1 /*
2 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
3 * Copyright (c) 2025, Oracle and/or its affiliates. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #ifndef SHARE_GC_SHENANDOAH_SHENANDOAHSCANREMEMBEREDINLINE_HPP
27 #define SHARE_GC_SHENANDOAH_SHENANDOAHSCANREMEMBEREDINLINE_HPP
28
29 #include "gc/shenandoah/shenandoahScanRemembered.hpp"
30
31 #include "gc/shared/collectorCounters.hpp"
32 #include "gc/shenandoah/mode/shenandoahMode.hpp"
33 #include "gc/shenandoah/shenandoahCardStats.hpp"
34 #include "gc/shenandoah/shenandoahCardTable.hpp"
35 #include "gc/shenandoah/shenandoahHeap.hpp"
36 #include "gc/shenandoah/shenandoahHeapRegion.hpp"
37 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
38 #include "logging/log.hpp"
39 #include "memory/iterator.hpp"
40 #include "oops/objArrayOop.hpp"
41 #include "oops/oop.hpp"
42
43 // Process all objects starting within count clusters beginning with first_cluster and for which the start address is
44 // less than end_of_range. For any non-array object whose header lies on a dirty card, scan the entire object,
45 // even if its end reaches beyond end_of_range. Object arrays, on the other hand, are precisely dirtied and
46 // only the portions of the array on dirty cards need to be scanned.
47 //
48 // Do not CANCEL within process_clusters. It is assumed that if a worker thread accepts responsibility for processing
49 // a chunk of work, it will finish the work it starts. Otherwise, the chunk of work will be lost in the transition to
50 // degenerated execution, leading to dangling references.
51 template <typename ClosureType>
52 void ShenandoahScanRemembered::process_clusters(size_t first_cluster, size_t count, HeapWord* end_of_range,
53 ClosureType* cl, bool use_write_table, uint worker_id) {
54
55 assert(ShenandoahHeap::heap()->old_generation()->is_parsable(), "Old generation regions must be parsable for remembered set scan");
56 // If old-gen evacuation is active, then MarkingContext for old-gen heap regions is valid. We use the MarkingContext
57 // bits to determine which objects within a DIRTY card need to be scanned. This is necessary because old-gen heap
58 // regions that are in the candidate collection set have not been coalesced and filled. Thus, these heap regions
59 // may contain zombie objects. Zombie objects are known to be dead, but have not yet been "collected". Scanning
60 // zombie objects is unsafe because the Klass pointer is not reliable, objects referenced from a zombie may have been
61 // collected (if dead), or relocated (if live), or if dead but not yet collected, we don't want to "revive" them
62 // by marking them (when marking) or evacuating them (when updating references).
63
64 // start and end addresses of range of objects to be scanned, clipped to end_of_range
65 const size_t start_card_index = first_cluster * ShenandoahCardCluster::CardsPerCluster;
66 const HeapWord* start_addr = _rs->addr_for_card_index(start_card_index);
67 // clip at end_of_range (exclusive)
68 HeapWord* end_addr = MIN2(end_of_range, (HeapWord*)start_addr + (count * ShenandoahCardCluster::CardsPerCluster
69 * CardTable::card_size_in_words()));
70 assert(start_addr < end_addr, "Empty region?");
71
72 const size_t whole_cards = (end_addr - start_addr + CardTable::card_size_in_words() - 1)/CardTable::card_size_in_words();
73 const size_t end_card_index = start_card_index + whole_cards - 1;
74 log_debug(gc, remset)("Worker %u: cluster = %zu count = %zu eor = " INTPTR_FORMAT
75 " start_addr = " INTPTR_FORMAT " end_addr = " INTPTR_FORMAT " cards = %zu",
76 worker_id, first_cluster, count, p2i(end_of_range), p2i(start_addr), p2i(end_addr), whole_cards);
77
78 // use_write_table states whether we are using the card table that is being
79 // marked by the mutators. If false, we are using a snapshot of the card table
80 // that is not subject to modifications. Even when this arg is true, and
81 // the card table is being actively marked, SATB marking ensures that we need not
82 // worry about cards marked after the processing here has passed them.
83 const CardValue* const ctbm = _rs->get_card_table_byte_map(use_write_table);
84
85 // If old gen evacuation is active, ctx will hold the completed marking of
86 // old generation objects. We'll only scan objects that are marked live by
87 // the old generation marking. These include objects allocated since the
88 // start of old generation marking (being those above TAMS).
89 const ShenandoahHeap* heap = ShenandoahHeap::heap();
90 const ShenandoahMarkingContext* ctx = heap->old_generation()->is_mark_complete() ?
91 heap->marking_context() : nullptr;
92
93 // The region we will scan is the half-open interval [start_addr, end_addr),
94 // and lies entirely within a single region.
95 const ShenandoahHeapRegion* region = ShenandoahHeap::heap()->heap_region_containing(start_addr);
96 assert(region->contains(end_addr - 1), "Slice shouldn't cross regions");
97
98 // This code may have implicit assumptions of examining only old gen regions.
99 assert(region->is_old(), "We only expect to be processing old regions");
100 assert(!region->is_humongous(), "Humongous regions can be processed more efficiently;"
101 "see process_humongous_clusters()");
102 // tams and ctx below are for old generation marking. As such, young gen roots must
103 // consider everything above tams, since it doesn't represent a TAMS for young gen's
104 // SATB marking.
105 HeapWord* const tams = (ctx == nullptr ? region->bottom() : ctx->top_at_mark_start(region));
106
107 NOT_PRODUCT(ShenandoahCardStats stats(whole_cards, card_stats(worker_id));)
108
109 // In the case of imprecise marking, we remember the lowest address
110 // scanned in a range of dirty cards, as we work our way left from the
111 // highest end_addr. This serves as another upper bound on the address we will
112 // scan as we move left over each contiguous range of dirty cards.
113 HeapWord* upper_bound = nullptr;
114
115 // Starting at the right end of the address range, walk backwards accumulating
116 // a maximal dirty range of cards, then process those cards.
117 ssize_t cur_index = (ssize_t) end_card_index;
118 assert(cur_index >= 0, "Overflow");
119 assert(((ssize_t)start_card_index) >= 0, "Overflow");
120 while (cur_index >= (ssize_t)start_card_index) {
121
122 // We'll continue the search starting with the card for the upper bound
123 // address identified by the last dirty range that we processed, if any,
124 // skipping any cards at higher addresses.
125 if (upper_bound != nullptr) {
126 ssize_t right_index = _rs->card_index_for_addr(upper_bound);
127 assert(right_index >= 0, "Overflow");
128 cur_index = MIN2(cur_index, right_index);
129 assert(upper_bound < end_addr, "Program logic");
130 end_addr = upper_bound; // lower end_addr
131 upper_bound = nullptr; // and clear upper_bound
132 if (end_addr <= start_addr) {
133 assert(right_index <= (ssize_t)start_card_index, "Program logic");
134 // We are done with our cluster
135 return;
136 }
137 }
138
139 if (ctbm[cur_index] == CardTable::dirty_card_val()) {
140 // ==== BEGIN DIRTY card range processing ====
141
142 const size_t dirty_r = cur_index; // record right end of dirty range (inclusive)
143 while (--cur_index >= (ssize_t)start_card_index && ctbm[cur_index] == CardTable::dirty_card_val()) {
144 // walk back over contiguous dirty cards to find left end of dirty range (inclusive)
145 }
146 // [dirty_l, dirty_r] is a "maximal" closed interval range of dirty card indices:
147 // it may not be maximal if we are using the write_table, because of concurrent
148 // mutations dirtying the card-table. It may also not be maximal if an upper bound
149 // was established by the scan of the previous chunk.
150 const size_t dirty_l = cur_index + 1; // record left end of dirty range (inclusive)
151 // Check that we identified a boundary on our left
152 assert(ctbm[dirty_l] == CardTable::dirty_card_val(), "First card in range should be dirty");
153 assert(dirty_l == start_card_index || use_write_table
154 || ctbm[dirty_l - 1] == CardTable::clean_card_val(),
155 "Interval isn't maximal on the left");
156 assert(dirty_r >= dirty_l, "Error");
157 assert(ctbm[dirty_r] == CardTable::dirty_card_val(), "Last card in range should be dirty");
158 // Record alternations, dirty run length, and dirty card count
159 NOT_PRODUCT(stats.record_dirty_run(dirty_r - dirty_l + 1);)
160
161 // Find first object that starts this range:
162 // [left, right) is a maximal right-open interval of dirty cards
163 HeapWord* left = _rs->addr_for_card_index(dirty_l); // inclusive
164 HeapWord* right = _rs->addr_for_card_index(dirty_r + 1); // exclusive
165 if (end_addr <= left) {
166 // The range of addresses to be scanned is empty
167 continue;
168 }
169 // Clip right to end_addr established above (still exclusive)
170 right = MIN2(right, end_addr);
171 assert(right <= region->top() && end_addr <= region->top(), "Busted bounds");
172 const MemRegion mr(left, right);
173
174 // NOTE: We'll not call first_object_start() repeatedly
175 // on a very large object, i.e. one spanning multiple cards,
176 // if its head card is dirty. If not, (i.e. its head card is clean)
177 // we'll call it each time we process a new dirty range on the object.
178 // This is always the case for large object arrays, which are typically more
179 // common.
180 assert(ctx != nullptr || heap->old_generation()->is_parsable(), "Error");
181 HeapWord* p = _scc->first_object_start(dirty_l, ctx, tams, right);
182 assert((p == nullptr) || (p < right), "No first object found is denoted by nullptr, p: "
183 PTR_FORMAT ", right: " PTR_FORMAT ", end_addr: " PTR_FORMAT ", next card addr: " PTR_FORMAT,
184 p2i(p), p2i(right), p2i(end_addr), p2i(_rs->addr_for_card_index(dirty_r + 1)));
185 if (p == nullptr) {
186 // There are no live objects to be scanned in this dirty range. cur_index identifies first card in this
187 // uninteresting dirty range. At top of next loop iteration, we will either end the looop
188 // (because cur_index < start_card_index) or we will begin the search for a range of clean cards.
189 continue;
190 }
191
192 oop obj = cast_to_oop(p);
193 assert(oopDesc::is_oop(obj), "Not an object at " PTR_FORMAT ", left: " PTR_FORMAT ", right: " PTR_FORMAT,
194 p2i(p), p2i(left), p2i(right));
195 assert(ctx==nullptr || ctx->is_marked(obj), "Error");
196
197 // PREFIX: The object that straddles into this range of dirty cards
198 // from the left may be subject to special treatment unless
199 // it is an object array.
200 if (p < left && !obj->is_objArray()) {
201 // The mutator (both compiler and interpreter, but not JNI?)
202 // typically dirty imprecisely (i.e. only the head of an object),
203 // but GC closures typically dirty the object precisely. (It would
204 // be nice to have everything be precise for maximum efficiency.)
205 //
206 // To handle this, we check the head card of the object here and,
207 // if dirty, (arrange to) scan the object in its entirety. If we
208 // find the head card clean, we'll scan only the portion of the
209 // object lying in the dirty card range below, assuming this was
210 // the result of precise marking by GC closures.
211
212 // index of the "head card" for p
213 const size_t hc_index = _rs->card_index_for_addr(p);
214 if (ctbm[hc_index] == CardTable::dirty_card_val()) {
215 // Scan or skip the object, depending on location of its
216 // head card, and remember that we'll have processed all
217 // the objects back up to p, which is thus an upper bound
218 // for the next iteration of a dirty card loop.
219 upper_bound = p; // remember upper bound for next chunk
220 if (p < start_addr) {
221 // if object starts in a previous slice, it'll be handled
222 // in its entirety by the thread processing that slice; we can
223 // skip over it and avoid an unnecessary extra scan.
224 assert(obj == cast_to_oop(p), "Inconsistency detected");
225 p += obj->size();
226 } else {
227 // the object starts in our slice, we scan it in its entirety
228 assert(obj == cast_to_oop(p), "Inconsistency detected");
229 if (ctx == nullptr || ctx->is_marked(obj)) {
230 // Scan the object in its entirety
231 p += obj->oop_iterate_size(cl);
232 } else {
233 assert(p < tams, "Error 1 in ctx/marking/tams logic");
234 // Skip over any intermediate dead objects
235 p = ctx->get_next_marked_addr(p, tams);
236 assert(p <= tams, "Error 2 in ctx/marking/tams logic");
237 }
238 }
239 assert(p > left, "Should have processed into interior of dirty range");
240 }
241 }
242
243 size_t i = 0;
244 HeapWord* last_p = nullptr;
245
246 // BODY: Deal with (other) objects in this dirty card range
247 while (p < right) {
248 obj = cast_to_oop(p);
249 // walk right scanning eligible objects
250 if (ctx == nullptr || ctx->is_marked(obj)) {
251 // we need to remember the last object ptr we scanned, in case we need to
252 // complete a partial suffix scan after mr, see below
253 last_p = p;
254 // apply the closure to the oops in the portion of
255 // the object within mr.
256 p += obj->oop_iterate_size(cl, mr);
257 NOT_PRODUCT(i++);
258 } else {
259 // forget the last object pointer we remembered
260 last_p = nullptr;
261 assert(p < tams, "Tams and above are implicitly marked in ctx");
262 // object under tams isn't marked: skip to next live object
263 p = ctx->get_next_marked_addr(p, tams);
264 assert(p <= tams, "Error 3 in ctx/marking/tams logic");
265 }
266 }
267
268 // SUFFIX: Fix up a possible incomplete scan at right end of window
269 // by scanning the portion of a non-objArray that wasn't done.
270 if (p > right && last_p != nullptr) {
271 assert(last_p < right, "Error");
272 // check if last_p suffix needs scanning
273 const oop last_obj = cast_to_oop(last_p);
274 if (!last_obj->is_objArray()) {
275 // scan the remaining suffix of the object
276 const MemRegion last_mr(right, p);
277 assert(p == last_p + last_obj->size(), "Would miss portion of last_obj");
278 last_obj->oop_iterate(cl, last_mr);
279 log_develop_debug(gc, remset)("Fixed up non-objArray suffix scan in [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
280 p2i(last_mr.start()), p2i(last_mr.end()));
281 } else {
282 log_develop_debug(gc, remset)("Skipped suffix scan of objArray in [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
283 p2i(right), p2i(p));
284 }
285 }
286 NOT_PRODUCT(stats.record_scan_obj_cnt(i);)
287
288 // ==== END DIRTY card range processing ====
289 } else {
290 // ==== BEGIN CLEAN card range processing ====
291
292 // If we are using the write table (during update refs, e.g.), a mutator may dirty
293 // a card at any time. This is fine for the algorithm below because it is only
294 // counting contiguous runs of clean cards (and only for non-product builds).
295 assert(use_write_table || ctbm[cur_index] == CardTable::clean_card_val(), "Error");
296
297 // walk back over contiguous clean cards
298 size_t i = 0;
299 while (--cur_index >= (ssize_t)start_card_index && ctbm[cur_index] == CardTable::clean_card_val()) {
300 NOT_PRODUCT(i++);
301 }
302 // Record alternations, clean run length, and clean card count
303 NOT_PRODUCT(stats.record_clean_run(i);)
304
305 // ==== END CLEAN card range processing ====
306 }
307 }
308 }
309
310 // Given that this range of clusters is known to span a humongous object spanned by region r, scan the
311 // portion of the humongous object that corresponds to the specified range.
312 template <typename ClosureType>
313 inline void
314 ShenandoahScanRemembered::process_humongous_clusters(ShenandoahHeapRegion* r, size_t first_cluster, size_t count,
315 HeapWord *end_of_range, ClosureType *cl, bool use_write_table) {
316 ShenandoahHeapRegion* start_region = r->humongous_start_region();
317 HeapWord* p = start_region->bottom();
318 oop obj = cast_to_oop(p);
319 assert(r->is_humongous(), "Only process humongous regions here");
320 assert(start_region->is_humongous_start(), "Should be start of humongous region");
321 assert(p + obj->size() >= end_of_range, "Humongous object ends before range ends");
322
323 size_t first_card_index = first_cluster * ShenandoahCardCluster::CardsPerCluster;
324 HeapWord* first_cluster_addr = _rs->addr_for_card_index(first_card_index);
325 size_t spanned_words = count * ShenandoahCardCluster::CardsPerCluster * CardTable::card_size_in_words();
326 start_region->oop_iterate_humongous_slice_dirty(cl, first_cluster_addr, spanned_words, use_write_table);
327 }
328
329
330 // This method takes a region & determines the end of the region that the worker can scan.
331 template <typename ClosureType>
332 inline void
333 ShenandoahScanRemembered::process_region_slice(ShenandoahHeapRegion *region, size_t start_offset, size_t clusters,
334 HeapWord *end_of_range, ClosureType *cl, bool use_write_table,
335 uint worker_id) {
336
337 // This is called only for young gen collection, when we scan old gen regions
338 assert(region->is_old(), "Expecting an old region");
339 HeapWord *start_of_range = region->bottom() + start_offset;
340 size_t start_cluster_no = cluster_for_addr(start_of_range);
341 assert(addr_for_cluster(start_cluster_no) == start_of_range, "process_region_slice range must align on cluster boundary");
342
343 // region->end() represents the end of memory spanned by this region, but not all of this
344 // memory is eligible to be scanned because some of this memory has not yet been allocated.
345 //
346 // region->top() represents the end of allocated memory within this region. Any addresses
347 // beyond region->top() should not be scanned as that memory does not hold valid objects.
348
349 if (use_write_table) {
350 // This is update-refs servicing.
351 if (end_of_range > region->get_update_watermark()) {
352 end_of_range = region->get_update_watermark();
353 }
354 } else {
355 // This is concurrent mark servicing. Note that TAMS for this region is TAMS at start of old-gen
356 // collection. Here, we need to scan up to TAMS for most recently initiated young-gen collection.
357 // Since all LABs are retired at init mark, and since replacement LABs are allocated lazily, and since no
358 // promotions occur until evacuation phase, TAMS for most recent young-gen is same as top().
359 if (end_of_range > region->top()) {
360 end_of_range = region->top();
361 }
362 }
363
364 log_debug(gc, remset)("Remembered set scan processing Region %zu, from " PTR_FORMAT " to " PTR_FORMAT ", using %s table",
365 region->index(), p2i(start_of_range), p2i(end_of_range),
366 use_write_table? "read/write (updating)": "read (marking)");
367
368 // Note that end_of_range may point to the middle of a cluster because we limit scanning to
369 // region->top() or region->get_update_watermark(). We avoid processing past end_of_range.
370 // Objects that start between start_of_range and end_of_range, including humongous objects, will
371 // be fully processed by process_clusters. In no case should we need to scan past end_of_range.
372 if (start_of_range < end_of_range) {
373 if (region->is_humongous()) {
374 ShenandoahHeapRegion* start_region = region->humongous_start_region();
375 process_humongous_clusters(start_region, start_cluster_no, clusters, end_of_range, cl, use_write_table);
376 } else {
377 process_clusters(start_cluster_no, clusters, end_of_range, cl, use_write_table, worker_id);
378 }
379 }
380 }
381
382 inline bool ShenandoahRegionChunkIterator::has_next() const {
383 return _index < _total_chunks;
384 }
385
386 inline bool ShenandoahRegionChunkIterator::next(struct ShenandoahRegionChunk *assignment) {
387 if (_index >= _total_chunks) {
388 return false;
389 }
390 size_t new_index = AtomicAccess::add(&_index, (size_t) 1, memory_order_relaxed);
391 if (new_index > _total_chunks) {
392 // First worker that hits new_index == _total_chunks continues, other
393 // contending workers return false.
394 return false;
395 }
396 // convert to zero-based indexing
397 new_index--;
398 assert(new_index < _total_chunks, "Error");
399
400 // Find the group number for the assigned chunk index
401 size_t group_no;
402 for (group_no = 0; new_index >= _group_entries[group_no]; group_no++)
403 ;
404 assert(group_no < _num_groups, "Cannot have group no greater or equal to _num_groups");
405
406 // All size computations measured in HeapWord
407 size_t region_size_words = ShenandoahHeapRegion::region_size_words();
408 size_t group_region_index = _region_index[group_no];
409 size_t group_region_offset = _group_offset[group_no];
410
411 size_t index_within_group = (group_no == 0)? new_index: new_index - _group_entries[group_no - 1];
412 size_t group_chunk_size = _group_chunk_size[group_no];
413 size_t offset_of_this_chunk = group_region_offset + index_within_group * group_chunk_size;
414 size_t regions_spanned_by_chunk_offset = offset_of_this_chunk / region_size_words;
415 size_t offset_within_region = offset_of_this_chunk % region_size_words;
416
417 size_t region_index = group_region_index + regions_spanned_by_chunk_offset;
418
419 assignment->_r = _heap->get_region(region_index);
420 assignment->_chunk_offset = offset_within_region;
421 assignment->_chunk_size = group_chunk_size;
422 return true;
423 }
424
425 #endif // SHARE_GC_SHENANDOAH_SHENANDOAHSCANREMEMBEREDINLINE_HPP