1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/archiveHeapLoader.hpp"
  26 #include "cds/cdsConfig.hpp"
  27 #include "cds/heapShared.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/classLoaderData.inline.hpp"
  30 #include "classfile/classLoaderDataGraph.inline.hpp"
  31 #include "classfile/javaClasses.inline.hpp"
  32 #include "classfile/moduleEntry.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/systemDictionaryShared.hpp"
  35 #include "classfile/vmClasses.hpp"
  36 #include "classfile/vmSymbols.hpp"
  37 #include "gc/shared/collectedHeap.inline.hpp"
  38 #include "jvm_io.h"
  39 #include "logging/log.hpp"
  40 #include "memory/metadataFactory.hpp"
  41 #include "memory/metaspaceClosure.hpp"
  42 #include "memory/oopFactory.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.hpp"
  45 #include "oops/compressedKlass.inline.hpp"
  46 #include "oops/compressedOops.inline.hpp"
  47 #include "oops/instanceKlass.hpp"
  48 #include "oops/klass.inline.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/oopHandle.inline.hpp"
  52 #include "prims/jvmtiExport.hpp"
  53 #include "runtime/atomicAccess.hpp"
  54 #include "runtime/handles.inline.hpp"
  55 #include "runtime/perfData.hpp"
  56 #include "utilities/macros.hpp"
  57 #include "utilities/powerOfTwo.hpp"
  58 #include "utilities/rotate_bits.hpp"
  59 #include "utilities/stack.inline.hpp"
  60 
  61 void Klass::set_java_mirror(Handle m) {
  62   assert(!m.is_null(), "New mirror should never be null.");
  63   assert(_java_mirror.is_empty(), "should only be used to initialize mirror");
  64   _java_mirror = class_loader_data()->add_handle(m);
  65 }
  66 
  67 bool Klass::is_cloneable() const {
  68   return _misc_flags.is_cloneable_fast() ||
  69          is_subtype_of(vmClasses::Cloneable_klass());
  70 }
  71 
  72 void Klass::set_is_cloneable() {
  73   if (name() == vmSymbols::java_lang_invoke_MemberName()) {
  74     assert(is_final(), "no subclasses allowed");
  75     // MemberName cloning should not be intrinsified and always happen in JVM_Clone.
  76   } else if (is_instance_klass() && InstanceKlass::cast(this)->reference_type() != REF_NONE) {
  77     // Reference cloning should not be intrinsified and always happen in JVM_Clone.
  78   } else {
  79     _misc_flags.set_is_cloneable_fast(true);
  80   }
  81 }
  82 
  83 uint8_t Klass::compute_hash_slot(Symbol* n) {
  84   uint hash_code;
  85   // Special cases for the two superclasses of all Array instances.
  86   // Code elsewhere assumes, for all instances of ArrayKlass, that
  87   // these two interfaces will be in this order.
  88 
  89   // We ensure there are some empty slots in the hash table between
  90   // these two very common interfaces because if they were adjacent
  91   // (e.g. Slots 0 and 1), then any other class which hashed to 0 or 1
  92   // would result in a probe length of 3.
  93   if (n == vmSymbols::java_lang_Cloneable()) {
  94     hash_code = 0;
  95   } else if (n == vmSymbols::java_io_Serializable()) {
  96     hash_code = SECONDARY_SUPERS_TABLE_SIZE / 2;
  97   } else {
  98     auto s = (const jbyte*) n->bytes();
  99     hash_code = java_lang_String::hash_code(s, n->utf8_length());
 100     // We use String::hash_code here (rather than e.g.
 101     // Symbol::identity_hash()) in order to have a hash code that
 102     // does not change from run to run. We want that because the
 103     // hash value for a secondary superclass appears in generated
 104     // code as a constant.
 105 
 106     // This constant is magic: see Knuth, "Fibonacci Hashing".
 107     constexpr uint multiplier
 108       = 2654435769; // (uint)(((u8)1 << 32) / ((1 + sqrt(5)) / 2 ))
 109     constexpr uint hash_shift = sizeof(hash_code) * 8 - 6;
 110     // The leading bits of the least significant half of the product.
 111     hash_code = (hash_code * multiplier) >> hash_shift;
 112 
 113     if (StressSecondarySupers) {
 114       // Generate many hash collisions in order to stress-test the
 115       // linear search fallback.
 116       hash_code = hash_code % 3;
 117       hash_code = hash_code * (SECONDARY_SUPERS_TABLE_SIZE / 3);
 118     }
 119   }
 120 
 121   return (hash_code & SECONDARY_SUPERS_TABLE_MASK);
 122 }
 123 
 124 void Klass::set_name(Symbol* n) {
 125   _name = n;
 126 
 127   if (_name != nullptr) {
 128     _name->increment_refcount();
 129   }
 130 
 131   {
 132     elapsedTimer selftime;
 133     selftime.start();
 134 
 135     _hash_slot = compute_hash_slot(n);
 136     assert(_hash_slot < SECONDARY_SUPERS_TABLE_SIZE, "required");
 137 
 138     selftime.stop();
 139     if (UsePerfData) {
 140       ClassLoader::perf_secondary_hash_time()->inc(selftime.ticks());
 141     }
 142   }
 143 
 144   if (CDSConfig::is_dumping_archive() && is_instance_klass()) {
 145     SystemDictionaryShared::init_dumptime_info(InstanceKlass::cast(this));
 146   }
 147 }
 148 
 149 bool Klass::is_subclass_of(const Klass* k) const {
 150   // Run up the super chain and check
 151   if (this == k) return true;
 152 
 153   Klass* t = const_cast<Klass*>(this)->super();
 154 
 155   while (t != nullptr) {
 156     if (t == k) return true;
 157     t = t->super();
 158   }
 159   return false;
 160 }
 161 
 162 void Klass::release_C_heap_structures(bool release_constant_pool) {
 163   if (_name != nullptr) _name->decrement_refcount();
 164 }
 165 
 166 bool Klass::linear_search_secondary_supers(const Klass* k) const {
 167   // Scan the array-of-objects for a match
 168   // FIXME: We could do something smarter here, maybe a vectorized
 169   // comparison or a binary search, but is that worth any added
 170   // complexity?
 171   int cnt = secondary_supers()->length();
 172   for (int i = 0; i < cnt; i++) {
 173     if (secondary_supers()->at(i) == k) {
 174       return true;
 175     }
 176   }
 177   return false;
 178 }
 179 
 180 // Given a secondary superklass k, an initial array index, and an
 181 // occupancy bitmap rotated such that Bit 1 is the next bit to test,
 182 // search for k.
 183 bool Klass::fallback_search_secondary_supers(const Klass* k, int index, uintx rotated_bitmap) const {
 184   // Once the occupancy bitmap is almost full, it's faster to use a
 185   // linear search.
 186   if (secondary_supers()->length() > SECONDARY_SUPERS_TABLE_SIZE - 2) {
 187     return linear_search_secondary_supers(k);
 188   }
 189 
 190   // This is conventional linear probing, but instead of terminating
 191   // when a null entry is found in the table, we maintain a bitmap
 192   // in which a 0 indicates missing entries.
 193 
 194   precond((int)population_count(rotated_bitmap) == secondary_supers()->length());
 195 
 196   // The check for secondary_supers()->length() <= SECONDARY_SUPERS_TABLE_SIZE - 2
 197   // at the start of this function guarantees there are 0s in the
 198   // bitmap, so this loop eventually terminates.
 199   while ((rotated_bitmap & 2) != 0) {
 200     if (++index == secondary_supers()->length()) {
 201       index = 0;
 202     }
 203     if (secondary_supers()->at(index) == k) {
 204       return true;
 205     }
 206     rotated_bitmap = rotate_right(rotated_bitmap, 1);
 207   }
 208   return false;
 209 }
 210 
 211 // Return self, except for abstract classes with exactly 1
 212 // implementor.  Then return the 1 concrete implementation.
 213 Klass *Klass::up_cast_abstract() {
 214   Klass *r = this;
 215   while( r->is_abstract() ) {   // Receiver is abstract?
 216     Klass *s = r->subklass();   // Check for exactly 1 subklass
 217     if (s == nullptr || s->next_sibling() != nullptr) // Oops; wrong count; give up
 218       return this;              // Return 'this' as a no-progress flag
 219     r = s;                    // Loop till find concrete class
 220   }
 221   return r;                   // Return the 1 concrete class
 222 }
 223 
 224 // Find LCA in class hierarchy
 225 Klass *Klass::LCA( Klass *k2 ) {
 226   Klass *k1 = this;
 227   while( 1 ) {
 228     if( k1->is_subtype_of(k2) ) return k2;
 229     if( k2->is_subtype_of(k1) ) return k1;
 230     k1 = k1->super();
 231     k2 = k2->super();
 232   }
 233 }
 234 
 235 
 236 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
 237   ResourceMark rm(THREAD);
 238   THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
 239             : vmSymbols::java_lang_InstantiationException(), external_name());
 240 }
 241 
 242 
 243 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
 244   ResourceMark rm(THREAD);
 245   assert(s != nullptr, "Throw NPE!");
 246   THROW_MSG(vmSymbols::java_lang_ArrayStoreException(),
 247             err_msg("arraycopy: source type %s is not an array", s->klass()->external_name()));
 248 }
 249 
 250 
 251 void Klass::initialize(TRAPS) {
 252   ShouldNotReachHere();
 253 }
 254 
 255 void Klass::initialize_preemptable(TRAPS) {
 256   ShouldNotReachHere();
 257 }
 258 
 259 Klass* Klass::find_field(Symbol* name, Symbol* sig, fieldDescriptor* fd) const {
 260 #ifdef ASSERT
 261   tty->print_cr("Error: find_field called on a klass oop."
 262                 " Likely error: reflection method does not correctly"
 263                 " wrap return value in a mirror object.");
 264 #endif
 265   ShouldNotReachHere();
 266   return nullptr;
 267 }
 268 
 269 Method* Klass::uncached_lookup_method(const Symbol* name, const Symbol* signature,
 270                                       OverpassLookupMode overpass_mode,
 271                                       PrivateLookupMode private_mode) const {
 272 #ifdef ASSERT
 273   tty->print_cr("Error: uncached_lookup_method called on a klass oop."
 274                 " Likely error: reflection method does not correctly"
 275                 " wrap return value in a mirror object.");
 276 #endif
 277   ShouldNotReachHere();
 278   return nullptr;
 279 }
 280 
 281 void* Klass::operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, TRAPS) throw() {
 282   return Metaspace::allocate(loader_data, word_size, MetaspaceObj::ClassType, THREAD);
 283 }
 284 
 285 Klass::Klass() : _kind(UnknownKlassKind) {
 286   assert(CDSConfig::is_dumping_static_archive() || CDSConfig::is_using_archive(), "only for cds");
 287 }
 288 
 289 // "Normal" instantiation is preceded by a MetaspaceObj allocation
 290 // which zeros out memory - calloc equivalent.
 291 // The constructor is also used from CppVtableCloner,
 292 // which doesn't zero out the memory before calling the constructor.
 293 Klass::Klass(KlassKind kind, markWord prototype_header) : _kind(kind),
 294                                _shared_class_path_index(-1) {
 295   set_prototype_header(make_prototype_header(this, prototype_header));
 296   CDS_ONLY(_aot_class_flags = 0;)
 297   CDS_JAVA_HEAP_ONLY(_archived_mirror_index = -1;)
 298   _primary_supers[0] = this;
 299   set_super_check_offset(in_bytes(primary_supers_offset()));
 300 }
 301 
 302 jint Klass::array_layout_helper(BasicType etype) {
 303   assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
 304   // Note that T_ARRAY is not allowed here.
 305   int  hsize = arrayOopDesc::base_offset_in_bytes(etype);
 306   int  esize = type2aelembytes(etype);
 307   bool isobj = (etype == T_OBJECT);
 308   int  tag   =  isobj ? _lh_array_tag_ref_value : _lh_array_tag_type_value;
 309   int lh = array_layout_helper(tag, false, hsize, etype, exact_log2(esize));
 310 
 311   assert(lh < (int)_lh_neutral_value, "must look like an array layout");
 312   assert(layout_helper_is_array(lh), "correct kind");
 313   assert(layout_helper_is_refArray(lh) == isobj, "correct kind");
 314   assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
 315   assert(layout_helper_header_size(lh) == hsize, "correct decode");
 316   assert(layout_helper_element_type(lh) == etype, "correct decode");
 317   assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
 318 
 319   return lh;
 320 }
 321 
 322 int Klass::modifier_flags() const {
 323   int mods = java_lang_Class::modifiers(java_mirror());
 324   assert(mods == compute_modifier_flags(), "should be same");
 325   return mods;
 326 }
 327 
 328 bool Klass::can_be_primary_super_slow() const {
 329   if (super() == nullptr)
 330     return true;
 331   else if (super()->super_depth() >= primary_super_limit()-1)
 332     return false;
 333   else
 334     return true;
 335 }
 336 
 337 void Klass::set_secondary_supers(Array<Klass*>* secondaries, uintx bitmap) {
 338 #ifdef ASSERT
 339   if (secondaries != nullptr) {
 340     uintx real_bitmap = compute_secondary_supers_bitmap(secondaries);
 341     assert(bitmap == real_bitmap, "must be");
 342     assert(secondaries->length() >= (int)population_count(bitmap), "must be");
 343   }
 344 #endif
 345   _secondary_supers_bitmap = bitmap;
 346   _secondary_supers = secondaries;
 347 
 348   if (secondaries != nullptr) {
 349     LogMessage(class, load) msg;
 350     NonInterleavingLogStream log {LogLevel::Debug, msg};
 351     if (log.is_enabled()) {
 352       ResourceMark rm;
 353       log.print_cr("set_secondary_supers: hash_slot: %d; klass: %s", hash_slot(), external_name());
 354       print_secondary_supers_on(&log);
 355     }
 356   }
 357 }
 358 
 359 // Hashed secondary superclasses
 360 //
 361 // We use a compressed 64-entry hash table with linear probing. We
 362 // start by creating a hash table in the usual way, followed by a pass
 363 // that removes all the null entries. To indicate which entries would
 364 // have been null we use a bitmap that contains a 1 in each position
 365 // where an entry is present, 0 otherwise. This bitmap also serves as
 366 // a kind of Bloom filter, which in many cases allows us quickly to
 367 // eliminate the possibility that something is a member of a set of
 368 // secondaries.
 369 uintx Klass::hash_secondary_supers(Array<Klass*>* secondaries, bool rewrite) {
 370   const int length = secondaries->length();
 371 
 372   if (length == 0) {
 373     return SECONDARY_SUPERS_BITMAP_EMPTY;
 374   }
 375 
 376   if (length == 1) {
 377     int hash_slot = secondaries->at(0)->hash_slot();
 378     return uintx(1) << hash_slot;
 379   }
 380 
 381   // Invariant: _secondary_supers.length >= population_count(_secondary_supers_bitmap)
 382 
 383   // Don't attempt to hash a table that's completely full, because in
 384   // the case of an absent interface linear probing would not
 385   // terminate.
 386   if (length >= SECONDARY_SUPERS_TABLE_SIZE) {
 387     return SECONDARY_SUPERS_BITMAP_FULL;
 388   }
 389 
 390   {
 391     PerfTraceTime ptt(ClassLoader::perf_secondary_hash_time());
 392 
 393     ResourceMark rm;
 394     uintx bitmap = SECONDARY_SUPERS_BITMAP_EMPTY;
 395     auto hashed_secondaries = new GrowableArray<Klass*>(SECONDARY_SUPERS_TABLE_SIZE,
 396                                                         SECONDARY_SUPERS_TABLE_SIZE, nullptr);
 397 
 398     for (int j = 0; j < length; j++) {
 399       Klass* k = secondaries->at(j);
 400       hash_insert(k, hashed_secondaries, bitmap);
 401     }
 402 
 403     // Pack the hashed secondaries array by copying it into the
 404     // secondaries array, sans nulls, if modification is allowed.
 405     // Otherwise, validate the order.
 406     int i = 0;
 407     for (int slot = 0; slot < SECONDARY_SUPERS_TABLE_SIZE; slot++) {
 408       bool has_element = ((bitmap >> slot) & 1) != 0;
 409       assert(has_element == (hashed_secondaries->at(slot) != nullptr), "");
 410       if (has_element) {
 411         Klass* k = hashed_secondaries->at(slot);
 412         if (rewrite) {
 413           secondaries->at_put(i, k);
 414         } else if (secondaries->at(i) != k) {
 415           assert(false, "broken secondary supers hash table");
 416           return SECONDARY_SUPERS_BITMAP_FULL;
 417         }
 418         i++;
 419       }
 420     }
 421     assert(i == secondaries->length(), "mismatch");
 422     postcond((int)population_count(bitmap) == secondaries->length());
 423 
 424     return bitmap;
 425   }
 426 }
 427 
 428 void Klass::hash_insert(Klass* klass, GrowableArray<Klass*>* secondaries, uintx& bitmap) {
 429   assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, "");
 430 
 431   int dist = 0;
 432   for (int slot = klass->hash_slot(); true; slot = (slot + 1) & SECONDARY_SUPERS_TABLE_MASK) {
 433     Klass* existing = secondaries->at(slot);
 434     assert(((bitmap >> slot) & 1) == (existing != nullptr), "mismatch");
 435     if (existing == nullptr) { // no conflict
 436       secondaries->at_put(slot, klass);
 437       bitmap |= uintx(1) << slot;
 438       assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, "");
 439       return;
 440     } else {
 441       // Use Robin Hood hashing to minimize the worst case search.
 442       // Also, every permutation of the insertion sequence produces
 443       // the same final Robin Hood hash table, provided that a
 444       // consistent tie breaker is used.
 445       int existing_dist = (slot - existing->hash_slot()) & SECONDARY_SUPERS_TABLE_MASK;
 446       if (existing_dist < dist
 447           // This tie breaker ensures that the hash order is maintained.
 448           || ((existing_dist == dist)
 449               && (uintptr_t(existing) < uintptr_t(klass)))) {
 450         Klass* tmp = secondaries->at(slot);
 451         secondaries->at_put(slot, klass);
 452         klass = tmp;
 453         dist = existing_dist;
 454       }
 455       ++dist;
 456     }
 457   }
 458 }
 459 
 460 Array<Klass*>* Klass::pack_secondary_supers(ClassLoaderData* loader_data,
 461                                             GrowableArray<Klass*>* primaries,
 462                                             GrowableArray<Klass*>* secondaries,
 463                                             uintx& bitmap, TRAPS) {
 464   int new_length = primaries->length() + secondaries->length();
 465   Array<Klass*>* secondary_supers = MetadataFactory::new_array<Klass*>(loader_data, new_length, CHECK_NULL);
 466 
 467   // Combine the two arrays into a metadata object to pack the array.
 468   // The primaries are added in the reverse order, then the secondaries.
 469   int fill_p = primaries->length();
 470   for (int j = 0; j < fill_p; j++) {
 471     secondary_supers->at_put(j, primaries->pop());  // add primaries in reverse order.
 472   }
 473   for( int j = 0; j < secondaries->length(); j++ ) {
 474     secondary_supers->at_put(j+fill_p, secondaries->at(j));  // add secondaries on the end.
 475   }
 476 #ifdef ASSERT
 477   // We must not copy any null placeholders left over from bootstrap.
 478   for (int j = 0; j < secondary_supers->length(); j++) {
 479     assert(secondary_supers->at(j) != nullptr, "correct bootstrapping order");
 480   }
 481 #endif
 482 
 483   bitmap = hash_secondary_supers(secondary_supers, /*rewrite=*/true); // rewrites freshly allocated array
 484   return secondary_supers;
 485 }
 486 
 487 uintx Klass::compute_secondary_supers_bitmap(Array<Klass*>* secondary_supers) {
 488   return hash_secondary_supers(secondary_supers, /*rewrite=*/false); // no rewrites allowed
 489 }
 490 
 491 uint8_t Klass::compute_home_slot(Klass* k, uintx bitmap) {
 492   uint8_t hash = k->hash_slot();
 493   if (hash > 0) {
 494     return population_count(bitmap << (SECONDARY_SUPERS_TABLE_SIZE - hash));
 495   }
 496   return 0;
 497 }
 498 
 499 
 500 void Klass::initialize_supers(Klass* k, Array<InstanceKlass*>* transitive_interfaces, TRAPS) {
 501   if (k == nullptr) {
 502     set_super(nullptr);
 503     _primary_supers[0] = this;
 504     assert(super_depth() == 0, "Object must already be initialized properly");
 505   } else if (k != super() || k == vmClasses::Object_klass()) {
 506     assert(super() == nullptr || super() == vmClasses::Object_klass(),
 507            "initialize this only once to a non-trivial value");
 508     set_super(k);
 509     Klass* sup = k;
 510     int sup_depth = sup->super_depth();
 511     juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
 512     if (!can_be_primary_super_slow())
 513       my_depth = primary_super_limit();
 514     for (juint i = 0; i < my_depth; i++) {
 515       _primary_supers[i] = sup->_primary_supers[i];
 516     }
 517     Klass* *super_check_cell;
 518     if (my_depth < primary_super_limit()) {
 519       _primary_supers[my_depth] = this;
 520       super_check_cell = &_primary_supers[my_depth];
 521     } else {
 522       // Overflow of the primary_supers array forces me to be secondary.
 523       super_check_cell = &_secondary_super_cache;
 524     }
 525     set_super_check_offset(u4((address)super_check_cell - (address) this));
 526 
 527 #ifdef ASSERT
 528     {
 529       juint j = super_depth();
 530       assert(j == my_depth, "computed accessor gets right answer");
 531       Klass* t = this;
 532       while (!t->can_be_primary_super()) {
 533         t = t->super();
 534         j = t->super_depth();
 535       }
 536       for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
 537         assert(primary_super_of_depth(j1) == nullptr, "super list padding");
 538       }
 539       while (t != nullptr) {
 540         assert(primary_super_of_depth(j) == t, "super list initialization");
 541         t = t->super();
 542         --j;
 543       }
 544       assert(j == (juint)-1, "correct depth count");
 545     }
 546 #endif
 547   }
 548 
 549   if (secondary_supers() == nullptr) {
 550 
 551     // Now compute the list of secondary supertypes.
 552     // Secondaries can occasionally be on the super chain,
 553     // if the inline "_primary_supers" array overflows.
 554     int extras = 0;
 555     Klass* p;
 556     for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) {
 557       ++extras;
 558     }
 559 
 560     ResourceMark rm(THREAD);  // need to reclaim GrowableArrays allocated below
 561 
 562     // Compute the "real" non-extra secondaries.
 563     GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras, transitive_interfaces);
 564     if (secondaries == nullptr) {
 565       // secondary_supers set by compute_secondary_supers
 566       return;
 567     }
 568 
 569     GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);
 570 
 571     for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) {
 572       int i;                    // Scan for overflow primaries being duplicates of 2nd'arys
 573 
 574       // This happens frequently for very deeply nested arrays: the
 575       // primary superclass chain overflows into the secondary.  The
 576       // secondary list contains the element_klass's secondaries with
 577       // an extra array dimension added.  If the element_klass's
 578       // secondary list already contains some primary overflows, they
 579       // (with the extra level of array-ness) will collide with the
 580       // normal primary superclass overflows.
 581       for( i = 0; i < secondaries->length(); i++ ) {
 582         if( secondaries->at(i) == p )
 583           break;
 584       }
 585       if( i < secondaries->length() )
 586         continue;               // It's a dup, don't put it in
 587       primaries->push(p);
 588     }
 589     // Combine the two arrays into a metadata object to pack the array.
 590     uintx bitmap = 0;
 591     Array<Klass*>* s2 = pack_secondary_supers(class_loader_data(), primaries, secondaries, bitmap, CHECK);
 592     set_secondary_supers(s2, bitmap);
 593   }
 594 }
 595 
 596 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots,
 597                                                        Array<InstanceKlass*>* transitive_interfaces) {
 598   assert(num_extra_slots == 0, "override for complex klasses");
 599   assert(transitive_interfaces == nullptr, "sanity");
 600   set_secondary_supers(Universe::the_empty_klass_array(), Universe::the_empty_klass_bitmap());
 601   return nullptr;
 602 }
 603 
 604 
 605 // subklass links.  Used by the compiler (and vtable initialization)
 606 // May be cleaned concurrently, so must use the Compile_lock.
 607 Klass* Klass::subklass() const {
 608   // Need load_acquire on the _subklass, because it races with inserts that
 609   // publishes freshly initialized data.
 610   for (Klass* chain = AtomicAccess::load_acquire(&_subklass);
 611        chain != nullptr;
 612        // Do not need load_acquire on _next_sibling, because inserts never
 613        // create _next_sibling edges to dead data.
 614        chain = AtomicAccess::load(&chain->_next_sibling))
 615   {
 616     if (chain->is_loader_alive()) {
 617       return chain;
 618     }
 619   }
 620   return nullptr;
 621 }
 622 
 623 Klass* Klass::next_sibling(bool log) const {
 624   // Do not need load_acquire on _next_sibling, because inserts never
 625   // create _next_sibling edges to dead data.
 626   for (Klass* chain = AtomicAccess::load(&_next_sibling);
 627        chain != nullptr;
 628        chain = AtomicAccess::load(&chain->_next_sibling)) {
 629     // Only return alive klass, there may be stale klass
 630     // in this chain if cleaned concurrently.
 631     if (chain->is_loader_alive()) {
 632       return chain;
 633     } else if (log) {
 634       if (log_is_enabled(Trace, class, unload)) {
 635         ResourceMark rm;
 636         log_trace(class, unload)("unlinking class (sibling): %s", chain->external_name());
 637       }
 638     }
 639   }
 640   return nullptr;
 641 }
 642 
 643 void Klass::set_subklass(Klass* s) {
 644   assert(s != this, "sanity check");
 645   AtomicAccess::release_store(&_subklass, s);
 646 }
 647 
 648 void Klass::set_next_sibling(Klass* s) {
 649   assert(s != this, "sanity check");
 650   // Does not need release semantics. If used by cleanup, it will link to
 651   // already safely published data, and if used by inserts, will be published
 652   // safely using cmpxchg.
 653   AtomicAccess::store(&_next_sibling, s);
 654 }
 655 
 656 void Klass::append_to_sibling_list() {
 657   if (Universe::is_fully_initialized()) {
 658     assert_locked_or_safepoint(Compile_lock);
 659   }
 660   DEBUG_ONLY(verify();)
 661   // add ourselves to super' subklass list
 662   InstanceKlass* super = java_super();
 663   if (super == nullptr) return;     // special case: class Object
 664   assert((!super->is_interface()    // interfaces cannot be supers
 665           && (super->java_super() == nullptr || !is_interface())),
 666          "an interface can only be a subklass of Object");
 667 
 668   // Make sure there is no stale subklass head
 669   super->clean_subklass();
 670 
 671   for (;;) {
 672     Klass* prev_first_subklass = AtomicAccess::load_acquire(&_super->_subklass);
 673     if (prev_first_subklass != nullptr) {
 674       // set our sibling to be the super' previous first subklass
 675       assert(prev_first_subklass->is_loader_alive(), "May not attach not alive klasses");
 676       set_next_sibling(prev_first_subklass);
 677     }
 678     // Note that the prev_first_subklass is always alive, meaning no sibling_next links
 679     // are ever created to not alive klasses. This is an important invariant of the lock-free
 680     // cleaning protocol, that allows us to safely unlink dead klasses from the sibling list.
 681     if (AtomicAccess::cmpxchg(&super->_subklass, prev_first_subklass, this) == prev_first_subklass) {
 682       return;
 683     }
 684   }
 685   DEBUG_ONLY(verify();)
 686 }
 687 
 688 // The log parameter is for clean_weak_klass_links to report unlinked classes.
 689 Klass* Klass::clean_subklass(bool log) {
 690   for (;;) {
 691     // Need load_acquire, due to contending with concurrent inserts
 692     Klass* subklass = AtomicAccess::load_acquire(&_subklass);
 693     if (subklass == nullptr || subklass->is_loader_alive()) {
 694       return subklass;
 695     }
 696     if (log && log_is_enabled(Trace, class, unload)) {
 697       ResourceMark rm;
 698       log_trace(class, unload)("unlinking class (subclass): %s", subklass->external_name());
 699     }
 700     // Try to fix _subklass until it points at something not dead.
 701     AtomicAccess::cmpxchg(&_subklass, subklass, subklass->next_sibling(log));
 702   }
 703 }
 704 
 705 void Klass::clean_weak_klass_links(bool unloading_occurred, bool clean_alive_klasses) {
 706   if (!ClassUnloading || !unloading_occurred) {
 707     return;
 708   }
 709 
 710   Klass* root = vmClasses::Object_klass();
 711   Stack<Klass*, mtGC> stack;
 712 
 713   stack.push(root);
 714   while (!stack.is_empty()) {
 715     Klass* current = stack.pop();
 716 
 717     assert(current->is_loader_alive(), "just checking, this should be live");
 718 
 719     // Find and set the first alive subklass
 720     Klass* sub = current->clean_subklass(true);
 721     if (sub != nullptr) {
 722       stack.push(sub);
 723     }
 724 
 725     // Find and set the first alive sibling
 726     Klass* sibling = current->next_sibling(true);
 727     current->set_next_sibling(sibling);
 728     if (sibling != nullptr) {
 729       stack.push(sibling);
 730     }
 731 
 732     // Clean the implementors list and method data.
 733     if (clean_alive_klasses && current->is_instance_klass()) {
 734       InstanceKlass* ik = InstanceKlass::cast(current);
 735       clean_weak_instanceklass_links(ik);
 736     }
 737   }
 738 }
 739 
 740 void Klass::clean_weak_instanceklass_links(InstanceKlass* ik) {
 741   ik->clean_weak_instanceklass_links();
 742   // JVMTI RedefineClasses creates previous versions that are not in
 743   // the class hierarchy, so process them here.
 744   while ((ik = ik->previous_versions()) != nullptr) {
 745     ik->clean_weak_instanceklass_links();
 746   }
 747 }
 748 
 749 void Klass::metaspace_pointers_do(MetaspaceClosure* it) {
 750   if (log_is_enabled(Trace, aot)) {
 751     ResourceMark rm;
 752     log_trace(aot)("Iter(Klass): %p (%s)", this, external_name());
 753   }
 754 
 755   it->push(&_name);
 756   it->push(&_secondary_supers);
 757   for (int i = 0; i < _primary_super_limit; i++) {
 758     it->push(&_primary_supers[i]);
 759   }
 760   it->push(&_super);
 761   if (!CDSConfig::is_dumping_archive()) {
 762     // If dumping archive, these may point to excluded classes. There's no need
 763     // to follow these pointers anyway, as they will be set to null in
 764     // remove_unshareable_info().
 765     it->push((Klass**)&_subklass);
 766     it->push((Klass**)&_next_sibling);
 767     it->push(&_next_link);
 768   }
 769 
 770   vtableEntry* vt = start_of_vtable();
 771   for (int i=0; i<vtable_length(); i++) {
 772     it->push(vt[i].method_addr());
 773   }
 774 }
 775 
 776 #if INCLUDE_CDS
 777 void Klass::remove_unshareable_info() {
 778   assert(CDSConfig::is_dumping_archive(),
 779           "only called during CDS dump time");
 780   JFR_ONLY(REMOVE_ID(this);)
 781   if (log_is_enabled(Trace, aot, unshareable)) {
 782     ResourceMark rm;
 783     log_trace(aot, unshareable)("remove: %s", external_name());
 784   }
 785 
 786   // _secondary_super_cache may be updated by an is_subtype_of() call
 787   // while ArchiveBuilder is copying metaspace objects. Let's reset it to
 788   // null and let it be repopulated at runtime.
 789   set_secondary_super_cache(nullptr);
 790 
 791   set_subklass(nullptr);
 792   set_next_sibling(nullptr);
 793   set_next_link(nullptr);
 794 
 795   // Null out class_loader_data because we don't share that yet.
 796   set_class_loader_data(nullptr);
 797   set_in_aot_cache();
 798 
 799   if (CDSConfig::is_dumping_classic_static_archive()) {
 800     // "Classic" static archives are required to have deterministic contents.
 801     // The elements in _secondary_supers are addresses in the ArchiveBuilder
 802     // output buffer, so they should have deterministic values. If we rehash
 803     // _secondary_supers, its elements will appear in a deterministic order.
 804     //
 805     // Note that the bitmap is guaranteed to be deterministic, regardless of the
 806     // actual addresses of the elements in _secondary_supers. So rehashing shouldn't
 807     // change it.
 808     uintx bitmap = hash_secondary_supers(secondary_supers(), true);
 809     assert(bitmap == _secondary_supers_bitmap, "bitmap should not be changed due to rehashing");
 810   }
 811 }
 812 
 813 void Klass::remove_java_mirror() {
 814   assert(CDSConfig::is_dumping_archive(), "sanity");
 815   if (log_is_enabled(Trace, aot, unshareable)) {
 816     ResourceMark rm;
 817     log_trace(aot, unshareable)("remove java_mirror: %s", external_name());
 818   }
 819 
 820 #if INCLUDE_CDS_JAVA_HEAP
 821   _archived_mirror_index = -1;
 822   if (CDSConfig::is_dumping_heap()) {
 823     Klass* src_k = ArchiveBuilder::current()->get_source_addr(this);
 824     oop orig_mirror = src_k->java_mirror();
 825     if (orig_mirror == nullptr) {
 826       assert(CDSConfig::is_dumping_final_static_archive(), "sanity");
 827       if (is_instance_klass()) {
 828         assert(InstanceKlass::cast(this)->defined_by_other_loaders(), "sanity");
 829       } else {
 830         precond(is_objArray_klass());
 831         Klass *k = ObjArrayKlass::cast(this)->bottom_klass();
 832         precond(k->is_instance_klass());
 833         assert(InstanceKlass::cast(k)->defined_by_other_loaders(), "sanity");
 834       }
 835     } else {
 836       oop scratch_mirror = HeapShared::scratch_java_mirror(orig_mirror);
 837       if (scratch_mirror != nullptr) {
 838         _archived_mirror_index = HeapShared::append_root(scratch_mirror);
 839       }
 840     }
 841   }
 842 #endif
 843 
 844   // Just null out the mirror.  The class_loader_data() no longer exists.
 845   clear_java_mirror_handle();
 846 }
 847 
 848 void Klass::restore_unshareable_info(ClassLoaderData* loader_data, Handle protection_domain, TRAPS) {
 849   assert(is_klass(), "ensure C++ vtable is restored");
 850   assert(in_aot_cache(), "must be set");
 851   assert(secondary_supers()->length() >= (int)population_count(_secondary_supers_bitmap), "must be");
 852   JFR_ONLY(RESTORE_ID(this);)
 853   if (log_is_enabled(Trace, aot, unshareable)) {
 854     ResourceMark rm(THREAD);
 855     oop class_loader = loader_data->class_loader();
 856     log_trace(aot, unshareable)("restore: %s with class loader: %s", external_name(),
 857       class_loader != nullptr ? class_loader->klass()->external_name() : "boot");
 858   }
 859 
 860   // If an exception happened during CDS restore, some of these fields may already be
 861   // set.  We leave the class on the CLD list, even if incomplete so that we don't
 862   // modify the CLD list outside a safepoint.
 863   if (class_loader_data() == nullptr) {
 864     set_class_loader_data(loader_data);
 865   }
 866   // Add to class loader list first before creating the mirror
 867   // (same order as class file parsing)
 868   loader_data->add_class(this);
 869 
 870   Handle loader(THREAD, loader_data->class_loader());
 871   ModuleEntry* module_entry = nullptr;
 872   Klass* k = this;
 873   if (k->is_objArray_klass()) {
 874     k = ObjArrayKlass::cast(k)->bottom_klass();
 875   }
 876   // Obtain klass' module.
 877   if (k->is_instance_klass()) {
 878     InstanceKlass* ik = (InstanceKlass*) k;
 879     module_entry = ik->module();
 880   } else {
 881     module_entry = ModuleEntryTable::javabase_moduleEntry();
 882   }
 883   // Obtain java.lang.Module, if available
 884   Handle module_handle(THREAD, ((module_entry != nullptr) ? module_entry->module_oop() : (oop)nullptr));
 885 
 886   if (this->has_archived_mirror_index()) {
 887     ResourceMark rm(THREAD);
 888     log_debug(aot, mirror)("%s has raw archived mirror", external_name());
 889     if (ArchiveHeapLoader::is_in_use()) {
 890       bool present = java_lang_Class::restore_archived_mirror(this, loader, module_handle,
 891                                                               protection_domain,
 892                                                               CHECK);
 893       if (present) {
 894         return;
 895       }
 896     }
 897 
 898     // No archived mirror data
 899     log_debug(aot, mirror)("No archived mirror data for %s", external_name());
 900     clear_java_mirror_handle();
 901     this->clear_archived_mirror_index();
 902   }
 903 
 904   // Only recreate it if not present.  A previous attempt to restore may have
 905   // gotten an OOM later but keep the mirror if it was created.
 906   if (java_mirror() == nullptr) {
 907     ResourceMark rm(THREAD);
 908     log_trace(aot, mirror)("Recreate mirror for %s", external_name());
 909     java_lang_Class::create_mirror(this, loader, module_handle, protection_domain, Handle(), CHECK);
 910   }
 911 }
 912 #endif // INCLUDE_CDS
 913 
 914 #if INCLUDE_CDS_JAVA_HEAP
 915 oop Klass::archived_java_mirror() {
 916   assert(has_archived_mirror_index(), "must have archived mirror");
 917   return HeapShared::get_root(_archived_mirror_index);
 918 }
 919 
 920 void Klass::clear_archived_mirror_index() {
 921   if (_archived_mirror_index >= 0) {
 922     HeapShared::clear_root(_archived_mirror_index);
 923   }
 924   _archived_mirror_index = -1;
 925 }
 926 #endif // INCLUDE_CDS_JAVA_HEAP
 927 
 928 void Klass::check_array_allocation_length(int length, int max_length, TRAPS) {
 929   if (length > max_length) {
 930     if (!THREAD->is_in_internal_oome_mark()) {
 931       report_java_out_of_memory("Requested array size exceeds VM limit");
 932       JvmtiExport::post_array_size_exhausted();
 933       THROW_OOP(Universe::out_of_memory_error_array_size());
 934     } else {
 935       THROW_OOP(Universe::out_of_memory_error_java_heap_without_backtrace());
 936     }
 937   } else if (length < 0) {
 938     THROW_MSG(vmSymbols::java_lang_NegativeArraySizeException(), err_msg("%d", length));
 939   }
 940 }
 941 
 942 // Replace the last '+' char with '/'.
 943 static char* convert_hidden_name_to_java(Symbol* name) {
 944   size_t name_len = name->utf8_length();
 945   char* result = NEW_RESOURCE_ARRAY(char, name_len + 1);
 946   name->as_klass_external_name(result, (int)name_len + 1);
 947   for (int index = (int)name_len; index > 0; index--) {
 948     if (result[index] == '+') {
 949       result[index] = JVM_SIGNATURE_SLASH;
 950       break;
 951     }
 952   }
 953   return result;
 954 }
 955 
 956 // In product mode, this function doesn't have virtual function calls so
 957 // there might be some performance advantage to handling InstanceKlass here.
 958 const char* Klass::external_name() const {
 959   if (is_instance_klass()) {
 960     const InstanceKlass* ik = static_cast<const InstanceKlass*>(this);
 961     if (ik->is_hidden()) {
 962       char* result = convert_hidden_name_to_java(name());
 963       return result;
 964     }
 965   } else if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) {
 966     char* result = convert_hidden_name_to_java(name());
 967     return result;
 968   }
 969   if (name() == nullptr)  return "<unknown>";
 970   return name()->as_klass_external_name();
 971 }
 972 
 973 const char* Klass::signature_name() const {
 974   if (name() == nullptr)  return "<unknown>";
 975   if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) {
 976     size_t name_len = name()->utf8_length();
 977     char* result = NEW_RESOURCE_ARRAY(char, name_len + 1);
 978     name()->as_C_string(result, (int)name_len + 1);
 979     for (int index = (int)name_len; index > 0; index--) {
 980       if (result[index] == '+') {
 981         result[index] = JVM_SIGNATURE_DOT;
 982         break;
 983       }
 984     }
 985     return result;
 986   }
 987   return name()->as_C_string();
 988 }
 989 
 990 const char* Klass::external_kind() const {
 991   if (is_interface()) return "interface";
 992   if (is_abstract()) return "abstract class";
 993   return "class";
 994 }
 995 
 996 // Unless overridden, jvmti_class_status has no flags set.
 997 jint Klass::jvmti_class_status() const {
 998   return 0;
 999 }
1000 
1001 
1002 // Printing
1003 
1004 void Klass::print_on(outputStream* st) const {
1005   ResourceMark rm;
1006   // print title
1007   st->print("%s", internal_name());
1008   print_address_on(st);
1009   st->cr();
1010 }
1011 
1012 #define BULLET  " - "
1013 
1014 // Caller needs ResourceMark
1015 void Klass::oop_print_on(oop obj, outputStream* st) {
1016   // print title
1017   st->print_cr("%s ", internal_name());
1018   obj->print_address_on(st);
1019 
1020   if (WizardMode) {
1021      // print header
1022      obj->mark().print_on(st);
1023      st->cr();
1024      st->print(BULLET"prototype_header: " INTPTR_FORMAT, _prototype_header.value());
1025      st->cr();
1026   }
1027 
1028   // print class
1029   st->print(BULLET"klass: ");
1030   obj->klass()->print_value_on(st);
1031   st->print(BULLET"flags: "); _misc_flags.print_on(st); st->cr();
1032   st->cr();
1033 }
1034 
1035 void Klass::oop_print_value_on(oop obj, outputStream* st) {
1036   // print title
1037   ResourceMark rm;              // Cannot print in debug mode without this
1038   st->print("%s", internal_name());
1039   obj->print_address_on(st);
1040 }
1041 
1042 // Verification
1043 
1044 void Klass::verify_on(outputStream* st) {
1045 
1046   // This can be expensive, but it is worth checking that this klass is actually
1047   // in the CLD graph but not in production.
1048 #ifdef ASSERT
1049   if (UseCompressedClassPointers) {
1050     // Stricter checks for both correct alignment and placement
1051     CompressedKlassPointers::check_encodable(this);
1052   } else {
1053     assert(Metaspace::contains((address)this), "Should be");
1054   }
1055 #endif // ASSERT
1056 
1057   guarantee(this->is_klass(),"should be klass");
1058 
1059   if (super() != nullptr) {
1060     guarantee(super()->is_klass(), "should be klass");
1061   }
1062   if (secondary_super_cache() != nullptr) {
1063     Klass* ko = secondary_super_cache();
1064     guarantee(ko->is_klass(), "should be klass");
1065   }
1066   for ( uint i = 0; i < primary_super_limit(); i++ ) {
1067     Klass* ko = _primary_supers[i];
1068     if (ko != nullptr) {
1069       guarantee(ko->is_klass(), "should be klass");
1070     }
1071   }
1072 
1073   if (java_mirror_no_keepalive() != nullptr) {
1074     guarantee(java_lang_Class::is_instance(java_mirror_no_keepalive()), "should be instance");
1075   }
1076 }
1077 
1078 void Klass::oop_verify_on(oop obj, outputStream* st) {
1079   guarantee(oopDesc::is_oop(obj),  "should be oop");
1080   guarantee(obj->klass()->is_klass(), "klass field is not a klass");
1081 }
1082 
1083 // Note: this function is called with an address that may or may not be a Klass.
1084 // The point is not to assert it is but to check if it could be.
1085 bool Klass::is_valid(Klass* k) {
1086   if (!is_aligned(k, sizeof(MetaWord))) return false;
1087   if ((size_t)k < os::min_page_size()) return false;
1088 
1089   if (!os::is_readable_range(k, k + 1)) return false;
1090   if (!Metaspace::contains(k)) return false;
1091 
1092   if (!Symbol::is_valid(k->name())) return false;
1093   return ClassLoaderDataGraph::is_valid(k->class_loader_data());
1094 }
1095 
1096 Method* Klass::method_at_vtable(int index)  {
1097 #ifndef PRODUCT
1098   assert(index >= 0, "valid vtable index");
1099   if (DebugVtables) {
1100     verify_vtable_index(index);
1101   }
1102 #endif
1103   return start_of_vtable()[index].method();
1104 }
1105 
1106 
1107 #ifndef PRODUCT
1108 
1109 bool Klass::verify_vtable_index(int i) {
1110   int limit = vtable_length()/vtableEntry::size();
1111   assert(i >= 0 && i < limit, "index %d out of bounds %d", i, limit);
1112   return true;
1113 }
1114 
1115 #endif // PRODUCT
1116 
1117 // Caller needs ResourceMark
1118 // joint_in_module_of_loader provides an optimization if 2 classes are in
1119 // the same module to succinctly print out relevant information about their
1120 // module name and class loader's name_and_id for error messages.
1121 // Format:
1122 //   <fully-qualified-external-class-name1> and <fully-qualified-external-class-name2>
1123 //                      are in module <module-name>[@<version>]
1124 //                      of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>]
1125 const char* Klass::joint_in_module_of_loader(const Klass* class2, bool include_parent_loader) const {
1126   assert(module() == class2->module(), "classes do not have the same module");
1127   const char* class1_name = external_name();
1128   size_t len = strlen(class1_name) + 1;
1129 
1130   const char* class2_description = class2->class_in_module_of_loader(true, include_parent_loader);
1131   len += strlen(class2_description);
1132 
1133   len += strlen(" and ");
1134 
1135   char* joint_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len);
1136 
1137   // Just return the FQN if error when allocating string
1138   if (joint_description == nullptr) {
1139     return class1_name;
1140   }
1141 
1142   jio_snprintf(joint_description, len, "%s and %s",
1143                class1_name,
1144                class2_description);
1145 
1146   return joint_description;
1147 }
1148 
1149 // Caller needs ResourceMark
1150 // class_in_module_of_loader provides a standard way to include
1151 // relevant information about a class, such as its module name as
1152 // well as its class loader's name_and_id, in error messages and logging.
1153 // Format:
1154 //   <fully-qualified-external-class-name> is in module <module-name>[@<version>]
1155 //                                         of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>]
1156 const char* Klass::class_in_module_of_loader(bool use_are, bool include_parent_loader) const {
1157   // 1. fully qualified external name of class
1158   const char* klass_name = external_name();
1159   size_t len = strlen(klass_name) + 1;
1160 
1161   // 2. module name + @version
1162   const char* module_name = "";
1163   const char* version = "";
1164   bool has_version = false;
1165   bool module_is_named = false;
1166   const char* module_name_phrase = "";
1167   const Klass* bottom_klass = is_objArray_klass() ?
1168                                 ObjArrayKlass::cast(this)->bottom_klass() : this;
1169   if (bottom_klass->is_instance_klass()) {
1170     ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1171     if (module->is_named()) {
1172       module_is_named = true;
1173       module_name_phrase = "module ";
1174       module_name = module->name()->as_C_string();
1175       len += strlen(module_name);
1176       // Use version if exists and is not a jdk module
1177       if (module->should_show_version()) {
1178         has_version = true;
1179         version = module->version()->as_C_string();
1180         // Include stlen(version) + 1 for the "@"
1181         len += strlen(version) + 1;
1182       }
1183     } else {
1184       module_name = UNNAMED_MODULE;
1185       len += UNNAMED_MODULE_LEN;
1186     }
1187   } else {
1188     // klass is an array of primitives, module is java.base
1189     module_is_named = true;
1190     module_name_phrase = "module ";
1191     module_name = JAVA_BASE_NAME;
1192     len += JAVA_BASE_NAME_LEN;
1193   }
1194 
1195   // 3. class loader's name_and_id
1196   ClassLoaderData* cld = class_loader_data();
1197   assert(cld != nullptr, "class_loader_data should not be null");
1198   const char* loader_name_and_id = cld->loader_name_and_id();
1199   len += strlen(loader_name_and_id);
1200 
1201   // 4. include parent loader information
1202   const char* parent_loader_phrase = "";
1203   const char* parent_loader_name_and_id = "";
1204   if (include_parent_loader &&
1205       !cld->is_builtin_class_loader_data()) {
1206     oop parent_loader = java_lang_ClassLoader::parent(class_loader());
1207     ClassLoaderData *parent_cld = ClassLoaderData::class_loader_data_or_null(parent_loader);
1208     // The parent loader's ClassLoaderData could be null if it is
1209     // a delegating class loader that has never defined a class.
1210     // In this case the loader's name must be obtained via the parent loader's oop.
1211     if (parent_cld == nullptr) {
1212       oop cl_name_and_id = java_lang_ClassLoader::nameAndId(parent_loader);
1213       if (cl_name_and_id != nullptr) {
1214         parent_loader_name_and_id = java_lang_String::as_utf8_string(cl_name_and_id);
1215       }
1216     } else {
1217       parent_loader_name_and_id = parent_cld->loader_name_and_id();
1218     }
1219     parent_loader_phrase = ", parent loader ";
1220     len += strlen(parent_loader_phrase) + strlen(parent_loader_name_and_id);
1221   }
1222 
1223   // Start to construct final full class description string
1224   len += ((use_are) ? strlen(" are in ") : strlen(" is in "));
1225   len += strlen(module_name_phrase) + strlen(" of loader ");
1226 
1227   char* class_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len);
1228 
1229   // Just return the FQN if error when allocating string
1230   if (class_description == nullptr) {
1231     return klass_name;
1232   }
1233 
1234   jio_snprintf(class_description, len, "%s %s in %s%s%s%s of loader %s%s%s",
1235                klass_name,
1236                (use_are) ? "are" : "is",
1237                module_name_phrase,
1238                module_name,
1239                (has_version) ? "@" : "",
1240                (has_version) ? version : "",
1241                loader_name_and_id,
1242                parent_loader_phrase,
1243                parent_loader_name_and_id);
1244 
1245   return class_description;
1246 }
1247 
1248 class LookupStats : StackObj {
1249  private:
1250   uint _no_of_samples;
1251   uint _worst;
1252   uint _worst_count;
1253   uint _average;
1254   uint _best;
1255   uint _best_count;
1256  public:
1257   LookupStats() : _no_of_samples(0), _worst(0), _worst_count(0), _average(0), _best(INT_MAX), _best_count(0) {}
1258 
1259   ~LookupStats() {
1260     assert(_best <= _worst || _no_of_samples == 0, "sanity");
1261   }
1262 
1263   void sample(uint value) {
1264     ++_no_of_samples;
1265     _average += value;
1266 
1267     if (_worst < value) {
1268       _worst = value;
1269       _worst_count = 1;
1270     } else if (_worst == value) {
1271       ++_worst_count;
1272     }
1273 
1274     if (_best > value) {
1275       _best = value;
1276       _best_count = 1;
1277     } else if (_best == value) {
1278       ++_best_count;
1279     }
1280   }
1281 
1282   void print_on(outputStream* st) const {
1283     st->print("best: %2d (%4.1f%%)", _best, (100.0 * _best_count) / _no_of_samples);
1284     if (_best_count < _no_of_samples) {
1285       st->print("; average: %4.1f; worst: %2d (%4.1f%%)",
1286                 (1.0 * _average) / _no_of_samples,
1287                 _worst, (100.0 * _worst_count) / _no_of_samples);
1288     }
1289   }
1290 };
1291 
1292 static void print_positive_lookup_stats(Array<Klass*>* secondary_supers, uintx bitmap, outputStream* st) {
1293   int num_of_supers = secondary_supers->length();
1294 
1295   LookupStats s;
1296   for (int i = 0; i < num_of_supers; i++) {
1297     Klass* secondary_super = secondary_supers->at(i);
1298     int home_slot = Klass::compute_home_slot(secondary_super, bitmap);
1299     uint score = 1 + ((i - home_slot) & Klass::SECONDARY_SUPERS_TABLE_MASK);
1300     s.sample(score);
1301   }
1302   st->print("positive_lookup: "); s.print_on(st);
1303 }
1304 
1305 static uint compute_distance_to_nearest_zero(int slot, uintx bitmap) {
1306   assert(~bitmap != 0, "no zeroes");
1307   uintx start = rotate_right(bitmap, slot);
1308   return count_trailing_zeros(~start);
1309 }
1310 
1311 static void print_negative_lookup_stats(uintx bitmap, outputStream* st) {
1312   LookupStats s;
1313   for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) {
1314     uint score = compute_distance_to_nearest_zero(slot, bitmap);
1315     s.sample(score);
1316   }
1317   st->print("negative_lookup: "); s.print_on(st);
1318 }
1319 
1320 void Klass::print_secondary_supers_on(outputStream* st) const {
1321   if (secondary_supers() != nullptr) {
1322     st->print("  - "); st->print("%d elements;", _secondary_supers->length());
1323     st->print_cr(" bitmap: " UINTX_FORMAT_X_0, _secondary_supers_bitmap);
1324     if (_secondary_supers_bitmap != SECONDARY_SUPERS_BITMAP_EMPTY &&
1325         _secondary_supers_bitmap != SECONDARY_SUPERS_BITMAP_FULL) {
1326       st->print("  - "); print_positive_lookup_stats(secondary_supers(),
1327                                                      _secondary_supers_bitmap, st); st->cr();
1328       st->print("  - "); print_negative_lookup_stats(_secondary_supers_bitmap, st); st->cr();
1329     }
1330   } else {
1331     st->print("null");
1332   }
1333 }
1334 
1335 void Klass::on_secondary_supers_verification_failure(Klass* super, Klass* sub, bool linear_result, bool table_result, const char* msg) {
1336   ResourceMark rm;
1337   super->print();
1338   sub->print();
1339   fatal("%s: %s implements %s: linear_search: %d; table_lookup: %d",
1340         msg, sub->external_name(), super->external_name(), linear_result, table_result);
1341 }