCompareAndSwapP, Op_ShenandoahWeakCompareAndSwapN);
1165 
1166 }
1167 
1168 bool ShenandoahBarrierSetC2::matcher_find_shared_post_visit(Matcher* matcher, Node* n, uint opcode) const {
1169   switch (opcode) {
1170     case Op_ShenandoahCompareAndExchangeP:
1171     case Op_ShenandoahCompareAndExchangeN:
1172     case Op_ShenandoahWeakCompareAndSwapP:
1173     case Op_ShenandoahWeakCompareAndSwapN:
1174     case Op_ShenandoahCompareAndSwapP:
1175     case Op_ShenandoahCompareAndSwapN: {   // Convert trinary to binary-tree
1176       Node* newval = n->in(MemNode::ValueIn);
1177       Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
1178       Node* pair = new BinaryNode(oldval, newval);
1179       n->set_req(MemNode::ValueIn,pair);
1180       n->del_req(LoadStoreConditionalNode::ExpectedIn);
1181       return true;
1182     }
1183     default:
1184       break;
1185   }
1186   return false;
1187 }
1188 
1189 bool ShenandoahBarrierSetC2::matcher_is_store_load_barrier(Node* x, uint xop) const {
1190   return xop == Op_ShenandoahCompareAndExchangeP ||
1191          xop == Op_ShenandoahCompareAndExchangeN ||
1192          xop == Op_ShenandoahWeakCompareAndSwapP ||
1193          xop == Op_ShenandoahWeakCompareAndSwapN ||
1194          xop == Op_ShenandoahCompareAndSwapN ||
1195          xop == Op_ShenandoahCompareAndSwapP;
1196 }