< prev index next >

src/hotspot/share/oops/accessBackend.hpp

Print this page

  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OOPS_ACCESSBACKEND_HPP
  26 #define SHARE_OOPS_ACCESSBACKEND_HPP
  27 
  28 #include "cppstdlib/type_traits.hpp"
  29 #include "gc/shared/barrierSetConfig.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "metaprogramming/enableIf.hpp"
  32 #include "oops/accessDecorators.hpp"

  33 #include "oops/oopsHierarchy.hpp"
  34 #include "runtime/globals.hpp"
  35 #include "utilities/debug.hpp"
  36 #include "utilities/globalDefinitions.hpp"
  37 







  38 // This metafunction returns either oop or narrowOop depending on whether
  39 // an access needs to use compressed oops or not.
  40 template <DecoratorSet decorators>
  41 struct HeapOopType: AllStatic {
  42   static const bool needs_oop_compress = HasDecorator<decorators, INTERNAL_CONVERT_COMPRESSED_OOP>::value &&
  43                                          HasDecorator<decorators, INTERNAL_RT_USE_COMPRESSED_OOPS>::value;
  44   using type = std::conditional_t<needs_oop_compress, narrowOop, oop>;
  45 };
  46 








  47 namespace AccessInternal {
  48   enum BarrierType {
  49     BARRIER_STORE,
  50     BARRIER_STORE_AT,
  51     BARRIER_LOAD,
  52     BARRIER_LOAD_AT,
  53     BARRIER_ATOMIC_CMPXCHG,
  54     BARRIER_ATOMIC_CMPXCHG_AT,
  55     BARRIER_ATOMIC_XCHG,
  56     BARRIER_ATOMIC_XCHG_AT,
  57     BARRIER_ARRAYCOPY,
  58     BARRIER_CLONE

  59   };
  60 
  61   template <DecoratorSet decorators, typename T>
  62   struct MustConvertCompressedOop: public std::integral_constant<bool,
  63     HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value &&
  64     std::is_same<typename HeapOopType<decorators>::type, narrowOop>::value &&
  65     std::is_same<T, oop>::value> {};
  66 
  67   // This metafunction returns an appropriate oop type if the value is oop-like
  68   // and otherwise returns the same type T.
  69   template <DecoratorSet decorators, typename T>
  70   struct EncodedType: AllStatic {
  71     using type = std::conditional_t<HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value,
  72                                     typename HeapOopType<decorators>::type,
  73                                     T>;
  74   };
  75 
  76   template <DecoratorSet decorators>
  77   inline typename HeapOopType<decorators>::type*
  78   oop_field_addr(oop base, ptrdiff_t byte_offset) {
  79     return reinterpret_cast<typename HeapOopType<decorators>::type*>(
  80              reinterpret_cast<intptr_t>((void*)base) + byte_offset);
  81   }
  82 
  83   template <DecoratorSet decorators, typename T>
  84   struct AccessFunctionTypes {
  85     typedef T (*load_at_func_t)(oop base, ptrdiff_t offset);
  86     typedef void (*store_at_func_t)(oop base, ptrdiff_t offset, T value);
  87     typedef T (*atomic_cmpxchg_at_func_t)(oop base, ptrdiff_t offset, T compare_value, T new_value);
  88     typedef T (*atomic_xchg_at_func_t)(oop base, ptrdiff_t offset, T new_value);
  89 
  90     typedef T (*load_func_t)(void* addr);
  91     typedef void (*store_func_t)(void* addr, T value);
  92     typedef T (*atomic_cmpxchg_func_t)(void* addr, T compare_value, T new_value);
  93     typedef T (*atomic_xchg_func_t)(void* addr, T new_value);
  94 
  95     typedef bool (*arraycopy_func_t)(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
  96                                      arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
  97                                      size_t length);
  98     typedef void (*clone_func_t)(oop src, oop dst, size_t size);

  99   };
 100 
 101   template <DecoratorSet decorators>
 102   struct AccessFunctionTypes<decorators, void> {
 103     typedef bool (*arraycopy_func_t)(arrayOop src_obj, size_t src_offset_in_bytes, void* src,
 104                                      arrayOop dst_obj, size_t dst_offset_in_bytes, void* dst,
 105                                      size_t length);
 106   };
 107 
 108   template <DecoratorSet decorators, typename T, BarrierType barrier> struct AccessFunction {};
 109 
 110 #define ACCESS_GENERATE_ACCESS_FUNCTION(bt, func)                   \
 111   template <DecoratorSet decorators, typename T>                    \
 112   struct AccessFunction<decorators, T, bt>: AllStatic{              \
 113     typedef typename AccessFunctionTypes<decorators, T>::func type; \
 114   }
 115   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_STORE, store_func_t);
 116   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_STORE_AT, store_at_func_t);
 117   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_LOAD, load_func_t);
 118   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_LOAD_AT, load_at_func_t);
 119   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_CMPXCHG, atomic_cmpxchg_func_t);
 120   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_CMPXCHG_AT, atomic_cmpxchg_at_func_t);
 121   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_XCHG, atomic_xchg_func_t);
 122   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_XCHG_AT, atomic_xchg_at_func_t);
 123   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ARRAYCOPY, arraycopy_func_t);
 124   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_CLONE, clone_func_t);

 125 #undef ACCESS_GENERATE_ACCESS_FUNCTION
 126 
 127   template <DecoratorSet decorators, typename T, BarrierType barrier_type>
 128   typename AccessFunction<decorators, T, barrier_type>::type resolve_barrier();
 129 
 130   template <DecoratorSet decorators, typename T, BarrierType barrier_type>
 131   typename AccessFunction<decorators, T, barrier_type>::type resolve_oop_barrier();
 132 
 133   void* field_addr(oop base, ptrdiff_t offset);
 134 
 135   // Forward calls to Copy:: in the cpp file to reduce dependencies and allow
 136   // faster build times, given how frequently included access is.
 137   void arraycopy_arrayof_conjoint_oops(void* src, void* dst, size_t length);
 138   void arraycopy_conjoint_oops(oop* src, oop* dst, size_t length);
 139   void arraycopy_conjoint_oops(narrowOop* src, narrowOop* dst, size_t length);
 140 
 141   void arraycopy_disjoint_words(void* src, void* dst, size_t length);
 142   void arraycopy_disjoint_words_atomic(void* src, void* dst, size_t length);
 143 
 144   template<typename T>
 145   void arraycopy_conjoint(T* src, T* dst, size_t length);
 146   template<typename T>
 147   void arraycopy_arrayof_conjoint(T* src, T* dst, size_t length);
 148   template<typename T>
 149   void arraycopy_conjoint_atomic(T* src, T* dst, size_t length);


 150 }
 151 
 152 // This mask specifies what decorators are relevant for raw accesses. When passing
 153 // accesses to the raw layer, irrelevant decorators are removed.
 154 const DecoratorSet RAW_DECORATOR_MASK = INTERNAL_DECORATOR_MASK | MO_DECORATOR_MASK |
 155                                         ARRAYCOPY_DECORATOR_MASK | IS_NOT_NULL;
 156 
 157 // The RawAccessBarrier performs raw accesses with additional knowledge of
 158 // memory ordering, so that OrderAccess/Atomic is called when necessary.
 159 // It additionally handles compressed oops, and hence is not completely "raw"
 160 // strictly speaking.
 161 template <DecoratorSet decorators>
 162 class RawAccessBarrier: public AllStatic {
 163 protected:
 164   static inline void* field_addr(oop base, ptrdiff_t byte_offset) {
 165     return AccessInternal::field_addr(base, byte_offset);
 166   }
 167 
 168 protected:
 169   // Only encode if INTERNAL_VALUE_IS_OOP

 269   static inline void store(void* addr, T value) {
 270     store_internal<decorators>(addr, value);
 271   }
 272 
 273   template <typename T>
 274   static inline T load(void* addr) {
 275     return load_internal<decorators, T>(addr);
 276   }
 277 
 278   template <typename T>
 279   static inline T atomic_cmpxchg(void* addr, T compare_value, T new_value) {
 280     return atomic_cmpxchg_internal<decorators>(addr, compare_value, new_value);
 281   }
 282 
 283   template <typename T>
 284   static inline T atomic_xchg(void* addr, T new_value) {
 285     return atomic_xchg_internal<decorators>(addr, new_value);
 286   }
 287 
 288   template <typename T>
 289   static bool arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 290                         arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 291                         size_t length);
 292 
 293   template <typename T>
 294   static void oop_store(void* addr, T value);
 295   template <typename T>
 296   static void oop_store_at(oop base, ptrdiff_t offset, T value);
 297 
 298   template <typename T>
 299   static T oop_load(void* addr);
 300   template <typename T>
 301   static T oop_load_at(oop base, ptrdiff_t offset);
 302 
 303   template <typename T>
 304   static T oop_atomic_cmpxchg(void* addr, T compare_value, T new_value);
 305   template <typename T>
 306   static T oop_atomic_cmpxchg_at(oop base, ptrdiff_t offset, T compare_value, T new_value);
 307 
 308   template <typename T>
 309   static T oop_atomic_xchg(void* addr, T new_value);

 314   static void store_at(oop base, ptrdiff_t offset, T value) {
 315     store(field_addr(base, offset), value);
 316   }
 317 
 318   template <typename T>
 319   static T load_at(oop base, ptrdiff_t offset) {
 320     return load<T>(field_addr(base, offset));
 321   }
 322 
 323   template <typename T>
 324   static T atomic_cmpxchg_at(oop base, ptrdiff_t offset, T compare_value, T new_value) {
 325     return atomic_cmpxchg(field_addr(base, offset), compare_value, new_value);
 326   }
 327 
 328   template <typename T>
 329   static T atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
 330     return atomic_xchg(field_addr(base, offset), new_value);
 331   }
 332 
 333   template <typename T>
 334   static bool oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 335                             arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 336                             size_t length);
 337 
 338   static void clone(oop src, oop dst, size_t size);


 339 };
 340 
 341 namespace AccessInternal {
 342   DEBUG_ONLY(void check_access_thread_state());
 343 #define assert_access_thread_state() DEBUG_ONLY(check_access_thread_state())
 344 }
 345 
 346 // Below is the implementation of the first 4 steps of the template pipeline:
 347 // * Step 1: Set default decorators and decay types. This step gets rid of CV qualifiers
 348 //           and sets default decorators to sensible values.
 349 // * Step 2: Reduce types. This step makes sure there is only a single T type and not
 350 //           multiple types. The P type of the address and T type of the value must
 351 //           match.
 352 // * Step 3: Pre-runtime dispatch. This step checks whether a runtime call can be
 353 //           avoided, and in that case avoids it (calling raw accesses or
 354 //           primitive accesses in a build that does not require primitive GC barriers)
 355 // * Step 4: Runtime-dispatch. This step performs a runtime dispatch to the corresponding
 356 //           BarrierSet::AccessBarrier accessor that attaches GC-required barriers
 357 //           to the access.
 358 

 488   };
 489 
 490   template <DecoratorSet decorators, typename T>
 491   struct RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG_AT>: AllStatic {
 492     typedef typename AccessFunction<decorators, T, BARRIER_ATOMIC_XCHG_AT>::type func_t;
 493     static func_t _atomic_xchg_at_func;
 494 
 495     static T atomic_xchg_at_init(oop base, ptrdiff_t offset, T new_value);
 496 
 497     static inline T atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
 498       assert_access_thread_state();
 499       return _atomic_xchg_at_func(base, offset, new_value);
 500     }
 501   };
 502 
 503   template <DecoratorSet decorators, typename T>
 504   struct RuntimeDispatch<decorators, T, BARRIER_ARRAYCOPY>: AllStatic {
 505     typedef typename AccessFunction<decorators, T, BARRIER_ARRAYCOPY>::type func_t;
 506     static func_t _arraycopy_func;
 507 
 508     static bool arraycopy_init(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 509                                arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 510                                size_t length);
 511 
 512     static inline bool arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 513                                  arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 514                                  size_t length) {
 515       assert_access_thread_state();
 516       return _arraycopy_func(src_obj, src_offset_in_bytes, src_raw,
 517                              dst_obj, dst_offset_in_bytes, dst_raw,
 518                              length);
 519     }
 520   };
 521 
 522   template <DecoratorSet decorators, typename T>
 523   struct RuntimeDispatch<decorators, T, BARRIER_CLONE>: AllStatic {
 524     typedef typename AccessFunction<decorators, T, BARRIER_CLONE>::type func_t;
 525     static func_t _clone_func;
 526 
 527     static void clone_init(oop src, oop dst, size_t size);
 528 
 529     static inline void clone(oop src, oop dst, size_t size) {
 530       assert_access_thread_state();
 531       _clone_func(src, dst, size);
 532     }
 533   };
 534 












 535   // Initialize the function pointers to point to the resolving function.
 536   template <DecoratorSet decorators, typename T>
 537   typename AccessFunction<decorators, T, BARRIER_STORE>::type
 538   RuntimeDispatch<decorators, T, BARRIER_STORE>::_store_func = &store_init;
 539 
 540   template <DecoratorSet decorators, typename T>
 541   typename AccessFunction<decorators, T, BARRIER_STORE_AT>::type
 542   RuntimeDispatch<decorators, T, BARRIER_STORE_AT>::_store_at_func = &store_at_init;
 543 
 544   template <DecoratorSet decorators, typename T>
 545   typename AccessFunction<decorators, T, BARRIER_LOAD>::type
 546   RuntimeDispatch<decorators, T, BARRIER_LOAD>::_load_func = &load_init;
 547 
 548   template <DecoratorSet decorators, typename T>
 549   typename AccessFunction<decorators, T, BARRIER_LOAD_AT>::type
 550   RuntimeDispatch<decorators, T, BARRIER_LOAD_AT>::_load_at_func = &load_at_init;
 551 
 552   template <DecoratorSet decorators, typename T>
 553   typename AccessFunction<decorators, T, BARRIER_ATOMIC_CMPXCHG>::type
 554   RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG>::_atomic_cmpxchg_func = &atomic_cmpxchg_init;

 556   template <DecoratorSet decorators, typename T>
 557   typename AccessFunction<decorators, T, BARRIER_ATOMIC_CMPXCHG_AT>::type
 558   RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG_AT>::_atomic_cmpxchg_at_func = &atomic_cmpxchg_at_init;
 559 
 560   template <DecoratorSet decorators, typename T>
 561   typename AccessFunction<decorators, T, BARRIER_ATOMIC_XCHG>::type
 562   RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG>::_atomic_xchg_func = &atomic_xchg_init;
 563 
 564   template <DecoratorSet decorators, typename T>
 565   typename AccessFunction<decorators, T, BARRIER_ATOMIC_XCHG_AT>::type
 566   RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG_AT>::_atomic_xchg_at_func = &atomic_xchg_at_init;
 567 
 568   template <DecoratorSet decorators, typename T>
 569   typename AccessFunction<decorators, T, BARRIER_ARRAYCOPY>::type
 570   RuntimeDispatch<decorators, T, BARRIER_ARRAYCOPY>::_arraycopy_func = &arraycopy_init;
 571 
 572   template <DecoratorSet decorators, typename T>
 573   typename AccessFunction<decorators, T, BARRIER_CLONE>::type
 574   RuntimeDispatch<decorators, T, BARRIER_CLONE>::_clone_func = &clone_init;
 575 




 576   // Step 3: Pre-runtime dispatching.
 577   // The PreRuntimeDispatch class is responsible for filtering the barrier strength
 578   // decorators. That is, for AS_RAW, it hardwires the accesses without a runtime
 579   // dispatch point. Otherwise it goes through a runtime check if hardwiring was
 580   // not possible.
 581   struct PreRuntimeDispatch: AllStatic {
 582     template<DecoratorSet decorators>
 583     struct CanHardwireRaw: public std::integral_constant<
 584       bool,
 585       !HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value || // primitive access
 586       !HasDecorator<decorators, INTERNAL_CONVERT_COMPRESSED_OOP>::value || // don't care about compressed oops (oop* address)
 587       HasDecorator<decorators, INTERNAL_RT_USE_COMPRESSED_OOPS>::value> // we can infer we use compressed oops (narrowOop* address)
 588     {};
 589 
 590     static const DecoratorSet convert_compressed_oops = INTERNAL_RT_USE_COMPRESSED_OOPS | INTERNAL_CONVERT_COMPRESSED_OOP;
 591 
 592     template<DecoratorSet decorators>
 593     static bool is_hardwired_primitive() {
 594       return !HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value;
 595     }

 803     inline static typename EnableIf<
 804       HasDecorator<decorators, AS_RAW>::value, T>::type
 805     atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
 806       return atomic_xchg<decorators>(field_addr(base, offset), new_value);
 807     }
 808 
 809     template <DecoratorSet decorators, typename T>
 810     inline static typename EnableIf<
 811       !HasDecorator<decorators, AS_RAW>::value, T>::type
 812     atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
 813       if (is_hardwired_primitive<decorators>()) {
 814         const DecoratorSet expanded_decorators = decorators | AS_RAW;
 815         return PreRuntimeDispatch::atomic_xchg<expanded_decorators>(base, offset, new_value);
 816       } else {
 817         return RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG_AT>::atomic_xchg_at(base, offset, new_value);
 818       }
 819     }
 820 
 821     template <DecoratorSet decorators, typename T>
 822     inline static typename EnableIf<
 823       HasDecorator<decorators, AS_RAW>::value && CanHardwireRaw<decorators>::value, bool>::type
 824     arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 825               arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 826               size_t length) {
 827       typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
 828       if (HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value) {
 829         return Raw::oop_arraycopy(src_obj, src_offset_in_bytes, src_raw,
 830                                   dst_obj, dst_offset_in_bytes, dst_raw,
 831                                   length);
 832       } else {
 833         return Raw::arraycopy(src_obj, src_offset_in_bytes, src_raw,
 834                               dst_obj, dst_offset_in_bytes, dst_raw,
 835                               length);
 836       }


 837     }
 838 
 839     template <DecoratorSet decorators, typename T>
 840     inline static typename EnableIf<
 841       HasDecorator<decorators, AS_RAW>::value && !CanHardwireRaw<decorators>::value, bool>::type
 842     arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 843               arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 844               size_t length) {
 845       if (UseCompressedOops) {
 846         const DecoratorSet expanded_decorators = decorators | convert_compressed_oops;
 847         return PreRuntimeDispatch::arraycopy<expanded_decorators>(src_obj, src_offset_in_bytes, src_raw,
 848                                                                   dst_obj, dst_offset_in_bytes, dst_raw,
 849                                                                   length);
 850       } else {
 851         const DecoratorSet expanded_decorators = decorators & ~convert_compressed_oops;
 852         return PreRuntimeDispatch::arraycopy<expanded_decorators>(src_obj, src_offset_in_bytes, src_raw,
 853                                                                   dst_obj, dst_offset_in_bytes, dst_raw,
 854                                                                   length);
 855       }
 856     }
 857 
 858     template <DecoratorSet decorators, typename T>
 859     inline static typename EnableIf<
 860       !HasDecorator<decorators, AS_RAW>::value, bool>::type
 861     arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 862               arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 863               size_t length) {
 864       if (is_hardwired_primitive<decorators>()) {
 865         const DecoratorSet expanded_decorators = decorators | AS_RAW;
 866         return PreRuntimeDispatch::arraycopy<expanded_decorators>(src_obj, src_offset_in_bytes, src_raw,
 867                                                                   dst_obj, dst_offset_in_bytes, dst_raw,
 868                                                                   length);
 869       } else {
 870         return RuntimeDispatch<decorators, T, BARRIER_ARRAYCOPY>::arraycopy(src_obj, src_offset_in_bytes, src_raw,
 871                                                                             dst_obj, dst_offset_in_bytes, dst_raw,
 872                                                                             length);
 873       }
 874     }
 875 
 876     template <DecoratorSet decorators>
 877     inline static typename EnableIf<
 878       HasDecorator<decorators, AS_RAW>::value>::type
 879     clone(oop src, oop dst, size_t size) {
 880       typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
 881       Raw::clone(src, dst, size);
 882     }
 883 
 884     template <DecoratorSet decorators>
 885     inline static typename EnableIf<
 886       !HasDecorator<decorators, AS_RAW>::value>::type
 887     clone(oop src, oop dst, size_t size) {
 888       RuntimeDispatch<decorators, oop, BARRIER_CLONE>::clone(src, dst, size);
 889     }
















 890   };
 891 
 892   // Step 2: Reduce types.
 893   // Enforce that for non-oop types, T and P have to be strictly the same.
 894   // P is the type of the address and T is the type of the values.
 895   // As for oop types, it is allow to send T in {narrowOop, oop} and
 896   // P in {narrowOop, oop, HeapWord*}. The following rules apply according to
 897   // the subsequent table. (columns are P, rows are T)
 898   // |           | HeapWord  |   oop   | narrowOop |
 899   // |   oop     |  rt-comp  | hw-none |  hw-comp  |
 900   // | narrowOop |     x     |    x    |  hw-none  |
 901   //
 902   // x means not allowed
 903   // rt-comp means it must be checked at runtime whether the oop is compressed.
 904   // hw-none means it is statically known the oop will not be compressed.
 905   // hw-comp means it is statically known the oop will be compressed.
 906 
 907   template <DecoratorSet decorators, typename T>
 908   inline void store_reduce_types(T* addr, T value) {
 909     PreRuntimeDispatch::store<decorators>(addr, value);

 984 
 985   template <DecoratorSet decorators, typename T>
 986   inline T load_reduce_types(T* addr) {
 987     return PreRuntimeDispatch::load<decorators, T>(addr);
 988   }
 989 
 990   template <DecoratorSet decorators, typename T>
 991   inline typename OopOrNarrowOop<T>::type load_reduce_types(narrowOop* addr) {
 992     const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
 993                                              INTERNAL_RT_USE_COMPRESSED_OOPS;
 994     return PreRuntimeDispatch::load<expanded_decorators, typename OopOrNarrowOop<T>::type>(addr);
 995   }
 996 
 997   template <DecoratorSet decorators, typename T>
 998   inline oop load_reduce_types(HeapWord* addr) {
 999     const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP;
1000     return PreRuntimeDispatch::load<expanded_decorators, oop>(addr);
1001   }
1002 
1003   template <DecoratorSet decorators, typename T>
1004   inline bool arraycopy_reduce_types(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
1005                                      arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
1006                                      size_t length) {
1007     return PreRuntimeDispatch::arraycopy<decorators>(src_obj, src_offset_in_bytes, src_raw,
1008                                                      dst_obj, dst_offset_in_bytes, dst_raw,
1009                                                      length);
1010   }
1011 
1012   template <DecoratorSet decorators>
1013   inline bool arraycopy_reduce_types(arrayOop src_obj, size_t src_offset_in_bytes, HeapWord* src_raw,
1014                                      arrayOop dst_obj, size_t dst_offset_in_bytes, HeapWord* dst_raw,
1015                                      size_t length) {
1016     const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP;
1017     return PreRuntimeDispatch::arraycopy<expanded_decorators>(src_obj, src_offset_in_bytes, src_raw,
1018                                                               dst_obj, dst_offset_in_bytes, dst_raw,
1019                                                               length);
1020   }
1021 
1022   template <DecoratorSet decorators>
1023   inline bool arraycopy_reduce_types(arrayOop src_obj, size_t src_offset_in_bytes, narrowOop* src_raw,
1024                                      arrayOop dst_obj, size_t dst_offset_in_bytes, narrowOop* dst_raw,
1025                                      size_t length) {
1026     const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
1027                                              INTERNAL_RT_USE_COMPRESSED_OOPS;
1028     return PreRuntimeDispatch::arraycopy<expanded_decorators>(src_obj, src_offset_in_bytes, src_raw,
1029                                                               dst_obj, dst_offset_in_bytes, dst_raw,
1030                                                               length);
1031   }
1032 
1033   // Step 1: Set default decorators. This step remembers if a type was volatile
1034   // and then sets the MO_RELAXED decorator by default. Otherwise, a default
1035   // memory ordering is set for the access, and the implied decorator rules
1036   // are applied to select sensible defaults for decorators that have not been
1037   // explicitly set. For example, default object referent strength is set to strong.
1038   // This step also decays the types passed in (e.g. getting rid of CV qualifiers
1039   // and references from the types). This step also perform some type verification
1040   // that the passed in types make sense.
1041 
1042   template <DecoratorSet decorators, typename T>
1043   static void verify_types(){
1044     // If this fails to compile, then you have sent in something that is
1045     // not recognized as a valid primitive type to a primitive Access function.

1143     DecayedT new_decayed_value = new_value;
1144     // atomic_xchg is only available in SEQ_CST flavour.
1145     const DecoratorSet expanded_decorators = DecoratorFixup<decorators | MO_SEQ_CST>::value;
1146     return atomic_xchg_reduce_types<expanded_decorators>(const_cast<DecayedP*>(addr),
1147                                                          new_decayed_value);
1148   }
1149 
1150   template <DecoratorSet decorators, typename T>
1151   inline T atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
1152     verify_types<decorators, T>();
1153     using DecayedT = std::decay_t<T>;
1154     DecayedT new_decayed_value = new_value;
1155     // atomic_xchg is only available in SEQ_CST flavour.
1156     const DecoratorSet expanded_decorators = DecoratorFixup<decorators | MO_SEQ_CST |
1157                                              (HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value ?
1158                                               INTERNAL_CONVERT_COMPRESSED_OOP : DECORATORS_NONE)>::value;
1159     return PreRuntimeDispatch::atomic_xchg_at<expanded_decorators>(base, offset, new_decayed_value);
1160   }
1161 
1162   template <DecoratorSet decorators, typename T>
1163   inline bool arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
1164                         arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
1165                         size_t length) {
1166     STATIC_ASSERT((HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value ||
1167                    (std::is_same<T, void>::value || std::is_integral<T>::value) ||
1168                     std::is_floating_point<T>::value)); // arraycopy allows type erased void elements
1169     using DecayedT = std::decay_t<T>;
1170     const DecoratorSet expanded_decorators = DecoratorFixup<decorators | IS_ARRAY | IN_HEAP>::value;
1171     return arraycopy_reduce_types<expanded_decorators>(src_obj, src_offset_in_bytes, const_cast<DecayedT*>(src_raw),
1172                                                        dst_obj, dst_offset_in_bytes, const_cast<DecayedT*>(dst_raw),
1173                                                        length);
1174   }
1175 
1176   template <DecoratorSet decorators>
1177   inline void clone(oop src, oop dst, size_t size) {
1178     const DecoratorSet expanded_decorators = DecoratorFixup<decorators>::value;
1179     PreRuntimeDispatch::clone<expanded_decorators>(src, dst, size);
1180   }
1181 






1182   // Infer the type that should be returned from an Access::oop_load.
1183   template <typename P, DecoratorSet decorators>
1184   class OopLoadProxy: public StackObj {
1185   private:
1186     P *const _addr;
1187   public:
1188     explicit OopLoadProxy(P* addr) : _addr(addr) {}
1189 
1190     inline operator oop() {
1191       return load<decorators | INTERNAL_VALUE_IS_OOP, P, oop>(_addr);
1192     }
1193 
1194     inline operator narrowOop() {
1195       return load<decorators | INTERNAL_VALUE_IS_OOP, P, narrowOop>(_addr);
1196     }
1197 
1198     template <typename T>
1199     inline bool operator ==(const T& other) const {
1200       return load<decorators | INTERNAL_VALUE_IS_OOP, P, T>(_addr) == other;
1201     }

  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OOPS_ACCESSBACKEND_HPP
  26 #define SHARE_OOPS_ACCESSBACKEND_HPP
  27 
  28 #include "cppstdlib/type_traits.hpp"
  29 #include "gc/shared/barrierSetConfig.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "metaprogramming/enableIf.hpp"
  32 #include "oops/accessDecorators.hpp"
  33 #include "oops/inlineKlass.hpp"
  34 #include "oops/oopsHierarchy.hpp"
  35 #include "runtime/globals.hpp"
  36 #include "utilities/debug.hpp"
  37 #include "utilities/globalDefinitions.hpp"
  38 
  39 // Result from oop_arraycopy
  40 enum class OopCopyResult {
  41   ok,                      // oop array copy sucessful
  42   failed_check_class_cast, // oop array copy failed subtype check (ARRAYCOPY_CHECKCAST)
  43   failed_check_null        // oop array copy failed null check (ARRAYCOPY_NOTNULL)
  44 };
  45 
  46 // This metafunction returns either oop or narrowOop depending on whether
  47 // an access needs to use compressed oops or not.
  48 template <DecoratorSet decorators>
  49 struct HeapOopType: AllStatic {
  50   static const bool needs_oop_compress = HasDecorator<decorators, INTERNAL_CONVERT_COMPRESSED_OOP>::value &&
  51                                          HasDecorator<decorators, INTERNAL_RT_USE_COMPRESSED_OOPS>::value;
  52   using type = std::conditional_t<needs_oop_compress, narrowOop, oop>;
  53 };
  54 
  55 // This meta-function returns either oop or narrowOop depending on whether
  56 // a back-end needs to consider compressed oops types or not.
  57 template <DecoratorSet decorators>
  58 struct ValueOopType: AllStatic {
  59   static const bool needs_oop_compress = HasDecorator<decorators, INTERNAL_RT_USE_COMPRESSED_OOPS>::value;
  60   using type = std::conditional_t<needs_oop_compress, narrowOop, oop>;
  61 };
  62 
  63 namespace AccessInternal {
  64   enum BarrierType {
  65     BARRIER_STORE,
  66     BARRIER_STORE_AT,
  67     BARRIER_LOAD,
  68     BARRIER_LOAD_AT,
  69     BARRIER_ATOMIC_CMPXCHG,
  70     BARRIER_ATOMIC_CMPXCHG_AT,
  71     BARRIER_ATOMIC_XCHG,
  72     BARRIER_ATOMIC_XCHG_AT,
  73     BARRIER_ARRAYCOPY,
  74     BARRIER_CLONE,
  75     BARRIER_VALUE_COPY
  76   };
  77 
  78   template <DecoratorSet decorators, typename T>
  79   struct MustConvertCompressedOop: public std::integral_constant<bool,
  80     HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value &&
  81     std::is_same<typename HeapOopType<decorators>::type, narrowOop>::value &&
  82     std::is_same<T, oop>::value> {};
  83 
  84   // This metafunction returns an appropriate oop type if the value is oop-like
  85   // and otherwise returns the same type T.
  86   template <DecoratorSet decorators, typename T>
  87   struct EncodedType: AllStatic {
  88     using type = std::conditional_t<HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value,
  89                                     typename HeapOopType<decorators>::type,
  90                                     T>;
  91   };
  92 
  93   template <DecoratorSet decorators>
  94   inline typename HeapOopType<decorators>::type*
  95   oop_field_addr(oop base, ptrdiff_t byte_offset) {
  96     return reinterpret_cast<typename HeapOopType<decorators>::type*>(
  97              reinterpret_cast<intptr_t>((void*)base) + byte_offset);
  98   }
  99 
 100   template <DecoratorSet decorators, typename T>
 101   struct AccessFunctionTypes {
 102     typedef T (*load_at_func_t)(oop base, ptrdiff_t offset);
 103     typedef void (*store_at_func_t)(oop base, ptrdiff_t offset, T value);
 104     typedef T (*atomic_cmpxchg_at_func_t)(oop base, ptrdiff_t offset, T compare_value, T new_value);
 105     typedef T (*atomic_xchg_at_func_t)(oop base, ptrdiff_t offset, T new_value);
 106 
 107     typedef T (*load_func_t)(void* addr);
 108     typedef void (*store_func_t)(void* addr, T value);
 109     typedef T (*atomic_cmpxchg_func_t)(void* addr, T compare_value, T new_value);
 110     typedef T (*atomic_xchg_func_t)(void* addr, T new_value);
 111 
 112     typedef OopCopyResult (*arraycopy_func_t)(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 113                                               arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 114                                               size_t length);
 115     typedef void (*clone_func_t)(oop src, oop dst, size_t size);
 116     typedef void (*value_copy_func_t)(void* src, void* dst, InlineKlass* md, LayoutKind lk);
 117   };
 118 
 119   template <DecoratorSet decorators>
 120   struct AccessFunctionTypes<decorators, void> {
 121     typedef OopCopyResult (*arraycopy_func_t)(arrayOop src_obj, size_t src_offset_in_bytes, void* src,
 122                                               arrayOop dst_obj, size_t dst_offset_in_bytes, void* dst,
 123                                               size_t length);
 124   };
 125 
 126   template <DecoratorSet decorators, typename T, BarrierType barrier> struct AccessFunction {};
 127 
 128 #define ACCESS_GENERATE_ACCESS_FUNCTION(bt, func)                   \
 129   template <DecoratorSet decorators, typename T>                    \
 130   struct AccessFunction<decorators, T, bt>: AllStatic{              \
 131     typedef typename AccessFunctionTypes<decorators, T>::func type; \
 132   }
 133   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_STORE, store_func_t);
 134   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_STORE_AT, store_at_func_t);
 135   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_LOAD, load_func_t);
 136   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_LOAD_AT, load_at_func_t);
 137   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_CMPXCHG, atomic_cmpxchg_func_t);
 138   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_CMPXCHG_AT, atomic_cmpxchg_at_func_t);
 139   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_XCHG, atomic_xchg_func_t);
 140   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_XCHG_AT, atomic_xchg_at_func_t);
 141   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ARRAYCOPY, arraycopy_func_t);
 142   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_CLONE, clone_func_t);
 143   ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_VALUE_COPY, value_copy_func_t);
 144 #undef ACCESS_GENERATE_ACCESS_FUNCTION
 145 
 146   template <DecoratorSet decorators, typename T, BarrierType barrier_type>
 147   typename AccessFunction<decorators, T, barrier_type>::type resolve_barrier();
 148 
 149   template <DecoratorSet decorators, typename T, BarrierType barrier_type>
 150   typename AccessFunction<decorators, T, barrier_type>::type resolve_oop_barrier();
 151 
 152   void* field_addr(oop base, ptrdiff_t offset);
 153 
 154   // Forward calls to Copy:: in the cpp file to reduce dependencies and allow
 155   // faster build times, given how frequently included access is.
 156   void arraycopy_arrayof_conjoint_oops(void* src, void* dst, size_t length);
 157   void arraycopy_conjoint_oops(oop* src, oop* dst, size_t length);
 158   void arraycopy_conjoint_oops(narrowOop* src, narrowOop* dst, size_t length);
 159 
 160   void arraycopy_disjoint_words(void* src, void* dst, size_t length);
 161   void arraycopy_disjoint_words_atomic(void* src, void* dst, size_t length);
 162 
 163   template<typename T>
 164   void arraycopy_conjoint(T* src, T* dst, size_t length);
 165   template<typename T>
 166   void arraycopy_arrayof_conjoint(T* src, T* dst, size_t length);
 167   template<typename T>
 168   void arraycopy_conjoint_atomic(T* src, T* dst, size_t length);
 169 
 170   void value_copy_internal(void* src, void* dst, size_t length);
 171 }
 172 
 173 // This mask specifies what decorators are relevant for raw accesses. When passing
 174 // accesses to the raw layer, irrelevant decorators are removed.
 175 const DecoratorSet RAW_DECORATOR_MASK = INTERNAL_DECORATOR_MASK | MO_DECORATOR_MASK |
 176                                         ARRAYCOPY_DECORATOR_MASK | IS_NOT_NULL;
 177 
 178 // The RawAccessBarrier performs raw accesses with additional knowledge of
 179 // memory ordering, so that OrderAccess/Atomic is called when necessary.
 180 // It additionally handles compressed oops, and hence is not completely "raw"
 181 // strictly speaking.
 182 template <DecoratorSet decorators>
 183 class RawAccessBarrier: public AllStatic {
 184 protected:
 185   static inline void* field_addr(oop base, ptrdiff_t byte_offset) {
 186     return AccessInternal::field_addr(base, byte_offset);
 187   }
 188 
 189 protected:
 190   // Only encode if INTERNAL_VALUE_IS_OOP

 290   static inline void store(void* addr, T value) {
 291     store_internal<decorators>(addr, value);
 292   }
 293 
 294   template <typename T>
 295   static inline T load(void* addr) {
 296     return load_internal<decorators, T>(addr);
 297   }
 298 
 299   template <typename T>
 300   static inline T atomic_cmpxchg(void* addr, T compare_value, T new_value) {
 301     return atomic_cmpxchg_internal<decorators>(addr, compare_value, new_value);
 302   }
 303 
 304   template <typename T>
 305   static inline T atomic_xchg(void* addr, T new_value) {
 306     return atomic_xchg_internal<decorators>(addr, new_value);
 307   }
 308 
 309   template <typename T>
 310   static void arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 311                         arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 312                         size_t length);
 313 
 314   template <typename T>
 315   static void oop_store(void* addr, T value);
 316   template <typename T>
 317   static void oop_store_at(oop base, ptrdiff_t offset, T value);
 318 
 319   template <typename T>
 320   static T oop_load(void* addr);
 321   template <typename T>
 322   static T oop_load_at(oop base, ptrdiff_t offset);
 323 
 324   template <typename T>
 325   static T oop_atomic_cmpxchg(void* addr, T compare_value, T new_value);
 326   template <typename T>
 327   static T oop_atomic_cmpxchg_at(oop base, ptrdiff_t offset, T compare_value, T new_value);
 328 
 329   template <typename T>
 330   static T oop_atomic_xchg(void* addr, T new_value);

 335   static void store_at(oop base, ptrdiff_t offset, T value) {
 336     store(field_addr(base, offset), value);
 337   }
 338 
 339   template <typename T>
 340   static T load_at(oop base, ptrdiff_t offset) {
 341     return load<T>(field_addr(base, offset));
 342   }
 343 
 344   template <typename T>
 345   static T atomic_cmpxchg_at(oop base, ptrdiff_t offset, T compare_value, T new_value) {
 346     return atomic_cmpxchg(field_addr(base, offset), compare_value, new_value);
 347   }
 348 
 349   template <typename T>
 350   static T atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
 351     return atomic_xchg(field_addr(base, offset), new_value);
 352   }
 353 
 354   template <typename T>
 355   static void oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 356                             arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 357                             size_t length);
 358 
 359   static void clone(oop src, oop dst, size_t size);
 360   static void value_copy(void* src, void* dst, InlineKlass* md, LayoutKind lk);
 361 
 362 };
 363 
 364 namespace AccessInternal {
 365   DEBUG_ONLY(void check_access_thread_state());
 366 #define assert_access_thread_state() DEBUG_ONLY(check_access_thread_state())
 367 }
 368 
 369 // Below is the implementation of the first 4 steps of the template pipeline:
 370 // * Step 1: Set default decorators and decay types. This step gets rid of CV qualifiers
 371 //           and sets default decorators to sensible values.
 372 // * Step 2: Reduce types. This step makes sure there is only a single T type and not
 373 //           multiple types. The P type of the address and T type of the value must
 374 //           match.
 375 // * Step 3: Pre-runtime dispatch. This step checks whether a runtime call can be
 376 //           avoided, and in that case avoids it (calling raw accesses or
 377 //           primitive accesses in a build that does not require primitive GC barriers)
 378 // * Step 4: Runtime-dispatch. This step performs a runtime dispatch to the corresponding
 379 //           BarrierSet::AccessBarrier accessor that attaches GC-required barriers
 380 //           to the access.
 381 

 511   };
 512 
 513   template <DecoratorSet decorators, typename T>
 514   struct RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG_AT>: AllStatic {
 515     typedef typename AccessFunction<decorators, T, BARRIER_ATOMIC_XCHG_AT>::type func_t;
 516     static func_t _atomic_xchg_at_func;
 517 
 518     static T atomic_xchg_at_init(oop base, ptrdiff_t offset, T new_value);
 519 
 520     static inline T atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
 521       assert_access_thread_state();
 522       return _atomic_xchg_at_func(base, offset, new_value);
 523     }
 524   };
 525 
 526   template <DecoratorSet decorators, typename T>
 527   struct RuntimeDispatch<decorators, T, BARRIER_ARRAYCOPY>: AllStatic {
 528     typedef typename AccessFunction<decorators, T, BARRIER_ARRAYCOPY>::type func_t;
 529     static func_t _arraycopy_func;
 530 
 531     static OopCopyResult arraycopy_init(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 532                                         arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 533                                         size_t length);
 534 
 535     static inline OopCopyResult arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 536                                           arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 537                                           size_t length) {
 538       assert_access_thread_state();
 539       return _arraycopy_func(src_obj, src_offset_in_bytes, src_raw,
 540                              dst_obj, dst_offset_in_bytes, dst_raw,
 541                              length);
 542     }
 543   };
 544 
 545   template <DecoratorSet decorators, typename T>
 546   struct RuntimeDispatch<decorators, T, BARRIER_CLONE>: AllStatic {
 547     typedef typename AccessFunction<decorators, T, BARRIER_CLONE>::type func_t;
 548     static func_t _clone_func;
 549 
 550     static void clone_init(oop src, oop dst, size_t size);
 551 
 552     static inline void clone(oop src, oop dst, size_t size) {
 553       assert_access_thread_state();
 554       _clone_func(src, dst, size);
 555     }
 556   };
 557 
 558   template <DecoratorSet decorators, typename T>
 559   struct RuntimeDispatch<decorators, T, BARRIER_VALUE_COPY>: AllStatic {
 560     typedef typename AccessFunction<decorators, T, BARRIER_VALUE_COPY>::type func_t;
 561     static func_t _value_copy_func;
 562 
 563     static void value_copy_init(void* src, void* dst, InlineKlass* md, LayoutKind lk);
 564 
 565     static inline void value_copy(void* src, void* dst, InlineKlass* md, LayoutKind lk) {
 566       _value_copy_func(src, dst, md, lk);
 567     }
 568   };
 569 
 570   // Initialize the function pointers to point to the resolving function.
 571   template <DecoratorSet decorators, typename T>
 572   typename AccessFunction<decorators, T, BARRIER_STORE>::type
 573   RuntimeDispatch<decorators, T, BARRIER_STORE>::_store_func = &store_init;
 574 
 575   template <DecoratorSet decorators, typename T>
 576   typename AccessFunction<decorators, T, BARRIER_STORE_AT>::type
 577   RuntimeDispatch<decorators, T, BARRIER_STORE_AT>::_store_at_func = &store_at_init;
 578 
 579   template <DecoratorSet decorators, typename T>
 580   typename AccessFunction<decorators, T, BARRIER_LOAD>::type
 581   RuntimeDispatch<decorators, T, BARRIER_LOAD>::_load_func = &load_init;
 582 
 583   template <DecoratorSet decorators, typename T>
 584   typename AccessFunction<decorators, T, BARRIER_LOAD_AT>::type
 585   RuntimeDispatch<decorators, T, BARRIER_LOAD_AT>::_load_at_func = &load_at_init;
 586 
 587   template <DecoratorSet decorators, typename T>
 588   typename AccessFunction<decorators, T, BARRIER_ATOMIC_CMPXCHG>::type
 589   RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG>::_atomic_cmpxchg_func = &atomic_cmpxchg_init;

 591   template <DecoratorSet decorators, typename T>
 592   typename AccessFunction<decorators, T, BARRIER_ATOMIC_CMPXCHG_AT>::type
 593   RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG_AT>::_atomic_cmpxchg_at_func = &atomic_cmpxchg_at_init;
 594 
 595   template <DecoratorSet decorators, typename T>
 596   typename AccessFunction<decorators, T, BARRIER_ATOMIC_XCHG>::type
 597   RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG>::_atomic_xchg_func = &atomic_xchg_init;
 598 
 599   template <DecoratorSet decorators, typename T>
 600   typename AccessFunction<decorators, T, BARRIER_ATOMIC_XCHG_AT>::type
 601   RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG_AT>::_atomic_xchg_at_func = &atomic_xchg_at_init;
 602 
 603   template <DecoratorSet decorators, typename T>
 604   typename AccessFunction<decorators, T, BARRIER_ARRAYCOPY>::type
 605   RuntimeDispatch<decorators, T, BARRIER_ARRAYCOPY>::_arraycopy_func = &arraycopy_init;
 606 
 607   template <DecoratorSet decorators, typename T>
 608   typename AccessFunction<decorators, T, BARRIER_CLONE>::type
 609   RuntimeDispatch<decorators, T, BARRIER_CLONE>::_clone_func = &clone_init;
 610 
 611   template <DecoratorSet decorators, typename T>
 612   typename AccessFunction<decorators, T, BARRIER_VALUE_COPY>::type
 613   RuntimeDispatch<decorators, T, BARRIER_VALUE_COPY>::_value_copy_func = &value_copy_init;
 614 
 615   // Step 3: Pre-runtime dispatching.
 616   // The PreRuntimeDispatch class is responsible for filtering the barrier strength
 617   // decorators. That is, for AS_RAW, it hardwires the accesses without a runtime
 618   // dispatch point. Otherwise it goes through a runtime check if hardwiring was
 619   // not possible.
 620   struct PreRuntimeDispatch: AllStatic {
 621     template<DecoratorSet decorators>
 622     struct CanHardwireRaw: public std::integral_constant<
 623       bool,
 624       !HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value || // primitive access
 625       !HasDecorator<decorators, INTERNAL_CONVERT_COMPRESSED_OOP>::value || // don't care about compressed oops (oop* address)
 626       HasDecorator<decorators, INTERNAL_RT_USE_COMPRESSED_OOPS>::value> // we can infer we use compressed oops (narrowOop* address)
 627     {};
 628 
 629     static const DecoratorSet convert_compressed_oops = INTERNAL_RT_USE_COMPRESSED_OOPS | INTERNAL_CONVERT_COMPRESSED_OOP;
 630 
 631     template<DecoratorSet decorators>
 632     static bool is_hardwired_primitive() {
 633       return !HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value;
 634     }

 842     inline static typename EnableIf<
 843       HasDecorator<decorators, AS_RAW>::value, T>::type
 844     atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
 845       return atomic_xchg<decorators>(field_addr(base, offset), new_value);
 846     }
 847 
 848     template <DecoratorSet decorators, typename T>
 849     inline static typename EnableIf<
 850       !HasDecorator<decorators, AS_RAW>::value, T>::type
 851     atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
 852       if (is_hardwired_primitive<decorators>()) {
 853         const DecoratorSet expanded_decorators = decorators | AS_RAW;
 854         return PreRuntimeDispatch::atomic_xchg<expanded_decorators>(base, offset, new_value);
 855       } else {
 856         return RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG_AT>::atomic_xchg_at(base, offset, new_value);
 857       }
 858     }
 859 
 860     template <DecoratorSet decorators, typename T>
 861     inline static typename EnableIf<
 862       HasDecorator<decorators, AS_RAW>::value && CanHardwireRaw<decorators>::value, OopCopyResult>::type
 863     arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 864               arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 865               size_t length) {
 866       typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
 867       if (HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value) {
 868         Raw::oop_arraycopy(src_obj, src_offset_in_bytes, src_raw,
 869                            dst_obj, dst_offset_in_bytes, dst_raw,
 870                            length);
 871       } else {
 872         Raw::arraycopy(src_obj, src_offset_in_bytes, src_raw,
 873                        dst_obj, dst_offset_in_bytes, dst_raw,
 874                        length);
 875       }
 876 
 877       return OopCopyResult::ok;
 878     }
 879 
 880     template <DecoratorSet decorators, typename T>
 881     inline static typename EnableIf<
 882       HasDecorator<decorators, AS_RAW>::value && !CanHardwireRaw<decorators>::value, OopCopyResult>::type
 883     arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 884               arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 885               size_t length) {
 886       if (UseCompressedOops) {
 887         const DecoratorSet expanded_decorators = decorators | convert_compressed_oops;
 888         return PreRuntimeDispatch::arraycopy<expanded_decorators>(src_obj, src_offset_in_bytes, src_raw,
 889                                                                   dst_obj, dst_offset_in_bytes, dst_raw,
 890                                                                   length);
 891       } else {
 892         const DecoratorSet expanded_decorators = decorators & ~convert_compressed_oops;
 893         return PreRuntimeDispatch::arraycopy<expanded_decorators>(src_obj, src_offset_in_bytes, src_raw,
 894                                                                   dst_obj, dst_offset_in_bytes, dst_raw,
 895                                                                   length);
 896       }
 897     }
 898 
 899     template <DecoratorSet decorators, typename T>
 900     inline static typename EnableIf<
 901       !HasDecorator<decorators, AS_RAW>::value, OopCopyResult>::type
 902     arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
 903               arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
 904               size_t length) {
 905       if (is_hardwired_primitive<decorators>()) {
 906         const DecoratorSet expanded_decorators = decorators | AS_RAW;
 907         return PreRuntimeDispatch::arraycopy<expanded_decorators>(src_obj, src_offset_in_bytes, src_raw,
 908                                                                   dst_obj, dst_offset_in_bytes, dst_raw,
 909                                                                   length);
 910       } else {
 911         return RuntimeDispatch<decorators, T, BARRIER_ARRAYCOPY>::arraycopy(src_obj, src_offset_in_bytes, src_raw,
 912                                                                             dst_obj, dst_offset_in_bytes, dst_raw,
 913                                                                             length);
 914       }
 915     }
 916 
 917     template <DecoratorSet decorators>
 918     inline static typename EnableIf<
 919       HasDecorator<decorators, AS_RAW>::value>::type
 920     clone(oop src, oop dst, size_t size) {
 921       typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
 922       Raw::clone(src, dst, size);
 923     }
 924 
 925     template <DecoratorSet decorators>
 926     inline static typename EnableIf<
 927       !HasDecorator<decorators, AS_RAW>::value>::type
 928     clone(oop src, oop dst, size_t size) {
 929       RuntimeDispatch<decorators, oop, BARRIER_CLONE>::clone(src, dst, size);
 930     }
 931 
 932     template <DecoratorSet decorators>
 933     inline static typename EnableIf<
 934       HasDecorator<decorators, AS_RAW>::value>::type
 935     value_copy(void* src, void* dst, InlineKlass* md, LayoutKind lk) {
 936       typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
 937       Raw::value_copy(src, dst, md, lk);
 938     }
 939 
 940     template <DecoratorSet decorators>
 941     inline static typename EnableIf<
 942       !HasDecorator<decorators, AS_RAW>::value>::type
 943       value_copy(void* src, void* dst, InlineKlass* md, LayoutKind lk) {
 944       const DecoratorSet expanded_decorators = decorators;
 945       RuntimeDispatch<expanded_decorators, void*, BARRIER_VALUE_COPY>::value_copy(src, dst, md, lk);
 946     }
 947   };
 948 
 949   // Step 2: Reduce types.
 950   // Enforce that for non-oop types, T and P have to be strictly the same.
 951   // P is the type of the address and T is the type of the values.
 952   // As for oop types, it is allow to send T in {narrowOop, oop} and
 953   // P in {narrowOop, oop, HeapWord*}. The following rules apply according to
 954   // the subsequent table. (columns are P, rows are T)
 955   // |           | HeapWord  |   oop   | narrowOop |
 956   // |   oop     |  rt-comp  | hw-none |  hw-comp  |
 957   // | narrowOop |     x     |    x    |  hw-none  |
 958   //
 959   // x means not allowed
 960   // rt-comp means it must be checked at runtime whether the oop is compressed.
 961   // hw-none means it is statically known the oop will not be compressed.
 962   // hw-comp means it is statically known the oop will be compressed.
 963 
 964   template <DecoratorSet decorators, typename T>
 965   inline void store_reduce_types(T* addr, T value) {
 966     PreRuntimeDispatch::store<decorators>(addr, value);

1041 
1042   template <DecoratorSet decorators, typename T>
1043   inline T load_reduce_types(T* addr) {
1044     return PreRuntimeDispatch::load<decorators, T>(addr);
1045   }
1046 
1047   template <DecoratorSet decorators, typename T>
1048   inline typename OopOrNarrowOop<T>::type load_reduce_types(narrowOop* addr) {
1049     const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
1050                                              INTERNAL_RT_USE_COMPRESSED_OOPS;
1051     return PreRuntimeDispatch::load<expanded_decorators, typename OopOrNarrowOop<T>::type>(addr);
1052   }
1053 
1054   template <DecoratorSet decorators, typename T>
1055   inline oop load_reduce_types(HeapWord* addr) {
1056     const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP;
1057     return PreRuntimeDispatch::load<expanded_decorators, oop>(addr);
1058   }
1059 
1060   template <DecoratorSet decorators, typename T>
1061   inline OopCopyResult arraycopy_reduce_types(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
1062                                               arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
1063                                               size_t length) {
1064     return PreRuntimeDispatch::arraycopy<decorators>(src_obj, src_offset_in_bytes, src_raw,
1065                                                      dst_obj, dst_offset_in_bytes, dst_raw,
1066                                                      length);
1067   }
1068 
1069   template <DecoratorSet decorators>
1070   inline OopCopyResult arraycopy_reduce_types(arrayOop src_obj, size_t src_offset_in_bytes, HeapWord* src_raw,
1071                                               arrayOop dst_obj, size_t dst_offset_in_bytes, HeapWord* dst_raw,
1072                                               size_t length) {
1073     const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP;
1074     return PreRuntimeDispatch::arraycopy<expanded_decorators>(src_obj, src_offset_in_bytes, src_raw,
1075                                                               dst_obj, dst_offset_in_bytes, dst_raw,
1076                                                               length);
1077   }
1078 
1079   template <DecoratorSet decorators>
1080   inline OopCopyResult arraycopy_reduce_types(arrayOop src_obj, size_t src_offset_in_bytes, narrowOop* src_raw,
1081                                               arrayOop dst_obj, size_t dst_offset_in_bytes, narrowOop* dst_raw,
1082                                               size_t length) {
1083     const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
1084                                              INTERNAL_RT_USE_COMPRESSED_OOPS;
1085     return PreRuntimeDispatch::arraycopy<expanded_decorators>(src_obj, src_offset_in_bytes, src_raw,
1086                                                               dst_obj, dst_offset_in_bytes, dst_raw,
1087                                                               length);
1088   }
1089 
1090   // Step 1: Set default decorators. This step remembers if a type was volatile
1091   // and then sets the MO_RELAXED decorator by default. Otherwise, a default
1092   // memory ordering is set for the access, and the implied decorator rules
1093   // are applied to select sensible defaults for decorators that have not been
1094   // explicitly set. For example, default object referent strength is set to strong.
1095   // This step also decays the types passed in (e.g. getting rid of CV qualifiers
1096   // and references from the types). This step also perform some type verification
1097   // that the passed in types make sense.
1098 
1099   template <DecoratorSet decorators, typename T>
1100   static void verify_types(){
1101     // If this fails to compile, then you have sent in something that is
1102     // not recognized as a valid primitive type to a primitive Access function.

1200     DecayedT new_decayed_value = new_value;
1201     // atomic_xchg is only available in SEQ_CST flavour.
1202     const DecoratorSet expanded_decorators = DecoratorFixup<decorators | MO_SEQ_CST>::value;
1203     return atomic_xchg_reduce_types<expanded_decorators>(const_cast<DecayedP*>(addr),
1204                                                          new_decayed_value);
1205   }
1206 
1207   template <DecoratorSet decorators, typename T>
1208   inline T atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
1209     verify_types<decorators, T>();
1210     using DecayedT = std::decay_t<T>;
1211     DecayedT new_decayed_value = new_value;
1212     // atomic_xchg is only available in SEQ_CST flavour.
1213     const DecoratorSet expanded_decorators = DecoratorFixup<decorators | MO_SEQ_CST |
1214                                              (HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value ?
1215                                               INTERNAL_CONVERT_COMPRESSED_OOP : DECORATORS_NONE)>::value;
1216     return PreRuntimeDispatch::atomic_xchg_at<expanded_decorators>(base, offset, new_decayed_value);
1217   }
1218 
1219   template <DecoratorSet decorators, typename T>
1220   inline OopCopyResult arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
1221                                  arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
1222                                  size_t length) {
1223     STATIC_ASSERT((HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value ||
1224                    (std::is_same<T, void>::value || std::is_integral<T>::value) ||
1225                     std::is_floating_point<T>::value)); // arraycopy allows type erased void elements
1226     using DecayedT = std::decay_t<T>;
1227     const DecoratorSet expanded_decorators = DecoratorFixup<decorators | IS_ARRAY | IN_HEAP>::value;
1228     return arraycopy_reduce_types<expanded_decorators>(src_obj, src_offset_in_bytes, const_cast<DecayedT*>(src_raw),
1229                                                        dst_obj, dst_offset_in_bytes, const_cast<DecayedT*>(dst_raw),
1230                                                        length);
1231   }
1232 
1233   template <DecoratorSet decorators>
1234   inline void clone(oop src, oop dst, size_t size) {
1235     const DecoratorSet expanded_decorators = DecoratorFixup<decorators>::value;
1236     PreRuntimeDispatch::clone<expanded_decorators>(src, dst, size);
1237   }
1238 
1239   template <DecoratorSet decorators>
1240   inline void value_copy(void* src, void* dst, InlineKlass* md, LayoutKind lk) {
1241     const DecoratorSet expanded_decorators = DecoratorFixup<decorators>::value;
1242     PreRuntimeDispatch::value_copy<expanded_decorators>(src, dst, md, lk);
1243   }
1244 
1245   // Infer the type that should be returned from an Access::oop_load.
1246   template <typename P, DecoratorSet decorators>
1247   class OopLoadProxy: public StackObj {
1248   private:
1249     P *const _addr;
1250   public:
1251     explicit OopLoadProxy(P* addr) : _addr(addr) {}
1252 
1253     inline operator oop() {
1254       return load<decorators | INTERNAL_VALUE_IS_OOP, P, oop>(_addr);
1255     }
1256 
1257     inline operator narrowOop() {
1258       return load<decorators | INTERNAL_VALUE_IS_OOP, P, narrowOop>(_addr);
1259     }
1260 
1261     template <typename T>
1262     inline bool operator ==(const T& other) const {
1263       return load<decorators | INTERNAL_VALUE_IS_OOP, P, T>(_addr) == other;
1264     }
< prev index next >