1 /* 2 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/disassembler.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "interpreter/interp_masm.hpp" 30 #include "interpreter/templateInterpreter.hpp" 31 #include "interpreter/templateInterpreterGenerator.hpp" 32 #include "interpreter/templateTable.hpp" 33 #include "oops/methodData.hpp" 34 35 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 36 37 TemplateInterpreterGenerator::TemplateInterpreterGenerator(): AbstractInterpreterGenerator() { 38 _unimplemented_bytecode = NULL; 39 _illegal_bytecode_sequence = NULL; 40 generate_all(); 41 } 42 43 static const BasicType types[Interpreter::number_of_result_handlers] = { 44 T_BOOLEAN, 45 T_CHAR , 46 T_BYTE , 47 T_SHORT , 48 T_INT , 49 T_LONG , 50 T_VOID , 51 T_FLOAT , 52 T_DOUBLE , 53 T_OBJECT , 54 T_PRIMITIVE_OBJECT 55 }; 56 57 void TemplateInterpreterGenerator::generate_all() { 58 { CodeletMark cm(_masm, "slow signature handler"); 59 AbstractInterpreter::_slow_signature_handler = generate_slow_signature_handler(); 60 } 61 62 { CodeletMark cm(_masm, "error exits"); 63 _unimplemented_bytecode = generate_error_exit("unimplemented bytecode"); 64 _illegal_bytecode_sequence = generate_error_exit("illegal bytecode sequence - method not verified"); 65 } 66 67 #ifndef PRODUCT 68 if (TraceBytecodes) { 69 CodeletMark cm(_masm, "bytecode tracing support"); 70 Interpreter::_trace_code = 71 EntryPoint( 72 generate_trace_code(atos), 73 generate_trace_code(itos), 74 generate_trace_code(ltos), 75 generate_trace_code(ftos), 76 generate_trace_code(dtos), 77 generate_trace_code(vtos) 78 ); 79 } 80 #endif // !PRODUCT 81 82 { CodeletMark cm(_masm, "return entry points"); 83 Interpreter::_return_entry[0] = EntryPoint(); 84 for (int i = 1; i < Interpreter::number_of_return_entries; i++) { 85 Interpreter::_return_entry[i] = 86 EntryPoint( 87 generate_return_entry_for(atos, i, sizeof(u2)), 88 generate_return_entry_for(itos, i, sizeof(u2)), 89 generate_return_entry_for(ltos, i, sizeof(u2)), 90 generate_return_entry_for(ftos, i, sizeof(u2)), 91 generate_return_entry_for(dtos, i, sizeof(u2)), 92 generate_return_entry_for(vtos, i, sizeof(u2)) 93 ); 94 } 95 } 96 97 { CodeletMark cm(_masm, "invoke return entry points"); 98 // These states are in order specified in TosState, except btos/ztos/ctos/stos which 99 // are the same as itos since there is no top of stack optimization for these types 100 const TosState states[] = {ilgl, ilgl, ilgl, ilgl, itos, ltos, ftos, dtos, atos, vtos, ilgl}; 101 const int invoke_length = Bytecodes::length_for(Bytecodes::_invokestatic); 102 const int invokeinterface_length = Bytecodes::length_for(Bytecodes::_invokeinterface); 103 const int invokedynamic_length = Bytecodes::length_for(Bytecodes::_invokedynamic); 104 105 assert(invoke_length >= 0 && invoke_length < Interpreter::number_of_return_entries, "invariant"); 106 assert(invokeinterface_length >= 0 && invokeinterface_length < Interpreter::number_of_return_entries, "invariant"); 107 108 for (int i = itos; i < Interpreter::number_of_return_addrs; i++) { 109 TosState state = states[i]; 110 assert(state != ilgl, "states array is wrong above"); 111 112 // Reuse generated entry points 113 Interpreter::_invoke_return_entry[i] = Interpreter::_return_entry[invoke_length].entry(state); 114 Interpreter::_invokeinterface_return_entry[i] = Interpreter::_return_entry[invokeinterface_length].entry(state); 115 116 Interpreter::_invokedynamic_return_entry[i] = generate_return_entry_for(state, invokedynamic_length, sizeof(u4)); 117 } 118 119 // set itos entry points for btos/ztos/ctos/stos 120 for (int i = 0; i < itos; i++) { 121 Interpreter::_invoke_return_entry[i] = Interpreter::_invoke_return_entry[itos]; 122 Interpreter::_invokeinterface_return_entry[i] = Interpreter::_invokeinterface_return_entry[itos]; 123 Interpreter::_invokedynamic_return_entry[i] = Interpreter::_invokedynamic_return_entry[itos]; 124 } 125 } 126 127 { CodeletMark cm(_masm, "earlyret entry points"); 128 Interpreter::_earlyret_entry = 129 EntryPoint( 130 generate_earlyret_entry_for(atos), 131 generate_earlyret_entry_for(itos), 132 generate_earlyret_entry_for(ltos), 133 generate_earlyret_entry_for(ftos), 134 generate_earlyret_entry_for(dtos), 135 generate_earlyret_entry_for(vtos) 136 ); 137 } 138 139 { CodeletMark cm(_masm, "result handlers for native calls"); 140 // The various result converter stublets. 141 int is_generated[Interpreter::number_of_result_handlers]; 142 memset(is_generated, 0, sizeof(is_generated)); 143 144 for (int i = 0; i < Interpreter::number_of_result_handlers; i++) { 145 BasicType type = types[i]; 146 if (!is_generated[Interpreter::BasicType_as_index(type)]++) { 147 Interpreter::_native_abi_to_tosca[Interpreter::BasicType_as_index(type)] = generate_result_handler_for(type); 148 } 149 } 150 } 151 152 153 { CodeletMark cm(_masm, "safepoint entry points"); 154 Interpreter::_safept_entry = 155 EntryPoint( 156 generate_safept_entry_for(atos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)), 157 generate_safept_entry_for(itos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)), 158 generate_safept_entry_for(ltos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)), 159 generate_safept_entry_for(ftos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)), 160 generate_safept_entry_for(dtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)), 161 generate_safept_entry_for(vtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)) 162 ); 163 } 164 165 { CodeletMark cm(_masm, "exception handling"); 166 // (Note: this is not safepoint safe because thread may return to compiled code) 167 generate_throw_exception(); 168 } 169 170 { CodeletMark cm(_masm, "throw exception entrypoints"); 171 Interpreter::_throw_ArrayIndexOutOfBoundsException_entry = generate_ArrayIndexOutOfBounds_handler(); 172 Interpreter::_throw_ArrayStoreException_entry = generate_klass_exception_handler("java/lang/ArrayStoreException"); 173 Interpreter::_throw_ArithmeticException_entry = generate_exception_handler("java/lang/ArithmeticException", "/ by zero"); 174 Interpreter::_throw_ClassCastException_entry = generate_ClassCastException_handler(); 175 Interpreter::_throw_NullPointerException_entry = generate_exception_handler("java/lang/NullPointerException", NULL); 176 Interpreter::_throw_StackOverflowError_entry = generate_StackOverflowError_handler(); 177 } 178 179 180 181 #define method_entry(kind) \ 182 { CodeletMark cm(_masm, "method entry point (kind = " #kind ")"); \ 183 Interpreter::_entry_table[Interpreter::kind] = generate_method_entry(Interpreter::kind); \ 184 } 185 186 // all non-native method kinds 187 method_entry(zerolocals) 188 method_entry(zerolocals_synchronized) 189 method_entry(empty) 190 method_entry(getter) 191 method_entry(setter) 192 method_entry(abstract) 193 method_entry(java_lang_math_sin ) 194 method_entry(java_lang_math_cos ) 195 method_entry(java_lang_math_tan ) 196 method_entry(java_lang_math_abs ) 197 method_entry(java_lang_math_sqrt ) 198 method_entry(java_lang_math_log ) 199 method_entry(java_lang_math_log10) 200 method_entry(java_lang_math_exp ) 201 method_entry(java_lang_math_pow ) 202 method_entry(java_lang_math_fmaF ) 203 method_entry(java_lang_math_fmaD ) 204 method_entry(java_lang_ref_reference_get) 205 #if defined(AMD64) || defined(AARCH64) || defined(RISCV64) 206 method_entry(java_lang_Thread_currentThread) 207 #endif 208 AbstractInterpreter::initialize_method_handle_entries(); 209 210 // all native method kinds (must be one contiguous block) 211 Interpreter::_native_entry_begin = Interpreter::code()->code_end(); 212 method_entry(native) 213 method_entry(native_synchronized) 214 Interpreter::_native_entry_end = Interpreter::code()->code_end(); 215 216 method_entry(java_util_zip_CRC32_update) 217 method_entry(java_util_zip_CRC32_updateBytes) 218 method_entry(java_util_zip_CRC32_updateByteBuffer) 219 method_entry(java_util_zip_CRC32C_updateBytes) 220 method_entry(java_util_zip_CRC32C_updateDirectByteBuffer) 221 222 method_entry(java_lang_Float_intBitsToFloat); 223 method_entry(java_lang_Float_floatToRawIntBits); 224 method_entry(java_lang_Double_longBitsToDouble); 225 method_entry(java_lang_Double_doubleToRawLongBits); 226 227 #undef method_entry 228 229 // Bytecodes 230 set_entry_points_for_all_bytes(); 231 232 // installation of code in other places in the runtime 233 // (ExcutableCodeManager calls not needed to copy the entries) 234 set_safepoints_for_all_bytes(); 235 236 { CodeletMark cm(_masm, "deoptimization entry points"); 237 Interpreter::_deopt_entry[0] = EntryPoint(); 238 Interpreter::_deopt_entry[0].set_entry(vtos, generate_deopt_entry_for(vtos, 0)); 239 for (int i = 1; i < Interpreter::number_of_deopt_entries; i++) { 240 Interpreter::_deopt_entry[i] = 241 EntryPoint( 242 generate_deopt_entry_for(atos, i), 243 generate_deopt_entry_for(itos, i), 244 generate_deopt_entry_for(ltos, i), 245 generate_deopt_entry_for(ftos, i), 246 generate_deopt_entry_for(dtos, i), 247 generate_deopt_entry_for(vtos, i) 248 ); 249 } 250 address return_continuation = Interpreter::_normal_table.entry(Bytecodes::_return).entry(vtos); 251 vmassert(return_continuation != NULL, "return entry not generated yet"); 252 Interpreter::_deopt_reexecute_return_entry = generate_deopt_entry_for(vtos, 0, return_continuation); 253 } 254 255 } 256 257 //------------------------------------------------------------------------------------------------------------------------ 258 259 address TemplateInterpreterGenerator::generate_error_exit(const char* msg) { 260 address entry = __ pc(); 261 __ stop(msg); 262 return entry; 263 } 264 265 266 //------------------------------------------------------------------------------------------------------------------------ 267 268 void TemplateInterpreterGenerator::set_entry_points_for_all_bytes() { 269 for (int i = 0; i < DispatchTable::length; i++) { 270 Bytecodes::Code code = (Bytecodes::Code)i; 271 if (Bytecodes::is_defined(code)) { 272 set_entry_points(code); 273 } else { 274 set_unimplemented(i); 275 } 276 } 277 } 278 279 280 void TemplateInterpreterGenerator::set_safepoints_for_all_bytes() { 281 for (int i = 0; i < DispatchTable::length; i++) { 282 Bytecodes::Code code = (Bytecodes::Code)i; 283 if (Bytecodes::is_defined(code)) Interpreter::_safept_table.set_entry(code, Interpreter::_safept_entry); 284 } 285 } 286 287 288 void TemplateInterpreterGenerator::set_unimplemented(int i) { 289 address e = _unimplemented_bytecode; 290 EntryPoint entry(e, e, e, e, e, e, e, e, e, e); 291 Interpreter::_normal_table.set_entry(i, entry); 292 Interpreter::_wentry_point[i] = _unimplemented_bytecode; 293 } 294 295 296 void TemplateInterpreterGenerator::set_entry_points(Bytecodes::Code code) { 297 CodeletMark cm(_masm, Bytecodes::name(code), code); 298 // initialize entry points 299 assert(_unimplemented_bytecode != NULL, "should have been generated before"); 300 assert(_illegal_bytecode_sequence != NULL, "should have been generated before"); 301 address bep = _illegal_bytecode_sequence; 302 address zep = _illegal_bytecode_sequence; 303 address cep = _illegal_bytecode_sequence; 304 address sep = _illegal_bytecode_sequence; 305 address aep = _illegal_bytecode_sequence; 306 address iep = _illegal_bytecode_sequence; 307 address lep = _illegal_bytecode_sequence; 308 address fep = _illegal_bytecode_sequence; 309 address dep = _illegal_bytecode_sequence; 310 address vep = _unimplemented_bytecode; 311 address wep = _unimplemented_bytecode; 312 // code for short & wide version of bytecode 313 if (Bytecodes::is_defined(code)) { 314 Template* t = TemplateTable::template_for(code); 315 assert(t->is_valid(), "just checking"); 316 set_short_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep); 317 } 318 if (Bytecodes::wide_is_defined(code)) { 319 Template* t = TemplateTable::template_for_wide(code); 320 assert(t->is_valid(), "just checking"); 321 set_wide_entry_point(t, wep); 322 } 323 // set entry points 324 EntryPoint entry(bep, zep, cep, sep, aep, iep, lep, fep, dep, vep); 325 Interpreter::_normal_table.set_entry(code, entry); 326 Interpreter::_wentry_point[code] = wep; 327 } 328 329 330 void TemplateInterpreterGenerator::set_wide_entry_point(Template* t, address& wep) { 331 assert(t->is_valid(), "template must exist"); 332 assert(t->tos_in() == vtos, "only vtos tos_in supported for wide instructions"); 333 wep = __ pc(); generate_and_dispatch(t); 334 } 335 336 337 void TemplateInterpreterGenerator::set_short_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) { 338 assert(t->is_valid(), "template must exist"); 339 switch (t->tos_in()) { 340 case btos: 341 case ztos: 342 case ctos: 343 case stos: 344 ShouldNotReachHere(); // btos/ctos/stos should use itos. 345 break; 346 case atos: vep = __ pc(); __ pop(atos); aep = __ pc(); generate_and_dispatch(t); break; 347 case itos: vep = __ pc(); __ pop(itos); iep = __ pc(); generate_and_dispatch(t); break; 348 case ltos: vep = __ pc(); __ pop(ltos); lep = __ pc(); generate_and_dispatch(t); break; 349 case ftos: vep = __ pc(); __ pop(ftos); fep = __ pc(); generate_and_dispatch(t); break; 350 case dtos: vep = __ pc(); __ pop(dtos); dep = __ pc(); generate_and_dispatch(t); break; 351 case vtos: set_vtos_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep); break; 352 default : ShouldNotReachHere(); break; 353 } 354 } 355 356 357 //------------------------------------------------------------------------------------------------------------------------ 358 359 void TemplateInterpreterGenerator::generate_and_dispatch(Template* t, TosState tos_out) { 360 #ifndef PRODUCT 361 // debugging code 362 if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) count_bytecode(); 363 if (PrintBytecodeHistogram) histogram_bytecode(t); 364 if (PrintBytecodePairHistogram) histogram_bytecode_pair(t); 365 if (TraceBytecodes) trace_bytecode(t); 366 if (StopInterpreterAt > 0) stop_interpreter_at(); 367 __ verify_FPU(1, t->tos_in()); 368 #endif // !PRODUCT 369 int step = 0; 370 if (!t->does_dispatch()) { 371 step = t->is_wide() ? Bytecodes::wide_length_for(t->bytecode()) : Bytecodes::length_for(t->bytecode()); 372 if (tos_out == ilgl) tos_out = t->tos_out(); 373 // compute bytecode size 374 assert(step > 0, "just checkin'"); 375 // setup stuff for dispatching next bytecode 376 if (ProfileInterpreter && VerifyDataPointer 377 && MethodData::bytecode_has_profile(t->bytecode())) { 378 __ verify_method_data_pointer(); 379 } 380 __ dispatch_prolog(tos_out, step); 381 } 382 // generate template 383 t->generate(_masm); 384 // advance 385 if (t->does_dispatch()) { 386 #ifdef ASSERT 387 // make sure execution doesn't go beyond this point if code is broken 388 __ should_not_reach_here(); 389 #endif // ASSERT 390 } else { 391 // dispatch to next bytecode 392 __ dispatch_epilog(tos_out, step); 393 } 394 } 395 396 // Generate method entries 397 address TemplateInterpreterGenerator::generate_method_entry( 398 AbstractInterpreter::MethodKind kind) { 399 // determine code generation flags 400 bool native = false; 401 bool synchronized = false; 402 address entry_point = NULL; 403 404 switch (kind) { 405 case Interpreter::zerolocals : break; 406 case Interpreter::zerolocals_synchronized: synchronized = true; break; 407 case Interpreter::native : native = true; break; 408 case Interpreter::native_synchronized : native = true; synchronized = true; break; 409 case Interpreter::empty : break; 410 case Interpreter::getter : break; 411 case Interpreter::setter : break; 412 case Interpreter::abstract : entry_point = generate_abstract_entry(); break; 413 414 case Interpreter::java_lang_math_sin : // fall thru 415 case Interpreter::java_lang_math_cos : // fall thru 416 case Interpreter::java_lang_math_tan : // fall thru 417 case Interpreter::java_lang_math_abs : // fall thru 418 case Interpreter::java_lang_math_log : // fall thru 419 case Interpreter::java_lang_math_log10 : // fall thru 420 case Interpreter::java_lang_math_sqrt : // fall thru 421 case Interpreter::java_lang_math_pow : // fall thru 422 case Interpreter::java_lang_math_exp : // fall thru 423 case Interpreter::java_lang_math_fmaD : // fall thru 424 case Interpreter::java_lang_math_fmaF : entry_point = generate_math_entry(kind); break; 425 case Interpreter::java_lang_ref_reference_get 426 : entry_point = generate_Reference_get_entry(); break; 427 case Interpreter::java_util_zip_CRC32_update 428 : native = true; entry_point = generate_CRC32_update_entry(); break; 429 case Interpreter::java_util_zip_CRC32_updateBytes 430 : // fall thru 431 case Interpreter::java_util_zip_CRC32_updateByteBuffer 432 : native = true; entry_point = generate_CRC32_updateBytes_entry(kind); break; 433 case Interpreter::java_util_zip_CRC32C_updateBytes 434 : // fall thru 435 case Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer 436 : entry_point = generate_CRC32C_updateBytes_entry(kind); break; 437 #if defined(AMD64) || defined(AARCH64) || defined(RISCV64) 438 case Interpreter::java_lang_Thread_currentThread 439 : entry_point = generate_currentThread(); break; 440 #endif 441 442 #ifdef IA32 443 // On x86_32 platforms, a special entry is generated for the following four methods. 444 // On other platforms the normal entry is used to enter these methods. 445 case Interpreter::java_lang_Float_intBitsToFloat 446 : native = true; entry_point = generate_Float_intBitsToFloat_entry(); break; 447 case Interpreter::java_lang_Float_floatToRawIntBits 448 : native = true; entry_point = generate_Float_floatToRawIntBits_entry(); break; 449 case Interpreter::java_lang_Double_longBitsToDouble 450 : native = true; entry_point = generate_Double_longBitsToDouble_entry(); break; 451 case Interpreter::java_lang_Double_doubleToRawLongBits 452 : native = true; entry_point = generate_Double_doubleToRawLongBits_entry(); break; 453 #else 454 case Interpreter::java_lang_Float_intBitsToFloat: 455 case Interpreter::java_lang_Float_floatToRawIntBits: 456 case Interpreter::java_lang_Double_longBitsToDouble: 457 case Interpreter::java_lang_Double_doubleToRawLongBits: 458 native = true; 459 break; 460 #endif // !IA32 461 default: 462 fatal("unexpected method kind: %d", kind); 463 break; 464 } 465 466 if (entry_point) { 467 return entry_point; 468 } 469 470 // We expect the normal and native entry points to be generated first so we can reuse them. 471 if (native) { 472 entry_point = Interpreter::entry_for_kind(synchronized ? Interpreter::native_synchronized : Interpreter::native); 473 if (entry_point == NULL) { 474 entry_point = generate_native_entry(synchronized); 475 } 476 } else { 477 entry_point = Interpreter::entry_for_kind(synchronized ? Interpreter::zerolocals_synchronized : Interpreter::zerolocals); 478 if (entry_point == NULL) { 479 entry_point = generate_normal_entry(synchronized); 480 } 481 } 482 483 return entry_point; 484 }