1 /*
2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_OOPS_METHODDATA_HPP
26 #define SHARE_OOPS_METHODDATA_HPP
27
28 #include "interpreter/bytecodes.hpp"
29 #include "interpreter/invocationCounter.hpp"
30 #include "oops/metadata.hpp"
31 #include "oops/method.hpp"
32 #include "runtime/atomicAccess.hpp"
33 #include "runtime/deoptimization.hpp"
34 #include "runtime/mutex.hpp"
35 #include "utilities/align.hpp"
36 #include "utilities/copy.hpp"
37
38 class BytecodeStream;
39
40 // The MethodData object collects counts and other profile information
41 // during zeroth-tier (interpreter) and third-tier (C1 with full profiling)
42 // execution.
43 //
44 // The profile is used later by compilation heuristics. Some heuristics
45 // enable use of aggressive (or "heroic") optimizations. An aggressive
46 // optimization often has a down-side, a corner case that it handles
47 // poorly, but which is thought to be rare. The profile provides
48 // evidence of this rarity for a given method or even BCI. It allows
49 // the compiler to back out of the optimization at places where it
50 // has historically been a poor choice. Other heuristics try to use
51 // specific information gathered about types observed at a given site.
52 //
53 // All data in the profile is approximate. It is expected to be accurate
54 // on the whole, but the system expects occasional inaccuraces, due to
55 // counter overflow, multiprocessor races during data collection, space
56 // limitations, missing MDO blocks, etc. Bad or missing data will degrade
57 // optimization quality but will not affect correctness. Also, each MDO
58 // can be checked for its "maturity" by calling is_mature().
59 //
60 // Short (<32-bit) counters are designed to overflow to a known "saturated"
61 // state. Also, certain recorded per-BCI events are given one-bit counters
62 // which overflow to a saturated state which applied to all counters at
63 // that BCI. In other words, there is a small lattice which approximates
64 // the ideal of an infinite-precision counter for each event at each BCI,
65 // and the lattice quickly "bottoms out" in a state where all counters
66 // are taken to be indefinitely large.
67 //
68 // The reader will find many data races in profile gathering code, starting
69 // with invocation counter incrementation. None of these races harm correct
70 // execution of the compiled code.
71
72 // forward decl
73 class ProfileData;
74
75 // DataLayout
76 //
77 // Overlay for generic profiling data.
78 class DataLayout {
79 friend class VMStructs;
80 friend class JVMCIVMStructs;
81
82 private:
83 // Every data layout begins with a header. This header
84 // contains a tag, which is used to indicate the size/layout
85 // of the data, 8 bits of flags, which can be used in any way,
86 // 32 bits of trap history (none/one reason/many reasons),
87 // and a bci, which is used to tie this piece of data to a
88 // specific bci in the bytecodes.
89 union {
90 u8 _bits;
91 struct {
92 u1 _tag;
93 u1 _flags;
94 u2 _bci;
95 u4 _traps;
96 } _struct;
97 } _header;
98
99 // The data layout has an arbitrary number of cells, each sized
100 // to accommodate a pointer or an integer.
101 intptr_t _cells[1];
102
103 // Some types of data layouts need a length field.
104 static bool needs_array_len(u1 tag);
105
106 public:
107 enum {
108 counter_increment = 1
109 };
110
111 enum {
112 cell_size = sizeof(intptr_t)
113 };
114
115 // Tag values
116 enum : u1 {
117 no_tag,
118 bit_data_tag,
119 counter_data_tag,
120 jump_data_tag,
121 receiver_type_data_tag,
122 virtual_call_data_tag,
123 ret_data_tag,
124 branch_data_tag,
125 multi_branch_data_tag,
126 arg_info_data_tag,
127 call_type_data_tag,
128 virtual_call_type_data_tag,
129 parameters_type_data_tag,
130 speculative_trap_data_tag,
131 array_store_data_tag,
132 array_load_data_tag,
133 acmp_data_tag
134 };
135
136 enum {
137 // The trap state breaks down as [recompile:1 | reason:31].
138 // This further breakdown is defined in deoptimization.cpp.
139 // See Deoptimization::trap_state_reason for an assert that
140 // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
141 //
142 // The trap_state is collected only if ProfileTraps is true.
143 trap_bits = 1+31, // 31: enough to distinguish [0..Reason_RECORDED_LIMIT].
144 trap_mask = -1,
145 first_flag = 0
146 };
147
148 // Size computation
149 static int header_size_in_bytes() {
150 return header_size_in_cells() * cell_size;
151 }
152 static int header_size_in_cells() {
153 return LP64_ONLY(1) NOT_LP64(2);
154 }
155
156 static int compute_size_in_bytes(int cell_count) {
157 return header_size_in_bytes() + cell_count * cell_size;
158 }
159
160 // Initialization
161 void initialize(u1 tag, u2 bci, int cell_count);
162
163 // Accessors
164 u1 tag() {
165 return _header._struct._tag;
166 }
167
168 // Return 32 bits of trap state.
169 // The state tells if traps with zero, one, or many reasons have occurred.
170 // It also tells whether zero or many recompilations have occurred.
171 // The associated trap histogram in the MDO itself tells whether
172 // traps are common or not. If a BCI shows that a trap X has
173 // occurred, and the MDO shows N occurrences of X, we make the
174 // simplifying assumption that all N occurrences can be blamed
175 // on that BCI.
176 uint trap_state() const {
177 return _header._struct._traps;
178 }
179
180 void set_trap_state(uint new_state) {
181 assert(ProfileTraps, "used only under +ProfileTraps");
182 uint old_flags = _header._struct._traps;
183 _header._struct._traps = new_state | old_flags;
184 }
185
186 u1 flags() const {
187 return AtomicAccess::load_acquire(&_header._struct._flags);
188 }
189
190 u2 bci() const {
191 return _header._struct._bci;
192 }
193
194 void set_header(u8 value) {
195 _header._bits = value;
196 }
197 u8 header() {
198 return _header._bits;
199 }
200 void set_cell_at(int index, intptr_t value) {
201 _cells[index] = value;
202 }
203 void release_set_cell_at(int index, intptr_t value);
204 intptr_t cell_at(int index) const {
205 return _cells[index];
206 }
207 intptr_t* cell_at_adr(int index) const {
208 return const_cast<intptr_t*>(&_cells[index]);
209 }
210
211 bool set_flag_at(u1 flag_number) {
212 const u1 bit = 1 << flag_number;
213 u1 compare_value;
214 do {
215 compare_value = _header._struct._flags;
216 if ((compare_value & bit) == bit) {
217 // already set.
218 return false;
219 }
220 } while (compare_value != AtomicAccess::cmpxchg(&_header._struct._flags, compare_value, static_cast<u1>(compare_value | bit)));
221 return true;
222 }
223
224 bool clear_flag_at(u1 flag_number) {
225 const u1 bit = 1 << flag_number;
226 u1 compare_value;
227 u1 exchange_value;
228 do {
229 compare_value = _header._struct._flags;
230 if ((compare_value & bit) == 0) {
231 // already cleaed.
232 return false;
233 }
234 exchange_value = compare_value & ~bit;
235 } while (compare_value != AtomicAccess::cmpxchg(&_header._struct._flags, compare_value, exchange_value));
236 return true;
237 }
238
239 bool flag_at(u1 flag_number) const {
240 return (flags() & (1 << flag_number)) != 0;
241 }
242
243 // Low-level support for code generation.
244 static ByteSize header_offset() {
245 return byte_offset_of(DataLayout, _header);
246 }
247 static ByteSize tag_offset() {
248 return byte_offset_of(DataLayout, _header._struct._tag);
249 }
250 static ByteSize flags_offset() {
251 return byte_offset_of(DataLayout, _header._struct._flags);
252 }
253 static ByteSize bci_offset() {
254 return byte_offset_of(DataLayout, _header._struct._bci);
255 }
256 static ByteSize cell_offset(int index) {
257 return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
258 }
259 // Return a value which, when or-ed as a byte into _flags, sets the flag.
260 static u1 flag_number_to_constant(u1 flag_number) {
261 DataLayout temp; temp.set_header(0);
262 temp.set_flag_at(flag_number);
263 return temp._header._struct._flags;
264 }
265 // Return a value which, when or-ed as a word into _header, sets the flag.
266 static u8 flag_mask_to_header_mask(u1 byte_constant) {
267 DataLayout temp; temp.set_header(0);
268 temp._header._struct._flags = byte_constant;
269 return temp._header._bits;
270 }
271
272 ProfileData* data_in();
273
274 int size_in_bytes() {
275 int cells = cell_count();
276 assert(cells >= 0, "invalid number of cells");
277 return DataLayout::compute_size_in_bytes(cells);
278 }
279 int cell_count();
280
281 // GC support
282 void clean_weak_klass_links(bool always_clean);
283 };
284
285
286 // ProfileData class hierarchy
287 class ProfileData;
288 class BitData;
289 class CounterData;
290 class ReceiverTypeData;
291 class VirtualCallData;
292 class VirtualCallTypeData;
293 class ArrayStoreData;
294 class RetData;
295 class CallTypeData;
296 class JumpData;
297 class BranchData;
298 class ACmpData;
299 class ArrayData;
300 class MultiBranchData;
301 class ArgInfoData;
302 class ParametersTypeData;
303 class SpeculativeTrapData;
304 class ArrayLoadData;
305
306 // ProfileData
307 //
308 // A ProfileData object is created to refer to a section of profiling
309 // data in a structured way.
310 class ProfileData : public ResourceObj {
311 friend class TypeEntries;
312 friend class SingleTypeEntry;
313 friend class TypeStackSlotEntries;
314 private:
315 enum {
316 tab_width_one = 16,
317 tab_width_two = 36
318 };
319
320 // This is a pointer to a section of profiling data.
321 DataLayout* _data;
322
323 char* print_data_on_helper(const MethodData* md) const;
324
325 protected:
326 DataLayout* data() { return _data; }
327 const DataLayout* data() const { return _data; }
328
329 enum {
330 cell_size = DataLayout::cell_size
331 };
332
333 public:
334 // How many cells are in this?
335 virtual int cell_count() const {
336 ShouldNotReachHere();
337 return -1;
338 }
339
340 // Return the size of this data.
341 int size_in_bytes() {
342 return DataLayout::compute_size_in_bytes(cell_count());
343 }
344
345 protected:
346 // Low-level accessors for underlying data
347 void set_intptr_at(int index, intptr_t value) {
348 assert(0 <= index && index < cell_count(), "oob");
349 data()->set_cell_at(index, value);
350 }
351 void release_set_intptr_at(int index, intptr_t value);
352 intptr_t intptr_at(int index) const {
353 assert(0 <= index && index < cell_count(), "oob");
354 return data()->cell_at(index);
355 }
356 intptr_t* intptr_at_adr(int index) const {
357 assert(0 <= index && index < cell_count(), "oob");
358 return data()->cell_at_adr(index);
359 }
360 void set_uint_at(int index, uint value) {
361 set_intptr_at(index, (intptr_t) value);
362 }
363 void release_set_uint_at(int index, uint value);
364 uint uint_at(int index) const {
365 return (uint)intptr_at(index);
366 }
367 void set_int_at(int index, int value) {
368 set_intptr_at(index, (intptr_t) value);
369 }
370 void release_set_int_at(int index, int value);
371 int int_at(int index) const {
372 return (int)intptr_at(index);
373 }
374 int int_at_unchecked(int index) const {
375 return (int)data()->cell_at(index);
376 }
377
378 void set_flag_at(u1 flag_number) {
379 data()->set_flag_at(flag_number);
380 }
381 bool flag_at(u1 flag_number) const {
382 return data()->flag_at(flag_number);
383 }
384
385 // two convenient imports for use by subclasses:
386 static ByteSize cell_offset(int index) {
387 return DataLayout::cell_offset(index);
388 }
389 static u1 flag_number_to_constant(u1 flag_number) {
390 return DataLayout::flag_number_to_constant(flag_number);
391 }
392
393 ProfileData(DataLayout* data) {
394 _data = data;
395 }
396
397 public:
398 // Constructor for invalid ProfileData.
399 ProfileData();
400
401 u2 bci() const {
402 return data()->bci();
403 }
404
405 address dp() {
406 return (address)_data;
407 }
408
409 int trap_state() const {
410 return data()->trap_state();
411 }
412 void set_trap_state(int new_state) {
413 data()->set_trap_state(new_state);
414 }
415
416 // Type checking
417 virtual bool is_BitData() const { return false; }
418 virtual bool is_CounterData() const { return false; }
419 virtual bool is_JumpData() const { return false; }
420 virtual bool is_ReceiverTypeData()const { return false; }
421 virtual bool is_VirtualCallData() const { return false; }
422 virtual bool is_RetData() const { return false; }
423 virtual bool is_BranchData() const { return false; }
424 virtual bool is_ArrayData() const { return false; }
425 virtual bool is_MultiBranchData() const { return false; }
426 virtual bool is_ArgInfoData() const { return false; }
427 virtual bool is_CallTypeData() const { return false; }
428 virtual bool is_VirtualCallTypeData()const { return false; }
429 virtual bool is_ParametersTypeData() const { return false; }
430 virtual bool is_SpeculativeTrapData()const { return false; }
431 virtual bool is_ArrayStoreData() const { return false; }
432 virtual bool is_ArrayLoadData() const { return false; }
433 virtual bool is_ACmpData() const { return false; }
434
435
436 BitData* as_BitData() const {
437 assert(is_BitData(), "wrong type");
438 return is_BitData() ? (BitData*) this : nullptr;
439 }
440 CounterData* as_CounterData() const {
441 assert(is_CounterData(), "wrong type");
442 return is_CounterData() ? (CounterData*) this : nullptr;
443 }
444 JumpData* as_JumpData() const {
445 assert(is_JumpData(), "wrong type");
446 return is_JumpData() ? (JumpData*) this : nullptr;
447 }
448 ReceiverTypeData* as_ReceiverTypeData() const {
449 assert(is_ReceiverTypeData(), "wrong type");
450 return is_ReceiverTypeData() ? (ReceiverTypeData*)this : nullptr;
451 }
452 VirtualCallData* as_VirtualCallData() const {
453 assert(is_VirtualCallData(), "wrong type");
454 return is_VirtualCallData() ? (VirtualCallData*)this : nullptr;
455 }
456 RetData* as_RetData() const {
457 assert(is_RetData(), "wrong type");
458 return is_RetData() ? (RetData*) this : nullptr;
459 }
460 BranchData* as_BranchData() const {
461 assert(is_BranchData(), "wrong type");
462 return is_BranchData() ? (BranchData*) this : nullptr;
463 }
464 ArrayData* as_ArrayData() const {
465 assert(is_ArrayData(), "wrong type");
466 return is_ArrayData() ? (ArrayData*) this : nullptr;
467 }
468 MultiBranchData* as_MultiBranchData() const {
469 assert(is_MultiBranchData(), "wrong type");
470 return is_MultiBranchData() ? (MultiBranchData*)this : nullptr;
471 }
472 ArgInfoData* as_ArgInfoData() const {
473 assert(is_ArgInfoData(), "wrong type");
474 return is_ArgInfoData() ? (ArgInfoData*)this : nullptr;
475 }
476 CallTypeData* as_CallTypeData() const {
477 assert(is_CallTypeData(), "wrong type");
478 return is_CallTypeData() ? (CallTypeData*)this : nullptr;
479 }
480 VirtualCallTypeData* as_VirtualCallTypeData() const {
481 assert(is_VirtualCallTypeData(), "wrong type");
482 return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : nullptr;
483 }
484 ParametersTypeData* as_ParametersTypeData() const {
485 assert(is_ParametersTypeData(), "wrong type");
486 return is_ParametersTypeData() ? (ParametersTypeData*)this : nullptr;
487 }
488 SpeculativeTrapData* as_SpeculativeTrapData() const {
489 assert(is_SpeculativeTrapData(), "wrong type");
490 return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : nullptr;
491 }
492 ArrayStoreData* as_ArrayStoreData() const {
493 assert(is_ArrayStoreData(), "wrong type");
494 return is_ArrayStoreData() ? (ArrayStoreData*)this : nullptr;
495 }
496 ArrayLoadData* as_ArrayLoadData() const {
497 assert(is_ArrayLoadData(), "wrong type");
498 return is_ArrayLoadData() ? (ArrayLoadData*)this : nullptr;
499 }
500 ACmpData* as_ACmpData() const {
501 assert(is_ACmpData(), "wrong type");
502 return is_ACmpData() ? (ACmpData*)this : nullptr;
503 }
504
505
506 // Subclass specific initialization
507 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
508
509 // GC support
510 virtual void clean_weak_klass_links(bool always_clean) {}
511
512 // CDS support
513 virtual void metaspace_pointers_do(MetaspaceClosure* it) {}
514
515 // CI translation: ProfileData can represent both MethodDataOop data
516 // as well as CIMethodData data. This function is provided for translating
517 // an oop in a ProfileData to the ci equivalent. Generally speaking,
518 // most ProfileData don't require any translation, so we provide the null
519 // translation here, and the required translators are in the ci subclasses.
520 virtual void translate_from(const ProfileData* data) {}
521
522 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const {
523 ShouldNotReachHere();
524 }
525
526 void print_data_on(outputStream* st, const MethodData* md) const;
527
528 void print_shared(outputStream* st, const char* name, const char* extra) const;
529 void tab(outputStream* st, bool first = false) const;
530 };
531
532 // BitData
533 //
534 // A BitData holds a flag or two in its header.
535 class BitData : public ProfileData {
536 friend class VMStructs;
537 friend class JVMCIVMStructs;
538 protected:
539 enum : u1 {
540 // null_seen:
541 // saw a null operand (cast/aastore/instanceof)
542 null_seen_flag = DataLayout::first_flag + 0,
543 exception_handler_entered_flag = null_seen_flag + 1,
544 deprecated_method_callsite_flag = exception_handler_entered_flag + 1
545 #if INCLUDE_JVMCI
546 // bytecode threw any exception
547 , exception_seen_flag = deprecated_method_callsite_flag + 1
548 #endif
549 , last_bit_data_flag
550 };
551 enum { bit_cell_count = 0 }; // no additional data fields needed.
552 public:
553 BitData(DataLayout* layout) : ProfileData(layout) {
554 }
555
556 virtual bool is_BitData() const { return true; }
557
558 static int static_cell_count() {
559 return bit_cell_count;
560 }
561
562 virtual int cell_count() const {
563 return static_cell_count();
564 }
565
566 // Accessor
567
568 // The null_seen flag bit is specially known to the interpreter.
569 // Consulting it allows the compiler to avoid setting up null_check traps.
570 bool null_seen() const { return flag_at(null_seen_flag); }
571 void set_null_seen() { set_flag_at(null_seen_flag); }
572 bool deprecated_method_call_site() const { return flag_at(deprecated_method_callsite_flag); }
573 bool set_deprecated_method_call_site() { return data()->set_flag_at(deprecated_method_callsite_flag); }
574 bool clear_deprecated_method_call_site() { return data()->clear_flag_at(deprecated_method_callsite_flag); }
575
576 #if INCLUDE_JVMCI
577 // true if an exception was thrown at the specific BCI
578 bool exception_seen() { return flag_at(exception_seen_flag); }
579 void set_exception_seen() { set_flag_at(exception_seen_flag); }
580 #endif
581
582 // true if a ex handler block at this bci was entered
583 bool exception_handler_entered() { return flag_at(exception_handler_entered_flag); }
584 void set_exception_handler_entered() { set_flag_at(exception_handler_entered_flag); }
585
586 // Code generation support
587 static u1 null_seen_byte_constant() {
588 return flag_number_to_constant(null_seen_flag);
589 }
590
591 static ByteSize bit_data_size() {
592 return cell_offset(bit_cell_count);
593 }
594
595 void print_data_on(outputStream* st, const char* extra = nullptr) const;
596 };
597
598 // CounterData
599 //
600 // A CounterData corresponds to a simple counter.
601 class CounterData : public BitData {
602 friend class VMStructs;
603 friend class JVMCIVMStructs;
604 protected:
605 enum {
606 count_off,
607 counter_cell_count
608 };
609 public:
610 CounterData(DataLayout* layout) : BitData(layout) {}
611
612 virtual bool is_CounterData() const { return true; }
613
614 static int static_cell_count() {
615 return counter_cell_count;
616 }
617
618 virtual int cell_count() const {
619 return static_cell_count();
620 }
621
622 // Direct accessor
623 int count() const {
624 intptr_t raw_data = intptr_at(count_off);
625 if (raw_data > max_jint) {
626 raw_data = max_jint;
627 } else if (raw_data < min_jint) {
628 raw_data = min_jint;
629 }
630 return int(raw_data);
631 }
632
633 // Code generation support
634 static ByteSize count_offset() {
635 return cell_offset(count_off);
636 }
637 static ByteSize counter_data_size() {
638 return cell_offset(counter_cell_count);
639 }
640
641 void set_count(int count) {
642 set_int_at(count_off, count);
643 }
644
645 void print_data_on(outputStream* st, const char* extra = nullptr) const;
646 };
647
648 // JumpData
649 //
650 // A JumpData is used to access profiling information for a direct
651 // branch. It is a counter, used for counting the number of branches,
652 // plus a data displacement, used for realigning the data pointer to
653 // the corresponding target bci.
654 class JumpData : public ProfileData {
655 friend class VMStructs;
656 friend class JVMCIVMStructs;
657 protected:
658 enum {
659 taken_off_set,
660 displacement_off_set,
661 jump_cell_count
662 };
663
664 void set_displacement(int displacement) {
665 set_int_at(displacement_off_set, displacement);
666 }
667
668 public:
669 JumpData(DataLayout* layout) : ProfileData(layout) {
670 assert(layout->tag() == DataLayout::jump_data_tag ||
671 layout->tag() == DataLayout::branch_data_tag ||
672 layout->tag() == DataLayout::acmp_data_tag, "wrong type");
673 }
674
675 virtual bool is_JumpData() const { return true; }
676
677 static int static_cell_count() {
678 return jump_cell_count;
679 }
680
681 virtual int cell_count() const {
682 return static_cell_count();
683 }
684
685 // Direct accessor
686 uint taken() const {
687 return uint_at(taken_off_set);
688 }
689
690 void set_taken(uint cnt) {
691 set_uint_at(taken_off_set, cnt);
692 }
693
694 // Saturating counter
695 uint inc_taken() {
696 uint cnt = taken() + 1;
697 // Did we wrap? Will compiler screw us??
698 if (cnt == 0) cnt--;
699 set_uint_at(taken_off_set, cnt);
700 return cnt;
701 }
702
703 int displacement() const {
704 return int_at(displacement_off_set);
705 }
706
707 // Code generation support
708 static ByteSize taken_offset() {
709 return cell_offset(taken_off_set);
710 }
711
712 static ByteSize displacement_offset() {
713 return cell_offset(displacement_off_set);
714 }
715
716 // Specific initialization.
717 void post_initialize(BytecodeStream* stream, MethodData* mdo);
718
719 void print_data_on(outputStream* st, const char* extra = nullptr) const;
720 };
721
722 // Entries in a ProfileData object to record types: it can either be
723 // none (no profile), unknown (conflicting profile data) or a klass if
724 // a single one is seen. Whether a null reference was seen is also
725 // recorded. No counter is associated with the type and a single type
726 // is tracked (unlike VirtualCallData).
727 class TypeEntries {
728
729 public:
730
731 // A single cell is used to record information for a type:
732 // - the cell is initialized to 0
733 // - when a type is discovered it is stored in the cell
734 // - bit zero of the cell is used to record whether a null reference
735 // was encountered or not
736 // - bit 1 is set to record a conflict in the type information
737
738 enum {
739 null_seen = 1,
740 type_mask = ~null_seen,
741 type_unknown = 2,
742 status_bits = null_seen | type_unknown,
743 type_klass_mask = ~status_bits
744 };
745
746 // what to initialize a cell to
747 static intptr_t type_none() {
748 return 0;
749 }
750
751 // null seen = bit 0 set?
752 static bool was_null_seen(intptr_t v) {
753 return (v & null_seen) != 0;
754 }
755
756 // conflicting type information = bit 1 set?
757 static bool is_type_unknown(intptr_t v) {
758 return (v & type_unknown) != 0;
759 }
760
761 // not type information yet = all bits cleared, ignoring bit 0?
762 static bool is_type_none(intptr_t v) {
763 return (v & type_mask) == 0;
764 }
765
766 // recorded type: cell without bit 0 and 1
767 static intptr_t klass_part(intptr_t v) {
768 intptr_t r = v & type_klass_mask;
769 return r;
770 }
771
772 // type recorded
773 static Klass* valid_klass(intptr_t k) {
774 if (!is_type_none(k) &&
775 !is_type_unknown(k)) {
776 Klass* res = (Klass*)klass_part(k);
777 assert(res != nullptr, "invalid");
778 return res;
779 } else {
780 return nullptr;
781 }
782 }
783
784 static intptr_t with_status(intptr_t k, intptr_t in) {
785 return k | (in & status_bits);
786 }
787
788 static intptr_t with_status(Klass* k, intptr_t in) {
789 return with_status((intptr_t)k, in);
790 }
791
792 static void print_klass(outputStream* st, intptr_t k);
793
794 protected:
795 // ProfileData object these entries are part of
796 ProfileData* _pd;
797 // offset within the ProfileData object where the entries start
798 const int _base_off;
799
800 TypeEntries(int base_off)
801 : _pd(nullptr), _base_off(base_off) {}
802
803 void set_intptr_at(int index, intptr_t value) {
804 _pd->set_intptr_at(index, value);
805 }
806
807 intptr_t intptr_at(int index) const {
808 return _pd->intptr_at(index);
809 }
810
811 public:
812 void set_profile_data(ProfileData* pd) {
813 _pd = pd;
814 }
815 };
816
817 // Type entries used for arguments passed at a call and parameters on
818 // method entry. 2 cells per entry: one for the type encoded as in
819 // TypeEntries and one initialized with the stack slot where the
820 // profiled object is to be found so that the interpreter can locate
821 // it quickly.
822 class TypeStackSlotEntries : public TypeEntries {
823
824 private:
825 enum {
826 stack_slot_entry,
827 type_entry,
828 per_arg_cell_count
829 };
830
831 // offset of cell for stack slot for entry i within ProfileData object
832 int stack_slot_offset(int i) const {
833 return _base_off + stack_slot_local_offset(i);
834 }
835
836 const int _number_of_entries;
837
838 // offset of cell for type for entry i within ProfileData object
839 int type_offset_in_cells(int i) const {
840 return _base_off + type_local_offset(i);
841 }
842
843 public:
844
845 TypeStackSlotEntries(int base_off, int nb_entries)
846 : TypeEntries(base_off), _number_of_entries(nb_entries) {}
847
848 static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
849
850 void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
851
852 int number_of_entries() const { return _number_of_entries; }
853
854 // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
855 static int stack_slot_local_offset(int i) {
856 return i * per_arg_cell_count + stack_slot_entry;
857 }
858
859 // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
860 static int type_local_offset(int i) {
861 return i * per_arg_cell_count + type_entry;
862 }
863
864 // stack slot for entry i
865 uint stack_slot(int i) const {
866 assert(i >= 0 && i < _number_of_entries, "oob");
867 return _pd->uint_at(stack_slot_offset(i));
868 }
869
870 // set stack slot for entry i
871 void set_stack_slot(int i, uint num) {
872 assert(i >= 0 && i < _number_of_entries, "oob");
873 _pd->set_uint_at(stack_slot_offset(i), num);
874 }
875
876 // type for entry i
877 intptr_t type(int i) const {
878 assert(i >= 0 && i < _number_of_entries, "oob");
879 return _pd->intptr_at(type_offset_in_cells(i));
880 }
881
882 intptr_t* type_adr(int i) const {
883 assert(i >= 0 && i < _number_of_entries, "oob");
884 return _pd->intptr_at_adr(type_offset_in_cells(i));
885 }
886
887 // set type for entry i
888 void set_type(int i, intptr_t k) {
889 assert(i >= 0 && i < _number_of_entries, "oob");
890 _pd->set_intptr_at(type_offset_in_cells(i), k);
891 }
892
893 static ByteSize per_arg_size() {
894 return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
895 }
896
897 static int per_arg_count() {
898 return per_arg_cell_count;
899 }
900
901 ByteSize type_offset(int i) const {
902 return DataLayout::cell_offset(type_offset_in_cells(i));
903 }
904
905 // GC support
906 void clean_weak_klass_links(bool always_clean);
907
908 // CDS support
909 virtual void metaspace_pointers_do(MetaspaceClosure* it);
910
911 void print_data_on(outputStream* st) const;
912 };
913
914 // Type entry used for return from a call. A single cell to record the
915 // type.
916 class SingleTypeEntry : public TypeEntries {
917
918 private:
919 enum {
920 cell_count = 1
921 };
922
923 public:
924 SingleTypeEntry(int base_off)
925 : TypeEntries(base_off) {}
926
927 void post_initialize() {
928 set_type(type_none());
929 }
930
931 intptr_t type() const {
932 return _pd->intptr_at(_base_off);
933 }
934
935 intptr_t* type_adr() const {
936 return _pd->intptr_at_adr(_base_off);
937 }
938
939 void set_type(intptr_t k) {
940 _pd->set_intptr_at(_base_off, k);
941 }
942
943 static int static_cell_count() {
944 return cell_count;
945 }
946
947 static ByteSize size() {
948 return in_ByteSize(cell_count * DataLayout::cell_size);
949 }
950
951 ByteSize type_offset() {
952 return DataLayout::cell_offset(_base_off);
953 }
954
955 // GC support
956 void clean_weak_klass_links(bool always_clean);
957
958 // CDS support
959 virtual void metaspace_pointers_do(MetaspaceClosure* it);
960
961 void print_data_on(outputStream* st) const;
962 };
963
964 // Entries to collect type information at a call: contains arguments
965 // (TypeStackSlotEntries), a return type (SingleTypeEntry) and a
966 // number of cells. Because the number of cells for the return type is
967 // smaller than the number of cells for the type of an arguments, the
968 // number of cells is used to tell how many arguments are profiled and
969 // whether a return value is profiled. See has_arguments() and
970 // has_return().
971 class TypeEntriesAtCall {
972 private:
973 static int stack_slot_local_offset(int i) {
974 return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
975 }
976
977 static int argument_type_local_offset(int i) {
978 return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);
979 }
980
981 public:
982
983 static int header_cell_count() {
984 return 1;
985 }
986
987 static int cell_count_local_offset() {
988 return 0;
989 }
990
991 static int compute_cell_count(BytecodeStream* stream);
992
993 static void initialize(DataLayout* dl, int base, int cell_count) {
994 int off = base + cell_count_local_offset();
995 dl->set_cell_at(off, cell_count - base - header_cell_count());
996 }
997
998 static bool arguments_profiling_enabled();
999 static bool return_profiling_enabled();
1000
1001 // Code generation support
1002 static ByteSize cell_count_offset() {
1003 return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
1004 }
1005
1006 static ByteSize args_data_offset() {
1007 return in_ByteSize(header_cell_count() * DataLayout::cell_size);
1008 }
1009
1010 static ByteSize stack_slot_offset(int i) {
1011 return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
1012 }
1013
1014 static ByteSize argument_type_offset(int i) {
1015 return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
1016 }
1017
1018 static ByteSize return_only_size() {
1019 return SingleTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size);
1020 }
1021
1022 };
1023
1024 // CallTypeData
1025 //
1026 // A CallTypeData is used to access profiling information about a non
1027 // virtual call for which we collect type information about arguments
1028 // and return value.
1029 class CallTypeData : public CounterData {
1030 private:
1031 // entries for arguments if any
1032 TypeStackSlotEntries _args;
1033 // entry for return type if any
1034 SingleTypeEntry _ret;
1035
1036 int cell_count_global_offset() const {
1037 return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1038 }
1039
1040 // number of cells not counting the header
1041 int cell_count_no_header() const {
1042 return uint_at(cell_count_global_offset());
1043 }
1044
1045 void check_number_of_arguments(int total) {
1046 assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1047 }
1048
1049 public:
1050 CallTypeData(DataLayout* layout) :
1051 CounterData(layout),
1052 _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1053 _ret(cell_count() - SingleTypeEntry::static_cell_count())
1054 {
1055 assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
1056 // Some compilers (VC++) don't want this passed in member initialization list
1057 _args.set_profile_data(this);
1058 _ret.set_profile_data(this);
1059 }
1060
1061 const TypeStackSlotEntries* args() const {
1062 assert(has_arguments(), "no profiling of arguments");
1063 return &_args;
1064 }
1065
1066 const SingleTypeEntry* ret() const {
1067 assert(has_return(), "no profiling of return value");
1068 return &_ret;
1069 }
1070
1071 virtual bool is_CallTypeData() const { return true; }
1072
1073 static int static_cell_count() {
1074 return -1;
1075 }
1076
1077 static int compute_cell_count(BytecodeStream* stream) {
1078 return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1079 }
1080
1081 static void initialize(DataLayout* dl, int cell_count) {
1082 TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
1083 }
1084
1085 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1086
1087 virtual int cell_count() const {
1088 return CounterData::static_cell_count() +
1089 TypeEntriesAtCall::header_cell_count() +
1090 int_at_unchecked(cell_count_global_offset());
1091 }
1092
1093 int number_of_arguments() const {
1094 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1095 }
1096
1097 void set_argument_type(int i, Klass* k) {
1098 assert(has_arguments(), "no arguments!");
1099 intptr_t current = _args.type(i);
1100 _args.set_type(i, TypeEntries::with_status(k, current));
1101 }
1102
1103 void set_return_type(Klass* k) {
1104 assert(has_return(), "no return!");
1105 intptr_t current = _ret.type();
1106 _ret.set_type(TypeEntries::with_status(k, current));
1107 }
1108
1109 // An entry for a return value takes less space than an entry for an
1110 // argument so if the number of cells exceeds the number of cells
1111 // needed for an argument, this object contains type information for
1112 // at least one argument.
1113 bool has_arguments() const {
1114 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1115 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1116 return res;
1117 }
1118
1119 // An entry for a return value takes less space than an entry for an
1120 // argument, so if the remainder of the number of cells divided by
1121 // the number of cells for an argument is not null, a return value
1122 // is profiled in this object.
1123 bool has_return() const {
1124 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1125 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1126 return res;
1127 }
1128
1129 // Code generation support
1130 static ByteSize args_data_offset() {
1131 return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1132 }
1133
1134 ByteSize argument_type_offset(int i) {
1135 return _args.type_offset(i);
1136 }
1137
1138 ByteSize return_type_offset() {
1139 return _ret.type_offset();
1140 }
1141
1142 // GC support
1143 virtual void clean_weak_klass_links(bool always_clean) {
1144 if (has_arguments()) {
1145 _args.clean_weak_klass_links(always_clean);
1146 }
1147 if (has_return()) {
1148 _ret.clean_weak_klass_links(always_clean);
1149 }
1150 }
1151
1152 // CDS support
1153 virtual void metaspace_pointers_do(MetaspaceClosure* it) {
1154 if (has_arguments()) {
1155 _args.metaspace_pointers_do(it);
1156 }
1157 if (has_return()) {
1158 _ret.metaspace_pointers_do(it);
1159 }
1160 }
1161
1162 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const;
1163 };
1164
1165 // ReceiverTypeData
1166 //
1167 // A ReceiverTypeData is used to access profiling information about a
1168 // dynamic type check. It consists of a series of (Klass*, count)
1169 // pairs which are used to store a type profile for the receiver of
1170 // the check, the associated count is incremented every time the type
1171 // is seen. A per ReceiverTypeData counter is incremented on type
1172 // overflow (when there's no more room for a not yet profiled Klass*).
1173 //
1174 // Updated by platform-specific code, for example MacroAssembler::profile_receiver_type.
1175 //
1176 class ReceiverTypeData : public CounterData {
1177 friend class VMStructs;
1178 friend class JVMCIVMStructs;
1179 protected:
1180 enum {
1181 receiver0_offset = counter_cell_count,
1182 count0_offset,
1183 receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
1184 };
1185
1186 public:
1187 ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
1188 assert(layout->tag() == DataLayout::receiver_type_data_tag ||
1189 layout->tag() == DataLayout::virtual_call_data_tag ||
1190 layout->tag() == DataLayout::virtual_call_type_data_tag ||
1191 layout->tag() == DataLayout::array_store_data_tag, "wrong type");
1192 }
1193
1194 virtual bool is_ReceiverTypeData() const { return true; }
1195
1196 static int static_cell_count() {
1197 return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
1198 }
1199
1200 virtual int cell_count() const {
1201 return static_cell_count();
1202 }
1203
1204 // Direct accessors
1205 static uint row_limit() {
1206 return (uint) TypeProfileWidth;
1207 }
1208 static int receiver_cell_index(uint row) {
1209 return receiver0_offset + row * receiver_type_row_cell_count;
1210 }
1211 static int receiver_count_cell_index(uint row) {
1212 return count0_offset + row * receiver_type_row_cell_count;
1213 }
1214
1215 Klass* receiver(uint row) const {
1216 assert(row < row_limit(), "oob");
1217
1218 Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
1219 assert(recv == nullptr || recv->is_klass(), "wrong type");
1220 return recv;
1221 }
1222
1223 void set_receiver(uint row, Klass* k) {
1224 assert((uint)row < row_limit(), "oob");
1225 set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
1226 }
1227
1228 uint receiver_count(uint row) const {
1229 assert(row < row_limit(), "oob");
1230 return uint_at(receiver_count_cell_index(row));
1231 }
1232
1233 void set_receiver_count(uint row, uint count) {
1234 assert(row < row_limit(), "oob");
1235 set_uint_at(receiver_count_cell_index(row), count);
1236 }
1237
1238 void clear_row(uint row) {
1239 assert(row < row_limit(), "oob");
1240 // Clear total count - indicator of polymorphic call site.
1241 // The site may look like as monomorphic after that but
1242 // it allow to have more accurate profiling information because
1243 // there was execution phase change since klasses were unloaded.
1244 // If the site is still polymorphic then MDO will be updated
1245 // to reflect it. But it could be the case that the site becomes
1246 // only bimorphic. Then keeping total count not 0 will be wrong.
1247 // Even if we use monomorphic (when it is not) for compilation
1248 // we will only have trap, deoptimization and recompile again
1249 // with updated MDO after executing method in Interpreter.
1250 // An additional receiver will be recorded in the cleaned row
1251 // during next call execution.
1252 //
1253 // Note: our profiling logic works with empty rows in any slot.
1254 // We do sorting a profiling info (ciCallProfile) for compilation.
1255 //
1256 set_count(0);
1257 set_receiver(row, nullptr);
1258 set_receiver_count(row, 0);
1259 }
1260
1261 // Code generation support
1262 static ByteSize receiver_offset(uint row) {
1263 return cell_offset(receiver_cell_index(row));
1264 }
1265 static ByteSize receiver_count_offset(uint row) {
1266 return cell_offset(receiver_count_cell_index(row));
1267 }
1268 static ByteSize receiver_type_data_size() {
1269 return cell_offset(static_cell_count());
1270 }
1271
1272 // GC support
1273 virtual void clean_weak_klass_links(bool always_clean);
1274
1275 // CDS support
1276 virtual void metaspace_pointers_do(MetaspaceClosure* it);
1277
1278 void print_receiver_data_on(outputStream* st) const;
1279 void print_data_on(outputStream* st, const char* extra = nullptr) const;
1280 };
1281
1282 // VirtualCallData
1283 //
1284 // A VirtualCallData is used to access profiling information about a
1285 // virtual call. For now, it has nothing more than a ReceiverTypeData.
1286 class VirtualCallData : public ReceiverTypeData {
1287 public:
1288 VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
1289 assert(layout->tag() == DataLayout::virtual_call_data_tag ||
1290 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1291 }
1292
1293 virtual bool is_VirtualCallData() const { return true; }
1294
1295 static int static_cell_count() {
1296 // At this point we could add more profile state, e.g., for arguments.
1297 // But for now it's the same size as the base record type.
1298 return ReceiverTypeData::static_cell_count();
1299 }
1300
1301 virtual int cell_count() const {
1302 return static_cell_count();
1303 }
1304
1305 // Direct accessors
1306 static ByteSize virtual_call_data_size() {
1307 return cell_offset(static_cell_count());
1308 }
1309
1310 void print_method_data_on(outputStream* st) const NOT_JVMCI_RETURN;
1311 void print_data_on(outputStream* st, const char* extra = nullptr) const;
1312 };
1313
1314 // VirtualCallTypeData
1315 //
1316 // A VirtualCallTypeData is used to access profiling information about
1317 // a virtual call for which we collect type information about
1318 // arguments and return value.
1319 class VirtualCallTypeData : public VirtualCallData {
1320 private:
1321 // entries for arguments if any
1322 TypeStackSlotEntries _args;
1323 // entry for return type if any
1324 SingleTypeEntry _ret;
1325
1326 int cell_count_global_offset() const {
1327 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1328 }
1329
1330 // number of cells not counting the header
1331 int cell_count_no_header() const {
1332 return uint_at(cell_count_global_offset());
1333 }
1334
1335 void check_number_of_arguments(int total) {
1336 assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1337 }
1338
1339 public:
1340 VirtualCallTypeData(DataLayout* layout) :
1341 VirtualCallData(layout),
1342 _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1343 _ret(cell_count() - SingleTypeEntry::static_cell_count())
1344 {
1345 assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1346 // Some compilers (VC++) don't want this passed in member initialization list
1347 _args.set_profile_data(this);
1348 _ret.set_profile_data(this);
1349 }
1350
1351 const TypeStackSlotEntries* args() const {
1352 assert(has_arguments(), "no profiling of arguments");
1353 return &_args;
1354 }
1355
1356 const SingleTypeEntry* ret() const {
1357 assert(has_return(), "no profiling of return value");
1358 return &_ret;
1359 }
1360
1361 virtual bool is_VirtualCallTypeData() const { return true; }
1362
1363 static int static_cell_count() {
1364 return -1;
1365 }
1366
1367 static int compute_cell_count(BytecodeStream* stream) {
1368 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1369 }
1370
1371 static void initialize(DataLayout* dl, int cell_count) {
1372 TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
1373 }
1374
1375 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1376
1377 virtual int cell_count() const {
1378 return VirtualCallData::static_cell_count() +
1379 TypeEntriesAtCall::header_cell_count() +
1380 int_at_unchecked(cell_count_global_offset());
1381 }
1382
1383 int number_of_arguments() const {
1384 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1385 }
1386
1387 void set_argument_type(int i, Klass* k) {
1388 assert(has_arguments(), "no arguments!");
1389 intptr_t current = _args.type(i);
1390 _args.set_type(i, TypeEntries::with_status(k, current));
1391 }
1392
1393 void set_return_type(Klass* k) {
1394 assert(has_return(), "no return!");
1395 intptr_t current = _ret.type();
1396 _ret.set_type(TypeEntries::with_status(k, current));
1397 }
1398
1399 // An entry for a return value takes less space than an entry for an
1400 // argument, so if the remainder of the number of cells divided by
1401 // the number of cells for an argument is not null, a return value
1402 // is profiled in this object.
1403 bool has_return() const {
1404 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1405 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1406 return res;
1407 }
1408
1409 // An entry for a return value takes less space than an entry for an
1410 // argument so if the number of cells exceeds the number of cells
1411 // needed for an argument, this object contains type information for
1412 // at least one argument.
1413 bool has_arguments() const {
1414 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1415 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1416 return res;
1417 }
1418
1419 // Code generation support
1420 static ByteSize args_data_offset() {
1421 return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1422 }
1423
1424 ByteSize argument_type_offset(int i) {
1425 return _args.type_offset(i);
1426 }
1427
1428 ByteSize return_type_offset() {
1429 return _ret.type_offset();
1430 }
1431
1432 // GC support
1433 virtual void clean_weak_klass_links(bool always_clean) {
1434 ReceiverTypeData::clean_weak_klass_links(always_clean);
1435 if (has_arguments()) {
1436 _args.clean_weak_klass_links(always_clean);
1437 }
1438 if (has_return()) {
1439 _ret.clean_weak_klass_links(always_clean);
1440 }
1441 }
1442
1443 // CDS support
1444 virtual void metaspace_pointers_do(MetaspaceClosure* it) {
1445 ReceiverTypeData::metaspace_pointers_do(it);
1446 if (has_arguments()) {
1447 _args.metaspace_pointers_do(it);
1448 }
1449 if (has_return()) {
1450 _ret.metaspace_pointers_do(it);
1451 }
1452 }
1453
1454 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const;
1455 };
1456
1457 // RetData
1458 //
1459 // A RetData is used to access profiling information for a ret bytecode.
1460 // It is composed of a count of the number of times that the ret has
1461 // been executed, followed by a series of triples of the form
1462 // (bci, count, di) which count the number of times that some bci was the
1463 // target of the ret and cache a corresponding data displacement.
1464 class RetData : public CounterData {
1465 protected:
1466 enum {
1467 bci0_offset = counter_cell_count,
1468 count0_offset,
1469 displacement0_offset,
1470 ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
1471 };
1472
1473 void set_bci(uint row, int bci) {
1474 assert((uint)row < row_limit(), "oob");
1475 set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1476 }
1477 void release_set_bci(uint row, int bci);
1478 void set_bci_count(uint row, uint count) {
1479 assert((uint)row < row_limit(), "oob");
1480 set_uint_at(count0_offset + row * ret_row_cell_count, count);
1481 }
1482 void set_bci_displacement(uint row, int disp) {
1483 set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
1484 }
1485
1486 public:
1487 RetData(DataLayout* layout) : CounterData(layout) {
1488 assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
1489 }
1490
1491 virtual bool is_RetData() const { return true; }
1492
1493 enum {
1494 no_bci = -1 // value of bci when bci1/2 are not in use.
1495 };
1496
1497 static int static_cell_count() {
1498 return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
1499 }
1500
1501 virtual int cell_count() const {
1502 return static_cell_count();
1503 }
1504
1505 static uint row_limit() {
1506 return (uint) BciProfileWidth;
1507 }
1508 static int bci_cell_index(uint row) {
1509 return bci0_offset + row * ret_row_cell_count;
1510 }
1511 static int bci_count_cell_index(uint row) {
1512 return count0_offset + row * ret_row_cell_count;
1513 }
1514 static int bci_displacement_cell_index(uint row) {
1515 return displacement0_offset + row * ret_row_cell_count;
1516 }
1517
1518 // Direct accessors
1519 int bci(uint row) const {
1520 return int_at(bci_cell_index(row));
1521 }
1522 uint bci_count(uint row) const {
1523 return uint_at(bci_count_cell_index(row));
1524 }
1525 int bci_displacement(uint row) const {
1526 return int_at(bci_displacement_cell_index(row));
1527 }
1528
1529 // Interpreter Runtime support
1530 address fixup_ret(int return_bci, MethodData* mdo);
1531
1532 // Code generation support
1533 static ByteSize bci_offset(uint row) {
1534 return cell_offset(bci_cell_index(row));
1535 }
1536 static ByteSize bci_count_offset(uint row) {
1537 return cell_offset(bci_count_cell_index(row));
1538 }
1539 static ByteSize bci_displacement_offset(uint row) {
1540 return cell_offset(bci_displacement_cell_index(row));
1541 }
1542
1543 // Specific initialization.
1544 void post_initialize(BytecodeStream* stream, MethodData* mdo);
1545
1546 void print_data_on(outputStream* st, const char* extra = nullptr) const;
1547 };
1548
1549 // BranchData
1550 //
1551 // A BranchData is used to access profiling data for a two-way branch.
1552 // It consists of taken and not_taken counts as well as a data displacement
1553 // for the taken case.
1554 class BranchData : public JumpData {
1555 friend class VMStructs;
1556 friend class JVMCIVMStructs;
1557 protected:
1558 enum {
1559 not_taken_off_set = jump_cell_count,
1560 branch_cell_count
1561 };
1562
1563 void set_displacement(int displacement) {
1564 set_int_at(displacement_off_set, displacement);
1565 }
1566
1567 public:
1568 BranchData(DataLayout* layout) : JumpData(layout) {
1569 assert(layout->tag() == DataLayout::branch_data_tag || layout->tag() == DataLayout::acmp_data_tag, "wrong type");
1570 }
1571
1572 virtual bool is_BranchData() const { return true; }
1573
1574 static int static_cell_count() {
1575 return branch_cell_count;
1576 }
1577
1578 virtual int cell_count() const {
1579 return static_cell_count();
1580 }
1581
1582 // Direct accessor
1583 uint not_taken() const {
1584 return uint_at(not_taken_off_set);
1585 }
1586
1587 void set_not_taken(uint cnt) {
1588 set_uint_at(not_taken_off_set, cnt);
1589 }
1590
1591 uint inc_not_taken() {
1592 uint cnt = not_taken() + 1;
1593 // Did we wrap? Will compiler screw us??
1594 if (cnt == 0) cnt--;
1595 set_uint_at(not_taken_off_set, cnt);
1596 return cnt;
1597 }
1598
1599 // Code generation support
1600 static ByteSize not_taken_offset() {
1601 return cell_offset(not_taken_off_set);
1602 }
1603 static ByteSize branch_data_size() {
1604 return cell_offset(branch_cell_count);
1605 }
1606
1607 // Specific initialization.
1608 void post_initialize(BytecodeStream* stream, MethodData* mdo);
1609
1610 void print_data_on(outputStream* st, const char* extra = nullptr) const;
1611 };
1612
1613 // ArrayData
1614 //
1615 // A ArrayData is a base class for accessing profiling data which does
1616 // not have a statically known size. It consists of an array length
1617 // and an array start.
1618 class ArrayData : public ProfileData {
1619 friend class VMStructs;
1620 friend class JVMCIVMStructs;
1621 protected:
1622 friend class DataLayout;
1623
1624 enum {
1625 array_len_off_set,
1626 array_start_off_set
1627 };
1628
1629 uint array_uint_at(int index) const {
1630 int aindex = index + array_start_off_set;
1631 return uint_at(aindex);
1632 }
1633 int array_int_at(int index) const {
1634 int aindex = index + array_start_off_set;
1635 return int_at(aindex);
1636 }
1637 void array_set_int_at(int index, int value) {
1638 int aindex = index + array_start_off_set;
1639 set_int_at(aindex, value);
1640 }
1641
1642 // Code generation support for subclasses.
1643 static ByteSize array_element_offset(int index) {
1644 return cell_offset(array_start_off_set + index);
1645 }
1646
1647 public:
1648 ArrayData(DataLayout* layout) : ProfileData(layout) {}
1649
1650 virtual bool is_ArrayData() const { return true; }
1651
1652 static int static_cell_count() {
1653 return -1;
1654 }
1655
1656 int array_len() const {
1657 return int_at_unchecked(array_len_off_set);
1658 }
1659
1660 virtual int cell_count() const {
1661 return array_len() + 1;
1662 }
1663
1664 // Code generation support
1665 static ByteSize array_len_offset() {
1666 return cell_offset(array_len_off_set);
1667 }
1668 static ByteSize array_start_offset() {
1669 return cell_offset(array_start_off_set);
1670 }
1671 };
1672
1673 // MultiBranchData
1674 //
1675 // A MultiBranchData is used to access profiling information for
1676 // a multi-way branch (*switch bytecodes). It consists of a series
1677 // of (count, displacement) pairs, which count the number of times each
1678 // case was taken and specify the data displacement for each branch target.
1679 class MultiBranchData : public ArrayData {
1680 friend class VMStructs;
1681 friend class JVMCIVMStructs;
1682 protected:
1683 enum {
1684 default_count_off_set,
1685 default_disaplacement_off_set,
1686 case_array_start
1687 };
1688 enum {
1689 relative_count_off_set,
1690 relative_displacement_off_set,
1691 per_case_cell_count
1692 };
1693
1694 void set_default_displacement(int displacement) {
1695 array_set_int_at(default_disaplacement_off_set, displacement);
1696 }
1697 void set_displacement_at(int index, int displacement) {
1698 array_set_int_at(case_array_start +
1699 index * per_case_cell_count +
1700 relative_displacement_off_set,
1701 displacement);
1702 }
1703
1704 public:
1705 MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1706 assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1707 }
1708
1709 virtual bool is_MultiBranchData() const { return true; }
1710
1711 static int compute_cell_count(BytecodeStream* stream);
1712
1713 int number_of_cases() const {
1714 int alen = array_len() - 2; // get rid of default case here.
1715 assert(alen % per_case_cell_count == 0, "must be even");
1716 return (alen / per_case_cell_count);
1717 }
1718
1719 uint default_count() const {
1720 return array_uint_at(default_count_off_set);
1721 }
1722 int default_displacement() const {
1723 return array_int_at(default_disaplacement_off_set);
1724 }
1725
1726 uint count_at(int index) const {
1727 return array_uint_at(case_array_start +
1728 index * per_case_cell_count +
1729 relative_count_off_set);
1730 }
1731 int displacement_at(int index) const {
1732 return array_int_at(case_array_start +
1733 index * per_case_cell_count +
1734 relative_displacement_off_set);
1735 }
1736
1737 // Code generation support
1738 static ByteSize default_count_offset() {
1739 return array_element_offset(default_count_off_set);
1740 }
1741 static ByteSize default_displacement_offset() {
1742 return array_element_offset(default_disaplacement_off_set);
1743 }
1744 static ByteSize case_count_offset(int index) {
1745 return case_array_offset() +
1746 (per_case_size() * index) +
1747 relative_count_offset();
1748 }
1749 static ByteSize case_array_offset() {
1750 return array_element_offset(case_array_start);
1751 }
1752 static ByteSize per_case_size() {
1753 return in_ByteSize(per_case_cell_count) * cell_size;
1754 }
1755 static ByteSize relative_count_offset() {
1756 return in_ByteSize(relative_count_off_set) * cell_size;
1757 }
1758 static ByteSize relative_displacement_offset() {
1759 return in_ByteSize(relative_displacement_off_set) * cell_size;
1760 }
1761
1762 // Specific initialization.
1763 void post_initialize(BytecodeStream* stream, MethodData* mdo);
1764
1765 void print_data_on(outputStream* st, const char* extra = nullptr) const;
1766 };
1767
1768 class ArgInfoData : public ArrayData {
1769
1770 public:
1771 ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1772 assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1773 }
1774
1775 virtual bool is_ArgInfoData() const { return true; }
1776
1777
1778 int number_of_args() const {
1779 return array_len();
1780 }
1781
1782 uint arg_modified(int arg) const {
1783 return array_uint_at(arg);
1784 }
1785
1786 void set_arg_modified(int arg, uint val) {
1787 array_set_int_at(arg, val);
1788 }
1789
1790 void print_data_on(outputStream* st, const char* extra = nullptr) const;
1791 };
1792
1793 // ParametersTypeData
1794 //
1795 // A ParametersTypeData is used to access profiling information about
1796 // types of parameters to a method
1797 class ParametersTypeData : public ArrayData {
1798
1799 private:
1800 TypeStackSlotEntries _parameters;
1801
1802 static int stack_slot_local_offset(int i) {
1803 assert_profiling_enabled();
1804 return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
1805 }
1806
1807 static int type_local_offset(int i) {
1808 assert_profiling_enabled();
1809 return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
1810 }
1811
1812 static bool profiling_enabled();
1813 static void assert_profiling_enabled() {
1814 assert(profiling_enabled(), "method parameters profiling should be on");
1815 }
1816
1817 public:
1818 ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
1819 assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
1820 // Some compilers (VC++) don't want this passed in member initialization list
1821 _parameters.set_profile_data(this);
1822 }
1823
1824 static int compute_cell_count(Method* m);
1825
1826 virtual bool is_ParametersTypeData() const { return true; }
1827
1828 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1829
1830 int number_of_parameters() const {
1831 return array_len() / TypeStackSlotEntries::per_arg_count();
1832 }
1833
1834 const TypeStackSlotEntries* parameters() const { return &_parameters; }
1835
1836 uint stack_slot(int i) const {
1837 return _parameters.stack_slot(i);
1838 }
1839
1840 void set_type(int i, Klass* k) {
1841 intptr_t current = _parameters.type(i);
1842 _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
1843 }
1844
1845 virtual void clean_weak_klass_links(bool always_clean) {
1846 _parameters.clean_weak_klass_links(always_clean);
1847 }
1848
1849 // CDS support
1850 virtual void metaspace_pointers_do(MetaspaceClosure* it) {
1851 _parameters.metaspace_pointers_do(it);
1852 }
1853
1854 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const;
1855
1856 static ByteSize stack_slot_offset(int i) {
1857 return cell_offset(stack_slot_local_offset(i));
1858 }
1859
1860 static ByteSize type_offset(int i) {
1861 return cell_offset(type_local_offset(i));
1862 }
1863 };
1864
1865 // SpeculativeTrapData
1866 //
1867 // A SpeculativeTrapData is used to record traps due to type
1868 // speculation. It records the root of the compilation: that type
1869 // speculation is wrong in the context of one compilation (for
1870 // method1) doesn't mean it's wrong in the context of another one (for
1871 // method2). Type speculation could have more/different data in the
1872 // context of the compilation of method2 and it's worthwhile to try an
1873 // optimization that failed for compilation of method1 in the context
1874 // of compilation of method2.
1875 // Space for SpeculativeTrapData entries is allocated from the extra
1876 // data space in the MDO. If we run out of space, the trap data for
1877 // the ProfileData at that bci is updated.
1878 class SpeculativeTrapData : public ProfileData {
1879 protected:
1880 enum {
1881 speculative_trap_method,
1882 #ifndef _LP64
1883 // The size of the area for traps is a multiple of the header
1884 // size, 2 cells on 32 bits. Packed at the end of this area are
1885 // argument info entries (with tag
1886 // DataLayout::arg_info_data_tag). The logic in
1887 // MethodData::bci_to_extra_data() that guarantees traps don't
1888 // overflow over argument info entries assumes the size of a
1889 // SpeculativeTrapData is twice the header size. On 32 bits, a
1890 // SpeculativeTrapData must be 4 cells.
1891 padding,
1892 #endif
1893 speculative_trap_cell_count
1894 };
1895 public:
1896 SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
1897 assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
1898 }
1899
1900 virtual bool is_SpeculativeTrapData() const { return true; }
1901
1902 static int static_cell_count() {
1903 return speculative_trap_cell_count;
1904 }
1905
1906 virtual int cell_count() const {
1907 return static_cell_count();
1908 }
1909
1910 // Direct accessor
1911 Method* method() const {
1912 return (Method*)intptr_at(speculative_trap_method);
1913 }
1914
1915 void set_method(Method* m) {
1916 assert(!m->is_old(), "cannot add old methods");
1917 set_intptr_at(speculative_trap_method, (intptr_t)m);
1918 }
1919
1920 static ByteSize method_offset() {
1921 return cell_offset(speculative_trap_method);
1922 }
1923
1924 // CDS support
1925 virtual void metaspace_pointers_do(MetaspaceClosure* it);
1926
1927 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const;
1928 };
1929
1930 class ArrayStoreData : public ReceiverTypeData {
1931 private:
1932 enum {
1933 flat_array_flag = BitData::last_bit_data_flag,
1934 null_free_array_flag = flat_array_flag + 1,
1935 };
1936
1937 SingleTypeEntry _array;
1938
1939 public:
1940 ArrayStoreData(DataLayout* layout) :
1941 ReceiverTypeData(layout),
1942 _array(ReceiverTypeData::static_cell_count()) {
1943 assert(layout->tag() == DataLayout::array_store_data_tag, "wrong type");
1944 _array.set_profile_data(this);
1945 }
1946
1947 const SingleTypeEntry* array() const {
1948 return &_array;
1949 }
1950
1951 virtual bool is_ArrayStoreData() const { return true; }
1952
1953 static int static_cell_count() {
1954 return ReceiverTypeData::static_cell_count() + SingleTypeEntry::static_cell_count();
1955 }
1956
1957 virtual int cell_count() const {
1958 return static_cell_count();
1959 }
1960
1961 void set_flat_array() { set_flag_at(flat_array_flag); }
1962 bool flat_array() const { return flag_at(flat_array_flag); }
1963
1964 void set_null_free_array() { set_flag_at(null_free_array_flag); }
1965 bool null_free_array() const { return flag_at(null_free_array_flag); }
1966
1967 // Code generation support
1968 static int flat_array_byte_constant() {
1969 return flag_number_to_constant(flat_array_flag);
1970 }
1971
1972 static int null_free_array_byte_constant() {
1973 return flag_number_to_constant(null_free_array_flag);
1974 }
1975
1976 static ByteSize array_offset() {
1977 return cell_offset(ReceiverTypeData::static_cell_count());
1978 }
1979
1980 virtual void clean_weak_klass_links(bool always_clean) {
1981 ReceiverTypeData::clean_weak_klass_links(always_clean);
1982 _array.clean_weak_klass_links(always_clean);
1983 }
1984
1985 virtual void metaspace_pointers_do(MetaspaceClosure* it) {
1986 ReceiverTypeData::metaspace_pointers_do(it);
1987 _array.metaspace_pointers_do(it);
1988 }
1989
1990 static ByteSize array_store_data_size() {
1991 return cell_offset(static_cell_count());
1992 }
1993
1994 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const;
1995 };
1996
1997 class ArrayLoadData : public BitData {
1998 private:
1999 enum {
2000 flat_array_flag = BitData::last_bit_data_flag,
2001 null_free_array_flag = flat_array_flag + 1,
2002 };
2003
2004 SingleTypeEntry _array;
2005 SingleTypeEntry _element;
2006
2007 public:
2008 ArrayLoadData(DataLayout* layout) :
2009 BitData(layout),
2010 _array(0),
2011 _element(SingleTypeEntry::static_cell_count()) {
2012 assert(layout->tag() == DataLayout::array_load_data_tag, "wrong type");
2013 _array.set_profile_data(this);
2014 _element.set_profile_data(this);
2015 }
2016
2017 const SingleTypeEntry* array() const {
2018 return &_array;
2019 }
2020
2021 const SingleTypeEntry* element() const {
2022 return &_element;
2023 }
2024
2025 virtual bool is_ArrayLoadData() const { return true; }
2026
2027 static int static_cell_count() {
2028 return SingleTypeEntry::static_cell_count() * 2;
2029 }
2030
2031 virtual int cell_count() const {
2032 return static_cell_count();
2033 }
2034
2035 void set_flat_array() { set_flag_at(flat_array_flag); }
2036 bool flat_array() const { return flag_at(flat_array_flag); }
2037
2038 void set_null_free_array() { set_flag_at(null_free_array_flag); }
2039 bool null_free_array() const { return flag_at(null_free_array_flag); }
2040
2041 // Code generation support
2042 static int flat_array_byte_constant() {
2043 return flag_number_to_constant(flat_array_flag);
2044 }
2045
2046 static int null_free_array_byte_constant() {
2047 return flag_number_to_constant(null_free_array_flag);
2048 }
2049
2050 static ByteSize array_offset() {
2051 return cell_offset(0);
2052 }
2053
2054 static ByteSize element_offset() {
2055 return cell_offset(SingleTypeEntry::static_cell_count());
2056 }
2057
2058 virtual void clean_weak_klass_links(bool always_clean) {
2059 _array.clean_weak_klass_links(always_clean);
2060 _element.clean_weak_klass_links(always_clean);
2061 }
2062
2063 virtual void metaspace_pointers_do(MetaspaceClosure* it) {
2064 _array.metaspace_pointers_do(it);
2065 _element.metaspace_pointers_do(it);
2066 }
2067
2068 static ByteSize array_load_data_size() {
2069 return cell_offset(static_cell_count());
2070 }
2071
2072 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const;
2073 };
2074
2075 class ACmpData : public BranchData {
2076 private:
2077 enum {
2078 left_inline_type_flag = DataLayout::first_flag,
2079 right_inline_type_flag
2080 };
2081
2082 SingleTypeEntry _left;
2083 SingleTypeEntry _right;
2084
2085 public:
2086 ACmpData(DataLayout* layout) :
2087 BranchData(layout),
2088 _left(BranchData::static_cell_count()),
2089 _right(BranchData::static_cell_count() + SingleTypeEntry::static_cell_count()) {
2090 assert(layout->tag() == DataLayout::acmp_data_tag, "wrong type");
2091 _left.set_profile_data(this);
2092 _right.set_profile_data(this);
2093 }
2094
2095 const SingleTypeEntry* left() const {
2096 return &_left;
2097 }
2098
2099 const SingleTypeEntry* right() const {
2100 return &_right;
2101 }
2102
2103 virtual bool is_ACmpData() const { return true; }
2104
2105 static int static_cell_count() {
2106 return BranchData::static_cell_count() + SingleTypeEntry::static_cell_count() * 2;
2107 }
2108
2109 virtual int cell_count() const {
2110 return static_cell_count();
2111 }
2112
2113 void set_left_inline_type() { set_flag_at(left_inline_type_flag); }
2114 bool left_inline_type() const { return flag_at(left_inline_type_flag); }
2115
2116 void set_right_inline_type() { set_flag_at(right_inline_type_flag); }
2117 bool right_inline_type() const { return flag_at(right_inline_type_flag); }
2118
2119 // Code generation support
2120 static int left_inline_type_byte_constant() {
2121 return flag_number_to_constant(left_inline_type_flag);
2122 }
2123
2124 static int right_inline_type_byte_constant() {
2125 return flag_number_to_constant(right_inline_type_flag);
2126 }
2127
2128 static ByteSize left_offset() {
2129 return cell_offset(BranchData::static_cell_count());
2130 }
2131
2132 static ByteSize right_offset() {
2133 return cell_offset(BranchData::static_cell_count() + SingleTypeEntry::static_cell_count());
2134 }
2135
2136 virtual void clean_weak_klass_links(bool always_clean) {
2137 _left.clean_weak_klass_links(always_clean);
2138 _right.clean_weak_klass_links(always_clean);
2139 }
2140
2141 virtual void metaspace_pointers_do(MetaspaceClosure* it) {
2142 _left.metaspace_pointers_do(it);
2143 _right.metaspace_pointers_do(it);
2144 }
2145
2146 static ByteSize acmp_data_size() {
2147 return cell_offset(static_cell_count());
2148 }
2149
2150 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const;
2151 };
2152
2153 // MethodData*
2154 //
2155 // A MethodData* holds information which has been collected about
2156 // a method. Its layout looks like this:
2157 //
2158 // -----------------------------
2159 // | header |
2160 // | klass |
2161 // -----------------------------
2162 // | method |
2163 // | size of the MethodData* |
2164 // -----------------------------
2165 // | Data entries... |
2166 // | (variable size) |
2167 // | |
2168 // . .
2169 // . .
2170 // . .
2171 // | |
2172 // -----------------------------
2173 //
2174 // The data entry area is a heterogeneous array of DataLayouts. Each
2175 // DataLayout in the array corresponds to a specific bytecode in the
2176 // method. The entries in the array are sorted by the corresponding
2177 // bytecode. Access to the data is via resource-allocated ProfileData,
2178 // which point to the underlying blocks of DataLayout structures.
2179 //
2180 // During interpretation, if profiling in enabled, the interpreter
2181 // maintains a method data pointer (mdp), which points at the entry
2182 // in the array corresponding to the current bci. In the course of
2183 // interpretation, when a bytecode is encountered that has profile data
2184 // associated with it, the entry pointed to by mdp is updated, then the
2185 // mdp is adjusted to point to the next appropriate DataLayout. If mdp
2186 // is null to begin with, the interpreter assumes that the current method
2187 // is not (yet) being profiled.
2188 //
2189 // In MethodData* parlance, "dp" is a "data pointer", the actual address
2190 // of a DataLayout element. A "di" is a "data index", the offset in bytes
2191 // from the base of the data entry array. A "displacement" is the byte offset
2192 // in certain ProfileData objects that indicate the amount the mdp must be
2193 // adjusted in the event of a change in control flow.
2194 //
2195
2196 class CleanExtraDataClosure : public StackObj {
2197 public:
2198 virtual bool is_live(Method* m) = 0;
2199 };
2200
2201
2202 #if INCLUDE_JVMCI
2203 // Encapsulates an encoded speculation reason. These are linked together in
2204 // a list that is atomically appended to during deoptimization. Entries are
2205 // never removed from the list.
2206 // @see jdk.vm.ci.hotspot.HotSpotSpeculationLog.HotSpotSpeculationEncoding
2207 class FailedSpeculation: public CHeapObj<mtCompiler> {
2208 private:
2209 // The length of HotSpotSpeculationEncoding.toByteArray(). The data itself
2210 // is an array embedded at the end of this object.
2211 int _data_len;
2212
2213 // Next entry in a linked list.
2214 FailedSpeculation* _next;
2215
2216 FailedSpeculation(address data, int data_len);
2217
2218 FailedSpeculation** next_adr() { return &_next; }
2219
2220 // Placement new operator for inlining the speculation data into
2221 // the FailedSpeculation object.
2222 void* operator new(size_t size, size_t fs_size) throw();
2223
2224 public:
2225 char* data() { return (char*)(((address) this) + sizeof(FailedSpeculation)); }
2226 int data_len() const { return _data_len; }
2227 FailedSpeculation* next() const { return _next; }
2228
2229 // Atomically appends a speculation from nm to the list whose head is at (*failed_speculations_address).
2230 // Returns false if the FailedSpeculation object could not be allocated.
2231 static bool add_failed_speculation(nmethod* nm, FailedSpeculation** failed_speculations_address, address speculation, int speculation_len);
2232
2233 // Frees all entries in the linked list whose head is at (*failed_speculations_address).
2234 static void free_failed_speculations(FailedSpeculation** failed_speculations_address);
2235 };
2236 #endif
2237
2238 class ciMethodData;
2239
2240 class MethodData : public Metadata {
2241 friend class VMStructs;
2242 friend class JVMCIVMStructs;
2243 friend class ProfileData;
2244 friend class TypeEntriesAtCall;
2245 friend class ciMethodData;
2246 friend class VM_ReinitializeMDO;
2247
2248 // If you add a new field that points to any metaspace object, you
2249 // must add this field to MethodData::metaspace_pointers_do().
2250
2251 // Back pointer to the Method*
2252 Method* _method;
2253
2254 // Size of this oop in bytes
2255 int _size;
2256
2257 // Cached hint for bci_to_dp and bci_to_data
2258 int _hint_di;
2259
2260 Mutex* volatile _extra_data_lock;
2261
2262 MethodData(const methodHandle& method);
2263
2264 void initialize();
2265
2266 public:
2267 MethodData();
2268
2269 static MethodData* allocate(ClassLoaderData* loader_data, const methodHandle& method, TRAPS);
2270
2271 virtual bool is_methodData() const { return true; }
2272
2273 // Safely reinitialize the data in the MDO. This is intended as a testing facility as the
2274 // reinitialization is performed at a safepoint so it's isn't cheap and it doesn't ensure that all
2275 // readers will see consistent profile data.
2276 void reinitialize();
2277
2278 // Whole-method sticky bits and flags
2279 enum {
2280 _trap_hist_limit = Deoptimization::Reason_TRAP_HISTORY_LENGTH,
2281 _trap_hist_mask = max_jubyte,
2282 _extra_data_count = 4 // extra DataLayout headers, for trap history
2283 }; // Public flag values
2284
2285 // Compiler-related counters.
2286 class CompilerCounters {
2287 friend class VMStructs;
2288 friend class JVMCIVMStructs;
2289
2290 uint _nof_decompiles; // count of all nmethod removals
2291 uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits
2292 uint _nof_overflow_traps; // trap count, excluding _trap_hist
2293 union {
2294 intptr_t _align;
2295 // JVMCI separates trap history for OSR compilations from normal compilations
2296 u1 _array[JVMCI_ONLY(2 *) MethodData::_trap_hist_limit];
2297 } _trap_hist;
2298
2299 public:
2300 CompilerCounters() : _nof_decompiles(0), _nof_overflow_recompiles(0), _nof_overflow_traps(0) {
2301 #ifndef ZERO
2302 // Some Zero platforms do not have expected alignment, and do not use
2303 // this code. static_assert would still fire and fail for them.
2304 static_assert(sizeof(_trap_hist) % HeapWordSize == 0, "align");
2305 #endif
2306 uint size_in_words = sizeof(_trap_hist) / HeapWordSize;
2307 Copy::zero_to_words((HeapWord*) &_trap_hist, size_in_words);
2308 }
2309
2310 // Return (uint)-1 for overflow.
2311 uint trap_count(int reason) const {
2312 assert((uint)reason < ARRAY_SIZE(_trap_hist._array), "oob");
2313 return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
2314 }
2315
2316 uint inc_trap_count(int reason) {
2317 // Count another trap, anywhere in this method.
2318 assert(reason >= 0, "must be single trap");
2319 assert((uint)reason < ARRAY_SIZE(_trap_hist._array), "oob");
2320 uint cnt1 = 1 + _trap_hist._array[reason];
2321 if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow...
2322 _trap_hist._array[reason] = (u1)cnt1;
2323 return cnt1;
2324 } else {
2325 return _trap_hist_mask + (++_nof_overflow_traps);
2326 }
2327 }
2328
2329 uint overflow_trap_count() const {
2330 return _nof_overflow_traps;
2331 }
2332 uint overflow_recompile_count() const {
2333 return _nof_overflow_recompiles;
2334 }
2335 uint inc_overflow_recompile_count() {
2336 return ++_nof_overflow_recompiles;
2337 }
2338 uint decompile_count() const {
2339 return _nof_decompiles;
2340 }
2341 uint inc_decompile_count() {
2342 return ++_nof_decompiles;
2343 }
2344
2345 // Support for code generation
2346 static ByteSize trap_history_offset() {
2347 return byte_offset_of(CompilerCounters, _trap_hist._array);
2348 }
2349 };
2350
2351 private:
2352 CompilerCounters _compiler_counters;
2353
2354 // Support for interprocedural escape analysis, from Thomas Kotzmann.
2355 intx _eflags; // flags on escape information
2356 intx _arg_local; // bit set of non-escaping arguments
2357 intx _arg_stack; // bit set of stack-allocatable arguments
2358 intx _arg_returned; // bit set of returned arguments
2359
2360 // How many invocations has this MDO seen?
2361 // These counters are used to determine the exact age of MDO.
2362 // We need those because in tiered a method can be concurrently
2363 // executed at different levels.
2364 InvocationCounter _invocation_counter;
2365 // Same for backedges.
2366 InvocationCounter _backedge_counter;
2367 // Counter values at the time profiling started.
2368 int _invocation_counter_start;
2369 int _backedge_counter_start;
2370 uint _tenure_traps;
2371 int _invoke_mask; // per-method Tier0InvokeNotifyFreqLog
2372 int _backedge_mask; // per-method Tier0BackedgeNotifyFreqLog
2373
2374 // Number of loops and blocks is computed when compiling the first
2375 // time with C1. It is used to determine if method is trivial.
2376 short _num_loops;
2377 short _num_blocks;
2378 // Does this method contain anything worth profiling?
2379 enum WouldProfile {unknown, no_profile, profile};
2380 WouldProfile _would_profile;
2381
2382 #if INCLUDE_JVMCI
2383 // Support for HotSpotMethodData.setCompiledIRSize(int)
2384 FailedSpeculation* _failed_speculations;
2385 int _jvmci_ir_size;
2386 #endif
2387
2388 // Size of _data array in bytes. (Excludes header and extra_data fields.)
2389 int _data_size;
2390
2391 // data index for the area dedicated to parameters. -1 if no
2392 // parameter profiling.
2393 enum { no_parameters = -2, parameters_uninitialized = -1 };
2394 int _parameters_type_data_di;
2395
2396 // data index of exception handler profiling data
2397 int _exception_handler_data_di;
2398
2399 // Beginning of the data entries
2400 // See comment in ciMethodData::load_data
2401 intptr_t _data[1];
2402
2403 // Helper for size computation
2404 static int compute_data_size(BytecodeStream* stream);
2405 static int bytecode_cell_count(Bytecodes::Code code);
2406 static bool is_speculative_trap_bytecode(Bytecodes::Code code);
2407 enum { no_profile_data = -1, variable_cell_count = -2 };
2408
2409 // Helper for initialization
2410 DataLayout* data_layout_at(int data_index) const {
2411 assert(data_index % sizeof(intptr_t) == 0, "unaligned");
2412 return (DataLayout*) (((address)_data) + data_index);
2413 }
2414
2415 static int single_exception_handler_data_cell_count() {
2416 return BitData::static_cell_count();
2417 }
2418
2419 static int single_exception_handler_data_size() {
2420 return DataLayout::compute_size_in_bytes(single_exception_handler_data_cell_count());
2421 }
2422
2423 DataLayout* exception_handler_data_at(int exception_handler_index) const {
2424 return data_layout_at(_exception_handler_data_di + (exception_handler_index * single_exception_handler_data_size()));
2425 }
2426
2427 int num_exception_handler_data() const {
2428 return exception_handlers_data_size() / single_exception_handler_data_size();
2429 }
2430
2431 // Initialize an individual data segment. Returns the size of
2432 // the segment in bytes.
2433 int initialize_data(BytecodeStream* stream, int data_index);
2434
2435 // Helper for data_at
2436 DataLayout* limit_data_position() const {
2437 return data_layout_at(_data_size);
2438 }
2439 bool out_of_bounds(int data_index) const {
2440 return data_index >= data_size();
2441 }
2442
2443 // Give each of the data entries a chance to perform specific
2444 // data initialization.
2445 void post_initialize(BytecodeStream* stream);
2446
2447 // hint accessors
2448 int hint_di() const { return _hint_di; }
2449 void set_hint_di(int di) {
2450 assert(!out_of_bounds(di), "hint_di out of bounds");
2451 _hint_di = di;
2452 }
2453
2454 DataLayout* data_layout_before(int bci) {
2455 // avoid SEGV on this edge case
2456 if (data_size() == 0)
2457 return nullptr;
2458 DataLayout* layout = data_layout_at(hint_di());
2459 if (layout->bci() <= bci)
2460 return layout;
2461 return data_layout_at(first_di());
2462 }
2463
2464 // What is the index of the first data entry?
2465 int first_di() const { return 0; }
2466
2467 ProfileData* bci_to_extra_data_find(int bci, Method* m, DataLayout*& dp);
2468 // Find or create an extra ProfileData:
2469 ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
2470
2471 // return the argument info cell
2472 ArgInfoData *arg_info();
2473
2474 enum {
2475 no_type_profile = 0,
2476 type_profile_jsr292 = 1,
2477 type_profile_all = 2
2478 };
2479
2480 static bool profile_jsr292(const methodHandle& m, int bci);
2481 static bool profile_unsafe(const methodHandle& m, int bci);
2482 static bool profile_memory_access(const methodHandle& m, int bci);
2483 static int profile_arguments_flag();
2484 static bool profile_all_arguments();
2485 static bool profile_arguments_for_invoke(const methodHandle& m, int bci);
2486 static int profile_return_flag();
2487 static bool profile_all_return();
2488 static bool profile_return_for_invoke(const methodHandle& m, int bci);
2489 static int profile_parameters_flag();
2490 static bool profile_parameters_jsr292_only();
2491 static bool profile_all_parameters();
2492
2493 void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false);
2494 void verify_extra_data_clean(CleanExtraDataClosure* cl);
2495
2496 DataLayout* exception_handler_bci_to_data_helper(int bci);
2497
2498 public:
2499 void clean_extra_data(CleanExtraDataClosure* cl);
2500
2501 static int header_size() {
2502 return sizeof(MethodData)/wordSize;
2503 }
2504
2505 // Compute the size of a MethodData* before it is created.
2506 static int compute_allocation_size_in_bytes(const methodHandle& method);
2507 static int compute_allocation_size_in_words(const methodHandle& method);
2508 static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
2509
2510 // Determine if a given bytecode can have profile information.
2511 static bool bytecode_has_profile(Bytecodes::Code code) {
2512 return bytecode_cell_count(code) != no_profile_data;
2513 }
2514
2515 // reset into original state
2516 void init();
2517
2518 // My size
2519 int size_in_bytes() const { return _size; }
2520 int size() const { return align_metadata_size(align_up(_size, BytesPerWord)/BytesPerWord); }
2521
2522 int invocation_count() {
2523 if (invocation_counter()->carry()) {
2524 return InvocationCounter::count_limit;
2525 }
2526 return invocation_counter()->count();
2527 }
2528 int backedge_count() {
2529 if (backedge_counter()->carry()) {
2530 return InvocationCounter::count_limit;
2531 }
2532 return backedge_counter()->count();
2533 }
2534
2535 int invocation_count_start() {
2536 if (invocation_counter()->carry()) {
2537 return 0;
2538 }
2539 return _invocation_counter_start;
2540 }
2541
2542 int backedge_count_start() {
2543 if (backedge_counter()->carry()) {
2544 return 0;
2545 }
2546 return _backedge_counter_start;
2547 }
2548
2549 int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
2550 int backedge_count_delta() { return backedge_count() - backedge_count_start(); }
2551
2552 void reset_start_counters() {
2553 _invocation_counter_start = invocation_count();
2554 _backedge_counter_start = backedge_count();
2555 }
2556
2557 InvocationCounter* invocation_counter() { return &_invocation_counter; }
2558 InvocationCounter* backedge_counter() { return &_backedge_counter; }
2559
2560 #if INCLUDE_JVMCI
2561 FailedSpeculation** get_failed_speculations_address() {
2562 return &_failed_speculations;
2563 }
2564 #endif
2565
2566 #if INCLUDE_CDS
2567 void remove_unshareable_info();
2568 void restore_unshareable_info(TRAPS);
2569 #endif
2570
2571 void set_would_profile(bool p) { _would_profile = p ? profile : no_profile; }
2572 bool would_profile() const { return _would_profile != no_profile; }
2573
2574 int num_loops() const { return _num_loops; }
2575 void set_num_loops(short n) { _num_loops = n; }
2576 int num_blocks() const { return _num_blocks; }
2577 void set_num_blocks(short n) { _num_blocks = n; }
2578
2579 bool is_mature() const;
2580
2581 // Support for interprocedural escape analysis, from Thomas Kotzmann.
2582 enum EscapeFlag {
2583 estimated = 1 << 0,
2584 return_local = 1 << 1,
2585 return_allocated = 1 << 2,
2586 allocated_escapes = 1 << 3,
2587 unknown_modified = 1 << 4
2588 };
2589
2590 intx eflags() { return _eflags; }
2591 intx arg_local() { return _arg_local; }
2592 intx arg_stack() { return _arg_stack; }
2593 intx arg_returned() { return _arg_returned; }
2594 uint arg_modified(int a);
2595 void set_eflags(intx v) { _eflags = v; }
2596 void set_arg_local(intx v) { _arg_local = v; }
2597 void set_arg_stack(intx v) { _arg_stack = v; }
2598 void set_arg_returned(intx v) { _arg_returned = v; }
2599 void set_arg_modified(int a, uint v);
2600 void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
2601
2602 // Location and size of data area
2603 address data_base() const {
2604 return (address) _data;
2605 }
2606 int data_size() const {
2607 return _data_size;
2608 }
2609
2610 int parameters_size_in_bytes() const {
2611 return pointer_delta_as_int((address) parameters_data_limit(), (address) parameters_data_base());
2612 }
2613
2614 int exception_handlers_data_size() const {
2615 return pointer_delta_as_int((address) exception_handler_data_limit(), (address) exception_handler_data_base());
2616 }
2617
2618 // Accessors
2619 Method* method() const { return _method; }
2620
2621 // Get the data at an arbitrary (sort of) data index.
2622 ProfileData* data_at(int data_index) const;
2623
2624 // Walk through the data in order.
2625 ProfileData* first_data() const { return data_at(first_di()); }
2626 ProfileData* next_data(ProfileData* current) const;
2627 DataLayout* next_data_layout(DataLayout* current) const;
2628 bool is_valid(ProfileData* current) const { return current != nullptr; }
2629 bool is_valid(DataLayout* current) const { return current != nullptr; }
2630
2631 // Convert a dp (data pointer) to a di (data index).
2632 int dp_to_di(address dp) const {
2633 return (int)(dp - ((address)_data));
2634 }
2635
2636 // bci to di/dp conversion.
2637 address bci_to_dp(int bci);
2638 int bci_to_di(int bci) {
2639 return dp_to_di(bci_to_dp(bci));
2640 }
2641
2642 // Get the data at an arbitrary bci, or null if there is none.
2643 ProfileData* bci_to_data(int bci);
2644
2645 // Same, but try to create an extra_data record if one is needed:
2646 ProfileData* allocate_bci_to_data(int bci, Method* m) {
2647 check_extra_data_locked();
2648
2649 ProfileData* data = nullptr;
2650 // If m not null, try to allocate a SpeculativeTrapData entry
2651 if (m == nullptr) {
2652 data = bci_to_data(bci);
2653 }
2654 if (data != nullptr) {
2655 return data;
2656 }
2657 data = bci_to_extra_data(bci, m, true);
2658 if (data != nullptr) {
2659 return data;
2660 }
2661 // If SpeculativeTrapData allocation fails try to allocate a
2662 // regular entry
2663 data = bci_to_data(bci);
2664 if (data != nullptr) {
2665 return data;
2666 }
2667 return bci_to_extra_data(bci, nullptr, true);
2668 }
2669
2670 BitData* exception_handler_bci_to_data_or_null(int bci);
2671 BitData exception_handler_bci_to_data(int bci);
2672
2673 // Add a handful of extra data records, for trap tracking.
2674 // Only valid after 'set_size' is called at the end of MethodData::initialize
2675 DataLayout* extra_data_base() const {
2676 check_extra_data_locked();
2677 return limit_data_position();
2678 }
2679 DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
2680 // pointers to sections in extra data
2681 DataLayout* args_data_limit() const { return parameters_data_base(); }
2682 DataLayout* parameters_data_base() const {
2683 assert(_parameters_type_data_di != parameters_uninitialized, "called too early");
2684 return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di) : parameters_data_limit();
2685 }
2686 DataLayout* parameters_data_limit() const {
2687 assert(_parameters_type_data_di != parameters_uninitialized, "called too early");
2688 return exception_handler_data_base();
2689 }
2690 DataLayout* exception_handler_data_base() const { return data_layout_at(_exception_handler_data_di); }
2691 DataLayout* exception_handler_data_limit() const { return extra_data_limit(); }
2692
2693 int extra_data_size() const { return (int)((address)extra_data_limit() - (address)limit_data_position()); }
2694 static DataLayout* next_extra(DataLayout* dp);
2695
2696 // Return (uint)-1 for overflow.
2697 uint trap_count(int reason) const {
2698 return _compiler_counters.trap_count(reason);
2699 }
2700 // For loops:
2701 static uint trap_reason_limit() { return _trap_hist_limit; }
2702 static uint trap_count_limit() { return _trap_hist_mask; }
2703 uint inc_trap_count(int reason) {
2704 return _compiler_counters.inc_trap_count(reason);
2705 }
2706
2707 uint overflow_trap_count() const {
2708 return _compiler_counters.overflow_trap_count();
2709 }
2710 uint overflow_recompile_count() const {
2711 return _compiler_counters.overflow_recompile_count();
2712 }
2713 uint inc_overflow_recompile_count() {
2714 return _compiler_counters.inc_overflow_recompile_count();
2715 }
2716 uint decompile_count() const {
2717 return _compiler_counters.decompile_count();
2718 }
2719 uint inc_decompile_count() {
2720 uint dec_count = _compiler_counters.inc_decompile_count();
2721 if (dec_count > (uint)PerMethodRecompilationCutoff) {
2722 method()->set_not_compilable("decompile_count > PerMethodRecompilationCutoff", CompLevel_full_optimization);
2723 }
2724 return dec_count;
2725 }
2726 uint tenure_traps() const {
2727 return _tenure_traps;
2728 }
2729 void inc_tenure_traps() {
2730 _tenure_traps += 1;
2731 }
2732
2733 // Return pointer to area dedicated to parameters in MDO
2734 ParametersTypeData* parameters_type_data() const {
2735 assert(_parameters_type_data_di != parameters_uninitialized, "called too early");
2736 return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : nullptr;
2737 }
2738
2739 int parameters_type_data_di() const {
2740 assert(_parameters_type_data_di != parameters_uninitialized, "called too early");
2741 return _parameters_type_data_di != no_parameters ? _parameters_type_data_di : exception_handlers_data_di();
2742 }
2743
2744 int exception_handlers_data_di() const {
2745 return _exception_handler_data_di;
2746 }
2747
2748 // Support for code generation
2749 static ByteSize data_offset() {
2750 return byte_offset_of(MethodData, _data[0]);
2751 }
2752
2753 static ByteSize trap_history_offset() {
2754 return byte_offset_of(MethodData, _compiler_counters) + CompilerCounters::trap_history_offset();
2755 }
2756
2757 static ByteSize invocation_counter_offset() {
2758 return byte_offset_of(MethodData, _invocation_counter);
2759 }
2760
2761 static ByteSize backedge_counter_offset() {
2762 return byte_offset_of(MethodData, _backedge_counter);
2763 }
2764
2765 static ByteSize invoke_mask_offset() {
2766 return byte_offset_of(MethodData, _invoke_mask);
2767 }
2768
2769 static ByteSize backedge_mask_offset() {
2770 return byte_offset_of(MethodData, _backedge_mask);
2771 }
2772
2773 static ByteSize parameters_type_data_di_offset() {
2774 return byte_offset_of(MethodData, _parameters_type_data_di);
2775 }
2776
2777 virtual void metaspace_pointers_do(MetaspaceClosure* iter);
2778 virtual MetaspaceObj::Type type() const { return MethodDataType; }
2779
2780 // Deallocation support
2781 void deallocate_contents(ClassLoaderData* loader_data);
2782 void release_C_heap_structures();
2783
2784 // GC support
2785 void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
2786
2787 // Printing
2788 void print_on (outputStream* st) const;
2789 void print_value_on(outputStream* st) const;
2790
2791 // printing support for method data
2792 void print_data_on(outputStream* st) const;
2793
2794 const char* internal_name() const { return "{method data}"; }
2795
2796 // verification
2797 void verify_on(outputStream* st);
2798 void verify_data_on(outputStream* st);
2799
2800 static bool profile_parameters_for_method(const methodHandle& m);
2801 static bool profile_arguments();
2802 static bool profile_arguments_jsr292_only();
2803 static bool profile_return();
2804 static bool profile_parameters();
2805 static bool profile_return_jsr292_only();
2806
2807 void clean_method_data(bool always_clean);
2808 void clean_weak_method_links();
2809 Mutex* extra_data_lock();
2810 void check_extra_data_locked() const NOT_DEBUG_RETURN;
2811 };
2812
2813 #endif // SHARE_OOPS_METHODDATA_HPP