1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OOPS_GENERATEOOPMAP_HPP 26 #define SHARE_OOPS_GENERATEOOPMAP_HPP 27 28 #include "memory/allocation.hpp" 29 #include "oops/method.hpp" 30 #include "oops/oopsHierarchy.hpp" 31 #include "runtime/signature.hpp" 32 #include "utilities/bitMap.hpp" 33 34 // Forward definition 35 class BytecodeStream; 36 class GenerateOopMap; 37 class BasicBlock; 38 class CellTypeState; 39 class StackMap; 40 41 // These two should be removed. But requires some code to be cleaned up 42 #define MAXARGSIZE 256 // This should be enough 43 #define MAX_LOCAL_VARS 65536 // 16-bit entry 44 45 typedef void (*jmpFct_t)(GenerateOopMap *c, int bcpDelta, int* data); 46 47 48 // RetTable 49 // 50 // Contains mapping between jsr targets and there return addresses. One-to-many mapping 51 // 52 class RetTableEntry : public ResourceObj { 53 private: 54 static int _init_nof_jsrs; // Default size of jsrs list 55 int _target_bci; // Target PC address of jump (bytecode index) 56 GrowableArray<int> * _jsrs; // List of return addresses (bytecode index) 57 RetTableEntry *_next; // Link to next entry 58 public: 59 RetTableEntry(int target, RetTableEntry *next); 60 61 // Query 62 int target_bci() const { return _target_bci; } 63 int nof_jsrs() const { return _jsrs->length(); } 64 int jsrs(int i) const { assert(i>=0 && i<nof_jsrs(), "Index out of bounds"); return _jsrs->at(i); } 65 66 // Update entry 67 void add_jsr (int return_bci) { _jsrs->append(return_bci); } 68 void add_delta (int bci, int delta); 69 RetTableEntry * next() const { return _next; } 70 }; 71 72 73 class RetTable { 74 private: 75 RetTableEntry *_first; 76 static int _init_nof_entries; 77 78 void add_jsr(int return_bci, int target_bci); // Adds entry to list 79 public: 80 RetTable() { _first = nullptr; } 81 void compute_ret_table(const methodHandle& method); 82 void update_ret_table(int bci, int delta); 83 RetTableEntry* find_jsrs_for_target(int targBci); 84 }; 85 86 // 87 // CellTypeState 88 // 89 class CellTypeState { 90 private: 91 unsigned int _state; 92 93 // Masks for separating the BITS and INFO portions of a CellTypeState 94 enum { info_mask = right_n_bits(27), 95 bits_mask = (int)(~info_mask) }; 96 97 // These constant are used for manipulating the BITS portion of a 98 // CellTypeState 99 enum { uninit_bit = (int)(nth_bit(31)), 100 ref_bit = nth_bit(30), 101 val_bit = nth_bit(29), 102 addr_bit = nth_bit(28), 103 live_bits_mask = (int)(bits_mask & ~uninit_bit) }; 104 105 // These constants are used for manipulating the INFO portion of a 106 // CellTypeState 107 enum { top_info_bit = nth_bit(26), 108 not_bottom_info_bit = nth_bit(25), 109 info_data_mask = right_n_bits(25), 110 info_conflict = info_mask }; 111 112 // Within the INFO data, these values are used to distinguish different 113 // kinds of references. 114 enum { ref_not_lock_bit = nth_bit(24), // 0 if this reference is locked as a monitor 115 ref_slot_bit = nth_bit(23), // 1 if this reference is a "slot" reference, 116 // 0 if it is a "line" reference. 117 ref_data_mask = right_n_bits(23) }; 118 119 // Within the INFO data, these values are used to distinguish different 120 // kinds of value types. 121 enum { valuetype_slot_bit = nth_bit(24), // 1 if this reference is a "slot" value type, 122 // 0 if it is a "line" value type. 123 valuetype_data_mask = right_n_bits(24) }; 124 125 // These values are used to initialize commonly used CellTypeState 126 // constants. 127 enum { bottom_value = 0, 128 uninit_value = (int)(uninit_bit | info_conflict), 129 ref_value = ref_bit, 130 ref_conflict = ref_bit | info_conflict, 131 val_value = val_bit | info_conflict, 132 addr_value = addr_bit, 133 addr_conflict = addr_bit | info_conflict }; 134 135 public: 136 137 // Since some C++ constructors generate poor code for declarations of the 138 // form... 139 // 140 // CellTypeState vector[length]; 141 // 142 // ...we avoid making a constructor for this class. CellTypeState values 143 // should be constructed using one of the make_* methods: 144 145 static CellTypeState make_any(int state) { 146 CellTypeState s; 147 s._state = state; 148 // Causes SS10 warning. 149 // assert(s.is_valid_state(), "check to see if CellTypeState is valid"); 150 return s; 151 } 152 153 static CellTypeState make_bottom() { 154 return make_any(0); 155 } 156 157 static CellTypeState make_top() { 158 return make_any(AllBits); 159 } 160 161 static CellTypeState make_addr(int bci) { 162 assert((bci >= 0) && (bci < info_data_mask), "check to see if ret addr is valid"); 163 return make_any(addr_bit | not_bottom_info_bit | (bci & info_data_mask)); 164 } 165 166 static CellTypeState make_slot_ref(int slot_num) { 167 assert(slot_num >= 0 && slot_num < ref_data_mask, "slot out of range"); 168 return make_any(ref_bit | not_bottom_info_bit | ref_not_lock_bit | ref_slot_bit | 169 (slot_num & ref_data_mask)); 170 } 171 172 static CellTypeState make_line_ref(int bci) { 173 assert(bci >= 0 && bci < ref_data_mask, "line out of range"); 174 return make_any(ref_bit | not_bottom_info_bit | ref_not_lock_bit | 175 (bci & ref_data_mask)); 176 } 177 178 static CellTypeState make_lock_ref(int bci) { 179 assert(bci >= 0 && bci < ref_data_mask, "line out of range"); 180 return make_any(ref_bit | not_bottom_info_bit | (bci & ref_data_mask)); 181 } 182 183 // Query methods: 184 bool is_bottom() const { return _state == 0; } 185 bool is_live() const { return ((_state & live_bits_mask) != 0); } 186 bool is_valid_state() const { 187 // Uninitialized and value cells must contain no data in their info field: 188 if ((can_be_uninit() || can_be_value()) && !is_info_top()) { 189 return false; 190 } 191 // The top bit is only set when all info bits are set: 192 if (is_info_top() && ((_state & info_mask) != info_mask)) { 193 return false; 194 } 195 // The not_bottom_bit must be set when any other info bit is set: 196 if (is_info_bottom() && ((_state & info_mask) != 0)) { 197 return false; 198 } 199 return true; 200 } 201 202 bool is_address() const { return ((_state & bits_mask) == addr_bit); } 203 bool is_reference() const { return ((_state & bits_mask) == ref_bit); } 204 bool is_value() const { return ((_state & bits_mask) == val_bit); } 205 bool is_uninit() const { return ((_state & bits_mask) == (uint)uninit_bit); } 206 207 bool can_be_address() const { return ((_state & addr_bit) != 0); } 208 bool can_be_reference() const { return ((_state & ref_bit) != 0); } 209 bool can_be_value() const { return ((_state & val_bit) != 0); } 210 bool can_be_uninit() const { return ((_state & uninit_bit) != 0); } 211 212 bool is_info_bottom() const { return ((_state & not_bottom_info_bit) == 0); } 213 bool is_info_top() const { return ((_state & top_info_bit) != 0); } 214 int get_info() const { 215 assert((!is_info_top() && !is_info_bottom()), 216 "check to make sure top/bottom info is not used"); 217 return (_state & info_data_mask); 218 } 219 220 bool is_good_address() const { return is_address() && !is_info_top(); } 221 bool is_lock_reference() const { 222 return ((_state & (bits_mask | top_info_bit | ref_not_lock_bit)) == ref_bit); 223 } 224 bool is_nonlock_reference() const { 225 return ((_state & (bits_mask | top_info_bit | ref_not_lock_bit)) == (ref_bit | ref_not_lock_bit)); 226 } 227 228 bool equal(CellTypeState a) const { return _state == a._state; } 229 bool equal_kind(CellTypeState a) const { 230 return (_state & bits_mask) == (a._state & bits_mask); 231 } 232 233 char to_char() const; 234 235 // Merge 236 CellTypeState merge (CellTypeState cts, int slot) const; 237 238 // Debugging output 239 void print(outputStream *os); 240 241 // Default values of common values 242 static CellTypeState bottom; 243 static CellTypeState uninit; 244 static CellTypeState ref; 245 static CellTypeState value; 246 static CellTypeState refUninit; 247 static CellTypeState varUninit; 248 static CellTypeState top; 249 static CellTypeState addr; 250 }; 251 252 253 // 254 // BasicBlockStruct 255 // 256 class BasicBlock: ResourceObj { 257 private: 258 bool _changed; // Reached a fixpoint or not 259 public: 260 enum Constants { 261 _dead_basic_block = -2, 262 _unreached = -1 // Alive but not yet reached by analysis 263 // >=0 // Alive and has a merged state 264 }; 265 266 int _bci; // Start of basic block 267 int _end_bci; // Bci of last instruction in basicblock 268 int _max_locals; // Determines split between vars and stack 269 int _max_stack; // Determines split between stack and monitors 270 CellTypeState* _state; // State (vars, stack) at entry. 271 int _stack_top; // -1 indicates bottom stack value. 272 int _monitor_top; // -1 indicates bottom monitor stack value. 273 274 CellTypeState* vars() { return _state; } 275 CellTypeState* stack() { return _state + _max_locals; } 276 277 bool changed() { return _changed; } 278 void set_changed(bool s) { _changed = s; } 279 280 bool is_reachable() const { return _stack_top >= 0; } // Analysis has reached this basicblock 281 282 // All basicblocks that are unreachable are going to have a _stack_top == _dead_basic_block. 283 // This info. is setup in a pre-parse before the real abstract interpretation starts. 284 bool is_dead() const { return _stack_top == _dead_basic_block; } 285 bool is_alive() const { return _stack_top != _dead_basic_block; } 286 void mark_as_alive() { assert(is_dead(), "must be dead"); _stack_top = _unreached; } 287 }; 288 289 290 // 291 // GenerateOopMap 292 // 293 // Main class used to compute the pointer-maps in a Method 294 // 295 class GenerateOopMap { 296 protected: 297 298 // _monitor_top is set to this constant to indicate that a monitor matching 299 // problem was encountered prior to this point in control flow. 300 enum { bad_monitors = -1 }; 301 302 // Main variables 303 methodHandle _method; // The method we are examine 304 RetTable _rt; // Contains the return address mappings 305 int _max_locals; // Cached value of no. of locals 306 int _max_stack; // Cached value of max. stack depth 307 int _max_monitors; // Cached value of max. monitor stack depth 308 int _has_exceptions; // True, if exceptions exist for method 309 bool _got_error; // True, if an error occurred during interpretation. 310 Handle _exception; // Exception if got_error is true. 311 bool _did_rewriting; // was bytecodes rewritten 312 bool _did_relocation; // was relocation necessary 313 bool _monitor_safe; // The monitors in this method have been determined 314 // to be safe. 315 316 // Working Cell type state 317 int _state_len; // Size of states 318 CellTypeState *_state; // list of states 319 char *_state_vec_buf; // Buffer used to print a readable version of a state 320 int _stack_top; 321 int _monitor_top; 322 323 // Timing and statistics 324 static elapsedTimer _total_oopmap_time; // Holds cumulative oopmap generation time 325 static uint64_t _total_byte_count; // Holds cumulative number of bytes inspected 326 327 // Cell type methods 328 void init_state(); 329 void make_context_uninitialized (); 330 int methodsig_to_effect (Symbol* signature, bool isStatic, CellTypeState* effect); 331 bool merge_local_state_vectors (CellTypeState* cts, CellTypeState* bbts); 332 bool merge_monitor_state_vectors(CellTypeState* cts, CellTypeState* bbts); 333 void copy_state (CellTypeState *dst, CellTypeState *src); 334 void merge_state_into_bb (BasicBlock *bb); 335 static void merge_state (GenerateOopMap *gom, int bcidelta, int* data); 336 void set_var (int localNo, CellTypeState cts); 337 CellTypeState get_var (int localNo); 338 CellTypeState pop (); 339 void push (CellTypeState cts); 340 CellTypeState monitor_pop (); 341 void monitor_push (CellTypeState cts); 342 CellTypeState * vars () { return _state; } 343 CellTypeState * stack () { return _state+_max_locals; } 344 CellTypeState * monitors () { return _state+_max_locals+_max_stack; } 345 346 void replace_all_CTS_matches (CellTypeState match, 347 CellTypeState replace); 348 void print_states (outputStream *os, CellTypeState *vector, int num); 349 void print_current_state (outputStream *os, 350 BytecodeStream *itr, 351 bool detailed); 352 void report_monitor_mismatch (const char *msg); 353 354 // Basicblock info 355 BasicBlock * _basic_blocks; // Array of basicblock info 356 int _gc_points; 357 int _bb_count; 358 ResourceBitMap _bb_hdr_bits; 359 360 // Basicblocks methods 361 void initialize_bb (); 362 void mark_bbheaders_and_count_gc_points(); 363 bool is_bb_header (int bci) const { 364 return _bb_hdr_bits.at(bci); 365 } 366 int gc_points () const { return _gc_points; } 367 int bb_count () const { return _bb_count; } 368 void set_bbmark_bit (int bci); 369 BasicBlock * get_basic_block_at (int bci) const; 370 BasicBlock * get_basic_block_containing (int bci) const; 371 void interp_bb (BasicBlock *bb); 372 void restore_state (BasicBlock *bb); 373 int next_bb_start_pc (BasicBlock *bb); 374 void update_basic_blocks (int bci, int delta, int new_method_size); 375 static void bb_mark_fct (GenerateOopMap *c, int deltaBci, int *data); 376 377 // Dead code detection 378 void mark_reachable_code(); 379 static void reachable_basicblock (GenerateOopMap *c, int deltaBci, int *data); 380 381 // Interpretation methods (primary) 382 void do_interpretation (); 383 void init_basic_blocks (); 384 void setup_method_entry_state (); 385 void interp_all (); 386 387 // Interpretation methods (secondary) 388 void interp1 (BytecodeStream *itr); 389 void do_exception_edge (BytecodeStream *itr); 390 void check_type (CellTypeState expected, CellTypeState actual); 391 void ppstore (CellTypeState *in, int loc_no); 392 void ppload (CellTypeState *out, int loc_no); 393 void ppush1 (CellTypeState in); 394 void ppush (CellTypeState *in); 395 void ppop1 (CellTypeState out); 396 void ppop (CellTypeState *out); 397 void ppop_any (int poplen); 398 void pp (CellTypeState *in, CellTypeState *out); 399 void pp_new_ref (CellTypeState *in, int bci); 400 void ppdupswap (int poplen, const char *out); 401 void do_ldc (int bci); 402 void do_astore (int idx); 403 void do_jsr (int delta); 404 void do_field (int is_get, int is_static, int idx, int bci, Bytecodes::Code bc); 405 void do_method (int is_static, int idx, int bci, Bytecodes::Code bc); 406 void do_multianewarray (int dims, int bci); 407 void do_monitorenter (int bci); 408 void do_monitorexit (int bci); 409 void do_return_monitor_check (); 410 void do_checkcast (); 411 CellTypeState *signature_to_effect (const Symbol* sig, int bci, CellTypeState *out); 412 int copy_cts (CellTypeState *dst, CellTypeState *src); 413 414 // Error handling 415 void error_work (const char *format, va_list ap) ATTRIBUTE_PRINTF(2, 0); 416 void report_error (const char *format, ...) ATTRIBUTE_PRINTF(2, 3); 417 void verify_error (const char *format, ...) ATTRIBUTE_PRINTF(2, 3); 418 bool got_error() { return _got_error; } 419 420 // Create result set 421 bool _report_result; 422 bool _report_result_for_send; // Unfortunately, stackmaps for sends are special, so we need some extra 423 BytecodeStream *_itr_send; // variables to handle them properly. 424 425 void report_result (); 426 427 // Initvars 428 GrowableArray<intptr_t> * _init_vars; 429 430 void initialize_vars (); 431 void add_to_ref_init_set (int localNo); 432 433 // Conflicts rewrite logic 434 bool _conflict; // True, if a conflict occurred during interpretation 435 int _nof_refval_conflicts; // No. of conflicts that require rewrites 436 int * _new_var_map; 437 438 void record_refval_conflict (int varNo); 439 void rewrite_refval_conflicts (); 440 void rewrite_refval_conflict (int from, int to); 441 bool rewrite_refval_conflict_inst (BytecodeStream *i, int from, int to); 442 bool rewrite_load_or_store (BytecodeStream *i, Bytecodes::Code bc, Bytecodes::Code bc0, unsigned int varNo); 443 444 void expand_current_instr (int bci, int ilen, int newIlen, u_char inst_buffer[]); 445 bool is_astore (BytecodeStream *itr, int *index); 446 bool is_aload (BytecodeStream *itr, int *index); 447 448 // List of bci's where a return address is on top of the stack 449 GrowableArray<int>* _ret_adr_tos; 450 451 bool stack_top_holds_ret_addr (int bci); 452 void compute_ret_adr_at_TOS (); 453 void update_ret_adr_at_TOS (int bci, int delta); 454 455 int binsToHold (int no) { return ((no+(BitsPerWord-1))/BitsPerWord); } 456 char *state_vec_to_string (CellTypeState* vec, int len); 457 458 // Helper method. Can be used in subclasses to fx. calculate gc_points. If the current instruction 459 // is a control transfer, then calls the jmpFct all possible destinations. 460 void ret_jump_targets_do (BytecodeStream *bcs, jmpFct_t jmpFct, int varNo,int *data); 461 bool jump_targets_do (BytecodeStream *bcs, jmpFct_t jmpFct, int *data); 462 463 friend class RelocCallback; 464 public: 465 GenerateOopMap(const methodHandle& method); 466 467 // Compute the map - returns true on success and false on error. 468 bool compute_map(Thread* current); 469 // Returns the exception related to any error, if the map was computed by a suitable JavaThread. 470 Handle exception() { return _exception; } 471 472 void result_for_basicblock(int bci); // Do a callback on fill_stackmap_for_opcodes for basicblock containing bci 473 474 // Query 475 int max_locals() const { return _max_locals; } 476 Method* method() const { return _method(); } 477 methodHandle method_as_handle() const { return _method; } 478 479 bool did_rewriting() { return _did_rewriting; } 480 bool did_relocation() { return _did_relocation; } 481 482 static void print_time(); 483 484 // Monitor query 485 bool monitor_safe() { return _monitor_safe; } 486 487 // Specialization methods. Intended use: 488 // - possible_gc_point must return true for every bci for which the stackmaps must be returned 489 // - fill_stackmap_prolog is called just before the result is reported. The arguments tells the estimated 490 // number of gc points 491 // - fill_stackmap_for_opcodes is called once for each bytecode index in order (0...code_length-1) 492 // - fill_stackmap_epilog is called after all results has been reported. Note: Since the algorithm does not report 493 // stackmaps for deadcode, fewer gc_points might have been encountered than assumed during the epilog. It is the 494 // responsibility of the subclass to count the correct number. 495 // - fill_init_vars are called once with the result of the init_vars computation 496 // 497 // All these methods are used during a call to: compute_map. Note: Non of the return results are valid 498 // after compute_map returns, since all values are allocated as resource objects. 499 // 500 // All virtual method must be implemented in subclasses 501 virtual bool allow_rewrites () const { return false; } 502 virtual bool report_results () const { return true; } 503 virtual bool report_init_vars () const { return true; } 504 virtual bool possible_gc_point (BytecodeStream *bcs) { ShouldNotReachHere(); return false; } 505 virtual void fill_stackmap_prolog (int nof_gc_points) { ShouldNotReachHere(); } 506 virtual void fill_stackmap_epilog () { ShouldNotReachHere(); } 507 virtual void fill_stackmap_for_opcodes (BytecodeStream *bcs, 508 CellTypeState* vars, 509 CellTypeState* stack, 510 int stackTop) { ShouldNotReachHere(); } 511 virtual void fill_init_vars (GrowableArray<intptr_t> *init_vars) { ShouldNotReachHere();; } 512 }; 513 514 // 515 // Subclass of the GenerateOopMap Class that just do rewrites of the method, if needed. 516 // It does not store any oopmaps. 517 // 518 class ResolveOopMapConflicts: public GenerateOopMap { 519 private: 520 521 bool _must_clear_locals; 522 523 virtual bool report_results() const { return false; } 524 virtual bool report_init_vars() const { return true; } 525 virtual bool allow_rewrites() const { return true; } 526 virtual bool possible_gc_point (BytecodeStream *bcs) { return false; } 527 virtual void fill_stackmap_prolog (int nof_gc_points) {} 528 virtual void fill_stackmap_epilog () {} 529 virtual void fill_stackmap_for_opcodes (BytecodeStream *bcs, 530 CellTypeState* vars, 531 CellTypeState* stack, 532 int stack_top) {} 533 virtual void fill_init_vars (GrowableArray<intptr_t> *init_vars) { _must_clear_locals = init_vars->length() > 0; } 534 535 #ifndef PRODUCT 536 // Statistics 537 static int _nof_invocations; 538 static int _nof_rewrites; 539 static int _nof_relocations; 540 #endif 541 542 public: 543 ResolveOopMapConflicts(const methodHandle& method) : GenerateOopMap(method) { _must_clear_locals = false; }; 544 545 methodHandle do_potential_rewrite(TRAPS); 546 bool must_clear_locals() const { return _must_clear_locals; } 547 }; 548 549 550 // 551 // Subclass used by the compiler to generate pairing information 552 // 553 class GeneratePairingInfo: public GenerateOopMap { 554 private: 555 556 virtual bool report_results() const { return false; } 557 virtual bool report_init_vars() const { return false; } 558 virtual bool allow_rewrites() const { return false; } 559 virtual bool possible_gc_point (BytecodeStream *bcs) { return false; } 560 virtual void fill_stackmap_prolog (int nof_gc_points) {} 561 virtual void fill_stackmap_epilog () {} 562 virtual void fill_stackmap_for_opcodes (BytecodeStream *bcs, 563 CellTypeState* vars, 564 CellTypeState* stack, 565 int stack_top) {} 566 virtual void fill_init_vars (GrowableArray<intptr_t> *init_vars) {} 567 public: 568 GeneratePairingInfo(const methodHandle& method) : GenerateOopMap(method) {}; 569 570 // Call compute_map() to generate info. 571 }; 572 573 #endif // SHARE_OOPS_GENERATEOOPMAP_HPP