< prev index next >

src/hotspot/share/oops/access.hpp

Print this page

 40 // e.g. strength of references, strength of GC barriers, or whether compression should be applied or not.
 41 // Some decorators are set at buildtime, such as whether primitives require GC barriers or not, others
 42 // at callsites such as whether an access is in the heap or not, and others are resolved at runtime
 43 // such as GC-specific barriers and encoding/decoding compressed oops. For more information about what
 44 // decorators are available, cf. oops/accessDecorators.hpp.
 45 // By pipelining handling of these decorators, the design of the Access API allows separation of concern
 46 // over the different orthogonal concerns of decorators, while providing a powerful way of
 47 // expressing these orthogonal semantic properties in a unified way.
 48 //
 49 // == OPERATIONS ==
 50 // * load: Load a value from an address.
 51 // * load_at: Load a value from an internal pointer relative to a base object.
 52 // * store: Store a value at an address.
 53 // * store_at: Store a value in an internal pointer relative to a base object.
 54 // * atomic_cmpxchg: Atomically compare-and-swap a new value at an address if previous value matched the compared value.
 55 // * atomic_cmpxchg_at: Atomically compare-and-swap a new value at an internal pointer address if previous value matched the compared value.
 56 // * atomic_xchg: Atomically swap a new value at an address without checking the previous value.
 57 // * atomic_xchg_at: Atomically swap a new value at an internal pointer address without checking the previous value.
 58 // * arraycopy: Copy data from one heap array to another heap array. The ArrayAccess class has convenience functions for this.
 59 // * clone: Clone the contents of an object to a newly allocated object.

 60 //
 61 // == IMPLEMENTATION ==
 62 // Each access goes through the following steps in a template pipeline.
 63 // There are essentially 5 steps for each access:
 64 // * Step 1:   Set default decorators and decay types. This step gets rid of CV qualifiers
 65 //             and sets default decorators to sensible values.
 66 // * Step 2:   Reduce types. This step makes sure there is only a single T type and not
 67 //             multiple types. The P type of the address and T type of the value must
 68 //             match.
 69 // * Step 3:   Pre-runtime dispatch. This step checks whether a runtime call can be
 70 //             avoided, and in that case avoids it (calling raw accesses or
 71 //             primitive accesses in a build that does not require primitive GC barriers)
 72 // * Step 4:   Runtime-dispatch. This step performs a runtime dispatch to the corresponding
 73 //             BarrierSet::AccessBarrier accessor that attaches GC-required barriers
 74 //             to the access.
 75 // * Step 5.a: Barrier resolution. This step is invoked the first time a runtime-dispatch
 76 //             happens for an access. The appropriate BarrierSet::AccessBarrier accessor
 77 //             is resolved, then the function pointer is updated to that accessor for
 78 //             future invocations.
 79 // * Step 5.b: Post-runtime dispatch. This step now casts previously unknown types such
 80 //             as the address type of an oop on the heap (is it oop* or narrowOop*) to
 81 //             the appropriate type. It also splits sufficiently orthogonal accesses into
 82 //             different functions, such as whether the access involves oops or primitives
 83 //             and whether the access is performed on the heap or outside. Then the
 84 //             appropriate BarrierSet::AccessBarrier is called to perform the access.
 85 //
 86 // The implementation of step 1-4 resides in accessBackend.hpp, to allow selected
 87 // accesses to be accessible from only access.hpp, as opposed to access.inline.hpp.
 88 // Steps 5.a and 5.b require knowledge about the GC backends, and therefore needs to
 89 // include the various GC backend .inline.hpp headers. Their implementation resides in
 90 // access.inline.hpp.
 91 


 92 template <DecoratorSet decorators = DECORATORS_NONE>
 93 class Access: public AllStatic {
 94   // This function asserts that if an access gets passed in a decorator outside
 95   // of the expected_decorators, then something is wrong. It additionally checks
 96   // the consistency of the decorators so that supposedly disjoint decorators are indeed
 97   // disjoint. For example, an access can not be both in heap and on root at the
 98   // same time.
 99   template <DecoratorSet expected_decorators>
100   static void verify_decorators();
101 
102   template <DecoratorSet expected_mo_decorators>
103   static void verify_primitive_decorators() {
104     const DecoratorSet primitive_decorators = (AS_DECORATOR_MASK ^ AS_NO_KEEPALIVE) |
105                                               IN_HEAP | IS_ARRAY;
106     verify_decorators<expected_mo_decorators | primitive_decorators>();
107   }
108 
109   template <DecoratorSet expected_mo_decorators>
110   static void verify_oop_decorators() {
111     const DecoratorSet oop_decorators = AS_DECORATOR_MASK | IN_DECORATOR_MASK |
112                                         (ON_DECORATOR_MASK ^ ON_UNKNOWN_OOP_REF) | // no unknown oop refs outside of the heap
113                                         IS_ARRAY | IS_NOT_NULL | IS_DEST_UNINITIALIZED;
114     verify_decorators<expected_mo_decorators | oop_decorators>();
115   }
116 
117   template <DecoratorSet expected_mo_decorators>
118   static void verify_heap_oop_decorators() {
119     const DecoratorSet heap_oop_decorators = AS_DECORATOR_MASK | ON_DECORATOR_MASK |
120                                              IN_HEAP | IS_ARRAY | IS_NOT_NULL | IS_DEST_UNINITIALIZED;
121     verify_decorators<expected_mo_decorators | heap_oop_decorators>();
122   }
123 






124   static const DecoratorSet load_mo_decorators = MO_UNORDERED | MO_RELAXED | MO_ACQUIRE | MO_SEQ_CST;
125   static const DecoratorSet store_mo_decorators = MO_UNORDERED | MO_RELAXED | MO_RELEASE | MO_SEQ_CST;
126   static const DecoratorSet atomic_xchg_mo_decorators = MO_SEQ_CST;
127   static const DecoratorSet atomic_cmpxchg_mo_decorators = MO_RELAXED | MO_SEQ_CST;
128 
129 protected:
130   template <typename T>
131   static inline bool oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
132                                    arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
133                                    size_t length) {
134     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
135                       AS_DECORATOR_MASK | IS_ARRAY | IS_DEST_UNINITIALIZED>();
136     return AccessInternal::arraycopy<decorators | INTERNAL_VALUE_IS_OOP>(src_obj, src_offset_in_bytes, src_raw,
137                                                                          dst_obj, dst_offset_in_bytes, dst_raw,
138                                                                          length);
139   }
140 
141   template <typename T>
142   static inline void arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
143                                arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
144                                size_t length) {
145     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
146                       AS_DECORATOR_MASK | IS_ARRAY>();
147     AccessInternal::arraycopy<decorators>(src_obj, src_offset_in_bytes, src_raw,
148                                           dst_obj, dst_offset_in_bytes, dst_raw,
149                                           length);
150   }
151 
152 public:
153   // Primitive heap accesses
154   static inline AccessInternal::LoadAtProxy<decorators> load_at(oop base, ptrdiff_t offset) {
155     verify_primitive_decorators<load_mo_decorators>();
156     return AccessInternal::LoadAtProxy<decorators>(base, offset);
157   }
158 

194     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
195     OopType new_oop_value = new_value;
196     OopType compare_oop_value = compare_value;
197     return AccessInternal::atomic_cmpxchg_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, compare_oop_value, new_oop_value);
198   }
199 
200   template <typename T>
201   static inline T oop_atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
202     verify_heap_oop_decorators<atomic_xchg_mo_decorators>();
203     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
204     OopType new_oop_value = new_value;
205     return AccessInternal::atomic_xchg_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, new_oop_value);
206   }
207 
208   // Clone an object from src to dst
209   static inline void clone(oop src, oop dst, size_t size) {
210     verify_decorators<IN_HEAP>();
211     AccessInternal::clone<decorators>(src, dst, size);
212   }
213 








214   // Primitive accesses
215   template <typename P>
216   static inline P load(P* addr) {
217     verify_primitive_decorators<load_mo_decorators>();
218     return AccessInternal::load<decorators, P, P>(addr);
219   }
220 
221   template <typename P, typename T>
222   static inline void store(P* addr, T value) {
223     verify_primitive_decorators<store_mo_decorators>();
224     AccessInternal::store<decorators>(addr, value);
225   }
226 
227   template <typename P, typename T>
228   static inline T atomic_cmpxchg(P* addr, T compare_value, T new_value) {
229     verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
230     return AccessInternal::atomic_cmpxchg<decorators>(addr, compare_value, new_value);
231   }
232 
233   template <typename P, typename T>

304   }
305 
306   template <typename T>
307   static inline void arraycopy_to_native(arrayOop src_obj, size_t src_offset_in_bytes,
308                                          T* dst,
309                                          size_t length) {
310     AccessT::arraycopy(src_obj, src_offset_in_bytes, static_cast<const T*>(nullptr),
311                        nullptr, 0, dst,
312                        length);
313   }
314 
315   template <typename T>
316   static inline void arraycopy_from_native(const T* src,
317                                            arrayOop dst_obj, size_t dst_offset_in_bytes,
318                                            size_t length) {
319     AccessT::arraycopy(nullptr, 0, src,
320                        dst_obj, dst_offset_in_bytes, static_cast<T*>(nullptr),
321                        length);
322   }
323 
324   static inline bool oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes,
325                                    arrayOop dst_obj, size_t dst_offset_in_bytes,
326                                    size_t length) {
327     return AccessT::oop_arraycopy(src_obj, src_offset_in_bytes, static_cast<const HeapWord*>(nullptr),
328                                   dst_obj, dst_offset_in_bytes, static_cast<HeapWord*>(nullptr),
329                                   length);
330   }
331 
332   template <typename T>
333   static inline bool oop_arraycopy_raw(T* src, T* dst, size_t length) {
334     return AccessT::oop_arraycopy(nullptr, 0, src,
335                                   nullptr, 0, dst,
336                                   length);
337   }
338 
339 };
340 
341 template <DecoratorSet decorators>
342 template <DecoratorSet expected_decorators>
343 void Access<decorators>::verify_decorators() {
344   STATIC_ASSERT((~expected_decorators & decorators) == 0); // unexpected decorator used
345   const DecoratorSet barrier_strength_decorators = decorators & AS_DECORATOR_MASK;
346   STATIC_ASSERT(barrier_strength_decorators == 0 || ( // make sure barrier strength decorators are disjoint if set
347     (barrier_strength_decorators ^ AS_NO_KEEPALIVE) == 0 ||
348     (barrier_strength_decorators ^ AS_RAW) == 0 ||
349     (barrier_strength_decorators ^ AS_NORMAL) == 0
350   ));
351   const DecoratorSet ref_strength_decorators = decorators & ON_DECORATOR_MASK;
352   STATIC_ASSERT(ref_strength_decorators == 0 || ( // make sure ref strength decorators are disjoint if set
353     (ref_strength_decorators ^ ON_STRONG_OOP_REF) == 0 ||
354     (ref_strength_decorators ^ ON_WEAK_OOP_REF) == 0 ||
355     (ref_strength_decorators ^ ON_PHANTOM_OOP_REF) == 0 ||
356     (ref_strength_decorators ^ ON_UNKNOWN_OOP_REF) == 0

 40 // e.g. strength of references, strength of GC barriers, or whether compression should be applied or not.
 41 // Some decorators are set at buildtime, such as whether primitives require GC barriers or not, others
 42 // at callsites such as whether an access is in the heap or not, and others are resolved at runtime
 43 // such as GC-specific barriers and encoding/decoding compressed oops. For more information about what
 44 // decorators are available, cf. oops/accessDecorators.hpp.
 45 // By pipelining handling of these decorators, the design of the Access API allows separation of concern
 46 // over the different orthogonal concerns of decorators, while providing a powerful way of
 47 // expressing these orthogonal semantic properties in a unified way.
 48 //
 49 // == OPERATIONS ==
 50 // * load: Load a value from an address.
 51 // * load_at: Load a value from an internal pointer relative to a base object.
 52 // * store: Store a value at an address.
 53 // * store_at: Store a value in an internal pointer relative to a base object.
 54 // * atomic_cmpxchg: Atomically compare-and-swap a new value at an address if previous value matched the compared value.
 55 // * atomic_cmpxchg_at: Atomically compare-and-swap a new value at an internal pointer address if previous value matched the compared value.
 56 // * atomic_xchg: Atomically swap a new value at an address without checking the previous value.
 57 // * atomic_xchg_at: Atomically swap a new value at an internal pointer address without checking the previous value.
 58 // * arraycopy: Copy data from one heap array to another heap array. The ArrayAccess class has convenience functions for this.
 59 // * clone: Clone the contents of an object to a newly allocated object.
 60 // * value_copy: Copy the contents of a value type from one heap address to another
 61 //
 62 // == IMPLEMENTATION ==
 63 // Each access goes through the following steps in a template pipeline.
 64 // There are essentially 5 steps for each access:
 65 // * Step 1:   Set default decorators and decay types. This step gets rid of CV qualifiers
 66 //             and sets default decorators to sensible values.
 67 // * Step 2:   Reduce types. This step makes sure there is only a single T type and not
 68 //             multiple types. The P type of the address and T type of the value must
 69 //             match.
 70 // * Step 3:   Pre-runtime dispatch. This step checks whether a runtime call can be
 71 //             avoided, and in that case avoids it (calling raw accesses or
 72 //             primitive accesses in a build that does not require primitive GC barriers)
 73 // * Step 4:   Runtime-dispatch. This step performs a runtime dispatch to the corresponding
 74 //             BarrierSet::AccessBarrier accessor that attaches GC-required barriers
 75 //             to the access.
 76 // * Step 5.a: Barrier resolution. This step is invoked the first time a runtime-dispatch
 77 //             happens for an access. The appropriate BarrierSet::AccessBarrier accessor
 78 //             is resolved, then the function pointer is updated to that accessor for
 79 //             future invocations.
 80 // * Step 5.b: Post-runtime dispatch. This step now casts previously unknown types such
 81 //             as the address type of an oop on the heap (is it oop* or narrowOop*) to
 82 //             the appropriate type. It also splits sufficiently orthogonal accesses into
 83 //             different functions, such as whether the access involves oops or primitives
 84 //             and whether the access is performed on the heap or outside. Then the
 85 //             appropriate BarrierSet::AccessBarrier is called to perform the access.
 86 //
 87 // The implementation of step 1-4 resides in accessBackend.hpp, to allow selected
 88 // accesses to be accessible from only access.hpp, as opposed to access.inline.hpp.
 89 // Steps 5.a and 5.b require knowledge about the GC backends, and therefore needs to
 90 // include the various GC backend .inline.hpp headers. Their implementation resides in
 91 // access.inline.hpp.
 92 
 93 class InlineKlass;
 94 
 95 template <DecoratorSet decorators = DECORATORS_NONE>
 96 class Access: public AllStatic {
 97   // This function asserts that if an access gets passed in a decorator outside
 98   // of the expected_decorators, then something is wrong. It additionally checks
 99   // the consistency of the decorators so that supposedly disjoint decorators are indeed
100   // disjoint. For example, an access can not be both in heap and on root at the
101   // same time.
102   template <DecoratorSet expected_decorators>
103   static void verify_decorators();
104 
105   template <DecoratorSet expected_mo_decorators>
106   static void verify_primitive_decorators() {
107     const DecoratorSet primitive_decorators = (AS_DECORATOR_MASK ^ AS_NO_KEEPALIVE) |
108                                               IN_HEAP | IS_ARRAY;
109     verify_decorators<expected_mo_decorators | primitive_decorators>();
110   }
111 
112   template <DecoratorSet expected_mo_decorators>
113   static void verify_oop_decorators() {
114     const DecoratorSet oop_decorators = AS_DECORATOR_MASK | IN_DECORATOR_MASK |
115                                         (ON_DECORATOR_MASK ^ ON_UNKNOWN_OOP_REF) | // no unknown oop refs outside of the heap
116                                         IS_ARRAY | IS_NOT_NULL | IS_DEST_UNINITIALIZED;
117     verify_decorators<expected_mo_decorators | oop_decorators>();
118   }
119 
120   template <DecoratorSet expected_mo_decorators>
121   static void verify_heap_oop_decorators() {
122     const DecoratorSet heap_oop_decorators = AS_DECORATOR_MASK | ON_DECORATOR_MASK |
123                                              IN_HEAP | IS_ARRAY | IS_NOT_NULL | IS_DEST_UNINITIALIZED;
124     verify_decorators<expected_mo_decorators | heap_oop_decorators>();
125   }
126 
127   template <DecoratorSet expected_mo_decorators>
128   static void verify_heap_value_decorators() {
129     const DecoratorSet heap_value_decorators = IN_HEAP | IS_DEST_UNINITIALIZED;
130     verify_decorators<expected_mo_decorators | heap_value_decorators>();
131   }
132 
133   static const DecoratorSet load_mo_decorators = MO_UNORDERED | MO_RELAXED | MO_ACQUIRE | MO_SEQ_CST;
134   static const DecoratorSet store_mo_decorators = MO_UNORDERED | MO_RELAXED | MO_RELEASE | MO_SEQ_CST;
135   static const DecoratorSet atomic_xchg_mo_decorators = MO_SEQ_CST;
136   static const DecoratorSet atomic_cmpxchg_mo_decorators = MO_RELAXED | MO_SEQ_CST;
137 
138 protected:
139   template <typename T>
140   static inline void oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
141                                    arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
142                                    size_t length) {
143     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
144                       AS_DECORATOR_MASK | IS_ARRAY | IS_DEST_UNINITIALIZED>();
145     AccessInternal::arraycopy<decorators | INTERNAL_VALUE_IS_OOP>(src_obj, src_offset_in_bytes, src_raw,
146                                                                   dst_obj, dst_offset_in_bytes, dst_raw,
147                                                                   length);
148   }
149 
150   template <typename T>
151   static inline void arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
152                                arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
153                                size_t length) {
154     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
155                       AS_DECORATOR_MASK | IS_ARRAY>();
156     AccessInternal::arraycopy<decorators>(src_obj, src_offset_in_bytes, src_raw,
157                                           dst_obj, dst_offset_in_bytes, dst_raw,
158                                           length);
159   }
160 
161 public:
162   // Primitive heap accesses
163   static inline AccessInternal::LoadAtProxy<decorators> load_at(oop base, ptrdiff_t offset) {
164     verify_primitive_decorators<load_mo_decorators>();
165     return AccessInternal::LoadAtProxy<decorators>(base, offset);
166   }
167 

203     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
204     OopType new_oop_value = new_value;
205     OopType compare_oop_value = compare_value;
206     return AccessInternal::atomic_cmpxchg_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, compare_oop_value, new_oop_value);
207   }
208 
209   template <typename T>
210   static inline T oop_atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
211     verify_heap_oop_decorators<atomic_xchg_mo_decorators>();
212     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
213     OopType new_oop_value = new_value;
214     return AccessInternal::atomic_xchg_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, new_oop_value);
215   }
216 
217   // Clone an object from src to dst
218   static inline void clone(oop src, oop dst, size_t size) {
219     verify_decorators<IN_HEAP>();
220     AccessInternal::clone<decorators>(src, dst, size);
221   }
222 
223   // inline type heap access (when flat)...
224 
225   // Copy value type data from src to dst
226   static inline void value_copy(void* src, void* dst, InlineKlass* md) {
227     verify_heap_value_decorators<IN_HEAP>();
228     AccessInternal::value_copy<decorators>(src, dst, md);
229   }
230 
231   // Primitive accesses
232   template <typename P>
233   static inline P load(P* addr) {
234     verify_primitive_decorators<load_mo_decorators>();
235     return AccessInternal::load<decorators, P, P>(addr);
236   }
237 
238   template <typename P, typename T>
239   static inline void store(P* addr, T value) {
240     verify_primitive_decorators<store_mo_decorators>();
241     AccessInternal::store<decorators>(addr, value);
242   }
243 
244   template <typename P, typename T>
245   static inline T atomic_cmpxchg(P* addr, T compare_value, T new_value) {
246     verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
247     return AccessInternal::atomic_cmpxchg<decorators>(addr, compare_value, new_value);
248   }
249 
250   template <typename P, typename T>

321   }
322 
323   template <typename T>
324   static inline void arraycopy_to_native(arrayOop src_obj, size_t src_offset_in_bytes,
325                                          T* dst,
326                                          size_t length) {
327     AccessT::arraycopy(src_obj, src_offset_in_bytes, static_cast<const T*>(nullptr),
328                        nullptr, 0, dst,
329                        length);
330   }
331 
332   template <typename T>
333   static inline void arraycopy_from_native(const T* src,
334                                            arrayOop dst_obj, size_t dst_offset_in_bytes,
335                                            size_t length) {
336     AccessT::arraycopy(nullptr, 0, src,
337                        dst_obj, dst_offset_in_bytes, static_cast<T*>(nullptr),
338                        length);
339   }
340 
341   static inline void oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes,
342                                    arrayOop dst_obj, size_t dst_offset_in_bytes,
343                                    size_t length) {
344     AccessT::oop_arraycopy(src_obj, src_offset_in_bytes, static_cast<const HeapWord*>(nullptr),
345                            dst_obj, dst_offset_in_bytes, static_cast<HeapWord*>(nullptr),
346                            length);
347   }
348 
349   template <typename T>
350   static inline void oop_arraycopy_raw(T* src, T* dst, size_t length) {
351     AccessT::oop_arraycopy(nullptr, 0, src,
352                            nullptr, 0, dst,
353                            length);
354   }
355 
356 };
357 
358 template <DecoratorSet decorators>
359 template <DecoratorSet expected_decorators>
360 void Access<decorators>::verify_decorators() {
361   STATIC_ASSERT((~expected_decorators & decorators) == 0); // unexpected decorator used
362   const DecoratorSet barrier_strength_decorators = decorators & AS_DECORATOR_MASK;
363   STATIC_ASSERT(barrier_strength_decorators == 0 || ( // make sure barrier strength decorators are disjoint if set
364     (barrier_strength_decorators ^ AS_NO_KEEPALIVE) == 0 ||
365     (barrier_strength_decorators ^ AS_RAW) == 0 ||
366     (barrier_strength_decorators ^ AS_NORMAL) == 0
367   ));
368   const DecoratorSet ref_strength_decorators = decorators & ON_DECORATOR_MASK;
369   STATIC_ASSERT(ref_strength_decorators == 0 || ( // make sure ref strength decorators are disjoint if set
370     (ref_strength_decorators ^ ON_STRONG_OOP_REF) == 0 ||
371     (ref_strength_decorators ^ ON_WEAK_OOP_REF) == 0 ||
372     (ref_strength_decorators ^ ON_PHANTOM_OOP_REF) == 0 ||
373     (ref_strength_decorators ^ ON_UNKNOWN_OOP_REF) == 0
< prev index next >