1 /* 2 * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OOPS_METHODDATA_HPP 26 #define SHARE_OOPS_METHODDATA_HPP 27 28 #include "interpreter/bytecodes.hpp" 29 #include "interpreter/invocationCounter.hpp" 30 #include "oops/metadata.hpp" 31 #include "oops/method.hpp" 32 #include "oops/oop.hpp" 33 #include "runtime/atomic.hpp" 34 #include "runtime/deoptimization.hpp" 35 #include "runtime/mutex.hpp" 36 #include "utilities/align.hpp" 37 #include "utilities/copy.hpp" 38 39 class BytecodeStream; 40 41 // The MethodData object collects counts and other profile information 42 // during zeroth-tier (interpreter) and third-tier (C1 with full profiling) 43 // execution. 44 // 45 // The profile is used later by compilation heuristics. Some heuristics 46 // enable use of aggressive (or "heroic") optimizations. An aggressive 47 // optimization often has a down-side, a corner case that it handles 48 // poorly, but which is thought to be rare. The profile provides 49 // evidence of this rarity for a given method or even BCI. It allows 50 // the compiler to back out of the optimization at places where it 51 // has historically been a poor choice. Other heuristics try to use 52 // specific information gathered about types observed at a given site. 53 // 54 // All data in the profile is approximate. It is expected to be accurate 55 // on the whole, but the system expects occasional inaccuraces, due to 56 // counter overflow, multiprocessor races during data collection, space 57 // limitations, missing MDO blocks, etc. Bad or missing data will degrade 58 // optimization quality but will not affect correctness. Also, each MDO 59 // is marked with its birth-date ("creation_mileage") which can be used 60 // to assess the quality ("maturity") of its data. 61 // 62 // Short (<32-bit) counters are designed to overflow to a known "saturated" 63 // state. Also, certain recorded per-BCI events are given one-bit counters 64 // which overflow to a saturated state which applied to all counters at 65 // that BCI. In other words, there is a small lattice which approximates 66 // the ideal of an infinite-precision counter for each event at each BCI, 67 // and the lattice quickly "bottoms out" in a state where all counters 68 // are taken to be indefinitely large. 69 // 70 // The reader will find many data races in profile gathering code, starting 71 // with invocation counter incrementation. None of these races harm correct 72 // execution of the compiled code. 73 74 // forward decl 75 class ProfileData; 76 77 // DataLayout 78 // 79 // Overlay for generic profiling data. 80 class DataLayout { 81 friend class VMStructs; 82 friend class JVMCIVMStructs; 83 84 private: 85 // Every data layout begins with a header. This header 86 // contains a tag, which is used to indicate the size/layout 87 // of the data, 8 bits of flags, which can be used in any way, 88 // 32 bits of trap history (none/one reason/many reasons), 89 // and a bci, which is used to tie this piece of data to a 90 // specific bci in the bytecodes. 91 union { 92 u8 _bits; 93 struct { 94 u1 _tag; 95 u1 _flags; 96 u2 _bci; 97 u4 _traps; 98 } _struct; 99 } _header; 100 101 // The data layout has an arbitrary number of cells, each sized 102 // to accommodate a pointer or an integer. 103 intptr_t _cells[1]; 104 105 // Some types of data layouts need a length field. 106 static bool needs_array_len(u1 tag); 107 108 public: 109 enum { 110 counter_increment = 1 111 }; 112 113 enum { 114 cell_size = sizeof(intptr_t) 115 }; 116 117 // Tag values 118 enum : u1 { 119 no_tag, 120 bit_data_tag, 121 counter_data_tag, 122 jump_data_tag, 123 receiver_type_data_tag, 124 virtual_call_data_tag, 125 ret_data_tag, 126 branch_data_tag, 127 multi_branch_data_tag, 128 arg_info_data_tag, 129 call_type_data_tag, 130 virtual_call_type_data_tag, 131 parameters_type_data_tag, 132 speculative_trap_data_tag 133 }; 134 135 enum { 136 // The trap state breaks down as [recompile:1 | reason:31]. 137 // This further breakdown is defined in deoptimization.cpp. 138 // See Deoptimization::trap_state_reason for an assert that 139 // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT. 140 // 141 // The trap_state is collected only if ProfileTraps is true. 142 trap_bits = 1+31, // 31: enough to distinguish [0..Reason_RECORDED_LIMIT]. 143 trap_mask = -1, 144 first_flag = 0 145 }; 146 147 // Size computation 148 static int header_size_in_bytes() { 149 return header_size_in_cells() * cell_size; 150 } 151 static int header_size_in_cells() { 152 return LP64_ONLY(1) NOT_LP64(2); 153 } 154 155 static int compute_size_in_bytes(int cell_count) { 156 return header_size_in_bytes() + cell_count * cell_size; 157 } 158 159 // Initialization 160 void initialize(u1 tag, u2 bci, int cell_count); 161 162 // Accessors 163 u1 tag() { 164 return _header._struct._tag; 165 } 166 167 // Return 32 bits of trap state. 168 // The state tells if traps with zero, one, or many reasons have occurred. 169 // It also tells whether zero or many recompilations have occurred. 170 // The associated trap histogram in the MDO itself tells whether 171 // traps are common or not. If a BCI shows that a trap X has 172 // occurred, and the MDO shows N occurrences of X, we make the 173 // simplifying assumption that all N occurrences can be blamed 174 // on that BCI. 175 uint trap_state() const { 176 return _header._struct._traps; 177 } 178 179 void set_trap_state(uint new_state) { 180 assert(ProfileTraps, "used only under +ProfileTraps"); 181 uint old_flags = _header._struct._traps; 182 _header._struct._traps = new_state | old_flags; 183 } 184 185 u1 flags() const { 186 return Atomic::load_acquire(&_header._struct._flags); 187 } 188 189 u2 bci() const { 190 return _header._struct._bci; 191 } 192 193 void set_header(u8 value) { 194 _header._bits = value; 195 } 196 u8 header() { 197 return _header._bits; 198 } 199 void set_cell_at(int index, intptr_t value) { 200 _cells[index] = value; 201 } 202 void release_set_cell_at(int index, intptr_t value); 203 intptr_t cell_at(int index) const { 204 return _cells[index]; 205 } 206 207 bool set_flag_at(u1 flag_number) { 208 const u1 bit = 1 << flag_number; 209 u1 compare_value; 210 do { 211 compare_value = _header._struct._flags; 212 if ((compare_value & bit) == bit) { 213 // already set. 214 return false; 215 } 216 } while (compare_value != Atomic::cmpxchg(&_header._struct._flags, compare_value, static_cast<u1>(compare_value | bit))); 217 return true; 218 } 219 220 bool clear_flag_at(u1 flag_number) { 221 const u1 bit = 1 << flag_number; 222 u1 compare_value; 223 u1 exchange_value; 224 do { 225 compare_value = _header._struct._flags; 226 if ((compare_value & bit) == 0) { 227 // already cleaed. 228 return false; 229 } 230 exchange_value = compare_value & ~bit; 231 } while (compare_value != Atomic::cmpxchg(&_header._struct._flags, compare_value, exchange_value)); 232 return true; 233 } 234 235 bool flag_at(u1 flag_number) const { 236 return (flags() & (1 << flag_number)) != 0; 237 } 238 239 // Low-level support for code generation. 240 static ByteSize header_offset() { 241 return byte_offset_of(DataLayout, _header); 242 } 243 static ByteSize tag_offset() { 244 return byte_offset_of(DataLayout, _header._struct._tag); 245 } 246 static ByteSize flags_offset() { 247 return byte_offset_of(DataLayout, _header._struct._flags); 248 } 249 static ByteSize bci_offset() { 250 return byte_offset_of(DataLayout, _header._struct._bci); 251 } 252 static ByteSize cell_offset(int index) { 253 return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size); 254 } 255 // Return a value which, when or-ed as a byte into _flags, sets the flag. 256 static u1 flag_number_to_constant(u1 flag_number) { 257 DataLayout temp; temp.set_header(0); 258 temp.set_flag_at(flag_number); 259 return temp._header._struct._flags; 260 } 261 // Return a value which, when or-ed as a word into _header, sets the flag. 262 static u8 flag_mask_to_header_mask(u1 byte_constant) { 263 DataLayout temp; temp.set_header(0); 264 temp._header._struct._flags = byte_constant; 265 return temp._header._bits; 266 } 267 268 ProfileData* data_in(); 269 270 int size_in_bytes() { 271 int cells = cell_count(); 272 assert(cells >= 0, "invalid number of cells"); 273 return DataLayout::compute_size_in_bytes(cells); 274 } 275 int cell_count(); 276 277 // GC support 278 void clean_weak_klass_links(bool always_clean); 279 }; 280 281 282 // ProfileData class hierarchy 283 class ProfileData; 284 class BitData; 285 class CounterData; 286 class ReceiverTypeData; 287 class VirtualCallData; 288 class VirtualCallTypeData; 289 class RetData; 290 class CallTypeData; 291 class JumpData; 292 class BranchData; 293 class ArrayData; 294 class MultiBranchData; 295 class ArgInfoData; 296 class ParametersTypeData; 297 class SpeculativeTrapData; 298 299 // ProfileData 300 // 301 // A ProfileData object is created to refer to a section of profiling 302 // data in a structured way. 303 class ProfileData : public ResourceObj { 304 friend class TypeEntries; 305 friend class ReturnTypeEntry; 306 friend class TypeStackSlotEntries; 307 private: 308 enum { 309 tab_width_one = 16, 310 tab_width_two = 36 311 }; 312 313 // This is a pointer to a section of profiling data. 314 DataLayout* _data; 315 316 char* print_data_on_helper(const MethodData* md) const; 317 318 protected: 319 DataLayout* data() { return _data; } 320 const DataLayout* data() const { return _data; } 321 322 enum { 323 cell_size = DataLayout::cell_size 324 }; 325 326 public: 327 // How many cells are in this? 328 virtual int cell_count() const { 329 ShouldNotReachHere(); 330 return -1; 331 } 332 333 // Return the size of this data. 334 int size_in_bytes() { 335 return DataLayout::compute_size_in_bytes(cell_count()); 336 } 337 338 protected: 339 // Low-level accessors for underlying data 340 void set_intptr_at(int index, intptr_t value) { 341 assert(0 <= index && index < cell_count(), "oob"); 342 data()->set_cell_at(index, value); 343 } 344 void release_set_intptr_at(int index, intptr_t value); 345 intptr_t intptr_at(int index) const { 346 assert(0 <= index && index < cell_count(), "oob"); 347 return data()->cell_at(index); 348 } 349 void set_uint_at(int index, uint value) { 350 set_intptr_at(index, (intptr_t) value); 351 } 352 void release_set_uint_at(int index, uint value); 353 uint uint_at(int index) const { 354 return (uint)intptr_at(index); 355 } 356 void set_int_at(int index, int value) { 357 set_intptr_at(index, (intptr_t) value); 358 } 359 void release_set_int_at(int index, int value); 360 int int_at(int index) const { 361 return (int)intptr_at(index); 362 } 363 int int_at_unchecked(int index) const { 364 return (int)data()->cell_at(index); 365 } 366 void set_oop_at(int index, oop value) { 367 set_intptr_at(index, cast_from_oop<intptr_t>(value)); 368 } 369 oop oop_at(int index) const { 370 return cast_to_oop(intptr_at(index)); 371 } 372 373 void set_flag_at(u1 flag_number) { 374 data()->set_flag_at(flag_number); 375 } 376 bool flag_at(u1 flag_number) const { 377 return data()->flag_at(flag_number); 378 } 379 380 // two convenient imports for use by subclasses: 381 static ByteSize cell_offset(int index) { 382 return DataLayout::cell_offset(index); 383 } 384 static u1 flag_number_to_constant(u1 flag_number) { 385 return DataLayout::flag_number_to_constant(flag_number); 386 } 387 388 ProfileData(DataLayout* data) { 389 _data = data; 390 } 391 392 public: 393 // Constructor for invalid ProfileData. 394 ProfileData(); 395 396 u2 bci() const { 397 return data()->bci(); 398 } 399 400 address dp() { 401 return (address)_data; 402 } 403 404 int trap_state() const { 405 return data()->trap_state(); 406 } 407 void set_trap_state(int new_state) { 408 data()->set_trap_state(new_state); 409 } 410 411 // Type checking 412 virtual bool is_BitData() const { return false; } 413 virtual bool is_CounterData() const { return false; } 414 virtual bool is_JumpData() const { return false; } 415 virtual bool is_ReceiverTypeData()const { return false; } 416 virtual bool is_VirtualCallData() const { return false; } 417 virtual bool is_RetData() const { return false; } 418 virtual bool is_BranchData() const { return false; } 419 virtual bool is_ArrayData() const { return false; } 420 virtual bool is_MultiBranchData() const { return false; } 421 virtual bool is_ArgInfoData() const { return false; } 422 virtual bool is_CallTypeData() const { return false; } 423 virtual bool is_VirtualCallTypeData()const { return false; } 424 virtual bool is_ParametersTypeData() const { return false; } 425 virtual bool is_SpeculativeTrapData()const { return false; } 426 427 428 BitData* as_BitData() const { 429 assert(is_BitData(), "wrong type"); 430 return is_BitData() ? (BitData*) this : nullptr; 431 } 432 CounterData* as_CounterData() const { 433 assert(is_CounterData(), "wrong type"); 434 return is_CounterData() ? (CounterData*) this : nullptr; 435 } 436 JumpData* as_JumpData() const { 437 assert(is_JumpData(), "wrong type"); 438 return is_JumpData() ? (JumpData*) this : nullptr; 439 } 440 ReceiverTypeData* as_ReceiverTypeData() const { 441 assert(is_ReceiverTypeData(), "wrong type"); 442 return is_ReceiverTypeData() ? (ReceiverTypeData*)this : nullptr; 443 } 444 VirtualCallData* as_VirtualCallData() const { 445 assert(is_VirtualCallData(), "wrong type"); 446 return is_VirtualCallData() ? (VirtualCallData*)this : nullptr; 447 } 448 RetData* as_RetData() const { 449 assert(is_RetData(), "wrong type"); 450 return is_RetData() ? (RetData*) this : nullptr; 451 } 452 BranchData* as_BranchData() const { 453 assert(is_BranchData(), "wrong type"); 454 return is_BranchData() ? (BranchData*) this : nullptr; 455 } 456 ArrayData* as_ArrayData() const { 457 assert(is_ArrayData(), "wrong type"); 458 return is_ArrayData() ? (ArrayData*) this : nullptr; 459 } 460 MultiBranchData* as_MultiBranchData() const { 461 assert(is_MultiBranchData(), "wrong type"); 462 return is_MultiBranchData() ? (MultiBranchData*)this : nullptr; 463 } 464 ArgInfoData* as_ArgInfoData() const { 465 assert(is_ArgInfoData(), "wrong type"); 466 return is_ArgInfoData() ? (ArgInfoData*)this : nullptr; 467 } 468 CallTypeData* as_CallTypeData() const { 469 assert(is_CallTypeData(), "wrong type"); 470 return is_CallTypeData() ? (CallTypeData*)this : nullptr; 471 } 472 VirtualCallTypeData* as_VirtualCallTypeData() const { 473 assert(is_VirtualCallTypeData(), "wrong type"); 474 return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : nullptr; 475 } 476 ParametersTypeData* as_ParametersTypeData() const { 477 assert(is_ParametersTypeData(), "wrong type"); 478 return is_ParametersTypeData() ? (ParametersTypeData*)this : nullptr; 479 } 480 SpeculativeTrapData* as_SpeculativeTrapData() const { 481 assert(is_SpeculativeTrapData(), "wrong type"); 482 return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : nullptr; 483 } 484 485 486 // Subclass specific initialization 487 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {} 488 489 // GC support 490 virtual void clean_weak_klass_links(bool always_clean) {} 491 492 // CI translation: ProfileData can represent both MethodDataOop data 493 // as well as CIMethodData data. This function is provided for translating 494 // an oop in a ProfileData to the ci equivalent. Generally speaking, 495 // most ProfileData don't require any translation, so we provide the null 496 // translation here, and the required translators are in the ci subclasses. 497 virtual void translate_from(const ProfileData* data) {} 498 499 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const { 500 ShouldNotReachHere(); 501 } 502 503 void print_data_on(outputStream* st, const MethodData* md) const; 504 505 void print_shared(outputStream* st, const char* name, const char* extra) const; 506 void tab(outputStream* st, bool first = false) const; 507 }; 508 509 // BitData 510 // 511 // A BitData holds a flag or two in its header. 512 class BitData : public ProfileData { 513 friend class VMStructs; 514 friend class JVMCIVMStructs; 515 protected: 516 enum : u1 { 517 // null_seen: 518 // saw a null operand (cast/aastore/instanceof) 519 null_seen_flag = DataLayout::first_flag + 0, 520 exception_handler_entered_flag = null_seen_flag + 1, 521 deprecated_method_callsite_flag = exception_handler_entered_flag + 1 522 #if INCLUDE_JVMCI 523 // bytecode threw any exception 524 , exception_seen_flag = deprecated_method_callsite_flag + 1 525 #endif 526 }; 527 enum { bit_cell_count = 0 }; // no additional data fields needed. 528 public: 529 BitData(DataLayout* layout) : ProfileData(layout) { 530 } 531 532 virtual bool is_BitData() const { return true; } 533 534 static int static_cell_count() { 535 return bit_cell_count; 536 } 537 538 virtual int cell_count() const { 539 return static_cell_count(); 540 } 541 542 // Accessor 543 544 // The null_seen flag bit is specially known to the interpreter. 545 // Consulting it allows the compiler to avoid setting up null_check traps. 546 bool null_seen() { return flag_at(null_seen_flag); } 547 void set_null_seen() { set_flag_at(null_seen_flag); } 548 bool deprecated_method_call_site() const { return flag_at(deprecated_method_callsite_flag); } 549 bool set_deprecated_method_call_site() { return data()->set_flag_at(deprecated_method_callsite_flag); } 550 bool clear_deprecated_method_call_site() { return data()->clear_flag_at(deprecated_method_callsite_flag); } 551 552 #if INCLUDE_JVMCI 553 // true if an exception was thrown at the specific BCI 554 bool exception_seen() { return flag_at(exception_seen_flag); } 555 void set_exception_seen() { set_flag_at(exception_seen_flag); } 556 #endif 557 558 // true if a ex handler block at this bci was entered 559 bool exception_handler_entered() { return flag_at(exception_handler_entered_flag); } 560 void set_exception_handler_entered() { set_flag_at(exception_handler_entered_flag); } 561 562 // Code generation support 563 static u1 null_seen_byte_constant() { 564 return flag_number_to_constant(null_seen_flag); 565 } 566 567 static ByteSize bit_data_size() { 568 return cell_offset(bit_cell_count); 569 } 570 571 void print_data_on(outputStream* st, const char* extra = nullptr) const; 572 }; 573 574 // CounterData 575 // 576 // A CounterData corresponds to a simple counter. 577 class CounterData : public BitData { 578 friend class VMStructs; 579 friend class JVMCIVMStructs; 580 protected: 581 enum { 582 count_off, 583 counter_cell_count 584 }; 585 public: 586 CounterData(DataLayout* layout) : BitData(layout) {} 587 588 virtual bool is_CounterData() const { return true; } 589 590 static int static_cell_count() { 591 return counter_cell_count; 592 } 593 594 virtual int cell_count() const { 595 return static_cell_count(); 596 } 597 598 // Direct accessor 599 int count() const { 600 intptr_t raw_data = intptr_at(count_off); 601 if (raw_data > max_jint) { 602 raw_data = max_jint; 603 } else if (raw_data < min_jint) { 604 raw_data = min_jint; 605 } 606 return int(raw_data); 607 } 608 609 // Code generation support 610 static ByteSize count_offset() { 611 return cell_offset(count_off); 612 } 613 static ByteSize counter_data_size() { 614 return cell_offset(counter_cell_count); 615 } 616 617 void set_count(int count) { 618 set_int_at(count_off, count); 619 } 620 621 void print_data_on(outputStream* st, const char* extra = nullptr) const; 622 }; 623 624 // JumpData 625 // 626 // A JumpData is used to access profiling information for a direct 627 // branch. It is a counter, used for counting the number of branches, 628 // plus a data displacement, used for realigning the data pointer to 629 // the corresponding target bci. 630 class JumpData : public ProfileData { 631 friend class VMStructs; 632 friend class JVMCIVMStructs; 633 protected: 634 enum { 635 taken_off_set, 636 displacement_off_set, 637 jump_cell_count 638 }; 639 640 void set_displacement(int displacement) { 641 set_int_at(displacement_off_set, displacement); 642 } 643 644 public: 645 JumpData(DataLayout* layout) : ProfileData(layout) { 646 assert(layout->tag() == DataLayout::jump_data_tag || 647 layout->tag() == DataLayout::branch_data_tag, "wrong type"); 648 } 649 650 virtual bool is_JumpData() const { return true; } 651 652 static int static_cell_count() { 653 return jump_cell_count; 654 } 655 656 virtual int cell_count() const { 657 return static_cell_count(); 658 } 659 660 // Direct accessor 661 uint taken() const { 662 return uint_at(taken_off_set); 663 } 664 665 void set_taken(uint cnt) { 666 set_uint_at(taken_off_set, cnt); 667 } 668 669 // Saturating counter 670 uint inc_taken() { 671 uint cnt = taken() + 1; 672 // Did we wrap? Will compiler screw us?? 673 if (cnt == 0) cnt--; 674 set_uint_at(taken_off_set, cnt); 675 return cnt; 676 } 677 678 int displacement() const { 679 return int_at(displacement_off_set); 680 } 681 682 // Code generation support 683 static ByteSize taken_offset() { 684 return cell_offset(taken_off_set); 685 } 686 687 static ByteSize displacement_offset() { 688 return cell_offset(displacement_off_set); 689 } 690 691 // Specific initialization. 692 void post_initialize(BytecodeStream* stream, MethodData* mdo); 693 694 void print_data_on(outputStream* st, const char* extra = nullptr) const; 695 }; 696 697 // Entries in a ProfileData object to record types: it can either be 698 // none (no profile), unknown (conflicting profile data) or a klass if 699 // a single one is seen. Whether a null reference was seen is also 700 // recorded. No counter is associated with the type and a single type 701 // is tracked (unlike VirtualCallData). 702 class TypeEntries { 703 704 public: 705 706 // A single cell is used to record information for a type: 707 // - the cell is initialized to 0 708 // - when a type is discovered it is stored in the cell 709 // - bit zero of the cell is used to record whether a null reference 710 // was encountered or not 711 // - bit 1 is set to record a conflict in the type information 712 713 enum { 714 null_seen = 1, 715 type_mask = ~null_seen, 716 type_unknown = 2, 717 status_bits = null_seen | type_unknown, 718 type_klass_mask = ~status_bits 719 }; 720 721 // what to initialize a cell to 722 static intptr_t type_none() { 723 return 0; 724 } 725 726 // null seen = bit 0 set? 727 static bool was_null_seen(intptr_t v) { 728 return (v & null_seen) != 0; 729 } 730 731 // conflicting type information = bit 1 set? 732 static bool is_type_unknown(intptr_t v) { 733 return (v & type_unknown) != 0; 734 } 735 736 // not type information yet = all bits cleared, ignoring bit 0? 737 static bool is_type_none(intptr_t v) { 738 return (v & type_mask) == 0; 739 } 740 741 // recorded type: cell without bit 0 and 1 742 static intptr_t klass_part(intptr_t v) { 743 intptr_t r = v & type_klass_mask; 744 return r; 745 } 746 747 // type recorded 748 static Klass* valid_klass(intptr_t k) { 749 if (!is_type_none(k) && 750 !is_type_unknown(k)) { 751 Klass* res = (Klass*)klass_part(k); 752 assert(res != nullptr, "invalid"); 753 return res; 754 } else { 755 return nullptr; 756 } 757 } 758 759 static intptr_t with_status(intptr_t k, intptr_t in) { 760 return k | (in & status_bits); 761 } 762 763 static intptr_t with_status(Klass* k, intptr_t in) { 764 return with_status((intptr_t)k, in); 765 } 766 767 static void print_klass(outputStream* st, intptr_t k); 768 769 protected: 770 // ProfileData object these entries are part of 771 ProfileData* _pd; 772 // offset within the ProfileData object where the entries start 773 const int _base_off; 774 775 TypeEntries(int base_off) 776 : _pd(nullptr), _base_off(base_off) {} 777 778 void set_intptr_at(int index, intptr_t value) { 779 _pd->set_intptr_at(index, value); 780 } 781 782 intptr_t intptr_at(int index) const { 783 return _pd->intptr_at(index); 784 } 785 786 public: 787 void set_profile_data(ProfileData* pd) { 788 _pd = pd; 789 } 790 }; 791 792 // Type entries used for arguments passed at a call and parameters on 793 // method entry. 2 cells per entry: one for the type encoded as in 794 // TypeEntries and one initialized with the stack slot where the 795 // profiled object is to be found so that the interpreter can locate 796 // it quickly. 797 class TypeStackSlotEntries : public TypeEntries { 798 799 private: 800 enum { 801 stack_slot_entry, 802 type_entry, 803 per_arg_cell_count 804 }; 805 806 // offset of cell for stack slot for entry i within ProfileData object 807 int stack_slot_offset(int i) const { 808 return _base_off + stack_slot_local_offset(i); 809 } 810 811 const int _number_of_entries; 812 813 // offset of cell for type for entry i within ProfileData object 814 int type_offset_in_cells(int i) const { 815 return _base_off + type_local_offset(i); 816 } 817 818 public: 819 820 TypeStackSlotEntries(int base_off, int nb_entries) 821 : TypeEntries(base_off), _number_of_entries(nb_entries) {} 822 823 static int compute_cell_count(Symbol* signature, bool include_receiver, int max); 824 825 void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver); 826 827 int number_of_entries() const { return _number_of_entries; } 828 829 // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries 830 static int stack_slot_local_offset(int i) { 831 return i * per_arg_cell_count + stack_slot_entry; 832 } 833 834 // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries 835 static int type_local_offset(int i) { 836 return i * per_arg_cell_count + type_entry; 837 } 838 839 // stack slot for entry i 840 uint stack_slot(int i) const { 841 assert(i >= 0 && i < _number_of_entries, "oob"); 842 return _pd->uint_at(stack_slot_offset(i)); 843 } 844 845 // set stack slot for entry i 846 void set_stack_slot(int i, uint num) { 847 assert(i >= 0 && i < _number_of_entries, "oob"); 848 _pd->set_uint_at(stack_slot_offset(i), num); 849 } 850 851 // type for entry i 852 intptr_t type(int i) const { 853 assert(i >= 0 && i < _number_of_entries, "oob"); 854 return _pd->intptr_at(type_offset_in_cells(i)); 855 } 856 857 // set type for entry i 858 void set_type(int i, intptr_t k) { 859 assert(i >= 0 && i < _number_of_entries, "oob"); 860 _pd->set_intptr_at(type_offset_in_cells(i), k); 861 } 862 863 static ByteSize per_arg_size() { 864 return in_ByteSize(per_arg_cell_count * DataLayout::cell_size); 865 } 866 867 static int per_arg_count() { 868 return per_arg_cell_count; 869 } 870 871 ByteSize type_offset(int i) const { 872 return DataLayout::cell_offset(type_offset_in_cells(i)); 873 } 874 875 // GC support 876 void clean_weak_klass_links(bool always_clean); 877 878 void print_data_on(outputStream* st) const; 879 }; 880 881 // Type entry used for return from a call. A single cell to record the 882 // type. 883 class ReturnTypeEntry : public TypeEntries { 884 885 private: 886 enum { 887 cell_count = 1 888 }; 889 890 public: 891 ReturnTypeEntry(int base_off) 892 : TypeEntries(base_off) {} 893 894 void post_initialize() { 895 set_type(type_none()); 896 } 897 898 intptr_t type() const { 899 return _pd->intptr_at(_base_off); 900 } 901 902 void set_type(intptr_t k) { 903 _pd->set_intptr_at(_base_off, k); 904 } 905 906 static int static_cell_count() { 907 return cell_count; 908 } 909 910 static ByteSize size() { 911 return in_ByteSize(cell_count * DataLayout::cell_size); 912 } 913 914 ByteSize type_offset() { 915 return DataLayout::cell_offset(_base_off); 916 } 917 918 // GC support 919 void clean_weak_klass_links(bool always_clean); 920 921 void print_data_on(outputStream* st) const; 922 }; 923 924 // Entries to collect type information at a call: contains arguments 925 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a 926 // number of cells. Because the number of cells for the return type is 927 // smaller than the number of cells for the type of an arguments, the 928 // number of cells is used to tell how many arguments are profiled and 929 // whether a return value is profiled. See has_arguments() and 930 // has_return(). 931 class TypeEntriesAtCall { 932 private: 933 static int stack_slot_local_offset(int i) { 934 return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i); 935 } 936 937 static int argument_type_local_offset(int i) { 938 return header_cell_count() + TypeStackSlotEntries::type_local_offset(i); 939 } 940 941 public: 942 943 static int header_cell_count() { 944 return 1; 945 } 946 947 static int cell_count_local_offset() { 948 return 0; 949 } 950 951 static int compute_cell_count(BytecodeStream* stream); 952 953 static void initialize(DataLayout* dl, int base, int cell_count) { 954 int off = base + cell_count_local_offset(); 955 dl->set_cell_at(off, cell_count - base - header_cell_count()); 956 } 957 958 static bool arguments_profiling_enabled(); 959 static bool return_profiling_enabled(); 960 961 // Code generation support 962 static ByteSize cell_count_offset() { 963 return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size); 964 } 965 966 static ByteSize args_data_offset() { 967 return in_ByteSize(header_cell_count() * DataLayout::cell_size); 968 } 969 970 static ByteSize stack_slot_offset(int i) { 971 return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size); 972 } 973 974 static ByteSize argument_type_offset(int i) { 975 return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size); 976 } 977 978 static ByteSize return_only_size() { 979 return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size); 980 } 981 982 }; 983 984 // CallTypeData 985 // 986 // A CallTypeData is used to access profiling information about a non 987 // virtual call for which we collect type information about arguments 988 // and return value. 989 class CallTypeData : public CounterData { 990 private: 991 // entries for arguments if any 992 TypeStackSlotEntries _args; 993 // entry for return type if any 994 ReturnTypeEntry _ret; 995 996 int cell_count_global_offset() const { 997 return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset(); 998 } 999 1000 // number of cells not counting the header 1001 int cell_count_no_header() const { 1002 return uint_at(cell_count_global_offset()); 1003 } 1004 1005 void check_number_of_arguments(int total) { 1006 assert(number_of_arguments() == total, "should be set in DataLayout::initialize"); 1007 } 1008 1009 public: 1010 CallTypeData(DataLayout* layout) : 1011 CounterData(layout), 1012 _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()), 1013 _ret(cell_count() - ReturnTypeEntry::static_cell_count()) 1014 { 1015 assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type"); 1016 // Some compilers (VC++) don't want this passed in member initialization list 1017 _args.set_profile_data(this); 1018 _ret.set_profile_data(this); 1019 } 1020 1021 const TypeStackSlotEntries* args() const { 1022 assert(has_arguments(), "no profiling of arguments"); 1023 return &_args; 1024 } 1025 1026 const ReturnTypeEntry* ret() const { 1027 assert(has_return(), "no profiling of return value"); 1028 return &_ret; 1029 } 1030 1031 virtual bool is_CallTypeData() const { return true; } 1032 1033 static int static_cell_count() { 1034 return -1; 1035 } 1036 1037 static int compute_cell_count(BytecodeStream* stream) { 1038 return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream); 1039 } 1040 1041 static void initialize(DataLayout* dl, int cell_count) { 1042 TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count); 1043 } 1044 1045 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1046 1047 virtual int cell_count() const { 1048 return CounterData::static_cell_count() + 1049 TypeEntriesAtCall::header_cell_count() + 1050 int_at_unchecked(cell_count_global_offset()); 1051 } 1052 1053 int number_of_arguments() const { 1054 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count(); 1055 } 1056 1057 void set_argument_type(int i, Klass* k) { 1058 assert(has_arguments(), "no arguments!"); 1059 intptr_t current = _args.type(i); 1060 _args.set_type(i, TypeEntries::with_status(k, current)); 1061 } 1062 1063 void set_return_type(Klass* k) { 1064 assert(has_return(), "no return!"); 1065 intptr_t current = _ret.type(); 1066 _ret.set_type(TypeEntries::with_status(k, current)); 1067 } 1068 1069 // An entry for a return value takes less space than an entry for an 1070 // argument so if the number of cells exceeds the number of cells 1071 // needed for an argument, this object contains type information for 1072 // at least one argument. 1073 bool has_arguments() const { 1074 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count(); 1075 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments"); 1076 return res; 1077 } 1078 1079 // An entry for a return value takes less space than an entry for an 1080 // argument, so if the remainder of the number of cells divided by 1081 // the number of cells for an argument is not null, a return value 1082 // is profiled in this object. 1083 bool has_return() const { 1084 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0; 1085 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values"); 1086 return res; 1087 } 1088 1089 // Code generation support 1090 static ByteSize args_data_offset() { 1091 return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset(); 1092 } 1093 1094 ByteSize argument_type_offset(int i) { 1095 return _args.type_offset(i); 1096 } 1097 1098 ByteSize return_type_offset() { 1099 return _ret.type_offset(); 1100 } 1101 1102 // GC support 1103 virtual void clean_weak_klass_links(bool always_clean) { 1104 if (has_arguments()) { 1105 _args.clean_weak_klass_links(always_clean); 1106 } 1107 if (has_return()) { 1108 _ret.clean_weak_klass_links(always_clean); 1109 } 1110 } 1111 1112 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1113 }; 1114 1115 // ReceiverTypeData 1116 // 1117 // A ReceiverTypeData is used to access profiling information about a 1118 // dynamic type check. It consists of a series of (Klass*, count) 1119 // pairs which are used to store a type profile for the receiver of 1120 // the check, the associated count is incremented every time the type 1121 // is seen. A per ReceiverTypeData counter is incremented on type 1122 // overflow (when there's no more room for a not yet profiled Klass*). 1123 // 1124 class ReceiverTypeData : public CounterData { 1125 friend class VMStructs; 1126 friend class JVMCIVMStructs; 1127 protected: 1128 enum { 1129 receiver0_offset = counter_cell_count, 1130 count0_offset, 1131 receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset 1132 }; 1133 1134 public: 1135 ReceiverTypeData(DataLayout* layout) : CounterData(layout) { 1136 assert(layout->tag() == DataLayout::receiver_type_data_tag || 1137 layout->tag() == DataLayout::virtual_call_data_tag || 1138 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1139 } 1140 1141 virtual bool is_ReceiverTypeData() const { return true; } 1142 1143 static int static_cell_count() { 1144 return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count; 1145 } 1146 1147 virtual int cell_count() const { 1148 return static_cell_count(); 1149 } 1150 1151 // Direct accessors 1152 static uint row_limit() { 1153 return (uint) TypeProfileWidth; 1154 } 1155 static int receiver_cell_index(uint row) { 1156 return receiver0_offset + row * receiver_type_row_cell_count; 1157 } 1158 static int receiver_count_cell_index(uint row) { 1159 return count0_offset + row * receiver_type_row_cell_count; 1160 } 1161 1162 Klass* receiver(uint row) const { 1163 assert(row < row_limit(), "oob"); 1164 1165 Klass* recv = (Klass*)intptr_at(receiver_cell_index(row)); 1166 assert(recv == nullptr || recv->is_klass(), "wrong type"); 1167 return recv; 1168 } 1169 1170 void set_receiver(uint row, Klass* k) { 1171 assert((uint)row < row_limit(), "oob"); 1172 set_intptr_at(receiver_cell_index(row), (uintptr_t)k); 1173 } 1174 1175 uint receiver_count(uint row) const { 1176 assert(row < row_limit(), "oob"); 1177 return uint_at(receiver_count_cell_index(row)); 1178 } 1179 1180 void set_receiver_count(uint row, uint count) { 1181 assert(row < row_limit(), "oob"); 1182 set_uint_at(receiver_count_cell_index(row), count); 1183 } 1184 1185 void clear_row(uint row) { 1186 assert(row < row_limit(), "oob"); 1187 // Clear total count - indicator of polymorphic call site. 1188 // The site may look like as monomorphic after that but 1189 // it allow to have more accurate profiling information because 1190 // there was execution phase change since klasses were unloaded. 1191 // If the site is still polymorphic then MDO will be updated 1192 // to reflect it. But it could be the case that the site becomes 1193 // only bimorphic. Then keeping total count not 0 will be wrong. 1194 // Even if we use monomorphic (when it is not) for compilation 1195 // we will only have trap, deoptimization and recompile again 1196 // with updated MDO after executing method in Interpreter. 1197 // An additional receiver will be recorded in the cleaned row 1198 // during next call execution. 1199 // 1200 // Note: our profiling logic works with empty rows in any slot. 1201 // We do sorting a profiling info (ciCallProfile) for compilation. 1202 // 1203 set_count(0); 1204 set_receiver(row, nullptr); 1205 set_receiver_count(row, 0); 1206 } 1207 1208 // Code generation support 1209 static ByteSize receiver_offset(uint row) { 1210 return cell_offset(receiver_cell_index(row)); 1211 } 1212 static ByteSize receiver_count_offset(uint row) { 1213 return cell_offset(receiver_count_cell_index(row)); 1214 } 1215 static ByteSize receiver_type_data_size() { 1216 return cell_offset(static_cell_count()); 1217 } 1218 1219 // GC support 1220 virtual void clean_weak_klass_links(bool always_clean); 1221 1222 void print_receiver_data_on(outputStream* st) const; 1223 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1224 }; 1225 1226 // VirtualCallData 1227 // 1228 // A VirtualCallData is used to access profiling information about a 1229 // virtual call. For now, it has nothing more than a ReceiverTypeData. 1230 class VirtualCallData : public ReceiverTypeData { 1231 public: 1232 VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) { 1233 assert(layout->tag() == DataLayout::virtual_call_data_tag || 1234 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1235 } 1236 1237 virtual bool is_VirtualCallData() const { return true; } 1238 1239 static int static_cell_count() { 1240 // At this point we could add more profile state, e.g., for arguments. 1241 // But for now it's the same size as the base record type. 1242 return ReceiverTypeData::static_cell_count(); 1243 } 1244 1245 virtual int cell_count() const { 1246 return static_cell_count(); 1247 } 1248 1249 // Direct accessors 1250 static ByteSize virtual_call_data_size() { 1251 return cell_offset(static_cell_count()); 1252 } 1253 1254 void print_method_data_on(outputStream* st) const NOT_JVMCI_RETURN; 1255 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1256 }; 1257 1258 // VirtualCallTypeData 1259 // 1260 // A VirtualCallTypeData is used to access profiling information about 1261 // a virtual call for which we collect type information about 1262 // arguments and return value. 1263 class VirtualCallTypeData : public VirtualCallData { 1264 private: 1265 // entries for arguments if any 1266 TypeStackSlotEntries _args; 1267 // entry for return type if any 1268 ReturnTypeEntry _ret; 1269 1270 int cell_count_global_offset() const { 1271 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset(); 1272 } 1273 1274 // number of cells not counting the header 1275 int cell_count_no_header() const { 1276 return uint_at(cell_count_global_offset()); 1277 } 1278 1279 void check_number_of_arguments(int total) { 1280 assert(number_of_arguments() == total, "should be set in DataLayout::initialize"); 1281 } 1282 1283 public: 1284 VirtualCallTypeData(DataLayout* layout) : 1285 VirtualCallData(layout), 1286 _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()), 1287 _ret(cell_count() - ReturnTypeEntry::static_cell_count()) 1288 { 1289 assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1290 // Some compilers (VC++) don't want this passed in member initialization list 1291 _args.set_profile_data(this); 1292 _ret.set_profile_data(this); 1293 } 1294 1295 const TypeStackSlotEntries* args() const { 1296 assert(has_arguments(), "no profiling of arguments"); 1297 return &_args; 1298 } 1299 1300 const ReturnTypeEntry* ret() const { 1301 assert(has_return(), "no profiling of return value"); 1302 return &_ret; 1303 } 1304 1305 virtual bool is_VirtualCallTypeData() const { return true; } 1306 1307 static int static_cell_count() { 1308 return -1; 1309 } 1310 1311 static int compute_cell_count(BytecodeStream* stream) { 1312 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream); 1313 } 1314 1315 static void initialize(DataLayout* dl, int cell_count) { 1316 TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count); 1317 } 1318 1319 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1320 1321 virtual int cell_count() const { 1322 return VirtualCallData::static_cell_count() + 1323 TypeEntriesAtCall::header_cell_count() + 1324 int_at_unchecked(cell_count_global_offset()); 1325 } 1326 1327 int number_of_arguments() const { 1328 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count(); 1329 } 1330 1331 void set_argument_type(int i, Klass* k) { 1332 assert(has_arguments(), "no arguments!"); 1333 intptr_t current = _args.type(i); 1334 _args.set_type(i, TypeEntries::with_status(k, current)); 1335 } 1336 1337 void set_return_type(Klass* k) { 1338 assert(has_return(), "no return!"); 1339 intptr_t current = _ret.type(); 1340 _ret.set_type(TypeEntries::with_status(k, current)); 1341 } 1342 1343 // An entry for a return value takes less space than an entry for an 1344 // argument, so if the remainder of the number of cells divided by 1345 // the number of cells for an argument is not null, a return value 1346 // is profiled in this object. 1347 bool has_return() const { 1348 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0; 1349 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values"); 1350 return res; 1351 } 1352 1353 // An entry for a return value takes less space than an entry for an 1354 // argument so if the number of cells exceeds the number of cells 1355 // needed for an argument, this object contains type information for 1356 // at least one argument. 1357 bool has_arguments() const { 1358 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count(); 1359 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments"); 1360 return res; 1361 } 1362 1363 // Code generation support 1364 static ByteSize args_data_offset() { 1365 return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset(); 1366 } 1367 1368 ByteSize argument_type_offset(int i) { 1369 return _args.type_offset(i); 1370 } 1371 1372 ByteSize return_type_offset() { 1373 return _ret.type_offset(); 1374 } 1375 1376 // GC support 1377 virtual void clean_weak_klass_links(bool always_clean) { 1378 ReceiverTypeData::clean_weak_klass_links(always_clean); 1379 if (has_arguments()) { 1380 _args.clean_weak_klass_links(always_clean); 1381 } 1382 if (has_return()) { 1383 _ret.clean_weak_klass_links(always_clean); 1384 } 1385 } 1386 1387 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1388 }; 1389 1390 // RetData 1391 // 1392 // A RetData is used to access profiling information for a ret bytecode. 1393 // It is composed of a count of the number of times that the ret has 1394 // been executed, followed by a series of triples of the form 1395 // (bci, count, di) which count the number of times that some bci was the 1396 // target of the ret and cache a corresponding data displacement. 1397 class RetData : public CounterData { 1398 protected: 1399 enum { 1400 bci0_offset = counter_cell_count, 1401 count0_offset, 1402 displacement0_offset, 1403 ret_row_cell_count = (displacement0_offset + 1) - bci0_offset 1404 }; 1405 1406 void set_bci(uint row, int bci) { 1407 assert((uint)row < row_limit(), "oob"); 1408 set_int_at(bci0_offset + row * ret_row_cell_count, bci); 1409 } 1410 void release_set_bci(uint row, int bci); 1411 void set_bci_count(uint row, uint count) { 1412 assert((uint)row < row_limit(), "oob"); 1413 set_uint_at(count0_offset + row * ret_row_cell_count, count); 1414 } 1415 void set_bci_displacement(uint row, int disp) { 1416 set_int_at(displacement0_offset + row * ret_row_cell_count, disp); 1417 } 1418 1419 public: 1420 RetData(DataLayout* layout) : CounterData(layout) { 1421 assert(layout->tag() == DataLayout::ret_data_tag, "wrong type"); 1422 } 1423 1424 virtual bool is_RetData() const { return true; } 1425 1426 enum { 1427 no_bci = -1 // value of bci when bci1/2 are not in use. 1428 }; 1429 1430 static int static_cell_count() { 1431 return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count; 1432 } 1433 1434 virtual int cell_count() const { 1435 return static_cell_count(); 1436 } 1437 1438 static uint row_limit() { 1439 return (uint) BciProfileWidth; 1440 } 1441 static int bci_cell_index(uint row) { 1442 return bci0_offset + row * ret_row_cell_count; 1443 } 1444 static int bci_count_cell_index(uint row) { 1445 return count0_offset + row * ret_row_cell_count; 1446 } 1447 static int bci_displacement_cell_index(uint row) { 1448 return displacement0_offset + row * ret_row_cell_count; 1449 } 1450 1451 // Direct accessors 1452 int bci(uint row) const { 1453 return int_at(bci_cell_index(row)); 1454 } 1455 uint bci_count(uint row) const { 1456 return uint_at(bci_count_cell_index(row)); 1457 } 1458 int bci_displacement(uint row) const { 1459 return int_at(bci_displacement_cell_index(row)); 1460 } 1461 1462 // Interpreter Runtime support 1463 address fixup_ret(int return_bci, MethodData* mdo); 1464 1465 // Code generation support 1466 static ByteSize bci_offset(uint row) { 1467 return cell_offset(bci_cell_index(row)); 1468 } 1469 static ByteSize bci_count_offset(uint row) { 1470 return cell_offset(bci_count_cell_index(row)); 1471 } 1472 static ByteSize bci_displacement_offset(uint row) { 1473 return cell_offset(bci_displacement_cell_index(row)); 1474 } 1475 1476 // Specific initialization. 1477 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1478 1479 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1480 }; 1481 1482 // BranchData 1483 // 1484 // A BranchData is used to access profiling data for a two-way branch. 1485 // It consists of taken and not_taken counts as well as a data displacement 1486 // for the taken case. 1487 class BranchData : public JumpData { 1488 friend class VMStructs; 1489 friend class JVMCIVMStructs; 1490 protected: 1491 enum { 1492 not_taken_off_set = jump_cell_count, 1493 branch_cell_count 1494 }; 1495 1496 void set_displacement(int displacement) { 1497 set_int_at(displacement_off_set, displacement); 1498 } 1499 1500 public: 1501 BranchData(DataLayout* layout) : JumpData(layout) { 1502 assert(layout->tag() == DataLayout::branch_data_tag, "wrong type"); 1503 } 1504 1505 virtual bool is_BranchData() const { return true; } 1506 1507 static int static_cell_count() { 1508 return branch_cell_count; 1509 } 1510 1511 virtual int cell_count() const { 1512 return static_cell_count(); 1513 } 1514 1515 // Direct accessor 1516 uint not_taken() const { 1517 return uint_at(not_taken_off_set); 1518 } 1519 1520 void set_not_taken(uint cnt) { 1521 set_uint_at(not_taken_off_set, cnt); 1522 } 1523 1524 uint inc_not_taken() { 1525 uint cnt = not_taken() + 1; 1526 // Did we wrap? Will compiler screw us?? 1527 if (cnt == 0) cnt--; 1528 set_uint_at(not_taken_off_set, cnt); 1529 return cnt; 1530 } 1531 1532 // Code generation support 1533 static ByteSize not_taken_offset() { 1534 return cell_offset(not_taken_off_set); 1535 } 1536 static ByteSize branch_data_size() { 1537 return cell_offset(branch_cell_count); 1538 } 1539 1540 // Specific initialization. 1541 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1542 1543 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1544 }; 1545 1546 // ArrayData 1547 // 1548 // A ArrayData is a base class for accessing profiling data which does 1549 // not have a statically known size. It consists of an array length 1550 // and an array start. 1551 class ArrayData : public ProfileData { 1552 friend class VMStructs; 1553 friend class JVMCIVMStructs; 1554 protected: 1555 friend class DataLayout; 1556 1557 enum { 1558 array_len_off_set, 1559 array_start_off_set 1560 }; 1561 1562 uint array_uint_at(int index) const { 1563 int aindex = index + array_start_off_set; 1564 return uint_at(aindex); 1565 } 1566 int array_int_at(int index) const { 1567 int aindex = index + array_start_off_set; 1568 return int_at(aindex); 1569 } 1570 oop array_oop_at(int index) const { 1571 int aindex = index + array_start_off_set; 1572 return oop_at(aindex); 1573 } 1574 void array_set_int_at(int index, int value) { 1575 int aindex = index + array_start_off_set; 1576 set_int_at(aindex, value); 1577 } 1578 1579 // Code generation support for subclasses. 1580 static ByteSize array_element_offset(int index) { 1581 return cell_offset(array_start_off_set + index); 1582 } 1583 1584 public: 1585 ArrayData(DataLayout* layout) : ProfileData(layout) {} 1586 1587 virtual bool is_ArrayData() const { return true; } 1588 1589 static int static_cell_count() { 1590 return -1; 1591 } 1592 1593 int array_len() const { 1594 return int_at_unchecked(array_len_off_set); 1595 } 1596 1597 virtual int cell_count() const { 1598 return array_len() + 1; 1599 } 1600 1601 // Code generation support 1602 static ByteSize array_len_offset() { 1603 return cell_offset(array_len_off_set); 1604 } 1605 static ByteSize array_start_offset() { 1606 return cell_offset(array_start_off_set); 1607 } 1608 }; 1609 1610 // MultiBranchData 1611 // 1612 // A MultiBranchData is used to access profiling information for 1613 // a multi-way branch (*switch bytecodes). It consists of a series 1614 // of (count, displacement) pairs, which count the number of times each 1615 // case was taken and specify the data displacement for each branch target. 1616 class MultiBranchData : public ArrayData { 1617 friend class VMStructs; 1618 friend class JVMCIVMStructs; 1619 protected: 1620 enum { 1621 default_count_off_set, 1622 default_disaplacement_off_set, 1623 case_array_start 1624 }; 1625 enum { 1626 relative_count_off_set, 1627 relative_displacement_off_set, 1628 per_case_cell_count 1629 }; 1630 1631 void set_default_displacement(int displacement) { 1632 array_set_int_at(default_disaplacement_off_set, displacement); 1633 } 1634 void set_displacement_at(int index, int displacement) { 1635 array_set_int_at(case_array_start + 1636 index * per_case_cell_count + 1637 relative_displacement_off_set, 1638 displacement); 1639 } 1640 1641 public: 1642 MultiBranchData(DataLayout* layout) : ArrayData(layout) { 1643 assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type"); 1644 } 1645 1646 virtual bool is_MultiBranchData() const { return true; } 1647 1648 static int compute_cell_count(BytecodeStream* stream); 1649 1650 int number_of_cases() const { 1651 int alen = array_len() - 2; // get rid of default case here. 1652 assert(alen % per_case_cell_count == 0, "must be even"); 1653 return (alen / per_case_cell_count); 1654 } 1655 1656 uint default_count() const { 1657 return array_uint_at(default_count_off_set); 1658 } 1659 int default_displacement() const { 1660 return array_int_at(default_disaplacement_off_set); 1661 } 1662 1663 uint count_at(int index) const { 1664 return array_uint_at(case_array_start + 1665 index * per_case_cell_count + 1666 relative_count_off_set); 1667 } 1668 int displacement_at(int index) const { 1669 return array_int_at(case_array_start + 1670 index * per_case_cell_count + 1671 relative_displacement_off_set); 1672 } 1673 1674 // Code generation support 1675 static ByteSize default_count_offset() { 1676 return array_element_offset(default_count_off_set); 1677 } 1678 static ByteSize default_displacement_offset() { 1679 return array_element_offset(default_disaplacement_off_set); 1680 } 1681 static ByteSize case_count_offset(int index) { 1682 return case_array_offset() + 1683 (per_case_size() * index) + 1684 relative_count_offset(); 1685 } 1686 static ByteSize case_array_offset() { 1687 return array_element_offset(case_array_start); 1688 } 1689 static ByteSize per_case_size() { 1690 return in_ByteSize(per_case_cell_count) * cell_size; 1691 } 1692 static ByteSize relative_count_offset() { 1693 return in_ByteSize(relative_count_off_set) * cell_size; 1694 } 1695 static ByteSize relative_displacement_offset() { 1696 return in_ByteSize(relative_displacement_off_set) * cell_size; 1697 } 1698 1699 // Specific initialization. 1700 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1701 1702 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1703 }; 1704 1705 class ArgInfoData : public ArrayData { 1706 1707 public: 1708 ArgInfoData(DataLayout* layout) : ArrayData(layout) { 1709 assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type"); 1710 } 1711 1712 virtual bool is_ArgInfoData() const { return true; } 1713 1714 1715 int number_of_args() const { 1716 return array_len(); 1717 } 1718 1719 uint arg_modified(int arg) const { 1720 return array_uint_at(arg); 1721 } 1722 1723 void set_arg_modified(int arg, uint val) { 1724 array_set_int_at(arg, val); 1725 } 1726 1727 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1728 }; 1729 1730 // ParametersTypeData 1731 // 1732 // A ParametersTypeData is used to access profiling information about 1733 // types of parameters to a method 1734 class ParametersTypeData : public ArrayData { 1735 1736 private: 1737 TypeStackSlotEntries _parameters; 1738 1739 static int stack_slot_local_offset(int i) { 1740 assert_profiling_enabled(); 1741 return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i); 1742 } 1743 1744 static int type_local_offset(int i) { 1745 assert_profiling_enabled(); 1746 return array_start_off_set + TypeStackSlotEntries::type_local_offset(i); 1747 } 1748 1749 static bool profiling_enabled(); 1750 static void assert_profiling_enabled() { 1751 assert(profiling_enabled(), "method parameters profiling should be on"); 1752 } 1753 1754 public: 1755 ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) { 1756 assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type"); 1757 // Some compilers (VC++) don't want this passed in member initialization list 1758 _parameters.set_profile_data(this); 1759 } 1760 1761 static int compute_cell_count(Method* m); 1762 1763 virtual bool is_ParametersTypeData() const { return true; } 1764 1765 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1766 1767 int number_of_parameters() const { 1768 return array_len() / TypeStackSlotEntries::per_arg_count(); 1769 } 1770 1771 const TypeStackSlotEntries* parameters() const { return &_parameters; } 1772 1773 uint stack_slot(int i) const { 1774 return _parameters.stack_slot(i); 1775 } 1776 1777 void set_type(int i, Klass* k) { 1778 intptr_t current = _parameters.type(i); 1779 _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current)); 1780 } 1781 1782 virtual void clean_weak_klass_links(bool always_clean) { 1783 _parameters.clean_weak_klass_links(always_clean); 1784 } 1785 1786 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1787 1788 static ByteSize stack_slot_offset(int i) { 1789 return cell_offset(stack_slot_local_offset(i)); 1790 } 1791 1792 static ByteSize type_offset(int i) { 1793 return cell_offset(type_local_offset(i)); 1794 } 1795 }; 1796 1797 // SpeculativeTrapData 1798 // 1799 // A SpeculativeTrapData is used to record traps due to type 1800 // speculation. It records the root of the compilation: that type 1801 // speculation is wrong in the context of one compilation (for 1802 // method1) doesn't mean it's wrong in the context of another one (for 1803 // method2). Type speculation could have more/different data in the 1804 // context of the compilation of method2 and it's worthwhile to try an 1805 // optimization that failed for compilation of method1 in the context 1806 // of compilation of method2. 1807 // Space for SpeculativeTrapData entries is allocated from the extra 1808 // data space in the MDO. If we run out of space, the trap data for 1809 // the ProfileData at that bci is updated. 1810 class SpeculativeTrapData : public ProfileData { 1811 protected: 1812 enum { 1813 speculative_trap_method, 1814 #ifndef _LP64 1815 // The size of the area for traps is a multiple of the header 1816 // size, 2 cells on 32 bits. Packed at the end of this area are 1817 // argument info entries (with tag 1818 // DataLayout::arg_info_data_tag). The logic in 1819 // MethodData::bci_to_extra_data() that guarantees traps don't 1820 // overflow over argument info entries assumes the size of a 1821 // SpeculativeTrapData is twice the header size. On 32 bits, a 1822 // SpeculativeTrapData must be 4 cells. 1823 padding, 1824 #endif 1825 speculative_trap_cell_count 1826 }; 1827 public: 1828 SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) { 1829 assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type"); 1830 } 1831 1832 virtual bool is_SpeculativeTrapData() const { return true; } 1833 1834 static int static_cell_count() { 1835 return speculative_trap_cell_count; 1836 } 1837 1838 virtual int cell_count() const { 1839 return static_cell_count(); 1840 } 1841 1842 // Direct accessor 1843 Method* method() const { 1844 return (Method*)intptr_at(speculative_trap_method); 1845 } 1846 1847 void set_method(Method* m) { 1848 assert(!m->is_old(), "cannot add old methods"); 1849 set_intptr_at(speculative_trap_method, (intptr_t)m); 1850 } 1851 1852 static ByteSize method_offset() { 1853 return cell_offset(speculative_trap_method); 1854 } 1855 1856 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1857 }; 1858 1859 // MethodData* 1860 // 1861 // A MethodData* holds information which has been collected about 1862 // a method. Its layout looks like this: 1863 // 1864 // ----------------------------- 1865 // | header | 1866 // | klass | 1867 // ----------------------------- 1868 // | method | 1869 // | size of the MethodData* | 1870 // ----------------------------- 1871 // | Data entries... | 1872 // | (variable size) | 1873 // | | 1874 // . . 1875 // . . 1876 // . . 1877 // | | 1878 // ----------------------------- 1879 // 1880 // The data entry area is a heterogeneous array of DataLayouts. Each 1881 // DataLayout in the array corresponds to a specific bytecode in the 1882 // method. The entries in the array are sorted by the corresponding 1883 // bytecode. Access to the data is via resource-allocated ProfileData, 1884 // which point to the underlying blocks of DataLayout structures. 1885 // 1886 // During interpretation, if profiling in enabled, the interpreter 1887 // maintains a method data pointer (mdp), which points at the entry 1888 // in the array corresponding to the current bci. In the course of 1889 // interpretation, when a bytecode is encountered that has profile data 1890 // associated with it, the entry pointed to by mdp is updated, then the 1891 // mdp is adjusted to point to the next appropriate DataLayout. If mdp 1892 // is null to begin with, the interpreter assumes that the current method 1893 // is not (yet) being profiled. 1894 // 1895 // In MethodData* parlance, "dp" is a "data pointer", the actual address 1896 // of a DataLayout element. A "di" is a "data index", the offset in bytes 1897 // from the base of the data entry array. A "displacement" is the byte offset 1898 // in certain ProfileData objects that indicate the amount the mdp must be 1899 // adjusted in the event of a change in control flow. 1900 // 1901 1902 class CleanExtraDataClosure : public StackObj { 1903 public: 1904 virtual bool is_live(Method* m) = 0; 1905 }; 1906 1907 1908 #if INCLUDE_JVMCI 1909 // Encapsulates an encoded speculation reason. These are linked together in 1910 // a list that is atomically appended to during deoptimization. Entries are 1911 // never removed from the list. 1912 // @see jdk.vm.ci.hotspot.HotSpotSpeculationLog.HotSpotSpeculationEncoding 1913 class FailedSpeculation: public CHeapObj<mtCompiler> { 1914 private: 1915 // The length of HotSpotSpeculationEncoding.toByteArray(). The data itself 1916 // is an array embedded at the end of this object. 1917 int _data_len; 1918 1919 // Next entry in a linked list. 1920 FailedSpeculation* _next; 1921 1922 FailedSpeculation(address data, int data_len); 1923 1924 FailedSpeculation** next_adr() { return &_next; } 1925 1926 // Placement new operator for inlining the speculation data into 1927 // the FailedSpeculation object. 1928 void* operator new(size_t size, size_t fs_size) throw(); 1929 1930 public: 1931 char* data() { return (char*)(((address) this) + sizeof(FailedSpeculation)); } 1932 int data_len() const { return _data_len; } 1933 FailedSpeculation* next() const { return _next; } 1934 1935 // Atomically appends a speculation from nm to the list whose head is at (*failed_speculations_address). 1936 // Returns false if the FailedSpeculation object could not be allocated. 1937 static bool add_failed_speculation(nmethod* nm, FailedSpeculation** failed_speculations_address, address speculation, int speculation_len); 1938 1939 // Frees all entries in the linked list whose head is at (*failed_speculations_address). 1940 static void free_failed_speculations(FailedSpeculation** failed_speculations_address); 1941 }; 1942 #endif 1943 1944 class ciMethodData; 1945 1946 class MethodData : public Metadata { 1947 friend class VMStructs; 1948 friend class JVMCIVMStructs; 1949 friend class ProfileData; 1950 friend class TypeEntriesAtCall; 1951 friend class ciMethodData; 1952 1953 // If you add a new field that points to any metaspace object, you 1954 // must add this field to MethodData::metaspace_pointers_do(). 1955 1956 // Back pointer to the Method* 1957 Method* _method; 1958 1959 // Size of this oop in bytes 1960 int _size; 1961 1962 // Cached hint for bci_to_dp and bci_to_data 1963 int _hint_di; 1964 1965 Mutex _extra_data_lock; 1966 1967 MethodData(const methodHandle& method); 1968 public: 1969 static MethodData* allocate(ClassLoaderData* loader_data, const methodHandle& method, TRAPS); 1970 1971 virtual bool is_methodData() const { return true; } 1972 void initialize(); 1973 1974 // Whole-method sticky bits and flags 1975 enum { 1976 _trap_hist_limit = Deoptimization::Reason_TRAP_HISTORY_LENGTH, 1977 _trap_hist_mask = max_jubyte, 1978 _extra_data_count = 4 // extra DataLayout headers, for trap history 1979 }; // Public flag values 1980 1981 // Compiler-related counters. 1982 class CompilerCounters { 1983 friend class VMStructs; 1984 friend class JVMCIVMStructs; 1985 1986 uint _nof_decompiles; // count of all nmethod removals 1987 uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits 1988 uint _nof_overflow_traps; // trap count, excluding _trap_hist 1989 union { 1990 intptr_t _align; 1991 // JVMCI separates trap history for OSR compilations from normal compilations 1992 u1 _array[JVMCI_ONLY(2 *) MethodData::_trap_hist_limit]; 1993 } _trap_hist; 1994 1995 public: 1996 CompilerCounters() : _nof_decompiles(0), _nof_overflow_recompiles(0), _nof_overflow_traps(0) { 1997 #ifndef ZERO 1998 // Some Zero platforms do not have expected alignment, and do not use 1999 // this code. static_assert would still fire and fail for them. 2000 static_assert(sizeof(_trap_hist) % HeapWordSize == 0, "align"); 2001 #endif 2002 uint size_in_words = sizeof(_trap_hist) / HeapWordSize; 2003 Copy::zero_to_words((HeapWord*) &_trap_hist, size_in_words); 2004 } 2005 2006 // Return (uint)-1 for overflow. 2007 uint trap_count(int reason) const { 2008 assert((uint)reason < ARRAY_SIZE(_trap_hist._array), "oob"); 2009 return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1; 2010 } 2011 2012 uint inc_trap_count(int reason) { 2013 // Count another trap, anywhere in this method. 2014 assert(reason >= 0, "must be single trap"); 2015 assert((uint)reason < ARRAY_SIZE(_trap_hist._array), "oob"); 2016 uint cnt1 = 1 + _trap_hist._array[reason]; 2017 if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow... 2018 _trap_hist._array[reason] = (u1)cnt1; 2019 return cnt1; 2020 } else { 2021 return _trap_hist_mask + (++_nof_overflow_traps); 2022 } 2023 } 2024 2025 uint overflow_trap_count() const { 2026 return _nof_overflow_traps; 2027 } 2028 uint overflow_recompile_count() const { 2029 return _nof_overflow_recompiles; 2030 } 2031 uint inc_overflow_recompile_count() { 2032 return ++_nof_overflow_recompiles; 2033 } 2034 uint decompile_count() const { 2035 return _nof_decompiles; 2036 } 2037 uint inc_decompile_count() { 2038 return ++_nof_decompiles; 2039 } 2040 2041 // Support for code generation 2042 static ByteSize trap_history_offset() { 2043 return byte_offset_of(CompilerCounters, _trap_hist._array); 2044 } 2045 }; 2046 2047 private: 2048 CompilerCounters _compiler_counters; 2049 2050 // Support for interprocedural escape analysis, from Thomas Kotzmann. 2051 intx _eflags; // flags on escape information 2052 intx _arg_local; // bit set of non-escaping arguments 2053 intx _arg_stack; // bit set of stack-allocatable arguments 2054 intx _arg_returned; // bit set of returned arguments 2055 2056 int _creation_mileage; // method mileage at MDO creation 2057 2058 // How many invocations has this MDO seen? 2059 // These counters are used to determine the exact age of MDO. 2060 // We need those because in tiered a method can be concurrently 2061 // executed at different levels. 2062 InvocationCounter _invocation_counter; 2063 // Same for backedges. 2064 InvocationCounter _backedge_counter; 2065 // Counter values at the time profiling started. 2066 int _invocation_counter_start; 2067 int _backedge_counter_start; 2068 uint _tenure_traps; 2069 int _invoke_mask; // per-method Tier0InvokeNotifyFreqLog 2070 int _backedge_mask; // per-method Tier0BackedgeNotifyFreqLog 2071 2072 // Number of loops and blocks is computed when compiling the first 2073 // time with C1. It is used to determine if method is trivial. 2074 short _num_loops; 2075 short _num_blocks; 2076 // Does this method contain anything worth profiling? 2077 enum WouldProfile {unknown, no_profile, profile}; 2078 WouldProfile _would_profile; 2079 2080 #if INCLUDE_JVMCI 2081 // Support for HotSpotMethodData.setCompiledIRSize(int) 2082 FailedSpeculation* _failed_speculations; 2083 int _jvmci_ir_size; 2084 #endif 2085 2086 // Size of _data array in bytes. (Excludes header and extra_data fields.) 2087 int _data_size; 2088 2089 // data index for the area dedicated to parameters. -1 if no 2090 // parameter profiling. 2091 enum { no_parameters = -2, parameters_uninitialized = -1 }; 2092 int _parameters_type_data_di; 2093 2094 // data index of exception handler profiling data 2095 int _exception_handler_data_di; 2096 2097 // Beginning of the data entries 2098 // See comment in ciMethodData::load_data 2099 intptr_t _data[1]; 2100 2101 // Helper for size computation 2102 static int compute_data_size(BytecodeStream* stream); 2103 static int bytecode_cell_count(Bytecodes::Code code); 2104 static bool is_speculative_trap_bytecode(Bytecodes::Code code); 2105 enum { no_profile_data = -1, variable_cell_count = -2 }; 2106 2107 // Helper for initialization 2108 DataLayout* data_layout_at(int data_index) const { 2109 assert(data_index % sizeof(intptr_t) == 0, "unaligned"); 2110 return (DataLayout*) (((address)_data) + data_index); 2111 } 2112 2113 static int single_exception_handler_data_cell_count() { 2114 return BitData::static_cell_count(); 2115 } 2116 2117 static int single_exception_handler_data_size() { 2118 return DataLayout::compute_size_in_bytes(single_exception_handler_data_cell_count()); 2119 } 2120 2121 DataLayout* exception_handler_data_at(int exception_handler_index) const { 2122 return data_layout_at(_exception_handler_data_di + (exception_handler_index * single_exception_handler_data_size())); 2123 } 2124 2125 int num_exception_handler_data() const { 2126 return exception_handlers_data_size() / single_exception_handler_data_size(); 2127 } 2128 2129 // Initialize an individual data segment. Returns the size of 2130 // the segment in bytes. 2131 int initialize_data(BytecodeStream* stream, int data_index); 2132 2133 // Helper for data_at 2134 DataLayout* limit_data_position() const { 2135 return data_layout_at(_data_size); 2136 } 2137 bool out_of_bounds(int data_index) const { 2138 return data_index >= data_size(); 2139 } 2140 2141 // Give each of the data entries a chance to perform specific 2142 // data initialization. 2143 void post_initialize(BytecodeStream* stream); 2144 2145 // hint accessors 2146 int hint_di() const { return _hint_di; } 2147 void set_hint_di(int di) { 2148 assert(!out_of_bounds(di), "hint_di out of bounds"); 2149 _hint_di = di; 2150 } 2151 2152 DataLayout* data_layout_before(int bci) { 2153 // avoid SEGV on this edge case 2154 if (data_size() == 0) 2155 return nullptr; 2156 DataLayout* layout = data_layout_at(hint_di()); 2157 if (layout->bci() <= bci) 2158 return layout; 2159 return data_layout_at(first_di()); 2160 } 2161 2162 // What is the index of the first data entry? 2163 int first_di() const { return 0; } 2164 2165 ProfileData* bci_to_extra_data_find(int bci, Method* m, DataLayout*& dp); 2166 // Find or create an extra ProfileData: 2167 ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing); 2168 2169 // return the argument info cell 2170 ArgInfoData *arg_info(); 2171 2172 enum { 2173 no_type_profile = 0, 2174 type_profile_jsr292 = 1, 2175 type_profile_all = 2 2176 }; 2177 2178 static bool profile_jsr292(const methodHandle& m, int bci); 2179 static bool profile_unsafe(const methodHandle& m, int bci); 2180 static bool profile_memory_access(const methodHandle& m, int bci); 2181 static int profile_arguments_flag(); 2182 static bool profile_all_arguments(); 2183 static bool profile_arguments_for_invoke(const methodHandle& m, int bci); 2184 static int profile_return_flag(); 2185 static bool profile_all_return(); 2186 static bool profile_return_for_invoke(const methodHandle& m, int bci); 2187 static int profile_parameters_flag(); 2188 static bool profile_parameters_jsr292_only(); 2189 static bool profile_all_parameters(); 2190 2191 void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false); 2192 void verify_extra_data_clean(CleanExtraDataClosure* cl); 2193 2194 DataLayout* exception_handler_bci_to_data_helper(int bci); 2195 2196 public: 2197 void clean_extra_data(CleanExtraDataClosure* cl); 2198 2199 static int header_size() { 2200 return sizeof(MethodData)/wordSize; 2201 } 2202 2203 // Compute the size of a MethodData* before it is created. 2204 static int compute_allocation_size_in_bytes(const methodHandle& method); 2205 static int compute_allocation_size_in_words(const methodHandle& method); 2206 static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps); 2207 2208 // Determine if a given bytecode can have profile information. 2209 static bool bytecode_has_profile(Bytecodes::Code code) { 2210 return bytecode_cell_count(code) != no_profile_data; 2211 } 2212 2213 // reset into original state 2214 void init(); 2215 2216 // My size 2217 int size_in_bytes() const { return _size; } 2218 int size() const { return align_metadata_size(align_up(_size, BytesPerWord)/BytesPerWord); } 2219 2220 int creation_mileage() const { return _creation_mileage; } 2221 void set_creation_mileage(int x) { _creation_mileage = x; } 2222 2223 int invocation_count() { 2224 if (invocation_counter()->carry()) { 2225 return InvocationCounter::count_limit; 2226 } 2227 return invocation_counter()->count(); 2228 } 2229 int backedge_count() { 2230 if (backedge_counter()->carry()) { 2231 return InvocationCounter::count_limit; 2232 } 2233 return backedge_counter()->count(); 2234 } 2235 2236 int invocation_count_start() { 2237 if (invocation_counter()->carry()) { 2238 return 0; 2239 } 2240 return _invocation_counter_start; 2241 } 2242 2243 int backedge_count_start() { 2244 if (backedge_counter()->carry()) { 2245 return 0; 2246 } 2247 return _backedge_counter_start; 2248 } 2249 2250 int invocation_count_delta() { return invocation_count() - invocation_count_start(); } 2251 int backedge_count_delta() { return backedge_count() - backedge_count_start(); } 2252 2253 void reset_start_counters() { 2254 _invocation_counter_start = invocation_count(); 2255 _backedge_counter_start = backedge_count(); 2256 } 2257 2258 InvocationCounter* invocation_counter() { return &_invocation_counter; } 2259 InvocationCounter* backedge_counter() { return &_backedge_counter; } 2260 2261 #if INCLUDE_JVMCI 2262 FailedSpeculation** get_failed_speculations_address() { 2263 return &_failed_speculations; 2264 } 2265 #endif 2266 2267 void set_would_profile(bool p) { _would_profile = p ? profile : no_profile; } 2268 bool would_profile() const { return _would_profile != no_profile; } 2269 2270 int num_loops() const { return _num_loops; } 2271 void set_num_loops(short n) { _num_loops = n; } 2272 int num_blocks() const { return _num_blocks; } 2273 void set_num_blocks(short n) { _num_blocks = n; } 2274 2275 bool is_mature() const; // consult mileage and ProfileMaturityPercentage 2276 static int mileage_of(Method* m); 2277 2278 // Support for interprocedural escape analysis, from Thomas Kotzmann. 2279 enum EscapeFlag { 2280 estimated = 1 << 0, 2281 return_local = 1 << 1, 2282 return_allocated = 1 << 2, 2283 allocated_escapes = 1 << 3, 2284 unknown_modified = 1 << 4 2285 }; 2286 2287 intx eflags() { return _eflags; } 2288 intx arg_local() { return _arg_local; } 2289 intx arg_stack() { return _arg_stack; } 2290 intx arg_returned() { return _arg_returned; } 2291 uint arg_modified(int a); 2292 void set_eflags(intx v) { _eflags = v; } 2293 void set_arg_local(intx v) { _arg_local = v; } 2294 void set_arg_stack(intx v) { _arg_stack = v; } 2295 void set_arg_returned(intx v) { _arg_returned = v; } 2296 void set_arg_modified(int a, uint v); 2297 void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; } 2298 2299 // Location and size of data area 2300 address data_base() const { 2301 return (address) _data; 2302 } 2303 int data_size() const { 2304 return _data_size; 2305 } 2306 2307 int parameters_size_in_bytes() const { 2308 return pointer_delta_as_int((address) parameters_data_limit(), (address) parameters_data_base()); 2309 } 2310 2311 int exception_handlers_data_size() const { 2312 return pointer_delta_as_int((address) exception_handler_data_limit(), (address) exception_handler_data_base()); 2313 } 2314 2315 // Accessors 2316 Method* method() const { return _method; } 2317 2318 // Get the data at an arbitrary (sort of) data index. 2319 ProfileData* data_at(int data_index) const; 2320 2321 // Walk through the data in order. 2322 ProfileData* first_data() const { return data_at(first_di()); } 2323 ProfileData* next_data(ProfileData* current) const; 2324 DataLayout* next_data_layout(DataLayout* current) const; 2325 bool is_valid(ProfileData* current) const { return current != nullptr; } 2326 bool is_valid(DataLayout* current) const { return current != nullptr; } 2327 2328 // Convert a dp (data pointer) to a di (data index). 2329 int dp_to_di(address dp) const { 2330 return (int)(dp - ((address)_data)); 2331 } 2332 2333 // bci to di/dp conversion. 2334 address bci_to_dp(int bci); 2335 int bci_to_di(int bci) { 2336 return dp_to_di(bci_to_dp(bci)); 2337 } 2338 2339 // Get the data at an arbitrary bci, or null if there is none. 2340 ProfileData* bci_to_data(int bci); 2341 2342 // Same, but try to create an extra_data record if one is needed: 2343 ProfileData* allocate_bci_to_data(int bci, Method* m) { 2344 check_extra_data_locked(); 2345 2346 ProfileData* data = nullptr; 2347 // If m not null, try to allocate a SpeculativeTrapData entry 2348 if (m == nullptr) { 2349 data = bci_to_data(bci); 2350 } 2351 if (data != nullptr) { 2352 return data; 2353 } 2354 data = bci_to_extra_data(bci, m, true); 2355 if (data != nullptr) { 2356 return data; 2357 } 2358 // If SpeculativeTrapData allocation fails try to allocate a 2359 // regular entry 2360 data = bci_to_data(bci); 2361 if (data != nullptr) { 2362 return data; 2363 } 2364 return bci_to_extra_data(bci, nullptr, true); 2365 } 2366 2367 BitData* exception_handler_bci_to_data_or_null(int bci); 2368 BitData exception_handler_bci_to_data(int bci); 2369 2370 // Add a handful of extra data records, for trap tracking. 2371 // Only valid after 'set_size' is called at the end of MethodData::initialize 2372 DataLayout* extra_data_base() const { 2373 check_extra_data_locked(); 2374 return limit_data_position(); 2375 } 2376 DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); } 2377 // pointers to sections in extra data 2378 DataLayout* args_data_limit() const { return parameters_data_base(); } 2379 DataLayout* parameters_data_base() const { 2380 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2381 return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di) : parameters_data_limit(); 2382 } 2383 DataLayout* parameters_data_limit() const { 2384 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2385 return exception_handler_data_base(); 2386 } 2387 DataLayout* exception_handler_data_base() const { return data_layout_at(_exception_handler_data_di); } 2388 DataLayout* exception_handler_data_limit() const { return extra_data_limit(); } 2389 2390 int extra_data_size() const { return (int)((address)extra_data_limit() - (address)limit_data_position()); } 2391 static DataLayout* next_extra(DataLayout* dp); 2392 2393 // Return (uint)-1 for overflow. 2394 uint trap_count(int reason) const { 2395 return _compiler_counters.trap_count(reason); 2396 } 2397 // For loops: 2398 static uint trap_reason_limit() { return _trap_hist_limit; } 2399 static uint trap_count_limit() { return _trap_hist_mask; } 2400 uint inc_trap_count(int reason) { 2401 return _compiler_counters.inc_trap_count(reason); 2402 } 2403 2404 uint overflow_trap_count() const { 2405 return _compiler_counters.overflow_trap_count(); 2406 } 2407 uint overflow_recompile_count() const { 2408 return _compiler_counters.overflow_recompile_count(); 2409 } 2410 uint inc_overflow_recompile_count() { 2411 return _compiler_counters.inc_overflow_recompile_count(); 2412 } 2413 uint decompile_count() const { 2414 return _compiler_counters.decompile_count(); 2415 } 2416 uint inc_decompile_count() { 2417 uint dec_count = _compiler_counters.inc_decompile_count(); 2418 if (dec_count > (uint)PerMethodRecompilationCutoff) { 2419 method()->set_not_compilable("decompile_count > PerMethodRecompilationCutoff", CompLevel_full_optimization); 2420 } 2421 return dec_count; 2422 } 2423 uint tenure_traps() const { 2424 return _tenure_traps; 2425 } 2426 void inc_tenure_traps() { 2427 _tenure_traps += 1; 2428 } 2429 2430 // Return pointer to area dedicated to parameters in MDO 2431 ParametersTypeData* parameters_type_data() const { 2432 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2433 return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : nullptr; 2434 } 2435 2436 int parameters_type_data_di() const { 2437 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2438 return _parameters_type_data_di != no_parameters ? _parameters_type_data_di : exception_handlers_data_di(); 2439 } 2440 2441 int exception_handlers_data_di() const { 2442 return _exception_handler_data_di; 2443 } 2444 2445 // Support for code generation 2446 static ByteSize data_offset() { 2447 return byte_offset_of(MethodData, _data[0]); 2448 } 2449 2450 static ByteSize trap_history_offset() { 2451 return byte_offset_of(MethodData, _compiler_counters) + CompilerCounters::trap_history_offset(); 2452 } 2453 2454 static ByteSize invocation_counter_offset() { 2455 return byte_offset_of(MethodData, _invocation_counter); 2456 } 2457 2458 static ByteSize backedge_counter_offset() { 2459 return byte_offset_of(MethodData, _backedge_counter); 2460 } 2461 2462 static ByteSize invoke_mask_offset() { 2463 return byte_offset_of(MethodData, _invoke_mask); 2464 } 2465 2466 static ByteSize backedge_mask_offset() { 2467 return byte_offset_of(MethodData, _backedge_mask); 2468 } 2469 2470 static ByteSize parameters_type_data_di_offset() { 2471 return byte_offset_of(MethodData, _parameters_type_data_di); 2472 } 2473 2474 virtual void metaspace_pointers_do(MetaspaceClosure* iter); 2475 virtual MetaspaceObj::Type type() const { return MethodDataType; } 2476 2477 // Deallocation support 2478 void deallocate_contents(ClassLoaderData* loader_data); 2479 void release_C_heap_structures(); 2480 2481 // GC support 2482 void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; } 2483 2484 // Printing 2485 void print_on (outputStream* st) const; 2486 void print_value_on(outputStream* st) const; 2487 2488 // printing support for method data 2489 void print_data_on(outputStream* st) const; 2490 2491 const char* internal_name() const { return "{method data}"; } 2492 2493 // verification 2494 void verify_on(outputStream* st); 2495 void verify_data_on(outputStream* st); 2496 2497 static bool profile_parameters_for_method(const methodHandle& m); 2498 static bool profile_arguments(); 2499 static bool profile_arguments_jsr292_only(); 2500 static bool profile_return(); 2501 static bool profile_parameters(); 2502 static bool profile_return_jsr292_only(); 2503 2504 void clean_method_data(bool always_clean); 2505 void clean_weak_method_links(); 2506 Mutex* extra_data_lock() { return &_extra_data_lock; } 2507 void check_extra_data_locked() const NOT_DEBUG_RETURN; 2508 }; 2509 2510 #endif // SHARE_OOPS_METHODDATA_HPP