1 /* 2 * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OOPS_METHODDATA_HPP 26 #define SHARE_OOPS_METHODDATA_HPP 27 28 #include "interpreter/bytecodes.hpp" 29 #include "interpreter/invocationCounter.hpp" 30 #include "oops/metadata.hpp" 31 #include "oops/method.hpp" 32 #include "oops/oop.hpp" 33 #include "runtime/atomic.hpp" 34 #include "runtime/deoptimization.hpp" 35 #include "runtime/mutex.hpp" 36 #include "utilities/align.hpp" 37 #include "utilities/copy.hpp" 38 39 class BytecodeStream; 40 41 // The MethodData object collects counts and other profile information 42 // during zeroth-tier (interpreter) and third-tier (C1 with full profiling) 43 // execution. 44 // 45 // The profile is used later by compilation heuristics. Some heuristics 46 // enable use of aggressive (or "heroic") optimizations. An aggressive 47 // optimization often has a down-side, a corner case that it handles 48 // poorly, but which is thought to be rare. The profile provides 49 // evidence of this rarity for a given method or even BCI. It allows 50 // the compiler to back out of the optimization at places where it 51 // has historically been a poor choice. Other heuristics try to use 52 // specific information gathered about types observed at a given site. 53 // 54 // All data in the profile is approximate. It is expected to be accurate 55 // on the whole, but the system expects occasional inaccuraces, due to 56 // counter overflow, multiprocessor races during data collection, space 57 // limitations, missing MDO blocks, etc. Bad or missing data will degrade 58 // optimization quality but will not affect correctness. Also, each MDO 59 // is marked with its birth-date ("creation_mileage") which can be used 60 // to assess the quality ("maturity") of its data. 61 // 62 // Short (<32-bit) counters are designed to overflow to a known "saturated" 63 // state. Also, certain recorded per-BCI events are given one-bit counters 64 // which overflow to a saturated state which applied to all counters at 65 // that BCI. In other words, there is a small lattice which approximates 66 // the ideal of an infinite-precision counter for each event at each BCI, 67 // and the lattice quickly "bottoms out" in a state where all counters 68 // are taken to be indefinitely large. 69 // 70 // The reader will find many data races in profile gathering code, starting 71 // with invocation counter incrementation. None of these races harm correct 72 // execution of the compiled code. 73 74 // forward decl 75 class ProfileData; 76 77 // DataLayout 78 // 79 // Overlay for generic profiling data. 80 class DataLayout { 81 friend class VMStructs; 82 friend class JVMCIVMStructs; 83 84 private: 85 // Every data layout begins with a header. This header 86 // contains a tag, which is used to indicate the size/layout 87 // of the data, 8 bits of flags, which can be used in any way, 88 // 32 bits of trap history (none/one reason/many reasons), 89 // and a bci, which is used to tie this piece of data to a 90 // specific bci in the bytecodes. 91 union { 92 u8 _bits; 93 struct { 94 u1 _tag; 95 u1 _flags; 96 u2 _bci; 97 u4 _traps; 98 } _struct; 99 } _header; 100 101 // The data layout has an arbitrary number of cells, each sized 102 // to accommodate a pointer or an integer. 103 intptr_t _cells[1]; 104 105 // Some types of data layouts need a length field. 106 static bool needs_array_len(u1 tag); 107 108 public: 109 enum { 110 counter_increment = 1 111 }; 112 113 enum { 114 cell_size = sizeof(intptr_t) 115 }; 116 117 // Tag values 118 enum : u1 { 119 no_tag, 120 bit_data_tag, 121 counter_data_tag, 122 jump_data_tag, 123 receiver_type_data_tag, 124 virtual_call_data_tag, 125 ret_data_tag, 126 branch_data_tag, 127 multi_branch_data_tag, 128 arg_info_data_tag, 129 call_type_data_tag, 130 virtual_call_type_data_tag, 131 parameters_type_data_tag, 132 speculative_trap_data_tag, 133 array_store_data_tag, 134 array_load_data_tag, 135 acmp_data_tag 136 }; 137 138 enum { 139 // The trap state breaks down as [recompile:1 | reason:31]. 140 // This further breakdown is defined in deoptimization.cpp. 141 // See Deoptimization::trap_state_reason for an assert that 142 // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT. 143 // 144 // The trap_state is collected only if ProfileTraps is true. 145 trap_bits = 1+31, // 31: enough to distinguish [0..Reason_RECORDED_LIMIT]. 146 trap_mask = -1, 147 first_flag = 0 148 }; 149 150 // Size computation 151 static int header_size_in_bytes() { 152 return header_size_in_cells() * cell_size; 153 } 154 static int header_size_in_cells() { 155 return LP64_ONLY(1) NOT_LP64(2); 156 } 157 158 static int compute_size_in_bytes(int cell_count) { 159 return header_size_in_bytes() + cell_count * cell_size; 160 } 161 162 // Initialization 163 void initialize(u1 tag, u2 bci, int cell_count); 164 165 // Accessors 166 u1 tag() { 167 return _header._struct._tag; 168 } 169 170 // Return 32 bits of trap state. 171 // The state tells if traps with zero, one, or many reasons have occurred. 172 // It also tells whether zero or many recompilations have occurred. 173 // The associated trap histogram in the MDO itself tells whether 174 // traps are common or not. If a BCI shows that a trap X has 175 // occurred, and the MDO shows N occurrences of X, we make the 176 // simplifying assumption that all N occurrences can be blamed 177 // on that BCI. 178 uint trap_state() const { 179 return _header._struct._traps; 180 } 181 182 void set_trap_state(uint new_state) { 183 assert(ProfileTraps, "used only under +ProfileTraps"); 184 uint old_flags = _header._struct._traps; 185 _header._struct._traps = new_state | old_flags; 186 } 187 188 u1 flags() const { 189 return Atomic::load_acquire(&_header._struct._flags); 190 } 191 192 u2 bci() const { 193 return _header._struct._bci; 194 } 195 196 void set_header(u8 value) { 197 _header._bits = value; 198 } 199 u8 header() { 200 return _header._bits; 201 } 202 void set_cell_at(int index, intptr_t value) { 203 _cells[index] = value; 204 } 205 void release_set_cell_at(int index, intptr_t value); 206 intptr_t cell_at(int index) const { 207 return _cells[index]; 208 } 209 210 bool set_flag_at(u1 flag_number) { 211 const u1 bit = 1 << flag_number; 212 u1 compare_value; 213 do { 214 compare_value = _header._struct._flags; 215 if ((compare_value & bit) == bit) { 216 // already set. 217 return false; 218 } 219 } while (compare_value != Atomic::cmpxchg(&_header._struct._flags, compare_value, static_cast<u1>(compare_value | bit))); 220 return true; 221 } 222 223 bool clear_flag_at(u1 flag_number) { 224 const u1 bit = 1 << flag_number; 225 u1 compare_value; 226 u1 exchange_value; 227 do { 228 compare_value = _header._struct._flags; 229 if ((compare_value & bit) == 0) { 230 // already cleaed. 231 return false; 232 } 233 exchange_value = compare_value & ~bit; 234 } while (compare_value != Atomic::cmpxchg(&_header._struct._flags, compare_value, exchange_value)); 235 return true; 236 } 237 238 bool flag_at(u1 flag_number) const { 239 return (flags() & (1 << flag_number)) != 0; 240 } 241 242 // Low-level support for code generation. 243 static ByteSize header_offset() { 244 return byte_offset_of(DataLayout, _header); 245 } 246 static ByteSize tag_offset() { 247 return byte_offset_of(DataLayout, _header._struct._tag); 248 } 249 static ByteSize flags_offset() { 250 return byte_offset_of(DataLayout, _header._struct._flags); 251 } 252 static ByteSize bci_offset() { 253 return byte_offset_of(DataLayout, _header._struct._bci); 254 } 255 static ByteSize cell_offset(int index) { 256 return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size); 257 } 258 // Return a value which, when or-ed as a byte into _flags, sets the flag. 259 static u1 flag_number_to_constant(u1 flag_number) { 260 DataLayout temp; temp.set_header(0); 261 temp.set_flag_at(flag_number); 262 return temp._header._struct._flags; 263 } 264 // Return a value which, when or-ed as a word into _header, sets the flag. 265 static u8 flag_mask_to_header_mask(u1 byte_constant) { 266 DataLayout temp; temp.set_header(0); 267 temp._header._struct._flags = byte_constant; 268 return temp._header._bits; 269 } 270 271 ProfileData* data_in(); 272 273 int size_in_bytes() { 274 int cells = cell_count(); 275 assert(cells >= 0, "invalid number of cells"); 276 return DataLayout::compute_size_in_bytes(cells); 277 } 278 int cell_count(); 279 280 // GC support 281 void clean_weak_klass_links(bool always_clean); 282 }; 283 284 285 // ProfileData class hierarchy 286 class ProfileData; 287 class BitData; 288 class CounterData; 289 class ReceiverTypeData; 290 class VirtualCallData; 291 class VirtualCallTypeData; 292 class ArrayStoreData; 293 class RetData; 294 class CallTypeData; 295 class JumpData; 296 class BranchData; 297 class ACmpData; 298 class ArrayData; 299 class MultiBranchData; 300 class ArgInfoData; 301 class ParametersTypeData; 302 class SpeculativeTrapData; 303 class ArrayLoadData; 304 305 // ProfileData 306 // 307 // A ProfileData object is created to refer to a section of profiling 308 // data in a structured way. 309 class ProfileData : public ResourceObj { 310 friend class TypeEntries; 311 friend class SingleTypeEntry; 312 friend class TypeStackSlotEntries; 313 private: 314 enum { 315 tab_width_one = 16, 316 tab_width_two = 36 317 }; 318 319 // This is a pointer to a section of profiling data. 320 DataLayout* _data; 321 322 char* print_data_on_helper(const MethodData* md) const; 323 324 protected: 325 DataLayout* data() { return _data; } 326 const DataLayout* data() const { return _data; } 327 328 enum { 329 cell_size = DataLayout::cell_size 330 }; 331 332 public: 333 // How many cells are in this? 334 virtual int cell_count() const { 335 ShouldNotReachHere(); 336 return -1; 337 } 338 339 // Return the size of this data. 340 int size_in_bytes() { 341 return DataLayout::compute_size_in_bytes(cell_count()); 342 } 343 344 protected: 345 // Low-level accessors for underlying data 346 void set_intptr_at(int index, intptr_t value) { 347 assert(0 <= index && index < cell_count(), "oob"); 348 data()->set_cell_at(index, value); 349 } 350 void release_set_intptr_at(int index, intptr_t value); 351 intptr_t intptr_at(int index) const { 352 assert(0 <= index && index < cell_count(), "oob"); 353 return data()->cell_at(index); 354 } 355 void set_uint_at(int index, uint value) { 356 set_intptr_at(index, (intptr_t) value); 357 } 358 void release_set_uint_at(int index, uint value); 359 uint uint_at(int index) const { 360 return (uint)intptr_at(index); 361 } 362 void set_int_at(int index, int value) { 363 set_intptr_at(index, (intptr_t) value); 364 } 365 void release_set_int_at(int index, int value); 366 int int_at(int index) const { 367 return (int)intptr_at(index); 368 } 369 int int_at_unchecked(int index) const { 370 return (int)data()->cell_at(index); 371 } 372 void set_oop_at(int index, oop value) { 373 set_intptr_at(index, cast_from_oop<intptr_t>(value)); 374 } 375 oop oop_at(int index) const { 376 return cast_to_oop(intptr_at(index)); 377 } 378 379 void set_flag_at(u1 flag_number) { 380 data()->set_flag_at(flag_number); 381 } 382 bool flag_at(u1 flag_number) const { 383 return data()->flag_at(flag_number); 384 } 385 386 // two convenient imports for use by subclasses: 387 static ByteSize cell_offset(int index) { 388 return DataLayout::cell_offset(index); 389 } 390 static u1 flag_number_to_constant(u1 flag_number) { 391 return DataLayout::flag_number_to_constant(flag_number); 392 } 393 394 ProfileData(DataLayout* data) { 395 _data = data; 396 } 397 398 public: 399 // Constructor for invalid ProfileData. 400 ProfileData(); 401 402 u2 bci() const { 403 return data()->bci(); 404 } 405 406 address dp() { 407 return (address)_data; 408 } 409 410 int trap_state() const { 411 return data()->trap_state(); 412 } 413 void set_trap_state(int new_state) { 414 data()->set_trap_state(new_state); 415 } 416 417 // Type checking 418 virtual bool is_BitData() const { return false; } 419 virtual bool is_CounterData() const { return false; } 420 virtual bool is_JumpData() const { return false; } 421 virtual bool is_ReceiverTypeData()const { return false; } 422 virtual bool is_VirtualCallData() const { return false; } 423 virtual bool is_RetData() const { return false; } 424 virtual bool is_BranchData() const { return false; } 425 virtual bool is_ArrayData() const { return false; } 426 virtual bool is_MultiBranchData() const { return false; } 427 virtual bool is_ArgInfoData() const { return false; } 428 virtual bool is_CallTypeData() const { return false; } 429 virtual bool is_VirtualCallTypeData()const { return false; } 430 virtual bool is_ParametersTypeData() const { return false; } 431 virtual bool is_SpeculativeTrapData()const { return false; } 432 virtual bool is_ArrayStoreData() const { return false; } 433 virtual bool is_ArrayLoadData() const { return false; } 434 virtual bool is_ACmpData() const { return false; } 435 436 437 BitData* as_BitData() const { 438 assert(is_BitData(), "wrong type"); 439 return is_BitData() ? (BitData*) this : nullptr; 440 } 441 CounterData* as_CounterData() const { 442 assert(is_CounterData(), "wrong type"); 443 return is_CounterData() ? (CounterData*) this : nullptr; 444 } 445 JumpData* as_JumpData() const { 446 assert(is_JumpData(), "wrong type"); 447 return is_JumpData() ? (JumpData*) this : nullptr; 448 } 449 ReceiverTypeData* as_ReceiverTypeData() const { 450 assert(is_ReceiverTypeData(), "wrong type"); 451 return is_ReceiverTypeData() ? (ReceiverTypeData*)this : nullptr; 452 } 453 VirtualCallData* as_VirtualCallData() const { 454 assert(is_VirtualCallData(), "wrong type"); 455 return is_VirtualCallData() ? (VirtualCallData*)this : nullptr; 456 } 457 RetData* as_RetData() const { 458 assert(is_RetData(), "wrong type"); 459 return is_RetData() ? (RetData*) this : nullptr; 460 } 461 BranchData* as_BranchData() const { 462 assert(is_BranchData(), "wrong type"); 463 return is_BranchData() ? (BranchData*) this : nullptr; 464 } 465 ArrayData* as_ArrayData() const { 466 assert(is_ArrayData(), "wrong type"); 467 return is_ArrayData() ? (ArrayData*) this : nullptr; 468 } 469 MultiBranchData* as_MultiBranchData() const { 470 assert(is_MultiBranchData(), "wrong type"); 471 return is_MultiBranchData() ? (MultiBranchData*)this : nullptr; 472 } 473 ArgInfoData* as_ArgInfoData() const { 474 assert(is_ArgInfoData(), "wrong type"); 475 return is_ArgInfoData() ? (ArgInfoData*)this : nullptr; 476 } 477 CallTypeData* as_CallTypeData() const { 478 assert(is_CallTypeData(), "wrong type"); 479 return is_CallTypeData() ? (CallTypeData*)this : nullptr; 480 } 481 VirtualCallTypeData* as_VirtualCallTypeData() const { 482 assert(is_VirtualCallTypeData(), "wrong type"); 483 return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : nullptr; 484 } 485 ParametersTypeData* as_ParametersTypeData() const { 486 assert(is_ParametersTypeData(), "wrong type"); 487 return is_ParametersTypeData() ? (ParametersTypeData*)this : nullptr; 488 } 489 SpeculativeTrapData* as_SpeculativeTrapData() const { 490 assert(is_SpeculativeTrapData(), "wrong type"); 491 return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : nullptr; 492 } 493 ArrayStoreData* as_ArrayStoreData() const { 494 assert(is_ArrayStoreData(), "wrong type"); 495 return is_ArrayStoreData() ? (ArrayStoreData*)this : nullptr; 496 } 497 ArrayLoadData* as_ArrayLoadData() const { 498 assert(is_ArrayLoadData(), "wrong type"); 499 return is_ArrayLoadData() ? (ArrayLoadData*)this : nullptr; 500 } 501 ACmpData* as_ACmpData() const { 502 assert(is_ACmpData(), "wrong type"); 503 return is_ACmpData() ? (ACmpData*)this : nullptr; 504 } 505 506 507 // Subclass specific initialization 508 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {} 509 510 // GC support 511 virtual void clean_weak_klass_links(bool always_clean) {} 512 513 // CI translation: ProfileData can represent both MethodDataOop data 514 // as well as CIMethodData data. This function is provided for translating 515 // an oop in a ProfileData to the ci equivalent. Generally speaking, 516 // most ProfileData don't require any translation, so we provide the null 517 // translation here, and the required translators are in the ci subclasses. 518 virtual void translate_from(const ProfileData* data) {} 519 520 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const { 521 ShouldNotReachHere(); 522 } 523 524 void print_data_on(outputStream* st, const MethodData* md) const; 525 526 void print_shared(outputStream* st, const char* name, const char* extra) const; 527 void tab(outputStream* st, bool first = false) const; 528 }; 529 530 // BitData 531 // 532 // A BitData holds a flag or two in its header. 533 class BitData : public ProfileData { 534 friend class VMStructs; 535 friend class JVMCIVMStructs; 536 protected: 537 enum : u1 { 538 // null_seen: 539 // saw a null operand (cast/aastore/instanceof) 540 null_seen_flag = DataLayout::first_flag + 0, 541 exception_handler_entered_flag = null_seen_flag + 1, 542 deprecated_method_callsite_flag = exception_handler_entered_flag + 1 543 #if INCLUDE_JVMCI 544 // bytecode threw any exception 545 , exception_seen_flag = deprecated_method_callsite_flag + 1 546 #endif 547 , last_bit_data_flag 548 }; 549 enum { bit_cell_count = 0 }; // no additional data fields needed. 550 public: 551 BitData(DataLayout* layout) : ProfileData(layout) { 552 } 553 554 virtual bool is_BitData() const { return true; } 555 556 static int static_cell_count() { 557 return bit_cell_count; 558 } 559 560 virtual int cell_count() const { 561 return static_cell_count(); 562 } 563 564 // Accessor 565 566 // The null_seen flag bit is specially known to the interpreter. 567 // Consulting it allows the compiler to avoid setting up null_check traps. 568 bool null_seen() const { return flag_at(null_seen_flag); } 569 void set_null_seen() { set_flag_at(null_seen_flag); } 570 bool deprecated_method_call_site() const { return flag_at(deprecated_method_callsite_flag); } 571 bool set_deprecated_method_call_site() { return data()->set_flag_at(deprecated_method_callsite_flag); } 572 bool clear_deprecated_method_call_site() { return data()->clear_flag_at(deprecated_method_callsite_flag); } 573 574 #if INCLUDE_JVMCI 575 // true if an exception was thrown at the specific BCI 576 bool exception_seen() { return flag_at(exception_seen_flag); } 577 void set_exception_seen() { set_flag_at(exception_seen_flag); } 578 #endif 579 580 // true if a ex handler block at this bci was entered 581 bool exception_handler_entered() { return flag_at(exception_handler_entered_flag); } 582 void set_exception_handler_entered() { set_flag_at(exception_handler_entered_flag); } 583 584 // Code generation support 585 static u1 null_seen_byte_constant() { 586 return flag_number_to_constant(null_seen_flag); 587 } 588 589 static ByteSize bit_data_size() { 590 return cell_offset(bit_cell_count); 591 } 592 593 void print_data_on(outputStream* st, const char* extra = nullptr) const; 594 }; 595 596 // CounterData 597 // 598 // A CounterData corresponds to a simple counter. 599 class CounterData : public BitData { 600 friend class VMStructs; 601 friend class JVMCIVMStructs; 602 protected: 603 enum { 604 count_off, 605 counter_cell_count 606 }; 607 public: 608 CounterData(DataLayout* layout) : BitData(layout) {} 609 610 virtual bool is_CounterData() const { return true; } 611 612 static int static_cell_count() { 613 return counter_cell_count; 614 } 615 616 virtual int cell_count() const { 617 return static_cell_count(); 618 } 619 620 // Direct accessor 621 int count() const { 622 intptr_t raw_data = intptr_at(count_off); 623 if (raw_data > max_jint) { 624 raw_data = max_jint; 625 } else if (raw_data < min_jint) { 626 raw_data = min_jint; 627 } 628 return int(raw_data); 629 } 630 631 // Code generation support 632 static ByteSize count_offset() { 633 return cell_offset(count_off); 634 } 635 static ByteSize counter_data_size() { 636 return cell_offset(counter_cell_count); 637 } 638 639 void set_count(int count) { 640 set_int_at(count_off, count); 641 } 642 643 void print_data_on(outputStream* st, const char* extra = nullptr) const; 644 }; 645 646 // JumpData 647 // 648 // A JumpData is used to access profiling information for a direct 649 // branch. It is a counter, used for counting the number of branches, 650 // plus a data displacement, used for realigning the data pointer to 651 // the corresponding target bci. 652 class JumpData : public ProfileData { 653 friend class VMStructs; 654 friend class JVMCIVMStructs; 655 protected: 656 enum { 657 taken_off_set, 658 displacement_off_set, 659 jump_cell_count 660 }; 661 662 void set_displacement(int displacement) { 663 set_int_at(displacement_off_set, displacement); 664 } 665 666 public: 667 JumpData(DataLayout* layout) : ProfileData(layout) { 668 assert(layout->tag() == DataLayout::jump_data_tag || 669 layout->tag() == DataLayout::branch_data_tag || 670 layout->tag() == DataLayout::acmp_data_tag, "wrong type"); 671 } 672 673 virtual bool is_JumpData() const { return true; } 674 675 static int static_cell_count() { 676 return jump_cell_count; 677 } 678 679 virtual int cell_count() const { 680 return static_cell_count(); 681 } 682 683 // Direct accessor 684 uint taken() const { 685 return uint_at(taken_off_set); 686 } 687 688 void set_taken(uint cnt) { 689 set_uint_at(taken_off_set, cnt); 690 } 691 692 // Saturating counter 693 uint inc_taken() { 694 uint cnt = taken() + 1; 695 // Did we wrap? Will compiler screw us?? 696 if (cnt == 0) cnt--; 697 set_uint_at(taken_off_set, cnt); 698 return cnt; 699 } 700 701 int displacement() const { 702 return int_at(displacement_off_set); 703 } 704 705 // Code generation support 706 static ByteSize taken_offset() { 707 return cell_offset(taken_off_set); 708 } 709 710 static ByteSize displacement_offset() { 711 return cell_offset(displacement_off_set); 712 } 713 714 // Specific initialization. 715 void post_initialize(BytecodeStream* stream, MethodData* mdo); 716 717 void print_data_on(outputStream* st, const char* extra = nullptr) const; 718 }; 719 720 // Entries in a ProfileData object to record types: it can either be 721 // none (no profile), unknown (conflicting profile data) or a klass if 722 // a single one is seen. Whether a null reference was seen is also 723 // recorded. No counter is associated with the type and a single type 724 // is tracked (unlike VirtualCallData). 725 class TypeEntries { 726 727 public: 728 729 // A single cell is used to record information for a type: 730 // - the cell is initialized to 0 731 // - when a type is discovered it is stored in the cell 732 // - bit zero of the cell is used to record whether a null reference 733 // was encountered or not 734 // - bit 1 is set to record a conflict in the type information 735 736 enum { 737 null_seen = 1, 738 type_mask = ~null_seen, 739 type_unknown = 2, 740 status_bits = null_seen | type_unknown, 741 type_klass_mask = ~status_bits 742 }; 743 744 // what to initialize a cell to 745 static intptr_t type_none() { 746 return 0; 747 } 748 749 // null seen = bit 0 set? 750 static bool was_null_seen(intptr_t v) { 751 return (v & null_seen) != 0; 752 } 753 754 // conflicting type information = bit 1 set? 755 static bool is_type_unknown(intptr_t v) { 756 return (v & type_unknown) != 0; 757 } 758 759 // not type information yet = all bits cleared, ignoring bit 0? 760 static bool is_type_none(intptr_t v) { 761 return (v & type_mask) == 0; 762 } 763 764 // recorded type: cell without bit 0 and 1 765 static intptr_t klass_part(intptr_t v) { 766 intptr_t r = v & type_klass_mask; 767 return r; 768 } 769 770 // type recorded 771 static Klass* valid_klass(intptr_t k) { 772 if (!is_type_none(k) && 773 !is_type_unknown(k)) { 774 Klass* res = (Klass*)klass_part(k); 775 assert(res != nullptr, "invalid"); 776 return res; 777 } else { 778 return nullptr; 779 } 780 } 781 782 static intptr_t with_status(intptr_t k, intptr_t in) { 783 return k | (in & status_bits); 784 } 785 786 static intptr_t with_status(Klass* k, intptr_t in) { 787 return with_status((intptr_t)k, in); 788 } 789 790 static void print_klass(outputStream* st, intptr_t k); 791 792 protected: 793 // ProfileData object these entries are part of 794 ProfileData* _pd; 795 // offset within the ProfileData object where the entries start 796 const int _base_off; 797 798 TypeEntries(int base_off) 799 : _pd(nullptr), _base_off(base_off) {} 800 801 void set_intptr_at(int index, intptr_t value) { 802 _pd->set_intptr_at(index, value); 803 } 804 805 intptr_t intptr_at(int index) const { 806 return _pd->intptr_at(index); 807 } 808 809 public: 810 void set_profile_data(ProfileData* pd) { 811 _pd = pd; 812 } 813 }; 814 815 // Type entries used for arguments passed at a call and parameters on 816 // method entry. 2 cells per entry: one for the type encoded as in 817 // TypeEntries and one initialized with the stack slot where the 818 // profiled object is to be found so that the interpreter can locate 819 // it quickly. 820 class TypeStackSlotEntries : public TypeEntries { 821 822 private: 823 enum { 824 stack_slot_entry, 825 type_entry, 826 per_arg_cell_count 827 }; 828 829 // offset of cell for stack slot for entry i within ProfileData object 830 int stack_slot_offset(int i) const { 831 return _base_off + stack_slot_local_offset(i); 832 } 833 834 const int _number_of_entries; 835 836 // offset of cell for type for entry i within ProfileData object 837 int type_offset_in_cells(int i) const { 838 return _base_off + type_local_offset(i); 839 } 840 841 public: 842 843 TypeStackSlotEntries(int base_off, int nb_entries) 844 : TypeEntries(base_off), _number_of_entries(nb_entries) {} 845 846 static int compute_cell_count(Symbol* signature, bool include_receiver, int max); 847 848 void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver); 849 850 int number_of_entries() const { return _number_of_entries; } 851 852 // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries 853 static int stack_slot_local_offset(int i) { 854 return i * per_arg_cell_count + stack_slot_entry; 855 } 856 857 // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries 858 static int type_local_offset(int i) { 859 return i * per_arg_cell_count + type_entry; 860 } 861 862 // stack slot for entry i 863 uint stack_slot(int i) const { 864 assert(i >= 0 && i < _number_of_entries, "oob"); 865 return _pd->uint_at(stack_slot_offset(i)); 866 } 867 868 // set stack slot for entry i 869 void set_stack_slot(int i, uint num) { 870 assert(i >= 0 && i < _number_of_entries, "oob"); 871 _pd->set_uint_at(stack_slot_offset(i), num); 872 } 873 874 // type for entry i 875 intptr_t type(int i) const { 876 assert(i >= 0 && i < _number_of_entries, "oob"); 877 return _pd->intptr_at(type_offset_in_cells(i)); 878 } 879 880 // set type for entry i 881 void set_type(int i, intptr_t k) { 882 assert(i >= 0 && i < _number_of_entries, "oob"); 883 _pd->set_intptr_at(type_offset_in_cells(i), k); 884 } 885 886 static ByteSize per_arg_size() { 887 return in_ByteSize(per_arg_cell_count * DataLayout::cell_size); 888 } 889 890 static int per_arg_count() { 891 return per_arg_cell_count; 892 } 893 894 ByteSize type_offset(int i) const { 895 return DataLayout::cell_offset(type_offset_in_cells(i)); 896 } 897 898 // GC support 899 void clean_weak_klass_links(bool always_clean); 900 901 void print_data_on(outputStream* st) const; 902 }; 903 904 // Type entry used for return from a call. A single cell to record the 905 // type. 906 class SingleTypeEntry : public TypeEntries { 907 908 private: 909 enum { 910 cell_count = 1 911 }; 912 913 public: 914 SingleTypeEntry(int base_off) 915 : TypeEntries(base_off) {} 916 917 void post_initialize() { 918 set_type(type_none()); 919 } 920 921 intptr_t type() const { 922 return _pd->intptr_at(_base_off); 923 } 924 925 void set_type(intptr_t k) { 926 _pd->set_intptr_at(_base_off, k); 927 } 928 929 static int static_cell_count() { 930 return cell_count; 931 } 932 933 static ByteSize size() { 934 return in_ByteSize(cell_count * DataLayout::cell_size); 935 } 936 937 ByteSize type_offset() { 938 return DataLayout::cell_offset(_base_off); 939 } 940 941 // GC support 942 void clean_weak_klass_links(bool always_clean); 943 944 void print_data_on(outputStream* st) const; 945 }; 946 947 // Entries to collect type information at a call: contains arguments 948 // (TypeStackSlotEntries), a return type (SingleTypeEntry) and a 949 // number of cells. Because the number of cells for the return type is 950 // smaller than the number of cells for the type of an arguments, the 951 // number of cells is used to tell how many arguments are profiled and 952 // whether a return value is profiled. See has_arguments() and 953 // has_return(). 954 class TypeEntriesAtCall { 955 private: 956 static int stack_slot_local_offset(int i) { 957 return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i); 958 } 959 960 static int argument_type_local_offset(int i) { 961 return header_cell_count() + TypeStackSlotEntries::type_local_offset(i); 962 } 963 964 public: 965 966 static int header_cell_count() { 967 return 1; 968 } 969 970 static int cell_count_local_offset() { 971 return 0; 972 } 973 974 static int compute_cell_count(BytecodeStream* stream); 975 976 static void initialize(DataLayout* dl, int base, int cell_count) { 977 int off = base + cell_count_local_offset(); 978 dl->set_cell_at(off, cell_count - base - header_cell_count()); 979 } 980 981 static bool arguments_profiling_enabled(); 982 static bool return_profiling_enabled(); 983 984 // Code generation support 985 static ByteSize cell_count_offset() { 986 return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size); 987 } 988 989 static ByteSize args_data_offset() { 990 return in_ByteSize(header_cell_count() * DataLayout::cell_size); 991 } 992 993 static ByteSize stack_slot_offset(int i) { 994 return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size); 995 } 996 997 static ByteSize argument_type_offset(int i) { 998 return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size); 999 } 1000 1001 static ByteSize return_only_size() { 1002 return SingleTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size); 1003 } 1004 1005 }; 1006 1007 // CallTypeData 1008 // 1009 // A CallTypeData is used to access profiling information about a non 1010 // virtual call for which we collect type information about arguments 1011 // and return value. 1012 class CallTypeData : public CounterData { 1013 private: 1014 // entries for arguments if any 1015 TypeStackSlotEntries _args; 1016 // entry for return type if any 1017 SingleTypeEntry _ret; 1018 1019 int cell_count_global_offset() const { 1020 return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset(); 1021 } 1022 1023 // number of cells not counting the header 1024 int cell_count_no_header() const { 1025 return uint_at(cell_count_global_offset()); 1026 } 1027 1028 void check_number_of_arguments(int total) { 1029 assert(number_of_arguments() == total, "should be set in DataLayout::initialize"); 1030 } 1031 1032 public: 1033 CallTypeData(DataLayout* layout) : 1034 CounterData(layout), 1035 _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()), 1036 _ret(cell_count() - SingleTypeEntry::static_cell_count()) 1037 { 1038 assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type"); 1039 // Some compilers (VC++) don't want this passed in member initialization list 1040 _args.set_profile_data(this); 1041 _ret.set_profile_data(this); 1042 } 1043 1044 const TypeStackSlotEntries* args() const { 1045 assert(has_arguments(), "no profiling of arguments"); 1046 return &_args; 1047 } 1048 1049 const SingleTypeEntry* ret() const { 1050 assert(has_return(), "no profiling of return value"); 1051 return &_ret; 1052 } 1053 1054 virtual bool is_CallTypeData() const { return true; } 1055 1056 static int static_cell_count() { 1057 return -1; 1058 } 1059 1060 static int compute_cell_count(BytecodeStream* stream) { 1061 return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream); 1062 } 1063 1064 static void initialize(DataLayout* dl, int cell_count) { 1065 TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count); 1066 } 1067 1068 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1069 1070 virtual int cell_count() const { 1071 return CounterData::static_cell_count() + 1072 TypeEntriesAtCall::header_cell_count() + 1073 int_at_unchecked(cell_count_global_offset()); 1074 } 1075 1076 int number_of_arguments() const { 1077 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count(); 1078 } 1079 1080 void set_argument_type(int i, Klass* k) { 1081 assert(has_arguments(), "no arguments!"); 1082 intptr_t current = _args.type(i); 1083 _args.set_type(i, TypeEntries::with_status(k, current)); 1084 } 1085 1086 void set_return_type(Klass* k) { 1087 assert(has_return(), "no return!"); 1088 intptr_t current = _ret.type(); 1089 _ret.set_type(TypeEntries::with_status(k, current)); 1090 } 1091 1092 // An entry for a return value takes less space than an entry for an 1093 // argument so if the number of cells exceeds the number of cells 1094 // needed for an argument, this object contains type information for 1095 // at least one argument. 1096 bool has_arguments() const { 1097 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count(); 1098 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments"); 1099 return res; 1100 } 1101 1102 // An entry for a return value takes less space than an entry for an 1103 // argument, so if the remainder of the number of cells divided by 1104 // the number of cells for an argument is not null, a return value 1105 // is profiled in this object. 1106 bool has_return() const { 1107 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0; 1108 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values"); 1109 return res; 1110 } 1111 1112 // Code generation support 1113 static ByteSize args_data_offset() { 1114 return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset(); 1115 } 1116 1117 ByteSize argument_type_offset(int i) { 1118 return _args.type_offset(i); 1119 } 1120 1121 ByteSize return_type_offset() { 1122 return _ret.type_offset(); 1123 } 1124 1125 // GC support 1126 virtual void clean_weak_klass_links(bool always_clean) { 1127 if (has_arguments()) { 1128 _args.clean_weak_klass_links(always_clean); 1129 } 1130 if (has_return()) { 1131 _ret.clean_weak_klass_links(always_clean); 1132 } 1133 } 1134 1135 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1136 }; 1137 1138 // ReceiverTypeData 1139 // 1140 // A ReceiverTypeData is used to access profiling information about a 1141 // dynamic type check. It consists of a series of (Klass*, count) 1142 // pairs which are used to store a type profile for the receiver of 1143 // the check, the associated count is incremented every time the type 1144 // is seen. A per ReceiverTypeData counter is incremented on type 1145 // overflow (when there's no more room for a not yet profiled Klass*). 1146 // 1147 class ReceiverTypeData : public CounterData { 1148 friend class VMStructs; 1149 friend class JVMCIVMStructs; 1150 protected: 1151 enum { 1152 receiver0_offset = counter_cell_count, 1153 count0_offset, 1154 receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset 1155 }; 1156 1157 public: 1158 ReceiverTypeData(DataLayout* layout) : CounterData(layout) { 1159 assert(layout->tag() == DataLayout::receiver_type_data_tag || 1160 layout->tag() == DataLayout::virtual_call_data_tag || 1161 layout->tag() == DataLayout::virtual_call_type_data_tag || 1162 layout->tag() == DataLayout::array_store_data_tag, "wrong type"); 1163 } 1164 1165 virtual bool is_ReceiverTypeData() const { return true; } 1166 1167 static int static_cell_count() { 1168 return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count; 1169 } 1170 1171 virtual int cell_count() const { 1172 return static_cell_count(); 1173 } 1174 1175 // Direct accessors 1176 static uint row_limit() { 1177 return (uint) TypeProfileWidth; 1178 } 1179 static int receiver_cell_index(uint row) { 1180 return receiver0_offset + row * receiver_type_row_cell_count; 1181 } 1182 static int receiver_count_cell_index(uint row) { 1183 return count0_offset + row * receiver_type_row_cell_count; 1184 } 1185 1186 Klass* receiver(uint row) const { 1187 assert(row < row_limit(), "oob"); 1188 1189 Klass* recv = (Klass*)intptr_at(receiver_cell_index(row)); 1190 assert(recv == nullptr || recv->is_klass(), "wrong type"); 1191 return recv; 1192 } 1193 1194 void set_receiver(uint row, Klass* k) { 1195 assert((uint)row < row_limit(), "oob"); 1196 set_intptr_at(receiver_cell_index(row), (uintptr_t)k); 1197 } 1198 1199 uint receiver_count(uint row) const { 1200 assert(row < row_limit(), "oob"); 1201 return uint_at(receiver_count_cell_index(row)); 1202 } 1203 1204 void set_receiver_count(uint row, uint count) { 1205 assert(row < row_limit(), "oob"); 1206 set_uint_at(receiver_count_cell_index(row), count); 1207 } 1208 1209 void clear_row(uint row) { 1210 assert(row < row_limit(), "oob"); 1211 // Clear total count - indicator of polymorphic call site. 1212 // The site may look like as monomorphic after that but 1213 // it allow to have more accurate profiling information because 1214 // there was execution phase change since klasses were unloaded. 1215 // If the site is still polymorphic then MDO will be updated 1216 // to reflect it. But it could be the case that the site becomes 1217 // only bimorphic. Then keeping total count not 0 will be wrong. 1218 // Even if we use monomorphic (when it is not) for compilation 1219 // we will only have trap, deoptimization and recompile again 1220 // with updated MDO after executing method in Interpreter. 1221 // An additional receiver will be recorded in the cleaned row 1222 // during next call execution. 1223 // 1224 // Note: our profiling logic works with empty rows in any slot. 1225 // We do sorting a profiling info (ciCallProfile) for compilation. 1226 // 1227 set_count(0); 1228 set_receiver(row, nullptr); 1229 set_receiver_count(row, 0); 1230 } 1231 1232 // Code generation support 1233 static ByteSize receiver_offset(uint row) { 1234 return cell_offset(receiver_cell_index(row)); 1235 } 1236 static ByteSize receiver_count_offset(uint row) { 1237 return cell_offset(receiver_count_cell_index(row)); 1238 } 1239 static ByteSize receiver_type_data_size() { 1240 return cell_offset(static_cell_count()); 1241 } 1242 1243 // GC support 1244 virtual void clean_weak_klass_links(bool always_clean); 1245 1246 void print_receiver_data_on(outputStream* st) const; 1247 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1248 }; 1249 1250 // VirtualCallData 1251 // 1252 // A VirtualCallData is used to access profiling information about a 1253 // virtual call. For now, it has nothing more than a ReceiverTypeData. 1254 class VirtualCallData : public ReceiverTypeData { 1255 public: 1256 VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) { 1257 assert(layout->tag() == DataLayout::virtual_call_data_tag || 1258 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1259 } 1260 1261 virtual bool is_VirtualCallData() const { return true; } 1262 1263 static int static_cell_count() { 1264 // At this point we could add more profile state, e.g., for arguments. 1265 // But for now it's the same size as the base record type. 1266 return ReceiverTypeData::static_cell_count(); 1267 } 1268 1269 virtual int cell_count() const { 1270 return static_cell_count(); 1271 } 1272 1273 // Direct accessors 1274 static ByteSize virtual_call_data_size() { 1275 return cell_offset(static_cell_count()); 1276 } 1277 1278 void print_method_data_on(outputStream* st) const NOT_JVMCI_RETURN; 1279 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1280 }; 1281 1282 // VirtualCallTypeData 1283 // 1284 // A VirtualCallTypeData is used to access profiling information about 1285 // a virtual call for which we collect type information about 1286 // arguments and return value. 1287 class VirtualCallTypeData : public VirtualCallData { 1288 private: 1289 // entries for arguments if any 1290 TypeStackSlotEntries _args; 1291 // entry for return type if any 1292 SingleTypeEntry _ret; 1293 1294 int cell_count_global_offset() const { 1295 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset(); 1296 } 1297 1298 // number of cells not counting the header 1299 int cell_count_no_header() const { 1300 return uint_at(cell_count_global_offset()); 1301 } 1302 1303 void check_number_of_arguments(int total) { 1304 assert(number_of_arguments() == total, "should be set in DataLayout::initialize"); 1305 } 1306 1307 public: 1308 VirtualCallTypeData(DataLayout* layout) : 1309 VirtualCallData(layout), 1310 _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()), 1311 _ret(cell_count() - SingleTypeEntry::static_cell_count()) 1312 { 1313 assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1314 // Some compilers (VC++) don't want this passed in member initialization list 1315 _args.set_profile_data(this); 1316 _ret.set_profile_data(this); 1317 } 1318 1319 const TypeStackSlotEntries* args() const { 1320 assert(has_arguments(), "no profiling of arguments"); 1321 return &_args; 1322 } 1323 1324 const SingleTypeEntry* ret() const { 1325 assert(has_return(), "no profiling of return value"); 1326 return &_ret; 1327 } 1328 1329 virtual bool is_VirtualCallTypeData() const { return true; } 1330 1331 static int static_cell_count() { 1332 return -1; 1333 } 1334 1335 static int compute_cell_count(BytecodeStream* stream) { 1336 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream); 1337 } 1338 1339 static void initialize(DataLayout* dl, int cell_count) { 1340 TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count); 1341 } 1342 1343 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1344 1345 virtual int cell_count() const { 1346 return VirtualCallData::static_cell_count() + 1347 TypeEntriesAtCall::header_cell_count() + 1348 int_at_unchecked(cell_count_global_offset()); 1349 } 1350 1351 int number_of_arguments() const { 1352 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count(); 1353 } 1354 1355 void set_argument_type(int i, Klass* k) { 1356 assert(has_arguments(), "no arguments!"); 1357 intptr_t current = _args.type(i); 1358 _args.set_type(i, TypeEntries::with_status(k, current)); 1359 } 1360 1361 void set_return_type(Klass* k) { 1362 assert(has_return(), "no return!"); 1363 intptr_t current = _ret.type(); 1364 _ret.set_type(TypeEntries::with_status(k, current)); 1365 } 1366 1367 // An entry for a return value takes less space than an entry for an 1368 // argument, so if the remainder of the number of cells divided by 1369 // the number of cells for an argument is not null, a return value 1370 // is profiled in this object. 1371 bool has_return() const { 1372 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0; 1373 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values"); 1374 return res; 1375 } 1376 1377 // An entry for a return value takes less space than an entry for an 1378 // argument so if the number of cells exceeds the number of cells 1379 // needed for an argument, this object contains type information for 1380 // at least one argument. 1381 bool has_arguments() const { 1382 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count(); 1383 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments"); 1384 return res; 1385 } 1386 1387 // Code generation support 1388 static ByteSize args_data_offset() { 1389 return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset(); 1390 } 1391 1392 ByteSize argument_type_offset(int i) { 1393 return _args.type_offset(i); 1394 } 1395 1396 ByteSize return_type_offset() { 1397 return _ret.type_offset(); 1398 } 1399 1400 // GC support 1401 virtual void clean_weak_klass_links(bool always_clean) { 1402 ReceiverTypeData::clean_weak_klass_links(always_clean); 1403 if (has_arguments()) { 1404 _args.clean_weak_klass_links(always_clean); 1405 } 1406 if (has_return()) { 1407 _ret.clean_weak_klass_links(always_clean); 1408 } 1409 } 1410 1411 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1412 }; 1413 1414 // RetData 1415 // 1416 // A RetData is used to access profiling information for a ret bytecode. 1417 // It is composed of a count of the number of times that the ret has 1418 // been executed, followed by a series of triples of the form 1419 // (bci, count, di) which count the number of times that some bci was the 1420 // target of the ret and cache a corresponding data displacement. 1421 class RetData : public CounterData { 1422 protected: 1423 enum { 1424 bci0_offset = counter_cell_count, 1425 count0_offset, 1426 displacement0_offset, 1427 ret_row_cell_count = (displacement0_offset + 1) - bci0_offset 1428 }; 1429 1430 void set_bci(uint row, int bci) { 1431 assert((uint)row < row_limit(), "oob"); 1432 set_int_at(bci0_offset + row * ret_row_cell_count, bci); 1433 } 1434 void release_set_bci(uint row, int bci); 1435 void set_bci_count(uint row, uint count) { 1436 assert((uint)row < row_limit(), "oob"); 1437 set_uint_at(count0_offset + row * ret_row_cell_count, count); 1438 } 1439 void set_bci_displacement(uint row, int disp) { 1440 set_int_at(displacement0_offset + row * ret_row_cell_count, disp); 1441 } 1442 1443 public: 1444 RetData(DataLayout* layout) : CounterData(layout) { 1445 assert(layout->tag() == DataLayout::ret_data_tag, "wrong type"); 1446 } 1447 1448 virtual bool is_RetData() const { return true; } 1449 1450 enum { 1451 no_bci = -1 // value of bci when bci1/2 are not in use. 1452 }; 1453 1454 static int static_cell_count() { 1455 return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count; 1456 } 1457 1458 virtual int cell_count() const { 1459 return static_cell_count(); 1460 } 1461 1462 static uint row_limit() { 1463 return (uint) BciProfileWidth; 1464 } 1465 static int bci_cell_index(uint row) { 1466 return bci0_offset + row * ret_row_cell_count; 1467 } 1468 static int bci_count_cell_index(uint row) { 1469 return count0_offset + row * ret_row_cell_count; 1470 } 1471 static int bci_displacement_cell_index(uint row) { 1472 return displacement0_offset + row * ret_row_cell_count; 1473 } 1474 1475 // Direct accessors 1476 int bci(uint row) const { 1477 return int_at(bci_cell_index(row)); 1478 } 1479 uint bci_count(uint row) const { 1480 return uint_at(bci_count_cell_index(row)); 1481 } 1482 int bci_displacement(uint row) const { 1483 return int_at(bci_displacement_cell_index(row)); 1484 } 1485 1486 // Interpreter Runtime support 1487 address fixup_ret(int return_bci, MethodData* mdo); 1488 1489 // Code generation support 1490 static ByteSize bci_offset(uint row) { 1491 return cell_offset(bci_cell_index(row)); 1492 } 1493 static ByteSize bci_count_offset(uint row) { 1494 return cell_offset(bci_count_cell_index(row)); 1495 } 1496 static ByteSize bci_displacement_offset(uint row) { 1497 return cell_offset(bci_displacement_cell_index(row)); 1498 } 1499 1500 // Specific initialization. 1501 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1502 1503 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1504 }; 1505 1506 // BranchData 1507 // 1508 // A BranchData is used to access profiling data for a two-way branch. 1509 // It consists of taken and not_taken counts as well as a data displacement 1510 // for the taken case. 1511 class BranchData : public JumpData { 1512 friend class VMStructs; 1513 friend class JVMCIVMStructs; 1514 protected: 1515 enum { 1516 not_taken_off_set = jump_cell_count, 1517 branch_cell_count 1518 }; 1519 1520 void set_displacement(int displacement) { 1521 set_int_at(displacement_off_set, displacement); 1522 } 1523 1524 public: 1525 BranchData(DataLayout* layout) : JumpData(layout) { 1526 assert(layout->tag() == DataLayout::branch_data_tag || layout->tag() == DataLayout::acmp_data_tag, "wrong type"); 1527 } 1528 1529 virtual bool is_BranchData() const { return true; } 1530 1531 static int static_cell_count() { 1532 return branch_cell_count; 1533 } 1534 1535 virtual int cell_count() const { 1536 return static_cell_count(); 1537 } 1538 1539 // Direct accessor 1540 uint not_taken() const { 1541 return uint_at(not_taken_off_set); 1542 } 1543 1544 void set_not_taken(uint cnt) { 1545 set_uint_at(not_taken_off_set, cnt); 1546 } 1547 1548 uint inc_not_taken() { 1549 uint cnt = not_taken() + 1; 1550 // Did we wrap? Will compiler screw us?? 1551 if (cnt == 0) cnt--; 1552 set_uint_at(not_taken_off_set, cnt); 1553 return cnt; 1554 } 1555 1556 // Code generation support 1557 static ByteSize not_taken_offset() { 1558 return cell_offset(not_taken_off_set); 1559 } 1560 static ByteSize branch_data_size() { 1561 return cell_offset(branch_cell_count); 1562 } 1563 1564 // Specific initialization. 1565 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1566 1567 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1568 }; 1569 1570 // ArrayData 1571 // 1572 // A ArrayData is a base class for accessing profiling data which does 1573 // not have a statically known size. It consists of an array length 1574 // and an array start. 1575 class ArrayData : public ProfileData { 1576 friend class VMStructs; 1577 friend class JVMCIVMStructs; 1578 protected: 1579 friend class DataLayout; 1580 1581 enum { 1582 array_len_off_set, 1583 array_start_off_set 1584 }; 1585 1586 uint array_uint_at(int index) const { 1587 int aindex = index + array_start_off_set; 1588 return uint_at(aindex); 1589 } 1590 int array_int_at(int index) const { 1591 int aindex = index + array_start_off_set; 1592 return int_at(aindex); 1593 } 1594 oop array_oop_at(int index) const { 1595 int aindex = index + array_start_off_set; 1596 return oop_at(aindex); 1597 } 1598 void array_set_int_at(int index, int value) { 1599 int aindex = index + array_start_off_set; 1600 set_int_at(aindex, value); 1601 } 1602 1603 // Code generation support for subclasses. 1604 static ByteSize array_element_offset(int index) { 1605 return cell_offset(array_start_off_set + index); 1606 } 1607 1608 public: 1609 ArrayData(DataLayout* layout) : ProfileData(layout) {} 1610 1611 virtual bool is_ArrayData() const { return true; } 1612 1613 static int static_cell_count() { 1614 return -1; 1615 } 1616 1617 int array_len() const { 1618 return int_at_unchecked(array_len_off_set); 1619 } 1620 1621 virtual int cell_count() const { 1622 return array_len() + 1; 1623 } 1624 1625 // Code generation support 1626 static ByteSize array_len_offset() { 1627 return cell_offset(array_len_off_set); 1628 } 1629 static ByteSize array_start_offset() { 1630 return cell_offset(array_start_off_set); 1631 } 1632 }; 1633 1634 // MultiBranchData 1635 // 1636 // A MultiBranchData is used to access profiling information for 1637 // a multi-way branch (*switch bytecodes). It consists of a series 1638 // of (count, displacement) pairs, which count the number of times each 1639 // case was taken and specify the data displacement for each branch target. 1640 class MultiBranchData : public ArrayData { 1641 friend class VMStructs; 1642 friend class JVMCIVMStructs; 1643 protected: 1644 enum { 1645 default_count_off_set, 1646 default_disaplacement_off_set, 1647 case_array_start 1648 }; 1649 enum { 1650 relative_count_off_set, 1651 relative_displacement_off_set, 1652 per_case_cell_count 1653 }; 1654 1655 void set_default_displacement(int displacement) { 1656 array_set_int_at(default_disaplacement_off_set, displacement); 1657 } 1658 void set_displacement_at(int index, int displacement) { 1659 array_set_int_at(case_array_start + 1660 index * per_case_cell_count + 1661 relative_displacement_off_set, 1662 displacement); 1663 } 1664 1665 public: 1666 MultiBranchData(DataLayout* layout) : ArrayData(layout) { 1667 assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type"); 1668 } 1669 1670 virtual bool is_MultiBranchData() const { return true; } 1671 1672 static int compute_cell_count(BytecodeStream* stream); 1673 1674 int number_of_cases() const { 1675 int alen = array_len() - 2; // get rid of default case here. 1676 assert(alen % per_case_cell_count == 0, "must be even"); 1677 return (alen / per_case_cell_count); 1678 } 1679 1680 uint default_count() const { 1681 return array_uint_at(default_count_off_set); 1682 } 1683 int default_displacement() const { 1684 return array_int_at(default_disaplacement_off_set); 1685 } 1686 1687 uint count_at(int index) const { 1688 return array_uint_at(case_array_start + 1689 index * per_case_cell_count + 1690 relative_count_off_set); 1691 } 1692 int displacement_at(int index) const { 1693 return array_int_at(case_array_start + 1694 index * per_case_cell_count + 1695 relative_displacement_off_set); 1696 } 1697 1698 // Code generation support 1699 static ByteSize default_count_offset() { 1700 return array_element_offset(default_count_off_set); 1701 } 1702 static ByteSize default_displacement_offset() { 1703 return array_element_offset(default_disaplacement_off_set); 1704 } 1705 static ByteSize case_count_offset(int index) { 1706 return case_array_offset() + 1707 (per_case_size() * index) + 1708 relative_count_offset(); 1709 } 1710 static ByteSize case_array_offset() { 1711 return array_element_offset(case_array_start); 1712 } 1713 static ByteSize per_case_size() { 1714 return in_ByteSize(per_case_cell_count) * cell_size; 1715 } 1716 static ByteSize relative_count_offset() { 1717 return in_ByteSize(relative_count_off_set) * cell_size; 1718 } 1719 static ByteSize relative_displacement_offset() { 1720 return in_ByteSize(relative_displacement_off_set) * cell_size; 1721 } 1722 1723 // Specific initialization. 1724 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1725 1726 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1727 }; 1728 1729 class ArgInfoData : public ArrayData { 1730 1731 public: 1732 ArgInfoData(DataLayout* layout) : ArrayData(layout) { 1733 assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type"); 1734 } 1735 1736 virtual bool is_ArgInfoData() const { return true; } 1737 1738 1739 int number_of_args() const { 1740 return array_len(); 1741 } 1742 1743 uint arg_modified(int arg) const { 1744 return array_uint_at(arg); 1745 } 1746 1747 void set_arg_modified(int arg, uint val) { 1748 array_set_int_at(arg, val); 1749 } 1750 1751 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1752 }; 1753 1754 // ParametersTypeData 1755 // 1756 // A ParametersTypeData is used to access profiling information about 1757 // types of parameters to a method 1758 class ParametersTypeData : public ArrayData { 1759 1760 private: 1761 TypeStackSlotEntries _parameters; 1762 1763 static int stack_slot_local_offset(int i) { 1764 assert_profiling_enabled(); 1765 return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i); 1766 } 1767 1768 static int type_local_offset(int i) { 1769 assert_profiling_enabled(); 1770 return array_start_off_set + TypeStackSlotEntries::type_local_offset(i); 1771 } 1772 1773 static bool profiling_enabled(); 1774 static void assert_profiling_enabled() { 1775 assert(profiling_enabled(), "method parameters profiling should be on"); 1776 } 1777 1778 public: 1779 ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) { 1780 assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type"); 1781 // Some compilers (VC++) don't want this passed in member initialization list 1782 _parameters.set_profile_data(this); 1783 } 1784 1785 static int compute_cell_count(Method* m); 1786 1787 virtual bool is_ParametersTypeData() const { return true; } 1788 1789 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1790 1791 int number_of_parameters() const { 1792 return array_len() / TypeStackSlotEntries::per_arg_count(); 1793 } 1794 1795 const TypeStackSlotEntries* parameters() const { return &_parameters; } 1796 1797 uint stack_slot(int i) const { 1798 return _parameters.stack_slot(i); 1799 } 1800 1801 void set_type(int i, Klass* k) { 1802 intptr_t current = _parameters.type(i); 1803 _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current)); 1804 } 1805 1806 virtual void clean_weak_klass_links(bool always_clean) { 1807 _parameters.clean_weak_klass_links(always_clean); 1808 } 1809 1810 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1811 1812 static ByteSize stack_slot_offset(int i) { 1813 return cell_offset(stack_slot_local_offset(i)); 1814 } 1815 1816 static ByteSize type_offset(int i) { 1817 return cell_offset(type_local_offset(i)); 1818 } 1819 }; 1820 1821 // SpeculativeTrapData 1822 // 1823 // A SpeculativeTrapData is used to record traps due to type 1824 // speculation. It records the root of the compilation: that type 1825 // speculation is wrong in the context of one compilation (for 1826 // method1) doesn't mean it's wrong in the context of another one (for 1827 // method2). Type speculation could have more/different data in the 1828 // context of the compilation of method2 and it's worthwhile to try an 1829 // optimization that failed for compilation of method1 in the context 1830 // of compilation of method2. 1831 // Space for SpeculativeTrapData entries is allocated from the extra 1832 // data space in the MDO. If we run out of space, the trap data for 1833 // the ProfileData at that bci is updated. 1834 class SpeculativeTrapData : public ProfileData { 1835 protected: 1836 enum { 1837 speculative_trap_method, 1838 #ifndef _LP64 1839 // The size of the area for traps is a multiple of the header 1840 // size, 2 cells on 32 bits. Packed at the end of this area are 1841 // argument info entries (with tag 1842 // DataLayout::arg_info_data_tag). The logic in 1843 // MethodData::bci_to_extra_data() that guarantees traps don't 1844 // overflow over argument info entries assumes the size of a 1845 // SpeculativeTrapData is twice the header size. On 32 bits, a 1846 // SpeculativeTrapData must be 4 cells. 1847 padding, 1848 #endif 1849 speculative_trap_cell_count 1850 }; 1851 public: 1852 SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) { 1853 assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type"); 1854 } 1855 1856 virtual bool is_SpeculativeTrapData() const { return true; } 1857 1858 static int static_cell_count() { 1859 return speculative_trap_cell_count; 1860 } 1861 1862 virtual int cell_count() const { 1863 return static_cell_count(); 1864 } 1865 1866 // Direct accessor 1867 Method* method() const { 1868 return (Method*)intptr_at(speculative_trap_method); 1869 } 1870 1871 void set_method(Method* m) { 1872 assert(!m->is_old(), "cannot add old methods"); 1873 set_intptr_at(speculative_trap_method, (intptr_t)m); 1874 } 1875 1876 static ByteSize method_offset() { 1877 return cell_offset(speculative_trap_method); 1878 } 1879 1880 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1881 }; 1882 1883 class ArrayStoreData : public ReceiverTypeData { 1884 private: 1885 enum { 1886 flat_array_flag = BitData::last_bit_data_flag, 1887 null_free_array_flag = flat_array_flag + 1, 1888 }; 1889 1890 SingleTypeEntry _array; 1891 1892 public: 1893 ArrayStoreData(DataLayout* layout) : 1894 ReceiverTypeData(layout), 1895 _array(ReceiverTypeData::static_cell_count()) { 1896 assert(layout->tag() == DataLayout::array_store_data_tag, "wrong type"); 1897 _array.set_profile_data(this); 1898 } 1899 1900 const SingleTypeEntry* array() const { 1901 return &_array; 1902 } 1903 1904 virtual bool is_ArrayStoreData() const { return true; } 1905 1906 static int static_cell_count() { 1907 return ReceiverTypeData::static_cell_count() + SingleTypeEntry::static_cell_count(); 1908 } 1909 1910 virtual int cell_count() const { 1911 return static_cell_count(); 1912 } 1913 1914 void set_flat_array() { set_flag_at(flat_array_flag); } 1915 bool flat_array() const { return flag_at(flat_array_flag); } 1916 1917 void set_null_free_array() { set_flag_at(null_free_array_flag); } 1918 bool null_free_array() const { return flag_at(null_free_array_flag); } 1919 1920 // Code generation support 1921 static int flat_array_byte_constant() { 1922 return flag_number_to_constant(flat_array_flag); 1923 } 1924 1925 static int null_free_array_byte_constant() { 1926 return flag_number_to_constant(null_free_array_flag); 1927 } 1928 1929 static ByteSize array_offset() { 1930 return cell_offset(ReceiverTypeData::static_cell_count()); 1931 } 1932 1933 virtual void clean_weak_klass_links(bool always_clean) { 1934 ReceiverTypeData::clean_weak_klass_links(always_clean); 1935 _array.clean_weak_klass_links(always_clean); 1936 } 1937 1938 static ByteSize array_store_data_size() { 1939 return cell_offset(static_cell_count()); 1940 } 1941 1942 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1943 }; 1944 1945 class ArrayLoadData : public ProfileData { 1946 private: 1947 enum { 1948 flat_array_flag = DataLayout::first_flag, 1949 null_free_array_flag = flat_array_flag + 1, 1950 }; 1951 1952 SingleTypeEntry _array; 1953 SingleTypeEntry _element; 1954 1955 public: 1956 ArrayLoadData(DataLayout* layout) : 1957 ProfileData(layout), 1958 _array(0), 1959 _element(SingleTypeEntry::static_cell_count()) { 1960 assert(layout->tag() == DataLayout::array_load_data_tag, "wrong type"); 1961 _array.set_profile_data(this); 1962 _element.set_profile_data(this); 1963 } 1964 1965 const SingleTypeEntry* array() const { 1966 return &_array; 1967 } 1968 1969 const SingleTypeEntry* element() const { 1970 return &_element; 1971 } 1972 1973 virtual bool is_ArrayLoadData() const { return true; } 1974 1975 static int static_cell_count() { 1976 return SingleTypeEntry::static_cell_count() * 2; 1977 } 1978 1979 virtual int cell_count() const { 1980 return static_cell_count(); 1981 } 1982 1983 void set_flat_array() { set_flag_at(flat_array_flag); } 1984 bool flat_array() const { return flag_at(flat_array_flag); } 1985 1986 void set_null_free_array() { set_flag_at(null_free_array_flag); } 1987 bool null_free_array() const { return flag_at(null_free_array_flag); } 1988 1989 // Code generation support 1990 static int flat_array_byte_constant() { 1991 return flag_number_to_constant(flat_array_flag); 1992 } 1993 1994 static int null_free_array_byte_constant() { 1995 return flag_number_to_constant(null_free_array_flag); 1996 } 1997 1998 static ByteSize array_offset() { 1999 return cell_offset(0); 2000 } 2001 2002 static ByteSize element_offset() { 2003 return cell_offset(SingleTypeEntry::static_cell_count()); 2004 } 2005 2006 virtual void clean_weak_klass_links(bool always_clean) { 2007 _array.clean_weak_klass_links(always_clean); 2008 _element.clean_weak_klass_links(always_clean); 2009 } 2010 2011 static ByteSize array_load_data_size() { 2012 return cell_offset(static_cell_count()); 2013 } 2014 2015 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 2016 }; 2017 2018 class ACmpData : public BranchData { 2019 private: 2020 enum { 2021 left_inline_type_flag = DataLayout::first_flag, 2022 right_inline_type_flag 2023 }; 2024 2025 SingleTypeEntry _left; 2026 SingleTypeEntry _right; 2027 2028 public: 2029 ACmpData(DataLayout* layout) : 2030 BranchData(layout), 2031 _left(BranchData::static_cell_count()), 2032 _right(BranchData::static_cell_count() + SingleTypeEntry::static_cell_count()) { 2033 assert(layout->tag() == DataLayout::acmp_data_tag, "wrong type"); 2034 _left.set_profile_data(this); 2035 _right.set_profile_data(this); 2036 } 2037 2038 const SingleTypeEntry* left() const { 2039 return &_left; 2040 } 2041 2042 const SingleTypeEntry* right() const { 2043 return &_right; 2044 } 2045 2046 virtual bool is_ACmpData() const { return true; } 2047 2048 static int static_cell_count() { 2049 return BranchData::static_cell_count() + SingleTypeEntry::static_cell_count() * 2; 2050 } 2051 2052 virtual int cell_count() const { 2053 return static_cell_count(); 2054 } 2055 2056 void set_left_inline_type() { set_flag_at(left_inline_type_flag); } 2057 bool left_inline_type() const { return flag_at(left_inline_type_flag); } 2058 2059 void set_right_inline_type() { set_flag_at(right_inline_type_flag); } 2060 bool right_inline_type() const { return flag_at(right_inline_type_flag); } 2061 2062 // Code generation support 2063 static int left_inline_type_byte_constant() { 2064 return flag_number_to_constant(left_inline_type_flag); 2065 } 2066 2067 static int right_inline_type_byte_constant() { 2068 return flag_number_to_constant(right_inline_type_flag); 2069 } 2070 2071 static ByteSize left_offset() { 2072 return cell_offset(BranchData::static_cell_count()); 2073 } 2074 2075 static ByteSize right_offset() { 2076 return cell_offset(BranchData::static_cell_count() + SingleTypeEntry::static_cell_count()); 2077 } 2078 2079 virtual void clean_weak_klass_links(bool always_clean) { 2080 _left.clean_weak_klass_links(always_clean); 2081 _right.clean_weak_klass_links(always_clean); 2082 } 2083 2084 static ByteSize acmp_data_size() { 2085 return cell_offset(static_cell_count()); 2086 } 2087 2088 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 2089 }; 2090 2091 // MethodData* 2092 // 2093 // A MethodData* holds information which has been collected about 2094 // a method. Its layout looks like this: 2095 // 2096 // ----------------------------- 2097 // | header | 2098 // | klass | 2099 // ----------------------------- 2100 // | method | 2101 // | size of the MethodData* | 2102 // ----------------------------- 2103 // | Data entries... | 2104 // | (variable size) | 2105 // | | 2106 // . . 2107 // . . 2108 // . . 2109 // | | 2110 // ----------------------------- 2111 // 2112 // The data entry area is a heterogeneous array of DataLayouts. Each 2113 // DataLayout in the array corresponds to a specific bytecode in the 2114 // method. The entries in the array are sorted by the corresponding 2115 // bytecode. Access to the data is via resource-allocated ProfileData, 2116 // which point to the underlying blocks of DataLayout structures. 2117 // 2118 // During interpretation, if profiling in enabled, the interpreter 2119 // maintains a method data pointer (mdp), which points at the entry 2120 // in the array corresponding to the current bci. In the course of 2121 // interpretation, when a bytecode is encountered that has profile data 2122 // associated with it, the entry pointed to by mdp is updated, then the 2123 // mdp is adjusted to point to the next appropriate DataLayout. If mdp 2124 // is null to begin with, the interpreter assumes that the current method 2125 // is not (yet) being profiled. 2126 // 2127 // In MethodData* parlance, "dp" is a "data pointer", the actual address 2128 // of a DataLayout element. A "di" is a "data index", the offset in bytes 2129 // from the base of the data entry array. A "displacement" is the byte offset 2130 // in certain ProfileData objects that indicate the amount the mdp must be 2131 // adjusted in the event of a change in control flow. 2132 // 2133 2134 class CleanExtraDataClosure : public StackObj { 2135 public: 2136 virtual bool is_live(Method* m) = 0; 2137 }; 2138 2139 2140 #if INCLUDE_JVMCI 2141 // Encapsulates an encoded speculation reason. These are linked together in 2142 // a list that is atomically appended to during deoptimization. Entries are 2143 // never removed from the list. 2144 // @see jdk.vm.ci.hotspot.HotSpotSpeculationLog.HotSpotSpeculationEncoding 2145 class FailedSpeculation: public CHeapObj<mtCompiler> { 2146 private: 2147 // The length of HotSpotSpeculationEncoding.toByteArray(). The data itself 2148 // is an array embedded at the end of this object. 2149 int _data_len; 2150 2151 // Next entry in a linked list. 2152 FailedSpeculation* _next; 2153 2154 FailedSpeculation(address data, int data_len); 2155 2156 FailedSpeculation** next_adr() { return &_next; } 2157 2158 // Placement new operator for inlining the speculation data into 2159 // the FailedSpeculation object. 2160 void* operator new(size_t size, size_t fs_size) throw(); 2161 2162 public: 2163 char* data() { return (char*)(((address) this) + sizeof(FailedSpeculation)); } 2164 int data_len() const { return _data_len; } 2165 FailedSpeculation* next() const { return _next; } 2166 2167 // Atomically appends a speculation from nm to the list whose head is at (*failed_speculations_address). 2168 // Returns false if the FailedSpeculation object could not be allocated. 2169 static bool add_failed_speculation(nmethod* nm, FailedSpeculation** failed_speculations_address, address speculation, int speculation_len); 2170 2171 // Frees all entries in the linked list whose head is at (*failed_speculations_address). 2172 static void free_failed_speculations(FailedSpeculation** failed_speculations_address); 2173 }; 2174 #endif 2175 2176 class ciMethodData; 2177 2178 class MethodData : public Metadata { 2179 friend class VMStructs; 2180 friend class JVMCIVMStructs; 2181 friend class ProfileData; 2182 friend class TypeEntriesAtCall; 2183 friend class ciMethodData; 2184 2185 // If you add a new field that points to any metaspace object, you 2186 // must add this field to MethodData::metaspace_pointers_do(). 2187 2188 // Back pointer to the Method* 2189 Method* _method; 2190 2191 // Size of this oop in bytes 2192 int _size; 2193 2194 // Cached hint for bci_to_dp and bci_to_data 2195 int _hint_di; 2196 2197 Mutex _extra_data_lock; 2198 2199 MethodData(const methodHandle& method); 2200 public: 2201 static MethodData* allocate(ClassLoaderData* loader_data, const methodHandle& method, TRAPS); 2202 2203 virtual bool is_methodData() const { return true; } 2204 void initialize(); 2205 2206 // Whole-method sticky bits and flags 2207 enum { 2208 _trap_hist_limit = Deoptimization::Reason_TRAP_HISTORY_LENGTH, 2209 _trap_hist_mask = max_jubyte, 2210 _extra_data_count = 4 // extra DataLayout headers, for trap history 2211 }; // Public flag values 2212 2213 // Compiler-related counters. 2214 class CompilerCounters { 2215 friend class VMStructs; 2216 friend class JVMCIVMStructs; 2217 2218 uint _nof_decompiles; // count of all nmethod removals 2219 uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits 2220 uint _nof_overflow_traps; // trap count, excluding _trap_hist 2221 union { 2222 intptr_t _align; 2223 // JVMCI separates trap history for OSR compilations from normal compilations 2224 u1 _array[JVMCI_ONLY(2 *) MethodData::_trap_hist_limit]; 2225 } _trap_hist; 2226 2227 public: 2228 CompilerCounters() : _nof_decompiles(0), _nof_overflow_recompiles(0), _nof_overflow_traps(0) { 2229 #ifndef ZERO 2230 // Some Zero platforms do not have expected alignment, and do not use 2231 // this code. static_assert would still fire and fail for them. 2232 static_assert(sizeof(_trap_hist) % HeapWordSize == 0, "align"); 2233 #endif 2234 uint size_in_words = sizeof(_trap_hist) / HeapWordSize; 2235 Copy::zero_to_words((HeapWord*) &_trap_hist, size_in_words); 2236 } 2237 2238 // Return (uint)-1 for overflow. 2239 uint trap_count(int reason) const { 2240 assert((uint)reason < ARRAY_SIZE(_trap_hist._array), "oob"); 2241 return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1; 2242 } 2243 2244 uint inc_trap_count(int reason) { 2245 // Count another trap, anywhere in this method. 2246 assert(reason >= 0, "must be single trap"); 2247 assert((uint)reason < ARRAY_SIZE(_trap_hist._array), "oob"); 2248 uint cnt1 = 1 + _trap_hist._array[reason]; 2249 if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow... 2250 _trap_hist._array[reason] = (u1)cnt1; 2251 return cnt1; 2252 } else { 2253 return _trap_hist_mask + (++_nof_overflow_traps); 2254 } 2255 } 2256 2257 uint overflow_trap_count() const { 2258 return _nof_overflow_traps; 2259 } 2260 uint overflow_recompile_count() const { 2261 return _nof_overflow_recompiles; 2262 } 2263 uint inc_overflow_recompile_count() { 2264 return ++_nof_overflow_recompiles; 2265 } 2266 uint decompile_count() const { 2267 return _nof_decompiles; 2268 } 2269 uint inc_decompile_count() { 2270 return ++_nof_decompiles; 2271 } 2272 2273 // Support for code generation 2274 static ByteSize trap_history_offset() { 2275 return byte_offset_of(CompilerCounters, _trap_hist._array); 2276 } 2277 }; 2278 2279 private: 2280 CompilerCounters _compiler_counters; 2281 2282 // Support for interprocedural escape analysis, from Thomas Kotzmann. 2283 intx _eflags; // flags on escape information 2284 intx _arg_local; // bit set of non-escaping arguments 2285 intx _arg_stack; // bit set of stack-allocatable arguments 2286 intx _arg_returned; // bit set of returned arguments 2287 2288 int _creation_mileage; // method mileage at MDO creation 2289 2290 // How many invocations has this MDO seen? 2291 // These counters are used to determine the exact age of MDO. 2292 // We need those because in tiered a method can be concurrently 2293 // executed at different levels. 2294 InvocationCounter _invocation_counter; 2295 // Same for backedges. 2296 InvocationCounter _backedge_counter; 2297 // Counter values at the time profiling started. 2298 int _invocation_counter_start; 2299 int _backedge_counter_start; 2300 uint _tenure_traps; 2301 int _invoke_mask; // per-method Tier0InvokeNotifyFreqLog 2302 int _backedge_mask; // per-method Tier0BackedgeNotifyFreqLog 2303 2304 // Number of loops and blocks is computed when compiling the first 2305 // time with C1. It is used to determine if method is trivial. 2306 short _num_loops; 2307 short _num_blocks; 2308 // Does this method contain anything worth profiling? 2309 enum WouldProfile {unknown, no_profile, profile}; 2310 WouldProfile _would_profile; 2311 2312 #if INCLUDE_JVMCI 2313 // Support for HotSpotMethodData.setCompiledIRSize(int) 2314 FailedSpeculation* _failed_speculations; 2315 int _jvmci_ir_size; 2316 #endif 2317 2318 // Size of _data array in bytes. (Excludes header and extra_data fields.) 2319 int _data_size; 2320 2321 // data index for the area dedicated to parameters. -1 if no 2322 // parameter profiling. 2323 enum { no_parameters = -2, parameters_uninitialized = -1 }; 2324 int _parameters_type_data_di; 2325 2326 // data index of exception handler profiling data 2327 int _exception_handler_data_di; 2328 2329 // Beginning of the data entries 2330 // See comment in ciMethodData::load_data 2331 intptr_t _data[1]; 2332 2333 // Helper for size computation 2334 static int compute_data_size(BytecodeStream* stream); 2335 static int bytecode_cell_count(Bytecodes::Code code); 2336 static bool is_speculative_trap_bytecode(Bytecodes::Code code); 2337 enum { no_profile_data = -1, variable_cell_count = -2 }; 2338 2339 // Helper for initialization 2340 DataLayout* data_layout_at(int data_index) const { 2341 assert(data_index % sizeof(intptr_t) == 0, "unaligned"); 2342 return (DataLayout*) (((address)_data) + data_index); 2343 } 2344 2345 static int single_exception_handler_data_cell_count() { 2346 return BitData::static_cell_count(); 2347 } 2348 2349 static int single_exception_handler_data_size() { 2350 return DataLayout::compute_size_in_bytes(single_exception_handler_data_cell_count()); 2351 } 2352 2353 DataLayout* exception_handler_data_at(int exception_handler_index) const { 2354 return data_layout_at(_exception_handler_data_di + (exception_handler_index * single_exception_handler_data_size())); 2355 } 2356 2357 int num_exception_handler_data() const { 2358 return exception_handlers_data_size() / single_exception_handler_data_size(); 2359 } 2360 2361 // Initialize an individual data segment. Returns the size of 2362 // the segment in bytes. 2363 int initialize_data(BytecodeStream* stream, int data_index); 2364 2365 // Helper for data_at 2366 DataLayout* limit_data_position() const { 2367 return data_layout_at(_data_size); 2368 } 2369 bool out_of_bounds(int data_index) const { 2370 return data_index >= data_size(); 2371 } 2372 2373 // Give each of the data entries a chance to perform specific 2374 // data initialization. 2375 void post_initialize(BytecodeStream* stream); 2376 2377 // hint accessors 2378 int hint_di() const { return _hint_di; } 2379 void set_hint_di(int di) { 2380 assert(!out_of_bounds(di), "hint_di out of bounds"); 2381 _hint_di = di; 2382 } 2383 2384 DataLayout* data_layout_before(int bci) { 2385 // avoid SEGV on this edge case 2386 if (data_size() == 0) 2387 return nullptr; 2388 DataLayout* layout = data_layout_at(hint_di()); 2389 if (layout->bci() <= bci) 2390 return layout; 2391 return data_layout_at(first_di()); 2392 } 2393 2394 // What is the index of the first data entry? 2395 int first_di() const { return 0; } 2396 2397 ProfileData* bci_to_extra_data_find(int bci, Method* m, DataLayout*& dp); 2398 // Find or create an extra ProfileData: 2399 ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing); 2400 2401 // return the argument info cell 2402 ArgInfoData *arg_info(); 2403 2404 enum { 2405 no_type_profile = 0, 2406 type_profile_jsr292 = 1, 2407 type_profile_all = 2 2408 }; 2409 2410 static bool profile_jsr292(const methodHandle& m, int bci); 2411 static bool profile_unsafe(const methodHandle& m, int bci); 2412 static bool profile_memory_access(const methodHandle& m, int bci); 2413 static int profile_arguments_flag(); 2414 static bool profile_all_arguments(); 2415 static bool profile_arguments_for_invoke(const methodHandle& m, int bci); 2416 static int profile_return_flag(); 2417 static bool profile_all_return(); 2418 static bool profile_return_for_invoke(const methodHandle& m, int bci); 2419 static int profile_parameters_flag(); 2420 static bool profile_parameters_jsr292_only(); 2421 static bool profile_all_parameters(); 2422 2423 void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false); 2424 void verify_extra_data_clean(CleanExtraDataClosure* cl); 2425 2426 DataLayout* exception_handler_bci_to_data_helper(int bci); 2427 2428 public: 2429 void clean_extra_data(CleanExtraDataClosure* cl); 2430 2431 static int header_size() { 2432 return sizeof(MethodData)/wordSize; 2433 } 2434 2435 // Compute the size of a MethodData* before it is created. 2436 static int compute_allocation_size_in_bytes(const methodHandle& method); 2437 static int compute_allocation_size_in_words(const methodHandle& method); 2438 static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps); 2439 2440 // Determine if a given bytecode can have profile information. 2441 static bool bytecode_has_profile(Bytecodes::Code code) { 2442 return bytecode_cell_count(code) != no_profile_data; 2443 } 2444 2445 // reset into original state 2446 void init(); 2447 2448 // My size 2449 int size_in_bytes() const { return _size; } 2450 int size() const { return align_metadata_size(align_up(_size, BytesPerWord)/BytesPerWord); } 2451 2452 int creation_mileage() const { return _creation_mileage; } 2453 void set_creation_mileage(int x) { _creation_mileage = x; } 2454 2455 int invocation_count() { 2456 if (invocation_counter()->carry()) { 2457 return InvocationCounter::count_limit; 2458 } 2459 return invocation_counter()->count(); 2460 } 2461 int backedge_count() { 2462 if (backedge_counter()->carry()) { 2463 return InvocationCounter::count_limit; 2464 } 2465 return backedge_counter()->count(); 2466 } 2467 2468 int invocation_count_start() { 2469 if (invocation_counter()->carry()) { 2470 return 0; 2471 } 2472 return _invocation_counter_start; 2473 } 2474 2475 int backedge_count_start() { 2476 if (backedge_counter()->carry()) { 2477 return 0; 2478 } 2479 return _backedge_counter_start; 2480 } 2481 2482 int invocation_count_delta() { return invocation_count() - invocation_count_start(); } 2483 int backedge_count_delta() { return backedge_count() - backedge_count_start(); } 2484 2485 void reset_start_counters() { 2486 _invocation_counter_start = invocation_count(); 2487 _backedge_counter_start = backedge_count(); 2488 } 2489 2490 InvocationCounter* invocation_counter() { return &_invocation_counter; } 2491 InvocationCounter* backedge_counter() { return &_backedge_counter; } 2492 2493 #if INCLUDE_JVMCI 2494 FailedSpeculation** get_failed_speculations_address() { 2495 return &_failed_speculations; 2496 } 2497 #endif 2498 2499 void set_would_profile(bool p) { _would_profile = p ? profile : no_profile; } 2500 bool would_profile() const { return _would_profile != no_profile; } 2501 2502 int num_loops() const { return _num_loops; } 2503 void set_num_loops(short n) { _num_loops = n; } 2504 int num_blocks() const { return _num_blocks; } 2505 void set_num_blocks(short n) { _num_blocks = n; } 2506 2507 bool is_mature() const; // consult mileage and ProfileMaturityPercentage 2508 static int mileage_of(Method* m); 2509 2510 // Support for interprocedural escape analysis, from Thomas Kotzmann. 2511 enum EscapeFlag { 2512 estimated = 1 << 0, 2513 return_local = 1 << 1, 2514 return_allocated = 1 << 2, 2515 allocated_escapes = 1 << 3, 2516 unknown_modified = 1 << 4 2517 }; 2518 2519 intx eflags() { return _eflags; } 2520 intx arg_local() { return _arg_local; } 2521 intx arg_stack() { return _arg_stack; } 2522 intx arg_returned() { return _arg_returned; } 2523 uint arg_modified(int a); 2524 void set_eflags(intx v) { _eflags = v; } 2525 void set_arg_local(intx v) { _arg_local = v; } 2526 void set_arg_stack(intx v) { _arg_stack = v; } 2527 void set_arg_returned(intx v) { _arg_returned = v; } 2528 void set_arg_modified(int a, uint v); 2529 void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; } 2530 2531 // Location and size of data area 2532 address data_base() const { 2533 return (address) _data; 2534 } 2535 int data_size() const { 2536 return _data_size; 2537 } 2538 2539 int parameters_size_in_bytes() const { 2540 return pointer_delta_as_int((address) parameters_data_limit(), (address) parameters_data_base()); 2541 } 2542 2543 int exception_handlers_data_size() const { 2544 return pointer_delta_as_int((address) exception_handler_data_limit(), (address) exception_handler_data_base()); 2545 } 2546 2547 // Accessors 2548 Method* method() const { return _method; } 2549 2550 // Get the data at an arbitrary (sort of) data index. 2551 ProfileData* data_at(int data_index) const; 2552 2553 // Walk through the data in order. 2554 ProfileData* first_data() const { return data_at(first_di()); } 2555 ProfileData* next_data(ProfileData* current) const; 2556 DataLayout* next_data_layout(DataLayout* current) const; 2557 bool is_valid(ProfileData* current) const { return current != nullptr; } 2558 bool is_valid(DataLayout* current) const { return current != nullptr; } 2559 2560 // Convert a dp (data pointer) to a di (data index). 2561 int dp_to_di(address dp) const { 2562 return (int)(dp - ((address)_data)); 2563 } 2564 2565 // bci to di/dp conversion. 2566 address bci_to_dp(int bci); 2567 int bci_to_di(int bci) { 2568 return dp_to_di(bci_to_dp(bci)); 2569 } 2570 2571 // Get the data at an arbitrary bci, or null if there is none. 2572 ProfileData* bci_to_data(int bci); 2573 2574 // Same, but try to create an extra_data record if one is needed: 2575 ProfileData* allocate_bci_to_data(int bci, Method* m) { 2576 check_extra_data_locked(); 2577 2578 ProfileData* data = nullptr; 2579 // If m not null, try to allocate a SpeculativeTrapData entry 2580 if (m == nullptr) { 2581 data = bci_to_data(bci); 2582 } 2583 if (data != nullptr) { 2584 return data; 2585 } 2586 data = bci_to_extra_data(bci, m, true); 2587 if (data != nullptr) { 2588 return data; 2589 } 2590 // If SpeculativeTrapData allocation fails try to allocate a 2591 // regular entry 2592 data = bci_to_data(bci); 2593 if (data != nullptr) { 2594 return data; 2595 } 2596 return bci_to_extra_data(bci, nullptr, true); 2597 } 2598 2599 BitData* exception_handler_bci_to_data_or_null(int bci); 2600 BitData exception_handler_bci_to_data(int bci); 2601 2602 // Add a handful of extra data records, for trap tracking. 2603 // Only valid after 'set_size' is called at the end of MethodData::initialize 2604 DataLayout* extra_data_base() const { 2605 check_extra_data_locked(); 2606 return limit_data_position(); 2607 } 2608 DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); } 2609 // pointers to sections in extra data 2610 DataLayout* args_data_limit() const { return parameters_data_base(); } 2611 DataLayout* parameters_data_base() const { 2612 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2613 return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di) : parameters_data_limit(); 2614 } 2615 DataLayout* parameters_data_limit() const { 2616 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2617 return exception_handler_data_base(); 2618 } 2619 DataLayout* exception_handler_data_base() const { return data_layout_at(_exception_handler_data_di); } 2620 DataLayout* exception_handler_data_limit() const { return extra_data_limit(); } 2621 2622 int extra_data_size() const { return (int)((address)extra_data_limit() - (address)limit_data_position()); } 2623 static DataLayout* next_extra(DataLayout* dp); 2624 2625 // Return (uint)-1 for overflow. 2626 uint trap_count(int reason) const { 2627 return _compiler_counters.trap_count(reason); 2628 } 2629 // For loops: 2630 static uint trap_reason_limit() { return _trap_hist_limit; } 2631 static uint trap_count_limit() { return _trap_hist_mask; } 2632 uint inc_trap_count(int reason) { 2633 return _compiler_counters.inc_trap_count(reason); 2634 } 2635 2636 uint overflow_trap_count() const { 2637 return _compiler_counters.overflow_trap_count(); 2638 } 2639 uint overflow_recompile_count() const { 2640 return _compiler_counters.overflow_recompile_count(); 2641 } 2642 uint inc_overflow_recompile_count() { 2643 return _compiler_counters.inc_overflow_recompile_count(); 2644 } 2645 uint decompile_count() const { 2646 return _compiler_counters.decompile_count(); 2647 } 2648 uint inc_decompile_count() { 2649 uint dec_count = _compiler_counters.inc_decompile_count(); 2650 if (dec_count > (uint)PerMethodRecompilationCutoff) { 2651 method()->set_not_compilable("decompile_count > PerMethodRecompilationCutoff", CompLevel_full_optimization); 2652 } 2653 return dec_count; 2654 } 2655 uint tenure_traps() const { 2656 return _tenure_traps; 2657 } 2658 void inc_tenure_traps() { 2659 _tenure_traps += 1; 2660 } 2661 2662 // Return pointer to area dedicated to parameters in MDO 2663 ParametersTypeData* parameters_type_data() const { 2664 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2665 return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : nullptr; 2666 } 2667 2668 int parameters_type_data_di() const { 2669 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2670 return _parameters_type_data_di != no_parameters ? _parameters_type_data_di : exception_handlers_data_di(); 2671 } 2672 2673 int exception_handlers_data_di() const { 2674 return _exception_handler_data_di; 2675 } 2676 2677 // Support for code generation 2678 static ByteSize data_offset() { 2679 return byte_offset_of(MethodData, _data[0]); 2680 } 2681 2682 static ByteSize trap_history_offset() { 2683 return byte_offset_of(MethodData, _compiler_counters) + CompilerCounters::trap_history_offset(); 2684 } 2685 2686 static ByteSize invocation_counter_offset() { 2687 return byte_offset_of(MethodData, _invocation_counter); 2688 } 2689 2690 static ByteSize backedge_counter_offset() { 2691 return byte_offset_of(MethodData, _backedge_counter); 2692 } 2693 2694 static ByteSize invoke_mask_offset() { 2695 return byte_offset_of(MethodData, _invoke_mask); 2696 } 2697 2698 static ByteSize backedge_mask_offset() { 2699 return byte_offset_of(MethodData, _backedge_mask); 2700 } 2701 2702 static ByteSize parameters_type_data_di_offset() { 2703 return byte_offset_of(MethodData, _parameters_type_data_di); 2704 } 2705 2706 virtual void metaspace_pointers_do(MetaspaceClosure* iter); 2707 virtual MetaspaceObj::Type type() const { return MethodDataType; } 2708 2709 // Deallocation support 2710 void deallocate_contents(ClassLoaderData* loader_data); 2711 void release_C_heap_structures(); 2712 2713 // GC support 2714 void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; } 2715 2716 // Printing 2717 void print_on (outputStream* st) const; 2718 void print_value_on(outputStream* st) const; 2719 2720 // printing support for method data 2721 void print_data_on(outputStream* st) const; 2722 2723 const char* internal_name() const { return "{method data}"; } 2724 2725 // verification 2726 void verify_on(outputStream* st); 2727 void verify_data_on(outputStream* st); 2728 2729 static bool profile_parameters_for_method(const methodHandle& m); 2730 static bool profile_arguments(); 2731 static bool profile_arguments_jsr292_only(); 2732 static bool profile_return(); 2733 static bool profile_parameters(); 2734 static bool profile_return_jsr292_only(); 2735 2736 void clean_method_data(bool always_clean); 2737 void clean_weak_method_links(); 2738 Mutex* extra_data_lock() { return &_extra_data_lock; } 2739 void check_extra_data_locked() const NOT_DEBUG_RETURN; 2740 }; 2741 2742 #endif // SHARE_OOPS_METHODDATA_HPP