1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "cds/archiveHeapLoader.hpp"
  27 #include "cds/cdsConfig.hpp"
  28 #include "cds/heapShared.hpp"
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/classLoaderData.inline.hpp"
  31 #include "classfile/classLoaderDataGraph.inline.hpp"
  32 #include "classfile/javaClasses.inline.hpp"
  33 #include "classfile/moduleEntry.hpp"
  34 #include "classfile/systemDictionary.hpp"
  35 #include "classfile/systemDictionaryShared.hpp"
  36 #include "classfile/vmClasses.hpp"
  37 #include "classfile/vmSymbols.hpp"
  38 #include "gc/shared/collectedHeap.inline.hpp"
  39 #include "jvm_io.h"
  40 #include "logging/log.hpp"
  41 #include "memory/metadataFactory.hpp"
  42 #include "memory/metaspaceClosure.hpp"
  43 #include "memory/oopFactory.hpp"
  44 #include "memory/resourceArea.hpp"
  45 #include "memory/universe.hpp"
  46 #include "oops/compressedOops.inline.hpp"
  47 #include "oops/instanceKlass.hpp"
  48 #include "oops/klass.inline.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/oopHandle.inline.hpp"
  52 #include "prims/jvmtiExport.hpp"
  53 #include "runtime/atomic.hpp"
  54 #include "runtime/handles.inline.hpp"
  55 #include "runtime/perfData.hpp"
  56 #include "utilities/macros.hpp"
  57 #include "utilities/powerOfTwo.hpp"
  58 #include "utilities/rotate_bits.hpp"
  59 #include "utilities/stack.inline.hpp"
  60 
  61 void Klass::set_java_mirror(Handle m) {
  62   assert(!m.is_null(), "New mirror should never be null.");
  63   assert(_java_mirror.is_empty(), "should only be used to initialize mirror");
  64   _java_mirror = class_loader_data()->add_handle(m);
  65 }
  66 
  67 bool Klass::is_cloneable() const {
  68   return _misc_flags.is_cloneable_fast() ||
  69          is_subtype_of(vmClasses::Cloneable_klass());
  70 }
  71 
  72 void Klass::set_is_cloneable() {
  73   if (name() == vmSymbols::java_lang_invoke_MemberName()) {
  74     assert(is_final(), "no subclasses allowed");
  75     // MemberName cloning should not be intrinsified and always happen in JVM_Clone.
  76   } else if (is_instance_klass() && InstanceKlass::cast(this)->reference_type() != REF_NONE) {
  77     // Reference cloning should not be intrinsified and always happen in JVM_Clone.
  78   } else {
  79     _misc_flags.set_is_cloneable_fast(true);
  80   }
  81 }
  82 
  83 uint8_t Klass::compute_hash_slot(Symbol* n) {
  84   uint hash_code;
  85   // Special cases for the two superclasses of all Array instances.
  86   // Code elsewhere assumes, for all instances of ArrayKlass, that
  87   // these two interfaces will be in this order.
  88 
  89   // We ensure there are some empty slots in the hash table between
  90   // these two very common interfaces because if they were adjacent
  91   // (e.g. Slots 0 and 1), then any other class which hashed to 0 or 1
  92   // would result in a probe length of 3.
  93   if (n == vmSymbols::java_lang_Cloneable()) {
  94     hash_code = 0;
  95   } else if (n == vmSymbols::java_io_Serializable()) {
  96     hash_code = SECONDARY_SUPERS_TABLE_SIZE / 2;
  97   } else {
  98     auto s = (const jbyte*) n->bytes();
  99     hash_code = java_lang_String::hash_code(s, n->utf8_length());
 100     // We use String::hash_code here (rather than e.g.
 101     // Symbol::identity_hash()) in order to have a hash code that
 102     // does not change from run to run. We want that because the
 103     // hash value for a secondary superclass appears in generated
 104     // code as a constant.
 105 
 106     // This constant is magic: see Knuth, "Fibonacci Hashing".
 107     constexpr uint multiplier
 108       = 2654435769; // (uint)(((u8)1 << 32) / ((1 + sqrt(5)) / 2 ))
 109     constexpr uint hash_shift = sizeof(hash_code) * 8 - 6;
 110     // The leading bits of the least significant half of the product.
 111     hash_code = (hash_code * multiplier) >> hash_shift;
 112 
 113     if (StressSecondarySupers) {
 114       // Generate many hash collisions in order to stress-test the
 115       // linear search fallback.
 116       hash_code = hash_code % 3;
 117       hash_code = hash_code * (SECONDARY_SUPERS_TABLE_SIZE / 3);
 118     }
 119   }
 120 
 121   return (hash_code & SECONDARY_SUPERS_TABLE_MASK);
 122 }
 123 
 124 void Klass::set_name(Symbol* n) {
 125   _name = n;
 126 
 127   if (_name != nullptr) {
 128     _name->increment_refcount();
 129   }
 130 
 131   {
 132     elapsedTimer selftime;
 133     selftime.start();
 134 
 135     _hash_slot = compute_hash_slot(n);
 136     assert(_hash_slot < SECONDARY_SUPERS_TABLE_SIZE, "required");
 137 
 138     selftime.stop();
 139     if (UsePerfData) {
 140       ClassLoader::perf_secondary_hash_time()->inc(selftime.ticks());
 141     }
 142   }
 143 
 144   if (CDSConfig::is_dumping_archive() && is_instance_klass()) {
 145     SystemDictionaryShared::init_dumptime_info(InstanceKlass::cast(this));
 146   }
 147 }
 148 
 149 bool Klass::is_subclass_of(const Klass* k) const {
 150   // Run up the super chain and check
 151   if (this == k) return true;
 152 
 153   Klass* t = const_cast<Klass*>(this)->super();
 154 
 155   while (t != nullptr) {
 156     if (t == k) return true;
 157     t = t->super();
 158   }
 159   return false;
 160 }
 161 
 162 void Klass::release_C_heap_structures(bool release_constant_pool) {
 163   if (_name != nullptr) _name->decrement_refcount();
 164 }
 165 
 166 bool Klass::linear_search_secondary_supers(const Klass* k) const {
 167   // Scan the array-of-objects for a match
 168   // FIXME: We could do something smarter here, maybe a vectorized
 169   // comparison or a binary search, but is that worth any added
 170   // complexity?
 171   int cnt = secondary_supers()->length();
 172   for (int i = 0; i < cnt; i++) {
 173     if (secondary_supers()->at(i) == k) {
 174       return true;
 175     }
 176   }
 177   return false;
 178 }
 179 
 180 // Given a secondary superklass k, an initial array index, and an
 181 // occupancy bitmap rotated such that Bit 1 is the next bit to test,
 182 // search for k.
 183 bool Klass::fallback_search_secondary_supers(const Klass* k, int index, uintx rotated_bitmap) const {
 184   // Once the occupancy bitmap is almost full, it's faster to use a
 185   // linear search.
 186   if (secondary_supers()->length() > SECONDARY_SUPERS_TABLE_SIZE - 2) {
 187     return linear_search_secondary_supers(k);
 188   }
 189 
 190   // This is conventional linear probing, but instead of terminating
 191   // when a null entry is found in the table, we maintain a bitmap
 192   // in which a 0 indicates missing entries.
 193 
 194   precond((int)population_count(rotated_bitmap) == secondary_supers()->length());
 195 
 196   // The check for secondary_supers()->length() <= SECONDARY_SUPERS_TABLE_SIZE - 2
 197   // at the start of this function guarantees there are 0s in the
 198   // bitmap, so this loop eventually terminates.
 199   while ((rotated_bitmap & 2) != 0) {
 200     if (++index == secondary_supers()->length()) {
 201       index = 0;
 202     }
 203     if (secondary_supers()->at(index) == k) {
 204       return true;
 205     }
 206     rotated_bitmap = rotate_right(rotated_bitmap, 1);
 207   }
 208   return false;
 209 }
 210 
 211 // Return self, except for abstract classes with exactly 1
 212 // implementor.  Then return the 1 concrete implementation.
 213 Klass *Klass::up_cast_abstract() {
 214   Klass *r = this;
 215   while( r->is_abstract() ) {   // Receiver is abstract?
 216     Klass *s = r->subklass();   // Check for exactly 1 subklass
 217     if (s == nullptr || s->next_sibling() != nullptr) // Oops; wrong count; give up
 218       return this;              // Return 'this' as a no-progress flag
 219     r = s;                    // Loop till find concrete class
 220   }
 221   return r;                   // Return the 1 concrete class
 222 }
 223 
 224 // Find LCA in class hierarchy
 225 Klass *Klass::LCA( Klass *k2 ) {
 226   Klass *k1 = this;
 227   while( 1 ) {
 228     if( k1->is_subtype_of(k2) ) return k2;
 229     if( k2->is_subtype_of(k1) ) return k1;
 230     k1 = k1->super();
 231     k2 = k2->super();
 232   }
 233 }
 234 
 235 
 236 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
 237   ResourceMark rm(THREAD);
 238   THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
 239             : vmSymbols::java_lang_InstantiationException(), external_name());
 240 }
 241 
 242 
 243 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
 244   ResourceMark rm(THREAD);
 245   assert(s != nullptr, "Throw NPE!");
 246   THROW_MSG(vmSymbols::java_lang_ArrayStoreException(),
 247             err_msg("arraycopy: source type %s is not an array", s->klass()->external_name()));
 248 }
 249 
 250 
 251 void Klass::initialize(TRAPS) {
 252   ShouldNotReachHere();
 253 }
 254 
 255 Klass* Klass::find_field(Symbol* name, Symbol* sig, fieldDescriptor* fd) const {
 256 #ifdef ASSERT
 257   tty->print_cr("Error: find_field called on a klass oop."
 258                 " Likely error: reflection method does not correctly"
 259                 " wrap return value in a mirror object.");
 260 #endif
 261   ShouldNotReachHere();
 262   return nullptr;
 263 }
 264 
 265 Method* Klass::uncached_lookup_method(const Symbol* name, const Symbol* signature,
 266                                       OverpassLookupMode overpass_mode,
 267                                       PrivateLookupMode private_mode) const {
 268 #ifdef ASSERT
 269   tty->print_cr("Error: uncached_lookup_method called on a klass oop."
 270                 " Likely error: reflection method does not correctly"
 271                 " wrap return value in a mirror object.");
 272 #endif
 273   ShouldNotReachHere();
 274   return nullptr;
 275 }
 276 
 277 Klass::Klass() : _kind(UnknownKlassKind) {
 278   assert(CDSConfig::is_dumping_static_archive() || CDSConfig::is_using_archive(), "only for cds");
 279 }
 280 
 281 // "Normal" instantiation is preceded by a MetaspaceObj allocation
 282 // which zeros out memory - calloc equivalent.
 283 // The constructor is also used from CppVtableCloner,
 284 // which doesn't zero out the memory before calling the constructor.
 285 Klass::Klass(KlassKind kind) : _kind(kind),
 286                                _shared_class_path_index(-1) {
 287   CDS_ONLY(_shared_class_flags = 0;)
 288   CDS_JAVA_HEAP_ONLY(_archived_mirror_index = -1;)
 289   _primary_supers[0] = this;
 290   set_super_check_offset(in_bytes(primary_supers_offset()));
 291 }
 292 
 293 jint Klass::array_layout_helper(BasicType etype) {
 294   assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
 295   // Note that T_ARRAY is not allowed here.
 296   int  hsize = arrayOopDesc::base_offset_in_bytes(etype);
 297   int  esize = type2aelembytes(etype);
 298   bool isobj = (etype == T_OBJECT);
 299   int  tag   =  isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
 300   int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
 301 
 302   assert(lh < (int)_lh_neutral_value, "must look like an array layout");
 303   assert(layout_helper_is_array(lh), "correct kind");
 304   assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
 305   assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
 306   assert(layout_helper_header_size(lh) == hsize, "correct decode");
 307   assert(layout_helper_element_type(lh) == etype, "correct decode");
 308   assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
 309 
 310   return lh;
 311 }
 312 
 313 bool Klass::can_be_primary_super_slow() const {
 314   if (super() == nullptr)
 315     return true;
 316   else if (super()->super_depth() >= primary_super_limit()-1)
 317     return false;
 318   else
 319     return true;
 320 }
 321 
 322 void Klass::set_secondary_supers(Array<Klass*>* secondaries, uintx bitmap) {
 323 #ifdef ASSERT
 324   if (secondaries != nullptr) {
 325     uintx real_bitmap = compute_secondary_supers_bitmap(secondaries);
 326     assert(bitmap == real_bitmap, "must be");
 327     assert(secondaries->length() >= (int)population_count(bitmap), "must be");
 328   }
 329 #endif
 330   _secondary_supers_bitmap = bitmap;
 331   _secondary_supers = secondaries;
 332 
 333   if (secondaries != nullptr) {
 334     LogMessage(class, load) msg;
 335     NonInterleavingLogStream log {LogLevel::Debug, msg};
 336     if (log.is_enabled()) {
 337       ResourceMark rm;
 338       log.print_cr("set_secondary_supers: hash_slot: %d; klass: %s", hash_slot(), external_name());
 339       print_secondary_supers_on(&log);
 340     }
 341   }
 342 }
 343 
 344 // Hashed secondary superclasses
 345 //
 346 // We use a compressed 64-entry hash table with linear probing. We
 347 // start by creating a hash table in the usual way, followed by a pass
 348 // that removes all the null entries. To indicate which entries would
 349 // have been null we use a bitmap that contains a 1 in each position
 350 // where an entry is present, 0 otherwise. This bitmap also serves as
 351 // a kind of Bloom filter, which in many cases allows us quickly to
 352 // eliminate the possibility that something is a member of a set of
 353 // secondaries.
 354 uintx Klass::hash_secondary_supers(Array<Klass*>* secondaries, bool rewrite) {
 355   const int length = secondaries->length();
 356 
 357   if (length == 0) {
 358     return SECONDARY_SUPERS_BITMAP_EMPTY;
 359   }
 360 
 361   if (length == 1) {
 362     int hash_slot = secondaries->at(0)->hash_slot();
 363     return uintx(1) << hash_slot;
 364   }
 365 
 366   // Invariant: _secondary_supers.length >= population_count(_secondary_supers_bitmap)
 367 
 368   // Don't attempt to hash a table that's completely full, because in
 369   // the case of an absent interface linear probing would not
 370   // terminate.
 371   if (length >= SECONDARY_SUPERS_TABLE_SIZE) {
 372     return SECONDARY_SUPERS_BITMAP_FULL;
 373   }
 374 
 375   {
 376     PerfTraceTime ptt(ClassLoader::perf_secondary_hash_time());
 377 
 378     ResourceMark rm;
 379     uintx bitmap = SECONDARY_SUPERS_BITMAP_EMPTY;
 380     auto hashed_secondaries = new GrowableArray<Klass*>(SECONDARY_SUPERS_TABLE_SIZE,
 381                                                         SECONDARY_SUPERS_TABLE_SIZE, nullptr);
 382 
 383     for (int j = 0; j < length; j++) {
 384       Klass* k = secondaries->at(j);
 385       hash_insert(k, hashed_secondaries, bitmap);
 386     }
 387 
 388     // Pack the hashed secondaries array by copying it into the
 389     // secondaries array, sans nulls, if modification is allowed.
 390     // Otherwise, validate the order.
 391     int i = 0;
 392     for (int slot = 0; slot < SECONDARY_SUPERS_TABLE_SIZE; slot++) {
 393       bool has_element = ((bitmap >> slot) & 1) != 0;
 394       assert(has_element == (hashed_secondaries->at(slot) != nullptr), "");
 395       if (has_element) {
 396         Klass* k = hashed_secondaries->at(slot);
 397         if (rewrite) {
 398           secondaries->at_put(i, k);
 399         } else if (secondaries->at(i) != k) {
 400           assert(false, "broken secondary supers hash table");
 401           return SECONDARY_SUPERS_BITMAP_FULL;
 402         }
 403         i++;
 404       }
 405     }
 406     assert(i == secondaries->length(), "mismatch");
 407     postcond((int)population_count(bitmap) == secondaries->length());
 408 
 409     return bitmap;
 410   }
 411 }
 412 
 413 void Klass::hash_insert(Klass* klass, GrowableArray<Klass*>* secondaries, uintx& bitmap) {
 414   assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, "");
 415 
 416   int dist = 0;
 417   for (int slot = klass->hash_slot(); true; slot = (slot + 1) & SECONDARY_SUPERS_TABLE_MASK) {
 418     Klass* existing = secondaries->at(slot);
 419     assert(((bitmap >> slot) & 1) == (existing != nullptr), "mismatch");
 420     if (existing == nullptr) { // no conflict
 421       secondaries->at_put(slot, klass);
 422       bitmap |= uintx(1) << slot;
 423       assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, "");
 424       return;
 425     } else {
 426       // Use Robin Hood hashing to minimize the worst case search.
 427       // Also, every permutation of the insertion sequence produces
 428       // the same final Robin Hood hash table, provided that a
 429       // consistent tie breaker is used.
 430       int existing_dist = (slot - existing->hash_slot()) & SECONDARY_SUPERS_TABLE_MASK;
 431       if (existing_dist < dist
 432           // This tie breaker ensures that the hash order is maintained.
 433           || ((existing_dist == dist)
 434               && (uintptr_t(existing) < uintptr_t(klass)))) {
 435         Klass* tmp = secondaries->at(slot);
 436         secondaries->at_put(slot, klass);
 437         klass = tmp;
 438         dist = existing_dist;
 439       }
 440       ++dist;
 441     }
 442   }
 443 }
 444 
 445 Array<Klass*>* Klass::pack_secondary_supers(ClassLoaderData* loader_data,
 446                                             GrowableArray<Klass*>* primaries,
 447                                             GrowableArray<Klass*>* secondaries,
 448                                             uintx& bitmap, TRAPS) {
 449   int new_length = primaries->length() + secondaries->length();
 450   Array<Klass*>* secondary_supers = MetadataFactory::new_array<Klass*>(loader_data, new_length, CHECK_NULL);
 451 
 452   // Combine the two arrays into a metadata object to pack the array.
 453   // The primaries are added in the reverse order, then the secondaries.
 454   int fill_p = primaries->length();
 455   for (int j = 0; j < fill_p; j++) {
 456     secondary_supers->at_put(j, primaries->pop());  // add primaries in reverse order.
 457   }
 458   for( int j = 0; j < secondaries->length(); j++ ) {
 459     secondary_supers->at_put(j+fill_p, secondaries->at(j));  // add secondaries on the end.
 460   }
 461 #ifdef ASSERT
 462   // We must not copy any null placeholders left over from bootstrap.
 463   for (int j = 0; j < secondary_supers->length(); j++) {
 464     assert(secondary_supers->at(j) != nullptr, "correct bootstrapping order");
 465   }
 466 #endif
 467 
 468   bitmap = hash_secondary_supers(secondary_supers, /*rewrite=*/true); // rewrites freshly allocated array
 469   return secondary_supers;
 470 }
 471 
 472 uintx Klass::compute_secondary_supers_bitmap(Array<Klass*>* secondary_supers) {
 473   return hash_secondary_supers(secondary_supers, /*rewrite=*/false); // no rewrites allowed
 474 }
 475 
 476 uint8_t Klass::compute_home_slot(Klass* k, uintx bitmap) {
 477   uint8_t hash = k->hash_slot();
 478   if (hash > 0) {
 479     return population_count(bitmap << (SECONDARY_SUPERS_TABLE_SIZE - hash));
 480   }
 481   return 0;
 482 }
 483 
 484 
 485 void Klass::initialize_supers(Klass* k, Array<InstanceKlass*>* transitive_interfaces, TRAPS) {
 486   if (k == nullptr) {
 487     set_super(nullptr);
 488     _primary_supers[0] = this;
 489     assert(super_depth() == 0, "Object must already be initialized properly");
 490   } else if (k != super() || k == vmClasses::Object_klass()) {
 491     assert(super() == nullptr || super() == vmClasses::Object_klass(),
 492            "initialize this only once to a non-trivial value");
 493     set_super(k);
 494     Klass* sup = k;
 495     int sup_depth = sup->super_depth();
 496     juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
 497     if (!can_be_primary_super_slow())
 498       my_depth = primary_super_limit();
 499     for (juint i = 0; i < my_depth; i++) {
 500       _primary_supers[i] = sup->_primary_supers[i];
 501     }
 502     Klass* *super_check_cell;
 503     if (my_depth < primary_super_limit()) {
 504       _primary_supers[my_depth] = this;
 505       super_check_cell = &_primary_supers[my_depth];
 506     } else {
 507       // Overflow of the primary_supers array forces me to be secondary.
 508       super_check_cell = &_secondary_super_cache;
 509     }
 510     set_super_check_offset(u4((address)super_check_cell - (address) this));
 511 
 512 #ifdef ASSERT
 513     {
 514       juint j = super_depth();
 515       assert(j == my_depth, "computed accessor gets right answer");
 516       Klass* t = this;
 517       while (!t->can_be_primary_super()) {
 518         t = t->super();
 519         j = t->super_depth();
 520       }
 521       for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
 522         assert(primary_super_of_depth(j1) == nullptr, "super list padding");
 523       }
 524       while (t != nullptr) {
 525         assert(primary_super_of_depth(j) == t, "super list initialization");
 526         t = t->super();
 527         --j;
 528       }
 529       assert(j == (juint)-1, "correct depth count");
 530     }
 531 #endif
 532   }
 533 
 534   if (secondary_supers() == nullptr) {
 535 
 536     // Now compute the list of secondary supertypes.
 537     // Secondaries can occasionally be on the super chain,
 538     // if the inline "_primary_supers" array overflows.
 539     int extras = 0;
 540     Klass* p;
 541     for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) {
 542       ++extras;
 543     }
 544 
 545     ResourceMark rm(THREAD);  // need to reclaim GrowableArrays allocated below
 546 
 547     // Compute the "real" non-extra secondaries.
 548     GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras, transitive_interfaces);
 549     if (secondaries == nullptr) {
 550       // secondary_supers set by compute_secondary_supers
 551       return;
 552     }
 553 
 554     GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);
 555 
 556     for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) {
 557       int i;                    // Scan for overflow primaries being duplicates of 2nd'arys
 558 
 559       // This happens frequently for very deeply nested arrays: the
 560       // primary superclass chain overflows into the secondary.  The
 561       // secondary list contains the element_klass's secondaries with
 562       // an extra array dimension added.  If the element_klass's
 563       // secondary list already contains some primary overflows, they
 564       // (with the extra level of array-ness) will collide with the
 565       // normal primary superclass overflows.
 566       for( i = 0; i < secondaries->length(); i++ ) {
 567         if( secondaries->at(i) == p )
 568           break;
 569       }
 570       if( i < secondaries->length() )
 571         continue;               // It's a dup, don't put it in
 572       primaries->push(p);
 573     }
 574     // Combine the two arrays into a metadata object to pack the array.
 575     uintx bitmap = 0;
 576     Array<Klass*>* s2 = pack_secondary_supers(class_loader_data(), primaries, secondaries, bitmap, CHECK);
 577     set_secondary_supers(s2, bitmap);
 578   }
 579 }
 580 
 581 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots,
 582                                                        Array<InstanceKlass*>* transitive_interfaces) {
 583   assert(num_extra_slots == 0, "override for complex klasses");
 584   assert(transitive_interfaces == nullptr, "sanity");
 585   set_secondary_supers(Universe::the_empty_klass_array(), Universe::the_empty_klass_bitmap());
 586   return nullptr;
 587 }
 588 
 589 
 590 // superklass links
 591 InstanceKlass* Klass::superklass() const {
 592   assert(super() == nullptr || super()->is_instance_klass(), "must be instance klass");
 593   return _super == nullptr ? nullptr : InstanceKlass::cast(_super);
 594 }
 595 
 596 // subklass links.  Used by the compiler (and vtable initialization)
 597 // May be cleaned concurrently, so must use the Compile_lock.
 598 // The log parameter is for clean_weak_klass_links to report unlinked classes.
 599 Klass* Klass::subklass(bool log) const {
 600   // Need load_acquire on the _subklass, because it races with inserts that
 601   // publishes freshly initialized data.
 602   for (Klass* chain = Atomic::load_acquire(&_subklass);
 603        chain != nullptr;
 604        // Do not need load_acquire on _next_sibling, because inserts never
 605        // create _next_sibling edges to dead data.
 606        chain = Atomic::load(&chain->_next_sibling))
 607   {
 608     if (chain->is_loader_alive()) {
 609       return chain;
 610     } else if (log) {
 611       if (log_is_enabled(Trace, class, unload)) {
 612         ResourceMark rm;
 613         log_trace(class, unload)("unlinking class (subclass): %s", chain->external_name());
 614       }
 615     }
 616   }
 617   return nullptr;
 618 }
 619 
 620 Klass* Klass::next_sibling(bool log) const {
 621   // Do not need load_acquire on _next_sibling, because inserts never
 622   // create _next_sibling edges to dead data.
 623   for (Klass* chain = Atomic::load(&_next_sibling);
 624        chain != nullptr;
 625        chain = Atomic::load(&chain->_next_sibling)) {
 626     // Only return alive klass, there may be stale klass
 627     // in this chain if cleaned concurrently.
 628     if (chain->is_loader_alive()) {
 629       return chain;
 630     } else if (log) {
 631       if (log_is_enabled(Trace, class, unload)) {
 632         ResourceMark rm;
 633         log_trace(class, unload)("unlinking class (sibling): %s", chain->external_name());
 634       }
 635     }
 636   }
 637   return nullptr;
 638 }
 639 
 640 void Klass::set_subklass(Klass* s) {
 641   assert(s != this, "sanity check");
 642   Atomic::release_store(&_subklass, s);
 643 }
 644 
 645 void Klass::set_next_sibling(Klass* s) {
 646   assert(s != this, "sanity check");
 647   // Does not need release semantics. If used by cleanup, it will link to
 648   // already safely published data, and if used by inserts, will be published
 649   // safely using cmpxchg.
 650   Atomic::store(&_next_sibling, s);
 651 }
 652 
 653 void Klass::append_to_sibling_list() {
 654   if (Universe::is_fully_initialized()) {
 655     assert_locked_or_safepoint(Compile_lock);
 656   }
 657   debug_only(verify();)
 658   // add ourselves to superklass' subklass list
 659   InstanceKlass* super = superklass();
 660   if (super == nullptr) return;     // special case: class Object
 661   assert((!super->is_interface()    // interfaces cannot be supers
 662           && (super->superklass() == nullptr || !is_interface())),
 663          "an interface can only be a subklass of Object");
 664 
 665   // Make sure there is no stale subklass head
 666   super->clean_subklass();
 667 
 668   for (;;) {
 669     Klass* prev_first_subklass = Atomic::load_acquire(&_super->_subklass);
 670     if (prev_first_subklass != nullptr) {
 671       // set our sibling to be the superklass' previous first subklass
 672       assert(prev_first_subklass->is_loader_alive(), "May not attach not alive klasses");
 673       set_next_sibling(prev_first_subklass);
 674     }
 675     // Note that the prev_first_subklass is always alive, meaning no sibling_next links
 676     // are ever created to not alive klasses. This is an important invariant of the lock-free
 677     // cleaning protocol, that allows us to safely unlink dead klasses from the sibling list.
 678     if (Atomic::cmpxchg(&super->_subklass, prev_first_subklass, this) == prev_first_subklass) {
 679       return;
 680     }
 681   }
 682   debug_only(verify();)
 683 }
 684 
 685 void Klass::clean_subklass() {
 686   for (;;) {
 687     // Need load_acquire, due to contending with concurrent inserts
 688     Klass* subklass = Atomic::load_acquire(&_subklass);
 689     if (subklass == nullptr || subklass->is_loader_alive()) {
 690       return;
 691     }
 692     // Try to fix _subklass until it points at something not dead.
 693     Atomic::cmpxchg(&_subklass, subklass, subklass->next_sibling());
 694   }
 695 }
 696 
 697 void Klass::clean_weak_klass_links(bool unloading_occurred, bool clean_alive_klasses) {
 698   if (!ClassUnloading || !unloading_occurred) {
 699     return;
 700   }
 701 
 702   Klass* root = vmClasses::Object_klass();
 703   Stack<Klass*, mtGC> stack;
 704 
 705   stack.push(root);
 706   while (!stack.is_empty()) {
 707     Klass* current = stack.pop();
 708 
 709     assert(current->is_loader_alive(), "just checking, this should be live");
 710 
 711     // Find and set the first alive subklass
 712     Klass* sub = current->subklass(true);
 713     current->clean_subklass();
 714     if (sub != nullptr) {
 715       stack.push(sub);
 716     }
 717 
 718     // Find and set the first alive sibling
 719     Klass* sibling = current->next_sibling(true);
 720     current->set_next_sibling(sibling);
 721     if (sibling != nullptr) {
 722       stack.push(sibling);
 723     }
 724 
 725     // Clean the implementors list and method data.
 726     if (clean_alive_klasses && current->is_instance_klass()) {
 727       InstanceKlass* ik = InstanceKlass::cast(current);
 728       ik->clean_weak_instanceklass_links();
 729 
 730       // JVMTI RedefineClasses creates previous versions that are not in
 731       // the class hierarchy, so process them here.
 732       while ((ik = ik->previous_versions()) != nullptr) {
 733         ik->clean_weak_instanceklass_links();
 734       }
 735     }
 736   }
 737 }
 738 
 739 void Klass::metaspace_pointers_do(MetaspaceClosure* it) {
 740   if (log_is_enabled(Trace, cds)) {
 741     ResourceMark rm;
 742     log_trace(cds)("Iter(Klass): %p (%s)", this, external_name());
 743   }
 744 
 745   it->push(&_name);
 746   it->push(&_secondary_supers);
 747   for (int i = 0; i < _primary_super_limit; i++) {
 748     it->push(&_primary_supers[i]);
 749   }
 750   it->push(&_super);
 751   if (!CDSConfig::is_dumping_archive()) {
 752     // If dumping archive, these may point to excluded classes. There's no need
 753     // to follow these pointers anyway, as they will be set to null in
 754     // remove_unshareable_info().
 755     it->push((Klass**)&_subklass);
 756     it->push((Klass**)&_next_sibling);
 757     it->push(&_next_link);
 758   }
 759 
 760   vtableEntry* vt = start_of_vtable();
 761   for (int i=0; i<vtable_length(); i++) {
 762     it->push(vt[i].method_addr());
 763   }
 764 }
 765 
 766 #if INCLUDE_CDS
 767 void Klass::remove_unshareable_info() {
 768   assert(CDSConfig::is_dumping_archive(),
 769           "only called during CDS dump time");
 770   JFR_ONLY(REMOVE_ID(this);)
 771   if (log_is_enabled(Trace, cds, unshareable)) {
 772     ResourceMark rm;
 773     log_trace(cds, unshareable)("remove: %s", external_name());
 774   }
 775 
 776   // _secondary_super_cache may be updated by an is_subtype_of() call
 777   // while ArchiveBuilder is copying metaspace objects. Let's reset it to
 778   // null and let it be repopulated at runtime.
 779   set_secondary_super_cache(nullptr);
 780 
 781   set_subklass(nullptr);
 782   set_next_sibling(nullptr);
 783   set_next_link(nullptr);
 784 
 785   // Null out class_loader_data because we don't share that yet.
 786   set_class_loader_data(nullptr);
 787   set_is_shared();
 788 
 789   // FIXME: validation in Klass::hash_secondary_supers() may fail for shared klasses.
 790   // Even though the bitmaps always match, the canonical order of elements in the table
 791   // is not guaranteed to stay the same (see tie breaker during Robin Hood hashing in Klass::hash_insert).
 792   //assert(compute_secondary_supers_bitmap(secondary_supers()) == _secondary_supers_bitmap, "broken table");
 793 }
 794 
 795 void Klass::remove_java_mirror() {
 796   assert(CDSConfig::is_dumping_archive(), "sanity");
 797   if (log_is_enabled(Trace, cds, unshareable)) {
 798     ResourceMark rm;
 799     log_trace(cds, unshareable)("remove java_mirror: %s", external_name());
 800   }
 801   // Just null out the mirror.  The class_loader_data() no longer exists.
 802   clear_java_mirror_handle();
 803 }
 804 
 805 void Klass::restore_unshareable_info(ClassLoaderData* loader_data, Handle protection_domain, TRAPS) {
 806   assert(is_klass(), "ensure C++ vtable is restored");
 807   assert(is_shared(), "must be set");
 808   assert(secondary_supers()->length() >= (int)population_count(_secondary_supers_bitmap), "must be");
 809   JFR_ONLY(RESTORE_ID(this);)
 810   if (log_is_enabled(Trace, cds, unshareable)) {
 811     ResourceMark rm(THREAD);
 812     oop class_loader = loader_data->class_loader();
 813     log_trace(cds, unshareable)("restore: %s with class loader: %s", external_name(),
 814       class_loader != nullptr ? class_loader->klass()->external_name() : "boot");
 815   }
 816 
 817   // If an exception happened during CDS restore, some of these fields may already be
 818   // set.  We leave the class on the CLD list, even if incomplete so that we don't
 819   // modify the CLD list outside a safepoint.
 820   if (class_loader_data() == nullptr) {
 821     set_class_loader_data(loader_data);
 822 
 823     // Add to class loader list first before creating the mirror
 824     // (same order as class file parsing)
 825     loader_data->add_class(this);
 826   }
 827 
 828   Handle loader(THREAD, loader_data->class_loader());
 829   ModuleEntry* module_entry = nullptr;
 830   Klass* k = this;
 831   if (k->is_objArray_klass()) {
 832     k = ObjArrayKlass::cast(k)->bottom_klass();
 833   }
 834   // Obtain klass' module.
 835   if (k->is_instance_klass()) {
 836     InstanceKlass* ik = (InstanceKlass*) k;
 837     module_entry = ik->module();
 838   } else {
 839     module_entry = ModuleEntryTable::javabase_moduleEntry();
 840   }
 841   // Obtain java.lang.Module, if available
 842   Handle module_handle(THREAD, ((module_entry != nullptr) ? module_entry->module() : (oop)nullptr));
 843 
 844   if (this->has_archived_mirror_index()) {
 845     ResourceMark rm(THREAD);
 846     log_debug(cds, mirror)("%s has raw archived mirror", external_name());
 847     if (ArchiveHeapLoader::is_in_use()) {
 848       bool present = java_lang_Class::restore_archived_mirror(this, loader, module_handle,
 849                                                               protection_domain,
 850                                                               CHECK);
 851       if (present) {
 852         return;
 853       }
 854     }
 855 
 856     // No archived mirror data
 857     log_debug(cds, mirror)("No archived mirror data for %s", external_name());
 858     clear_java_mirror_handle();
 859     this->clear_archived_mirror_index();
 860   }
 861 
 862   // Only recreate it if not present.  A previous attempt to restore may have
 863   // gotten an OOM later but keep the mirror if it was created.
 864   if (java_mirror() == nullptr) {
 865     ResourceMark rm(THREAD);
 866     log_trace(cds, mirror)("Recreate mirror for %s", external_name());
 867     java_lang_Class::create_mirror(this, loader, module_handle, protection_domain, Handle(), CHECK);
 868   }
 869 }
 870 #endif // INCLUDE_CDS
 871 
 872 #if INCLUDE_CDS_JAVA_HEAP
 873 oop Klass::archived_java_mirror() {
 874   assert(has_archived_mirror_index(), "must have archived mirror");
 875   return HeapShared::get_root(_archived_mirror_index);
 876 }
 877 
 878 void Klass::clear_archived_mirror_index() {
 879   if (_archived_mirror_index >= 0) {
 880     HeapShared::clear_root(_archived_mirror_index);
 881   }
 882   _archived_mirror_index = -1;
 883 }
 884 
 885 // No GC barrier
 886 void Klass::set_archived_java_mirror(int mirror_index) {
 887   assert(CDSConfig::is_dumping_heap(), "sanity");
 888   _archived_mirror_index = mirror_index;
 889 }
 890 #endif // INCLUDE_CDS_JAVA_HEAP
 891 
 892 void Klass::check_array_allocation_length(int length, int max_length, TRAPS) {
 893   if (length > max_length) {
 894     if (!THREAD->is_in_internal_oome_mark()) {
 895       report_java_out_of_memory("Requested array size exceeds VM limit");
 896       JvmtiExport::post_array_size_exhausted();
 897       THROW_OOP(Universe::out_of_memory_error_array_size());
 898     } else {
 899       THROW_OOP(Universe::out_of_memory_error_java_heap_without_backtrace());
 900     }
 901   } else if (length < 0) {
 902     THROW_MSG(vmSymbols::java_lang_NegativeArraySizeException(), err_msg("%d", length));
 903   }
 904 }
 905 
 906 // Replace the last '+' char with '/'.
 907 static char* convert_hidden_name_to_java(Symbol* name) {
 908   size_t name_len = name->utf8_length();
 909   char* result = NEW_RESOURCE_ARRAY(char, name_len + 1);
 910   name->as_klass_external_name(result, (int)name_len + 1);
 911   for (int index = (int)name_len; index > 0; index--) {
 912     if (result[index] == '+') {
 913       result[index] = JVM_SIGNATURE_SLASH;
 914       break;
 915     }
 916   }
 917   return result;
 918 }
 919 
 920 // In product mode, this function doesn't have virtual function calls so
 921 // there might be some performance advantage to handling InstanceKlass here.
 922 const char* Klass::external_name() const {
 923   if (is_instance_klass()) {
 924     const InstanceKlass* ik = static_cast<const InstanceKlass*>(this);
 925     if (ik->is_hidden()) {
 926       char* result = convert_hidden_name_to_java(name());
 927       return result;
 928     }
 929   } else if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) {
 930     char* result = convert_hidden_name_to_java(name());
 931     return result;
 932   }
 933   if (name() == nullptr)  return "<unknown>";
 934   return name()->as_klass_external_name();
 935 }
 936 
 937 const char* Klass::signature_name() const {
 938   if (name() == nullptr)  return "<unknown>";
 939   if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) {
 940     size_t name_len = name()->utf8_length();
 941     char* result = NEW_RESOURCE_ARRAY(char, name_len + 1);
 942     name()->as_C_string(result, (int)name_len + 1);
 943     for (int index = (int)name_len; index > 0; index--) {
 944       if (result[index] == '+') {
 945         result[index] = JVM_SIGNATURE_DOT;
 946         break;
 947       }
 948     }
 949     return result;
 950   }
 951   return name()->as_C_string();
 952 }
 953 
 954 const char* Klass::external_kind() const {
 955   if (is_interface()) return "interface";
 956   if (is_abstract()) return "abstract class";
 957   return "class";
 958 }
 959 
 960 // Unless overridden, jvmti_class_status has no flags set.
 961 jint Klass::jvmti_class_status() const {
 962   return 0;
 963 }
 964 
 965 
 966 // Printing
 967 
 968 void Klass::print_on(outputStream* st) const {
 969   ResourceMark rm;
 970   // print title
 971   st->print("%s", internal_name());
 972   print_address_on(st);
 973   st->cr();
 974 }
 975 
 976 #define BULLET  " - "
 977 
 978 // Caller needs ResourceMark
 979 void Klass::oop_print_on(oop obj, outputStream* st) {
 980   // print title
 981   st->print_cr("%s ", internal_name());
 982   obj->print_address_on(st);
 983 
 984   if (WizardMode) {
 985      // print header
 986      obj->mark().print_on(st);
 987      st->cr();
 988   }
 989 
 990   // print class
 991   st->print(BULLET"klass: ");
 992   obj->klass()->print_value_on(st);
 993   st->print(BULLET"flags: "); _misc_flags.print_on(st); st->cr();
 994   st->cr();
 995 }
 996 
 997 void Klass::oop_print_value_on(oop obj, outputStream* st) {
 998   // print title
 999   ResourceMark rm;              // Cannot print in debug mode without this
1000   st->print("%s", internal_name());
1001   obj->print_address_on(st);
1002 }
1003 
1004 // Verification
1005 
1006 void Klass::verify_on(outputStream* st) {
1007 
1008   // This can be expensive, but it is worth checking that this klass is actually
1009   // in the CLD graph but not in production.
1010   assert(Metaspace::contains((address)this), "Should be");
1011 
1012   guarantee(this->is_klass(),"should be klass");
1013 
1014   if (super() != nullptr) {
1015     guarantee(super()->is_klass(), "should be klass");
1016   }
1017   if (secondary_super_cache() != nullptr) {
1018     Klass* ko = secondary_super_cache();
1019     guarantee(ko->is_klass(), "should be klass");
1020   }
1021   for ( uint i = 0; i < primary_super_limit(); i++ ) {
1022     Klass* ko = _primary_supers[i];
1023     if (ko != nullptr) {
1024       guarantee(ko->is_klass(), "should be klass");
1025     }
1026   }
1027 
1028   if (java_mirror_no_keepalive() != nullptr) {
1029     guarantee(java_lang_Class::is_instance(java_mirror_no_keepalive()), "should be instance");
1030   }
1031 }
1032 
1033 void Klass::oop_verify_on(oop obj, outputStream* st) {
1034   guarantee(oopDesc::is_oop(obj),  "should be oop");
1035   guarantee(obj->klass()->is_klass(), "klass field is not a klass");
1036 }
1037 
1038 bool Klass::is_valid(Klass* k) {
1039   if (!is_aligned(k, sizeof(MetaWord))) return false;
1040   if ((size_t)k < os::min_page_size()) return false;
1041 
1042   if (!os::is_readable_range(k, k + 1)) return false;
1043   if (!Metaspace::contains(k)) return false;
1044 
1045   if (!Symbol::is_valid(k->name())) return false;
1046   return ClassLoaderDataGraph::is_valid(k->class_loader_data());
1047 }
1048 
1049 Method* Klass::method_at_vtable(int index)  {
1050 #ifndef PRODUCT
1051   assert(index >= 0, "valid vtable index");
1052   if (DebugVtables) {
1053     verify_vtable_index(index);
1054   }
1055 #endif
1056   return start_of_vtable()[index].method();
1057 }
1058 
1059 
1060 #ifndef PRODUCT
1061 
1062 bool Klass::verify_vtable_index(int i) {
1063   int limit = vtable_length()/vtableEntry::size();
1064   assert(i >= 0 && i < limit, "index %d out of bounds %d", i, limit);
1065   return true;
1066 }
1067 
1068 #endif // PRODUCT
1069 
1070 // Caller needs ResourceMark
1071 // joint_in_module_of_loader provides an optimization if 2 classes are in
1072 // the same module to succinctly print out relevant information about their
1073 // module name and class loader's name_and_id for error messages.
1074 // Format:
1075 //   <fully-qualified-external-class-name1> and <fully-qualified-external-class-name2>
1076 //                      are in module <module-name>[@<version>]
1077 //                      of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>]
1078 const char* Klass::joint_in_module_of_loader(const Klass* class2, bool include_parent_loader) const {
1079   assert(module() == class2->module(), "classes do not have the same module");
1080   const char* class1_name = external_name();
1081   size_t len = strlen(class1_name) + 1;
1082 
1083   const char* class2_description = class2->class_in_module_of_loader(true, include_parent_loader);
1084   len += strlen(class2_description);
1085 
1086   len += strlen(" and ");
1087 
1088   char* joint_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len);
1089 
1090   // Just return the FQN if error when allocating string
1091   if (joint_description == nullptr) {
1092     return class1_name;
1093   }
1094 
1095   jio_snprintf(joint_description, len, "%s and %s",
1096                class1_name,
1097                class2_description);
1098 
1099   return joint_description;
1100 }
1101 
1102 // Caller needs ResourceMark
1103 // class_in_module_of_loader provides a standard way to include
1104 // relevant information about a class, such as its module name as
1105 // well as its class loader's name_and_id, in error messages and logging.
1106 // Format:
1107 //   <fully-qualified-external-class-name> is in module <module-name>[@<version>]
1108 //                                         of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>]
1109 const char* Klass::class_in_module_of_loader(bool use_are, bool include_parent_loader) const {
1110   // 1. fully qualified external name of class
1111   const char* klass_name = external_name();
1112   size_t len = strlen(klass_name) + 1;
1113 
1114   // 2. module name + @version
1115   const char* module_name = "";
1116   const char* version = "";
1117   bool has_version = false;
1118   bool module_is_named = false;
1119   const char* module_name_phrase = "";
1120   const Klass* bottom_klass = is_objArray_klass() ?
1121                                 ObjArrayKlass::cast(this)->bottom_klass() : this;
1122   if (bottom_klass->is_instance_klass()) {
1123     ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1124     if (module->is_named()) {
1125       module_is_named = true;
1126       module_name_phrase = "module ";
1127       module_name = module->name()->as_C_string();
1128       len += strlen(module_name);
1129       // Use version if exists and is not a jdk module
1130       if (module->should_show_version()) {
1131         has_version = true;
1132         version = module->version()->as_C_string();
1133         // Include stlen(version) + 1 for the "@"
1134         len += strlen(version) + 1;
1135       }
1136     } else {
1137       module_name = UNNAMED_MODULE;
1138       len += UNNAMED_MODULE_LEN;
1139     }
1140   } else {
1141     // klass is an array of primitives, module is java.base
1142     module_is_named = true;
1143     module_name_phrase = "module ";
1144     module_name = JAVA_BASE_NAME;
1145     len += JAVA_BASE_NAME_LEN;
1146   }
1147 
1148   // 3. class loader's name_and_id
1149   ClassLoaderData* cld = class_loader_data();
1150   assert(cld != nullptr, "class_loader_data should not be null");
1151   const char* loader_name_and_id = cld->loader_name_and_id();
1152   len += strlen(loader_name_and_id);
1153 
1154   // 4. include parent loader information
1155   const char* parent_loader_phrase = "";
1156   const char* parent_loader_name_and_id = "";
1157   if (include_parent_loader &&
1158       !cld->is_builtin_class_loader_data()) {
1159     oop parent_loader = java_lang_ClassLoader::parent(class_loader());
1160     ClassLoaderData *parent_cld = ClassLoaderData::class_loader_data_or_null(parent_loader);
1161     // The parent loader's ClassLoaderData could be null if it is
1162     // a delegating class loader that has never defined a class.
1163     // In this case the loader's name must be obtained via the parent loader's oop.
1164     if (parent_cld == nullptr) {
1165       oop cl_name_and_id = java_lang_ClassLoader::nameAndId(parent_loader);
1166       if (cl_name_and_id != nullptr) {
1167         parent_loader_name_and_id = java_lang_String::as_utf8_string(cl_name_and_id);
1168       }
1169     } else {
1170       parent_loader_name_and_id = parent_cld->loader_name_and_id();
1171     }
1172     parent_loader_phrase = ", parent loader ";
1173     len += strlen(parent_loader_phrase) + strlen(parent_loader_name_and_id);
1174   }
1175 
1176   // Start to construct final full class description string
1177   len += ((use_are) ? strlen(" are in ") : strlen(" is in "));
1178   len += strlen(module_name_phrase) + strlen(" of loader ");
1179 
1180   char* class_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len);
1181 
1182   // Just return the FQN if error when allocating string
1183   if (class_description == nullptr) {
1184     return klass_name;
1185   }
1186 
1187   jio_snprintf(class_description, len, "%s %s in %s%s%s%s of loader %s%s%s",
1188                klass_name,
1189                (use_are) ? "are" : "is",
1190                module_name_phrase,
1191                module_name,
1192                (has_version) ? "@" : "",
1193                (has_version) ? version : "",
1194                loader_name_and_id,
1195                parent_loader_phrase,
1196                parent_loader_name_and_id);
1197 
1198   return class_description;
1199 }
1200 
1201 class LookupStats : StackObj {
1202  private:
1203   uint _no_of_samples;
1204   uint _worst;
1205   uint _worst_count;
1206   uint _average;
1207   uint _best;
1208   uint _best_count;
1209  public:
1210   LookupStats() : _no_of_samples(0), _worst(0), _worst_count(0), _average(0), _best(INT_MAX), _best_count(0) {}
1211 
1212   ~LookupStats() {
1213     assert(_best <= _worst || _no_of_samples == 0, "sanity");
1214   }
1215 
1216   void sample(uint value) {
1217     ++_no_of_samples;
1218     _average += value;
1219 
1220     if (_worst < value) {
1221       _worst = value;
1222       _worst_count = 1;
1223     } else if (_worst == value) {
1224       ++_worst_count;
1225     }
1226 
1227     if (_best > value) {
1228       _best = value;
1229       _best_count = 1;
1230     } else if (_best == value) {
1231       ++_best_count;
1232     }
1233   }
1234 
1235   void print_on(outputStream* st) const {
1236     st->print("best: %2d (%4.1f%%)", _best, (100.0 * _best_count) / _no_of_samples);
1237     if (_best_count < _no_of_samples) {
1238       st->print("; average: %4.1f; worst: %2d (%4.1f%%)",
1239                 (1.0 * _average) / _no_of_samples,
1240                 _worst, (100.0 * _worst_count) / _no_of_samples);
1241     }
1242   }
1243 };
1244 
1245 static void print_positive_lookup_stats(Array<Klass*>* secondary_supers, uintx bitmap, outputStream* st) {
1246   int num_of_supers = secondary_supers->length();
1247 
1248   LookupStats s;
1249   for (int i = 0; i < num_of_supers; i++) {
1250     Klass* secondary_super = secondary_supers->at(i);
1251     int home_slot = Klass::compute_home_slot(secondary_super, bitmap);
1252     uint score = 1 + ((i - home_slot) & Klass::SECONDARY_SUPERS_TABLE_MASK);
1253     s.sample(score);
1254   }
1255   st->print("positive_lookup: "); s.print_on(st);
1256 }
1257 
1258 static uint compute_distance_to_nearest_zero(int slot, uintx bitmap) {
1259   assert(~bitmap != 0, "no zeroes");
1260   uintx start = rotate_right(bitmap, slot);
1261   return count_trailing_zeros(~start);
1262 }
1263 
1264 static void print_negative_lookup_stats(uintx bitmap, outputStream* st) {
1265   LookupStats s;
1266   for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) {
1267     uint score = compute_distance_to_nearest_zero(slot, bitmap);
1268     s.sample(score);
1269   }
1270   st->print("negative_lookup: "); s.print_on(st);
1271 }
1272 
1273 void Klass::print_secondary_supers_on(outputStream* st) const {
1274   if (secondary_supers() != nullptr) {
1275     st->print("  - "); st->print("%d elements;", _secondary_supers->length());
1276     st->print_cr(" bitmap: " UINTX_FORMAT_X_0 ";", _secondary_supers_bitmap);
1277     if (_secondary_supers_bitmap != SECONDARY_SUPERS_BITMAP_EMPTY &&
1278         _secondary_supers_bitmap != SECONDARY_SUPERS_BITMAP_FULL) {
1279       st->print("  - "); print_positive_lookup_stats(secondary_supers(),
1280                                                      _secondary_supers_bitmap, st); st->cr();
1281       st->print("  - "); print_negative_lookup_stats(_secondary_supers_bitmap, st); st->cr();
1282     }
1283   } else {
1284     st->print("null");
1285   }
1286 }
1287 
1288 void Klass::on_secondary_supers_verification_failure(Klass* super, Klass* sub, bool linear_result, bool table_result, const char* msg) {
1289   ResourceMark rm;
1290   super->print();
1291   sub->print();
1292   fatal("%s: %s implements %s: linear_search: %d; table_lookup: %d",
1293         msg, sub->external_name(), super->external_name(), linear_result, table_result);
1294 }