1 /*
  2  * Copyright (c) 2017, 2023, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OOPS_ACCESS_HPP
 26 #define SHARE_OOPS_ACCESS_HPP
 27 
 28 #include "memory/allStatic.hpp"
 29 #include "oops/accessBackend.hpp"
 30 #include "oops/accessDecorators.hpp"
 31 #include "oops/oopsHierarchy.hpp"
 32 #include "utilities/debug.hpp"
 33 #include "utilities/globalDefinitions.hpp"
 34 
 35 
 36 // = GENERAL =
 37 // Access is an API for performing accesses with declarative semantics. Each access can have a number of "decorators".
 38 // A decorator is an attribute or property that affects the way a memory access is performed in some way.
 39 // There are different groups of decorators. Some have to do with memory ordering, others to do with,
 40 // e.g. strength of references, strength of GC barriers, or whether compression should be applied or not.
 41 // Some decorators are set at buildtime, such as whether primitives require GC barriers or not, others
 42 // at callsites such as whether an access is in the heap or not, and others are resolved at runtime
 43 // such as GC-specific barriers and encoding/decoding compressed oops. For more information about what
 44 // decorators are available, cf. oops/accessDecorators.hpp.
 45 // By pipelining handling of these decorators, the design of the Access API allows separation of concern
 46 // over the different orthogonal concerns of decorators, while providing a powerful way of
 47 // expressing these orthogonal semantic properties in a unified way.
 48 //
 49 // == OPERATIONS ==
 50 // * load: Load a value from an address.
 51 // * load_at: Load a value from an internal pointer relative to a base object.
 52 // * store: Store a value at an address.
 53 // * store_at: Store a value in an internal pointer relative to a base object.
 54 // * atomic_cmpxchg: Atomically compare-and-swap a new value at an address if previous value matched the compared value.
 55 // * atomic_cmpxchg_at: Atomically compare-and-swap a new value at an internal pointer address if previous value matched the compared value.
 56 // * atomic_xchg: Atomically swap a new value at an address without checking the previous value.
 57 // * atomic_xchg_at: Atomically swap a new value at an internal pointer address without checking the previous value.
 58 // * arraycopy: Copy data from one heap array to another heap array. The ArrayAccess class has convenience functions for this.
 59 // * clone: Clone the contents of an object to a newly allocated object.
 60 //
 61 // == IMPLEMENTATION ==
 62 // Each access goes through the following steps in a template pipeline.
 63 // There are essentially 5 steps for each access:
 64 // * Step 1:   Set default decorators and decay types. This step gets rid of CV qualifiers
 65 //             and sets default decorators to sensible values.
 66 // * Step 2:   Reduce types. This step makes sure there is only a single T type and not
 67 //             multiple types. The P type of the address and T type of the value must
 68 //             match.
 69 // * Step 3:   Pre-runtime dispatch. This step checks whether a runtime call can be
 70 //             avoided, and in that case avoids it (calling raw accesses or
 71 //             primitive accesses in a build that does not require primitive GC barriers)
 72 // * Step 4:   Runtime-dispatch. This step performs a runtime dispatch to the corresponding
 73 //             BarrierSet::AccessBarrier accessor that attaches GC-required barriers
 74 //             to the access.
 75 // * Step 5.a: Barrier resolution. This step is invoked the first time a runtime-dispatch
 76 //             happens for an access. The appropriate BarrierSet::AccessBarrier accessor
 77 //             is resolved, then the function pointer is updated to that accessor for
 78 //             future invocations.
 79 // * Step 5.b: Post-runtime dispatch. This step now casts previously unknown types such
 80 //             as the address type of an oop on the heap (is it oop* or narrowOop*) to
 81 //             the appropriate type. It also splits sufficiently orthogonal accesses into
 82 //             different functions, such as whether the access involves oops or primitives
 83 //             and whether the access is performed on the heap or outside. Then the
 84 //             appropriate BarrierSet::AccessBarrier is called to perform the access.
 85 //
 86 // The implementation of step 1-4 resides in accessBackend.hpp, to allow selected
 87 // accesses to be accessible from only access.hpp, as opposed to access.inline.hpp.
 88 // Steps 5.a and 5.b require knowledge about the GC backends, and therefore needs to
 89 // include the various GC backend .inline.hpp headers. Their implementation resides in
 90 // access.inline.hpp.
 91 
 92 template <DecoratorSet decorators = DECORATORS_NONE>
 93 class Access: public AllStatic {
 94   // This function asserts that if an access gets passed in a decorator outside
 95   // of the expected_decorators, then something is wrong. It additionally checks
 96   // the consistency of the decorators so that supposedly disjoint decorators are indeed
 97   // disjoint. For example, an access can not be both in heap and on root at the
 98   // same time.
 99   template <DecoratorSet expected_decorators>
100   static void verify_decorators();
101 
102   template <DecoratorSet expected_mo_decorators>
103   static void verify_primitive_decorators() {
104     const DecoratorSet primitive_decorators = (AS_DECORATOR_MASK ^ AS_NO_KEEPALIVE) |
105                                               IN_HEAP | IS_ARRAY;
106     verify_decorators<expected_mo_decorators | primitive_decorators>();
107   }
108 
109   template <DecoratorSet expected_mo_decorators>
110   static void verify_oop_decorators() {
111     const DecoratorSet oop_decorators = AS_DECORATOR_MASK | IN_DECORATOR_MASK |
112                                         (ON_DECORATOR_MASK ^ ON_UNKNOWN_OOP_REF) | // no unknown oop refs outside of the heap
113                                         IS_ARRAY | IS_NOT_NULL | IS_DEST_UNINITIALIZED;
114     verify_decorators<expected_mo_decorators | oop_decorators>();
115   }
116 
117   template <DecoratorSet expected_mo_decorators>
118   static void verify_heap_oop_decorators() {
119     const DecoratorSet heap_oop_decorators = AS_DECORATOR_MASK | ON_DECORATOR_MASK |
120                                              IN_HEAP | IS_ARRAY | IS_NOT_NULL | IS_DEST_UNINITIALIZED;
121     verify_decorators<expected_mo_decorators | heap_oop_decorators>();
122   }
123 
124   static const DecoratorSet load_mo_decorators = MO_UNORDERED | MO_RELAXED | MO_ACQUIRE | MO_SEQ_CST;
125   static const DecoratorSet store_mo_decorators = MO_UNORDERED | MO_RELAXED | MO_RELEASE | MO_SEQ_CST;
126   static const DecoratorSet atomic_xchg_mo_decorators = MO_SEQ_CST;
127   static const DecoratorSet atomic_cmpxchg_mo_decorators = MO_RELAXED | MO_SEQ_CST;
128 
129 protected:
130   template <typename T>
131   static inline bool oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
132                                    arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
133                                    size_t length) {
134     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
135                       AS_DECORATOR_MASK | IS_ARRAY | IS_DEST_UNINITIALIZED>();
136     return AccessInternal::arraycopy<decorators | INTERNAL_VALUE_IS_OOP>(src_obj, src_offset_in_bytes, src_raw,
137                                                                          dst_obj, dst_offset_in_bytes, dst_raw,
138                                                                          length);
139   }
140 
141   template <typename T>
142   static inline void arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
143                                arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
144                                size_t length) {
145     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
146                       AS_DECORATOR_MASK | IS_ARRAY>();
147     AccessInternal::arraycopy<decorators>(src_obj, src_offset_in_bytes, src_raw,
148                                           dst_obj, dst_offset_in_bytes, dst_raw,
149                                           length);
150   }
151 
152 public:
153   // Primitive heap accesses
154   static inline AccessInternal::LoadAtProxy<decorators> load_at(oop base, ptrdiff_t offset) {
155     verify_primitive_decorators<load_mo_decorators>();
156     return AccessInternal::LoadAtProxy<decorators>(base, offset);
157   }
158 
159   template <typename T>
160   static inline void store_at(oop base, ptrdiff_t offset, T value) {
161     verify_primitive_decorators<store_mo_decorators>();
162     AccessInternal::store_at<decorators>(base, offset, value);
163   }
164 
165   template <typename T>
166   static inline T atomic_cmpxchg_at(oop base, ptrdiff_t offset, T compare_value, T new_value) {
167     verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
168     return AccessInternal::atomic_cmpxchg_at<decorators>(base, offset, compare_value, new_value);
169   }
170 
171   template <typename T>
172   static inline T atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
173     verify_primitive_decorators<atomic_xchg_mo_decorators>();
174     return AccessInternal::atomic_xchg_at<decorators>(base, offset, new_value);
175   }
176 
177   // Oop heap accesses
178   static inline AccessInternal::OopLoadAtProxy<decorators> oop_load_at(oop base, ptrdiff_t offset) {
179     verify_heap_oop_decorators<load_mo_decorators>();
180     return AccessInternal::OopLoadAtProxy<decorators>(base, offset);
181   }
182 
183   template <typename T>
184   static inline void oop_store_at(oop base, ptrdiff_t offset, T value) {
185     verify_heap_oop_decorators<store_mo_decorators>();
186     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
187     OopType oop_value = value;
188     AccessInternal::store_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, oop_value);
189   }
190 
191   template <typename T>
192   static inline T oop_atomic_cmpxchg_at(oop base, ptrdiff_t offset, T compare_value, T new_value) {
193     verify_heap_oop_decorators<atomic_cmpxchg_mo_decorators>();
194     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
195     OopType new_oop_value = new_value;
196     OopType compare_oop_value = compare_value;
197     return AccessInternal::atomic_cmpxchg_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, compare_oop_value, new_oop_value);
198   }
199 
200   template <typename T>
201   static inline T oop_atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
202     verify_heap_oop_decorators<atomic_xchg_mo_decorators>();
203     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
204     OopType new_oop_value = new_value;
205     return AccessInternal::atomic_xchg_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, new_oop_value);
206   }
207 
208   // Clone an object from src to dst
209   static inline void clone(oop src, oop dst, size_t size) {
210     verify_decorators<IN_HEAP>();
211     AccessInternal::clone<decorators>(src, dst, size);
212   }
213 
214   // Primitive accesses
215   template <typename P>
216   static inline P load(P* addr) {
217     verify_primitive_decorators<load_mo_decorators>();
218     return AccessInternal::load<decorators, P, P>(addr);
219   }
220 
221   template <typename P, typename T>
222   static inline void store(P* addr, T value) {
223     verify_primitive_decorators<store_mo_decorators>();
224     AccessInternal::store<decorators>(addr, value);
225   }
226 
227   template <typename P, typename T>
228   static inline T atomic_cmpxchg(P* addr, T compare_value, T new_value) {
229     verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
230     return AccessInternal::atomic_cmpxchg<decorators>(addr, compare_value, new_value);
231   }
232 
233   template <typename P, typename T>
234   static inline T atomic_xchg(P* addr, T new_value) {
235     verify_primitive_decorators<atomic_xchg_mo_decorators>();
236     return AccessInternal::atomic_xchg<decorators>(addr, new_value);
237   }
238 
239   // Oop accesses
240   template <typename P>
241   static inline AccessInternal::OopLoadProxy<P, decorators> oop_load(P* addr) {
242     verify_oop_decorators<load_mo_decorators>();
243     return AccessInternal::OopLoadProxy<P, decorators>(addr);
244   }
245 
246   template <typename P, typename T>
247   static inline void oop_store(P* addr, T value) {
248     verify_oop_decorators<store_mo_decorators>();
249     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
250     OopType oop_value = value;
251     AccessInternal::store<decorators | INTERNAL_VALUE_IS_OOP>(addr, oop_value);
252   }
253 
254   template <typename P, typename T>
255   static inline T oop_atomic_cmpxchg(P* addr, T compare_value, T new_value) {
256     verify_oop_decorators<atomic_cmpxchg_mo_decorators>();
257     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
258     OopType new_oop_value = new_value;
259     OopType compare_oop_value = compare_value;
260     return AccessInternal::atomic_cmpxchg<decorators | INTERNAL_VALUE_IS_OOP>(addr, compare_oop_value, new_oop_value);
261   }
262 
263   template <typename P, typename T>
264   static inline T oop_atomic_xchg(P* addr, T new_value) {
265     verify_oop_decorators<atomic_xchg_mo_decorators>();
266     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
267     OopType new_oop_value = new_value;
268     return AccessInternal::atomic_xchg<decorators | INTERNAL_VALUE_IS_OOP>(addr, new_oop_value);
269   }
270 };
271 
272 // Helper for performing raw accesses (knows only of memory ordering
273 // atomicity decorators as well as compressed oops).
274 template <DecoratorSet decorators = DECORATORS_NONE>
275 class RawAccess: public Access<AS_RAW | decorators> {};
276 
277 // Helper for performing normal accesses on the heap. These accesses
278 // may resolve an accessor on a GC barrier set.
279 template <DecoratorSet decorators = DECORATORS_NONE>
280 class HeapAccess: public Access<IN_HEAP | decorators> {};
281 
282 // Helper for performing normal accesses in roots. These accesses
283 // may resolve an accessor on a GC barrier set.
284 template <DecoratorSet decorators = DECORATORS_NONE>
285 class NativeAccess: public Access<IN_NATIVE | decorators> {};
286 
287 // Helper for performing accesses in nmethods. These accesses
288 // may resolve an accessor on a GC barrier set.
289 template <DecoratorSet decorators = DECORATORS_NONE>
290 class NMethodAccess: public Access<IN_NMETHOD | decorators> {};
291 
292 // Helper for array access.
293 template <DecoratorSet decorators = DECORATORS_NONE>
294 class ArrayAccess: public HeapAccess<IS_ARRAY | decorators> {
295   typedef HeapAccess<IS_ARRAY | decorators> AccessT;
296 public:
297   template <typename T>
298   static inline void arraycopy(arrayOop src_obj, size_t src_offset_in_bytes,
299                                arrayOop dst_obj, size_t dst_offset_in_bytes,
300                                size_t length) {
301     AccessT::arraycopy(src_obj, src_offset_in_bytes, static_cast<const T*>(nullptr),
302                        dst_obj, dst_offset_in_bytes, static_cast<T*>(nullptr),
303                        length);
304   }
305 
306   template <typename T>
307   static inline void arraycopy_to_native(arrayOop src_obj, size_t src_offset_in_bytes,
308                                          T* dst,
309                                          size_t length) {
310     AccessT::arraycopy(src_obj, src_offset_in_bytes, static_cast<const T*>(nullptr),
311                        nullptr, 0, dst,
312                        length);
313   }
314 
315   template <typename T>
316   static inline void arraycopy_from_native(const T* src,
317                                            arrayOop dst_obj, size_t dst_offset_in_bytes,
318                                            size_t length) {
319     AccessT::arraycopy(nullptr, 0, src,
320                        dst_obj, dst_offset_in_bytes, static_cast<T*>(nullptr),
321                        length);
322   }
323 
324   static inline bool oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes,
325                                    arrayOop dst_obj, size_t dst_offset_in_bytes,
326                                    size_t length) {
327     return AccessT::oop_arraycopy(src_obj, src_offset_in_bytes, static_cast<const HeapWord*>(nullptr),
328                                   dst_obj, dst_offset_in_bytes, static_cast<HeapWord*>(nullptr),
329                                   length);
330   }
331 
332   template <typename T>
333   static inline bool oop_arraycopy_raw(T* src, T* dst, size_t length) {
334     return AccessT::oop_arraycopy(nullptr, 0, src,
335                                   nullptr, 0, dst,
336                                   length);
337   }
338 
339 };
340 
341 template <DecoratorSet decorators>
342 template <DecoratorSet expected_decorators>
343 void Access<decorators>::verify_decorators() {
344   STATIC_ASSERT((~expected_decorators & decorators) == 0); // unexpected decorator used
345   const DecoratorSet barrier_strength_decorators = decorators & AS_DECORATOR_MASK;
346   STATIC_ASSERT(barrier_strength_decorators == 0 || ( // make sure barrier strength decorators are disjoint if set
347     (barrier_strength_decorators ^ AS_NO_KEEPALIVE) == 0 ||
348     (barrier_strength_decorators ^ AS_RAW) == 0 ||
349     (barrier_strength_decorators ^ AS_NORMAL) == 0
350   ));
351   const DecoratorSet ref_strength_decorators = decorators & ON_DECORATOR_MASK;
352   STATIC_ASSERT(ref_strength_decorators == 0 || ( // make sure ref strength decorators are disjoint if set
353     (ref_strength_decorators ^ ON_STRONG_OOP_REF) == 0 ||
354     (ref_strength_decorators ^ ON_WEAK_OOP_REF) == 0 ||
355     (ref_strength_decorators ^ ON_PHANTOM_OOP_REF) == 0 ||
356     (ref_strength_decorators ^ ON_UNKNOWN_OOP_REF) == 0
357   ));
358   const DecoratorSet memory_ordering_decorators = decorators & MO_DECORATOR_MASK;
359   STATIC_ASSERT(memory_ordering_decorators == 0 || ( // make sure memory ordering decorators are disjoint if set
360     (memory_ordering_decorators ^ MO_UNORDERED) == 0 ||
361     (memory_ordering_decorators ^ MO_RELAXED) == 0 ||
362     (memory_ordering_decorators ^ MO_ACQUIRE) == 0 ||
363     (memory_ordering_decorators ^ MO_RELEASE) == 0 ||
364     (memory_ordering_decorators ^ MO_SEQ_CST) == 0
365   ));
366   const DecoratorSet location_decorators = decorators & IN_DECORATOR_MASK;
367   STATIC_ASSERT(location_decorators == 0 || ( // make sure location decorators are disjoint if set
368     (location_decorators ^ IN_NATIVE) == 0 ||
369     (location_decorators ^ IN_NMETHOD) == 0 ||
370     (location_decorators ^ IN_HEAP) == 0
371   ));
372 }
373 
374 #endif // SHARE_OOPS_ACCESS_HPP