1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "cds/archiveHeapLoader.hpp" 27 #include "cds/cdsConfig.hpp" 28 #include "cds/heapShared.hpp" 29 #include "classfile/classLoader.hpp" 30 #include "classfile/classLoaderData.inline.hpp" 31 #include "classfile/classLoaderDataGraph.inline.hpp" 32 #include "classfile/javaClasses.inline.hpp" 33 #include "classfile/moduleEntry.hpp" 34 #include "classfile/systemDictionary.hpp" 35 #include "classfile/systemDictionaryShared.hpp" 36 #include "classfile/vmClasses.hpp" 37 #include "classfile/vmSymbols.hpp" 38 #include "gc/shared/collectedHeap.inline.hpp" 39 #include "jvm_io.h" 40 #include "logging/log.hpp" 41 #include "memory/metadataFactory.hpp" 42 #include "memory/metaspaceClosure.hpp" 43 #include "memory/oopFactory.hpp" 44 #include "memory/resourceArea.hpp" 45 #include "memory/universe.hpp" 46 #include "oops/compressedOops.inline.hpp" 47 #include "oops/instanceKlass.hpp" 48 #include "oops/klass.inline.hpp" 49 #include "oops/objArrayKlass.hpp" 50 #include "oops/oop.inline.hpp" 51 #include "oops/oopHandle.inline.hpp" 52 #include "prims/jvmtiExport.hpp" 53 #include "runtime/atomic.hpp" 54 #include "runtime/handles.inline.hpp" 55 #include "runtime/perfData.hpp" 56 #include "utilities/macros.hpp" 57 #include "utilities/powerOfTwo.hpp" 58 #include "utilities/rotate_bits.hpp" 59 #include "utilities/stack.inline.hpp" 60 61 void Klass::set_java_mirror(Handle m) { 62 assert(!m.is_null(), "New mirror should never be null."); 63 assert(_java_mirror.is_empty(), "should only be used to initialize mirror"); 64 _java_mirror = class_loader_data()->add_handle(m); 65 } 66 67 bool Klass::is_cloneable() const { 68 return _misc_flags.is_cloneable_fast() || 69 is_subtype_of(vmClasses::Cloneable_klass()); 70 } 71 72 void Klass::set_is_cloneable() { 73 if (name() == vmSymbols::java_lang_invoke_MemberName()) { 74 assert(is_final(), "no subclasses allowed"); 75 // MemberName cloning should not be intrinsified and always happen in JVM_Clone. 76 } else if (is_instance_klass() && InstanceKlass::cast(this)->reference_type() != REF_NONE) { 77 // Reference cloning should not be intrinsified and always happen in JVM_Clone. 78 } else { 79 _misc_flags.set_is_cloneable_fast(true); 80 } 81 } 82 83 uint8_t Klass::compute_hash_slot(Symbol* n) { 84 uint hash_code; 85 // Special cases for the two superclasses of all Array instances. 86 // Code elsewhere assumes, for all instances of ArrayKlass, that 87 // these two interfaces will be in this order. 88 89 // We ensure there are some empty slots in the hash table between 90 // these two very common interfaces because if they were adjacent 91 // (e.g. Slots 0 and 1), then any other class which hashed to 0 or 1 92 // would result in a probe length of 3. 93 if (n == vmSymbols::java_lang_Cloneable()) { 94 hash_code = 0; 95 } else if (n == vmSymbols::java_io_Serializable()) { 96 hash_code = SECONDARY_SUPERS_TABLE_SIZE / 2; 97 } else { 98 auto s = (const jbyte*) n->bytes(); 99 hash_code = java_lang_String::hash_code(s, n->utf8_length()); 100 // We use String::hash_code here (rather than e.g. 101 // Symbol::identity_hash()) in order to have a hash code that 102 // does not change from run to run. We want that because the 103 // hash value for a secondary superclass appears in generated 104 // code as a constant. 105 106 // This constant is magic: see Knuth, "Fibonacci Hashing". 107 constexpr uint multiplier 108 = 2654435769; // (uint)(((u8)1 << 32) / ((1 + sqrt(5)) / 2 )) 109 constexpr uint hash_shift = sizeof(hash_code) * 8 - 6; 110 // The leading bits of the least significant half of the product. 111 hash_code = (hash_code * multiplier) >> hash_shift; 112 113 if (StressSecondarySupers) { 114 // Generate many hash collisions in order to stress-test the 115 // linear search fallback. 116 hash_code = hash_code % 3; 117 hash_code = hash_code * (SECONDARY_SUPERS_TABLE_SIZE / 3); 118 } 119 } 120 121 return (hash_code & SECONDARY_SUPERS_TABLE_MASK); 122 } 123 124 void Klass::set_name(Symbol* n) { 125 _name = n; 126 127 if (_name != nullptr) { 128 _name->increment_refcount(); 129 } 130 131 { 132 elapsedTimer selftime; 133 selftime.start(); 134 135 _hash_slot = compute_hash_slot(n); 136 assert(_hash_slot < SECONDARY_SUPERS_TABLE_SIZE, "required"); 137 138 selftime.stop(); 139 if (UsePerfData) { 140 ClassLoader::perf_secondary_hash_time()->inc(selftime.ticks()); 141 } 142 } 143 144 if (CDSConfig::is_dumping_archive() && is_instance_klass()) { 145 SystemDictionaryShared::init_dumptime_info(InstanceKlass::cast(this)); 146 } 147 } 148 149 bool Klass::is_subclass_of(const Klass* k) const { 150 // Run up the super chain and check 151 if (this == k) return true; 152 153 Klass* t = const_cast<Klass*>(this)->super(); 154 155 while (t != nullptr) { 156 if (t == k) return true; 157 t = t->super(); 158 } 159 return false; 160 } 161 162 void Klass::release_C_heap_structures(bool release_constant_pool) { 163 if (_name != nullptr) _name->decrement_refcount(); 164 } 165 166 bool Klass::linear_search_secondary_supers(const Klass* k) const { 167 // Scan the array-of-objects for a match 168 // FIXME: We could do something smarter here, maybe a vectorized 169 // comparison or a binary search, but is that worth any added 170 // complexity? 171 int cnt = secondary_supers()->length(); 172 for (int i = 0; i < cnt; i++) { 173 if (secondary_supers()->at(i) == k) { 174 return true; 175 } 176 } 177 return false; 178 } 179 180 // Given a secondary superklass k, an initial array index, and an 181 // occupancy bitmap rotated such that Bit 1 is the next bit to test, 182 // search for k. 183 bool Klass::fallback_search_secondary_supers(const Klass* k, int index, uintx rotated_bitmap) const { 184 // Once the occupancy bitmap is almost full, it's faster to use a 185 // linear search. 186 if (secondary_supers()->length() > SECONDARY_SUPERS_TABLE_SIZE - 2) { 187 return linear_search_secondary_supers(k); 188 } 189 190 // This is conventional linear probing, but instead of terminating 191 // when a null entry is found in the table, we maintain a bitmap 192 // in which a 0 indicates missing entries. 193 194 precond((int)population_count(rotated_bitmap) == secondary_supers()->length()); 195 196 // The check for secondary_supers()->length() <= SECONDARY_SUPERS_TABLE_SIZE - 2 197 // at the start of this function guarantees there are 0s in the 198 // bitmap, so this loop eventually terminates. 199 while ((rotated_bitmap & 2) != 0) { 200 if (++index == secondary_supers()->length()) { 201 index = 0; 202 } 203 if (secondary_supers()->at(index) == k) { 204 return true; 205 } 206 rotated_bitmap = rotate_right(rotated_bitmap, 1); 207 } 208 return false; 209 } 210 211 // Return self, except for abstract classes with exactly 1 212 // implementor. Then return the 1 concrete implementation. 213 Klass *Klass::up_cast_abstract() { 214 Klass *r = this; 215 while( r->is_abstract() ) { // Receiver is abstract? 216 Klass *s = r->subklass(); // Check for exactly 1 subklass 217 if (s == nullptr || s->next_sibling() != nullptr) // Oops; wrong count; give up 218 return this; // Return 'this' as a no-progress flag 219 r = s; // Loop till find concrete class 220 } 221 return r; // Return the 1 concrete class 222 } 223 224 // Find LCA in class hierarchy 225 Klass *Klass::LCA( Klass *k2 ) { 226 Klass *k1 = this; 227 while( 1 ) { 228 if( k1->is_subtype_of(k2) ) return k2; 229 if( k2->is_subtype_of(k1) ) return k1; 230 k1 = k1->super(); 231 k2 = k2->super(); 232 } 233 } 234 235 236 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) { 237 ResourceMark rm(THREAD); 238 THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError() 239 : vmSymbols::java_lang_InstantiationException(), external_name()); 240 } 241 242 243 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) { 244 ResourceMark rm(THREAD); 245 assert(s != nullptr, "Throw NPE!"); 246 THROW_MSG(vmSymbols::java_lang_ArrayStoreException(), 247 err_msg("arraycopy: source type %s is not an array", s->klass()->external_name())); 248 } 249 250 251 void Klass::initialize(TRAPS) { 252 ShouldNotReachHere(); 253 } 254 255 Klass* Klass::find_field(Symbol* name, Symbol* sig, fieldDescriptor* fd) const { 256 #ifdef ASSERT 257 tty->print_cr("Error: find_field called on a klass oop." 258 " Likely error: reflection method does not correctly" 259 " wrap return value in a mirror object."); 260 #endif 261 ShouldNotReachHere(); 262 return nullptr; 263 } 264 265 Method* Klass::uncached_lookup_method(const Symbol* name, const Symbol* signature, 266 OverpassLookupMode overpass_mode, 267 PrivateLookupMode private_mode) const { 268 #ifdef ASSERT 269 tty->print_cr("Error: uncached_lookup_method called on a klass oop." 270 " Likely error: reflection method does not correctly" 271 " wrap return value in a mirror object."); 272 #endif 273 ShouldNotReachHere(); 274 return nullptr; 275 } 276 277 Klass::Klass() : _kind(UnknownKlassKind) { 278 assert(CDSConfig::is_dumping_static_archive() || CDSConfig::is_using_archive(), "only for cds"); 279 } 280 281 // "Normal" instantiation is preceded by a MetaspaceObj allocation 282 // which zeros out memory - calloc equivalent. 283 // The constructor is also used from CppVtableCloner, 284 // which doesn't zero out the memory before calling the constructor. 285 Klass::Klass(KlassKind kind) : _kind(kind), 286 _shared_class_path_index(-1) { 287 CDS_ONLY(_shared_class_flags = 0;) 288 CDS_JAVA_HEAP_ONLY(_archived_mirror_index = -1;) 289 _primary_supers[0] = this; 290 set_super_check_offset(in_bytes(primary_supers_offset())); 291 } 292 293 jint Klass::array_layout_helper(BasicType etype) { 294 assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype"); 295 // Note that T_ARRAY is not allowed here. 296 int hsize = arrayOopDesc::base_offset_in_bytes(etype); 297 int esize = type2aelembytes(etype); 298 bool isobj = (etype == T_OBJECT); 299 int tag = isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value; 300 int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize)); 301 302 assert(lh < (int)_lh_neutral_value, "must look like an array layout"); 303 assert(layout_helper_is_array(lh), "correct kind"); 304 assert(layout_helper_is_objArray(lh) == isobj, "correct kind"); 305 assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind"); 306 assert(layout_helper_header_size(lh) == hsize, "correct decode"); 307 assert(layout_helper_element_type(lh) == etype, "correct decode"); 308 assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode"); 309 310 return lh; 311 } 312 313 bool Klass::can_be_primary_super_slow() const { 314 if (super() == nullptr) 315 return true; 316 else if (super()->super_depth() >= primary_super_limit()-1) 317 return false; 318 else 319 return true; 320 } 321 322 void Klass::set_secondary_supers(Array<Klass*>* secondaries, uintx bitmap) { 323 #ifdef ASSERT 324 if (secondaries != nullptr) { 325 uintx real_bitmap = compute_secondary_supers_bitmap(secondaries); 326 assert(bitmap == real_bitmap, "must be"); 327 assert(secondaries->length() >= (int)population_count(bitmap), "must be"); 328 } 329 #endif 330 _secondary_supers_bitmap = bitmap; 331 _secondary_supers = secondaries; 332 333 if (secondaries != nullptr) { 334 LogMessage(class, load) msg; 335 NonInterleavingLogStream log {LogLevel::Debug, msg}; 336 if (log.is_enabled()) { 337 ResourceMark rm; 338 log.print_cr("set_secondary_supers: hash_slot: %d; klass: %s", hash_slot(), external_name()); 339 print_secondary_supers_on(&log); 340 } 341 } 342 } 343 344 // Hashed secondary superclasses 345 // 346 // We use a compressed 64-entry hash table with linear probing. We 347 // start by creating a hash table in the usual way, followed by a pass 348 // that removes all the null entries. To indicate which entries would 349 // have been null we use a bitmap that contains a 1 in each position 350 // where an entry is present, 0 otherwise. This bitmap also serves as 351 // a kind of Bloom filter, which in many cases allows us quickly to 352 // eliminate the possibility that something is a member of a set of 353 // secondaries. 354 uintx Klass::hash_secondary_supers(Array<Klass*>* secondaries, bool rewrite) { 355 const int length = secondaries->length(); 356 357 if (length == 0) { 358 return SECONDARY_SUPERS_BITMAP_EMPTY; 359 } 360 361 if (length == 1) { 362 int hash_slot = secondaries->at(0)->hash_slot(); 363 return uintx(1) << hash_slot; 364 } 365 366 // Invariant: _secondary_supers.length >= population_count(_secondary_supers_bitmap) 367 368 // Don't attempt to hash a table that's completely full, because in 369 // the case of an absent interface linear probing would not 370 // terminate. 371 if (length >= SECONDARY_SUPERS_TABLE_SIZE) { 372 return SECONDARY_SUPERS_BITMAP_FULL; 373 } 374 375 { 376 PerfTraceTime ptt(ClassLoader::perf_secondary_hash_time()); 377 378 ResourceMark rm; 379 uintx bitmap = SECONDARY_SUPERS_BITMAP_EMPTY; 380 auto hashed_secondaries = new GrowableArray<Klass*>(SECONDARY_SUPERS_TABLE_SIZE, 381 SECONDARY_SUPERS_TABLE_SIZE, nullptr); 382 383 for (int j = 0; j < length; j++) { 384 Klass* k = secondaries->at(j); 385 hash_insert(k, hashed_secondaries, bitmap); 386 } 387 388 // Pack the hashed secondaries array by copying it into the 389 // secondaries array, sans nulls, if modification is allowed. 390 // Otherwise, validate the order. 391 int i = 0; 392 for (int slot = 0; slot < SECONDARY_SUPERS_TABLE_SIZE; slot++) { 393 bool has_element = ((bitmap >> slot) & 1) != 0; 394 assert(has_element == (hashed_secondaries->at(slot) != nullptr), ""); 395 if (has_element) { 396 Klass* k = hashed_secondaries->at(slot); 397 if (rewrite) { 398 secondaries->at_put(i, k); 399 } else if (secondaries->at(i) != k) { 400 assert(false, "broken secondary supers hash table"); 401 return SECONDARY_SUPERS_BITMAP_FULL; 402 } 403 i++; 404 } 405 } 406 assert(i == secondaries->length(), "mismatch"); 407 postcond((int)population_count(bitmap) == secondaries->length()); 408 409 return bitmap; 410 } 411 } 412 413 void Klass::hash_insert(Klass* klass, GrowableArray<Klass*>* secondaries, uintx& bitmap) { 414 assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, ""); 415 416 int dist = 0; 417 for (int slot = klass->hash_slot(); true; slot = (slot + 1) & SECONDARY_SUPERS_TABLE_MASK) { 418 Klass* existing = secondaries->at(slot); 419 assert(((bitmap >> slot) & 1) == (existing != nullptr), "mismatch"); 420 if (existing == nullptr) { // no conflict 421 secondaries->at_put(slot, klass); 422 bitmap |= uintx(1) << slot; 423 assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, ""); 424 return; 425 } else { 426 // Use Robin Hood hashing to minimize the worst case search. 427 // Also, every permutation of the insertion sequence produces 428 // the same final Robin Hood hash table, provided that a 429 // consistent tie breaker is used. 430 int existing_dist = (slot - existing->hash_slot()) & SECONDARY_SUPERS_TABLE_MASK; 431 if (existing_dist < dist 432 // This tie breaker ensures that the hash order is maintained. 433 || ((existing_dist == dist) 434 && (uintptr_t(existing) < uintptr_t(klass)))) { 435 Klass* tmp = secondaries->at(slot); 436 secondaries->at_put(slot, klass); 437 klass = tmp; 438 dist = existing_dist; 439 } 440 ++dist; 441 } 442 } 443 } 444 445 Array<Klass*>* Klass::pack_secondary_supers(ClassLoaderData* loader_data, 446 GrowableArray<Klass*>* primaries, 447 GrowableArray<Klass*>* secondaries, 448 uintx& bitmap, TRAPS) { 449 int new_length = primaries->length() + secondaries->length(); 450 Array<Klass*>* secondary_supers = MetadataFactory::new_array<Klass*>(loader_data, new_length, CHECK_NULL); 451 452 // Combine the two arrays into a metadata object to pack the array. 453 // The primaries are added in the reverse order, then the secondaries. 454 int fill_p = primaries->length(); 455 for (int j = 0; j < fill_p; j++) { 456 secondary_supers->at_put(j, primaries->pop()); // add primaries in reverse order. 457 } 458 for( int j = 0; j < secondaries->length(); j++ ) { 459 secondary_supers->at_put(j+fill_p, secondaries->at(j)); // add secondaries on the end. 460 } 461 #ifdef ASSERT 462 // We must not copy any null placeholders left over from bootstrap. 463 for (int j = 0; j < secondary_supers->length(); j++) { 464 assert(secondary_supers->at(j) != nullptr, "correct bootstrapping order"); 465 } 466 #endif 467 468 bitmap = hash_secondary_supers(secondary_supers, /*rewrite=*/true); // rewrites freshly allocated array 469 return secondary_supers; 470 } 471 472 uintx Klass::compute_secondary_supers_bitmap(Array<Klass*>* secondary_supers) { 473 return hash_secondary_supers(secondary_supers, /*rewrite=*/false); // no rewrites allowed 474 } 475 476 uint8_t Klass::compute_home_slot(Klass* k, uintx bitmap) { 477 uint8_t hash = k->hash_slot(); 478 if (hash > 0) { 479 return population_count(bitmap << (SECONDARY_SUPERS_TABLE_SIZE - hash)); 480 } 481 return 0; 482 } 483 484 485 void Klass::initialize_supers(Klass* k, Array<InstanceKlass*>* transitive_interfaces, TRAPS) { 486 if (k == nullptr) { 487 set_super(nullptr); 488 _primary_supers[0] = this; 489 assert(super_depth() == 0, "Object must already be initialized properly"); 490 } else if (k != super() || k == vmClasses::Object_klass()) { 491 assert(super() == nullptr || super() == vmClasses::Object_klass(), 492 "initialize this only once to a non-trivial value"); 493 set_super(k); 494 Klass* sup = k; 495 int sup_depth = sup->super_depth(); 496 juint my_depth = MIN2(sup_depth + 1, (int)primary_super_limit()); 497 if (!can_be_primary_super_slow()) 498 my_depth = primary_super_limit(); 499 for (juint i = 0; i < my_depth; i++) { 500 _primary_supers[i] = sup->_primary_supers[i]; 501 } 502 Klass* *super_check_cell; 503 if (my_depth < primary_super_limit()) { 504 _primary_supers[my_depth] = this; 505 super_check_cell = &_primary_supers[my_depth]; 506 } else { 507 // Overflow of the primary_supers array forces me to be secondary. 508 super_check_cell = &_secondary_super_cache; 509 } 510 set_super_check_offset(u4((address)super_check_cell - (address) this)); 511 512 #ifdef ASSERT 513 { 514 juint j = super_depth(); 515 assert(j == my_depth, "computed accessor gets right answer"); 516 Klass* t = this; 517 while (!t->can_be_primary_super()) { 518 t = t->super(); 519 j = t->super_depth(); 520 } 521 for (juint j1 = j+1; j1 < primary_super_limit(); j1++) { 522 assert(primary_super_of_depth(j1) == nullptr, "super list padding"); 523 } 524 while (t != nullptr) { 525 assert(primary_super_of_depth(j) == t, "super list initialization"); 526 t = t->super(); 527 --j; 528 } 529 assert(j == (juint)-1, "correct depth count"); 530 } 531 #endif 532 } 533 534 if (secondary_supers() == nullptr) { 535 536 // Now compute the list of secondary supertypes. 537 // Secondaries can occasionally be on the super chain, 538 // if the inline "_primary_supers" array overflows. 539 int extras = 0; 540 Klass* p; 541 for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) { 542 ++extras; 543 } 544 545 ResourceMark rm(THREAD); // need to reclaim GrowableArrays allocated below 546 547 // Compute the "real" non-extra secondaries. 548 GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras, transitive_interfaces); 549 if (secondaries == nullptr) { 550 // secondary_supers set by compute_secondary_supers 551 return; 552 } 553 554 GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras); 555 556 for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) { 557 int i; // Scan for overflow primaries being duplicates of 2nd'arys 558 559 // This happens frequently for very deeply nested arrays: the 560 // primary superclass chain overflows into the secondary. The 561 // secondary list contains the element_klass's secondaries with 562 // an extra array dimension added. If the element_klass's 563 // secondary list already contains some primary overflows, they 564 // (with the extra level of array-ness) will collide with the 565 // normal primary superclass overflows. 566 for( i = 0; i < secondaries->length(); i++ ) { 567 if( secondaries->at(i) == p ) 568 break; 569 } 570 if( i < secondaries->length() ) 571 continue; // It's a dup, don't put it in 572 primaries->push(p); 573 } 574 // Combine the two arrays into a metadata object to pack the array. 575 uintx bitmap = 0; 576 Array<Klass*>* s2 = pack_secondary_supers(class_loader_data(), primaries, secondaries, bitmap, CHECK); 577 set_secondary_supers(s2, bitmap); 578 } 579 } 580 581 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots, 582 Array<InstanceKlass*>* transitive_interfaces) { 583 assert(num_extra_slots == 0, "override for complex klasses"); 584 assert(transitive_interfaces == nullptr, "sanity"); 585 set_secondary_supers(Universe::the_empty_klass_array(), Universe::the_empty_klass_bitmap()); 586 return nullptr; 587 } 588 589 590 // superklass links 591 InstanceKlass* Klass::superklass() const { 592 assert(super() == nullptr || super()->is_instance_klass(), "must be instance klass"); 593 return _super == nullptr ? nullptr : InstanceKlass::cast(_super); 594 } 595 596 // subklass links. Used by the compiler (and vtable initialization) 597 // May be cleaned concurrently, so must use the Compile_lock. 598 // The log parameter is for clean_weak_klass_links to report unlinked classes. 599 Klass* Klass::subklass(bool log) const { 600 // Need load_acquire on the _subklass, because it races with inserts that 601 // publishes freshly initialized data. 602 for (Klass* chain = Atomic::load_acquire(&_subklass); 603 chain != nullptr; 604 // Do not need load_acquire on _next_sibling, because inserts never 605 // create _next_sibling edges to dead data. 606 chain = Atomic::load(&chain->_next_sibling)) 607 { 608 if (chain->is_loader_alive()) { 609 return chain; 610 } else if (log) { 611 if (log_is_enabled(Trace, class, unload)) { 612 ResourceMark rm; 613 log_trace(class, unload)("unlinking class (subclass): %s", chain->external_name()); 614 } 615 } 616 } 617 return nullptr; 618 } 619 620 Klass* Klass::next_sibling(bool log) const { 621 // Do not need load_acquire on _next_sibling, because inserts never 622 // create _next_sibling edges to dead data. 623 for (Klass* chain = Atomic::load(&_next_sibling); 624 chain != nullptr; 625 chain = Atomic::load(&chain->_next_sibling)) { 626 // Only return alive klass, there may be stale klass 627 // in this chain if cleaned concurrently. 628 if (chain->is_loader_alive()) { 629 return chain; 630 } else if (log) { 631 if (log_is_enabled(Trace, class, unload)) { 632 ResourceMark rm; 633 log_trace(class, unload)("unlinking class (sibling): %s", chain->external_name()); 634 } 635 } 636 } 637 return nullptr; 638 } 639 640 void Klass::set_subklass(Klass* s) { 641 assert(s != this, "sanity check"); 642 Atomic::release_store(&_subklass, s); 643 } 644 645 void Klass::set_next_sibling(Klass* s) { 646 assert(s != this, "sanity check"); 647 // Does not need release semantics. If used by cleanup, it will link to 648 // already safely published data, and if used by inserts, will be published 649 // safely using cmpxchg. 650 Atomic::store(&_next_sibling, s); 651 } 652 653 void Klass::append_to_sibling_list() { 654 if (Universe::is_fully_initialized()) { 655 assert_locked_or_safepoint(Compile_lock); 656 } 657 debug_only(verify();) 658 // add ourselves to superklass' subklass list 659 InstanceKlass* super = superklass(); 660 if (super == nullptr) return; // special case: class Object 661 assert((!super->is_interface() // interfaces cannot be supers 662 && (super->superklass() == nullptr || !is_interface())), 663 "an interface can only be a subklass of Object"); 664 665 // Make sure there is no stale subklass head 666 super->clean_subklass(); 667 668 for (;;) { 669 Klass* prev_first_subklass = Atomic::load_acquire(&_super->_subklass); 670 if (prev_first_subklass != nullptr) { 671 // set our sibling to be the superklass' previous first subklass 672 assert(prev_first_subklass->is_loader_alive(), "May not attach not alive klasses"); 673 set_next_sibling(prev_first_subklass); 674 } 675 // Note that the prev_first_subklass is always alive, meaning no sibling_next links 676 // are ever created to not alive klasses. This is an important invariant of the lock-free 677 // cleaning protocol, that allows us to safely unlink dead klasses from the sibling list. 678 if (Atomic::cmpxchg(&super->_subklass, prev_first_subklass, this) == prev_first_subklass) { 679 return; 680 } 681 } 682 debug_only(verify();) 683 } 684 685 void Klass::clean_subklass() { 686 for (;;) { 687 // Need load_acquire, due to contending with concurrent inserts 688 Klass* subklass = Atomic::load_acquire(&_subklass); 689 if (subklass == nullptr || subklass->is_loader_alive()) { 690 return; 691 } 692 // Try to fix _subklass until it points at something not dead. 693 Atomic::cmpxchg(&_subklass, subklass, subklass->next_sibling()); 694 } 695 } 696 697 void Klass::clean_weak_klass_links(bool unloading_occurred, bool clean_alive_klasses) { 698 if (!ClassUnloading || !unloading_occurred) { 699 return; 700 } 701 702 Klass* root = vmClasses::Object_klass(); 703 Stack<Klass*, mtGC> stack; 704 705 stack.push(root); 706 while (!stack.is_empty()) { 707 Klass* current = stack.pop(); 708 709 assert(current->is_loader_alive(), "just checking, this should be live"); 710 711 // Find and set the first alive subklass 712 Klass* sub = current->subklass(true); 713 current->clean_subklass(); 714 if (sub != nullptr) { 715 stack.push(sub); 716 } 717 718 // Find and set the first alive sibling 719 Klass* sibling = current->next_sibling(true); 720 current->set_next_sibling(sibling); 721 if (sibling != nullptr) { 722 stack.push(sibling); 723 } 724 725 // Clean the implementors list and method data. 726 if (clean_alive_klasses && current->is_instance_klass()) { 727 InstanceKlass* ik = InstanceKlass::cast(current); 728 ik->clean_weak_instanceklass_links(); 729 730 // JVMTI RedefineClasses creates previous versions that are not in 731 // the class hierarchy, so process them here. 732 while ((ik = ik->previous_versions()) != nullptr) { 733 ik->clean_weak_instanceklass_links(); 734 } 735 } 736 } 737 } 738 739 void Klass::metaspace_pointers_do(MetaspaceClosure* it) { 740 if (log_is_enabled(Trace, cds)) { 741 ResourceMark rm; 742 log_trace(cds)("Iter(Klass): %p (%s)", this, external_name()); 743 } 744 745 it->push(&_name); 746 it->push(&_secondary_supers); 747 for (int i = 0; i < _primary_super_limit; i++) { 748 it->push(&_primary_supers[i]); 749 } 750 it->push(&_super); 751 if (!CDSConfig::is_dumping_archive()) { 752 // If dumping archive, these may point to excluded classes. There's no need 753 // to follow these pointers anyway, as they will be set to null in 754 // remove_unshareable_info(). 755 it->push((Klass**)&_subklass); 756 it->push((Klass**)&_next_sibling); 757 it->push(&_next_link); 758 } 759 760 vtableEntry* vt = start_of_vtable(); 761 for (int i=0; i<vtable_length(); i++) { 762 it->push(vt[i].method_addr()); 763 } 764 } 765 766 #if INCLUDE_CDS 767 void Klass::remove_unshareable_info() { 768 assert(CDSConfig::is_dumping_archive(), 769 "only called during CDS dump time"); 770 JFR_ONLY(REMOVE_ID(this);) 771 if (log_is_enabled(Trace, cds, unshareable)) { 772 ResourceMark rm; 773 log_trace(cds, unshareable)("remove: %s", external_name()); 774 } 775 776 // _secondary_super_cache may be updated by an is_subtype_of() call 777 // while ArchiveBuilder is copying metaspace objects. Let's reset it to 778 // null and let it be repopulated at runtime. 779 set_secondary_super_cache(nullptr); 780 781 set_subklass(nullptr); 782 set_next_sibling(nullptr); 783 set_next_link(nullptr); 784 785 // Null out class_loader_data because we don't share that yet. 786 set_class_loader_data(nullptr); 787 set_is_shared(); 788 789 // FIXME: validation in Klass::hash_secondary_supers() may fail for shared klasses. 790 // Even though the bitmaps always match, the canonical order of elements in the table 791 // is not guaranteed to stay the same (see tie breaker during Robin Hood hashing in Klass::hash_insert). 792 //assert(compute_secondary_supers_bitmap(secondary_supers()) == _secondary_supers_bitmap, "broken table"); 793 } 794 795 void Klass::remove_java_mirror() { 796 assert(CDSConfig::is_dumping_archive(), "sanity"); 797 if (log_is_enabled(Trace, cds, unshareable)) { 798 ResourceMark rm; 799 log_trace(cds, unshareable)("remove java_mirror: %s", external_name()); 800 } 801 // Just null out the mirror. The class_loader_data() no longer exists. 802 clear_java_mirror_handle(); 803 } 804 805 void Klass::restore_unshareable_info(ClassLoaderData* loader_data, Handle protection_domain, TRAPS) { 806 assert(is_klass(), "ensure C++ vtable is restored"); 807 assert(is_shared(), "must be set"); 808 assert(secondary_supers()->length() >= (int)population_count(_secondary_supers_bitmap), "must be"); 809 JFR_ONLY(RESTORE_ID(this);) 810 if (log_is_enabled(Trace, cds, unshareable)) { 811 ResourceMark rm(THREAD); 812 oop class_loader = loader_data->class_loader(); 813 log_trace(cds, unshareable)("restore: %s with class loader: %s", external_name(), 814 class_loader != nullptr ? class_loader->klass()->external_name() : "boot"); 815 } 816 817 // If an exception happened during CDS restore, some of these fields may already be 818 // set. We leave the class on the CLD list, even if incomplete so that we don't 819 // modify the CLD list outside a safepoint. 820 if (class_loader_data() == nullptr) { 821 set_class_loader_data(loader_data); 822 823 // Add to class loader list first before creating the mirror 824 // (same order as class file parsing) 825 loader_data->add_class(this); 826 } 827 828 Handle loader(THREAD, loader_data->class_loader()); 829 ModuleEntry* module_entry = nullptr; 830 Klass* k = this; 831 if (k->is_objArray_klass()) { 832 k = ObjArrayKlass::cast(k)->bottom_klass(); 833 } 834 // Obtain klass' module. 835 if (k->is_instance_klass()) { 836 InstanceKlass* ik = (InstanceKlass*) k; 837 module_entry = ik->module(); 838 } else { 839 module_entry = ModuleEntryTable::javabase_moduleEntry(); 840 } 841 // Obtain java.lang.Module, if available 842 Handle module_handle(THREAD, ((module_entry != nullptr) ? module_entry->module() : (oop)nullptr)); 843 844 if (this->has_archived_mirror_index()) { 845 ResourceMark rm(THREAD); 846 log_debug(cds, mirror)("%s has raw archived mirror", external_name()); 847 if (ArchiveHeapLoader::is_in_use()) { 848 bool present = java_lang_Class::restore_archived_mirror(this, loader, module_handle, 849 protection_domain, 850 CHECK); 851 if (present) { 852 return; 853 } 854 } 855 856 // No archived mirror data 857 log_debug(cds, mirror)("No archived mirror data for %s", external_name()); 858 clear_java_mirror_handle(); 859 this->clear_archived_mirror_index(); 860 } 861 862 // Only recreate it if not present. A previous attempt to restore may have 863 // gotten an OOM later but keep the mirror if it was created. 864 if (java_mirror() == nullptr) { 865 ResourceMark rm(THREAD); 866 log_trace(cds, mirror)("Recreate mirror for %s", external_name()); 867 java_lang_Class::create_mirror(this, loader, module_handle, protection_domain, Handle(), CHECK); 868 } 869 } 870 #endif // INCLUDE_CDS 871 872 #if INCLUDE_CDS_JAVA_HEAP 873 oop Klass::archived_java_mirror() { 874 assert(has_archived_mirror_index(), "must have archived mirror"); 875 return HeapShared::get_root(_archived_mirror_index); 876 } 877 878 void Klass::clear_archived_mirror_index() { 879 if (_archived_mirror_index >= 0) { 880 HeapShared::clear_root(_archived_mirror_index); 881 } 882 _archived_mirror_index = -1; 883 } 884 885 // No GC barrier 886 void Klass::set_archived_java_mirror(int mirror_index) { 887 assert(CDSConfig::is_dumping_heap(), "sanity"); 888 _archived_mirror_index = mirror_index; 889 } 890 #endif // INCLUDE_CDS_JAVA_HEAP 891 892 void Klass::check_array_allocation_length(int length, int max_length, TRAPS) { 893 if (length > max_length) { 894 if (!THREAD->is_in_internal_oome_mark()) { 895 report_java_out_of_memory("Requested array size exceeds VM limit"); 896 JvmtiExport::post_array_size_exhausted(); 897 THROW_OOP(Universe::out_of_memory_error_array_size()); 898 } else { 899 THROW_OOP(Universe::out_of_memory_error_java_heap_without_backtrace()); 900 } 901 } else if (length < 0) { 902 THROW_MSG(vmSymbols::java_lang_NegativeArraySizeException(), err_msg("%d", length)); 903 } 904 } 905 906 // Replace the last '+' char with '/'. 907 static char* convert_hidden_name_to_java(Symbol* name) { 908 size_t name_len = name->utf8_length(); 909 char* result = NEW_RESOURCE_ARRAY(char, name_len + 1); 910 name->as_klass_external_name(result, (int)name_len + 1); 911 for (int index = (int)name_len; index > 0; index--) { 912 if (result[index] == '+') { 913 result[index] = JVM_SIGNATURE_SLASH; 914 break; 915 } 916 } 917 return result; 918 } 919 920 // In product mode, this function doesn't have virtual function calls so 921 // there might be some performance advantage to handling InstanceKlass here. 922 const char* Klass::external_name() const { 923 if (is_instance_klass()) { 924 const InstanceKlass* ik = static_cast<const InstanceKlass*>(this); 925 if (ik->is_hidden()) { 926 char* result = convert_hidden_name_to_java(name()); 927 return result; 928 } 929 } else if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) { 930 char* result = convert_hidden_name_to_java(name()); 931 return result; 932 } 933 if (name() == nullptr) return "<unknown>"; 934 return name()->as_klass_external_name(); 935 } 936 937 const char* Klass::signature_name() const { 938 if (name() == nullptr) return "<unknown>"; 939 if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) { 940 size_t name_len = name()->utf8_length(); 941 char* result = NEW_RESOURCE_ARRAY(char, name_len + 1); 942 name()->as_C_string(result, (int)name_len + 1); 943 for (int index = (int)name_len; index > 0; index--) { 944 if (result[index] == '+') { 945 result[index] = JVM_SIGNATURE_DOT; 946 break; 947 } 948 } 949 return result; 950 } 951 return name()->as_C_string(); 952 } 953 954 const char* Klass::external_kind() const { 955 if (is_interface()) return "interface"; 956 if (is_abstract()) return "abstract class"; 957 return "class"; 958 } 959 960 // Unless overridden, jvmti_class_status has no flags set. 961 jint Klass::jvmti_class_status() const { 962 return 0; 963 } 964 965 966 // Printing 967 968 void Klass::print_on(outputStream* st) const { 969 ResourceMark rm; 970 // print title 971 st->print("%s", internal_name()); 972 print_address_on(st); 973 st->cr(); 974 } 975 976 #define BULLET " - " 977 978 // Caller needs ResourceMark 979 void Klass::oop_print_on(oop obj, outputStream* st) { 980 // print title 981 st->print_cr("%s ", internal_name()); 982 obj->print_address_on(st); 983 984 if (WizardMode) { 985 // print header 986 obj->mark().print_on(st); 987 st->cr(); 988 } 989 990 // print class 991 st->print(BULLET"klass: "); 992 obj->klass()->print_value_on(st); 993 st->print(BULLET"flags: "); _misc_flags.print_on(st); st->cr(); 994 st->cr(); 995 } 996 997 void Klass::oop_print_value_on(oop obj, outputStream* st) { 998 // print title 999 ResourceMark rm; // Cannot print in debug mode without this 1000 st->print("%s", internal_name()); 1001 obj->print_address_on(st); 1002 } 1003 1004 // Verification 1005 1006 void Klass::verify_on(outputStream* st) { 1007 1008 // This can be expensive, but it is worth checking that this klass is actually 1009 // in the CLD graph but not in production. 1010 assert(Metaspace::contains((address)this), "Should be"); 1011 1012 guarantee(this->is_klass(),"should be klass"); 1013 1014 if (super() != nullptr) { 1015 guarantee(super()->is_klass(), "should be klass"); 1016 } 1017 if (secondary_super_cache() != nullptr) { 1018 Klass* ko = secondary_super_cache(); 1019 guarantee(ko->is_klass(), "should be klass"); 1020 } 1021 for ( uint i = 0; i < primary_super_limit(); i++ ) { 1022 Klass* ko = _primary_supers[i]; 1023 if (ko != nullptr) { 1024 guarantee(ko->is_klass(), "should be klass"); 1025 } 1026 } 1027 1028 if (java_mirror_no_keepalive() != nullptr) { 1029 guarantee(java_lang_Class::is_instance(java_mirror_no_keepalive()), "should be instance"); 1030 } 1031 } 1032 1033 void Klass::oop_verify_on(oop obj, outputStream* st) { 1034 guarantee(oopDesc::is_oop(obj), "should be oop"); 1035 guarantee(obj->klass()->is_klass(), "klass field is not a klass"); 1036 } 1037 1038 bool Klass::is_valid(Klass* k) { 1039 if (!is_aligned(k, sizeof(MetaWord))) return false; 1040 if ((size_t)k < os::min_page_size()) return false; 1041 1042 if (!os::is_readable_range(k, k + 1)) return false; 1043 if (!Metaspace::contains(k)) return false; 1044 1045 if (!Symbol::is_valid(k->name())) return false; 1046 return ClassLoaderDataGraph::is_valid(k->class_loader_data()); 1047 } 1048 1049 Method* Klass::method_at_vtable(int index) { 1050 #ifndef PRODUCT 1051 assert(index >= 0, "valid vtable index"); 1052 if (DebugVtables) { 1053 verify_vtable_index(index); 1054 } 1055 #endif 1056 return start_of_vtable()[index].method(); 1057 } 1058 1059 1060 #ifndef PRODUCT 1061 1062 bool Klass::verify_vtable_index(int i) { 1063 int limit = vtable_length()/vtableEntry::size(); 1064 assert(i >= 0 && i < limit, "index %d out of bounds %d", i, limit); 1065 return true; 1066 } 1067 1068 #endif // PRODUCT 1069 1070 // Caller needs ResourceMark 1071 // joint_in_module_of_loader provides an optimization if 2 classes are in 1072 // the same module to succinctly print out relevant information about their 1073 // module name and class loader's name_and_id for error messages. 1074 // Format: 1075 // <fully-qualified-external-class-name1> and <fully-qualified-external-class-name2> 1076 // are in module <module-name>[@<version>] 1077 // of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>] 1078 const char* Klass::joint_in_module_of_loader(const Klass* class2, bool include_parent_loader) const { 1079 assert(module() == class2->module(), "classes do not have the same module"); 1080 const char* class1_name = external_name(); 1081 size_t len = strlen(class1_name) + 1; 1082 1083 const char* class2_description = class2->class_in_module_of_loader(true, include_parent_loader); 1084 len += strlen(class2_description); 1085 1086 len += strlen(" and "); 1087 1088 char* joint_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len); 1089 1090 // Just return the FQN if error when allocating string 1091 if (joint_description == nullptr) { 1092 return class1_name; 1093 } 1094 1095 jio_snprintf(joint_description, len, "%s and %s", 1096 class1_name, 1097 class2_description); 1098 1099 return joint_description; 1100 } 1101 1102 // Caller needs ResourceMark 1103 // class_in_module_of_loader provides a standard way to include 1104 // relevant information about a class, such as its module name as 1105 // well as its class loader's name_and_id, in error messages and logging. 1106 // Format: 1107 // <fully-qualified-external-class-name> is in module <module-name>[@<version>] 1108 // of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>] 1109 const char* Klass::class_in_module_of_loader(bool use_are, bool include_parent_loader) const { 1110 // 1. fully qualified external name of class 1111 const char* klass_name = external_name(); 1112 size_t len = strlen(klass_name) + 1; 1113 1114 // 2. module name + @version 1115 const char* module_name = ""; 1116 const char* version = ""; 1117 bool has_version = false; 1118 bool module_is_named = false; 1119 const char* module_name_phrase = ""; 1120 const Klass* bottom_klass = is_objArray_klass() ? 1121 ObjArrayKlass::cast(this)->bottom_klass() : this; 1122 if (bottom_klass->is_instance_klass()) { 1123 ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module(); 1124 if (module->is_named()) { 1125 module_is_named = true; 1126 module_name_phrase = "module "; 1127 module_name = module->name()->as_C_string(); 1128 len += strlen(module_name); 1129 // Use version if exists and is not a jdk module 1130 if (module->should_show_version()) { 1131 has_version = true; 1132 version = module->version()->as_C_string(); 1133 // Include stlen(version) + 1 for the "@" 1134 len += strlen(version) + 1; 1135 } 1136 } else { 1137 module_name = UNNAMED_MODULE; 1138 len += UNNAMED_MODULE_LEN; 1139 } 1140 } else { 1141 // klass is an array of primitives, module is java.base 1142 module_is_named = true; 1143 module_name_phrase = "module "; 1144 module_name = JAVA_BASE_NAME; 1145 len += JAVA_BASE_NAME_LEN; 1146 } 1147 1148 // 3. class loader's name_and_id 1149 ClassLoaderData* cld = class_loader_data(); 1150 assert(cld != nullptr, "class_loader_data should not be null"); 1151 const char* loader_name_and_id = cld->loader_name_and_id(); 1152 len += strlen(loader_name_and_id); 1153 1154 // 4. include parent loader information 1155 const char* parent_loader_phrase = ""; 1156 const char* parent_loader_name_and_id = ""; 1157 if (include_parent_loader && 1158 !cld->is_builtin_class_loader_data()) { 1159 oop parent_loader = java_lang_ClassLoader::parent(class_loader()); 1160 ClassLoaderData *parent_cld = ClassLoaderData::class_loader_data_or_null(parent_loader); 1161 // The parent loader's ClassLoaderData could be null if it is 1162 // a delegating class loader that has never defined a class. 1163 // In this case the loader's name must be obtained via the parent loader's oop. 1164 if (parent_cld == nullptr) { 1165 oop cl_name_and_id = java_lang_ClassLoader::nameAndId(parent_loader); 1166 if (cl_name_and_id != nullptr) { 1167 parent_loader_name_and_id = java_lang_String::as_utf8_string(cl_name_and_id); 1168 } 1169 } else { 1170 parent_loader_name_and_id = parent_cld->loader_name_and_id(); 1171 } 1172 parent_loader_phrase = ", parent loader "; 1173 len += strlen(parent_loader_phrase) + strlen(parent_loader_name_and_id); 1174 } 1175 1176 // Start to construct final full class description string 1177 len += ((use_are) ? strlen(" are in ") : strlen(" is in ")); 1178 len += strlen(module_name_phrase) + strlen(" of loader "); 1179 1180 char* class_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len); 1181 1182 // Just return the FQN if error when allocating string 1183 if (class_description == nullptr) { 1184 return klass_name; 1185 } 1186 1187 jio_snprintf(class_description, len, "%s %s in %s%s%s%s of loader %s%s%s", 1188 klass_name, 1189 (use_are) ? "are" : "is", 1190 module_name_phrase, 1191 module_name, 1192 (has_version) ? "@" : "", 1193 (has_version) ? version : "", 1194 loader_name_and_id, 1195 parent_loader_phrase, 1196 parent_loader_name_and_id); 1197 1198 return class_description; 1199 } 1200 1201 class LookupStats : StackObj { 1202 private: 1203 uint _no_of_samples; 1204 uint _worst; 1205 uint _worst_count; 1206 uint _average; 1207 uint _best; 1208 uint _best_count; 1209 public: 1210 LookupStats() : _no_of_samples(0), _worst(0), _worst_count(0), _average(0), _best(INT_MAX), _best_count(0) {} 1211 1212 ~LookupStats() { 1213 assert(_best <= _worst || _no_of_samples == 0, "sanity"); 1214 } 1215 1216 void sample(uint value) { 1217 ++_no_of_samples; 1218 _average += value; 1219 1220 if (_worst < value) { 1221 _worst = value; 1222 _worst_count = 1; 1223 } else if (_worst == value) { 1224 ++_worst_count; 1225 } 1226 1227 if (_best > value) { 1228 _best = value; 1229 _best_count = 1; 1230 } else if (_best == value) { 1231 ++_best_count; 1232 } 1233 } 1234 1235 void print_on(outputStream* st) const { 1236 st->print("best: %2d (%4.1f%%)", _best, (100.0 * _best_count) / _no_of_samples); 1237 if (_best_count < _no_of_samples) { 1238 st->print("; average: %4.1f; worst: %2d (%4.1f%%)", 1239 (1.0 * _average) / _no_of_samples, 1240 _worst, (100.0 * _worst_count) / _no_of_samples); 1241 } 1242 } 1243 }; 1244 1245 static void print_positive_lookup_stats(Array<Klass*>* secondary_supers, uintx bitmap, outputStream* st) { 1246 int num_of_supers = secondary_supers->length(); 1247 1248 LookupStats s; 1249 for (int i = 0; i < num_of_supers; i++) { 1250 Klass* secondary_super = secondary_supers->at(i); 1251 int home_slot = Klass::compute_home_slot(secondary_super, bitmap); 1252 uint score = 1 + ((i - home_slot) & Klass::SECONDARY_SUPERS_TABLE_MASK); 1253 s.sample(score); 1254 } 1255 st->print("positive_lookup: "); s.print_on(st); 1256 } 1257 1258 static uint compute_distance_to_nearest_zero(int slot, uintx bitmap) { 1259 assert(~bitmap != 0, "no zeroes"); 1260 uintx start = rotate_right(bitmap, slot); 1261 return count_trailing_zeros(~start); 1262 } 1263 1264 static void print_negative_lookup_stats(uintx bitmap, outputStream* st) { 1265 LookupStats s; 1266 for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) { 1267 uint score = compute_distance_to_nearest_zero(slot, bitmap); 1268 s.sample(score); 1269 } 1270 st->print("negative_lookup: "); s.print_on(st); 1271 } 1272 1273 void Klass::print_secondary_supers_on(outputStream* st) const { 1274 if (secondary_supers() != nullptr) { 1275 st->print(" - "); st->print("%d elements;", _secondary_supers->length()); 1276 st->print_cr(" bitmap: " UINTX_FORMAT_X_0 ";", _secondary_supers_bitmap); 1277 if (_secondary_supers_bitmap != SECONDARY_SUPERS_BITMAP_EMPTY && 1278 _secondary_supers_bitmap != SECONDARY_SUPERS_BITMAP_FULL) { 1279 st->print(" - "); print_positive_lookup_stats(secondary_supers(), 1280 _secondary_supers_bitmap, st); st->cr(); 1281 st->print(" - "); print_negative_lookup_stats(_secondary_supers_bitmap, st); st->cr(); 1282 } 1283 } else { 1284 st->print("null"); 1285 } 1286 } 1287 1288 void Klass::on_secondary_supers_verification_failure(Klass* super, Klass* sub, bool linear_result, bool table_result, const char* msg) { 1289 ResourceMark rm; 1290 super->print(); 1291 sub->print(); 1292 fatal("%s: %s implements %s: linear_search: %d; table_lookup: %d", 1293 msg, sub->external_name(), super->external_name(), linear_result, table_result); 1294 }