1 /*
  2  * Copyright (c) 2019, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  */
 23 
 24 #include "gc/z/zGeneration.inline.hpp"
 25 #include "gc/z/zObjArrayAllocator.hpp"
 26 #include "gc/z/zThreadLocalData.hpp"
 27 #include "gc/z/zUtils.inline.hpp"
 28 #include "oops/arrayKlass.hpp"
 29 #include "runtime/arguments.hpp"
 30 #include "runtime/interfaceSupport.inline.hpp"
 31 #include "utilities/debug.hpp"
 32 #include "utilities/globalDefinitions.hpp"
 33 
 34 ZObjArrayAllocator::ZObjArrayAllocator(Klass* klass, size_t word_size, int length, bool do_zero, Thread* thread)
 35   : ObjArrayAllocator(klass, word_size, length, do_zero, thread) {}
 36 
 37 void ZObjArrayAllocator::yield_for_safepoint() const {
 38   ThreadBlockInVM tbivm(JavaThread::cast(_thread));
 39 }
 40 
 41 static bool is_oop_containing_flat_array(ArrayKlass* ak) {
 42   return ak->is_flatArray_klass() &&
 43          FlatArrayKlass::cast(ak)->contains_oops();
 44 }
 45 
 46 oop ZObjArrayAllocator::initialize(HeapWord* mem) const {
 47   // ZGC specializes the initialization by performing segmented clearing
 48   // to allow shorter time-to-safepoints.
 49 
 50   if (!_do_zero) {
 51     // No need for ZGC specialization
 52     return ObjArrayAllocator::initialize(mem);
 53   }
 54 
 55   // A max segment size of 64K was chosen because microbenchmarking
 56   // suggested that it offered a good trade-off between allocation
 57   // time and time-to-safepoint
 58   const size_t segment_max = ZUtils::bytes_to_words(64 * K);
 59 
 60   if (_word_size <= segment_max) {
 61     // Too small to use segmented clearing
 62     return ObjArrayAllocator::initialize(mem);
 63   }
 64 
 65   ArrayKlass* const ak = ArrayKlass::cast(_klass);
 66 
 67   if (is_oop_containing_flat_array(ak)) {
 68     // Flat arrays containing oops are not supported in ZGC without relying on
 69     // internal-only features such as loose-consistency and null-restriction.
 70     // A value object that contains an oop and a null-marker will always exceed
 71     // 64 bits when using ZGC. As a result, such objects will not be flattened
 72     // in practice due to the 64-bit atomicity limit.
 73     //
 74     // We only need to support flat arrays containing oops when/if value objects
 75     // can be user-declared with loose-consistency and/or null-restriction.
 76     return ObjArrayAllocator::initialize(mem);
 77   }
 78 
 79   const BasicType element_type = ak->element_type();
 80 
 81   // Flat arrays containing oops are not supported and only contain primitives
 82   // from here on out.
 83   const bool is_oop_array = element_type != T_FLAT_ELEMENT &&
 84                             is_reference_type(element_type);
 85 
 86   // Segmented clearing
 87 
 88   // The array is going to be exposed before it has been completely
 89   // cleared, therefore we can't expose the header at the end of this
 90   // function. Instead explicitly initialize it according to our needs.
 91 
 92   // Signal to the ZIterator that this is an invisible root, by setting
 93   // the mark word to "marked". Reset to prototype() after the clearing.
 94   if (UseCompactObjectHeaders) {
 95     oopDesc::release_set_mark(mem, _klass->prototype_header().set_marked());
 96   } else {
 97     if (Arguments::is_valhalla_enabled()) {
 98       arrayOopDesc::set_mark(mem, _klass->prototype_header().set_marked());
 99     } else {
100       arrayOopDesc::set_mark(mem, markWord::prototype().set_marked());
101     }
102     arrayOopDesc::release_set_klass(mem, _klass);
103   }
104   assert(_length >= 0, "length should be non-negative");
105   arrayOopDesc::set_length(mem, _length);
106 
107   // Keep the array alive across safepoints through an invisible
108   // root. Invisible roots are not visited by the heap iterator
109   // and the marking logic will not attempt to follow its elements.
110   // Relocation and remembered set code know how to dodge iterating
111   // over such objects.
112   ZThreadLocalData::set_invisible_root(_thread, (zaddress_unsafe*)&mem);
113 
114   const size_t base_offset_in_bytes = (size_t)arrayOopDesc::base_offset_in_bytes(element_type);
115   const size_t process_start_offset_in_bytes = align_up(base_offset_in_bytes, (size_t)BytesPerWord);
116 
117   if (process_start_offset_in_bytes != base_offset_in_bytes) {
118     // initialize_memory can only fill word aligned memory,
119     // fill the first 4 bytes here.
120     assert(process_start_offset_in_bytes - base_offset_in_bytes == 4, "Must be 4-byte aligned");
121     assert(!is_oop_array, "Only TypeArrays can be 4-byte aligned");
122     *reinterpret_cast<int*>(reinterpret_cast<char*>(mem) + base_offset_in_bytes) = 0;
123   }
124 
125   // Note: initialize_memory may clear padding bytes at the end
126   const size_t process_start_offset = ZUtils::bytes_to_words(process_start_offset_in_bytes);
127   const size_t process_size = _word_size - process_start_offset;
128 
129   uint32_t old_seqnum_before = ZGeneration::old()->seqnum();
130   uint32_t young_seqnum_before = ZGeneration::young()->seqnum();
131   uintptr_t color_before = ZPointerStoreGoodMask;
132   auto gc_safepoint_happened = [&]() {
133     return old_seqnum_before != ZGeneration::old()->seqnum() ||
134            young_seqnum_before != ZGeneration::young()->seqnum() ||
135            color_before != ZPointerStoreGoodMask;
136   };
137 
138   bool seen_gc_safepoint = false;
139 
140   auto initialize_memory = [&]() {
141     for (size_t processed = 0; processed < process_size; processed += segment_max) {
142       // Clear segment
143       uintptr_t* const start = (uintptr_t*)(mem + process_start_offset + processed);
144       const size_t remaining = process_size - processed;
145       const size_t segment = MIN2(remaining, segment_max);
146       // Usually, the young marking code has the responsibility to color
147       // raw nulls, before they end up in the old generation. However, the
148       // invisible roots are hidden from the marking code, and therefore
149       // we must color the nulls already here in the initialization. The
150       // color we choose must be store bad for any subsequent stores, regardless
151       // of how many GC flips later it will arrive. That's why we OR in 11
152       // (ZPointerRememberedMask) in the remembered bits, similar to how
153       // forgotten old oops also have 11, for the very same reason.
154       // However, we opportunistically try to color without the 11 remembered
155       // bits, hoping to not get interrupted in the middle of a GC safepoint.
156       // Most of the time, we manage to do that, and can the avoid having GC
157       // barriers trigger slow paths for this.
158       const uintptr_t colored_null = seen_gc_safepoint ? (ZPointerStoreGoodMask | ZPointerRememberedMask)
159                                                        : ZPointerStoreGoodMask;
160       const uintptr_t fill_value = is_oop_array ? colored_null : 0;
161       ZUtils::fill(start, segment, fill_value);
162 
163       // Safepoint
164       yield_for_safepoint();
165 
166       // Deal with safepoints
167       if (is_oop_array && !seen_gc_safepoint && gc_safepoint_happened()) {
168         // The first time we observe a GC safepoint in the yield point,
169         // we have to restart processing with 11 remembered bits.
170         seen_gc_safepoint = true;
171         return false;
172       }
173     }
174     return true;
175   };
176 
177   mem_zap_start_padding(mem);
178 
179   if (!initialize_memory()) {
180     // Re-color with 11 remset bits if we got intercepted by a GC safepoint
181     const bool result = initialize_memory();
182     assert(result, "Array initialization should always succeed the second time");
183   }
184 
185   mem_zap_end_padding(mem);
186 
187   ZThreadLocalData::clear_invisible_root(_thread);
188 
189   // Signal to the ZIterator that this is no longer an invisible root
190   if (UseCompactObjectHeaders || Arguments::is_valhalla_enabled()) {
191     oopDesc::release_set_mark(mem, _klass->prototype_header());
192   } else {
193     oopDesc::release_set_mark(mem, markWord::prototype());
194   }
195 
196   return cast_to_oop(mem);
197 }