1 /* 2 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 3 * Copyright (c) 2025, Oracle and/or its affiliates. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef SHARE_GC_SHENANDOAH_SHENANDOAHSCANREMEMBEREDINLINE_HPP 27 #define SHARE_GC_SHENANDOAH_SHENANDOAHSCANREMEMBEREDINLINE_HPP 28 29 #include "gc/shenandoah/shenandoahScanRemembered.hpp" 30 31 #include "gc/shared/collectorCounters.hpp" 32 #include "gc/shenandoah/mode/shenandoahMode.hpp" 33 #include "gc/shenandoah/shenandoahCardStats.hpp" 34 #include "gc/shenandoah/shenandoahCardTable.hpp" 35 #include "gc/shenandoah/shenandoahHeap.hpp" 36 #include "gc/shenandoah/shenandoahHeapRegion.hpp" 37 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 38 #include "logging/log.hpp" 39 #include "memory/iterator.hpp" 40 #include "oops/objArrayOop.hpp" 41 #include "oops/oop.hpp" 42 43 // Process all objects starting within count clusters beginning with first_cluster and for which the start address is 44 // less than end_of_range. For any non-array object whose header lies on a dirty card, scan the entire object, 45 // even if its end reaches beyond end_of_range. Object arrays, on the other hand, are precisely dirtied and 46 // only the portions of the array on dirty cards need to be scanned. 47 // 48 // Do not CANCEL within process_clusters. It is assumed that if a worker thread accepts responsibility for processing 49 // a chunk of work, it will finish the work it starts. Otherwise, the chunk of work will be lost in the transition to 50 // degenerated execution, leading to dangling references. 51 template <typename ClosureType> 52 void ShenandoahScanRemembered::process_clusters(size_t first_cluster, size_t count, HeapWord* end_of_range, 53 ClosureType* cl, bool use_write_table, uint worker_id) { 54 55 assert(ShenandoahHeap::heap()->old_generation()->is_parsable(), "Old generation regions must be parsable for remembered set scan"); 56 // If old-gen evacuation is active, then MarkingContext for old-gen heap regions is valid. We use the MarkingContext 57 // bits to determine which objects within a DIRTY card need to be scanned. This is necessary because old-gen heap 58 // regions that are in the candidate collection set have not been coalesced and filled. Thus, these heap regions 59 // may contain zombie objects. Zombie objects are known to be dead, but have not yet been "collected". Scanning 60 // zombie objects is unsafe because the Klass pointer is not reliable, objects referenced from a zombie may have been 61 // collected (if dead), or relocated (if live), or if dead but not yet collected, we don't want to "revive" them 62 // by marking them (when marking) or evacuating them (when updating references). 63 64 // start and end addresses of range of objects to be scanned, clipped to end_of_range 65 const size_t start_card_index = first_cluster * ShenandoahCardCluster::CardsPerCluster; 66 const HeapWord* start_addr = _rs->addr_for_card_index(start_card_index); 67 // clip at end_of_range (exclusive) 68 HeapWord* end_addr = MIN2(end_of_range, (HeapWord*)start_addr + (count * ShenandoahCardCluster::CardsPerCluster 69 * CardTable::card_size_in_words())); 70 assert(start_addr < end_addr, "Empty region?"); 71 72 const size_t whole_cards = (end_addr - start_addr + CardTable::card_size_in_words() - 1)/CardTable::card_size_in_words(); 73 const size_t end_card_index = start_card_index + whole_cards - 1; 74 log_debug(gc, remset)("Worker %u: cluster = %zu count = %zu eor = " INTPTR_FORMAT 75 " start_addr = " INTPTR_FORMAT " end_addr = " INTPTR_FORMAT " cards = %zu", 76 worker_id, first_cluster, count, p2i(end_of_range), p2i(start_addr), p2i(end_addr), whole_cards); 77 78 // use_write_table states whether we are using the card table that is being 79 // marked by the mutators. If false, we are using a snapshot of the card table 80 // that is not subject to modifications. Even when this arg is true, and 81 // the card table is being actively marked, SATB marking ensures that we need not 82 // worry about cards marked after the processing here has passed them. 83 const CardValue* const ctbm = _rs->get_card_table_byte_map(use_write_table); 84 85 // If old gen evacuation is active, ctx will hold the completed marking of 86 // old generation objects. We'll only scan objects that are marked live by 87 // the old generation marking. These include objects allocated since the 88 // start of old generation marking (being those above TAMS). 89 const ShenandoahHeap* heap = ShenandoahHeap::heap(); 90 const ShenandoahMarkingContext* ctx = heap->old_generation()->is_mark_complete() ? 91 heap->marking_context() : nullptr; 92 93 // The region we will scan is the half-open interval [start_addr, end_addr), 94 // and lies entirely within a single region. 95 const ShenandoahHeapRegion* region = ShenandoahHeap::heap()->heap_region_containing(start_addr); 96 assert(region->contains(end_addr - 1), "Slice shouldn't cross regions"); 97 98 // This code may have implicit assumptions of examining only old gen regions. 99 assert(region->is_old(), "We only expect to be processing old regions"); 100 assert(!region->is_humongous(), "Humongous regions can be processed more efficiently;" 101 "see process_humongous_clusters()"); 102 // tams and ctx below are for old generation marking. As such, young gen roots must 103 // consider everything above tams, since it doesn't represent a TAMS for young gen's 104 // SATB marking. 105 const HeapWord* tams = (ctx == nullptr ? region->bottom() : ctx->top_at_mark_start(region)); 106 107 NOT_PRODUCT(ShenandoahCardStats stats(whole_cards, card_stats(worker_id));) 108 109 // In the case of imprecise marking, we remember the lowest address 110 // scanned in a range of dirty cards, as we work our way left from the 111 // highest end_addr. This serves as another upper bound on the address we will 112 // scan as we move left over each contiguous range of dirty cards. 113 HeapWord* upper_bound = nullptr; 114 115 // Starting at the right end of the address range, walk backwards accumulating 116 // a maximal dirty range of cards, then process those cards. 117 ssize_t cur_index = (ssize_t) end_card_index; 118 assert(cur_index >= 0, "Overflow"); 119 assert(((ssize_t)start_card_index) >= 0, "Overflow"); 120 while (cur_index >= (ssize_t)start_card_index) { 121 122 // We'll continue the search starting with the card for the upper bound 123 // address identified by the last dirty range that we processed, if any, 124 // skipping any cards at higher addresses. 125 if (upper_bound != nullptr) { 126 ssize_t right_index = _rs->card_index_for_addr(upper_bound); 127 assert(right_index >= 0, "Overflow"); 128 cur_index = MIN2(cur_index, right_index); 129 assert(upper_bound < end_addr, "Program logic"); 130 end_addr = upper_bound; // lower end_addr 131 upper_bound = nullptr; // and clear upper_bound 132 if (end_addr <= start_addr) { 133 assert(right_index <= (ssize_t)start_card_index, "Program logic"); 134 // We are done with our cluster 135 return; 136 } 137 } 138 139 if (ctbm[cur_index] == CardTable::dirty_card_val()) { 140 // ==== BEGIN DIRTY card range processing ==== 141 142 const size_t dirty_r = cur_index; // record right end of dirty range (inclusive) 143 while (--cur_index >= (ssize_t)start_card_index && ctbm[cur_index] == CardTable::dirty_card_val()) { 144 // walk back over contiguous dirty cards to find left end of dirty range (inclusive) 145 } 146 // [dirty_l, dirty_r] is a "maximal" closed interval range of dirty card indices: 147 // it may not be maximal if we are using the write_table, because of concurrent 148 // mutations dirtying the card-table. It may also not be maximal if an upper bound 149 // was established by the scan of the previous chunk. 150 const size_t dirty_l = cur_index + 1; // record left end of dirty range (inclusive) 151 // Check that we identified a boundary on our left 152 assert(ctbm[dirty_l] == CardTable::dirty_card_val(), "First card in range should be dirty"); 153 assert(dirty_l == start_card_index || use_write_table 154 || ctbm[dirty_l - 1] == CardTable::clean_card_val(), 155 "Interval isn't maximal on the left"); 156 assert(dirty_r >= dirty_l, "Error"); 157 assert(ctbm[dirty_r] == CardTable::dirty_card_val(), "Last card in range should be dirty"); 158 // Record alternations, dirty run length, and dirty card count 159 NOT_PRODUCT(stats.record_dirty_run(dirty_r - dirty_l + 1);) 160 161 // Find first object that starts this range: 162 // [left, right) is a maximal right-open interval of dirty cards 163 HeapWord* left = _rs->addr_for_card_index(dirty_l); // inclusive 164 HeapWord* right = _rs->addr_for_card_index(dirty_r + 1); // exclusive 165 // Clip right to end_addr established above (still exclusive) 166 right = MIN2(right, end_addr); 167 assert(right <= region->top() && end_addr <= region->top(), "Busted bounds"); 168 const MemRegion mr(left, right); 169 170 // NOTE: We'll not call block_start() repeatedly 171 // on a very large object if its head card is dirty. If not, 172 // (i.e. the head card is clean) we'll call it each time we 173 // process a new dirty range on the object. This is always 174 // the case for large object arrays, which are typically more 175 // common. 176 HeapWord* p = _scc->block_start(dirty_l); 177 oop obj = cast_to_oop(p); 178 179 // PREFIX: The object that straddles into this range of dirty cards 180 // from the left may be subject to special treatment unless 181 // it is an object array. 182 if (p < left && !obj->is_objArray()) { 183 // The mutator (both compiler and interpreter, but not JNI?) 184 // typically dirty imprecisely (i.e. only the head of an object), 185 // but GC closures typically dirty the object precisely. (It would 186 // be nice to have everything be precise for maximum efficiency.) 187 // 188 // To handle this, we check the head card of the object here and, 189 // if dirty, (arrange to) scan the object in its entirety. If we 190 // find the head card clean, we'll scan only the portion of the 191 // object lying in the dirty card range below, assuming this was 192 // the result of precise marking by GC closures. 193 194 // index of the "head card" for p 195 const size_t hc_index = _rs->card_index_for_addr(p); 196 if (ctbm[hc_index] == CardTable::dirty_card_val()) { 197 // Scan or skip the object, depending on location of its 198 // head card, and remember that we'll have processed all 199 // the objects back up to p, which is thus an upper bound 200 // for the next iteration of a dirty card loop. 201 upper_bound = p; // remember upper bound for next chunk 202 if (p < start_addr) { 203 // if object starts in a previous slice, it'll be handled 204 // in its entirety by the thread processing that slice; we can 205 // skip over it and avoid an unnecessary extra scan. 206 assert(obj == cast_to_oop(p), "Inconsistency detected"); 207 p += obj->size(); 208 } else { 209 // the object starts in our slice, we scan it in its entirety 210 assert(obj == cast_to_oop(p), "Inconsistency detected"); 211 if (ctx == nullptr || ctx->is_marked(obj)) { 212 // Scan the object in its entirety 213 p += obj->oop_iterate_size(cl); 214 } else { 215 assert(p < tams, "Error 1 in ctx/marking/tams logic"); 216 // Skip over any intermediate dead objects 217 p = ctx->get_next_marked_addr(p, tams); 218 assert(p <= tams, "Error 2 in ctx/marking/tams logic"); 219 } 220 } 221 assert(p > left, "Should have processed into interior of dirty range"); 222 } 223 } 224 225 size_t i = 0; 226 HeapWord* last_p = nullptr; 227 228 // BODY: Deal with (other) objects in this dirty card range 229 while (p < right) { 230 obj = cast_to_oop(p); 231 // walk right scanning eligible objects 232 if (ctx == nullptr || ctx->is_marked(obj)) { 233 // we need to remember the last object ptr we scanned, in case we need to 234 // complete a partial suffix scan after mr, see below 235 last_p = p; 236 // apply the closure to the oops in the portion of 237 // the object within mr. 238 p += obj->oop_iterate_size(cl, mr); 239 NOT_PRODUCT(i++); 240 } else { 241 // forget the last object pointer we remembered 242 last_p = nullptr; 243 assert(p < tams, "Tams and above are implicitly marked in ctx"); 244 // object under tams isn't marked: skip to next live object 245 p = ctx->get_next_marked_addr(p, tams); 246 assert(p <= tams, "Error 3 in ctx/marking/tams logic"); 247 } 248 } 249 250 // SUFFIX: Fix up a possible incomplete scan at right end of window 251 // by scanning the portion of a non-objArray that wasn't done. 252 if (p > right && last_p != nullptr) { 253 assert(last_p < right, "Error"); 254 // check if last_p suffix needs scanning 255 const oop last_obj = cast_to_oop(last_p); 256 if (!last_obj->is_objArray()) { 257 // scan the remaining suffix of the object 258 const MemRegion last_mr(right, p); 259 assert(p == last_p + last_obj->size(), "Would miss portion of last_obj"); 260 last_obj->oop_iterate(cl, last_mr); 261 log_develop_debug(gc, remset)("Fixed up non-objArray suffix scan in [" INTPTR_FORMAT ", " INTPTR_FORMAT ")", 262 p2i(last_mr.start()), p2i(last_mr.end())); 263 } else { 264 log_develop_debug(gc, remset)("Skipped suffix scan of objArray in [" INTPTR_FORMAT ", " INTPTR_FORMAT ")", 265 p2i(right), p2i(p)); 266 } 267 } 268 NOT_PRODUCT(stats.record_scan_obj_cnt(i);) 269 270 // ==== END DIRTY card range processing ==== 271 } else { 272 // ==== BEGIN CLEAN card range processing ==== 273 274 // If we are using the write table (during update refs, e.g.), a mutator may dirty 275 // a card at any time. This is fine for the algorithm below because it is only 276 // counting contiguous runs of clean cards (and only for non-product builds). 277 assert(use_write_table || ctbm[cur_index] == CardTable::clean_card_val(), "Error"); 278 279 // walk back over contiguous clean cards 280 size_t i = 0; 281 while (--cur_index >= (ssize_t)start_card_index && ctbm[cur_index] == CardTable::clean_card_val()) { 282 NOT_PRODUCT(i++); 283 } 284 // Record alternations, clean run length, and clean card count 285 NOT_PRODUCT(stats.record_clean_run(i);) 286 287 // ==== END CLEAN card range processing ==== 288 } 289 } 290 } 291 292 // Given that this range of clusters is known to span a humongous object spanned by region r, scan the 293 // portion of the humongous object that corresponds to the specified range. 294 template <typename ClosureType> 295 inline void 296 ShenandoahScanRemembered::process_humongous_clusters(ShenandoahHeapRegion* r, size_t first_cluster, size_t count, 297 HeapWord *end_of_range, ClosureType *cl, bool use_write_table) { 298 ShenandoahHeapRegion* start_region = r->humongous_start_region(); 299 HeapWord* p = start_region->bottom(); 300 oop obj = cast_to_oop(p); 301 assert(r->is_humongous(), "Only process humongous regions here"); 302 assert(start_region->is_humongous_start(), "Should be start of humongous region"); 303 assert(p + obj->size() >= end_of_range, "Humongous object ends before range ends"); 304 305 size_t first_card_index = first_cluster * ShenandoahCardCluster::CardsPerCluster; 306 HeapWord* first_cluster_addr = _rs->addr_for_card_index(first_card_index); 307 size_t spanned_words = count * ShenandoahCardCluster::CardsPerCluster * CardTable::card_size_in_words(); 308 start_region->oop_iterate_humongous_slice_dirty(cl, first_cluster_addr, spanned_words, use_write_table); 309 } 310 311 312 // This method takes a region & determines the end of the region that the worker can scan. 313 template <typename ClosureType> 314 inline void 315 ShenandoahScanRemembered::process_region_slice(ShenandoahHeapRegion *region, size_t start_offset, size_t clusters, 316 HeapWord *end_of_range, ClosureType *cl, bool use_write_table, 317 uint worker_id) { 318 319 // This is called only for young gen collection, when we scan old gen regions 320 assert(region->is_old(), "Expecting an old region"); 321 HeapWord *start_of_range = region->bottom() + start_offset; 322 size_t start_cluster_no = cluster_for_addr(start_of_range); 323 assert(addr_for_cluster(start_cluster_no) == start_of_range, "process_region_slice range must align on cluster boundary"); 324 325 // region->end() represents the end of memory spanned by this region, but not all of this 326 // memory is eligible to be scanned because some of this memory has not yet been allocated. 327 // 328 // region->top() represents the end of allocated memory within this region. Any addresses 329 // beyond region->top() should not be scanned as that memory does not hold valid objects. 330 331 if (use_write_table) { 332 // This is update-refs servicing. 333 if (end_of_range > region->get_update_watermark()) { 334 end_of_range = region->get_update_watermark(); 335 } 336 } else { 337 // This is concurrent mark servicing. Note that TAMS for this region is TAMS at start of old-gen 338 // collection. Here, we need to scan up to TAMS for most recently initiated young-gen collection. 339 // Since all LABs are retired at init mark, and since replacement LABs are allocated lazily, and since no 340 // promotions occur until evacuation phase, TAMS for most recent young-gen is same as top(). 341 if (end_of_range > region->top()) { 342 end_of_range = region->top(); 343 } 344 } 345 346 log_debug(gc)("Remembered set scan processing Region %zu, from " PTR_FORMAT " to " PTR_FORMAT ", using %s table", 347 region->index(), p2i(start_of_range), p2i(end_of_range), 348 use_write_table? "read/write (updating)": "read (marking)"); 349 350 // Note that end_of_range may point to the middle of a cluster because we limit scanning to 351 // region->top() or region->get_update_watermark(). We avoid processing past end_of_range. 352 // Objects that start between start_of_range and end_of_range, including humongous objects, will 353 // be fully processed by process_clusters. In no case should we need to scan past end_of_range. 354 if (start_of_range < end_of_range) { 355 if (region->is_humongous()) { 356 ShenandoahHeapRegion* start_region = region->humongous_start_region(); 357 process_humongous_clusters(start_region, start_cluster_no, clusters, end_of_range, cl, use_write_table); 358 } else { 359 process_clusters(start_cluster_no, clusters, end_of_range, cl, use_write_table, worker_id); 360 } 361 } 362 } 363 364 inline bool ShenandoahRegionChunkIterator::has_next() const { 365 return _index < _total_chunks; 366 } 367 368 inline bool ShenandoahRegionChunkIterator::next(struct ShenandoahRegionChunk *assignment) { 369 if (_index >= _total_chunks) { 370 return false; 371 } 372 size_t new_index = Atomic::add(&_index, (size_t) 1, memory_order_relaxed); 373 if (new_index > _total_chunks) { 374 // First worker that hits new_index == _total_chunks continues, other 375 // contending workers return false. 376 return false; 377 } 378 // convert to zero-based indexing 379 new_index--; 380 assert(new_index < _total_chunks, "Error"); 381 382 // Find the group number for the assigned chunk index 383 size_t group_no; 384 for (group_no = 0; new_index >= _group_entries[group_no]; group_no++) 385 ; 386 assert(group_no < _num_groups, "Cannot have group no greater or equal to _num_groups"); 387 388 // All size computations measured in HeapWord 389 size_t region_size_words = ShenandoahHeapRegion::region_size_words(); 390 size_t group_region_index = _region_index[group_no]; 391 size_t group_region_offset = _group_offset[group_no]; 392 393 size_t index_within_group = (group_no == 0)? new_index: new_index - _group_entries[group_no - 1]; 394 size_t group_chunk_size = _group_chunk_size[group_no]; 395 size_t offset_of_this_chunk = group_region_offset + index_within_group * group_chunk_size; 396 size_t regions_spanned_by_chunk_offset = offset_of_this_chunk / region_size_words; 397 size_t offset_within_region = offset_of_this_chunk % region_size_words; 398 399 size_t region_index = group_region_index + regions_spanned_by_chunk_offset; 400 401 assignment->_r = _heap->get_region(region_index); 402 assignment->_chunk_offset = offset_within_region; 403 assignment->_chunk_size = group_chunk_size; 404 return true; 405 } 406 407 #endif // SHARE_GC_SHENANDOAH_SHENANDOAHSCANREMEMBEREDINLINE_HPP