1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmClasses.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "compiler/compilationPolicy.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "gc/shared/barrierSetNMethod.hpp"
  36 #include "gc/shared/collectedHeap.hpp"
  37 #include "interpreter/bytecodeTracer.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "interpreter/linkResolver.hpp"
  41 #include "interpreter/templateTable.hpp"
  42 #include "jvm_io.h"
  43 #include "logging/log.hpp"
  44 #include "memory/oopFactory.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "memory/universe.hpp"
  47 #include "oops/constantPool.inline.hpp"
  48 #include "oops/cpCache.inline.hpp"
  49 #include "oops/flatArrayKlass.hpp"
  50 #include "oops/flatArrayOop.inline.hpp"
  51 #include "oops/inlineKlass.inline.hpp"
  52 #include "oops/instanceKlass.inline.hpp"
  53 #include "oops/klass.inline.hpp"
  54 #include "oops/methodData.hpp"
  55 #include "oops/method.inline.hpp"
  56 #include "oops/objArrayKlass.hpp"
  57 #include "oops/objArrayOop.inline.hpp"
  58 #include "oops/oop.inline.hpp"
  59 #include "oops/symbol.hpp"
  60 #include "prims/jvmtiExport.hpp"
  61 #include "prims/methodHandles.hpp"
  62 #include "prims/nativeLookup.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/continuation.hpp"
  65 #include "runtime/deoptimization.hpp"
  66 #include "runtime/fieldDescriptor.inline.hpp"
  67 #include "runtime/frame.inline.hpp"
  68 #include "runtime/handles.inline.hpp"
  69 #include "runtime/icache.hpp"
  70 #include "runtime/interfaceSupport.inline.hpp"
  71 #include "runtime/java.hpp"
  72 #include "runtime/javaCalls.hpp"
  73 #include "runtime/jfieldIDWorkaround.hpp"
  74 #include "runtime/osThread.hpp"
  75 #include "runtime/sharedRuntime.hpp"
  76 #include "runtime/stackWatermarkSet.hpp"
  77 #include "runtime/stubRoutines.hpp"
  78 #include "runtime/synchronizer.hpp"
  79 #include "runtime/threadCritical.hpp"
  80 #include "utilities/align.hpp"
  81 #include "utilities/checkedCast.hpp"
  82 #include "utilities/copy.hpp"
  83 #include "utilities/events.hpp"
  84 #include "utilities/globalDefinitions.hpp"
  85 #ifdef COMPILER2
  86 #include "opto/runtime.hpp"
  87 #endif
  88 
  89 // Helper class to access current interpreter state
  90 class LastFrameAccessor : public StackObj {
  91   frame _last_frame;
  92 public:
  93   LastFrameAccessor(JavaThread* current) {
  94     assert(current == Thread::current(), "sanity");
  95     _last_frame = current->last_frame();
  96   }
  97   bool is_interpreted_frame() const              { return _last_frame.is_interpreted_frame(); }
  98   Method*   method() const                       { return _last_frame.interpreter_frame_method(); }
  99   address   bcp() const                          { return _last_frame.interpreter_frame_bcp(); }
 100   int       bci() const                          { return _last_frame.interpreter_frame_bci(); }
 101   address   mdp() const                          { return _last_frame.interpreter_frame_mdp(); }
 102 
 103   void      set_bcp(address bcp)                 { _last_frame.interpreter_frame_set_bcp(bcp); }
 104   void      set_mdp(address dp)                  { _last_frame.interpreter_frame_set_mdp(dp); }
 105 
 106   // pass method to avoid calling unsafe bcp_to_method (partial fix 4926272)
 107   Bytecodes::Code code() const                   { return Bytecodes::code_at(method(), bcp()); }
 108 
 109   Bytecode  bytecode() const                     { return Bytecode(method(), bcp()); }
 110   int get_index_u1(Bytecodes::Code bc) const     { return bytecode().get_index_u1(bc); }
 111   int get_index_u2(Bytecodes::Code bc) const     { return bytecode().get_index_u2(bc); }
 112   int get_index_u4(Bytecodes::Code bc) const     { return bytecode().get_index_u4(bc); }
 113   int number_of_dimensions() const               { return bcp()[3]; }
 114 
 115   oop callee_receiver(Symbol* signature) {
 116     return _last_frame.interpreter_callee_receiver(signature);
 117   }
 118   BasicObjectLock* monitor_begin() const {
 119     return _last_frame.interpreter_frame_monitor_begin();
 120   }
 121   BasicObjectLock* monitor_end() const {
 122     return _last_frame.interpreter_frame_monitor_end();
 123   }
 124   BasicObjectLock* next_monitor(BasicObjectLock* current) const {
 125     return _last_frame.next_monitor_in_interpreter_frame(current);
 126   }
 127 
 128   frame& get_frame()                             { return _last_frame; }
 129 };
 130 
 131 //------------------------------------------------------------------------------------------------------------------------
 132 // State accessors
 133 
 134 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread* current) {
 135   LastFrameAccessor last_frame(current);
 136   last_frame.set_bcp(bcp);
 137   if (ProfileInterpreter) {
 138     // ProfileTraps uses MDOs independently of ProfileInterpreter.
 139     // That is why we must check both ProfileInterpreter and mdo != nullptr.
 140     MethodData* mdo = last_frame.method()->method_data();
 141     if (mdo != nullptr) {
 142       NEEDS_CLEANUP;
 143       last_frame.set_mdp(mdo->bci_to_dp(last_frame.bci()));
 144     }
 145   }
 146 }
 147 
 148 //------------------------------------------------------------------------------------------------------------------------
 149 // Constants
 150 
 151 
 152 JRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* current, bool wide))
 153   // access constant pool
 154   LastFrameAccessor last_frame(current);
 155   ConstantPool* pool = last_frame.method()->constants();
 156   int cp_index = wide ? last_frame.get_index_u2(Bytecodes::_ldc_w) : last_frame.get_index_u1(Bytecodes::_ldc);
 157   constantTag tag = pool->tag_at(cp_index);
 158 
 159   assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call");
 160   Klass* klass = pool->klass_at(cp_index, CHECK);
 161   oop java_class = klass->java_mirror();
 162   current->set_vm_result(java_class);
 163 JRT_END
 164 
 165 JRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* current, Bytecodes::Code bytecode)) {
 166   assert(bytecode == Bytecodes::_ldc ||
 167          bytecode == Bytecodes::_ldc_w ||
 168          bytecode == Bytecodes::_ldc2_w ||
 169          bytecode == Bytecodes::_fast_aldc ||
 170          bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
 171   ResourceMark rm(current);
 172   const bool is_fast_aldc = (bytecode == Bytecodes::_fast_aldc ||
 173                              bytecode == Bytecodes::_fast_aldc_w);
 174   LastFrameAccessor last_frame(current);
 175   methodHandle m (current, last_frame.method());
 176   Bytecode_loadconstant ldc(m, last_frame.bci());
 177 
 178   // Double-check the size.  (Condy can have any type.)
 179   BasicType type = ldc.result_type();
 180   switch (type2size[type]) {
 181   case 2: guarantee(bytecode == Bytecodes::_ldc2_w, ""); break;
 182   case 1: guarantee(bytecode != Bytecodes::_ldc2_w, ""); break;
 183   default: ShouldNotReachHere();
 184   }
 185 
 186   // Resolve the constant.  This does not do unboxing.
 187   // But it does replace Universe::the_null_sentinel by null.
 188   oop result = ldc.resolve_constant(CHECK);
 189   assert(result != nullptr || is_fast_aldc, "null result only valid for fast_aldc");
 190 
 191 #ifdef ASSERT
 192   {
 193     // The bytecode wrappers aren't GC-safe so construct a new one
 194     Bytecode_loadconstant ldc2(m, last_frame.bci());
 195     int rindex = ldc2.cache_index();
 196     if (rindex < 0)
 197       rindex = m->constants()->cp_to_object_index(ldc2.pool_index());
 198     if (rindex >= 0) {
 199       oop coop = m->constants()->resolved_reference_at(rindex);
 200       oop roop = (result == nullptr ? Universe::the_null_sentinel() : result);
 201       assert(roop == coop, "expected result for assembly code");
 202     }
 203   }
 204 #endif
 205   current->set_vm_result(result);
 206   if (!is_fast_aldc) {
 207     // Tell the interpreter how to unbox the primitive.
 208     guarantee(java_lang_boxing_object::is_instance(result, type), "");
 209     int offset = java_lang_boxing_object::value_offset(type);
 210     intptr_t flags = ((as_TosState(type) << ConstantPoolCache::tos_state_shift)
 211                       | (offset & ConstantPoolCache::field_index_mask));
 212     current->set_vm_result_2((Metadata*)flags);
 213   }
 214 }
 215 JRT_END
 216 
 217 
 218 //------------------------------------------------------------------------------------------------------------------------
 219 // Allocation
 220 
 221 JRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* current, ConstantPool* pool, int index))
 222   Klass* k = pool->klass_at(index, CHECK);
 223   InstanceKlass* klass = InstanceKlass::cast(k);
 224 
 225   // Make sure we are not instantiating an abstract klass
 226   klass->check_valid_for_instantiation(true, CHECK);
 227 
 228   // Make sure klass is initialized
 229   klass->initialize(CHECK);
 230 
 231   // At this point the class may not be fully initialized
 232   // because of recursive initialization. If it is fully
 233   // initialized & has_finalized is not set, we rewrite
 234   // it into its fast version (Note: no locking is needed
 235   // here since this is an atomic byte write and can be
 236   // done more than once).
 237   //
 238   // Note: In case of classes with has_finalized we don't
 239   //       rewrite since that saves us an extra check in
 240   //       the fast version which then would call the
 241   //       slow version anyway (and do a call back into
 242   //       Java).
 243   //       If we have a breakpoint, then we don't rewrite
 244   //       because the _breakpoint bytecode would be lost.
 245   oop obj = klass->allocate_instance(CHECK);
 246   current->set_vm_result(obj);
 247 JRT_END
 248 
 249 JRT_ENTRY(void, InterpreterRuntime::uninitialized_static_inline_type_field(JavaThread* current, oopDesc* mirror, ResolvedFieldEntry* entry))
 250   // The interpreter tries to access an inline static field that has not been initialized.
 251   // This situation can happen in different scenarios:
 252   //   1 - if the load or initialization of the field failed during step 8 of
 253   //       the initialization of the holder of the field, in this case the access to the field
 254   //       must fail
 255   //   2 - it can also happen when the initialization of the holder class triggered the initialization of
 256   //       another class which accesses this field in its static initializer, in this case the
 257   //       access must succeed to allow circularity
 258   // The code below tries to load and initialize the field's class again before returning the default value.
 259   // If the field was not initialized because of an error, an exception should be thrown.
 260   // If the class is being initialized, the default value is returned.
 261   assert(entry->is_valid(), "Invalid ResolvedFieldEntry");
 262   instanceHandle mirror_h(THREAD, (instanceOop)mirror);
 263   InstanceKlass* klass = entry->field_holder();
 264   u2 index = entry->field_index();
 265   assert(klass == java_lang_Class::as_Klass(mirror), "Not the field holder klass");
 266   assert(klass->field_is_null_free_inline_type(index), "Sanity check");
 267   if (klass->is_being_initialized() && klass->is_init_thread(THREAD)) {
 268     int offset = klass->field_offset(index);
 269     Klass* field_k = klass->get_inline_type_field_klass_or_null(index);
 270     if (field_k == nullptr) {
 271       field_k = SystemDictionary::resolve_or_fail(klass->field_signature(index)->fundamental_name(THREAD),
 272           Handle(THREAD, klass->class_loader()),
 273           Handle(THREAD, klass->protection_domain()),
 274           true, CHECK);
 275       assert(field_k != nullptr, "Should have been loaded or an exception thrown above");
 276       klass->set_inline_type_field_klass(index, InlineKlass::cast(field_k));
 277     }
 278     field_k->initialize(CHECK);
 279     oop defaultvalue = InlineKlass::cast(field_k)->default_value();
 280     // It is safe to initialize the static field because 1) the current thread is the initializing thread
 281     // and is the only one that can access it, and 2) the field is actually not initialized (i.e. null)
 282     // otherwise the JVM should not be executing this code.
 283     mirror_h()->obj_field_put(offset, defaultvalue);
 284     current->set_vm_result(defaultvalue);
 285   } else {
 286     assert(klass->is_in_error_state(), "If not initializing, initialization must have failed to get there");
 287     ResourceMark rm(THREAD);
 288     const char* desc = "Could not initialize class ";
 289     const char* className = klass->external_name();
 290     size_t msglen = strlen(desc) + strlen(className) + 1;
 291     char* message = NEW_RESOURCE_ARRAY(char, msglen);
 292     if (nullptr == message) {
 293       // Out of memory: can't create detailed error message
 294       THROW_MSG(vmSymbols::java_lang_NoClassDefFoundError(), className);
 295     } else {
 296       jio_snprintf(message, msglen, "%s%s", desc, className);
 297       THROW_MSG(vmSymbols::java_lang_NoClassDefFoundError(), message);
 298     }
 299   }
 300 JRT_END
 301 
 302 JRT_ENTRY(void, InterpreterRuntime::read_flat_field(JavaThread* current, oopDesc* obj, int index, Klass* field_holder))
 303   Handle obj_h(THREAD, obj);
 304 
 305   assert(oopDesc::is_oop(obj), "Sanity check");
 306 
 307   assert(field_holder->is_instance_klass(), "Sanity check");
 308   InstanceKlass* klass = InstanceKlass::cast(field_holder);
 309 
 310   assert(klass->field_is_flat(index), "Sanity check");
 311 
 312   InlineKlass* field_vklass = InlineKlass::cast(klass->get_inline_type_field_klass(index));
 313 
 314   oop res = field_vklass->read_flat_field(obj_h(), klass->field_offset(index), CHECK);
 315   current->set_vm_result(res);
 316 JRT_END
 317 
 318 // The protocol to read a nullable flat field is:
 319 // Step 1: read the null marker with an load_acquire barrier to ensure that
 320 //         reordered loads won't try to load the value before the null marker is read
 321 // Step 2: if the null marker value is zero, the field's value is null
 322 //         otherwise the flat field value can be read like a regular flat field
 323 JRT_ENTRY(void, InterpreterRuntime::read_nullable_flat_field(JavaThread* current, oopDesc* obj, ResolvedFieldEntry* entry))
 324   assert(oopDesc::is_oop(obj), "Sanity check");
 325   assert(entry->has_null_marker(), "Otherwise should not get there");
 326   Handle obj_h(THREAD, obj);
 327 
 328   InstanceKlass* ik = InstanceKlass::cast(obj_h()->klass());
 329   int field_index = entry->field_index();
 330   int nm_offset = ik->null_marker_offsets_array()->at(field_index);
 331   if (obj_h()->byte_field_acquire(nm_offset) == 0) {
 332     current->set_vm_result(nullptr);
 333   } else {
 334     InlineKlass* field_vklass = InlineKlass::cast(ik->get_inline_type_field_klass(field_index));
 335     oop res = field_vklass->read_flat_field(obj_h(), ik->field_offset(field_index), CHECK);
 336     current->set_vm_result(res);
 337   }
 338 JRT_END
 339 
 340 // The protocol to write a nullable flat field is:
 341 // If the new field value is null, just write zero to the null marker
 342 // Otherwise:
 343 // Step 1: write the field value like a regular flat field
 344 // Step 2: have a memory barrier to ensure that the whole value content is visible
 345 // Step 3: update the null marker to a non zero value
 346 JRT_ENTRY(void, InterpreterRuntime::write_nullable_flat_field(JavaThread* current, oopDesc* obj, oopDesc* value, ResolvedFieldEntry* entry))
 347   assert(oopDesc::is_oop(obj), "Sanity check");
 348   Handle obj_h(THREAD, obj);
 349   assert(value == nullptr || oopDesc::is_oop(value), "Sanity check");
 350   Handle val_h(THREAD, value);
 351 
 352   InstanceKlass* ik = InstanceKlass::cast(obj_h()->klass());
 353   int nm_offset = ik->null_marker_offsets_array()->at(entry->field_index());
 354   if (val_h() == nullptr) {
 355     obj_h()->byte_field_put(nm_offset, (jbyte)0);
 356     return;
 357   }
 358   InlineKlass* vk = InlineKlass::cast(val_h()->klass());
 359   if (entry->has_internal_null_marker()) {
 360     // The interpreter copies values with a bulk operation
 361     // To avoid accidently setting the null marker to "null" during
 362     // the copying, the null marker is set to non zero in the source object
 363     if (val_h()->byte_field(vk->get_internal_null_marker_offset()) == 0) {
 364       val_h()->byte_field_put(vk->get_internal_null_marker_offset(), (jbyte)1);
 365     }
 366     vk->write_non_null_flat_field(obj_h(), entry->field_offset(), val_h());
 367   } else {
 368     vk->write_non_null_flat_field(obj_h(), entry->field_offset(), val_h());
 369     OrderAccess::release();
 370     obj_h()->byte_field_put(nm_offset, (jbyte)1);
 371   }
 372 JRT_END
 373 
 374 JRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* current, BasicType type, jint size))
 375   oop obj = oopFactory::new_typeArray(type, size, CHECK);
 376   current->set_vm_result(obj);
 377 JRT_END
 378 
 379 
 380 JRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* current, ConstantPool* pool, int index, jint size))
 381   Klass*    klass = pool->klass_at(index, CHECK);
 382   arrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
 383   current->set_vm_result(obj);
 384 JRT_END
 385 
 386 JRT_ENTRY(void, InterpreterRuntime::value_array_load(JavaThread* current, arrayOopDesc* array, int index))
 387   flatArrayHandle vah(current, (flatArrayOop)array);
 388   oop value_holder = flatArrayOopDesc::value_alloc_copy_from_index(vah, index, CHECK);
 389   current->set_vm_result(value_holder);
 390 JRT_END
 391 
 392 JRT_ENTRY(void, InterpreterRuntime::value_array_store(JavaThread* current, void* val, arrayOopDesc* array, int index))
 393   assert(val != nullptr, "can't store null into flat array");
 394   ((flatArrayOop)array)->value_copy_to_index(cast_to_oop(val), index);
 395 JRT_END
 396 
 397 JRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* current, jint* first_size_address))
 398   // We may want to pass in more arguments - could make this slightly faster
 399   LastFrameAccessor last_frame(current);
 400   ConstantPool* constants = last_frame.method()->constants();
 401   int i = last_frame.get_index_u2(Bytecodes::_multianewarray);
 402   Klass* klass = constants->klass_at(i, CHECK);
 403   int   nof_dims = last_frame.number_of_dimensions();
 404   assert(klass->is_klass(), "not a class");
 405   assert(nof_dims >= 1, "multianewarray rank must be nonzero");
 406 
 407   // We must create an array of jints to pass to multi_allocate.
 408   ResourceMark rm(current);
 409   const int small_dims = 10;
 410   jint dim_array[small_dims];
 411   jint *dims = &dim_array[0];
 412   if (nof_dims > small_dims) {
 413     dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
 414   }
 415   for (int index = 0; index < nof_dims; index++) {
 416     // offset from first_size_address is addressed as local[index]
 417     int n = Interpreter::local_offset_in_bytes(index)/jintSize;
 418     dims[index] = first_size_address[n];
 419   }
 420   oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
 421   current->set_vm_result(obj);
 422 JRT_END
 423 
 424 
 425 JRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
 426   assert(oopDesc::is_oop(obj), "must be a valid oop");
 427   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 428   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 429 JRT_END
 430 
 431 JRT_ENTRY(jboolean, InterpreterRuntime::is_substitutable(JavaThread* current, oopDesc* aobj, oopDesc* bobj))
 432   assert(oopDesc::is_oop(aobj) && oopDesc::is_oop(bobj), "must be valid oops");
 433 
 434   Handle ha(THREAD, aobj);
 435   Handle hb(THREAD, bobj);
 436   JavaValue result(T_BOOLEAN);
 437   JavaCallArguments args;
 438   args.push_oop(ha);
 439   args.push_oop(hb);
 440   methodHandle method(current, Universe::is_substitutable_method());
 441   method->method_holder()->initialize(CHECK_false); // Ensure class ValueObjectMethods is initialized
 442   JavaCalls::call(&result, method, &args, THREAD);
 443   if (HAS_PENDING_EXCEPTION) {
 444     // Something really bad happened because isSubstitutable() should not throw exceptions
 445     // If it is an error, just let it propagate
 446     // If it is an exception, wrap it into an InternalError
 447     if (!PENDING_EXCEPTION->is_a(vmClasses::Error_klass())) {
 448       Handle e(THREAD, PENDING_EXCEPTION);
 449       CLEAR_PENDING_EXCEPTION;
 450       THROW_MSG_CAUSE_(vmSymbols::java_lang_InternalError(), "Internal error in substitutability test", e, false);
 451     }
 452   }
 453   return result.get_jboolean();
 454 JRT_END
 455 
 456 // Quicken instance-of and check-cast bytecodes
 457 JRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* current))
 458   // Force resolving; quicken the bytecode
 459   LastFrameAccessor last_frame(current);
 460   int which = last_frame.get_index_u2(Bytecodes::_checkcast);
 461   ConstantPool* cpool = last_frame.method()->constants();
 462   // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
 463   // program we might have seen an unquick'd bytecode in the interpreter but have another
 464   // thread quicken the bytecode before we get here.
 465   // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
 466   Klass* klass = cpool->klass_at(which, CHECK);
 467   current->set_vm_result_2(klass);
 468 JRT_END
 469 
 470 
 471 //------------------------------------------------------------------------------------------------------------------------
 472 // Exceptions
 473 
 474 void InterpreterRuntime::note_trap_inner(JavaThread* current, int reason,
 475                                          const methodHandle& trap_method, int trap_bci) {
 476   if (trap_method.not_null()) {
 477     MethodData* trap_mdo = trap_method->method_data();
 478     if (trap_mdo == nullptr) {
 479       ExceptionMark em(current);
 480       JavaThread* THREAD = current; // For exception macros.
 481       Method::build_profiling_method_data(trap_method, THREAD);
 482       if (HAS_PENDING_EXCEPTION) {
 483         // Only metaspace OOM is expected. No Java code executed.
 484         assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())),
 485                "we expect only an OOM error here");
 486         CLEAR_PENDING_EXCEPTION;
 487       }
 488       trap_mdo = trap_method->method_data();
 489       // and fall through...
 490     }
 491     if (trap_mdo != nullptr) {
 492       // Update per-method count of trap events.  The interpreter
 493       // is updating the MDO to simulate the effect of compiler traps.
 494       Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
 495     }
 496   }
 497 }
 498 
 499 // Assume the compiler is (or will be) interested in this event.
 500 // If necessary, create an MDO to hold the information, and record it.
 501 void InterpreterRuntime::note_trap(JavaThread* current, int reason) {
 502   assert(ProfileTraps, "call me only if profiling");
 503   LastFrameAccessor last_frame(current);
 504   methodHandle trap_method(current, last_frame.method());
 505   int trap_bci = trap_method->bci_from(last_frame.bcp());
 506   note_trap_inner(current, reason, trap_method, trap_bci);
 507 }
 508 
 509 static Handle get_preinitialized_exception(Klass* k, TRAPS) {
 510   // get klass
 511   InstanceKlass* klass = InstanceKlass::cast(k);
 512   assert(klass->is_initialized(),
 513          "this klass should have been initialized during VM initialization");
 514   // create instance - do not call constructor since we may have no
 515   // (java) stack space left (should assert constructor is empty)
 516   Handle exception;
 517   oop exception_oop = klass->allocate_instance(CHECK_(exception));
 518   exception = Handle(THREAD, exception_oop);
 519   if (StackTraceInThrowable) {
 520     java_lang_Throwable::fill_in_stack_trace(exception);
 521   }
 522   return exception;
 523 }
 524 
 525 // Special handling for stack overflow: since we don't have any (java) stack
 526 // space left we use the pre-allocated & pre-initialized StackOverflowError
 527 // klass to create an stack overflow error instance.  We do not call its
 528 // constructor for the same reason (it is empty, anyway).
 529 JRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* current))
 530   Handle exception = get_preinitialized_exception(
 531                                  vmClasses::StackOverflowError_klass(),
 532                                  CHECK);
 533   // Increment counter for hs_err file reporting
 534   Atomic::inc(&Exceptions::_stack_overflow_errors);
 535   // Remove the ScopedValue bindings in case we got a StackOverflowError
 536   // while we were trying to manipulate ScopedValue bindings.
 537   current->clear_scopedValueBindings();
 538   THROW_HANDLE(exception);
 539 JRT_END
 540 
 541 JRT_ENTRY(void, InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 542   Handle exception = get_preinitialized_exception(
 543                                  vmClasses::StackOverflowError_klass(),
 544                                  CHECK);
 545   java_lang_Throwable::set_message(exception(),
 546           Universe::delayed_stack_overflow_error_message());
 547   // Increment counter for hs_err file reporting
 548   Atomic::inc(&Exceptions::_stack_overflow_errors);
 549   // Remove the ScopedValue bindings in case we got a StackOverflowError
 550   // while we were trying to manipulate ScopedValue bindings.
 551   current->clear_scopedValueBindings();
 552   THROW_HANDLE(exception);
 553 JRT_END
 554 
 555 JRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* current, char* name, char* message))
 556   // lookup exception klass
 557   TempNewSymbol s = SymbolTable::new_symbol(name);
 558   if (ProfileTraps) {
 559     if (s == vmSymbols::java_lang_ArithmeticException()) {
 560       note_trap(current, Deoptimization::Reason_div0_check);
 561     } else if (s == vmSymbols::java_lang_NullPointerException()) {
 562       note_trap(current, Deoptimization::Reason_null_check);
 563     }
 564   }
 565   // create exception
 566   Handle exception = Exceptions::new_exception(current, s, message);
 567   current->set_vm_result(exception());
 568 JRT_END
 569 
 570 
 571 JRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* current, char* name, oopDesc* obj))
 572   // Produce the error message first because note_trap can safepoint
 573   ResourceMark rm(current);
 574   const char* klass_name = obj->klass()->external_name();
 575   // lookup exception klass
 576   TempNewSymbol s = SymbolTable::new_symbol(name);
 577   if (ProfileTraps) {
 578     if (s == vmSymbols::java_lang_ArrayStoreException()) {
 579       note_trap(current, Deoptimization::Reason_array_check);
 580     } else {
 581       note_trap(current, Deoptimization::Reason_class_check);
 582     }
 583   }
 584   // create exception, with klass name as detail message
 585   Handle exception = Exceptions::new_exception(current, s, klass_name);
 586   current->set_vm_result(exception());
 587 JRT_END
 588 
 589 JRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* current, arrayOopDesc* a, jint index))
 590   // Produce the error message first because note_trap can safepoint
 591   ResourceMark rm(current);
 592   stringStream ss;
 593   ss.print("Index %d out of bounds for length %d", index, a->length());
 594 
 595   if (ProfileTraps) {
 596     note_trap(current, Deoptimization::Reason_range_check);
 597   }
 598 
 599   THROW_MSG(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), ss.as_string());
 600 JRT_END
 601 
 602 JRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
 603   JavaThread* current, oopDesc* obj))
 604 
 605   // Produce the error message first because note_trap can safepoint
 606   ResourceMark rm(current);
 607   char* message = SharedRuntime::generate_class_cast_message(
 608     current, obj->klass());
 609 
 610   if (ProfileTraps) {
 611     note_trap(current, Deoptimization::Reason_class_check);
 612   }
 613 
 614   // create exception
 615   THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
 616 JRT_END
 617 
 618 // exception_handler_for_exception(...) returns the continuation address,
 619 // the exception oop (via TLS) and sets the bci/bcp for the continuation.
 620 // The exception oop is returned to make sure it is preserved over GC (it
 621 // is only on the stack if the exception was thrown explicitly via athrow).
 622 // During this operation, the expression stack contains the values for the
 623 // bci where the exception happened. If the exception was propagated back
 624 // from a call, the expression stack contains the values for the bci at the
 625 // invoke w/o arguments (i.e., as if one were inside the call).
 626 // Note that the implementation of this method assumes it's only called when an exception has actually occured
 627 JRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* current, oopDesc* exception))
 628   // We get here after we have unwound from a callee throwing an exception
 629   // into the interpreter. Any deferred stack processing is notified of
 630   // the event via the StackWatermarkSet.
 631   StackWatermarkSet::after_unwind(current);
 632 
 633   LastFrameAccessor last_frame(current);
 634   Handle             h_exception(current, exception);
 635   methodHandle       h_method   (current, last_frame.method());
 636   constantPoolHandle h_constants(current, h_method->constants());
 637   bool               should_repeat;
 638   int                handler_bci;
 639   int                current_bci = last_frame.bci();
 640 
 641   if (current->frames_to_pop_failed_realloc() > 0) {
 642     // Allocation of scalar replaced object used in this frame
 643     // failed. Unconditionally pop the frame.
 644     current->dec_frames_to_pop_failed_realloc();
 645     current->set_vm_result(h_exception());
 646     // If the method is synchronized we already unlocked the monitor
 647     // during deoptimization so the interpreter needs to skip it when
 648     // the frame is popped.
 649     current->set_do_not_unlock_if_synchronized(true);
 650     return Interpreter::remove_activation_entry();
 651   }
 652 
 653   // Need to do this check first since when _do_not_unlock_if_synchronized
 654   // is set, we don't want to trigger any classloading which may make calls
 655   // into java, or surprisingly find a matching exception handler for bci 0
 656   // since at this moment the method hasn't been "officially" entered yet.
 657   if (current->do_not_unlock_if_synchronized()) {
 658     ResourceMark rm;
 659     assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
 660     current->set_vm_result(exception);
 661     return Interpreter::remove_activation_entry();
 662   }
 663 
 664   do {
 665     should_repeat = false;
 666 
 667     // assertions
 668     assert(h_exception.not_null(), "null exceptions should be handled by athrow");
 669     // Check that exception is a subclass of Throwable.
 670     assert(h_exception->is_a(vmClasses::Throwable_klass()),
 671            "Exception not subclass of Throwable");
 672 
 673     // tracing
 674     if (log_is_enabled(Info, exceptions)) {
 675       ResourceMark rm(current);
 676       stringStream tempst;
 677       tempst.print("interpreter method <%s>\n"
 678                    " at bci %d for thread " INTPTR_FORMAT " (%s)",
 679                    h_method->print_value_string(), current_bci, p2i(current), current->name());
 680       Exceptions::log_exception(h_exception, tempst.as_string());
 681     }
 682 // Don't go paging in something which won't be used.
 683 //     else if (extable->length() == 0) {
 684 //       // disabled for now - interpreter is not using shortcut yet
 685 //       // (shortcut is not to call runtime if we have no exception handlers)
 686 //       // warning("performance bug: should not call runtime if method has no exception handlers");
 687 //     }
 688     // for AbortVMOnException flag
 689     Exceptions::debug_check_abort(h_exception);
 690 
 691     // exception handler lookup
 692     Klass* klass = h_exception->klass();
 693     handler_bci = Method::fast_exception_handler_bci_for(h_method, klass, current_bci, THREAD);
 694     if (HAS_PENDING_EXCEPTION) {
 695       // We threw an exception while trying to find the exception handler.
 696       // Transfer the new exception to the exception handle which will
 697       // be set into thread local storage, and do another lookup for an
 698       // exception handler for this exception, this time starting at the
 699       // BCI of the exception handler which caused the exception to be
 700       // thrown (bug 4307310).
 701       h_exception = Handle(THREAD, PENDING_EXCEPTION);
 702       CLEAR_PENDING_EXCEPTION;
 703       if (handler_bci >= 0) {
 704         current_bci = handler_bci;
 705         should_repeat = true;
 706       }
 707     }
 708   } while (should_repeat == true);
 709 
 710 #if INCLUDE_JVMCI
 711   if (EnableJVMCI && h_method->method_data() != nullptr) {
 712     ResourceMark rm(current);
 713     MethodData* mdo = h_method->method_data();
 714 
 715     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
 716     MutexLocker ml(mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
 717 
 718     ProfileData* pdata = mdo->allocate_bci_to_data(current_bci, nullptr);
 719     if (pdata != nullptr && pdata->is_BitData()) {
 720       BitData* bit_data = (BitData*) pdata;
 721       bit_data->set_exception_seen();
 722     }
 723   }
 724 #endif
 725 
 726   // notify JVMTI of an exception throw; JVMTI will detect if this is a first
 727   // time throw or a stack unwinding throw and accordingly notify the debugger
 728   if (JvmtiExport::can_post_on_exceptions()) {
 729     JvmtiExport::post_exception_throw(current, h_method(), last_frame.bcp(), h_exception());
 730   }
 731 
 732   address continuation = nullptr;
 733   address handler_pc = nullptr;
 734   if (handler_bci < 0 || !current->stack_overflow_state()->reguard_stack((address) &continuation)) {
 735     // Forward exception to callee (leaving bci/bcp untouched) because (a) no
 736     // handler in this method, or (b) after a stack overflow there is not yet
 737     // enough stack space available to reprotect the stack.
 738     continuation = Interpreter::remove_activation_entry();
 739 #if COMPILER2_OR_JVMCI
 740     // Count this for compilation purposes
 741     h_method->interpreter_throwout_increment(THREAD);
 742 #endif
 743   } else {
 744     // handler in this method => change bci/bcp to handler bci/bcp and continue there
 745     handler_pc = h_method->code_base() + handler_bci;
 746     h_method->set_exception_handler_entered(handler_bci); // profiling
 747 #ifndef ZERO
 748     set_bcp_and_mdp(handler_pc, current);
 749     continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
 750 #else
 751     continuation = (address)(intptr_t) handler_bci;
 752 #endif
 753   }
 754 
 755   // notify debugger of an exception catch
 756   // (this is good for exceptions caught in native methods as well)
 757   if (JvmtiExport::can_post_on_exceptions()) {
 758     JvmtiExport::notice_unwind_due_to_exception(current, h_method(), handler_pc, h_exception(), (handler_pc != nullptr));
 759   }
 760 
 761   current->set_vm_result(h_exception());
 762   return continuation;
 763 JRT_END
 764 
 765 
 766 JRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* current))
 767   assert(current->has_pending_exception(), "must only be called if there's an exception pending");
 768   // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
 769 JRT_END
 770 
 771 
 772 JRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* current))
 773   THROW(vmSymbols::java_lang_AbstractMethodError());
 774 JRT_END
 775 
 776 // This method is called from the "abstract_entry" of the interpreter.
 777 // At that point, the arguments have already been removed from the stack
 778 // and therefore we don't have the receiver object at our fingertips. (Though,
 779 // on some platforms the receiver still resides in a register...). Thus,
 780 // we have no choice but print an error message not containing the receiver
 781 // type.
 782 JRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorWithMethod(JavaThread* current,
 783                                                                         Method* missingMethod))
 784   ResourceMark rm(current);
 785   assert(missingMethod != nullptr, "sanity");
 786   methodHandle m(current, missingMethod);
 787   LinkResolver::throw_abstract_method_error(m, THREAD);
 788 JRT_END
 789 
 790 JRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorVerbose(JavaThread* current,
 791                                                                      Klass* recvKlass,
 792                                                                      Method* missingMethod))
 793   ResourceMark rm(current);
 794   methodHandle mh = methodHandle(current, missingMethod);
 795   LinkResolver::throw_abstract_method_error(mh, recvKlass, THREAD);
 796 JRT_END
 797 
 798 JRT_ENTRY(void, InterpreterRuntime::throw_InstantiationError(JavaThread* current))
 799   THROW(vmSymbols::java_lang_InstantiationError());
 800 JRT_END
 801 
 802 
 803 JRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 804   THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
 805 JRT_END
 806 
 807 JRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose(JavaThread* current,
 808                                                                               Klass* recvKlass,
 809                                                                               Klass* interfaceKlass))
 810   ResourceMark rm(current);
 811   char buf[1000];
 812   buf[0] = '\0';
 813   jio_snprintf(buf, sizeof(buf),
 814                "Class %s does not implement the requested interface %s",
 815                recvKlass ? recvKlass->external_name() : "nullptr",
 816                interfaceKlass ? interfaceKlass->external_name() : "nullptr");
 817   THROW_MSG(vmSymbols::java_lang_IncompatibleClassChangeError(), buf);
 818 JRT_END
 819 
 820 JRT_ENTRY(void, InterpreterRuntime::throw_NullPointerException(JavaThread* current))
 821   THROW(vmSymbols::java_lang_NullPointerException());
 822 JRT_END
 823 
 824 //------------------------------------------------------------------------------------------------------------------------
 825 // Fields
 826 //
 827 
 828 void InterpreterRuntime::resolve_get_put(JavaThread* current, Bytecodes::Code bytecode) {
 829   // resolve field
 830   fieldDescriptor info;
 831   LastFrameAccessor last_frame(current);
 832   constantPoolHandle pool(current, last_frame.method()->constants());
 833   methodHandle m(current, last_frame.method());
 834   bool is_put    = (bytecode == Bytecodes::_putfield  || bytecode == Bytecodes::_nofast_putfield ||
 835                     bytecode == Bytecodes::_putstatic);
 836   bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
 837 
 838   int field_index = last_frame.get_index_u2(bytecode);
 839   {
 840     JvmtiHideSingleStepping jhss(current);
 841     JavaThread* THREAD = current; // For exception macros.
 842     LinkResolver::resolve_field_access(info, pool, field_index,
 843                                        m, bytecode, CHECK);
 844   } // end JvmtiHideSingleStepping
 845 
 846   // check if link resolution caused cpCache to be updated
 847   if (pool->resolved_field_entry_at(field_index)->is_resolved(bytecode)) return;
 848 
 849 
 850   // compute auxiliary field attributes
 851   TosState state  = as_TosState(info.field_type());
 852 
 853   // Resolution of put instructions on final fields is delayed. That is required so that
 854   // exceptions are thrown at the correct place (when the instruction is actually invoked).
 855   // If we do not resolve an instruction in the current pass, leaving the put_code
 856   // set to zero will cause the next put instruction to the same field to reresolve.
 857 
 858   // Resolution of put instructions to final instance fields with invalid updates (i.e.,
 859   // to final instance fields with updates originating from a method different than <init>)
 860   // is inhibited. A putfield instruction targeting an instance final field must throw
 861   // an IllegalAccessError if the instruction is not in an instance
 862   // initializer method <init>. If resolution were not inhibited, a putfield
 863   // in an initializer method could be resolved in the initializer. Subsequent
 864   // putfield instructions to the same field would then use cached information.
 865   // As a result, those instructions would not pass through the VM. That is,
 866   // checks in resolve_field_access() would not be executed for those instructions
 867   // and the required IllegalAccessError would not be thrown.
 868   //
 869   // Also, we need to delay resolving getstatic and putstatic instructions until the
 870   // class is initialized.  This is required so that access to the static
 871   // field will call the initialization function every time until the class
 872   // is completely initialized ala. in 2.17.5 in JVM Specification.
 873   InstanceKlass* klass = info.field_holder();
 874   bool uninitialized_static = is_static && !klass->is_initialized();
 875   bool has_initialized_final_update = info.field_holder()->major_version() >= 53 &&
 876                                       info.has_initialized_final_update();
 877   assert(!(has_initialized_final_update && !info.access_flags().is_final()), "Fields with initialized final updates must be final");
 878 
 879   Bytecodes::Code get_code = (Bytecodes::Code)0;
 880   Bytecodes::Code put_code = (Bytecodes::Code)0;
 881   if (!uninitialized_static) {
 882     if (is_static) {
 883       get_code = Bytecodes::_getstatic;
 884     } else {
 885       get_code = Bytecodes::_getfield;
 886     }
 887     if ((is_put && !has_initialized_final_update) || !info.access_flags().is_final()) {
 888         put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
 889     }
 890   }
 891 
 892   ResolvedFieldEntry* entry = pool->resolved_field_entry_at(field_index);
 893   entry->set_flags(info.access_flags().is_final(), info.access_flags().is_volatile(),
 894                    info.is_flat(), info.is_null_free_inline_type(),
 895                    info.has_null_marker(), info.has_internal_null_marker());
 896 
 897   entry->fill_in(info.field_holder(), info.offset(),
 898                  checked_cast<u2>(info.index()), checked_cast<u1>(state),
 899                  static_cast<u1>(get_code), static_cast<u1>(put_code));
 900 }
 901 
 902 
 903 //------------------------------------------------------------------------------------------------------------------------
 904 // Synchronization
 905 //
 906 // The interpreter's synchronization code is factored out so that it can
 907 // be shared by method invocation and synchronized blocks.
 908 //%note synchronization_3
 909 
 910 //%note monitor_1
 911 JRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* current, BasicObjectLock* elem))
 912   assert(LockingMode != LM_LIGHTWEIGHT, "Should call monitorenter_obj() when using the new lightweight locking");
 913 #ifdef ASSERT
 914   current->last_frame().interpreter_frame_verify_monitor(elem);
 915 #endif
 916   Handle h_obj(current, elem->obj());
 917   assert(Universe::heap()->is_in_or_null(h_obj()),
 918          "must be null or an object");
 919   ObjectSynchronizer::enter(h_obj, elem->lock(), current);
 920   assert(Universe::heap()->is_in_or_null(elem->obj()),
 921          "must be null or an object");
 922 #ifdef ASSERT
 923   current->last_frame().interpreter_frame_verify_monitor(elem);
 924 #endif
 925 JRT_END
 926 
 927 // NOTE: We provide a separate implementation for the new lightweight locking to workaround a limitation
 928 // of registers in x86_32. This entry point accepts an oop instead of a BasicObjectLock*.
 929 // The problem is that we would need to preserve the register that holds the BasicObjectLock,
 930 // but we are using that register to hold the thread. We don't have enough registers to
 931 // also keep the BasicObjectLock, but we don't really need it anyway, we only need
 932 // the object. See also InterpreterMacroAssembler::lock_object().
 933 // As soon as legacy stack-locking goes away we could remove the other monitorenter() entry
 934 // point, and only use oop-accepting entries (same for monitorexit() below).
 935 JRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter_obj(JavaThread* current, oopDesc* obj))
 936   assert(LockingMode == LM_LIGHTWEIGHT, "Should call monitorenter() when not using the new lightweight locking");
 937   Handle h_obj(current, cast_to_oop(obj));
 938   assert(Universe::heap()->is_in_or_null(h_obj()),
 939          "must be null or an object");
 940   ObjectSynchronizer::enter(h_obj, nullptr, current);
 941   return;
 942 JRT_END
 943 
 944 JRT_LEAF(void, InterpreterRuntime::monitorexit(BasicObjectLock* elem))
 945   oop obj = elem->obj();
 946   assert(Universe::heap()->is_in(obj), "must be an object");
 947   // The object could become unlocked through a JNI call, which we have no other checks for.
 948   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
 949   if (obj->is_unlocked()) {
 950     if (CheckJNICalls) {
 951       fatal("Object has been unlocked by JNI");
 952     }
 953     return;
 954   }
 955   ObjectSynchronizer::exit(obj, elem->lock(), JavaThread::current());
 956   // Free entry. If it is not cleared, the exception handling code will try to unlock the monitor
 957   // again at method exit or in the case of an exception.
 958   elem->set_obj(nullptr);
 959 JRT_END
 960 
 961 JRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* current))
 962   THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 963 JRT_END
 964 
 965 JRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* current))
 966   // Returns an illegal exception to install into the current thread. The
 967   // pending_exception flag is cleared so normal exception handling does not
 968   // trigger. Any current installed exception will be overwritten. This
 969   // method will be called during an exception unwind.
 970 
 971   assert(!HAS_PENDING_EXCEPTION, "no pending exception");
 972   Handle exception(current, current->vm_result());
 973   assert(exception() != nullptr, "vm result should be set");
 974   current->set_vm_result(nullptr); // clear vm result before continuing (may cause memory leaks and assert failures)
 975   exception = get_preinitialized_exception(vmClasses::IllegalMonitorStateException_klass(), CATCH);
 976   current->set_vm_result(exception());
 977 JRT_END
 978 
 979 JRT_ENTRY(void, InterpreterRuntime::throw_identity_exception(JavaThread* current, oopDesc* obj))
 980   Klass* klass = cast_to_oop(obj)->klass();
 981   ResourceMark rm(THREAD);
 982   const char* desc = "Cannot synchronize on an instance of value class ";
 983   const char* className = klass->external_name();
 984   size_t msglen = strlen(desc) + strlen(className) + 1;
 985   char* message = NEW_RESOURCE_ARRAY(char, msglen);
 986   if (nullptr == message) {
 987     // Out of memory: can't create detailed error message
 988     THROW_MSG(vmSymbols::java_lang_IdentityException(), className);
 989   } else {
 990     jio_snprintf(message, msglen, "%s%s", desc, className);
 991     THROW_MSG(vmSymbols::java_lang_IdentityException(), message);
 992   }
 993 JRT_END
 994 
 995 //------------------------------------------------------------------------------------------------------------------------
 996 // Invokes
 997 
 998 JRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* current, Method* method, address bcp))
 999   return method->orig_bytecode_at(method->bci_from(bcp));
1000 JRT_END
1001 
1002 JRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* current, Method* method, address bcp, Bytecodes::Code new_code))
1003   method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
1004 JRT_END
1005 
1006 JRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* current, Method* method, address bcp))
1007   JvmtiExport::post_raw_breakpoint(current, method, bcp);
1008 JRT_END
1009 
1010 void InterpreterRuntime::resolve_invoke(JavaThread* current, Bytecodes::Code bytecode) {
1011   LastFrameAccessor last_frame(current);
1012   // extract receiver from the outgoing argument list if necessary
1013   Handle receiver(current, nullptr);
1014   if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface ||
1015       bytecode == Bytecodes::_invokespecial) {
1016     ResourceMark rm(current);
1017     methodHandle m (current, last_frame.method());
1018     Bytecode_invoke call(m, last_frame.bci());
1019     Symbol* signature = call.signature();
1020     receiver = Handle(current, last_frame.callee_receiver(signature));
1021 
1022     assert(Universe::heap()->is_in_or_null(receiver()),
1023            "sanity check");
1024     assert(receiver.is_null() ||
1025            !Universe::heap()->is_in(receiver->klass()),
1026            "sanity check");
1027   }
1028 
1029   // resolve method
1030   CallInfo info;
1031   constantPoolHandle pool(current, last_frame.method()->constants());
1032   ConstantPoolCache* cache = pool->cache();
1033 
1034   methodHandle resolved_method;
1035 
1036   int method_index = last_frame.get_index_u2(bytecode);
1037   {
1038     JvmtiHideSingleStepping jhss(current);
1039     JavaThread* THREAD = current; // For exception macros.
1040     LinkResolver::resolve_invoke(info, receiver, pool,
1041                                  method_index, bytecode,
1042                                  THREAD);
1043 
1044     if (HAS_PENDING_EXCEPTION) {
1045       if (ProfileTraps && PENDING_EXCEPTION->klass()->name() == vmSymbols::java_lang_NullPointerException()) {
1046         // Preserve the original exception across the call to note_trap()
1047         PreserveExceptionMark pm(current);
1048         // Recording the trap will help the compiler to potentially recognize this exception as "hot"
1049         note_trap(current, Deoptimization::Reason_null_check);
1050       }
1051       return;
1052     }
1053 
1054     if (JvmtiExport::can_hotswap_or_post_breakpoint() && info.resolved_method()->is_old()) {
1055       resolved_method = methodHandle(current, info.resolved_method()->get_new_method());
1056     } else {
1057       resolved_method = methodHandle(current, info.resolved_method());
1058     }
1059   } // end JvmtiHideSingleStepping
1060 
1061   // check if link resolution caused cpCache to be updated
1062   if (cache->resolved_method_entry_at(method_index)->is_resolved(bytecode)) return;
1063 
1064 #ifdef ASSERT
1065   if (bytecode == Bytecodes::_invokeinterface) {
1066     if (resolved_method->method_holder() == vmClasses::Object_klass()) {
1067       // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
1068       // (see also CallInfo::set_interface for details)
1069       assert(info.call_kind() == CallInfo::vtable_call ||
1070              info.call_kind() == CallInfo::direct_call, "");
1071       assert(resolved_method->is_final() || info.has_vtable_index(),
1072              "should have been set already");
1073     } else if (!resolved_method->has_itable_index()) {
1074       // Resolved something like CharSequence.toString.  Use vtable not itable.
1075       assert(info.call_kind() != CallInfo::itable_call, "");
1076     } else {
1077       // Setup itable entry
1078       assert(info.call_kind() == CallInfo::itable_call, "");
1079       int index = resolved_method->itable_index();
1080       assert(info.itable_index() == index, "");
1081     }
1082   } else if (bytecode == Bytecodes::_invokespecial) {
1083     assert(info.call_kind() == CallInfo::direct_call, "must be direct call");
1084   } else {
1085     assert(info.call_kind() == CallInfo::direct_call ||
1086            info.call_kind() == CallInfo::vtable_call, "");
1087   }
1088 #endif
1089   // Get sender and only set cpCache entry to resolved if it is not an
1090   // interface.  The receiver for invokespecial calls within interface
1091   // methods must be checked for every call.
1092   InstanceKlass* sender = pool->pool_holder();
1093 
1094   switch (info.call_kind()) {
1095   case CallInfo::direct_call:
1096     cache->set_direct_call(bytecode, method_index, resolved_method, sender->is_interface());
1097     break;
1098   case CallInfo::vtable_call:
1099     cache->set_vtable_call(bytecode, method_index, resolved_method, info.vtable_index());
1100     break;
1101   case CallInfo::itable_call:
1102     cache->set_itable_call(
1103       bytecode,
1104       method_index,
1105       info.resolved_klass(),
1106       resolved_method,
1107       info.itable_index());
1108     break;
1109   default:  ShouldNotReachHere();
1110   }
1111 }
1112 
1113 
1114 // First time execution:  Resolve symbols, create a permanent MethodType object.
1115 void InterpreterRuntime::resolve_invokehandle(JavaThread* current) {
1116   const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
1117   LastFrameAccessor last_frame(current);
1118 
1119   // resolve method
1120   CallInfo info;
1121   constantPoolHandle pool(current, last_frame.method()->constants());
1122   int method_index = last_frame.get_index_u2(bytecode);
1123   {
1124     JvmtiHideSingleStepping jhss(current);
1125     JavaThread* THREAD = current; // For exception macros.
1126     LinkResolver::resolve_invoke(info, Handle(), pool,
1127                                  method_index, bytecode,
1128                                  CHECK);
1129   } // end JvmtiHideSingleStepping
1130 
1131   pool->cache()->set_method_handle(method_index, info);
1132 }
1133 
1134 // First time execution:  Resolve symbols, create a permanent CallSite object.
1135 void InterpreterRuntime::resolve_invokedynamic(JavaThread* current) {
1136   LastFrameAccessor last_frame(current);
1137   const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
1138 
1139   // resolve method
1140   CallInfo info;
1141   constantPoolHandle pool(current, last_frame.method()->constants());
1142   int index = last_frame.get_index_u4(bytecode);
1143   {
1144     JvmtiHideSingleStepping jhss(current);
1145     JavaThread* THREAD = current; // For exception macros.
1146     LinkResolver::resolve_invoke(info, Handle(), pool,
1147                                  index, bytecode, CHECK);
1148   } // end JvmtiHideSingleStepping
1149 
1150   pool->cache()->set_dynamic_call(info, pool->decode_invokedynamic_index(index));
1151 }
1152 
1153 // This function is the interface to the assembly code. It returns the resolved
1154 // cpCache entry.  This doesn't safepoint, but the helper routines safepoint.
1155 // This function will check for redefinition!
1156 JRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* current, Bytecodes::Code bytecode)) {
1157   switch (bytecode) {
1158   case Bytecodes::_getstatic:
1159   case Bytecodes::_putstatic:
1160   case Bytecodes::_getfield:
1161   case Bytecodes::_putfield:
1162     resolve_get_put(current, bytecode);
1163     break;
1164   case Bytecodes::_invokevirtual:
1165   case Bytecodes::_invokespecial:
1166   case Bytecodes::_invokestatic:
1167   case Bytecodes::_invokeinterface:
1168     resolve_invoke(current, bytecode);
1169     break;
1170   case Bytecodes::_invokehandle:
1171     resolve_invokehandle(current);
1172     break;
1173   case Bytecodes::_invokedynamic:
1174     resolve_invokedynamic(current);
1175     break;
1176   default:
1177     fatal("unexpected bytecode: %s", Bytecodes::name(bytecode));
1178     break;
1179   }
1180 }
1181 JRT_END
1182 
1183 //------------------------------------------------------------------------------------------------------------------------
1184 // Miscellaneous
1185 
1186 
1187 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* current, address branch_bcp) {
1188   // Enable WXWrite: the function is called directly by interpreter.
1189   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1190 
1191   // frequency_counter_overflow_inner can throw async exception.
1192   nmethod* nm = frequency_counter_overflow_inner(current, branch_bcp);
1193   assert(branch_bcp != nullptr || nm == nullptr, "always returns null for non OSR requests");
1194   if (branch_bcp != nullptr && nm != nullptr) {
1195     // This was a successful request for an OSR nmethod.  Because
1196     // frequency_counter_overflow_inner ends with a safepoint check,
1197     // nm could have been unloaded so look it up again.  It's unsafe
1198     // to examine nm directly since it might have been freed and used
1199     // for something else.
1200     LastFrameAccessor last_frame(current);
1201     Method* method =  last_frame.method();
1202     int bci = method->bci_from(last_frame.bcp());
1203     nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
1204     BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
1205     if (nm != nullptr && bs_nm != nullptr) {
1206       // in case the transition passed a safepoint we need to barrier this again
1207       if (!bs_nm->nmethod_osr_entry_barrier(nm)) {
1208         nm = nullptr;
1209       }
1210     }
1211   }
1212   if (nm != nullptr && current->is_interp_only_mode()) {
1213     // Normally we never get an nm if is_interp_only_mode() is true, because
1214     // policy()->event has a check for this and won't compile the method when
1215     // true. However, it's possible for is_interp_only_mode() to become true
1216     // during the compilation. We don't want to return the nm in that case
1217     // because we want to continue to execute interpreted.
1218     nm = nullptr;
1219   }
1220 #ifndef PRODUCT
1221   if (TraceOnStackReplacement) {
1222     if (nm != nullptr) {
1223       tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry()));
1224       nm->print();
1225     }
1226   }
1227 #endif
1228   return nm;
1229 }
1230 
1231 JRT_ENTRY(nmethod*,
1232           InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* current, address branch_bcp))
1233   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
1234   // flag, in case this method triggers classloading which will call into Java.
1235   UnlockFlagSaver fs(current);
1236 
1237   LastFrameAccessor last_frame(current);
1238   assert(last_frame.is_interpreted_frame(), "must come from interpreter");
1239   methodHandle method(current, last_frame.method());
1240   const int branch_bci = branch_bcp != nullptr ? method->bci_from(branch_bcp) : InvocationEntryBci;
1241   const int bci = branch_bcp != nullptr ? method->bci_from(last_frame.bcp()) : InvocationEntryBci;
1242 
1243   nmethod* osr_nm = CompilationPolicy::event(method, method, branch_bci, bci, CompLevel_none, nullptr, CHECK_NULL);
1244 
1245   BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
1246   if (osr_nm != nullptr && bs_nm != nullptr) {
1247     if (!bs_nm->nmethod_osr_entry_barrier(osr_nm)) {
1248       osr_nm = nullptr;
1249     }
1250   }
1251   return osr_nm;
1252 JRT_END
1253 
1254 JRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
1255   assert(ProfileInterpreter, "must be profiling interpreter");
1256   int bci = method->bci_from(cur_bcp);
1257   MethodData* mdo = method->method_data();
1258   if (mdo == nullptr)  return 0;
1259   return mdo->bci_to_di(bci);
1260 JRT_END
1261 
1262 #ifdef ASSERT
1263 JRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp))
1264   assert(ProfileInterpreter, "must be profiling interpreter");
1265 
1266   MethodData* mdo = method->method_data();
1267   assert(mdo != nullptr, "must not be null");
1268 
1269   int bci = method->bci_from(bcp);
1270 
1271   address mdp2 = mdo->bci_to_dp(bci);
1272   if (mdp != mdp2) {
1273     ResourceMark rm;
1274     tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
1275     int current_di = mdo->dp_to_di(mdp);
1276     int expected_di  = mdo->dp_to_di(mdp2);
1277     tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
1278     int expected_approx_bci = mdo->data_at(expected_di)->bci();
1279     int approx_bci = -1;
1280     if (current_di >= 0) {
1281       approx_bci = mdo->data_at(current_di)->bci();
1282     }
1283     tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
1284     mdo->print_on(tty);
1285     method->print_codes();
1286   }
1287   assert(mdp == mdp2, "wrong mdp");
1288 JRT_END
1289 #endif // ASSERT
1290 
1291 JRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* current, int return_bci))
1292   assert(ProfileInterpreter, "must be profiling interpreter");
1293   ResourceMark rm(current);
1294   LastFrameAccessor last_frame(current);
1295   assert(last_frame.is_interpreted_frame(), "must come from interpreter");
1296   MethodData* h_mdo = last_frame.method()->method_data();
1297 
1298   // Grab a lock to ensure atomic access to setting the return bci and
1299   // the displacement.  This can block and GC, invalidating all naked oops.
1300   MutexLocker ml(RetData_lock);
1301 
1302   // ProfileData is essentially a wrapper around a derived oop, so we
1303   // need to take the lock before making any ProfileData structures.
1304   ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(last_frame.mdp()));
1305   guarantee(data != nullptr, "profile data must be valid");
1306   RetData* rdata = data->as_RetData();
1307   address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
1308   last_frame.set_mdp(new_mdp);
1309 JRT_END
1310 
1311 JRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* current, Method* m))
1312   return Method::build_method_counters(current, m);
1313 JRT_END
1314 
1315 
1316 JRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* current))
1317   // We used to need an explicit preserve_arguments here for invoke bytecodes. However,
1318   // stack traversal automatically takes care of preserving arguments for invoke, so
1319   // this is no longer needed.
1320 
1321   // JRT_END does an implicit safepoint check, hence we are guaranteed to block
1322   // if this is called during a safepoint
1323 
1324   if (JvmtiExport::should_post_single_step()) {
1325     // This function is called by the interpreter when single stepping. Such single
1326     // stepping could unwind a frame. Then, it is important that we process any frames
1327     // that we might return into.
1328     StackWatermarkSet::before_unwind(current);
1329 
1330     // We are called during regular safepoints and when the VM is
1331     // single stepping. If any thread is marked for single stepping,
1332     // then we may have JVMTI work to do.
1333     LastFrameAccessor last_frame(current);
1334     JvmtiExport::at_single_stepping_point(current, last_frame.method(), last_frame.bcp());
1335   }
1336 JRT_END
1337 
1338 JRT_LEAF(void, InterpreterRuntime::at_unwind(JavaThread* current))
1339   assert(current == JavaThread::current(), "pre-condition");
1340   // This function is called by the interpreter when the return poll found a reason
1341   // to call the VM. The reason could be that we are returning into a not yet safe
1342   // to access frame. We handle that below.
1343   // Note that this path does not check for single stepping, because we do not want
1344   // to single step when unwinding frames for an exception being thrown. Instead,
1345   // such single stepping code will use the safepoint table, which will use the
1346   // InterpreterRuntime::at_safepoint callback.
1347   StackWatermarkSet::before_unwind(current);
1348 JRT_END
1349 
1350 JRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread* current, oopDesc* obj,
1351                                                       ResolvedFieldEntry *entry))
1352 
1353   assert(entry->is_valid(), "Invalid ResolvedFieldEntry");
1354   // check the access_flags for the field in the klass
1355 
1356   InstanceKlass* ik = entry->field_holder();
1357   int index = entry->field_index();
1358   if (!ik->field_status(index).is_access_watched()) return;
1359 
1360   bool is_static = (obj == nullptr);
1361   bool is_flat = entry->is_flat();
1362   HandleMark hm(current);
1363 
1364   Handle h_obj;
1365   if (!is_static) {
1366     // non-static field accessors have an object, but we need a handle
1367     h_obj = Handle(current, obj);
1368   }
1369   InstanceKlass* field_holder = entry->field_holder(); // HERE
1370   jfieldID fid = jfieldIDWorkaround::to_jfieldID(field_holder, entry->field_offset(), is_static, is_flat);
1371   LastFrameAccessor last_frame(current);
1372   JvmtiExport::post_field_access(current, last_frame.method(), last_frame.bcp(), field_holder, h_obj, fid);
1373 JRT_END
1374 
1375 JRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread* current, oopDesc* obj,
1376                                                             ResolvedFieldEntry *entry, jvalue *value))
1377 
1378   assert(entry->is_valid(), "Invalid ResolvedFieldEntry");
1379   InstanceKlass* ik = entry->field_holder();
1380 
1381   // check the access_flags for the field in the klass
1382   int index = entry->field_index();
1383   // bail out if field modifications are not watched
1384   if (!ik->field_status(index).is_modification_watched()) return;
1385 
1386   char sig_type = '\0';
1387 
1388   switch((TosState)entry->tos_state()) {
1389     case btos: sig_type = JVM_SIGNATURE_BYTE;    break;
1390     case ztos: sig_type = JVM_SIGNATURE_BOOLEAN; break;
1391     case ctos: sig_type = JVM_SIGNATURE_CHAR;    break;
1392     case stos: sig_type = JVM_SIGNATURE_SHORT;   break;
1393     case itos: sig_type = JVM_SIGNATURE_INT;     break;
1394     case ftos: sig_type = JVM_SIGNATURE_FLOAT;   break;
1395     case atos: sig_type = JVM_SIGNATURE_CLASS;   break;
1396     case ltos: sig_type = JVM_SIGNATURE_LONG;    break;
1397     case dtos: sig_type = JVM_SIGNATURE_DOUBLE;  break;
1398     default:  ShouldNotReachHere(); return;
1399   }
1400 
1401   bool is_static = (obj == nullptr);
1402   bool is_flat = entry->is_flat();
1403 
1404   HandleMark hm(current);
1405   jfieldID fid = jfieldIDWorkaround::to_jfieldID(ik, entry->field_offset(), is_static, is_flat);
1406   jvalue fvalue;
1407 #ifdef _LP64
1408   fvalue = *value;
1409 #else
1410   // Long/double values are stored unaligned and also noncontiguously with
1411   // tagged stacks.  We can't just do a simple assignment even in the non-
1412   // J/D cases because a C++ compiler is allowed to assume that a jvalue is
1413   // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
1414   // We assume that the two halves of longs/doubles are stored in interpreter
1415   // stack slots in platform-endian order.
1416   jlong_accessor u;
1417   jint* newval = (jint*)value;
1418   u.words[0] = newval[0];
1419   u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
1420   fvalue.j = u.long_value;
1421 #endif // _LP64
1422 
1423   Handle h_obj;
1424   if (!is_static) {
1425     // non-static field accessors have an object, but we need a handle
1426     h_obj = Handle(current, obj);
1427   }
1428 
1429   LastFrameAccessor last_frame(current);
1430   JvmtiExport::post_raw_field_modification(current, last_frame.method(), last_frame.bcp(), ik, h_obj,
1431                                            fid, sig_type, &fvalue);
1432 JRT_END
1433 
1434 JRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread* current))
1435   LastFrameAccessor last_frame(current);
1436   JvmtiExport::post_method_entry(current, last_frame.method(), last_frame.get_frame());
1437 JRT_END
1438 
1439 
1440 // This is a JRT_BLOCK_ENTRY because we have to stash away the return oop
1441 // before transitioning to VM, and restore it after transitioning back
1442 // to Java. The return oop at the top-of-stack, is not walked by the GC.
1443 JRT_BLOCK_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread* current))
1444   LastFrameAccessor last_frame(current);
1445   JvmtiExport::post_method_exit(current, last_frame.method(), last_frame.get_frame());
1446 JRT_END
1447 
1448 JRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
1449 {
1450   return (Interpreter::contains(Continuation::get_top_return_pc_post_barrier(JavaThread::current(), pc)) ? 1 : 0);
1451 }
1452 JRT_END
1453 
1454 
1455 // Implementation of SignatureHandlerLibrary
1456 
1457 #ifndef SHARING_FAST_NATIVE_FINGERPRINTS
1458 // Dummy definition (else normalization method is defined in CPU
1459 // dependent code)
1460 uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) {
1461   return fingerprint;
1462 }
1463 #endif
1464 
1465 address SignatureHandlerLibrary::set_handler_blob() {
1466   BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
1467   if (handler_blob == nullptr) {
1468     return nullptr;
1469   }
1470   address handler = handler_blob->code_begin();
1471   _handler_blob = handler_blob;
1472   _handler = handler;
1473   return handler;
1474 }
1475 
1476 void SignatureHandlerLibrary::initialize() {
1477   if (_fingerprints != nullptr) {
1478     return;
1479   }
1480   if (set_handler_blob() == nullptr) {
1481     vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers");
1482   }
1483 
1484   BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
1485                                       SignatureHandlerLibrary::buffer_size);
1486   _buffer = bb->code_begin();
1487 
1488   _fingerprints = new (mtCode) GrowableArray<uint64_t>(32, mtCode);
1489   _handlers     = new (mtCode) GrowableArray<address>(32, mtCode);
1490 }
1491 
1492 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
1493   address handler   = _handler;
1494   int     insts_size = buffer->pure_insts_size();
1495   if (handler + insts_size > _handler_blob->code_end()) {
1496     // get a new handler blob
1497     handler = set_handler_blob();
1498   }
1499   if (handler != nullptr) {
1500     memcpy(handler, buffer->insts_begin(), insts_size);
1501     pd_set_handler(handler);
1502     ICache::invalidate_range(handler, insts_size);
1503     _handler = handler + insts_size;
1504   }
1505   return handler;
1506 }
1507 
1508 void SignatureHandlerLibrary::add(const methodHandle& method) {
1509   if (method->signature_handler() == nullptr) {
1510     // use slow signature handler if we can't do better
1511     int handler_index = -1;
1512     // check if we can use customized (fast) signature handler
1513     if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::fp_max_size_of_parameters) {
1514       // use customized signature handler
1515       MutexLocker mu(SignatureHandlerLibrary_lock);
1516       // make sure data structure is initialized
1517       initialize();
1518       // lookup method signature's fingerprint
1519       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1520       // allow CPU dependent code to optimize the fingerprints for the fast handler
1521       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1522       handler_index = _fingerprints->find(fingerprint);
1523       // create handler if necessary
1524       if (handler_index < 0) {
1525         ResourceMark rm;
1526         ptrdiff_t align_offset = align_up(_buffer, CodeEntryAlignment) - (address)_buffer;
1527         CodeBuffer buffer((address)(_buffer + align_offset),
1528                           checked_cast<int>(SignatureHandlerLibrary::buffer_size - align_offset));
1529         InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
1530         // copy into code heap
1531         address handler = set_handler(&buffer);
1532         if (handler == nullptr) {
1533           // use slow signature handler (without memorizing it in the fingerprints)
1534         } else {
1535           // debugging support
1536           if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1537             ttyLocker ttyl;
1538             tty->cr();
1539             tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
1540                           _handlers->length(),
1541                           (method->is_static() ? "static" : "receiver"),
1542                           method->name_and_sig_as_C_string(),
1543                           fingerprint,
1544                           buffer.insts_size());
1545             if (buffer.insts_size() > 0) {
1546               Disassembler::decode(handler, handler + buffer.insts_size(), tty
1547                                    NOT_PRODUCT(COMMA &buffer.asm_remarks()));
1548             }
1549 #ifndef PRODUCT
1550             address rh_begin = Interpreter::result_handler(method()->result_type());
1551             if (CodeCache::contains(rh_begin)) {
1552               // else it might be special platform dependent values
1553               tty->print_cr(" --- associated result handler ---");
1554               address rh_end = rh_begin;
1555               while (*(int*)rh_end != 0) {
1556                 rh_end += sizeof(int);
1557               }
1558               Disassembler::decode(rh_begin, rh_end);
1559             } else {
1560               tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin));
1561             }
1562 #endif
1563           }
1564           // add handler to library
1565           _fingerprints->append(fingerprint);
1566           _handlers->append(handler);
1567           // set handler index
1568           assert(_fingerprints->length() == _handlers->length(), "sanity check");
1569           handler_index = _fingerprints->length() - 1;
1570         }
1571       }
1572       // Set handler under SignatureHandlerLibrary_lock
1573       if (handler_index < 0) {
1574         // use generic signature handler
1575         method->set_signature_handler(Interpreter::slow_signature_handler());
1576       } else {
1577         // set handler
1578         method->set_signature_handler(_handlers->at(handler_index));
1579       }
1580     } else {
1581       DEBUG_ONLY(JavaThread::current()->check_possible_safepoint());
1582       // use generic signature handler
1583       method->set_signature_handler(Interpreter::slow_signature_handler());
1584     }
1585   }
1586 #ifdef ASSERT
1587   int handler_index = -1;
1588   int fingerprint_index = -2;
1589   {
1590     // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
1591     // in any way if accessed from multiple threads. To avoid races with another
1592     // thread which may change the arrays in the above, mutex protected block, we
1593     // have to protect this read access here with the same mutex as well!
1594     MutexLocker mu(SignatureHandlerLibrary_lock);
1595     if (_handlers != nullptr) {
1596       handler_index = _handlers->find(method->signature_handler());
1597       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1598       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1599       fingerprint_index = _fingerprints->find(fingerprint);
1600     }
1601   }
1602   assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
1603          handler_index == fingerprint_index, "sanity check");
1604 #endif // ASSERT
1605 }
1606 
1607 void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) {
1608   int handler_index = -1;
1609   // use customized signature handler
1610   MutexLocker mu(SignatureHandlerLibrary_lock);
1611   // make sure data structure is initialized
1612   initialize();
1613   fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1614   handler_index = _fingerprints->find(fingerprint);
1615   // create handler if necessary
1616   if (handler_index < 0) {
1617     if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1618       tty->cr();
1619       tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT,
1620                     _handlers->length(),
1621                     p2i(handler),
1622                     fingerprint);
1623     }
1624     _fingerprints->append(fingerprint);
1625     _handlers->append(handler);
1626   } else {
1627     if (PrintSignatureHandlers) {
1628       tty->cr();
1629       tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")",
1630                     _handlers->length(),
1631                     fingerprint,
1632                     p2i(_handlers->at(handler_index)),
1633                     p2i(handler));
1634     }
1635   }
1636 }
1637 
1638 
1639 BufferBlob*              SignatureHandlerLibrary::_handler_blob = nullptr;
1640 address                  SignatureHandlerLibrary::_handler      = nullptr;
1641 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = nullptr;
1642 GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = nullptr;
1643 address                  SignatureHandlerLibrary::_buffer       = nullptr;
1644 
1645 
1646 JRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* current, Method* method))
1647   methodHandle m(current, method);
1648   assert(m->is_native(), "sanity check");
1649   // lookup native function entry point if it doesn't exist
1650   if (!m->has_native_function()) {
1651     NativeLookup::lookup(m, CHECK);
1652   }
1653   // make sure signature handler is installed
1654   SignatureHandlerLibrary::add(m);
1655   // The interpreter entry point checks the signature handler first,
1656   // before trying to fetch the native entry point and klass mirror.
1657   // We must set the signature handler last, so that multiple processors
1658   // preparing the same method will be sure to see non-null entry & mirror.
1659 JRT_END
1660 
1661 #if defined(IA32) || defined(AMD64) || defined(ARM)
1662 JRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* current, void* src_address, void* dest_address))
1663   assert(current == JavaThread::current(), "pre-condition");
1664   if (src_address == dest_address) {
1665     return;
1666   }
1667   ResourceMark rm;
1668   LastFrameAccessor last_frame(current);
1669   assert(last_frame.is_interpreted_frame(), "");
1670   jint bci = last_frame.bci();
1671   methodHandle mh(current, last_frame.method());
1672   Bytecode_invoke invoke(mh, bci);
1673   ArgumentSizeComputer asc(invoke.signature());
1674   int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver
1675   Copy::conjoint_jbytes(src_address, dest_address,
1676                        size_of_arguments * Interpreter::stackElementSize);
1677 JRT_END
1678 #endif
1679 
1680 #if INCLUDE_JVMTI
1681 // This is a support of the JVMTI PopFrame interface.
1682 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
1683 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
1684 // The member_name argument is a saved reference (in local#0) to the member_name.
1685 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
1686 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
1687 JRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* current, address member_name,
1688                                                             Method* method, address bcp))
1689   Bytecodes::Code code = Bytecodes::code_at(method, bcp);
1690   if (code != Bytecodes::_invokestatic) {
1691     return;
1692   }
1693   ConstantPool* cpool = method->constants();
1694   int cp_index = Bytes::get_native_u2(bcp + 1);
1695   Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index, code));
1696   Symbol* mname = cpool->name_ref_at(cp_index, code);
1697 
1698   if (MethodHandles::has_member_arg(cname, mname)) {
1699     oop member_name_oop = cast_to_oop(member_name);
1700     if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) {
1701       // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated.
1702       member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop);
1703     }
1704     current->set_vm_result(member_name_oop);
1705   } else {
1706     current->set_vm_result(nullptr);
1707   }
1708 JRT_END
1709 #endif // INCLUDE_JVMTI
1710 
1711 #ifndef PRODUCT
1712 // This must be a JRT_LEAF function because the interpreter must save registers on x86 to
1713 // call this, which changes rsp and makes the interpreter's expression stack not walkable.
1714 // The generated code still uses call_VM because that will set up the frame pointer for
1715 // bcp and method.
1716 JRT_LEAF(intptr_t, InterpreterRuntime::trace_bytecode(JavaThread* current, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
1717   assert(current == JavaThread::current(), "pre-condition");
1718   LastFrameAccessor last_frame(current);
1719   assert(last_frame.is_interpreted_frame(), "must be an interpreted frame");
1720   methodHandle mh(current, last_frame.method());
1721   BytecodeTracer::trace_interpreter(mh, last_frame.bcp(), tos, tos2);
1722   return preserve_this_value;
1723 JRT_END
1724 #endif // !PRODUCT