1 /*
  2  * Copyright (c) 2015, 2024, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  */
 23 
 24 #include "precompiled.hpp"
 25 #include "asm/macroAssembler.hpp"
 26 #include "classfile/javaClasses.hpp"
 27 #include "gc/z/c2/zBarrierSetC2.hpp"
 28 #include "gc/z/zBarrierSet.hpp"
 29 #include "gc/z/zBarrierSetAssembler.hpp"
 30 #include "gc/z/zBarrierSetRuntime.hpp"
 31 #include "opto/arraycopynode.hpp"
 32 #include "opto/addnode.hpp"
 33 #include "opto/block.hpp"
 34 #include "opto/compile.hpp"
 35 #include "opto/graphKit.hpp"
 36 #include "opto/machnode.hpp"
 37 #include "opto/macro.hpp"
 38 #include "opto/memnode.hpp"
 39 #include "opto/node.hpp"
 40 #include "opto/output.hpp"
 41 #include "opto/regalloc.hpp"
 42 #include "opto/rootnode.hpp"
 43 #include "opto/runtime.hpp"
 44 #include "opto/type.hpp"
 45 #include "utilities/debug.hpp"
 46 #include "utilities/growableArray.hpp"
 47 #include "utilities/macros.hpp"
 48 
 49 template<typename K, typename V, size_t TableSize>
 50 class ZArenaHashtable : public ResourceObj {
 51   class ZArenaHashtableEntry : public ResourceObj {
 52   public:
 53     ZArenaHashtableEntry* _next;
 54     K _key;
 55     V _value;
 56   };
 57 
 58   static const size_t TableMask = TableSize - 1;
 59 
 60   Arena* _arena;
 61   ZArenaHashtableEntry* _table[TableSize];
 62 
 63 public:
 64   class Iterator {
 65     ZArenaHashtable* _table;
 66     ZArenaHashtableEntry* _current_entry;
 67     size_t _current_index;
 68 
 69   public:
 70     Iterator(ZArenaHashtable* table)
 71       : _table(table),
 72         _current_entry(table->_table[0]),
 73         _current_index(0) {
 74       if (_current_entry == nullptr) {
 75         next();
 76       }
 77     }
 78 
 79     bool has_next() { return _current_entry != nullptr; }
 80     K key()         { return _current_entry->_key; }
 81     V value()       { return _current_entry->_value; }
 82 
 83     void next() {
 84       if (_current_entry != nullptr) {
 85         _current_entry = _current_entry->_next;
 86       }
 87       while (_current_entry == nullptr && ++_current_index < TableSize) {
 88         _current_entry = _table->_table[_current_index];
 89       }
 90     }
 91   };
 92 
 93   ZArenaHashtable(Arena* arena)
 94     : _arena(arena),
 95       _table() {
 96     Copy::zero_to_bytes(&_table, sizeof(_table));
 97   }
 98 
 99   void add(K key, V value) {
100     ZArenaHashtableEntry* entry = new (_arena) ZArenaHashtableEntry();
101     entry->_key = key;
102     entry->_value = value;
103     entry->_next = _table[key & TableMask];
104     _table[key & TableMask] = entry;
105   }
106 
107   V* get(K key) const {
108     for (ZArenaHashtableEntry* e = _table[key & TableMask]; e != nullptr; e = e->_next) {
109       if (e->_key == key) {
110         return &(e->_value);
111       }
112     }
113     return nullptr;
114   }
115 
116   Iterator iterator() {
117     return Iterator(this);
118   }
119 };
120 
121 typedef ZArenaHashtable<intptr_t, bool, 4> ZOffsetTable;
122 
123 class ZBarrierSetC2State : public BarrierSetC2State {
124 private:
125   GrowableArray<ZBarrierStubC2*>* _stubs;
126   int                             _trampoline_stubs_count;
127   int                             _stubs_start_offset;
128 
129 public:
130   ZBarrierSetC2State(Arena* arena)
131     : BarrierSetC2State(arena),
132       _stubs(new (arena) GrowableArray<ZBarrierStubC2*>(arena, 8,  0, nullptr)),
133       _trampoline_stubs_count(0),
134       _stubs_start_offset(0) {}
135 
136   GrowableArray<ZBarrierStubC2*>* stubs() {
137     return _stubs;
138   }
139 
140   bool needs_liveness_data(const MachNode* mach) const {
141     // Don't need liveness data for nodes without barriers
142     return mach->barrier_data() != ZBarrierElided;
143   }
144 
145   bool needs_livein_data() const {
146     return true;
147   }
148 
149   void inc_trampoline_stubs_count() {
150     assert(_trampoline_stubs_count != INT_MAX, "Overflow");
151     ++_trampoline_stubs_count;
152   }
153 
154   int trampoline_stubs_count() {
155     return _trampoline_stubs_count;
156   }
157 
158   void set_stubs_start_offset(int offset) {
159     _stubs_start_offset = offset;
160   }
161 
162   int stubs_start_offset() {
163     return _stubs_start_offset;
164   }
165 };
166 
167 static ZBarrierSetC2State* barrier_set_state() {
168   return reinterpret_cast<ZBarrierSetC2State*>(Compile::current()->barrier_set_state());
169 }
170 
171 void ZBarrierStubC2::register_stub(ZBarrierStubC2* stub) {
172   if (!Compile::current()->output()->in_scratch_emit_size()) {
173     barrier_set_state()->stubs()->append(stub);
174   }
175 }
176 
177 void ZBarrierStubC2::inc_trampoline_stubs_count() {
178   if (!Compile::current()->output()->in_scratch_emit_size()) {
179     barrier_set_state()->inc_trampoline_stubs_count();
180   }
181 }
182 
183 int ZBarrierStubC2::trampoline_stubs_count() {
184   return barrier_set_state()->trampoline_stubs_count();
185 }
186 
187 int ZBarrierStubC2::stubs_start_offset() {
188   return barrier_set_state()->stubs_start_offset();
189 }
190 
191 ZBarrierStubC2::ZBarrierStubC2(const MachNode* node) : BarrierStubC2(node) {}
192 
193 ZLoadBarrierStubC2* ZLoadBarrierStubC2::create(const MachNode* node, Address ref_addr, Register ref) {
194   AARCH64_ONLY(fatal("Should use ZLoadBarrierStubC2Aarch64::create"));
195   ZLoadBarrierStubC2* const stub = new (Compile::current()->comp_arena()) ZLoadBarrierStubC2(node, ref_addr, ref);
196   register_stub(stub);
197 
198   return stub;
199 }
200 
201 ZLoadBarrierStubC2::ZLoadBarrierStubC2(const MachNode* node, Address ref_addr, Register ref)
202   : ZBarrierStubC2(node),
203     _ref_addr(ref_addr),
204     _ref(ref) {
205   assert_different_registers(ref, ref_addr.base());
206   assert_different_registers(ref, ref_addr.index());
207   // The runtime call updates the value of ref, so we should not spill and
208   // reload its outdated value.
209   dont_preserve(ref);
210 }
211 
212 Address ZLoadBarrierStubC2::ref_addr() const {
213   return _ref_addr;
214 }
215 
216 Register ZLoadBarrierStubC2::ref() const {
217   return _ref;
218 }
219 
220 address ZLoadBarrierStubC2::slow_path() const {
221   const uint8_t barrier_data = _node->barrier_data();
222   DecoratorSet decorators = DECORATORS_NONE;
223   if (barrier_data & ZBarrierStrong) {
224     decorators |= ON_STRONG_OOP_REF;
225   }
226   if (barrier_data & ZBarrierWeak) {
227     decorators |= ON_WEAK_OOP_REF;
228   }
229   if (barrier_data & ZBarrierPhantom) {
230     decorators |= ON_PHANTOM_OOP_REF;
231   }
232   if (barrier_data & ZBarrierNoKeepalive) {
233     decorators |= AS_NO_KEEPALIVE;
234   }
235   return ZBarrierSetRuntime::load_barrier_on_oop_field_preloaded_addr(decorators);
236 }
237 
238 void ZLoadBarrierStubC2::emit_code(MacroAssembler& masm) {
239   ZBarrierSet::assembler()->generate_c2_load_barrier_stub(&masm, static_cast<ZLoadBarrierStubC2*>(this));
240 }
241 
242 ZStoreBarrierStubC2* ZStoreBarrierStubC2::create(const MachNode* node, Address ref_addr, Register new_zaddress, Register new_zpointer, bool is_native, bool is_atomic, bool is_nokeepalive) {
243   AARCH64_ONLY(fatal("Should use ZStoreBarrierStubC2Aarch64::create"));
244   ZStoreBarrierStubC2* const stub = new (Compile::current()->comp_arena()) ZStoreBarrierStubC2(node, ref_addr, new_zaddress, new_zpointer, is_native, is_atomic, is_nokeepalive);
245   register_stub(stub);
246 
247   return stub;
248 }
249 
250 ZStoreBarrierStubC2::ZStoreBarrierStubC2(const MachNode* node, Address ref_addr, Register new_zaddress, Register new_zpointer,
251                                          bool is_native, bool is_atomic, bool is_nokeepalive)
252   : ZBarrierStubC2(node),
253     _ref_addr(ref_addr),
254     _new_zaddress(new_zaddress),
255     _new_zpointer(new_zpointer),
256     _is_native(is_native),
257     _is_atomic(is_atomic),
258     _is_nokeepalive(is_nokeepalive) {}
259 
260 Address ZStoreBarrierStubC2::ref_addr() const {
261   return _ref_addr;
262 }
263 
264 Register ZStoreBarrierStubC2::new_zaddress() const {
265   return _new_zaddress;
266 }
267 
268 Register ZStoreBarrierStubC2::new_zpointer() const {
269   return _new_zpointer;
270 }
271 
272 bool ZStoreBarrierStubC2::is_native() const {
273   return _is_native;
274 }
275 
276 bool ZStoreBarrierStubC2::is_atomic() const {
277   return _is_atomic;
278 }
279 
280 bool ZStoreBarrierStubC2::is_nokeepalive() const {
281   return _is_nokeepalive;
282 }
283 
284 void ZStoreBarrierStubC2::emit_code(MacroAssembler& masm) {
285   ZBarrierSet::assembler()->generate_c2_store_barrier_stub(&masm, static_cast<ZStoreBarrierStubC2*>(this));
286 }
287 
288 uint ZBarrierSetC2::estimated_barrier_size(const Node* node) const {
289   uint8_t barrier_data = MemNode::barrier_data(node);
290   assert(barrier_data != 0, "should be a barrier node");
291   uint uncolor_or_color_size = node->is_Load() ? 1 : 2;
292   if ((barrier_data & ZBarrierElided) != 0) {
293     return uncolor_or_color_size;
294   }
295   // A compare and branch corresponds to approximately four fast-path Ideal
296   // nodes (Cmp, Bool, If, If projection). The slow path (If projection and
297   // runtime call) is excluded since the corresponding code is laid out
298   // separately and does not directly affect performance.
299   return uncolor_or_color_size + 4;
300 }
301 
302 void* ZBarrierSetC2::create_barrier_state(Arena* comp_arena) const {
303   return new (comp_arena) ZBarrierSetC2State(comp_arena);
304 }
305 
306 void ZBarrierSetC2::late_barrier_analysis() const {
307   compute_liveness_at_stubs();
308   analyze_dominating_barriers();
309 }
310 
311 void ZBarrierSetC2::emit_stubs(CodeBuffer& cb) const {
312   MacroAssembler masm(&cb);
313   GrowableArray<ZBarrierStubC2*>* const stubs = barrier_set_state()->stubs();
314   barrier_set_state()->set_stubs_start_offset(masm.offset());
315 
316   for (int i = 0; i < stubs->length(); i++) {
317     // Make sure there is enough space in the code buffer
318     if (cb.insts()->maybe_expand_to_ensure_remaining(PhaseOutput::MAX_inst_size) && cb.blob() == nullptr) {
319       ciEnv::current()->record_failure("CodeCache is full");
320       return;
321     }
322 
323     stubs->at(i)->emit_code(masm);
324   }
325 
326   masm.flush();
327 }
328 
329 int ZBarrierSetC2::estimate_stub_size() const {
330   Compile* const C = Compile::current();
331   BufferBlob* const blob = C->output()->scratch_buffer_blob();
332   GrowableArray<ZBarrierStubC2*>* const stubs = barrier_set_state()->stubs();
333   int size = 0;
334 
335   for (int i = 0; i < stubs->length(); i++) {
336     CodeBuffer cb(blob->content_begin(), checked_cast<CodeBuffer::csize_t>((address)C->output()->scratch_locs_memory() - blob->content_begin()));
337     MacroAssembler masm(&cb);
338     stubs->at(i)->emit_code(masm);
339     size += cb.insts_size();
340   }
341 
342   return size;
343 }
344 
345 static void set_barrier_data(C2Access& access) {
346   if (!ZBarrierSet::barrier_needed(access.decorators(), access.type())) {
347     return;
348   }
349 
350   if (access.decorators() & C2_TIGHTLY_COUPLED_ALLOC) {
351     access.set_barrier_data(ZBarrierElided);
352     return;
353   }
354 
355   uint8_t barrier_data = 0;
356 
357   if (access.decorators() & ON_PHANTOM_OOP_REF) {
358     barrier_data |= ZBarrierPhantom;
359   } else if (access.decorators() & ON_WEAK_OOP_REF) {
360     barrier_data |= ZBarrierWeak;
361   } else {
362     barrier_data |= ZBarrierStrong;
363   }
364 
365   if (access.decorators() & IN_NATIVE) {
366     barrier_data |= ZBarrierNative;
367   }
368 
369   if (access.decorators() & AS_NO_KEEPALIVE) {
370     barrier_data |= ZBarrierNoKeepalive;
371   }
372 
373   access.set_barrier_data(barrier_data);
374 }
375 
376 Node* ZBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
377   set_barrier_data(access);
378   return BarrierSetC2::store_at_resolved(access, val);
379 }
380 
381 Node* ZBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
382   set_barrier_data(access);
383   return BarrierSetC2::load_at_resolved(access, val_type);
384 }
385 
386 Node* ZBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
387                                                     Node* new_val, const Type* val_type) const {
388   set_barrier_data(access);
389   return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, val_type);
390 }
391 
392 Node* ZBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
393                                                      Node* new_val, const Type* value_type) const {
394   set_barrier_data(access);
395   return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
396 }
397 
398 Node* ZBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* new_val, const Type* val_type) const {
399   set_barrier_data(access);
400   return BarrierSetC2::atomic_xchg_at_resolved(access, new_val, val_type);
401 }
402 
403 bool ZBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type,
404                                                     bool is_clone, bool is_clone_instance,
405                                                     ArrayCopyPhase phase) const {
406   if (phase == ArrayCopyPhase::Parsing) {
407     return false;
408   }
409   if (phase == ArrayCopyPhase::Optimization) {
410     return is_clone_instance;
411   }
412   // else ArrayCopyPhase::Expansion
413   return type == T_OBJECT || type == T_ARRAY;
414 }
415 
416 #define XTOP LP64_ONLY(COMMA phase->top())
417 
418 void ZBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
419   Node* const src = ac->in(ArrayCopyNode::Src);
420   const TypeAryPtr* const ary_ptr = src->get_ptr_type()->isa_aryptr();
421 
422   if (ac->is_clone_array() && ary_ptr != nullptr) {
423     BasicType bt = ary_ptr->elem()->array_element_basic_type();
424     if (is_reference_type(bt) && !ary_ptr->is_flat()) {
425       // Clone object array
426       bt = T_OBJECT;
427     } else {
428       // Clone primitive array
429       bt = T_LONG;
430     }
431 
432     Node* const ctrl = ac->in(TypeFunc::Control);
433     Node* const mem = ac->in(TypeFunc::Memory);
434     Node* const src = ac->in(ArrayCopyNode::Src);
435     Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
436     Node* const dest = ac->in(ArrayCopyNode::Dest);
437     Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
438     Node* length = ac->in(ArrayCopyNode::Length);
439 
440     if (bt == T_OBJECT) {
441       // BarrierSetC2::clone sets the offsets via BarrierSetC2::arraycopy_payload_base_offset
442       // which 8-byte aligns them to allow for word size copies. Make sure the offsets point
443       // to the first element in the array when cloning object arrays. Otherwise, load
444       // barriers are applied to parts of the header. Also adjust the length accordingly.
445       assert(src_offset == dest_offset, "should be equal");
446       const jlong offset = src_offset->get_long();
447       if (offset != arrayOopDesc::base_offset_in_bytes(T_OBJECT)) {
448         assert(!UseCompressedClassPointers, "should only happen without compressed class pointers");
449         assert((arrayOopDesc::base_offset_in_bytes(T_OBJECT) - offset) == BytesPerLong, "unexpected offset");
450         length = phase->transform_later(new SubXNode(length, phase->longcon(1))); // Size is in longs
451         src_offset = phase->longcon(arrayOopDesc::base_offset_in_bytes(T_OBJECT));
452         dest_offset = src_offset;
453       }
454     }
455     Node* const payload_src = phase->basic_plus_adr(src, src_offset);
456     Node* const payload_dst = phase->basic_plus_adr(dest, dest_offset);
457 
458     const char*   copyfunc_name = "arraycopy";
459     const address copyfunc_addr = phase->basictype2arraycopy(bt, nullptr, nullptr, true, copyfunc_name, true);
460 
461     const TypePtr* const raw_adr_type = TypeRawPtr::BOTTOM;
462     const TypeFunc* const call_type = OptoRuntime::fast_arraycopy_Type();
463 
464     Node* const call = phase->make_leaf_call(ctrl, mem, call_type, copyfunc_addr, copyfunc_name, raw_adr_type, payload_src, payload_dst, length XTOP);
465     phase->transform_later(call);
466 
467     phase->igvn().replace_node(ac, call);
468     return;
469   }
470 
471   // Clone instance or array where 'src' is only known to be an object (ary_ptr
472   // is null). This can happen in bytecode generated dynamically to implement
473   // reflective array clones.
474   clone_in_runtime(phase, ac, ZBarrierSetRuntime::clone_addr(), "ZBarrierSetRuntime::clone");
475 }
476 
477 #undef XTOP
478 
479 // == Dominating barrier elision ==
480 
481 static bool block_has_safepoint(const Block* block, uint from, uint to) {
482   for (uint i = from; i < to; i++) {
483     if (block->get_node(i)->is_MachSafePoint()) {
484       // Safepoint found
485       return true;
486     }
487   }
488 
489   // Safepoint not found
490   return false;
491 }
492 
493 static bool block_has_safepoint(const Block* block) {
494   return block_has_safepoint(block, 0, block->number_of_nodes());
495 }
496 
497 static uint block_index(const Block* block, const Node* node) {
498   for (uint j = 0; j < block->number_of_nodes(); ++j) {
499     if (block->get_node(j) == node) {
500       return j;
501     }
502   }
503   ShouldNotReachHere();
504   return 0;
505 }
506 
507 // Look through various node aliases
508 static const Node* look_through_node(const Node* node) {
509   while (node != nullptr) {
510     const Node* new_node = node;
511     if (node->is_Mach()) {
512       const MachNode* const node_mach = node->as_Mach();
513       if (node_mach->ideal_Opcode() == Op_CheckCastPP) {
514         new_node = node->in(1);
515       }
516       if (node_mach->is_SpillCopy()) {
517         new_node = node->in(1);
518       }
519     }
520     if (new_node == node || new_node == nullptr) {
521       break;
522     } else {
523       node = new_node;
524     }
525   }
526 
527   return node;
528 }
529 
530 // Whether the given offset is undefined.
531 static bool is_undefined(intptr_t offset) {
532   return offset == Type::OffsetTop;
533 }
534 
535 // Whether the given offset is unknown.
536 static bool is_unknown(intptr_t offset) {
537   return offset == Type::OffsetBot;
538 }
539 
540 // Whether the given offset is concrete (defined and compile-time known).
541 static bool is_concrete(intptr_t offset) {
542   return !is_undefined(offset) && !is_unknown(offset);
543 }
544 
545 // Compute base + offset components of the memory address accessed by mach.
546 // Return a node representing the base address, or null if the base cannot be
547 // found or the offset is undefined or a concrete negative value. If a non-null
548 // base is returned, the offset is a concrete, nonnegative value or unknown.
549 static const Node* get_base_and_offset(const MachNode* mach, intptr_t& offset) {
550   const TypePtr* adr_type = nullptr;
551   offset = 0;
552   const Node* base = mach->get_base_and_disp(offset, adr_type);
553 
554   if (base == nullptr || base == NodeSentinel) {
555     return nullptr;
556   }
557 
558   if (offset == 0 && base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_AddP) {
559     // The memory address is computed by 'base' and fed to 'mach' via an
560     // indirect memory operand (indicated by offset == 0). The ultimate base and
561     // offset can be fetched directly from the inputs and Ideal type of 'base'.
562     offset = base->bottom_type()->isa_oopptr()->offset();
563     // Even if 'base' is not an Ideal AddP node anymore, Matcher::ReduceInst()
564     // guarantees that the base address is still available at the same slot.
565     base = base->in(AddPNode::Base);
566     assert(base != nullptr, "");
567   }
568 
569   if (is_undefined(offset) || (is_concrete(offset) && offset < 0)) {
570     return nullptr;
571   }
572 
573   return look_through_node(base);
574 }
575 
576 // Whether a phi node corresponds to an array allocation.
577 // This test is incomplete: in some edge cases, it might return false even
578 // though the node does correspond to an array allocation.
579 static bool is_array_allocation(const Node* phi) {
580   precond(phi->is_Phi());
581   // Check whether phi has a successor cast (CheckCastPP) to Java array pointer,
582   // possibly below spill copies and other cast nodes. Limit the exploration to
583   // a single path from the phi node consisting of these node types.
584   const Node* current = phi;
585   while (true) {
586     const Node* next = nullptr;
587     for (DUIterator_Fast imax, i = current->fast_outs(imax); i < imax; i++) {
588       if (!current->fast_out(i)->isa_Mach()) {
589         continue;
590       }
591       const MachNode* succ = current->fast_out(i)->as_Mach();
592       if (succ->ideal_Opcode() == Op_CheckCastPP) {
593         if (succ->get_ptr_type()->isa_aryptr()) {
594           // Cast to Java array pointer: phi corresponds to an array allocation.
595           return true;
596         }
597         // Other cast: record as candidate for further exploration.
598         next = succ;
599       } else if (succ->is_SpillCopy() && next == nullptr) {
600         // Spill copy, and no better candidate found: record as candidate.
601         next = succ;
602       }
603     }
604     if (next == nullptr) {
605       // No evidence found that phi corresponds to an array allocation, and no
606       // candidates available to continue exploring.
607       return false;
608     }
609     // Continue exploring from the best candidate found.
610     current = next;
611   }
612   ShouldNotReachHere();
613 }
614 
615 // Match the phi node that connects a TLAB allocation fast path with its slowpath
616 static bool is_allocation(const Node* node) {
617   if (node->req() != 3) {
618     return false;
619   }
620   const Node* const fast_node = node->in(2);
621   if (!fast_node->is_Mach()) {
622     return false;
623   }
624   const MachNode* const fast_mach = fast_node->as_Mach();
625   if (fast_mach->ideal_Opcode() != Op_LoadP) {
626     return false;
627   }
628   const TypePtr* const adr_type = nullptr;
629   intptr_t offset;
630   const Node* const base = get_base_and_offset(fast_mach, offset);
631   if (base == nullptr || !base->is_Mach() || !is_concrete(offset)) {
632     return false;
633   }
634   const MachNode* const base_mach = base->as_Mach();
635   if (base_mach->ideal_Opcode() != Op_ThreadLocal) {
636     return false;
637   }
638   return offset == in_bytes(Thread::tlab_top_offset());
639 }
640 
641 static void elide_mach_barrier(MachNode* mach) {
642   mach->set_barrier_data(ZBarrierElided);
643 }
644 
645 void ZBarrierSetC2::analyze_dominating_barriers_impl(Node_List& accesses, Node_List& access_dominators) const {
646   Compile* const C = Compile::current();
647   PhaseCFG* const cfg = C->cfg();
648 
649   for (uint i = 0; i < accesses.size(); i++) {
650     MachNode* const access = accesses.at(i)->as_Mach();
651     intptr_t access_offset;
652     const Node* const access_obj = get_base_and_offset(access, access_offset);
653     Block* const access_block = cfg->get_block_for_node(access);
654     const uint access_index = block_index(access_block, access);
655 
656     if (access_obj == nullptr) {
657       // No information available
658       continue;
659     }
660 
661     for (uint j = 0; j < access_dominators.size(); j++) {
662      const  Node* const mem = access_dominators.at(j);
663       if (mem->is_Phi()) {
664         // Allocation node
665         if (mem != access_obj) {
666           continue;
667         }
668         if (is_unknown(access_offset) && !is_array_allocation(mem)) {
669           // The accessed address has an unknown offset, but the allocated
670           // object cannot be determined to be an array. Avoid eliding in this
671           // case, to be on the safe side.
672           continue;
673         }
674         assert((is_concrete(access_offset) && access_offset >= 0) || (is_unknown(access_offset) && is_array_allocation(mem)),
675                "candidate allocation-dominated access offsets must be either concrete and nonnegative, or unknown (for array allocations only)");
676       } else {
677         // Access node
678         const MachNode* const mem_mach = mem->as_Mach();
679         intptr_t mem_offset;
680         const Node* const mem_obj = get_base_and_offset(mem_mach, mem_offset);
681 
682         if (mem_obj == nullptr ||
683             !is_concrete(access_offset) ||
684             !is_concrete(mem_offset)) {
685           // No information available
686           continue;
687         }
688 
689         if (mem_obj != access_obj || mem_offset != access_offset) {
690           // Not the same addresses, not a candidate
691           continue;
692         }
693         assert(is_concrete(access_offset) && access_offset >= 0,
694                "candidate non-allocation-dominated access offsets must be concrete and nonnegative");
695       }
696 
697       Block* mem_block = cfg->get_block_for_node(mem);
698       const uint mem_index = block_index(mem_block, mem);
699 
700       if (access_block == mem_block) {
701         // Earlier accesses in the same block
702         if (mem_index < access_index && !block_has_safepoint(mem_block, mem_index + 1, access_index)) {
703           elide_mach_barrier(access);
704         }
705       } else if (mem_block->dominates(access_block)) {
706         // Dominating block? Look around for safepoints
707         ResourceMark rm;
708         Block_List stack;
709         VectorSet visited;
710         stack.push(access_block);
711         bool safepoint_found = block_has_safepoint(access_block);
712         while (!safepoint_found && stack.size() > 0) {
713           const Block* const block = stack.pop();
714           if (visited.test_set(block->_pre_order)) {
715             continue;
716           }
717           if (block_has_safepoint(block)) {
718             safepoint_found = true;
719             break;
720           }
721           if (block == mem_block) {
722             continue;
723           }
724 
725           // Push predecessor blocks
726           for (uint p = 1; p < block->num_preds(); ++p) {
727             Block* const pred = cfg->get_block_for_node(block->pred(p));
728             stack.push(pred);
729           }
730         }
731 
732         if (!safepoint_found) {
733           elide_mach_barrier(access);
734         }
735       }
736     }
737   }
738 }
739 
740 void ZBarrierSetC2::analyze_dominating_barriers() const {
741   ResourceMark rm;
742   Compile* const C = Compile::current();
743   PhaseCFG* const cfg = C->cfg();
744 
745   Node_List loads;
746   Node_List load_dominators;
747 
748   Node_List stores;
749   Node_List store_dominators;
750 
751   Node_List atomics;
752   Node_List atomic_dominators;
753 
754   // Step 1 - Find accesses and allocations, and track them in lists
755   for (uint i = 0; i < cfg->number_of_blocks(); ++i) {
756     const Block* const block = cfg->get_block(i);
757     for (uint j = 0; j < block->number_of_nodes(); ++j) {
758       Node* const node = block->get_node(j);
759       if (node->is_Phi()) {
760         if (is_allocation(node)) {
761           load_dominators.push(node);
762           store_dominators.push(node);
763           // An allocation can't be considered to "dominate" an atomic operation.
764           // For example a CAS requires the memory location to be store-good.
765           // When you have a dominating store or atomic instruction, that is
766           // indeed ensured to be the case. However, as for allocations, the
767           // initialized memory location could be raw null, which isn't store-good.
768         }
769         continue;
770       } else if (!node->is_Mach()) {
771         continue;
772       }
773 
774       MachNode* const mach = node->as_Mach();
775       switch (mach->ideal_Opcode()) {
776       case Op_LoadP:
777         if ((mach->barrier_data() & ZBarrierStrong) != 0 &&
778             (mach->barrier_data() & ZBarrierNoKeepalive) == 0) {
779           loads.push(mach);
780           load_dominators.push(mach);
781         }
782         break;
783       case Op_StoreP:
784         if (mach->barrier_data() != 0) {
785           stores.push(mach);
786           load_dominators.push(mach);
787           store_dominators.push(mach);
788           atomic_dominators.push(mach);
789         }
790         break;
791       case Op_CompareAndExchangeP:
792       case Op_CompareAndSwapP:
793       case Op_GetAndSetP:
794         if (mach->barrier_data() != 0) {
795           atomics.push(mach);
796           load_dominators.push(mach);
797           store_dominators.push(mach);
798           atomic_dominators.push(mach);
799         }
800         break;
801 
802       default:
803         break;
804       }
805     }
806   }
807 
808   // Step 2 - Find dominating accesses or allocations for each access
809   analyze_dominating_barriers_impl(loads, load_dominators);
810   analyze_dominating_barriers_impl(stores, store_dominators);
811   analyze_dominating_barriers_impl(atomics, atomic_dominators);
812 }
813 
814 
815 void ZBarrierSetC2::eliminate_gc_barrier(PhaseIterGVN* igvn, Node* node) const {
816   eliminate_gc_barrier_data(node);
817 }
818 
819 void ZBarrierSetC2::eliminate_gc_barrier_data(Node* node) const {
820   if (node->is_LoadStore()) {
821     LoadStoreNode* loadstore = node->as_LoadStore();
822     loadstore->set_barrier_data(ZBarrierElided);
823   } else if (node->is_Mem()) {
824     MemNode* mem = node->as_Mem();
825     mem->set_barrier_data(ZBarrierElided);
826   }
827 }
828 
829 #ifndef PRODUCT
830 void ZBarrierSetC2::dump_barrier_data(const MachNode* mach, outputStream* st) const {
831   if ((mach->barrier_data() & ZBarrierStrong) != 0) {
832     st->print("strong ");
833   }
834   if ((mach->barrier_data() & ZBarrierWeak) != 0) {
835     st->print("weak ");
836   }
837   if ((mach->barrier_data() & ZBarrierPhantom) != 0) {
838     st->print("phantom ");
839   }
840   if ((mach->barrier_data() & ZBarrierNoKeepalive) != 0) {
841     st->print("nokeepalive ");
842   }
843   if ((mach->barrier_data() & ZBarrierNative) != 0) {
844     st->print("native ");
845   }
846   if ((mach->barrier_data() & ZBarrierElided) != 0) {
847     st->print("elided ");
848   }
849 }
850 #endif // !PRODUCT