1 /* 2 * Copyright (c) 2015, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 */ 23 24 #ifndef SHARE_GC_Z_ZBARRIER_HPP 25 #define SHARE_GC_Z_ZBARRIER_HPP 26 27 #include "gc/z/zAddress.hpp" 28 #include "memory/allStatic.hpp" 29 #include "memory/iterator.hpp" 30 31 // == Shift based load barrier == 32 // 33 // The load barriers of ZGC check if a loaded value is safe to expose or not, and 34 // then shifts the pointer to remove metadata bits, such that it points to mapped 35 // memory. 36 // 37 // A pointer is safe to expose if it does not have any load-bad bits set in its 38 // metadata bits. In the C++ code and non-nmethod generated code, that is checked 39 // by testing the pointer value against a load-bad mask, checking that no bad bit 40 // is set, followed by a shift, removing the metadata bits if they were good. 41 // However, for nmethod code, the test + shift sequence is optimized in such 42 // a way that the shift both tests if the pointer is exposable or not, and removes 43 // the metadata bits, with the same instruction. This is a speculative optimization 44 // that assumes that the loaded pointer is frequently going to be load-good or null 45 // when checked. Therefore, the nmethod load barriers just apply the shift with the 46 // current "good" shift (which is patched with nmethod entry barriers for each GC 47 // phase). If the result of that shift was a raw null value, then the ZF flag is set. 48 // If the result is a good pointer, then the very last bit that was removed by the 49 // shift, must have been a 1, which would have set the CF flag. Therefore, the "above" 50 // branch condition code is used to take a slowpath only iff CF == 0 and ZF == 0. 51 // CF == 0 implies it was not a good pointer, and ZF == 0 implies the resulting address 52 // was not a null value. Then we decide that the pointer is bad. This optimization 53 // is necessary to get satisfactory performance, but does come with a few constraints: 54 // 55 // 1) The load barrier can only recognize 4 different good patterns across all GC phases. 56 // The reason is that when a load barrier applies the currently good shift, then 57 // the value of said shift may differ only by 3, until we risk shifting away more 58 // than the low order three zeroes of an address, given a bad pointer, which would 59 // yield spurious false positives. 60 // 61 // 2) Those bit patterns must have only a single bit set. We achieve that by moving 62 // non-relocation work to store barriers. 63 // 64 // Another consequence of this speculative optimization, is that when the compiled code 65 // takes a slow path, it needs to reload the oop, because the shifted oop is now 66 // broken after being shifted with a different shift to what was used when the oop 67 // was stored. 68 69 typedef bool (*ZBarrierFastPath)(zpointer); 70 typedef zpointer (*ZBarrierColor)(zaddress, zpointer); 71 72 class ZGeneration; 73 74 void z_assert_is_barrier_safe(); 75 76 class ZBarrier : public AllStatic { 77 friend class ZContinuation; 78 friend class ZStoreBarrierBuffer; 79 friend class ZUncoloredRoot; 80 81 private: 82 static void assert_transition_monotonicity(zpointer ptr, zpointer heal_ptr); 83 static void self_heal(ZBarrierFastPath fast_path, volatile zpointer* p, zpointer ptr, zpointer heal_ptr, bool allow_null); 84 85 template <typename ZBarrierSlowPath> 86 static zaddress barrier(ZBarrierFastPath fast_path, ZBarrierSlowPath slow_path, ZBarrierColor color, volatile zpointer* p, zpointer o, bool allow_null = false); 87 88 static zaddress make_load_good(zpointer ptr); 89 static zaddress make_load_good_no_relocate(zpointer ptr); 90 static zaddress relocate_or_remap(zaddress_unsafe addr, ZGeneration* generation); 91 static zaddress remap(zaddress_unsafe addr, ZGeneration* generation); 92 static void remember(volatile zpointer* p); 93 static void mark_and_remember(volatile zpointer* p, zaddress addr); 94 95 // Fast paths in increasing strength level 96 static bool is_load_good_or_null_fast_path(zpointer ptr); 97 static bool is_mark_good_fast_path(zpointer ptr); 98 static bool is_store_good_fast_path(zpointer ptr); 99 static bool is_store_good_or_null_fast_path(zpointer ptr); 100 static bool is_store_good_or_null_any_fast_path(zpointer ptr); 101 102 static bool is_mark_young_good_fast_path(zpointer ptr); 103 static bool is_finalizable_good_fast_path(zpointer ptr); 104 105 // Slow paths 106 static zaddress blocking_keep_alive_on_weak_slow_path(volatile zpointer* p, zaddress addr); 107 static zaddress blocking_keep_alive_on_phantom_slow_path(volatile zpointer* p, zaddress addr); 108 static zaddress blocking_load_barrier_on_weak_slow_path(volatile zpointer* p, zaddress addr); 109 static zaddress blocking_load_barrier_on_phantom_slow_path(volatile zpointer* p, zaddress addr); 110 111 static zaddress mark_slow_path(zaddress addr); 112 static zaddress mark_young_slow_path(zaddress addr); 113 static zaddress mark_from_young_slow_path(zaddress addr); 114 static zaddress mark_from_old_slow_path(zaddress addr); 115 static zaddress mark_finalizable_slow_path(zaddress addr); 116 static zaddress mark_finalizable_from_old_slow_path(zaddress addr); 117 118 static zaddress keep_alive_slow_path(zaddress addr); 119 static zaddress heap_store_slow_path(volatile zpointer* p, zaddress addr, zpointer prev, bool heal); 120 static zaddress native_store_slow_path(zaddress addr); 121 static zaddress no_keep_alive_heap_store_slow_path(volatile zpointer* p, zaddress addr); 122 123 static zaddress promote_slow_path(zaddress addr); 124 125 // Helpers for non-strong oop refs barriers 126 static zaddress blocking_keep_alive_load_barrier_on_weak_oop_field_preloaded(volatile zpointer* p, zpointer o); 127 static zaddress blocking_keep_alive_load_barrier_on_phantom_oop_field_preloaded(volatile zpointer* p, zpointer o); 128 static zaddress blocking_load_barrier_on_weak_oop_field_preloaded(volatile zpointer* p, zpointer o); 129 static zaddress blocking_load_barrier_on_phantom_oop_field_preloaded(volatile zpointer* p, zpointer o); 130 131 // Verification 132 static void verify_on_weak(volatile zpointer* referent_addr) NOT_DEBUG_RETURN; 133 134 public: 135 136 static zpointer load_atomic(volatile zpointer* p); 137 138 // Helpers for relocation 139 static ZGeneration* remap_generation(zpointer ptr); 140 static void remap_young_relocated(volatile zpointer* p, zpointer o); 141 142 // Helpers for marking 143 template <bool resurrect, bool gc_thread, bool follow, bool finalizable> 144 static void mark(zaddress addr); 145 template <bool resurrect, bool gc_thread, bool follow> 146 static void mark_young(zaddress addr); 147 template <bool resurrect, bool gc_thread, bool follow> 148 static void mark_if_young(zaddress addr); 149 150 // Load barrier 151 static zaddress load_barrier_on_oop_field(volatile zpointer* p); 152 static zaddress load_barrier_on_oop_field_preloaded(volatile zpointer* p, zpointer o); 153 154 static void load_barrier_on_oop_array(volatile zpointer* p, size_t length); 155 156 static zaddress keep_alive_load_barrier_on_oop_field_preloaded(volatile zpointer* p, zpointer o); 157 158 // Load barriers on non-strong oop refs 159 static zaddress load_barrier_on_weak_oop_field_preloaded(volatile zpointer* p, zpointer o); 160 static zaddress load_barrier_on_phantom_oop_field_preloaded(volatile zpointer* p, zpointer o); 161 162 static zaddress no_keep_alive_load_barrier_on_weak_oop_field_preloaded(volatile zpointer* p, zpointer o); 163 static zaddress no_keep_alive_load_barrier_on_phantom_oop_field_preloaded(volatile zpointer* p, zpointer o); 164 165 // Reference processor / weak cleaning barriers 166 static bool clean_barrier_on_weak_oop_field(volatile zpointer* p); 167 static bool clean_barrier_on_phantom_oop_field(volatile zpointer* p); 168 static bool clean_barrier_on_final_oop_field(volatile zpointer* p); 169 170 // Mark barrier 171 static void mark_barrier_on_young_oop_field(volatile zpointer* p); 172 static void mark_barrier_on_old_oop_field(volatile zpointer* p, bool finalizable); 173 static void mark_barrier_on_oop_field(volatile zpointer* p, bool finalizable); 174 static void mark_young_good_barrier_on_oop_field(volatile zpointer* p); 175 static zaddress remset_barrier_on_oop_field(volatile zpointer* p); 176 static void promote_barrier_on_young_oop_field(volatile zpointer* p); 177 178 // Store barrier 179 static void store_barrier_on_heap_oop_field(volatile zpointer* p, bool heal); 180 static void store_barrier_on_native_oop_field(volatile zpointer* p, bool heal); 181 182 static void no_keep_alive_store_barrier_on_heap_oop_field(volatile zpointer* p); 183 }; 184 185 #endif // SHARE_GC_Z_ZBARRIER_HPP