< prev index next >

src/hotspot/share/oops/access.hpp

Print this page

 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OOPS_ACCESS_HPP
 26 #define SHARE_OOPS_ACCESS_HPP
 27 
 28 #include "memory/allStatic.hpp"
 29 #include "oops/accessBackend.hpp"
 30 #include "oops/accessDecorators.hpp"

 31 #include "oops/oopsHierarchy.hpp"
 32 #include "utilities/debug.hpp"
 33 #include "utilities/globalDefinitions.hpp"
 34 
 35 
 36 // = GENERAL =
 37 // Access is an API for performing accesses with declarative semantics. Each access can have a number of "decorators".
 38 // A decorator is an attribute or property that affects the way a memory access is performed in some way.
 39 // There are different groups of decorators. Some have to do with memory ordering, others to do with,
 40 // e.g. strength of references, strength of GC barriers, or whether compression should be applied or not.
 41 // Some decorators are set at buildtime, such as whether primitives require GC barriers or not, others
 42 // at callsites such as whether an access is in the heap or not, and others are resolved at runtime
 43 // such as GC-specific barriers and encoding/decoding compressed oops. For more information about what
 44 // decorators are available, cf. oops/accessDecorators.hpp.
 45 // By pipelining handling of these decorators, the design of the Access API allows separation of concern
 46 // over the different orthogonal concerns of decorators, while providing a powerful way of
 47 // expressing these orthogonal semantic properties in a unified way.
 48 //
 49 // == OPERATIONS ==
 50 // * load: Load a value from an address.
 51 // * load_at: Load a value from an internal pointer relative to a base object.
 52 // * store: Store a value at an address.
 53 // * store_at: Store a value in an internal pointer relative to a base object.
 54 // * atomic_cmpxchg: Atomically compare-and-swap a new value at an address if previous value matched the compared value.
 55 // * atomic_cmpxchg_at: Atomically compare-and-swap a new value at an internal pointer address if previous value matched the compared value.
 56 // * atomic_xchg: Atomically swap a new value at an address without checking the previous value.
 57 // * atomic_xchg_at: Atomically swap a new value at an internal pointer address without checking the previous value.
 58 // * arraycopy: Copy data from one heap array to another heap array. The ArrayAccess class has convenience functions for this.
 59 // * clone: Clone the contents of an object to a newly allocated object.

 60 //
 61 // == IMPLEMENTATION ==
 62 // Each access goes through the following steps in a template pipeline.
 63 // There are essentially 5 steps for each access:
 64 // * Step 1:   Set default decorators and decay types. This step gets rid of CV qualifiers
 65 //             and sets default decorators to sensible values.
 66 // * Step 2:   Reduce types. This step makes sure there is only a single T type and not
 67 //             multiple types. The P type of the address and T type of the value must
 68 //             match.
 69 // * Step 3:   Pre-runtime dispatch. This step checks whether a runtime call can be
 70 //             avoided, and in that case avoids it (calling raw accesses or
 71 //             primitive accesses in a build that does not require primitive GC barriers)
 72 // * Step 4:   Runtime-dispatch. This step performs a runtime dispatch to the corresponding
 73 //             BarrierSet::AccessBarrier accessor that attaches GC-required barriers
 74 //             to the access.
 75 // * Step 5.a: Barrier resolution. This step is invoked the first time a runtime-dispatch
 76 //             happens for an access. The appropriate BarrierSet::AccessBarrier accessor
 77 //             is resolved, then the function pointer is updated to that accessor for
 78 //             future invocations.
 79 // * Step 5.b: Post-runtime dispatch. This step now casts previously unknown types such

104     const DecoratorSet primitive_decorators = (AS_DECORATOR_MASK ^ AS_NO_KEEPALIVE) |
105                                               IN_HEAP | IS_ARRAY;
106     verify_decorators<expected_mo_decorators | primitive_decorators>();
107   }
108 
109   template <DecoratorSet expected_mo_decorators>
110   static void verify_oop_decorators() {
111     const DecoratorSet oop_decorators = AS_DECORATOR_MASK | IN_DECORATOR_MASK |
112                                         (ON_DECORATOR_MASK ^ ON_UNKNOWN_OOP_REF) | // no unknown oop refs outside of the heap
113                                         IS_ARRAY | IS_NOT_NULL | IS_DEST_UNINITIALIZED;
114     verify_decorators<expected_mo_decorators | oop_decorators>();
115   }
116 
117   template <DecoratorSet expected_mo_decorators>
118   static void verify_heap_oop_decorators() {
119     const DecoratorSet heap_oop_decorators = AS_DECORATOR_MASK | ON_DECORATOR_MASK |
120                                              IN_HEAP | IS_ARRAY | IS_NOT_NULL | IS_DEST_UNINITIALIZED;
121     verify_decorators<expected_mo_decorators | heap_oop_decorators>();
122   }
123 






124   static const DecoratorSet load_mo_decorators = MO_UNORDERED | MO_RELAXED | MO_ACQUIRE | MO_SEQ_CST;
125   static const DecoratorSet store_mo_decorators = MO_UNORDERED | MO_RELAXED | MO_RELEASE | MO_SEQ_CST;
126   static const DecoratorSet atomic_xchg_mo_decorators = MO_SEQ_CST;
127   static const DecoratorSet atomic_cmpxchg_mo_decorators = MO_RELAXED | MO_SEQ_CST;
128 
129 protected:
130   template <typename T>
131   static inline bool oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
132                                    arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
133                                    size_t length) {
134     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
135                       AS_DECORATOR_MASK | IS_ARRAY | IS_DEST_UNINITIALIZED>();
136     return AccessInternal::arraycopy<decorators | INTERNAL_VALUE_IS_OOP>(src_obj, src_offset_in_bytes, src_raw,
137                                                                          dst_obj, dst_offset_in_bytes, dst_raw,
138                                                                          length);
139   }
140 
141   template <typename T>
142   static inline void arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
143                                arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
144                                size_t length) {
145     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
146                       AS_DECORATOR_MASK | IS_ARRAY>();
147     AccessInternal::arraycopy<decorators>(src_obj, src_offset_in_bytes, src_raw,
148                                           dst_obj, dst_offset_in_bytes, dst_raw,
149                                           length);
150   }
151 
152 public:
153   // Primitive heap accesses
154   static inline AccessInternal::LoadAtProxy<decorators> load_at(oop base, ptrdiff_t offset) {
155     verify_primitive_decorators<load_mo_decorators>();
156     return AccessInternal::LoadAtProxy<decorators>(base, offset);
157   }
158 

194     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
195     OopType new_oop_value = new_value;
196     OopType compare_oop_value = compare_value;
197     return AccessInternal::atomic_cmpxchg_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, compare_oop_value, new_oop_value);
198   }
199 
200   template <typename T>
201   static inline T oop_atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
202     verify_heap_oop_decorators<atomic_xchg_mo_decorators>();
203     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
204     OopType new_oop_value = new_value;
205     return AccessInternal::atomic_xchg_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, new_oop_value);
206   }
207 
208   // Clone an object from src to dst
209   static inline void clone(oop src, oop dst, size_t size) {
210     verify_decorators<IN_HEAP>();
211     AccessInternal::clone<decorators>(src, dst, size);
212   }
213 








214   // Primitive accesses
215   template <typename P>
216   static inline P load(P* addr) {
217     verify_primitive_decorators<load_mo_decorators>();
218     return AccessInternal::load<decorators, P, P>(addr);
219   }
220 
221   template <typename P, typename T>
222   static inline void store(P* addr, T value) {
223     verify_primitive_decorators<store_mo_decorators>();
224     AccessInternal::store<decorators>(addr, value);
225   }
226 
227   template <typename P, typename T>
228   static inline T atomic_cmpxchg(P* addr, T compare_value, T new_value) {
229     verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
230     return AccessInternal::atomic_cmpxchg<decorators>(addr, compare_value, new_value);
231   }
232 
233   template <typename P, typename T>

304   }
305 
306   template <typename T>
307   static inline void arraycopy_to_native(arrayOop src_obj, size_t src_offset_in_bytes,
308                                          T* dst,
309                                          size_t length) {
310     AccessT::arraycopy(src_obj, src_offset_in_bytes, static_cast<const T*>(nullptr),
311                        nullptr, 0, dst,
312                        length);
313   }
314 
315   template <typename T>
316   static inline void arraycopy_from_native(const T* src,
317                                            arrayOop dst_obj, size_t dst_offset_in_bytes,
318                                            size_t length) {
319     AccessT::arraycopy(nullptr, 0, src,
320                        dst_obj, dst_offset_in_bytes, static_cast<T*>(nullptr),
321                        length);
322   }
323 
324   static inline bool oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes,
325                                    arrayOop dst_obj, size_t dst_offset_in_bytes,
326                                    size_t length) {
327     return AccessT::oop_arraycopy(src_obj, src_offset_in_bytes, static_cast<const HeapWord*>(nullptr),
328                                   dst_obj, dst_offset_in_bytes, static_cast<HeapWord*>(nullptr),
329                                   length);
330   }
331 
332   template <typename T>
333   static inline bool oop_arraycopy_raw(T* src, T* dst, size_t length) {
334     return AccessT::oop_arraycopy(nullptr, 0, src,
335                                   nullptr, 0, dst,
336                                   length);
337   }
338 
339 };
340 
341 template <DecoratorSet decorators>
342 template <DecoratorSet expected_decorators>
343 void Access<decorators>::verify_decorators() {
344   STATIC_ASSERT((~expected_decorators & decorators) == 0); // unexpected decorator used
345   const DecoratorSet barrier_strength_decorators = decorators & AS_DECORATOR_MASK;
346   STATIC_ASSERT(barrier_strength_decorators == 0 || ( // make sure barrier strength decorators are disjoint if set
347     (barrier_strength_decorators ^ AS_NO_KEEPALIVE) == 0 ||
348     (barrier_strength_decorators ^ AS_RAW) == 0 ||
349     (barrier_strength_decorators ^ AS_NORMAL) == 0
350   ));
351   const DecoratorSet ref_strength_decorators = decorators & ON_DECORATOR_MASK;
352   STATIC_ASSERT(ref_strength_decorators == 0 || ( // make sure ref strength decorators are disjoint if set
353     (ref_strength_decorators ^ ON_STRONG_OOP_REF) == 0 ||
354     (ref_strength_decorators ^ ON_WEAK_OOP_REF) == 0 ||
355     (ref_strength_decorators ^ ON_PHANTOM_OOP_REF) == 0 ||
356     (ref_strength_decorators ^ ON_UNKNOWN_OOP_REF) == 0

 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OOPS_ACCESS_HPP
 26 #define SHARE_OOPS_ACCESS_HPP
 27 
 28 #include "memory/allStatic.hpp"
 29 #include "oops/accessBackend.hpp"
 30 #include "oops/accessDecorators.hpp"
 31 #include "oops/inlineKlass.hpp"
 32 #include "oops/oopsHierarchy.hpp"
 33 #include "utilities/debug.hpp"
 34 #include "utilities/globalDefinitions.hpp"
 35 
 36 
 37 // = GENERAL =
 38 // Access is an API for performing accesses with declarative semantics. Each access can have a number of "decorators".
 39 // A decorator is an attribute or property that affects the way a memory access is performed in some way.
 40 // There are different groups of decorators. Some have to do with memory ordering, others to do with,
 41 // e.g. strength of references, strength of GC barriers, or whether compression should be applied or not.
 42 // Some decorators are set at buildtime, such as whether primitives require GC barriers or not, others
 43 // at callsites such as whether an access is in the heap or not, and others are resolved at runtime
 44 // such as GC-specific barriers and encoding/decoding compressed oops. For more information about what
 45 // decorators are available, cf. oops/accessDecorators.hpp.
 46 // By pipelining handling of these decorators, the design of the Access API allows separation of concern
 47 // over the different orthogonal concerns of decorators, while providing a powerful way of
 48 // expressing these orthogonal semantic properties in a unified way.
 49 //
 50 // == OPERATIONS ==
 51 // * load: Load a value from an address.
 52 // * load_at: Load a value from an internal pointer relative to a base object.
 53 // * store: Store a value at an address.
 54 // * store_at: Store a value in an internal pointer relative to a base object.
 55 // * atomic_cmpxchg: Atomically compare-and-swap a new value at an address if previous value matched the compared value.
 56 // * atomic_cmpxchg_at: Atomically compare-and-swap a new value at an internal pointer address if previous value matched the compared value.
 57 // * atomic_xchg: Atomically swap a new value at an address without checking the previous value.
 58 // * atomic_xchg_at: Atomically swap a new value at an internal pointer address without checking the previous value.
 59 // * arraycopy: Copy data from one heap array to another heap array. The ArrayAccess class has convenience functions for this.
 60 // * clone: Clone the contents of an object to a newly allocated object.
 61 // * value_copy: Copy the contents of a value type from one heap address to another
 62 //
 63 // == IMPLEMENTATION ==
 64 // Each access goes through the following steps in a template pipeline.
 65 // There are essentially 5 steps for each access:
 66 // * Step 1:   Set default decorators and decay types. This step gets rid of CV qualifiers
 67 //             and sets default decorators to sensible values.
 68 // * Step 2:   Reduce types. This step makes sure there is only a single T type and not
 69 //             multiple types. The P type of the address and T type of the value must
 70 //             match.
 71 // * Step 3:   Pre-runtime dispatch. This step checks whether a runtime call can be
 72 //             avoided, and in that case avoids it (calling raw accesses or
 73 //             primitive accesses in a build that does not require primitive GC barriers)
 74 // * Step 4:   Runtime-dispatch. This step performs a runtime dispatch to the corresponding
 75 //             BarrierSet::AccessBarrier accessor that attaches GC-required barriers
 76 //             to the access.
 77 // * Step 5.a: Barrier resolution. This step is invoked the first time a runtime-dispatch
 78 //             happens for an access. The appropriate BarrierSet::AccessBarrier accessor
 79 //             is resolved, then the function pointer is updated to that accessor for
 80 //             future invocations.
 81 // * Step 5.b: Post-runtime dispatch. This step now casts previously unknown types such

106     const DecoratorSet primitive_decorators = (AS_DECORATOR_MASK ^ AS_NO_KEEPALIVE) |
107                                               IN_HEAP | IS_ARRAY;
108     verify_decorators<expected_mo_decorators | primitive_decorators>();
109   }
110 
111   template <DecoratorSet expected_mo_decorators>
112   static void verify_oop_decorators() {
113     const DecoratorSet oop_decorators = AS_DECORATOR_MASK | IN_DECORATOR_MASK |
114                                         (ON_DECORATOR_MASK ^ ON_UNKNOWN_OOP_REF) | // no unknown oop refs outside of the heap
115                                         IS_ARRAY | IS_NOT_NULL | IS_DEST_UNINITIALIZED;
116     verify_decorators<expected_mo_decorators | oop_decorators>();
117   }
118 
119   template <DecoratorSet expected_mo_decorators>
120   static void verify_heap_oop_decorators() {
121     const DecoratorSet heap_oop_decorators = AS_DECORATOR_MASK | ON_DECORATOR_MASK |
122                                              IN_HEAP | IS_ARRAY | IS_NOT_NULL | IS_DEST_UNINITIALIZED;
123     verify_decorators<expected_mo_decorators | heap_oop_decorators>();
124   }
125 
126   template <DecoratorSet expected_mo_decorators>
127   static void verify_heap_value_decorators() {
128     const DecoratorSet heap_value_decorators = IN_HEAP | IS_DEST_UNINITIALIZED;
129     verify_decorators<expected_mo_decorators | heap_value_decorators>();
130   }
131 
132   static const DecoratorSet load_mo_decorators = MO_UNORDERED | MO_RELAXED | MO_ACQUIRE | MO_SEQ_CST;
133   static const DecoratorSet store_mo_decorators = MO_UNORDERED | MO_RELAXED | MO_RELEASE | MO_SEQ_CST;
134   static const DecoratorSet atomic_xchg_mo_decorators = MO_SEQ_CST;
135   static const DecoratorSet atomic_cmpxchg_mo_decorators = MO_RELAXED | MO_SEQ_CST;
136 
137 protected:
138   template <typename T>
139   static inline void oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
140                                    arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
141                                    size_t length) {
142     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
143                       AS_DECORATOR_MASK | IS_ARRAY | IS_DEST_UNINITIALIZED>();
144     AccessInternal::arraycopy<decorators | INTERNAL_VALUE_IS_OOP>(src_obj, src_offset_in_bytes, src_raw,
145                                                                   dst_obj, dst_offset_in_bytes, dst_raw,
146                                                                   length);
147   }
148 
149   template <typename T>
150   static inline void arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
151                                arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
152                                size_t length) {
153     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
154                       AS_DECORATOR_MASK | IS_ARRAY>();
155     AccessInternal::arraycopy<decorators>(src_obj, src_offset_in_bytes, src_raw,
156                                           dst_obj, dst_offset_in_bytes, dst_raw,
157                                           length);
158   }
159 
160 public:
161   // Primitive heap accesses
162   static inline AccessInternal::LoadAtProxy<decorators> load_at(oop base, ptrdiff_t offset) {
163     verify_primitive_decorators<load_mo_decorators>();
164     return AccessInternal::LoadAtProxy<decorators>(base, offset);
165   }
166 

202     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
203     OopType new_oop_value = new_value;
204     OopType compare_oop_value = compare_value;
205     return AccessInternal::atomic_cmpxchg_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, compare_oop_value, new_oop_value);
206   }
207 
208   template <typename T>
209   static inline T oop_atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
210     verify_heap_oop_decorators<atomic_xchg_mo_decorators>();
211     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
212     OopType new_oop_value = new_value;
213     return AccessInternal::atomic_xchg_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, new_oop_value);
214   }
215 
216   // Clone an object from src to dst
217   static inline void clone(oop src, oop dst, size_t size) {
218     verify_decorators<IN_HEAP>();
219     AccessInternal::clone<decorators>(src, dst, size);
220   }
221 
222   // inline type heap access (when flat)...
223 
224   // Copy value type data from src to dst
225   static inline void value_copy(void* src, void* dst, InlineKlass* md, LayoutKind lk) {
226     verify_heap_value_decorators<IN_HEAP>();
227     AccessInternal::value_copy<decorators>(src, dst, md, lk);
228   }
229 
230   // Primitive accesses
231   template <typename P>
232   static inline P load(P* addr) {
233     verify_primitive_decorators<load_mo_decorators>();
234     return AccessInternal::load<decorators, P, P>(addr);
235   }
236 
237   template <typename P, typename T>
238   static inline void store(P* addr, T value) {
239     verify_primitive_decorators<store_mo_decorators>();
240     AccessInternal::store<decorators>(addr, value);
241   }
242 
243   template <typename P, typename T>
244   static inline T atomic_cmpxchg(P* addr, T compare_value, T new_value) {
245     verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
246     return AccessInternal::atomic_cmpxchg<decorators>(addr, compare_value, new_value);
247   }
248 
249   template <typename P, typename T>

320   }
321 
322   template <typename T>
323   static inline void arraycopy_to_native(arrayOop src_obj, size_t src_offset_in_bytes,
324                                          T* dst,
325                                          size_t length) {
326     AccessT::arraycopy(src_obj, src_offset_in_bytes, static_cast<const T*>(nullptr),
327                        nullptr, 0, dst,
328                        length);
329   }
330 
331   template <typename T>
332   static inline void arraycopy_from_native(const T* src,
333                                            arrayOop dst_obj, size_t dst_offset_in_bytes,
334                                            size_t length) {
335     AccessT::arraycopy(nullptr, 0, src,
336                        dst_obj, dst_offset_in_bytes, static_cast<T*>(nullptr),
337                        length);
338   }
339 
340   static inline void oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes,
341                                    arrayOop dst_obj, size_t dst_offset_in_bytes,
342                                    size_t length) {
343     AccessT::oop_arraycopy(src_obj, src_offset_in_bytes, static_cast<const HeapWord*>(nullptr),
344                            dst_obj, dst_offset_in_bytes, static_cast<HeapWord*>(nullptr),
345                            length);
346   }
347 
348   template <typename T>
349   static inline void oop_arraycopy_raw(T* src, T* dst, size_t length) {
350     AccessT::oop_arraycopy(nullptr, 0, src,
351                            nullptr, 0, dst,
352                            length);
353   }
354 
355 };
356 
357 template <DecoratorSet decorators>
358 template <DecoratorSet expected_decorators>
359 void Access<decorators>::verify_decorators() {
360   STATIC_ASSERT((~expected_decorators & decorators) == 0); // unexpected decorator used
361   const DecoratorSet barrier_strength_decorators = decorators & AS_DECORATOR_MASK;
362   STATIC_ASSERT(barrier_strength_decorators == 0 || ( // make sure barrier strength decorators are disjoint if set
363     (barrier_strength_decorators ^ AS_NO_KEEPALIVE) == 0 ||
364     (barrier_strength_decorators ^ AS_RAW) == 0 ||
365     (barrier_strength_decorators ^ AS_NORMAL) == 0
366   ));
367   const DecoratorSet ref_strength_decorators = decorators & ON_DECORATOR_MASK;
368   STATIC_ASSERT(ref_strength_decorators == 0 || ( // make sure ref strength decorators are disjoint if set
369     (ref_strength_decorators ^ ON_STRONG_OOP_REF) == 0 ||
370     (ref_strength_decorators ^ ON_WEAK_OOP_REF) == 0 ||
371     (ref_strength_decorators ^ ON_PHANTOM_OOP_REF) == 0 ||
372     (ref_strength_decorators ^ ON_UNKNOWN_OOP_REF) == 0
< prev index next >