1 /* 2 * Copyright (c) 2017, 2020, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/moduleEntry.hpp" 27 #include "classfile/packageEntry.hpp" 28 #include "classfile/symbolTable.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "classfile/vmSymbols.hpp" 31 #include "gc/shared/collectedHeap.inline.hpp" 32 #include "memory/iterator.inline.hpp" 33 #include "memory/metadataFactory.hpp" 34 #include "memory/metaspaceClosure.hpp" 35 #include "memory/oopFactory.hpp" 36 #include "memory/resourceArea.hpp" 37 #include "memory/universe.hpp" 38 #include "oops/arrayKlass.inline.hpp" 39 #include "oops/arrayOop.hpp" 40 #include "oops/flatArrayOop.hpp" 41 #include "oops/flatArrayOop.inline.hpp" 42 #include "oops/inlineKlass.hpp" 43 #include "oops/instanceKlass.hpp" 44 #include "oops/klass.inline.hpp" 45 #include "oops/objArrayKlass.hpp" 46 #include "oops/objArrayOop.inline.hpp" 47 #include "oops/oop.inline.hpp" 48 #include "oops/verifyOopClosure.hpp" 49 #include "runtime/handles.inline.hpp" 50 #include "runtime/mutexLocker.hpp" 51 #include "utilities/copy.hpp" 52 #include "utilities/macros.hpp" 53 54 #include "oops/flatArrayKlass.hpp" 55 56 // Allocation... 57 58 FlatArrayKlass::FlatArrayKlass(Klass* element_klass, Symbol* name) : ArrayKlass(name, Kind) { 59 assert(element_klass->is_inline_klass(), "Expected Inline"); 60 61 set_element_klass(InlineKlass::cast(element_klass)); 62 set_class_loader_data(element_klass->class_loader_data()); 63 64 set_layout_helper(array_layout_helper(InlineKlass::cast(element_klass))); 65 assert(is_array_klass(), "sanity"); 66 assert(is_flatArray_klass(), "sanity"); 67 assert(is_null_free_array_klass(), "sanity"); 68 69 #ifdef _LP64 70 set_prototype_header(markWord::flat_array_prototype()); 71 assert(prototype_header().is_flat_array(), "sanity"); 72 #else 73 set_prototype_header(markWord::inline_type_prototype()); 74 #endif 75 76 #ifndef PRODUCT 77 if (PrintFlatArrayLayout) { 78 print(); 79 } 80 #endif 81 } 82 83 InlineKlass* FlatArrayKlass::element_klass() const { 84 return InlineKlass::cast(_element_klass); 85 } 86 87 void FlatArrayKlass::set_element_klass(Klass* k) { 88 _element_klass = k; 89 } 90 91 FlatArrayKlass* FlatArrayKlass::allocate_klass(Klass* eklass, TRAPS) { 92 guarantee((!Universe::is_bootstrapping() || vmClasses::Object_klass_loaded()), "Really ?!"); 93 assert(UseFlatArray, "Flatten array required"); 94 95 InlineKlass* element_klass = InlineKlass::cast(eklass); 96 assert(element_klass->is_naturally_atomic() || (!InlineArrayAtomicAccess), "Atomic by-default"); 97 98 /* 99 * MVT->LWorld, now need to allocate secondaries array types, just like objArrayKlass... 100 * ...so now we are trying out covariant array types, just copy objArrayKlass 101 * TODO refactor any remaining commonality 102 * 103 */ 104 // Eagerly allocate the direct array supertype. 105 Klass* super_klass = NULL; 106 Klass* element_super = element_klass->super(); 107 if (element_super != NULL) { 108 // The element type has a direct super. E.g., String[] has direct super of Object[]. 109 super_klass = element_klass->array_klass_or_null(); 110 bool supers_exist = super_klass != NULL; 111 // Also, see if the element has secondary supertypes. 112 // We need an array type for each. 113 const Array<Klass*>* element_supers = element_klass->secondary_supers(); 114 for( int i = element_supers->length()-1; i >= 0; i-- ) { 115 Klass* elem_super = element_supers->at(i); 116 if (elem_super->array_klass_or_null() == NULL) { 117 supers_exist = false; 118 break; 119 } 120 } 121 if (!supers_exist) { 122 // Oops. Not allocated yet. Back out, allocate it, and retry. 123 Klass* ek = NULL; 124 { 125 MutexUnlocker mu(MultiArray_lock); 126 super_klass = element_klass->array_klass(CHECK_NULL); 127 for( int i = element_supers->length()-1; i >= 0; i-- ) { 128 Klass* elem_super = element_supers->at(i); 129 elem_super->array_klass(CHECK_NULL); 130 } 131 // Now retry from the beginning 132 ek = element_klass->value_array_klass(CHECK_NULL); 133 } // re-lock 134 return FlatArrayKlass::cast(ek); 135 } 136 } 137 138 Symbol* name = ArrayKlass::create_element_klass_array_name(element_klass, true, CHECK_NULL); 139 ClassLoaderData* loader_data = element_klass->class_loader_data(); 140 int size = ArrayKlass::static_size(FlatArrayKlass::header_size()); 141 FlatArrayKlass* vak = new (loader_data, size, THREAD) FlatArrayKlass(element_klass, name); 142 143 ModuleEntry* module = vak->module(); 144 assert(module != NULL, "No module entry for array"); 145 complete_create_array_klass(vak, super_klass, module, CHECK_NULL); 146 147 loader_data->add_class(vak); 148 149 return vak; 150 } 151 152 void FlatArrayKlass::initialize(TRAPS) { 153 element_klass()->initialize(THREAD); 154 } 155 156 void FlatArrayKlass::metaspace_pointers_do(MetaspaceClosure* it) { 157 ArrayKlass::metaspace_pointers_do(it); 158 it->push(&_element_klass); 159 } 160 161 // Oops allocation... 162 flatArrayOop FlatArrayKlass::allocate(int length, TRAPS) { 163 check_array_allocation_length(length, max_elements(), CHECK_NULL); 164 int size = flatArrayOopDesc::object_size(layout_helper(), length); 165 return (flatArrayOop) Universe::heap()->array_allocate(this, size, length, true, THREAD); 166 } 167 168 169 oop FlatArrayKlass::multi_allocate(int rank, jint* last_size, TRAPS) { 170 // For flatArrays this is only called for the last dimension 171 assert(rank == 1, "just checking"); 172 int length = *last_size; 173 return allocate(length, THREAD); 174 } 175 176 jint FlatArrayKlass::array_layout_helper(InlineKlass* vk) { 177 BasicType etype = T_PRIMITIVE_OBJECT; 178 int esize = log2i_exact(round_up_power_of_2(vk->get_exact_size_in_bytes())); 179 int hsize = arrayOopDesc::base_offset_in_bytes(etype); 180 181 int lh = Klass::array_layout_helper(_lh_array_tag_vt_value, true, hsize, etype, esize); 182 183 assert(lh < (int)_lh_neutral_value, "must look like an array layout"); 184 assert(layout_helper_is_array(lh), "correct kind"); 185 assert(layout_helper_is_flatArray(lh), "correct kind"); 186 assert(!layout_helper_is_typeArray(lh), "correct kind"); 187 assert(!layout_helper_is_objArray(lh), "correct kind"); 188 assert(layout_helper_is_null_free(lh), "correct kind"); 189 assert(layout_helper_header_size(lh) == hsize, "correct decode"); 190 assert(layout_helper_element_type(lh) == etype, "correct decode"); 191 assert(layout_helper_log2_element_size(lh) == esize, "correct decode"); 192 assert((1 << esize) < BytesPerLong || is_aligned(hsize, HeapWordsPerLong), "unaligned base"); 193 194 return lh; 195 } 196 197 size_t FlatArrayKlass::oop_size(oop obj) const { 198 assert(obj->klass()->is_flatArray_klass(),"must be an flat array"); 199 flatArrayOop array = flatArrayOop(obj); 200 return array->object_size(); 201 } 202 203 // For now return the maximum number of array elements that will not exceed: 204 // nof bytes = "max_jint * HeapWord" since the "oopDesc::oop_iterate_size" 205 // returns "int" HeapWords, need fix for JDK-4718400 and JDK-8233189 206 jint FlatArrayKlass::max_elements() const { 207 // Check the max number of heap words limit first (because of int32_t in oopDesc_oop_size() etc) 208 size_t max_size = max_jint; 209 max_size -= arrayOopDesc::header_size(T_PRIMITIVE_OBJECT); 210 max_size = align_down(max_size, MinObjAlignment); 211 max_size <<= LogHeapWordSize; // convert to max payload size in bytes 212 max_size >>= layout_helper_log2_element_size(_layout_helper); // divide by element size (in bytes) = max elements 213 // Within int32_t heap words, still can't exceed Java array element limit 214 if (max_size > max_jint) { 215 max_size = max_jint; 216 } 217 assert((max_size >> LogHeapWordSize) <= max_jint, "Overflow"); 218 return (jint) max_size; 219 } 220 221 oop FlatArrayKlass::protection_domain() const { 222 return element_klass()->protection_domain(); 223 } 224 225 // Temp hack having this here: need to move towards Access API 226 static bool needs_backwards_copy(arrayOop s, int src_pos, 227 arrayOop d, int dst_pos, int length) { 228 return (s == d) && (dst_pos > src_pos) && (dst_pos - src_pos) < length; 229 } 230 231 void FlatArrayKlass::copy_array(arrayOop s, int src_pos, 232 arrayOop d, int dst_pos, int length, TRAPS) { 233 234 assert(s->is_objArray() || s->is_flatArray(), "must be obj or flat array"); 235 236 // Check destination 237 if ((!d->is_flatArray()) && (!d->is_objArray())) { 238 THROW(vmSymbols::java_lang_ArrayStoreException()); 239 } 240 241 // Check if all offsets and lengths are non negative 242 if (src_pos < 0 || dst_pos < 0 || length < 0) { 243 THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException()); 244 } 245 // Check if the ranges are valid 246 if ( (((unsigned int) length + (unsigned int) src_pos) > (unsigned int) s->length()) 247 || (((unsigned int) length + (unsigned int) dst_pos) > (unsigned int) d->length()) ) { 248 THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException()); 249 } 250 // Check zero copy 251 if (length == 0) 252 return; 253 254 ArrayKlass* sk = ArrayKlass::cast(s->klass()); 255 ArrayKlass* dk = ArrayKlass::cast(d->klass()); 256 Klass* d_elem_klass = dk->element_klass(); 257 Klass* s_elem_klass = sk->element_klass(); 258 /**** CMH: compare and contrast impl, re-factor once we find edge cases... ****/ 259 260 if (sk->is_flatArray_klass()) { 261 assert(sk == this, "Unexpected call to copy_array"); 262 // Check subtype, all src homogeneous, so just once 263 if (!s_elem_klass->is_subtype_of(d_elem_klass)) { 264 THROW(vmSymbols::java_lang_ArrayStoreException()); 265 } 266 267 flatArrayOop sa = flatArrayOop(s); 268 InlineKlass* s_elem_vklass = element_klass(); 269 270 // flatArray-to-flatArray 271 if (dk->is_flatArray_klass()) { 272 // element types MUST be exact, subtype check would be dangerous 273 if (dk != this) { 274 THROW(vmSymbols::java_lang_ArrayStoreException()); 275 } 276 277 flatArrayOop da = flatArrayOop(d); 278 address dst = (address) da->value_at_addr(dst_pos, layout_helper()); 279 address src = (address) sa->value_at_addr(src_pos, layout_helper()); 280 if (contains_oops()) { 281 int elem_incr = 1 << log2_element_size(); 282 address src_end = src + (length << log2_element_size()); 283 if (needs_backwards_copy(s, src_pos, d, dst_pos, length)) { 284 swap(src, src_end); 285 dst = dst + (length << log2_element_size()); 286 do { 287 src -= elem_incr; 288 dst -= elem_incr; 289 HeapAccess<>::value_copy(src, dst, s_elem_vklass); 290 } while (src > src_end); 291 } else { 292 address src_end = src + (length << log2_element_size()); 293 while (src < src_end) { 294 HeapAccess<>::value_copy(src, dst, s_elem_vklass); 295 src += elem_incr; 296 dst += elem_incr; 297 } 298 } 299 } else { 300 // we are basically a type array...don't bother limiting element copy 301 // it would have to be a lot wasted space to be worth value_store() calls, need a setting here ? 302 Copy::conjoint_memory_atomic(src, dst, (size_t)length << log2_element_size()); 303 } 304 } 305 else { // flatArray-to-objArray 306 assert(dk->is_objArray_klass(), "Expected objArray here"); 307 // Need to allocate each new src elem payload -> dst oop 308 objArrayHandle dh(THREAD, (objArrayOop)d); 309 flatArrayHandle sh(THREAD, sa); 310 int dst_end = dst_pos + length; 311 while (dst_pos < dst_end) { 312 oop o = flatArrayOopDesc::value_alloc_copy_from_index(sh, src_pos, CHECK); 313 dh->obj_at_put(dst_pos, o); 314 dst_pos++; 315 src_pos++; 316 } 317 } 318 } else { 319 assert(s->is_objArray(), "Expected objArray"); 320 objArrayOop sa = objArrayOop(s); 321 assert(d->is_flatArray(), "Excepted flatArray"); // objArray-to-flatArray 322 InlineKlass* d_elem_vklass = InlineKlass::cast(d_elem_klass); 323 flatArrayOop da = flatArrayOop(d); 324 325 int src_end = src_pos + length; 326 int delem_incr = 1 << dk->log2_element_size(); 327 address dst = (address) da->value_at_addr(dst_pos, layout_helper()); 328 while (src_pos < src_end) { 329 oop se = sa->obj_at(src_pos); 330 if (se == NULL) { 331 THROW(vmSymbols::java_lang_NullPointerException()); 332 } 333 // Check exact type per element 334 if (se->klass() != d_elem_klass) { 335 THROW(vmSymbols::java_lang_ArrayStoreException()); 336 } 337 d_elem_vklass->inline_copy_oop_to_payload(se, dst); 338 dst += delem_incr; 339 src_pos++; 340 } 341 } 342 } 343 344 345 Klass* FlatArrayKlass::array_klass(int n, TRAPS) { 346 assert(dimension() <= n, "check order of chain"); 347 int dim = dimension(); 348 if (dim == n) return this; 349 350 // lock-free read needs acquire semantics 351 if (higher_dimension_acquire() == NULL) { 352 353 ResourceMark rm(THREAD); 354 { 355 // Ensure atomic creation of higher dimensions 356 MutexLocker mu(THREAD, MultiArray_lock); 357 358 // Check if another thread beat us 359 if (higher_dimension() == NULL) { 360 361 // Create multi-dim klass object and link them together 362 Klass* k = ObjArrayKlass::allocate_objArray_klass(class_loader_data(), dim + 1, this, false, true, CHECK_NULL); 363 ObjArrayKlass* ak = ObjArrayKlass::cast(k); 364 ak->set_lower_dimension(this); 365 // use 'release' to pair with lock-free load 366 release_set_higher_dimension(ak); 367 assert(ak->is_objArray_klass(), "incorrect initialization of ObjArrayKlass"); 368 } 369 } 370 } 371 372 ObjArrayKlass *ak = ObjArrayKlass::cast(higher_dimension()); 373 JavaThread::cast(THREAD)->check_possible_safepoint(); 374 return ak->array_klass(n, THREAD); 375 } 376 377 Klass* FlatArrayKlass::array_klass_or_null(int n) { 378 379 assert(dimension() <= n, "check order of chain"); 380 int dim = dimension(); 381 if (dim == n) return this; 382 383 // lock-free read needs acquire semantics 384 if (higher_dimension_acquire() == NULL) { 385 return NULL; 386 } 387 388 ObjArrayKlass *ak = ObjArrayKlass::cast(higher_dimension()); 389 return ak->array_klass_or_null(n); 390 } 391 392 Klass* FlatArrayKlass::array_klass(TRAPS) { 393 return array_klass(dimension() + 1, THREAD); 394 } 395 396 Klass* FlatArrayKlass::array_klass_or_null() { 397 return array_klass_or_null(dimension() + 1); 398 } 399 400 401 ModuleEntry* FlatArrayKlass::module() const { 402 assert(element_klass() != NULL, "FlatArrayKlass returned unexpected NULL bottom_klass"); 403 // The array is defined in the module of its bottom class 404 return element_klass()->module(); 405 } 406 407 PackageEntry* FlatArrayKlass::package() const { 408 assert(element_klass() != NULL, "FlatArrayKlass returned unexpected NULL bottom_klass"); 409 return element_klass()->package(); 410 } 411 412 bool FlatArrayKlass::can_be_primary_super_slow() const { 413 return true; 414 } 415 416 GrowableArray<Klass*>* FlatArrayKlass::compute_secondary_supers(int num_extra_slots, 417 Array<InstanceKlass*>* transitive_interfaces) { 418 assert(transitive_interfaces == NULL, "sanity"); 419 // interfaces = { cloneable_klass, serializable_klass, elemSuper[], ... }; 420 Array<Klass*>* elem_supers = element_klass()->secondary_supers(); 421 int num_elem_supers = elem_supers == NULL ? 0 : elem_supers->length(); 422 int num_secondaries = num_extra_slots + 2 + num_elem_supers; 423 GrowableArray<Klass*>* secondaries = new GrowableArray<Klass*>(num_elem_supers+2); 424 425 secondaries->push(vmClasses::Cloneable_klass()); 426 secondaries->push(vmClasses::Serializable_klass()); 427 for (int i = 0; i < num_elem_supers; i++) { 428 Klass* elem_super = (Klass*) elem_supers->at(i); 429 Klass* array_super = elem_super->array_klass_or_null(); 430 assert(array_super != NULL, "must already have been created"); 431 secondaries->push(array_super); 432 } 433 return secondaries; 434 } 435 436 jint FlatArrayKlass::compute_modifier_flags() const { 437 // The modifier for an flatArray is the same as its element 438 jint element_flags = element_klass()->compute_modifier_flags(); 439 440 return (element_flags & (JVM_ACC_PUBLIC | JVM_ACC_PRIVATE | JVM_ACC_PROTECTED)) 441 | (JVM_ACC_ABSTRACT | JVM_ACC_FINAL); 442 } 443 444 void FlatArrayKlass::print_on(outputStream* st) const { 445 #ifndef PRODUCT 446 assert(!is_objArray_klass(), "Unimplemented"); 447 448 st->print("Flat Type Array: "); 449 Klass::print_on(st); 450 451 st->print(" - element klass: "); 452 element_klass()->print_value_on(st); 453 st->cr(); 454 455 int elem_size = element_byte_size(); 456 st->print(" - element size %i ", elem_size); 457 st->print("aligned layout size %i", 1 << layout_helper_log2_element_size(layout_helper())); 458 st->cr(); 459 #endif //PRODUCT 460 } 461 462 void FlatArrayKlass::print_value_on(outputStream* st) const { 463 assert(is_klass(), "must be klass"); 464 465 element_klass()->print_value_on(st); 466 st->print("[]"); 467 } 468 469 470 #ifndef PRODUCT 471 void FlatArrayKlass::oop_print_on(oop obj, outputStream* st) { 472 ArrayKlass::oop_print_on(obj, st); 473 flatArrayOop va = flatArrayOop(obj); 474 InlineKlass* vk = element_klass(); 475 int print_len = MIN2((intx) va->length(), MaxElementPrintSize); 476 for(int index = 0; index < print_len; index++) { 477 int off = (address) va->value_at_addr(index, layout_helper()) - cast_from_oop<address>(obj); 478 st->print_cr(" - Index %3d offset %3d: ", index, off); 479 oop obj = cast_to_oop((address)va->value_at_addr(index, layout_helper()) - vk->first_field_offset()); 480 FieldPrinter print_field(st, obj); 481 vk->do_nonstatic_fields(&print_field); 482 st->cr(); 483 } 484 int remaining = va->length() - print_len; 485 if (remaining > 0) { 486 st->print_cr(" - <%d more elements, increase MaxElementPrintSize to print>", remaining); 487 } 488 } 489 #endif //PRODUCT 490 491 void FlatArrayKlass::oop_print_value_on(oop obj, outputStream* st) { 492 assert(obj->is_flatArray(), "must be flatArray"); 493 st->print("a "); 494 element_klass()->print_value_on(st); 495 int len = flatArrayOop(obj)->length(); 496 st->print("[%d] ", len); 497 obj->print_address_on(st); 498 if (PrintMiscellaneous && (WizardMode || Verbose)) { 499 int lh = layout_helper(); 500 st->print("{"); 501 for (int i = 0; i < len; i++) { 502 if (i > 4) { 503 st->print("..."); break; 504 } 505 st->print(" " INTPTR_FORMAT, (intptr_t)(void*)flatArrayOop(obj)->value_at_addr(i , lh)); 506 } 507 st->print(" }"); 508 } 509 } 510 511 // Verification 512 class VerifyElementClosure: public BasicOopIterateClosure { 513 public: 514 virtual void do_oop(oop* p) { VerifyOopClosure::verify_oop.do_oop(p); } 515 virtual void do_oop(narrowOop* p) { VerifyOopClosure::verify_oop.do_oop(p); } 516 }; 517 518 void FlatArrayKlass::oop_verify_on(oop obj, outputStream* st) { 519 ArrayKlass::oop_verify_on(obj, st); 520 guarantee(obj->is_flatArray(), "must be flatArray"); 521 522 if (contains_oops()) { 523 flatArrayOop va = flatArrayOop(obj); 524 VerifyElementClosure ec; 525 va->oop_iterate(&ec); 526 } 527 } 528 529 void FlatArrayKlass::verify_on(outputStream* st) { 530 ArrayKlass::verify_on(st); 531 guarantee(element_klass()->is_inline_klass(), "should be inline type klass"); 532 }