1 /* 2 * Copyright (c) 2000, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OOPS_METHODDATA_HPP 26 #define SHARE_OOPS_METHODDATA_HPP 27 28 #include "interpreter/bytecodes.hpp" 29 #include "oops/metadata.hpp" 30 #include "oops/method.hpp" 31 #include "oops/oop.hpp" 32 #include "runtime/atomic.hpp" 33 #include "runtime/deoptimization.hpp" 34 #include "runtime/mutex.hpp" 35 #include "utilities/align.hpp" 36 #include "utilities/copy.hpp" 37 38 class BytecodeStream; 39 40 // The MethodData object collects counts and other profile information 41 // during zeroth-tier (interpretive) and first-tier execution. 42 // The profile is used later by compilation heuristics. Some heuristics 43 // enable use of aggressive (or "heroic") optimizations. An aggressive 44 // optimization often has a down-side, a corner case that it handles 45 // poorly, but which is thought to be rare. The profile provides 46 // evidence of this rarity for a given method or even BCI. It allows 47 // the compiler to back out of the optimization at places where it 48 // has historically been a poor choice. Other heuristics try to use 49 // specific information gathered about types observed at a given site. 50 // 51 // All data in the profile is approximate. It is expected to be accurate 52 // on the whole, but the system expects occasional inaccuraces, due to 53 // counter overflow, multiprocessor races during data collection, space 54 // limitations, missing MDO blocks, etc. Bad or missing data will degrade 55 // optimization quality but will not affect correctness. Also, each MDO 56 // is marked with its birth-date ("creation_mileage") which can be used 57 // to assess the quality ("maturity") of its data. 58 // 59 // Short (<32-bit) counters are designed to overflow to a known "saturated" 60 // state. Also, certain recorded per-BCI events are given one-bit counters 61 // which overflow to a saturated state which applied to all counters at 62 // that BCI. In other words, there is a small lattice which approximates 63 // the ideal of an infinite-precision counter for each event at each BCI, 64 // and the lattice quickly "bottoms out" in a state where all counters 65 // are taken to be indefinitely large. 66 // 67 // The reader will find many data races in profile gathering code, starting 68 // with invocation counter incrementation. None of these races harm correct 69 // execution of the compiled code. 70 71 // forward decl 72 class ProfileData; 73 74 // DataLayout 75 // 76 // Overlay for generic profiling data. 77 class DataLayout { 78 friend class VMStructs; 79 friend class JVMCIVMStructs; 80 81 private: 82 // Every data layout begins with a header. This header 83 // contains a tag, which is used to indicate the size/layout 84 // of the data, 8 bits of flags, which can be used in any way, 85 // 32 bits of trap history (none/one reason/many reasons), 86 // and a bci, which is used to tie this piece of data to a 87 // specific bci in the bytecodes. 88 union { 89 u8 _bits; 90 struct { 91 u1 _tag; 92 u1 _flags; 93 u2 _bci; 94 u4 _traps; 95 } _struct; 96 } _header; 97 98 // The data layout has an arbitrary number of cells, each sized 99 // to accomodate a pointer or an integer. 100 intptr_t _cells[1]; 101 102 // Some types of data layouts need a length field. 103 static bool needs_array_len(u1 tag); 104 105 public: 106 enum { 107 counter_increment = 1 108 }; 109 110 enum { 111 cell_size = sizeof(intptr_t) 112 }; 113 114 // Tag values 115 enum { 116 no_tag, 117 bit_data_tag, 118 counter_data_tag, 119 jump_data_tag, 120 receiver_type_data_tag, 121 virtual_call_data_tag, 122 ret_data_tag, 123 branch_data_tag, 124 multi_branch_data_tag, 125 arg_info_data_tag, 126 call_type_data_tag, 127 virtual_call_type_data_tag, 128 parameters_type_data_tag, 129 speculative_trap_data_tag 130 }; 131 132 enum { 133 // The trap state breaks down as [recompile:1 | reason:31]. 134 // This further breakdown is defined in deoptimization.cpp. 135 // See Deoptimization::trap_state_reason for an assert that 136 // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT. 137 // 138 // The trap_state is collected only if ProfileTraps is true. 139 trap_bits = 1+31, // 31: enough to distinguish [0..Reason_RECORDED_LIMIT]. 140 trap_mask = -1, 141 first_flag = 0 142 }; 143 144 // Size computation 145 static int header_size_in_bytes() { 146 return header_size_in_cells() * cell_size; 147 } 148 static int header_size_in_cells() { 149 return LP64_ONLY(1) NOT_LP64(2); 150 } 151 152 static int compute_size_in_bytes(int cell_count) { 153 return header_size_in_bytes() + cell_count * cell_size; 154 } 155 156 // Initialization 157 void initialize(u1 tag, u2 bci, int cell_count); 158 159 // Accessors 160 u1 tag() { 161 return _header._struct._tag; 162 } 163 164 // Return 32 bits of trap state. 165 // The state tells if traps with zero, one, or many reasons have occurred. 166 // It also tells whether zero or many recompilations have occurred. 167 // The associated trap histogram in the MDO itself tells whether 168 // traps are common or not. If a BCI shows that a trap X has 169 // occurred, and the MDO shows N occurrences of X, we make the 170 // simplifying assumption that all N occurrences can be blamed 171 // on that BCI. 172 uint trap_state() const { 173 return _header._struct._traps; 174 } 175 176 void set_trap_state(uint new_state) { 177 assert(ProfileTraps, "used only under +ProfileTraps"); 178 uint old_flags = _header._struct._traps; 179 _header._struct._traps = new_state | old_flags; 180 } 181 182 u1 flags() const { 183 return _header._struct._flags; 184 } 185 186 u2 bci() const { 187 return _header._struct._bci; 188 } 189 190 void set_header(u8 value) { 191 _header._bits = value; 192 } 193 u8 header() { 194 return _header._bits; 195 } 196 void set_cell_at(int index, intptr_t value) { 197 _cells[index] = value; 198 } 199 void release_set_cell_at(int index, intptr_t value); 200 intptr_t cell_at(int index) const { 201 return _cells[index]; 202 } 203 204 void set_flag_at(u1 flag_number) { 205 _header._struct._flags |= (0x1 << flag_number); 206 } 207 bool flag_at(u1 flag_number) const { 208 return (_header._struct._flags & (0x1 << flag_number)) != 0; 209 } 210 211 // Low-level support for code generation. 212 static ByteSize header_offset() { 213 return byte_offset_of(DataLayout, _header); 214 } 215 static ByteSize tag_offset() { 216 return byte_offset_of(DataLayout, _header._struct._tag); 217 } 218 static ByteSize flags_offset() { 219 return byte_offset_of(DataLayout, _header._struct._flags); 220 } 221 static ByteSize bci_offset() { 222 return byte_offset_of(DataLayout, _header._struct._bci); 223 } 224 static ByteSize cell_offset(int index) { 225 return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size); 226 } 227 // Return a value which, when or-ed as a byte into _flags, sets the flag. 228 static u1 flag_number_to_constant(u1 flag_number) { 229 DataLayout temp; temp.set_header(0); 230 temp.set_flag_at(flag_number); 231 return temp._header._struct._flags; 232 } 233 // Return a value which, when or-ed as a word into _header, sets the flag. 234 static u8 flag_mask_to_header_mask(uint byte_constant) { 235 DataLayout temp; temp.set_header(0); 236 temp._header._struct._flags = byte_constant; 237 return temp._header._bits; 238 } 239 240 ProfileData* data_in(); 241 242 int size_in_bytes() { 243 int cells = cell_count(); 244 assert(cells >= 0, "invalid number of cells"); 245 return DataLayout::compute_size_in_bytes(cells); 246 } 247 int cell_count(); 248 249 // GC support 250 void clean_weak_klass_links(bool always_clean); 251 }; 252 253 254 // ProfileData class hierarchy 255 class ProfileData; 256 class BitData; 257 class CounterData; 258 class ReceiverTypeData; 259 class VirtualCallData; 260 class VirtualCallTypeData; 261 class RetData; 262 class CallTypeData; 263 class JumpData; 264 class BranchData; 265 class ArrayData; 266 class MultiBranchData; 267 class ArgInfoData; 268 class ParametersTypeData; 269 class SpeculativeTrapData; 270 271 // ProfileData 272 // 273 // A ProfileData object is created to refer to a section of profiling 274 // data in a structured way. 275 class ProfileData : public ResourceObj { 276 friend class TypeEntries; 277 friend class ReturnTypeEntry; 278 friend class TypeStackSlotEntries; 279 private: 280 enum { 281 tab_width_one = 16, 282 tab_width_two = 36 283 }; 284 285 // This is a pointer to a section of profiling data. 286 DataLayout* _data; 287 288 char* print_data_on_helper(const MethodData* md) const; 289 290 protected: 291 DataLayout* data() { return _data; } 292 const DataLayout* data() const { return _data; } 293 294 enum { 295 cell_size = DataLayout::cell_size 296 }; 297 298 public: 299 // How many cells are in this? 300 virtual int cell_count() const { 301 ShouldNotReachHere(); 302 return -1; 303 } 304 305 // Return the size of this data. 306 int size_in_bytes() { 307 return DataLayout::compute_size_in_bytes(cell_count()); 308 } 309 310 protected: 311 // Low-level accessors for underlying data 312 void set_intptr_at(int index, intptr_t value) { 313 assert(0 <= index && index < cell_count(), "oob"); 314 data()->set_cell_at(index, value); 315 } 316 void release_set_intptr_at(int index, intptr_t value); 317 intptr_t intptr_at(int index) const { 318 assert(0 <= index && index < cell_count(), "oob"); 319 return data()->cell_at(index); 320 } 321 void set_uint_at(int index, uint value) { 322 set_intptr_at(index, (intptr_t) value); 323 } 324 void release_set_uint_at(int index, uint value); 325 uint uint_at(int index) const { 326 return (uint)intptr_at(index); 327 } 328 void set_int_at(int index, int value) { 329 set_intptr_at(index, (intptr_t) value); 330 } 331 void release_set_int_at(int index, int value); 332 int int_at(int index) const { 333 return (int)intptr_at(index); 334 } 335 int int_at_unchecked(int index) const { 336 return (int)data()->cell_at(index); 337 } 338 void set_oop_at(int index, oop value) { 339 set_intptr_at(index, cast_from_oop<intptr_t>(value)); 340 } 341 oop oop_at(int index) const { 342 return cast_to_oop(intptr_at(index)); 343 } 344 345 void set_flag_at(int flag_number) { 346 data()->set_flag_at(flag_number); 347 } 348 bool flag_at(int flag_number) const { 349 return data()->flag_at(flag_number); 350 } 351 352 // two convenient imports for use by subclasses: 353 static ByteSize cell_offset(int index) { 354 return DataLayout::cell_offset(index); 355 } 356 static int flag_number_to_constant(int flag_number) { 357 return DataLayout::flag_number_to_constant(flag_number); 358 } 359 360 ProfileData(DataLayout* data) { 361 _data = data; 362 } 363 364 public: 365 // Constructor for invalid ProfileData. 366 ProfileData(); 367 368 u2 bci() const { 369 return data()->bci(); 370 } 371 372 address dp() { 373 return (address)_data; 374 } 375 376 int trap_state() const { 377 return data()->trap_state(); 378 } 379 void set_trap_state(int new_state) { 380 data()->set_trap_state(new_state); 381 } 382 383 // Type checking 384 virtual bool is_BitData() const { return false; } 385 virtual bool is_CounterData() const { return false; } 386 virtual bool is_JumpData() const { return false; } 387 virtual bool is_ReceiverTypeData()const { return false; } 388 virtual bool is_VirtualCallData() const { return false; } 389 virtual bool is_RetData() const { return false; } 390 virtual bool is_BranchData() const { return false; } 391 virtual bool is_ArrayData() const { return false; } 392 virtual bool is_MultiBranchData() const { return false; } 393 virtual bool is_ArgInfoData() const { return false; } 394 virtual bool is_CallTypeData() const { return false; } 395 virtual bool is_VirtualCallTypeData()const { return false; } 396 virtual bool is_ParametersTypeData() const { return false; } 397 virtual bool is_SpeculativeTrapData()const { return false; } 398 399 400 BitData* as_BitData() const { 401 assert(is_BitData(), "wrong type"); 402 return is_BitData() ? (BitData*) this : NULL; 403 } 404 CounterData* as_CounterData() const { 405 assert(is_CounterData(), "wrong type"); 406 return is_CounterData() ? (CounterData*) this : NULL; 407 } 408 JumpData* as_JumpData() const { 409 assert(is_JumpData(), "wrong type"); 410 return is_JumpData() ? (JumpData*) this : NULL; 411 } 412 ReceiverTypeData* as_ReceiverTypeData() const { 413 assert(is_ReceiverTypeData(), "wrong type"); 414 return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL; 415 } 416 VirtualCallData* as_VirtualCallData() const { 417 assert(is_VirtualCallData(), "wrong type"); 418 return is_VirtualCallData() ? (VirtualCallData*)this : NULL; 419 } 420 RetData* as_RetData() const { 421 assert(is_RetData(), "wrong type"); 422 return is_RetData() ? (RetData*) this : NULL; 423 } 424 BranchData* as_BranchData() const { 425 assert(is_BranchData(), "wrong type"); 426 return is_BranchData() ? (BranchData*) this : NULL; 427 } 428 ArrayData* as_ArrayData() const { 429 assert(is_ArrayData(), "wrong type"); 430 return is_ArrayData() ? (ArrayData*) this : NULL; 431 } 432 MultiBranchData* as_MultiBranchData() const { 433 assert(is_MultiBranchData(), "wrong type"); 434 return is_MultiBranchData() ? (MultiBranchData*)this : NULL; 435 } 436 ArgInfoData* as_ArgInfoData() const { 437 assert(is_ArgInfoData(), "wrong type"); 438 return is_ArgInfoData() ? (ArgInfoData*)this : NULL; 439 } 440 CallTypeData* as_CallTypeData() const { 441 assert(is_CallTypeData(), "wrong type"); 442 return is_CallTypeData() ? (CallTypeData*)this : NULL; 443 } 444 VirtualCallTypeData* as_VirtualCallTypeData() const { 445 assert(is_VirtualCallTypeData(), "wrong type"); 446 return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL; 447 } 448 ParametersTypeData* as_ParametersTypeData() const { 449 assert(is_ParametersTypeData(), "wrong type"); 450 return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL; 451 } 452 SpeculativeTrapData* as_SpeculativeTrapData() const { 453 assert(is_SpeculativeTrapData(), "wrong type"); 454 return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : NULL; 455 } 456 457 458 // Subclass specific initialization 459 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {} 460 461 // GC support 462 virtual void clean_weak_klass_links(bool always_clean) {} 463 464 // CI translation: ProfileData can represent both MethodDataOop data 465 // as well as CIMethodData data. This function is provided for translating 466 // an oop in a ProfileData to the ci equivalent. Generally speaking, 467 // most ProfileData don't require any translation, so we provide the null 468 // translation here, and the required translators are in the ci subclasses. 469 virtual void translate_from(const ProfileData* data) {} 470 471 virtual void print_data_on(outputStream* st, const char* extra = NULL) const { 472 ShouldNotReachHere(); 473 } 474 475 void print_data_on(outputStream* st, const MethodData* md) const; 476 477 void print_shared(outputStream* st, const char* name, const char* extra) const; 478 void tab(outputStream* st, bool first = false) const; 479 }; 480 481 // BitData 482 // 483 // A BitData holds a flag or two in its header. 484 class BitData : public ProfileData { 485 friend class VMStructs; 486 friend class JVMCIVMStructs; 487 protected: 488 enum { 489 // null_seen: 490 // saw a null operand (cast/aastore/instanceof) 491 null_seen_flag = DataLayout::first_flag + 0 492 #if INCLUDE_JVMCI 493 // bytecode threw any exception 494 , exception_seen_flag = null_seen_flag + 1 495 #endif 496 }; 497 enum { bit_cell_count = 0 }; // no additional data fields needed. 498 public: 499 BitData(DataLayout* layout) : ProfileData(layout) { 500 } 501 502 virtual bool is_BitData() const { return true; } 503 504 static int static_cell_count() { 505 return bit_cell_count; 506 } 507 508 virtual int cell_count() const { 509 return static_cell_count(); 510 } 511 512 // Accessor 513 514 // The null_seen flag bit is specially known to the interpreter. 515 // Consulting it allows the compiler to avoid setting up null_check traps. 516 bool null_seen() { return flag_at(null_seen_flag); } 517 void set_null_seen() { set_flag_at(null_seen_flag); } 518 519 #if INCLUDE_JVMCI 520 // true if an exception was thrown at the specific BCI 521 bool exception_seen() { return flag_at(exception_seen_flag); } 522 void set_exception_seen() { set_flag_at(exception_seen_flag); } 523 #endif 524 525 // Code generation support 526 static int null_seen_byte_constant() { 527 return flag_number_to_constant(null_seen_flag); 528 } 529 530 static ByteSize bit_data_size() { 531 return cell_offset(bit_cell_count); 532 } 533 534 void print_data_on(outputStream* st, const char* extra = NULL) const; 535 }; 536 537 // CounterData 538 // 539 // A CounterData corresponds to a simple counter. 540 class CounterData : public BitData { 541 friend class VMStructs; 542 friend class JVMCIVMStructs; 543 protected: 544 enum { 545 count_off, 546 counter_cell_count 547 }; 548 public: 549 CounterData(DataLayout* layout) : BitData(layout) {} 550 551 virtual bool is_CounterData() const { return true; } 552 553 static int static_cell_count() { 554 return counter_cell_count; 555 } 556 557 virtual int cell_count() const { 558 return static_cell_count(); 559 } 560 561 // Direct accessor 562 int count() const { 563 intptr_t raw_data = intptr_at(count_off); 564 if (raw_data > max_jint) { 565 raw_data = max_jint; 566 } else if (raw_data < min_jint) { 567 raw_data = min_jint; 568 } 569 return int(raw_data); 570 } 571 572 // Code generation support 573 static ByteSize count_offset() { 574 return cell_offset(count_off); 575 } 576 static ByteSize counter_data_size() { 577 return cell_offset(counter_cell_count); 578 } 579 580 void set_count(int count) { 581 set_int_at(count_off, count); 582 } 583 584 void print_data_on(outputStream* st, const char* extra = NULL) const; 585 }; 586 587 // JumpData 588 // 589 // A JumpData is used to access profiling information for a direct 590 // branch. It is a counter, used for counting the number of branches, 591 // plus a data displacement, used for realigning the data pointer to 592 // the corresponding target bci. 593 class JumpData : public ProfileData { 594 friend class VMStructs; 595 friend class JVMCIVMStructs; 596 protected: 597 enum { 598 taken_off_set, 599 displacement_off_set, 600 jump_cell_count 601 }; 602 603 void set_displacement(int displacement) { 604 set_int_at(displacement_off_set, displacement); 605 } 606 607 public: 608 JumpData(DataLayout* layout) : ProfileData(layout) { 609 assert(layout->tag() == DataLayout::jump_data_tag || 610 layout->tag() == DataLayout::branch_data_tag, "wrong type"); 611 } 612 613 virtual bool is_JumpData() const { return true; } 614 615 static int static_cell_count() { 616 return jump_cell_count; 617 } 618 619 virtual int cell_count() const { 620 return static_cell_count(); 621 } 622 623 // Direct accessor 624 uint taken() const { 625 return uint_at(taken_off_set); 626 } 627 628 void set_taken(uint cnt) { 629 set_uint_at(taken_off_set, cnt); 630 } 631 632 // Saturating counter 633 uint inc_taken() { 634 uint cnt = taken() + 1; 635 // Did we wrap? Will compiler screw us?? 636 if (cnt == 0) cnt--; 637 set_uint_at(taken_off_set, cnt); 638 return cnt; 639 } 640 641 int displacement() const { 642 return int_at(displacement_off_set); 643 } 644 645 // Code generation support 646 static ByteSize taken_offset() { 647 return cell_offset(taken_off_set); 648 } 649 650 static ByteSize displacement_offset() { 651 return cell_offset(displacement_off_set); 652 } 653 654 // Specific initialization. 655 void post_initialize(BytecodeStream* stream, MethodData* mdo); 656 657 void print_data_on(outputStream* st, const char* extra = NULL) const; 658 }; 659 660 // Entries in a ProfileData object to record types: it can either be 661 // none (no profile), unknown (conflicting profile data) or a klass if 662 // a single one is seen. Whether a null reference was seen is also 663 // recorded. No counter is associated with the type and a single type 664 // is tracked (unlike VirtualCallData). 665 class TypeEntries { 666 667 public: 668 669 // A single cell is used to record information for a type: 670 // - the cell is initialized to 0 671 // - when a type is discovered it is stored in the cell 672 // - bit zero of the cell is used to record whether a null reference 673 // was encountered or not 674 // - bit 1 is set to record a conflict in the type information 675 676 enum { 677 null_seen = 1, 678 type_mask = ~null_seen, 679 type_unknown = 2, 680 status_bits = null_seen | type_unknown, 681 type_klass_mask = ~status_bits 682 }; 683 684 // what to initialize a cell to 685 static intptr_t type_none() { 686 return 0; 687 } 688 689 // null seen = bit 0 set? 690 static bool was_null_seen(intptr_t v) { 691 return (v & null_seen) != 0; 692 } 693 694 // conflicting type information = bit 1 set? 695 static bool is_type_unknown(intptr_t v) { 696 return (v & type_unknown) != 0; 697 } 698 699 // not type information yet = all bits cleared, ignoring bit 0? 700 static bool is_type_none(intptr_t v) { 701 return (v & type_mask) == 0; 702 } 703 704 // recorded type: cell without bit 0 and 1 705 static intptr_t klass_part(intptr_t v) { 706 intptr_t r = v & type_klass_mask; 707 return r; 708 } 709 710 // type recorded 711 static Klass* valid_klass(intptr_t k) { 712 if (!is_type_none(k) && 713 !is_type_unknown(k)) { 714 Klass* res = (Klass*)klass_part(k); 715 assert(res != NULL, "invalid"); 716 return res; 717 } else { 718 return NULL; 719 } 720 } 721 722 static intptr_t with_status(intptr_t k, intptr_t in) { 723 return k | (in & status_bits); 724 } 725 726 static intptr_t with_status(Klass* k, intptr_t in) { 727 return with_status((intptr_t)k, in); 728 } 729 730 static void print_klass(outputStream* st, intptr_t k); 731 732 protected: 733 // ProfileData object these entries are part of 734 ProfileData* _pd; 735 // offset within the ProfileData object where the entries start 736 const int _base_off; 737 738 TypeEntries(int base_off) 739 : _pd(NULL), _base_off(base_off) {} 740 741 void set_intptr_at(int index, intptr_t value) { 742 _pd->set_intptr_at(index, value); 743 } 744 745 intptr_t intptr_at(int index) const { 746 return _pd->intptr_at(index); 747 } 748 749 public: 750 void set_profile_data(ProfileData* pd) { 751 _pd = pd; 752 } 753 }; 754 755 // Type entries used for arguments passed at a call and parameters on 756 // method entry. 2 cells per entry: one for the type encoded as in 757 // TypeEntries and one initialized with the stack slot where the 758 // profiled object is to be found so that the interpreter can locate 759 // it quickly. 760 class TypeStackSlotEntries : public TypeEntries { 761 762 private: 763 enum { 764 stack_slot_entry, 765 type_entry, 766 per_arg_cell_count 767 }; 768 769 // offset of cell for stack slot for entry i within ProfileData object 770 int stack_slot_offset(int i) const { 771 return _base_off + stack_slot_local_offset(i); 772 } 773 774 const int _number_of_entries; 775 776 // offset of cell for type for entry i within ProfileData object 777 int type_offset_in_cells(int i) const { 778 return _base_off + type_local_offset(i); 779 } 780 781 public: 782 783 TypeStackSlotEntries(int base_off, int nb_entries) 784 : TypeEntries(base_off), _number_of_entries(nb_entries) {} 785 786 static int compute_cell_count(Symbol* signature, bool include_receiver, int max); 787 788 void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver); 789 790 int number_of_entries() const { return _number_of_entries; } 791 792 // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries 793 static int stack_slot_local_offset(int i) { 794 return i * per_arg_cell_count + stack_slot_entry; 795 } 796 797 // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries 798 static int type_local_offset(int i) { 799 return i * per_arg_cell_count + type_entry; 800 } 801 802 // stack slot for entry i 803 uint stack_slot(int i) const { 804 assert(i >= 0 && i < _number_of_entries, "oob"); 805 return _pd->uint_at(stack_slot_offset(i)); 806 } 807 808 // set stack slot for entry i 809 void set_stack_slot(int i, uint num) { 810 assert(i >= 0 && i < _number_of_entries, "oob"); 811 _pd->set_uint_at(stack_slot_offset(i), num); 812 } 813 814 // type for entry i 815 intptr_t type(int i) const { 816 assert(i >= 0 && i < _number_of_entries, "oob"); 817 return _pd->intptr_at(type_offset_in_cells(i)); 818 } 819 820 // set type for entry i 821 void set_type(int i, intptr_t k) { 822 assert(i >= 0 && i < _number_of_entries, "oob"); 823 _pd->set_intptr_at(type_offset_in_cells(i), k); 824 } 825 826 static ByteSize per_arg_size() { 827 return in_ByteSize(per_arg_cell_count * DataLayout::cell_size); 828 } 829 830 static int per_arg_count() { 831 return per_arg_cell_count; 832 } 833 834 ByteSize type_offset(int i) const { 835 return DataLayout::cell_offset(type_offset_in_cells(i)); 836 } 837 838 // GC support 839 void clean_weak_klass_links(bool always_clean); 840 841 void print_data_on(outputStream* st) const; 842 }; 843 844 // Type entry used for return from a call. A single cell to record the 845 // type. 846 class ReturnTypeEntry : public TypeEntries { 847 848 private: 849 enum { 850 cell_count = 1 851 }; 852 853 public: 854 ReturnTypeEntry(int base_off) 855 : TypeEntries(base_off) {} 856 857 void post_initialize() { 858 set_type(type_none()); 859 } 860 861 intptr_t type() const { 862 return _pd->intptr_at(_base_off); 863 } 864 865 void set_type(intptr_t k) { 866 _pd->set_intptr_at(_base_off, k); 867 } 868 869 static int static_cell_count() { 870 return cell_count; 871 } 872 873 static ByteSize size() { 874 return in_ByteSize(cell_count * DataLayout::cell_size); 875 } 876 877 ByteSize type_offset() { 878 return DataLayout::cell_offset(_base_off); 879 } 880 881 // GC support 882 void clean_weak_klass_links(bool always_clean); 883 884 void print_data_on(outputStream* st) const; 885 }; 886 887 // Entries to collect type information at a call: contains arguments 888 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a 889 // number of cells. Because the number of cells for the return type is 890 // smaller than the number of cells for the type of an arguments, the 891 // number of cells is used to tell how many arguments are profiled and 892 // whether a return value is profiled. See has_arguments() and 893 // has_return(). 894 class TypeEntriesAtCall { 895 private: 896 static int stack_slot_local_offset(int i) { 897 return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i); 898 } 899 900 static int argument_type_local_offset(int i) { 901 return header_cell_count() + TypeStackSlotEntries::type_local_offset(i); 902 } 903 904 public: 905 906 static int header_cell_count() { 907 return 1; 908 } 909 910 static int cell_count_local_offset() { 911 return 0; 912 } 913 914 static int compute_cell_count(BytecodeStream* stream); 915 916 static void initialize(DataLayout* dl, int base, int cell_count) { 917 int off = base + cell_count_local_offset(); 918 dl->set_cell_at(off, cell_count - base - header_cell_count()); 919 } 920 921 static bool arguments_profiling_enabled(); 922 static bool return_profiling_enabled(); 923 924 // Code generation support 925 static ByteSize cell_count_offset() { 926 return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size); 927 } 928 929 static ByteSize args_data_offset() { 930 return in_ByteSize(header_cell_count() * DataLayout::cell_size); 931 } 932 933 static ByteSize stack_slot_offset(int i) { 934 return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size); 935 } 936 937 static ByteSize argument_type_offset(int i) { 938 return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size); 939 } 940 941 static ByteSize return_only_size() { 942 return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size); 943 } 944 945 }; 946 947 // CallTypeData 948 // 949 // A CallTypeData is used to access profiling information about a non 950 // virtual call for which we collect type information about arguments 951 // and return value. 952 class CallTypeData : public CounterData { 953 private: 954 // entries for arguments if any 955 TypeStackSlotEntries _args; 956 // entry for return type if any 957 ReturnTypeEntry _ret; 958 959 int cell_count_global_offset() const { 960 return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset(); 961 } 962 963 // number of cells not counting the header 964 int cell_count_no_header() const { 965 return uint_at(cell_count_global_offset()); 966 } 967 968 void check_number_of_arguments(int total) { 969 assert(number_of_arguments() == total, "should be set in DataLayout::initialize"); 970 } 971 972 public: 973 CallTypeData(DataLayout* layout) : 974 CounterData(layout), 975 _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()), 976 _ret(cell_count() - ReturnTypeEntry::static_cell_count()) 977 { 978 assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type"); 979 // Some compilers (VC++) don't want this passed in member initialization list 980 _args.set_profile_data(this); 981 _ret.set_profile_data(this); 982 } 983 984 const TypeStackSlotEntries* args() const { 985 assert(has_arguments(), "no profiling of arguments"); 986 return &_args; 987 } 988 989 const ReturnTypeEntry* ret() const { 990 assert(has_return(), "no profiling of return value"); 991 return &_ret; 992 } 993 994 virtual bool is_CallTypeData() const { return true; } 995 996 static int static_cell_count() { 997 return -1; 998 } 999 1000 static int compute_cell_count(BytecodeStream* stream) { 1001 return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream); 1002 } 1003 1004 static void initialize(DataLayout* dl, int cell_count) { 1005 TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count); 1006 } 1007 1008 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1009 1010 virtual int cell_count() const { 1011 return CounterData::static_cell_count() + 1012 TypeEntriesAtCall::header_cell_count() + 1013 int_at_unchecked(cell_count_global_offset()); 1014 } 1015 1016 int number_of_arguments() const { 1017 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count(); 1018 } 1019 1020 void set_argument_type(int i, Klass* k) { 1021 assert(has_arguments(), "no arguments!"); 1022 intptr_t current = _args.type(i); 1023 _args.set_type(i, TypeEntries::with_status(k, current)); 1024 } 1025 1026 void set_return_type(Klass* k) { 1027 assert(has_return(), "no return!"); 1028 intptr_t current = _ret.type(); 1029 _ret.set_type(TypeEntries::with_status(k, current)); 1030 } 1031 1032 // An entry for a return value takes less space than an entry for an 1033 // argument so if the number of cells exceeds the number of cells 1034 // needed for an argument, this object contains type information for 1035 // at least one argument. 1036 bool has_arguments() const { 1037 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count(); 1038 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments"); 1039 return res; 1040 } 1041 1042 // An entry for a return value takes less space than an entry for an 1043 // argument, so if the remainder of the number of cells divided by 1044 // the number of cells for an argument is not null, a return value 1045 // is profiled in this object. 1046 bool has_return() const { 1047 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0; 1048 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values"); 1049 return res; 1050 } 1051 1052 // Code generation support 1053 static ByteSize args_data_offset() { 1054 return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset(); 1055 } 1056 1057 ByteSize argument_type_offset(int i) { 1058 return _args.type_offset(i); 1059 } 1060 1061 ByteSize return_type_offset() { 1062 return _ret.type_offset(); 1063 } 1064 1065 // GC support 1066 virtual void clean_weak_klass_links(bool always_clean) { 1067 if (has_arguments()) { 1068 _args.clean_weak_klass_links(always_clean); 1069 } 1070 if (has_return()) { 1071 _ret.clean_weak_klass_links(always_clean); 1072 } 1073 } 1074 1075 virtual void print_data_on(outputStream* st, const char* extra = NULL) const; 1076 }; 1077 1078 // ReceiverTypeData 1079 // 1080 // A ReceiverTypeData is used to access profiling information about a 1081 // dynamic type check. It consists of a counter which counts the total times 1082 // that the check is reached, and a series of (Klass*, count) pairs 1083 // which are used to store a type profile for the receiver of the check. 1084 class ReceiverTypeData : public CounterData { 1085 friend class VMStructs; 1086 friend class JVMCIVMStructs; 1087 protected: 1088 enum { 1089 #if INCLUDE_JVMCI 1090 // Description of the different counters 1091 // ReceiverTypeData for instanceof/checkcast/aastore: 1092 // count is decremented for failed type checks 1093 // JVMCI only: nonprofiled_count is incremented on type overflow 1094 // VirtualCallData for invokevirtual/invokeinterface: 1095 // count is incremented on type overflow 1096 // JVMCI only: nonprofiled_count is incremented on method overflow 1097 1098 // JVMCI is interested in knowing the percentage of type checks involving a type not explicitly in the profile 1099 nonprofiled_count_off_set = counter_cell_count, 1100 receiver0_offset, 1101 #else 1102 receiver0_offset = counter_cell_count, 1103 #endif 1104 count0_offset, 1105 receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset 1106 }; 1107 1108 public: 1109 ReceiverTypeData(DataLayout* layout) : CounterData(layout) { 1110 assert(layout->tag() == DataLayout::receiver_type_data_tag || 1111 layout->tag() == DataLayout::virtual_call_data_tag || 1112 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1113 } 1114 1115 virtual bool is_ReceiverTypeData() const { return true; } 1116 1117 static int static_cell_count() { 1118 return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count JVMCI_ONLY(+ 1); 1119 } 1120 1121 virtual int cell_count() const { 1122 return static_cell_count(); 1123 } 1124 1125 // Direct accessors 1126 static uint row_limit() { 1127 return TypeProfileWidth; 1128 } 1129 static int receiver_cell_index(uint row) { 1130 return receiver0_offset + row * receiver_type_row_cell_count; 1131 } 1132 static int receiver_count_cell_index(uint row) { 1133 return count0_offset + row * receiver_type_row_cell_count; 1134 } 1135 1136 Klass* receiver(uint row) const { 1137 assert(row < row_limit(), "oob"); 1138 1139 Klass* recv = (Klass*)intptr_at(receiver_cell_index(row)); 1140 assert(recv == NULL || recv->is_klass(), "wrong type"); 1141 return recv; 1142 } 1143 1144 void set_receiver(uint row, Klass* k) { 1145 assert((uint)row < row_limit(), "oob"); 1146 set_intptr_at(receiver_cell_index(row), (uintptr_t)k); 1147 } 1148 1149 uint receiver_count(uint row) const { 1150 assert(row < row_limit(), "oob"); 1151 return uint_at(receiver_count_cell_index(row)); 1152 } 1153 1154 void set_receiver_count(uint row, uint count) { 1155 assert(row < row_limit(), "oob"); 1156 set_uint_at(receiver_count_cell_index(row), count); 1157 } 1158 1159 void clear_row(uint row) { 1160 assert(row < row_limit(), "oob"); 1161 // Clear total count - indicator of polymorphic call site. 1162 // The site may look like as monomorphic after that but 1163 // it allow to have more accurate profiling information because 1164 // there was execution phase change since klasses were unloaded. 1165 // If the site is still polymorphic then MDO will be updated 1166 // to reflect it. But it could be the case that the site becomes 1167 // only bimorphic. Then keeping total count not 0 will be wrong. 1168 // Even if we use monomorphic (when it is not) for compilation 1169 // we will only have trap, deoptimization and recompile again 1170 // with updated MDO after executing method in Interpreter. 1171 // An additional receiver will be recorded in the cleaned row 1172 // during next call execution. 1173 // 1174 // Note: our profiling logic works with empty rows in any slot. 1175 // We do sorting a profiling info (ciCallProfile) for compilation. 1176 // 1177 set_count(0); 1178 set_receiver(row, NULL); 1179 set_receiver_count(row, 0); 1180 #if INCLUDE_JVMCI 1181 if (!this->is_VirtualCallData()) { 1182 // if this is a ReceiverTypeData for JVMCI, the nonprofiled_count 1183 // must also be reset (see "Description of the different counters" above) 1184 set_nonprofiled_count(0); 1185 } 1186 #endif 1187 } 1188 1189 // Code generation support 1190 static ByteSize receiver_offset(uint row) { 1191 return cell_offset(receiver_cell_index(row)); 1192 } 1193 static ByteSize receiver_count_offset(uint row) { 1194 return cell_offset(receiver_count_cell_index(row)); 1195 } 1196 #if INCLUDE_JVMCI 1197 static ByteSize nonprofiled_receiver_count_offset() { 1198 return cell_offset(nonprofiled_count_off_set); 1199 } 1200 uint nonprofiled_count() const { 1201 return uint_at(nonprofiled_count_off_set); 1202 } 1203 void set_nonprofiled_count(uint count) { 1204 set_uint_at(nonprofiled_count_off_set, count); 1205 } 1206 #endif // INCLUDE_JVMCI 1207 static ByteSize receiver_type_data_size() { 1208 return cell_offset(static_cell_count()); 1209 } 1210 1211 // GC support 1212 virtual void clean_weak_klass_links(bool always_clean); 1213 1214 void print_receiver_data_on(outputStream* st) const; 1215 void print_data_on(outputStream* st, const char* extra = NULL) const; 1216 }; 1217 1218 // VirtualCallData 1219 // 1220 // A VirtualCallData is used to access profiling information about a 1221 // virtual call. For now, it has nothing more than a ReceiverTypeData. 1222 class VirtualCallData : public ReceiverTypeData { 1223 public: 1224 VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) { 1225 assert(layout->tag() == DataLayout::virtual_call_data_tag || 1226 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1227 } 1228 1229 virtual bool is_VirtualCallData() const { return true; } 1230 1231 static int static_cell_count() { 1232 // At this point we could add more profile state, e.g., for arguments. 1233 // But for now it's the same size as the base record type. 1234 return ReceiverTypeData::static_cell_count(); 1235 } 1236 1237 virtual int cell_count() const { 1238 return static_cell_count(); 1239 } 1240 1241 // Direct accessors 1242 static ByteSize virtual_call_data_size() { 1243 return cell_offset(static_cell_count()); 1244 } 1245 1246 void print_method_data_on(outputStream* st) const NOT_JVMCI_RETURN; 1247 void print_data_on(outputStream* st, const char* extra = NULL) const; 1248 }; 1249 1250 // VirtualCallTypeData 1251 // 1252 // A VirtualCallTypeData is used to access profiling information about 1253 // a virtual call for which we collect type information about 1254 // arguments and return value. 1255 class VirtualCallTypeData : public VirtualCallData { 1256 private: 1257 // entries for arguments if any 1258 TypeStackSlotEntries _args; 1259 // entry for return type if any 1260 ReturnTypeEntry _ret; 1261 1262 int cell_count_global_offset() const { 1263 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset(); 1264 } 1265 1266 // number of cells not counting the header 1267 int cell_count_no_header() const { 1268 return uint_at(cell_count_global_offset()); 1269 } 1270 1271 void check_number_of_arguments(int total) { 1272 assert(number_of_arguments() == total, "should be set in DataLayout::initialize"); 1273 } 1274 1275 public: 1276 VirtualCallTypeData(DataLayout* layout) : 1277 VirtualCallData(layout), 1278 _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()), 1279 _ret(cell_count() - ReturnTypeEntry::static_cell_count()) 1280 { 1281 assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1282 // Some compilers (VC++) don't want this passed in member initialization list 1283 _args.set_profile_data(this); 1284 _ret.set_profile_data(this); 1285 } 1286 1287 const TypeStackSlotEntries* args() const { 1288 assert(has_arguments(), "no profiling of arguments"); 1289 return &_args; 1290 } 1291 1292 const ReturnTypeEntry* ret() const { 1293 assert(has_return(), "no profiling of return value"); 1294 return &_ret; 1295 } 1296 1297 virtual bool is_VirtualCallTypeData() const { return true; } 1298 1299 static int static_cell_count() { 1300 return -1; 1301 } 1302 1303 static int compute_cell_count(BytecodeStream* stream) { 1304 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream); 1305 } 1306 1307 static void initialize(DataLayout* dl, int cell_count) { 1308 TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count); 1309 } 1310 1311 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1312 1313 virtual int cell_count() const { 1314 return VirtualCallData::static_cell_count() + 1315 TypeEntriesAtCall::header_cell_count() + 1316 int_at_unchecked(cell_count_global_offset()); 1317 } 1318 1319 int number_of_arguments() const { 1320 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count(); 1321 } 1322 1323 void set_argument_type(int i, Klass* k) { 1324 assert(has_arguments(), "no arguments!"); 1325 intptr_t current = _args.type(i); 1326 _args.set_type(i, TypeEntries::with_status(k, current)); 1327 } 1328 1329 void set_return_type(Klass* k) { 1330 assert(has_return(), "no return!"); 1331 intptr_t current = _ret.type(); 1332 _ret.set_type(TypeEntries::with_status(k, current)); 1333 } 1334 1335 // An entry for a return value takes less space than an entry for an 1336 // argument, so if the remainder of the number of cells divided by 1337 // the number of cells for an argument is not null, a return value 1338 // is profiled in this object. 1339 bool has_return() const { 1340 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0; 1341 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values"); 1342 return res; 1343 } 1344 1345 // An entry for a return value takes less space than an entry for an 1346 // argument so if the number of cells exceeds the number of cells 1347 // needed for an argument, this object contains type information for 1348 // at least one argument. 1349 bool has_arguments() const { 1350 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count(); 1351 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments"); 1352 return res; 1353 } 1354 1355 // Code generation support 1356 static ByteSize args_data_offset() { 1357 return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset(); 1358 } 1359 1360 ByteSize argument_type_offset(int i) { 1361 return _args.type_offset(i); 1362 } 1363 1364 ByteSize return_type_offset() { 1365 return _ret.type_offset(); 1366 } 1367 1368 // GC support 1369 virtual void clean_weak_klass_links(bool always_clean) { 1370 ReceiverTypeData::clean_weak_klass_links(always_clean); 1371 if (has_arguments()) { 1372 _args.clean_weak_klass_links(always_clean); 1373 } 1374 if (has_return()) { 1375 _ret.clean_weak_klass_links(always_clean); 1376 } 1377 } 1378 1379 virtual void print_data_on(outputStream* st, const char* extra = NULL) const; 1380 }; 1381 1382 // RetData 1383 // 1384 // A RetData is used to access profiling information for a ret bytecode. 1385 // It is composed of a count of the number of times that the ret has 1386 // been executed, followed by a series of triples of the form 1387 // (bci, count, di) which count the number of times that some bci was the 1388 // target of the ret and cache a corresponding data displacement. 1389 class RetData : public CounterData { 1390 protected: 1391 enum { 1392 bci0_offset = counter_cell_count, 1393 count0_offset, 1394 displacement0_offset, 1395 ret_row_cell_count = (displacement0_offset + 1) - bci0_offset 1396 }; 1397 1398 void set_bci(uint row, int bci) { 1399 assert((uint)row < row_limit(), "oob"); 1400 set_int_at(bci0_offset + row * ret_row_cell_count, bci); 1401 } 1402 void release_set_bci(uint row, int bci); 1403 void set_bci_count(uint row, uint count) { 1404 assert((uint)row < row_limit(), "oob"); 1405 set_uint_at(count0_offset + row * ret_row_cell_count, count); 1406 } 1407 void set_bci_displacement(uint row, int disp) { 1408 set_int_at(displacement0_offset + row * ret_row_cell_count, disp); 1409 } 1410 1411 public: 1412 RetData(DataLayout* layout) : CounterData(layout) { 1413 assert(layout->tag() == DataLayout::ret_data_tag, "wrong type"); 1414 } 1415 1416 virtual bool is_RetData() const { return true; } 1417 1418 enum { 1419 no_bci = -1 // value of bci when bci1/2 are not in use. 1420 }; 1421 1422 static int static_cell_count() { 1423 return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count; 1424 } 1425 1426 virtual int cell_count() const { 1427 return static_cell_count(); 1428 } 1429 1430 static uint row_limit() { 1431 return BciProfileWidth; 1432 } 1433 static int bci_cell_index(uint row) { 1434 return bci0_offset + row * ret_row_cell_count; 1435 } 1436 static int bci_count_cell_index(uint row) { 1437 return count0_offset + row * ret_row_cell_count; 1438 } 1439 static int bci_displacement_cell_index(uint row) { 1440 return displacement0_offset + row * ret_row_cell_count; 1441 } 1442 1443 // Direct accessors 1444 int bci(uint row) const { 1445 return int_at(bci_cell_index(row)); 1446 } 1447 uint bci_count(uint row) const { 1448 return uint_at(bci_count_cell_index(row)); 1449 } 1450 int bci_displacement(uint row) const { 1451 return int_at(bci_displacement_cell_index(row)); 1452 } 1453 1454 // Interpreter Runtime support 1455 address fixup_ret(int return_bci, MethodData* mdo); 1456 1457 // Code generation support 1458 static ByteSize bci_offset(uint row) { 1459 return cell_offset(bci_cell_index(row)); 1460 } 1461 static ByteSize bci_count_offset(uint row) { 1462 return cell_offset(bci_count_cell_index(row)); 1463 } 1464 static ByteSize bci_displacement_offset(uint row) { 1465 return cell_offset(bci_displacement_cell_index(row)); 1466 } 1467 1468 // Specific initialization. 1469 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1470 1471 void print_data_on(outputStream* st, const char* extra = NULL) const; 1472 }; 1473 1474 // BranchData 1475 // 1476 // A BranchData is used to access profiling data for a two-way branch. 1477 // It consists of taken and not_taken counts as well as a data displacement 1478 // for the taken case. 1479 class BranchData : public JumpData { 1480 friend class VMStructs; 1481 friend class JVMCIVMStructs; 1482 protected: 1483 enum { 1484 not_taken_off_set = jump_cell_count, 1485 branch_cell_count 1486 }; 1487 1488 void set_displacement(int displacement) { 1489 set_int_at(displacement_off_set, displacement); 1490 } 1491 1492 public: 1493 BranchData(DataLayout* layout) : JumpData(layout) { 1494 assert(layout->tag() == DataLayout::branch_data_tag, "wrong type"); 1495 } 1496 1497 virtual bool is_BranchData() const { return true; } 1498 1499 static int static_cell_count() { 1500 return branch_cell_count; 1501 } 1502 1503 virtual int cell_count() const { 1504 return static_cell_count(); 1505 } 1506 1507 // Direct accessor 1508 uint not_taken() const { 1509 return uint_at(not_taken_off_set); 1510 } 1511 1512 void set_not_taken(uint cnt) { 1513 set_uint_at(not_taken_off_set, cnt); 1514 } 1515 1516 uint inc_not_taken() { 1517 uint cnt = not_taken() + 1; 1518 // Did we wrap? Will compiler screw us?? 1519 if (cnt == 0) cnt--; 1520 set_uint_at(not_taken_off_set, cnt); 1521 return cnt; 1522 } 1523 1524 // Code generation support 1525 static ByteSize not_taken_offset() { 1526 return cell_offset(not_taken_off_set); 1527 } 1528 static ByteSize branch_data_size() { 1529 return cell_offset(branch_cell_count); 1530 } 1531 1532 // Specific initialization. 1533 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1534 1535 void print_data_on(outputStream* st, const char* extra = NULL) const; 1536 }; 1537 1538 // ArrayData 1539 // 1540 // A ArrayData is a base class for accessing profiling data which does 1541 // not have a statically known size. It consists of an array length 1542 // and an array start. 1543 class ArrayData : public ProfileData { 1544 friend class VMStructs; 1545 friend class JVMCIVMStructs; 1546 protected: 1547 friend class DataLayout; 1548 1549 enum { 1550 array_len_off_set, 1551 array_start_off_set 1552 }; 1553 1554 uint array_uint_at(int index) const { 1555 int aindex = index + array_start_off_set; 1556 return uint_at(aindex); 1557 } 1558 int array_int_at(int index) const { 1559 int aindex = index + array_start_off_set; 1560 return int_at(aindex); 1561 } 1562 oop array_oop_at(int index) const { 1563 int aindex = index + array_start_off_set; 1564 return oop_at(aindex); 1565 } 1566 void array_set_int_at(int index, int value) { 1567 int aindex = index + array_start_off_set; 1568 set_int_at(aindex, value); 1569 } 1570 1571 // Code generation support for subclasses. 1572 static ByteSize array_element_offset(int index) { 1573 return cell_offset(array_start_off_set + index); 1574 } 1575 1576 public: 1577 ArrayData(DataLayout* layout) : ProfileData(layout) {} 1578 1579 virtual bool is_ArrayData() const { return true; } 1580 1581 static int static_cell_count() { 1582 return -1; 1583 } 1584 1585 int array_len() const { 1586 return int_at_unchecked(array_len_off_set); 1587 } 1588 1589 virtual int cell_count() const { 1590 return array_len() + 1; 1591 } 1592 1593 // Code generation support 1594 static ByteSize array_len_offset() { 1595 return cell_offset(array_len_off_set); 1596 } 1597 static ByteSize array_start_offset() { 1598 return cell_offset(array_start_off_set); 1599 } 1600 }; 1601 1602 // MultiBranchData 1603 // 1604 // A MultiBranchData is used to access profiling information for 1605 // a multi-way branch (*switch bytecodes). It consists of a series 1606 // of (count, displacement) pairs, which count the number of times each 1607 // case was taken and specify the data displacment for each branch target. 1608 class MultiBranchData : public ArrayData { 1609 friend class VMStructs; 1610 friend class JVMCIVMStructs; 1611 protected: 1612 enum { 1613 default_count_off_set, 1614 default_disaplacement_off_set, 1615 case_array_start 1616 }; 1617 enum { 1618 relative_count_off_set, 1619 relative_displacement_off_set, 1620 per_case_cell_count 1621 }; 1622 1623 void set_default_displacement(int displacement) { 1624 array_set_int_at(default_disaplacement_off_set, displacement); 1625 } 1626 void set_displacement_at(int index, int displacement) { 1627 array_set_int_at(case_array_start + 1628 index * per_case_cell_count + 1629 relative_displacement_off_set, 1630 displacement); 1631 } 1632 1633 public: 1634 MultiBranchData(DataLayout* layout) : ArrayData(layout) { 1635 assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type"); 1636 } 1637 1638 virtual bool is_MultiBranchData() const { return true; } 1639 1640 static int compute_cell_count(BytecodeStream* stream); 1641 1642 int number_of_cases() const { 1643 int alen = array_len() - 2; // get rid of default case here. 1644 assert(alen % per_case_cell_count == 0, "must be even"); 1645 return (alen / per_case_cell_count); 1646 } 1647 1648 uint default_count() const { 1649 return array_uint_at(default_count_off_set); 1650 } 1651 int default_displacement() const { 1652 return array_int_at(default_disaplacement_off_set); 1653 } 1654 1655 uint count_at(int index) const { 1656 return array_uint_at(case_array_start + 1657 index * per_case_cell_count + 1658 relative_count_off_set); 1659 } 1660 int displacement_at(int index) const { 1661 return array_int_at(case_array_start + 1662 index * per_case_cell_count + 1663 relative_displacement_off_set); 1664 } 1665 1666 // Code generation support 1667 static ByteSize default_count_offset() { 1668 return array_element_offset(default_count_off_set); 1669 } 1670 static ByteSize default_displacement_offset() { 1671 return array_element_offset(default_disaplacement_off_set); 1672 } 1673 static ByteSize case_count_offset(int index) { 1674 return case_array_offset() + 1675 (per_case_size() * index) + 1676 relative_count_offset(); 1677 } 1678 static ByteSize case_array_offset() { 1679 return array_element_offset(case_array_start); 1680 } 1681 static ByteSize per_case_size() { 1682 return in_ByteSize(per_case_cell_count) * cell_size; 1683 } 1684 static ByteSize relative_count_offset() { 1685 return in_ByteSize(relative_count_off_set) * cell_size; 1686 } 1687 static ByteSize relative_displacement_offset() { 1688 return in_ByteSize(relative_displacement_off_set) * cell_size; 1689 } 1690 1691 // Specific initialization. 1692 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1693 1694 void print_data_on(outputStream* st, const char* extra = NULL) const; 1695 }; 1696 1697 class ArgInfoData : public ArrayData { 1698 1699 public: 1700 ArgInfoData(DataLayout* layout) : ArrayData(layout) { 1701 assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type"); 1702 } 1703 1704 virtual bool is_ArgInfoData() const { return true; } 1705 1706 1707 int number_of_args() const { 1708 return array_len(); 1709 } 1710 1711 uint arg_modified(int arg) const { 1712 return array_uint_at(arg); 1713 } 1714 1715 void set_arg_modified(int arg, uint val) { 1716 array_set_int_at(arg, val); 1717 } 1718 1719 void print_data_on(outputStream* st, const char* extra = NULL) const; 1720 }; 1721 1722 // ParametersTypeData 1723 // 1724 // A ParametersTypeData is used to access profiling information about 1725 // types of parameters to a method 1726 class ParametersTypeData : public ArrayData { 1727 1728 private: 1729 TypeStackSlotEntries _parameters; 1730 1731 static int stack_slot_local_offset(int i) { 1732 assert_profiling_enabled(); 1733 return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i); 1734 } 1735 1736 static int type_local_offset(int i) { 1737 assert_profiling_enabled(); 1738 return array_start_off_set + TypeStackSlotEntries::type_local_offset(i); 1739 } 1740 1741 static bool profiling_enabled(); 1742 static void assert_profiling_enabled() { 1743 assert(profiling_enabled(), "method parameters profiling should be on"); 1744 } 1745 1746 public: 1747 ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) { 1748 assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type"); 1749 // Some compilers (VC++) don't want this passed in member initialization list 1750 _parameters.set_profile_data(this); 1751 } 1752 1753 static int compute_cell_count(Method* m); 1754 1755 virtual bool is_ParametersTypeData() const { return true; } 1756 1757 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1758 1759 int number_of_parameters() const { 1760 return array_len() / TypeStackSlotEntries::per_arg_count(); 1761 } 1762 1763 const TypeStackSlotEntries* parameters() const { return &_parameters; } 1764 1765 uint stack_slot(int i) const { 1766 return _parameters.stack_slot(i); 1767 } 1768 1769 void set_type(int i, Klass* k) { 1770 intptr_t current = _parameters.type(i); 1771 _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current)); 1772 } 1773 1774 virtual void clean_weak_klass_links(bool always_clean) { 1775 _parameters.clean_weak_klass_links(always_clean); 1776 } 1777 1778 virtual void print_data_on(outputStream* st, const char* extra = NULL) const; 1779 1780 static ByteSize stack_slot_offset(int i) { 1781 return cell_offset(stack_slot_local_offset(i)); 1782 } 1783 1784 static ByteSize type_offset(int i) { 1785 return cell_offset(type_local_offset(i)); 1786 } 1787 }; 1788 1789 // SpeculativeTrapData 1790 // 1791 // A SpeculativeTrapData is used to record traps due to type 1792 // speculation. It records the root of the compilation: that type 1793 // speculation is wrong in the context of one compilation (for 1794 // method1) doesn't mean it's wrong in the context of another one (for 1795 // method2). Type speculation could have more/different data in the 1796 // context of the compilation of method2 and it's worthwhile to try an 1797 // optimization that failed for compilation of method1 in the context 1798 // of compilation of method2. 1799 // Space for SpeculativeTrapData entries is allocated from the extra 1800 // data space in the MDO. If we run out of space, the trap data for 1801 // the ProfileData at that bci is updated. 1802 class SpeculativeTrapData : public ProfileData { 1803 protected: 1804 enum { 1805 speculative_trap_method, 1806 #ifndef _LP64 1807 // The size of the area for traps is a multiple of the header 1808 // size, 2 cells on 32 bits. Packed at the end of this area are 1809 // argument info entries (with tag 1810 // DataLayout::arg_info_data_tag). The logic in 1811 // MethodData::bci_to_extra_data() that guarantees traps don't 1812 // overflow over argument info entries assumes the size of a 1813 // SpeculativeTrapData is twice the header size. On 32 bits, a 1814 // SpeculativeTrapData must be 4 cells. 1815 padding, 1816 #endif 1817 speculative_trap_cell_count 1818 }; 1819 public: 1820 SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) { 1821 assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type"); 1822 } 1823 1824 virtual bool is_SpeculativeTrapData() const { return true; } 1825 1826 static int static_cell_count() { 1827 return speculative_trap_cell_count; 1828 } 1829 1830 virtual int cell_count() const { 1831 return static_cell_count(); 1832 } 1833 1834 // Direct accessor 1835 Method* method() const { 1836 return (Method*)intptr_at(speculative_trap_method); 1837 } 1838 1839 void set_method(Method* m) { 1840 assert(!m->is_old(), "cannot add old methods"); 1841 set_intptr_at(speculative_trap_method, (intptr_t)m); 1842 } 1843 1844 static ByteSize method_offset() { 1845 return cell_offset(speculative_trap_method); 1846 } 1847 1848 virtual void print_data_on(outputStream* st, const char* extra = NULL) const; 1849 }; 1850 1851 // MethodData* 1852 // 1853 // A MethodData* holds information which has been collected about 1854 // a method. Its layout looks like this: 1855 // 1856 // ----------------------------- 1857 // | header | 1858 // | klass | 1859 // ----------------------------- 1860 // | method | 1861 // | size of the MethodData* | 1862 // ----------------------------- 1863 // | Data entries... | 1864 // | (variable size) | 1865 // | | 1866 // . . 1867 // . . 1868 // . . 1869 // | | 1870 // ----------------------------- 1871 // 1872 // The data entry area is a heterogeneous array of DataLayouts. Each 1873 // DataLayout in the array corresponds to a specific bytecode in the 1874 // method. The entries in the array are sorted by the corresponding 1875 // bytecode. Access to the data is via resource-allocated ProfileData, 1876 // which point to the underlying blocks of DataLayout structures. 1877 // 1878 // During interpretation, if profiling in enabled, the interpreter 1879 // maintains a method data pointer (mdp), which points at the entry 1880 // in the array corresponding to the current bci. In the course of 1881 // intepretation, when a bytecode is encountered that has profile data 1882 // associated with it, the entry pointed to by mdp is updated, then the 1883 // mdp is adjusted to point to the next appropriate DataLayout. If mdp 1884 // is NULL to begin with, the interpreter assumes that the current method 1885 // is not (yet) being profiled. 1886 // 1887 // In MethodData* parlance, "dp" is a "data pointer", the actual address 1888 // of a DataLayout element. A "di" is a "data index", the offset in bytes 1889 // from the base of the data entry array. A "displacement" is the byte offset 1890 // in certain ProfileData objects that indicate the amount the mdp must be 1891 // adjusted in the event of a change in control flow. 1892 // 1893 1894 class CleanExtraDataClosure : public StackObj { 1895 public: 1896 virtual bool is_live(Method* m) = 0; 1897 }; 1898 1899 1900 #if INCLUDE_JVMCI 1901 // Encapsulates an encoded speculation reason. These are linked together in 1902 // a list that is atomically appended to during deoptimization. Entries are 1903 // never removed from the list. 1904 // @see jdk.vm.ci.hotspot.HotSpotSpeculationLog.HotSpotSpeculationEncoding 1905 class FailedSpeculation: public CHeapObj<mtCompiler> { 1906 private: 1907 // The length of HotSpotSpeculationEncoding.toByteArray(). The data itself 1908 // is an array embedded at the end of this object. 1909 int _data_len; 1910 1911 // Next entry in a linked list. 1912 FailedSpeculation* _next; 1913 1914 FailedSpeculation(address data, int data_len); 1915 1916 FailedSpeculation** next_adr() { return &_next; } 1917 1918 // Placement new operator for inlining the speculation data into 1919 // the FailedSpeculation object. 1920 void* operator new(size_t size, size_t fs_size) throw(); 1921 1922 public: 1923 char* data() { return (char*)(((address) this) + sizeof(FailedSpeculation)); } 1924 int data_len() const { return _data_len; } 1925 FailedSpeculation* next() const { return _next; } 1926 1927 // Atomically appends a speculation from nm to the list whose head is at (*failed_speculations_address). 1928 // Returns false if the FailedSpeculation object could not be allocated. 1929 static bool add_failed_speculation(nmethod* nm, FailedSpeculation** failed_speculations_address, address speculation, int speculation_len); 1930 1931 // Frees all entries in the linked list whose head is at (*failed_speculations_address). 1932 static void free_failed_speculations(FailedSpeculation** failed_speculations_address); 1933 }; 1934 #endif 1935 1936 class ciMethodData; 1937 1938 class MethodData : public Metadata { 1939 friend class VMStructs; 1940 friend class JVMCIVMStructs; 1941 private: 1942 friend class ProfileData; 1943 friend class TypeEntriesAtCall; 1944 friend class ciMethodData; 1945 1946 // If you add a new field that points to any metaspace object, you 1947 // must add this field to MethodData::metaspace_pointers_do(). 1948 1949 // Back pointer to the Method* 1950 Method* _method; 1951 1952 // Size of this oop in bytes 1953 int _size; 1954 1955 // Cached hint for bci_to_dp and bci_to_data 1956 int _hint_di; 1957 1958 Mutex _extra_data_lock; 1959 1960 MethodData(const methodHandle& method); 1961 public: 1962 static MethodData* allocate(ClassLoaderData* loader_data, const methodHandle& method, TRAPS); 1963 1964 virtual bool is_methodData() const { return true; } 1965 void initialize(); 1966 1967 // Whole-method sticky bits and flags 1968 enum { 1969 _trap_hist_limit = Deoptimization::Reason_TRAP_HISTORY_LENGTH, 1970 _trap_hist_mask = max_jubyte, 1971 _extra_data_count = 4 // extra DataLayout headers, for trap history 1972 }; // Public flag values 1973 1974 // Compiler-related counters. 1975 class CompilerCounters { 1976 friend class VMStructs; 1977 friend class JVMCIVMStructs; 1978 1979 uint _nof_decompiles; // count of all nmethod removals 1980 uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits 1981 uint _nof_overflow_traps; // trap count, excluding _trap_hist 1982 union { 1983 intptr_t _align; 1984 // JVMCI separates trap history for OSR compilations from normal compilations 1985 u1 _array[JVMCI_ONLY(2 *) MethodData::_trap_hist_limit]; 1986 } _trap_hist; 1987 1988 public: 1989 CompilerCounters() : _nof_decompiles(0), _nof_overflow_recompiles(0), _nof_overflow_traps(0) { 1990 #ifndef ZERO 1991 // Some Zero platforms do not have expected alignment, and do not use 1992 // this code. static_assert would still fire and fail for them. 1993 static_assert(sizeof(_trap_hist) % HeapWordSize == 0, "align"); 1994 #endif 1995 uint size_in_words = sizeof(_trap_hist) / HeapWordSize; 1996 Copy::zero_to_words((HeapWord*) &_trap_hist, size_in_words); 1997 } 1998 1999 // Return (uint)-1 for overflow. 2000 uint trap_count(int reason) const { 2001 assert((uint)reason < ARRAY_SIZE(_trap_hist._array), "oob"); 2002 return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1; 2003 } 2004 2005 uint inc_trap_count(int reason) { 2006 // Count another trap, anywhere in this method. 2007 assert(reason >= 0, "must be single trap"); 2008 assert((uint)reason < ARRAY_SIZE(_trap_hist._array), "oob"); 2009 uint cnt1 = 1 + _trap_hist._array[reason]; 2010 if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow... 2011 _trap_hist._array[reason] = cnt1; 2012 return cnt1; 2013 } else { 2014 return _trap_hist_mask + (++_nof_overflow_traps); 2015 } 2016 } 2017 2018 uint overflow_trap_count() const { 2019 return _nof_overflow_traps; 2020 } 2021 uint overflow_recompile_count() const { 2022 return _nof_overflow_recompiles; 2023 } 2024 uint inc_overflow_recompile_count() { 2025 return ++_nof_overflow_recompiles; 2026 } 2027 uint decompile_count() const { 2028 return _nof_decompiles; 2029 } 2030 uint inc_decompile_count() { 2031 return ++_nof_decompiles; 2032 } 2033 2034 // Support for code generation 2035 static ByteSize trap_history_offset() { 2036 return byte_offset_of(CompilerCounters, _trap_hist._array); 2037 } 2038 }; 2039 2040 private: 2041 CompilerCounters _compiler_counters; 2042 2043 // Support for interprocedural escape analysis, from Thomas Kotzmann. 2044 intx _eflags; // flags on escape information 2045 intx _arg_local; // bit set of non-escaping arguments 2046 intx _arg_stack; // bit set of stack-allocatable arguments 2047 intx _arg_returned; // bit set of returned arguments 2048 2049 int _creation_mileage; // method mileage at MDO creation 2050 2051 // How many invocations has this MDO seen? 2052 // These counters are used to determine the exact age of MDO. 2053 // We need those because in tiered a method can be concurrently 2054 // executed at different levels. 2055 InvocationCounter _invocation_counter; 2056 // Same for backedges. 2057 InvocationCounter _backedge_counter; 2058 // Counter values at the time profiling started. 2059 int _invocation_counter_start; 2060 int _backedge_counter_start; 2061 uint _tenure_traps; 2062 int _invoke_mask; // per-method Tier0InvokeNotifyFreqLog 2063 int _backedge_mask; // per-method Tier0BackedgeNotifyFreqLog 2064 2065 #if INCLUDE_RTM_OPT 2066 // State of RTM code generation during compilation of the method 2067 int _rtm_state; 2068 #endif 2069 2070 // Number of loops and blocks is computed when compiling the first 2071 // time with C1. It is used to determine if method is trivial. 2072 short _num_loops; 2073 short _num_blocks; 2074 // Does this method contain anything worth profiling? 2075 enum WouldProfile {unknown, no_profile, profile}; 2076 WouldProfile _would_profile; 2077 2078 #if INCLUDE_JVMCI 2079 // Support for HotSpotMethodData.setCompiledIRSize(int) 2080 int _jvmci_ir_size; 2081 FailedSpeculation* _failed_speculations; 2082 #endif 2083 2084 // Size of _data array in bytes. (Excludes header and extra_data fields.) 2085 int _data_size; 2086 2087 // data index for the area dedicated to parameters. -1 if no 2088 // parameter profiling. 2089 enum { no_parameters = -2, parameters_uninitialized = -1 }; 2090 int _parameters_type_data_di; 2091 2092 // Beginning of the data entries 2093 intptr_t _data[1]; 2094 2095 // Helper for size computation 2096 static int compute_data_size(BytecodeStream* stream); 2097 static int bytecode_cell_count(Bytecodes::Code code); 2098 static bool is_speculative_trap_bytecode(Bytecodes::Code code); 2099 enum { no_profile_data = -1, variable_cell_count = -2 }; 2100 2101 // Helper for initialization 2102 DataLayout* data_layout_at(int data_index) const { 2103 assert(data_index % sizeof(intptr_t) == 0, "unaligned"); 2104 return (DataLayout*) (((address)_data) + data_index); 2105 } 2106 2107 // Initialize an individual data segment. Returns the size of 2108 // the segment in bytes. 2109 int initialize_data(BytecodeStream* stream, int data_index); 2110 2111 // Helper for data_at 2112 DataLayout* limit_data_position() const { 2113 return data_layout_at(_data_size); 2114 } 2115 bool out_of_bounds(int data_index) const { 2116 return data_index >= data_size(); 2117 } 2118 2119 // Give each of the data entries a chance to perform specific 2120 // data initialization. 2121 void post_initialize(BytecodeStream* stream); 2122 2123 // hint accessors 2124 int hint_di() const { return _hint_di; } 2125 void set_hint_di(int di) { 2126 assert(!out_of_bounds(di), "hint_di out of bounds"); 2127 _hint_di = di; 2128 } 2129 2130 DataLayout* data_layout_before(int bci) { 2131 // avoid SEGV on this edge case 2132 if (data_size() == 0) 2133 return NULL; 2134 DataLayout* layout = data_layout_at(hint_di()); 2135 if (layout->bci() <= bci) 2136 return layout; 2137 return data_layout_at(first_di()); 2138 } 2139 2140 // What is the index of the first data entry? 2141 int first_di() const { return 0; } 2142 2143 ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp, bool concurrent); 2144 // Find or create an extra ProfileData: 2145 ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing); 2146 2147 // return the argument info cell 2148 ArgInfoData *arg_info(); 2149 2150 enum { 2151 no_type_profile = 0, 2152 type_profile_jsr292 = 1, 2153 type_profile_all = 2 2154 }; 2155 2156 static bool profile_jsr292(const methodHandle& m, int bci); 2157 static bool profile_unsafe(const methodHandle& m, int bci); 2158 static bool profile_memory_access(const methodHandle& m, int bci); 2159 static int profile_arguments_flag(); 2160 static bool profile_all_arguments(); 2161 static bool profile_arguments_for_invoke(const methodHandle& m, int bci); 2162 static int profile_return_flag(); 2163 static bool profile_all_return(); 2164 static bool profile_return_for_invoke(const methodHandle& m, int bci); 2165 static int profile_parameters_flag(); 2166 static bool profile_parameters_jsr292_only(); 2167 static bool profile_all_parameters(); 2168 2169 void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false); 2170 void verify_extra_data_clean(CleanExtraDataClosure* cl); 2171 2172 public: 2173 void clean_extra_data(CleanExtraDataClosure* cl); 2174 2175 static int header_size() { 2176 return sizeof(MethodData)/wordSize; 2177 } 2178 2179 // Compute the size of a MethodData* before it is created. 2180 static int compute_allocation_size_in_bytes(const methodHandle& method); 2181 static int compute_allocation_size_in_words(const methodHandle& method); 2182 static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps); 2183 2184 // Determine if a given bytecode can have profile information. 2185 static bool bytecode_has_profile(Bytecodes::Code code) { 2186 return bytecode_cell_count(code) != no_profile_data; 2187 } 2188 2189 // reset into original state 2190 void init(); 2191 2192 // My size 2193 int size_in_bytes() const { return _size; } 2194 int size() const { return align_metadata_size(align_up(_size, BytesPerWord)/BytesPerWord); } 2195 2196 int creation_mileage() const { return _creation_mileage; } 2197 void set_creation_mileage(int x) { _creation_mileage = x; } 2198 2199 int invocation_count() { 2200 if (invocation_counter()->carry()) { 2201 return InvocationCounter::count_limit; 2202 } 2203 return invocation_counter()->count(); 2204 } 2205 int backedge_count() { 2206 if (backedge_counter()->carry()) { 2207 return InvocationCounter::count_limit; 2208 } 2209 return backedge_counter()->count(); 2210 } 2211 2212 int invocation_count_start() { 2213 if (invocation_counter()->carry()) { 2214 return 0; 2215 } 2216 return _invocation_counter_start; 2217 } 2218 2219 int backedge_count_start() { 2220 if (backedge_counter()->carry()) { 2221 return 0; 2222 } 2223 return _backedge_counter_start; 2224 } 2225 2226 int invocation_count_delta() { return invocation_count() - invocation_count_start(); } 2227 int backedge_count_delta() { return backedge_count() - backedge_count_start(); } 2228 2229 void reset_start_counters() { 2230 _invocation_counter_start = invocation_count(); 2231 _backedge_counter_start = backedge_count(); 2232 } 2233 2234 InvocationCounter* invocation_counter() { return &_invocation_counter; } 2235 InvocationCounter* backedge_counter() { return &_backedge_counter; } 2236 2237 #if INCLUDE_JVMCI 2238 FailedSpeculation** get_failed_speculations_address() { 2239 return &_failed_speculations; 2240 } 2241 #endif 2242 2243 #if INCLUDE_RTM_OPT 2244 int rtm_state() const { 2245 return _rtm_state; 2246 } 2247 void set_rtm_state(RTMState rstate) { 2248 _rtm_state = (int)rstate; 2249 } 2250 void atomic_set_rtm_state(RTMState rstate) { 2251 Atomic::store(&_rtm_state, (int)rstate); 2252 } 2253 2254 static int rtm_state_offset_in_bytes() { 2255 return offset_of(MethodData, _rtm_state); 2256 } 2257 #endif 2258 2259 void set_would_profile(bool p) { _would_profile = p ? profile : no_profile; } 2260 bool would_profile() const { return _would_profile != no_profile; } 2261 2262 int num_loops() const { return _num_loops; } 2263 void set_num_loops(int n) { _num_loops = n; } 2264 int num_blocks() const { return _num_blocks; } 2265 void set_num_blocks(int n) { _num_blocks = n; } 2266 2267 bool is_mature() const; // consult mileage and ProfileMaturityPercentage 2268 static int mileage_of(Method* m); 2269 2270 // Support for interprocedural escape analysis, from Thomas Kotzmann. 2271 enum EscapeFlag { 2272 estimated = 1 << 0, 2273 return_local = 1 << 1, 2274 return_allocated = 1 << 2, 2275 allocated_escapes = 1 << 3, 2276 unknown_modified = 1 << 4 2277 }; 2278 2279 intx eflags() { return _eflags; } 2280 intx arg_local() { return _arg_local; } 2281 intx arg_stack() { return _arg_stack; } 2282 intx arg_returned() { return _arg_returned; } 2283 uint arg_modified(int a) { ArgInfoData *aid = arg_info(); 2284 assert(aid != NULL, "arg_info must be not null"); 2285 assert(a >= 0 && a < aid->number_of_args(), "valid argument number"); 2286 return aid->arg_modified(a); } 2287 2288 void set_eflags(intx v) { _eflags = v; } 2289 void set_arg_local(intx v) { _arg_local = v; } 2290 void set_arg_stack(intx v) { _arg_stack = v; } 2291 void set_arg_returned(intx v) { _arg_returned = v; } 2292 void set_arg_modified(int a, uint v) { ArgInfoData *aid = arg_info(); 2293 assert(aid != NULL, "arg_info must be not null"); 2294 assert(a >= 0 && a < aid->number_of_args(), "valid argument number"); 2295 aid->set_arg_modified(a, v); } 2296 2297 void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; } 2298 2299 // Location and size of data area 2300 address data_base() const { 2301 return (address) _data; 2302 } 2303 int data_size() const { 2304 return _data_size; 2305 } 2306 2307 int parameters_size_in_bytes() const { 2308 ParametersTypeData* param = parameters_type_data(); 2309 return param == NULL ? 0 : param->size_in_bytes(); 2310 } 2311 2312 // Accessors 2313 Method* method() const { return _method; } 2314 2315 // Get the data at an arbitrary (sort of) data index. 2316 ProfileData* data_at(int data_index) const; 2317 2318 // Walk through the data in order. 2319 ProfileData* first_data() const { return data_at(first_di()); } 2320 ProfileData* next_data(ProfileData* current) const; 2321 DataLayout* next_data_layout(DataLayout* current) const; 2322 bool is_valid(ProfileData* current) const { return current != NULL; } 2323 bool is_valid(DataLayout* current) const { return current != NULL; } 2324 2325 // Convert a dp (data pointer) to a di (data index). 2326 int dp_to_di(address dp) const { 2327 return dp - ((address)_data); 2328 } 2329 2330 // bci to di/dp conversion. 2331 address bci_to_dp(int bci); 2332 int bci_to_di(int bci) { 2333 return dp_to_di(bci_to_dp(bci)); 2334 } 2335 2336 // Get the data at an arbitrary bci, or NULL if there is none. 2337 ProfileData* bci_to_data(int bci); 2338 2339 // Same, but try to create an extra_data record if one is needed: 2340 ProfileData* allocate_bci_to_data(int bci, Method* m) { 2341 ProfileData* data = NULL; 2342 // If m not NULL, try to allocate a SpeculativeTrapData entry 2343 if (m == NULL) { 2344 data = bci_to_data(bci); 2345 } 2346 if (data != NULL) { 2347 return data; 2348 } 2349 data = bci_to_extra_data(bci, m, true); 2350 if (data != NULL) { 2351 return data; 2352 } 2353 // If SpeculativeTrapData allocation fails try to allocate a 2354 // regular entry 2355 data = bci_to_data(bci); 2356 if (data != NULL) { 2357 return data; 2358 } 2359 return bci_to_extra_data(bci, NULL, true); 2360 } 2361 2362 // Add a handful of extra data records, for trap tracking. 2363 DataLayout* extra_data_base() const { return limit_data_position(); } 2364 DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); } 2365 DataLayout* args_data_limit() const { return (DataLayout*)((address)this + size_in_bytes() - 2366 parameters_size_in_bytes()); } 2367 int extra_data_size() const { return (address)extra_data_limit() - (address)extra_data_base(); } 2368 static DataLayout* next_extra(DataLayout* dp); 2369 2370 // Return (uint)-1 for overflow. 2371 uint trap_count(int reason) const { 2372 return _compiler_counters.trap_count(reason); 2373 } 2374 // For loops: 2375 static uint trap_reason_limit() { return _trap_hist_limit; } 2376 static uint trap_count_limit() { return _trap_hist_mask; } 2377 uint inc_trap_count(int reason) { 2378 return _compiler_counters.inc_trap_count(reason); 2379 } 2380 2381 uint overflow_trap_count() const { 2382 return _compiler_counters.overflow_trap_count(); 2383 } 2384 uint overflow_recompile_count() const { 2385 return _compiler_counters.overflow_recompile_count(); 2386 } 2387 uint inc_overflow_recompile_count() { 2388 return _compiler_counters.inc_overflow_recompile_count(); 2389 } 2390 uint decompile_count() const { 2391 return _compiler_counters.decompile_count(); 2392 } 2393 uint inc_decompile_count() { 2394 uint dec_count = _compiler_counters.inc_decompile_count(); 2395 if (dec_count > (uint)PerMethodRecompilationCutoff) { 2396 method()->set_not_compilable("decompile_count > PerMethodRecompilationCutoff", CompLevel_full_optimization); 2397 } 2398 return dec_count; 2399 } 2400 uint tenure_traps() const { 2401 return _tenure_traps; 2402 } 2403 void inc_tenure_traps() { 2404 _tenure_traps += 1; 2405 } 2406 2407 // Return pointer to area dedicated to parameters in MDO 2408 ParametersTypeData* parameters_type_data() const { 2409 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2410 return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL; 2411 } 2412 2413 int parameters_type_data_di() const { 2414 assert(_parameters_type_data_di != parameters_uninitialized && _parameters_type_data_di != no_parameters, "no args type data"); 2415 return _parameters_type_data_di; 2416 } 2417 2418 // Support for code generation 2419 static ByteSize data_offset() { 2420 return byte_offset_of(MethodData, _data[0]); 2421 } 2422 2423 static ByteSize trap_history_offset() { 2424 return byte_offset_of(MethodData, _compiler_counters) + CompilerCounters::trap_history_offset(); 2425 } 2426 2427 static ByteSize invocation_counter_offset() { 2428 return byte_offset_of(MethodData, _invocation_counter); 2429 } 2430 2431 static ByteSize backedge_counter_offset() { 2432 return byte_offset_of(MethodData, _backedge_counter); 2433 } 2434 2435 static ByteSize invoke_mask_offset() { 2436 return byte_offset_of(MethodData, _invoke_mask); 2437 } 2438 2439 static ByteSize backedge_mask_offset() { 2440 return byte_offset_of(MethodData, _backedge_mask); 2441 } 2442 2443 static ByteSize parameters_type_data_di_offset() { 2444 return byte_offset_of(MethodData, _parameters_type_data_di); 2445 } 2446 2447 virtual void metaspace_pointers_do(MetaspaceClosure* iter); 2448 virtual MetaspaceObj::Type type() const { return MethodDataType; } 2449 2450 // Deallocation support - no metaspace pointer fields to deallocate 2451 void deallocate_contents(ClassLoaderData* loader_data) {} 2452 2453 // GC support 2454 void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; } 2455 2456 // Printing 2457 void print_on (outputStream* st) const; 2458 void print_value_on(outputStream* st) const; 2459 2460 // printing support for method data 2461 void print_data_on(outputStream* st) const; 2462 2463 const char* internal_name() const { return "{method data}"; } 2464 2465 // verification 2466 void verify_on(outputStream* st); 2467 void verify_data_on(outputStream* st); 2468 2469 static bool profile_parameters_for_method(const methodHandle& m); 2470 static bool profile_arguments(); 2471 static bool profile_arguments_jsr292_only(); 2472 static bool profile_return(); 2473 static bool profile_parameters(); 2474 static bool profile_return_jsr292_only(); 2475 2476 void clean_method_data(bool always_clean); 2477 void clean_weak_method_links(); 2478 Mutex* extra_data_lock() { return &_extra_data_lock; } 2479 }; 2480 2481 #endif // SHARE_OOPS_METHODDATA_HPP