1 /* 2 * Copyright (c) 2000, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OOPS_METHODDATA_HPP 26 #define SHARE_OOPS_METHODDATA_HPP 27 28 #include "interpreter/bytecodes.hpp" 29 #include "oops/metadata.hpp" 30 #include "oops/method.hpp" 31 #include "oops/oop.hpp" 32 #include "runtime/atomic.hpp" 33 #include "runtime/deoptimization.hpp" 34 #include "runtime/mutex.hpp" 35 #include "utilities/align.hpp" 36 #include "utilities/copy.hpp" 37 38 class BytecodeStream; 39 40 // The MethodData object collects counts and other profile information 41 // during zeroth-tier (interpreter) and third-tier (C1 with full profiling) 42 // execution. 43 // 44 // The profile is used later by compilation heuristics. Some heuristics 45 // enable use of aggressive (or "heroic") optimizations. An aggressive 46 // optimization often has a down-side, a corner case that it handles 47 // poorly, but which is thought to be rare. The profile provides 48 // evidence of this rarity for a given method or even BCI. It allows 49 // the compiler to back out of the optimization at places where it 50 // has historically been a poor choice. Other heuristics try to use 51 // specific information gathered about types observed at a given site. 52 // 53 // All data in the profile is approximate. It is expected to be accurate 54 // on the whole, but the system expects occasional inaccuraces, due to 55 // counter overflow, multiprocessor races during data collection, space 56 // limitations, missing MDO blocks, etc. Bad or missing data will degrade 57 // optimization quality but will not affect correctness. Also, each MDO 58 // is marked with its birth-date ("creation_mileage") which can be used 59 // to assess the quality ("maturity") of its data. 60 // 61 // Short (<32-bit) counters are designed to overflow to a known "saturated" 62 // state. Also, certain recorded per-BCI events are given one-bit counters 63 // which overflow to a saturated state which applied to all counters at 64 // that BCI. In other words, there is a small lattice which approximates 65 // the ideal of an infinite-precision counter for each event at each BCI, 66 // and the lattice quickly "bottoms out" in a state where all counters 67 // are taken to be indefinitely large. 68 // 69 // The reader will find many data races in profile gathering code, starting 70 // with invocation counter incrementation. None of these races harm correct 71 // execution of the compiled code. 72 73 // forward decl 74 class ProfileData; 75 76 // DataLayout 77 // 78 // Overlay for generic profiling data. 79 class DataLayout { 80 friend class VMStructs; 81 friend class JVMCIVMStructs; 82 83 private: 84 // Every data layout begins with a header. This header 85 // contains a tag, which is used to indicate the size/layout 86 // of the data, 8 bits of flags, which can be used in any way, 87 // 32 bits of trap history (none/one reason/many reasons), 88 // and a bci, which is used to tie this piece of data to a 89 // specific bci in the bytecodes. 90 union { 91 u8 _bits; 92 struct { 93 u1 _tag; 94 u1 _flags; 95 u2 _bci; 96 u4 _traps; 97 } _struct; 98 } _header; 99 100 // The data layout has an arbitrary number of cells, each sized 101 // to accommodate a pointer or an integer. 102 intptr_t _cells[1]; 103 104 // Some types of data layouts need a length field. 105 static bool needs_array_len(u1 tag); 106 107 public: 108 enum { 109 counter_increment = 1 110 }; 111 112 enum { 113 cell_size = sizeof(intptr_t) 114 }; 115 116 // Tag values 117 enum { 118 no_tag, 119 bit_data_tag, 120 counter_data_tag, 121 jump_data_tag, 122 receiver_type_data_tag, 123 virtual_call_data_tag, 124 ret_data_tag, 125 branch_data_tag, 126 multi_branch_data_tag, 127 arg_info_data_tag, 128 call_type_data_tag, 129 virtual_call_type_data_tag, 130 parameters_type_data_tag, 131 speculative_trap_data_tag, 132 array_load_store_data_tag, 133 acmp_data_tag 134 }; 135 136 enum { 137 // The trap state breaks down as [recompile:1 | reason:31]. 138 // This further breakdown is defined in deoptimization.cpp. 139 // See Deoptimization::trap_state_reason for an assert that 140 // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT. 141 // 142 // The trap_state is collected only if ProfileTraps is true. 143 trap_bits = 1+31, // 31: enough to distinguish [0..Reason_RECORDED_LIMIT]. 144 trap_mask = -1, 145 first_flag = 0 146 }; 147 148 // Size computation 149 static int header_size_in_bytes() { 150 return header_size_in_cells() * cell_size; 151 } 152 static int header_size_in_cells() { 153 return LP64_ONLY(1) NOT_LP64(2); 154 } 155 156 static int compute_size_in_bytes(int cell_count) { 157 return header_size_in_bytes() + cell_count * cell_size; 158 } 159 160 // Initialization 161 void initialize(u1 tag, u2 bci, int cell_count); 162 163 // Accessors 164 u1 tag() { 165 return _header._struct._tag; 166 } 167 168 // Return 32 bits of trap state. 169 // The state tells if traps with zero, one, or many reasons have occurred. 170 // It also tells whether zero or many recompilations have occurred. 171 // The associated trap histogram in the MDO itself tells whether 172 // traps are common or not. If a BCI shows that a trap X has 173 // occurred, and the MDO shows N occurrences of X, we make the 174 // simplifying assumption that all N occurrences can be blamed 175 // on that BCI. 176 uint trap_state() const { 177 return _header._struct._traps; 178 } 179 180 void set_trap_state(uint new_state) { 181 assert(ProfileTraps, "used only under +ProfileTraps"); 182 uint old_flags = _header._struct._traps; 183 _header._struct._traps = new_state | old_flags; 184 } 185 186 u1 flags() const { 187 return _header._struct._flags; 188 } 189 190 u2 bci() const { 191 return _header._struct._bci; 192 } 193 194 void set_header(u8 value) { 195 _header._bits = value; 196 } 197 u8 header() { 198 return _header._bits; 199 } 200 void set_cell_at(int index, intptr_t value) { 201 _cells[index] = value; 202 } 203 void release_set_cell_at(int index, intptr_t value); 204 intptr_t cell_at(int index) const { 205 return _cells[index]; 206 } 207 208 void set_flag_at(u1 flag_number) { 209 _header._struct._flags |= (0x1 << flag_number); 210 } 211 bool flag_at(u1 flag_number) const { 212 return (_header._struct._flags & (0x1 << flag_number)) != 0; 213 } 214 215 // Low-level support for code generation. 216 static ByteSize header_offset() { 217 return byte_offset_of(DataLayout, _header); 218 } 219 static ByteSize tag_offset() { 220 return byte_offset_of(DataLayout, _header._struct._tag); 221 } 222 static ByteSize flags_offset() { 223 return byte_offset_of(DataLayout, _header._struct._flags); 224 } 225 static ByteSize bci_offset() { 226 return byte_offset_of(DataLayout, _header._struct._bci); 227 } 228 static ByteSize cell_offset(int index) { 229 return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size); 230 } 231 // Return a value which, when or-ed as a byte into _flags, sets the flag. 232 static u1 flag_number_to_constant(u1 flag_number) { 233 DataLayout temp; temp.set_header(0); 234 temp.set_flag_at(flag_number); 235 return temp._header._struct._flags; 236 } 237 // Return a value which, when or-ed as a word into _header, sets the flag. 238 static u8 flag_mask_to_header_mask(uint byte_constant) { 239 DataLayout temp; temp.set_header(0); 240 temp._header._struct._flags = byte_constant; 241 return temp._header._bits; 242 } 243 244 ProfileData* data_in(); 245 246 int size_in_bytes() { 247 int cells = cell_count(); 248 assert(cells >= 0, "invalid number of cells"); 249 return DataLayout::compute_size_in_bytes(cells); 250 } 251 int cell_count(); 252 253 // GC support 254 void clean_weak_klass_links(bool always_clean); 255 }; 256 257 258 // ProfileData class hierarchy 259 class ProfileData; 260 class BitData; 261 class CounterData; 262 class ReceiverTypeData; 263 class VirtualCallData; 264 class VirtualCallTypeData; 265 class RetData; 266 class CallTypeData; 267 class JumpData; 268 class BranchData; 269 class ACmpData; 270 class ArrayData; 271 class MultiBranchData; 272 class ArgInfoData; 273 class ParametersTypeData; 274 class SpeculativeTrapData; 275 class ArrayLoadStoreData; 276 277 // ProfileData 278 // 279 // A ProfileData object is created to refer to a section of profiling 280 // data in a structured way. 281 class ProfileData : public ResourceObj { 282 friend class TypeEntries; 283 friend class SingleTypeEntry; 284 friend class TypeStackSlotEntries; 285 private: 286 enum { 287 tab_width_one = 16, 288 tab_width_two = 36 289 }; 290 291 // This is a pointer to a section of profiling data. 292 DataLayout* _data; 293 294 char* print_data_on_helper(const MethodData* md) const; 295 296 protected: 297 DataLayout* data() { return _data; } 298 const DataLayout* data() const { return _data; } 299 300 enum { 301 cell_size = DataLayout::cell_size 302 }; 303 304 public: 305 // How many cells are in this? 306 virtual int cell_count() const { 307 ShouldNotReachHere(); 308 return -1; 309 } 310 311 // Return the size of this data. 312 int size_in_bytes() { 313 return DataLayout::compute_size_in_bytes(cell_count()); 314 } 315 316 protected: 317 // Low-level accessors for underlying data 318 void set_intptr_at(int index, intptr_t value) { 319 assert(0 <= index && index < cell_count(), "oob"); 320 data()->set_cell_at(index, value); 321 } 322 void release_set_intptr_at(int index, intptr_t value); 323 intptr_t intptr_at(int index) const { 324 assert(0 <= index && index < cell_count(), "oob"); 325 return data()->cell_at(index); 326 } 327 void set_uint_at(int index, uint value) { 328 set_intptr_at(index, (intptr_t) value); 329 } 330 void release_set_uint_at(int index, uint value); 331 uint uint_at(int index) const { 332 return (uint)intptr_at(index); 333 } 334 void set_int_at(int index, int value) { 335 set_intptr_at(index, (intptr_t) value); 336 } 337 void release_set_int_at(int index, int value); 338 int int_at(int index) const { 339 return (int)intptr_at(index); 340 } 341 int int_at_unchecked(int index) const { 342 return (int)data()->cell_at(index); 343 } 344 void set_oop_at(int index, oop value) { 345 set_intptr_at(index, cast_from_oop<intptr_t>(value)); 346 } 347 oop oop_at(int index) const { 348 return cast_to_oop(intptr_at(index)); 349 } 350 351 void set_flag_at(int flag_number) { 352 data()->set_flag_at(flag_number); 353 } 354 bool flag_at(int flag_number) const { 355 return data()->flag_at(flag_number); 356 } 357 358 // two convenient imports for use by subclasses: 359 static ByteSize cell_offset(int index) { 360 return DataLayout::cell_offset(index); 361 } 362 static int flag_number_to_constant(int flag_number) { 363 return DataLayout::flag_number_to_constant(flag_number); 364 } 365 366 ProfileData(DataLayout* data) { 367 _data = data; 368 } 369 370 public: 371 // Constructor for invalid ProfileData. 372 ProfileData(); 373 374 u2 bci() const { 375 return data()->bci(); 376 } 377 378 address dp() { 379 return (address)_data; 380 } 381 382 int trap_state() const { 383 return data()->trap_state(); 384 } 385 void set_trap_state(int new_state) { 386 data()->set_trap_state(new_state); 387 } 388 389 // Type checking 390 virtual bool is_BitData() const { return false; } 391 virtual bool is_CounterData() const { return false; } 392 virtual bool is_JumpData() const { return false; } 393 virtual bool is_ReceiverTypeData()const { return false; } 394 virtual bool is_VirtualCallData() const { return false; } 395 virtual bool is_RetData() const { return false; } 396 virtual bool is_BranchData() const { return false; } 397 virtual bool is_ArrayData() const { return false; } 398 virtual bool is_MultiBranchData() const { return false; } 399 virtual bool is_ArgInfoData() const { return false; } 400 virtual bool is_CallTypeData() const { return false; } 401 virtual bool is_VirtualCallTypeData()const { return false; } 402 virtual bool is_ParametersTypeData() const { return false; } 403 virtual bool is_SpeculativeTrapData()const { return false; } 404 virtual bool is_ArrayLoadStoreData() const { return false; } 405 virtual bool is_ACmpData() const { return false; } 406 407 408 BitData* as_BitData() const { 409 assert(is_BitData(), "wrong type"); 410 return is_BitData() ? (BitData*) this : nullptr; 411 } 412 CounterData* as_CounterData() const { 413 assert(is_CounterData(), "wrong type"); 414 return is_CounterData() ? (CounterData*) this : nullptr; 415 } 416 JumpData* as_JumpData() const { 417 assert(is_JumpData(), "wrong type"); 418 return is_JumpData() ? (JumpData*) this : nullptr; 419 } 420 ReceiverTypeData* as_ReceiverTypeData() const { 421 assert(is_ReceiverTypeData(), "wrong type"); 422 return is_ReceiverTypeData() ? (ReceiverTypeData*)this : nullptr; 423 } 424 VirtualCallData* as_VirtualCallData() const { 425 assert(is_VirtualCallData(), "wrong type"); 426 return is_VirtualCallData() ? (VirtualCallData*)this : nullptr; 427 } 428 RetData* as_RetData() const { 429 assert(is_RetData(), "wrong type"); 430 return is_RetData() ? (RetData*) this : nullptr; 431 } 432 BranchData* as_BranchData() const { 433 assert(is_BranchData(), "wrong type"); 434 return is_BranchData() ? (BranchData*) this : nullptr; 435 } 436 ArrayData* as_ArrayData() const { 437 assert(is_ArrayData(), "wrong type"); 438 return is_ArrayData() ? (ArrayData*) this : nullptr; 439 } 440 MultiBranchData* as_MultiBranchData() const { 441 assert(is_MultiBranchData(), "wrong type"); 442 return is_MultiBranchData() ? (MultiBranchData*)this : nullptr; 443 } 444 ArgInfoData* as_ArgInfoData() const { 445 assert(is_ArgInfoData(), "wrong type"); 446 return is_ArgInfoData() ? (ArgInfoData*)this : nullptr; 447 } 448 CallTypeData* as_CallTypeData() const { 449 assert(is_CallTypeData(), "wrong type"); 450 return is_CallTypeData() ? (CallTypeData*)this : nullptr; 451 } 452 VirtualCallTypeData* as_VirtualCallTypeData() const { 453 assert(is_VirtualCallTypeData(), "wrong type"); 454 return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : nullptr; 455 } 456 ParametersTypeData* as_ParametersTypeData() const { 457 assert(is_ParametersTypeData(), "wrong type"); 458 return is_ParametersTypeData() ? (ParametersTypeData*)this : nullptr; 459 } 460 SpeculativeTrapData* as_SpeculativeTrapData() const { 461 assert(is_SpeculativeTrapData(), "wrong type"); 462 return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : nullptr; 463 } 464 ArrayLoadStoreData* as_ArrayLoadStoreData() const { 465 assert(is_ArrayLoadStoreData(), "wrong type"); 466 return is_ArrayLoadStoreData() ? (ArrayLoadStoreData*)this : NULL; 467 } 468 ACmpData* as_ACmpData() const { 469 assert(is_ACmpData(), "wrong type"); 470 return is_ACmpData() ? (ACmpData*)this : NULL; 471 } 472 473 474 // Subclass specific initialization 475 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {} 476 477 // GC support 478 virtual void clean_weak_klass_links(bool always_clean) {} 479 480 // CI translation: ProfileData can represent both MethodDataOop data 481 // as well as CIMethodData data. This function is provided for translating 482 // an oop in a ProfileData to the ci equivalent. Generally speaking, 483 // most ProfileData don't require any translation, so we provide the null 484 // translation here, and the required translators are in the ci subclasses. 485 virtual void translate_from(const ProfileData* data) {} 486 487 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const { 488 ShouldNotReachHere(); 489 } 490 491 void print_data_on(outputStream* st, const MethodData* md) const; 492 493 void print_shared(outputStream* st, const char* name, const char* extra) const; 494 void tab(outputStream* st, bool first = false) const; 495 }; 496 497 // BitData 498 // 499 // A BitData holds a flag or two in its header. 500 class BitData : public ProfileData { 501 friend class VMStructs; 502 friend class JVMCIVMStructs; 503 protected: 504 enum { 505 // null_seen: 506 // saw a null operand (cast/aastore/instanceof) 507 null_seen_flag = DataLayout::first_flag + 0 508 #if INCLUDE_JVMCI 509 // bytecode threw any exception 510 , exception_seen_flag = null_seen_flag + 1 511 #endif 512 }; 513 enum { bit_cell_count = 0 }; // no additional data fields needed. 514 public: 515 BitData(DataLayout* layout) : ProfileData(layout) { 516 } 517 518 virtual bool is_BitData() const { return true; } 519 520 static int static_cell_count() { 521 return bit_cell_count; 522 } 523 524 virtual int cell_count() const { 525 return static_cell_count(); 526 } 527 528 // Accessor 529 530 // The null_seen flag bit is specially known to the interpreter. 531 // Consulting it allows the compiler to avoid setting up null_check traps. 532 bool null_seen() { return flag_at(null_seen_flag); } 533 void set_null_seen() { set_flag_at(null_seen_flag); } 534 535 #if INCLUDE_JVMCI 536 // true if an exception was thrown at the specific BCI 537 bool exception_seen() { return flag_at(exception_seen_flag); } 538 void set_exception_seen() { set_flag_at(exception_seen_flag); } 539 #endif 540 541 // Code generation support 542 static int null_seen_byte_constant() { 543 return flag_number_to_constant(null_seen_flag); 544 } 545 546 static ByteSize bit_data_size() { 547 return cell_offset(bit_cell_count); 548 } 549 550 void print_data_on(outputStream* st, const char* extra = nullptr) const; 551 }; 552 553 // CounterData 554 // 555 // A CounterData corresponds to a simple counter. 556 class CounterData : public BitData { 557 friend class VMStructs; 558 friend class JVMCIVMStructs; 559 protected: 560 enum { 561 count_off, 562 counter_cell_count 563 }; 564 public: 565 CounterData(DataLayout* layout) : BitData(layout) {} 566 567 virtual bool is_CounterData() const { return true; } 568 569 static int static_cell_count() { 570 return counter_cell_count; 571 } 572 573 virtual int cell_count() const { 574 return static_cell_count(); 575 } 576 577 // Direct accessor 578 int count() const { 579 intptr_t raw_data = intptr_at(count_off); 580 if (raw_data > max_jint) { 581 raw_data = max_jint; 582 } else if (raw_data < min_jint) { 583 raw_data = min_jint; 584 } 585 return int(raw_data); 586 } 587 588 // Code generation support 589 static ByteSize count_offset() { 590 return cell_offset(count_off); 591 } 592 static ByteSize counter_data_size() { 593 return cell_offset(counter_cell_count); 594 } 595 596 void set_count(int count) { 597 set_int_at(count_off, count); 598 } 599 600 void print_data_on(outputStream* st, const char* extra = nullptr) const; 601 }; 602 603 // JumpData 604 // 605 // A JumpData is used to access profiling information for a direct 606 // branch. It is a counter, used for counting the number of branches, 607 // plus a data displacement, used for realigning the data pointer to 608 // the corresponding target bci. 609 class JumpData : public ProfileData { 610 friend class VMStructs; 611 friend class JVMCIVMStructs; 612 protected: 613 enum { 614 taken_off_set, 615 displacement_off_set, 616 jump_cell_count 617 }; 618 619 void set_displacement(int displacement) { 620 set_int_at(displacement_off_set, displacement); 621 } 622 623 public: 624 JumpData(DataLayout* layout) : ProfileData(layout) { 625 assert(layout->tag() == DataLayout::jump_data_tag || 626 layout->tag() == DataLayout::branch_data_tag || 627 layout->tag() == DataLayout::acmp_data_tag, "wrong type"); 628 } 629 630 virtual bool is_JumpData() const { return true; } 631 632 static int static_cell_count() { 633 return jump_cell_count; 634 } 635 636 virtual int cell_count() const { 637 return static_cell_count(); 638 } 639 640 // Direct accessor 641 uint taken() const { 642 return uint_at(taken_off_set); 643 } 644 645 void set_taken(uint cnt) { 646 set_uint_at(taken_off_set, cnt); 647 } 648 649 // Saturating counter 650 uint inc_taken() { 651 uint cnt = taken() + 1; 652 // Did we wrap? Will compiler screw us?? 653 if (cnt == 0) cnt--; 654 set_uint_at(taken_off_set, cnt); 655 return cnt; 656 } 657 658 int displacement() const { 659 return int_at(displacement_off_set); 660 } 661 662 // Code generation support 663 static ByteSize taken_offset() { 664 return cell_offset(taken_off_set); 665 } 666 667 static ByteSize displacement_offset() { 668 return cell_offset(displacement_off_set); 669 } 670 671 // Specific initialization. 672 void post_initialize(BytecodeStream* stream, MethodData* mdo); 673 674 void print_data_on(outputStream* st, const char* extra = nullptr) const; 675 }; 676 677 // Entries in a ProfileData object to record types: it can either be 678 // none (no profile), unknown (conflicting profile data) or a klass if 679 // a single one is seen. Whether a null reference was seen is also 680 // recorded. No counter is associated with the type and a single type 681 // is tracked (unlike VirtualCallData). 682 class TypeEntries { 683 684 public: 685 686 // A single cell is used to record information for a type: 687 // - the cell is initialized to 0 688 // - when a type is discovered it is stored in the cell 689 // - bit zero of the cell is used to record whether a null reference 690 // was encountered or not 691 // - bit 1 is set to record a conflict in the type information 692 693 enum { 694 null_seen = 1, 695 type_mask = ~null_seen, 696 type_unknown = 2, 697 status_bits = null_seen | type_unknown, 698 type_klass_mask = ~status_bits 699 }; 700 701 // what to initialize a cell to 702 static intptr_t type_none() { 703 return 0; 704 } 705 706 // null seen = bit 0 set? 707 static bool was_null_seen(intptr_t v) { 708 return (v & null_seen) != 0; 709 } 710 711 // conflicting type information = bit 1 set? 712 static bool is_type_unknown(intptr_t v) { 713 return (v & type_unknown) != 0; 714 } 715 716 // not type information yet = all bits cleared, ignoring bit 0? 717 static bool is_type_none(intptr_t v) { 718 return (v & type_mask) == 0; 719 } 720 721 // recorded type: cell without bit 0 and 1 722 static intptr_t klass_part(intptr_t v) { 723 intptr_t r = v & type_klass_mask; 724 return r; 725 } 726 727 // type recorded 728 static Klass* valid_klass(intptr_t k) { 729 if (!is_type_none(k) && 730 !is_type_unknown(k)) { 731 Klass* res = (Klass*)klass_part(k); 732 assert(res != nullptr, "invalid"); 733 return res; 734 } else { 735 return nullptr; 736 } 737 } 738 739 static intptr_t with_status(intptr_t k, intptr_t in) { 740 return k | (in & status_bits); 741 } 742 743 static intptr_t with_status(Klass* k, intptr_t in) { 744 return with_status((intptr_t)k, in); 745 } 746 747 static void print_klass(outputStream* st, intptr_t k); 748 749 protected: 750 // ProfileData object these entries are part of 751 ProfileData* _pd; 752 // offset within the ProfileData object where the entries start 753 const int _base_off; 754 755 TypeEntries(int base_off) 756 : _pd(nullptr), _base_off(base_off) {} 757 758 void set_intptr_at(int index, intptr_t value) { 759 _pd->set_intptr_at(index, value); 760 } 761 762 intptr_t intptr_at(int index) const { 763 return _pd->intptr_at(index); 764 } 765 766 public: 767 void set_profile_data(ProfileData* pd) { 768 _pd = pd; 769 } 770 }; 771 772 // Type entries used for arguments passed at a call and parameters on 773 // method entry. 2 cells per entry: one for the type encoded as in 774 // TypeEntries and one initialized with the stack slot where the 775 // profiled object is to be found so that the interpreter can locate 776 // it quickly. 777 class TypeStackSlotEntries : public TypeEntries { 778 779 private: 780 enum { 781 stack_slot_entry, 782 type_entry, 783 per_arg_cell_count 784 }; 785 786 // offset of cell for stack slot for entry i within ProfileData object 787 int stack_slot_offset(int i) const { 788 return _base_off + stack_slot_local_offset(i); 789 } 790 791 const int _number_of_entries; 792 793 // offset of cell for type for entry i within ProfileData object 794 int type_offset_in_cells(int i) const { 795 return _base_off + type_local_offset(i); 796 } 797 798 public: 799 800 TypeStackSlotEntries(int base_off, int nb_entries) 801 : TypeEntries(base_off), _number_of_entries(nb_entries) {} 802 803 static int compute_cell_count(Symbol* signature, bool include_receiver, int max); 804 805 void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver); 806 807 int number_of_entries() const { return _number_of_entries; } 808 809 // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries 810 static int stack_slot_local_offset(int i) { 811 return i * per_arg_cell_count + stack_slot_entry; 812 } 813 814 // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries 815 static int type_local_offset(int i) { 816 return i * per_arg_cell_count + type_entry; 817 } 818 819 // stack slot for entry i 820 uint stack_slot(int i) const { 821 assert(i >= 0 && i < _number_of_entries, "oob"); 822 return _pd->uint_at(stack_slot_offset(i)); 823 } 824 825 // set stack slot for entry i 826 void set_stack_slot(int i, uint num) { 827 assert(i >= 0 && i < _number_of_entries, "oob"); 828 _pd->set_uint_at(stack_slot_offset(i), num); 829 } 830 831 // type for entry i 832 intptr_t type(int i) const { 833 assert(i >= 0 && i < _number_of_entries, "oob"); 834 return _pd->intptr_at(type_offset_in_cells(i)); 835 } 836 837 // set type for entry i 838 void set_type(int i, intptr_t k) { 839 assert(i >= 0 && i < _number_of_entries, "oob"); 840 _pd->set_intptr_at(type_offset_in_cells(i), k); 841 } 842 843 static ByteSize per_arg_size() { 844 return in_ByteSize(per_arg_cell_count * DataLayout::cell_size); 845 } 846 847 static int per_arg_count() { 848 return per_arg_cell_count; 849 } 850 851 ByteSize type_offset(int i) const { 852 return DataLayout::cell_offset(type_offset_in_cells(i)); 853 } 854 855 // GC support 856 void clean_weak_klass_links(bool always_clean); 857 858 void print_data_on(outputStream* st) const; 859 }; 860 861 // Type entry used for return from a call. A single cell to record the 862 // type. 863 class SingleTypeEntry : public TypeEntries { 864 865 private: 866 enum { 867 cell_count = 1 868 }; 869 870 public: 871 SingleTypeEntry(int base_off) 872 : TypeEntries(base_off) {} 873 874 void post_initialize() { 875 set_type(type_none()); 876 } 877 878 intptr_t type() const { 879 return _pd->intptr_at(_base_off); 880 } 881 882 void set_type(intptr_t k) { 883 _pd->set_intptr_at(_base_off, k); 884 } 885 886 static int static_cell_count() { 887 return cell_count; 888 } 889 890 static ByteSize size() { 891 return in_ByteSize(cell_count * DataLayout::cell_size); 892 } 893 894 ByteSize type_offset() { 895 return DataLayout::cell_offset(_base_off); 896 } 897 898 // GC support 899 void clean_weak_klass_links(bool always_clean); 900 901 void print_data_on(outputStream* st) const; 902 }; 903 904 // Entries to collect type information at a call: contains arguments 905 // (TypeStackSlotEntries), a return type (SingleTypeEntry) and a 906 // number of cells. Because the number of cells for the return type is 907 // smaller than the number of cells for the type of an arguments, the 908 // number of cells is used to tell how many arguments are profiled and 909 // whether a return value is profiled. See has_arguments() and 910 // has_return(). 911 class TypeEntriesAtCall { 912 private: 913 static int stack_slot_local_offset(int i) { 914 return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i); 915 } 916 917 static int argument_type_local_offset(int i) { 918 return header_cell_count() + TypeStackSlotEntries::type_local_offset(i); 919 } 920 921 public: 922 923 static int header_cell_count() { 924 return 1; 925 } 926 927 static int cell_count_local_offset() { 928 return 0; 929 } 930 931 static int compute_cell_count(BytecodeStream* stream); 932 933 static void initialize(DataLayout* dl, int base, int cell_count) { 934 int off = base + cell_count_local_offset(); 935 dl->set_cell_at(off, cell_count - base - header_cell_count()); 936 } 937 938 static bool arguments_profiling_enabled(); 939 static bool return_profiling_enabled(); 940 941 // Code generation support 942 static ByteSize cell_count_offset() { 943 return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size); 944 } 945 946 static ByteSize args_data_offset() { 947 return in_ByteSize(header_cell_count() * DataLayout::cell_size); 948 } 949 950 static ByteSize stack_slot_offset(int i) { 951 return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size); 952 } 953 954 static ByteSize argument_type_offset(int i) { 955 return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size); 956 } 957 958 static ByteSize return_only_size() { 959 return SingleTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size); 960 } 961 962 }; 963 964 // CallTypeData 965 // 966 // A CallTypeData is used to access profiling information about a non 967 // virtual call for which we collect type information about arguments 968 // and return value. 969 class CallTypeData : public CounterData { 970 private: 971 // entries for arguments if any 972 TypeStackSlotEntries _args; 973 // entry for return type if any 974 SingleTypeEntry _ret; 975 976 int cell_count_global_offset() const { 977 return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset(); 978 } 979 980 // number of cells not counting the header 981 int cell_count_no_header() const { 982 return uint_at(cell_count_global_offset()); 983 } 984 985 void check_number_of_arguments(int total) { 986 assert(number_of_arguments() == total, "should be set in DataLayout::initialize"); 987 } 988 989 public: 990 CallTypeData(DataLayout* layout) : 991 CounterData(layout), 992 _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()), 993 _ret(cell_count() - SingleTypeEntry::static_cell_count()) 994 { 995 assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type"); 996 // Some compilers (VC++) don't want this passed in member initialization list 997 _args.set_profile_data(this); 998 _ret.set_profile_data(this); 999 } 1000 1001 const TypeStackSlotEntries* args() const { 1002 assert(has_arguments(), "no profiling of arguments"); 1003 return &_args; 1004 } 1005 1006 const SingleTypeEntry* ret() const { 1007 assert(has_return(), "no profiling of return value"); 1008 return &_ret; 1009 } 1010 1011 virtual bool is_CallTypeData() const { return true; } 1012 1013 static int static_cell_count() { 1014 return -1; 1015 } 1016 1017 static int compute_cell_count(BytecodeStream* stream) { 1018 return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream); 1019 } 1020 1021 static void initialize(DataLayout* dl, int cell_count) { 1022 TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count); 1023 } 1024 1025 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1026 1027 virtual int cell_count() const { 1028 return CounterData::static_cell_count() + 1029 TypeEntriesAtCall::header_cell_count() + 1030 int_at_unchecked(cell_count_global_offset()); 1031 } 1032 1033 int number_of_arguments() const { 1034 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count(); 1035 } 1036 1037 void set_argument_type(int i, Klass* k) { 1038 assert(has_arguments(), "no arguments!"); 1039 intptr_t current = _args.type(i); 1040 _args.set_type(i, TypeEntries::with_status(k, current)); 1041 } 1042 1043 void set_return_type(Klass* k) { 1044 assert(has_return(), "no return!"); 1045 intptr_t current = _ret.type(); 1046 _ret.set_type(TypeEntries::with_status(k, current)); 1047 } 1048 1049 // An entry for a return value takes less space than an entry for an 1050 // argument so if the number of cells exceeds the number of cells 1051 // needed for an argument, this object contains type information for 1052 // at least one argument. 1053 bool has_arguments() const { 1054 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count(); 1055 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments"); 1056 return res; 1057 } 1058 1059 // An entry for a return value takes less space than an entry for an 1060 // argument, so if the remainder of the number of cells divided by 1061 // the number of cells for an argument is not null, a return value 1062 // is profiled in this object. 1063 bool has_return() const { 1064 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0; 1065 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values"); 1066 return res; 1067 } 1068 1069 // Code generation support 1070 static ByteSize args_data_offset() { 1071 return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset(); 1072 } 1073 1074 ByteSize argument_type_offset(int i) { 1075 return _args.type_offset(i); 1076 } 1077 1078 ByteSize return_type_offset() { 1079 return _ret.type_offset(); 1080 } 1081 1082 // GC support 1083 virtual void clean_weak_klass_links(bool always_clean) { 1084 if (has_arguments()) { 1085 _args.clean_weak_klass_links(always_clean); 1086 } 1087 if (has_return()) { 1088 _ret.clean_weak_klass_links(always_clean); 1089 } 1090 } 1091 1092 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1093 }; 1094 1095 // ReceiverTypeData 1096 // 1097 // A ReceiverTypeData is used to access profiling information about a 1098 // dynamic type check. It consists of a counter which counts the total times 1099 // that the check is reached, and a series of (Klass*, count) pairs 1100 // which are used to store a type profile for the receiver of the check. 1101 class ReceiverTypeData : public CounterData { 1102 friend class VMStructs; 1103 friend class JVMCIVMStructs; 1104 protected: 1105 enum { 1106 #if INCLUDE_JVMCI 1107 // Description of the different counters 1108 // ReceiverTypeData for instanceof/checkcast/aastore: 1109 // count is decremented for failed type checks 1110 // JVMCI only: nonprofiled_count is incremented on type overflow 1111 // VirtualCallData for invokevirtual/invokeinterface: 1112 // count is incremented on type overflow 1113 // JVMCI only: nonprofiled_count is incremented on method overflow 1114 1115 // JVMCI is interested in knowing the percentage of type checks involving a type not explicitly in the profile 1116 nonprofiled_count_off_set = counter_cell_count, 1117 receiver0_offset, 1118 #else 1119 receiver0_offset = counter_cell_count, 1120 #endif 1121 count0_offset, 1122 receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset 1123 }; 1124 1125 public: 1126 ReceiverTypeData(DataLayout* layout) : CounterData(layout) { 1127 assert(layout->tag() == DataLayout::receiver_type_data_tag || 1128 layout->tag() == DataLayout::virtual_call_data_tag || 1129 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1130 } 1131 1132 virtual bool is_ReceiverTypeData() const { return true; } 1133 1134 static int static_cell_count() { 1135 return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count JVMCI_ONLY(+ 1); 1136 } 1137 1138 virtual int cell_count() const { 1139 return static_cell_count(); 1140 } 1141 1142 // Direct accessors 1143 static uint row_limit() { 1144 return TypeProfileWidth; 1145 } 1146 static int receiver_cell_index(uint row) { 1147 return receiver0_offset + row * receiver_type_row_cell_count; 1148 } 1149 static int receiver_count_cell_index(uint row) { 1150 return count0_offset + row * receiver_type_row_cell_count; 1151 } 1152 1153 Klass* receiver(uint row) const { 1154 assert(row < row_limit(), "oob"); 1155 1156 Klass* recv = (Klass*)intptr_at(receiver_cell_index(row)); 1157 assert(recv == nullptr || recv->is_klass(), "wrong type"); 1158 return recv; 1159 } 1160 1161 void set_receiver(uint row, Klass* k) { 1162 assert((uint)row < row_limit(), "oob"); 1163 set_intptr_at(receiver_cell_index(row), (uintptr_t)k); 1164 } 1165 1166 uint receiver_count(uint row) const { 1167 assert(row < row_limit(), "oob"); 1168 return uint_at(receiver_count_cell_index(row)); 1169 } 1170 1171 void set_receiver_count(uint row, uint count) { 1172 assert(row < row_limit(), "oob"); 1173 set_uint_at(receiver_count_cell_index(row), count); 1174 } 1175 1176 void clear_row(uint row) { 1177 assert(row < row_limit(), "oob"); 1178 // Clear total count - indicator of polymorphic call site. 1179 // The site may look like as monomorphic after that but 1180 // it allow to have more accurate profiling information because 1181 // there was execution phase change since klasses were unloaded. 1182 // If the site is still polymorphic then MDO will be updated 1183 // to reflect it. But it could be the case that the site becomes 1184 // only bimorphic. Then keeping total count not 0 will be wrong. 1185 // Even if we use monomorphic (when it is not) for compilation 1186 // we will only have trap, deoptimization and recompile again 1187 // with updated MDO after executing method in Interpreter. 1188 // An additional receiver will be recorded in the cleaned row 1189 // during next call execution. 1190 // 1191 // Note: our profiling logic works with empty rows in any slot. 1192 // We do sorting a profiling info (ciCallProfile) for compilation. 1193 // 1194 set_count(0); 1195 set_receiver(row, nullptr); 1196 set_receiver_count(row, 0); 1197 #if INCLUDE_JVMCI 1198 if (!this->is_VirtualCallData()) { 1199 // if this is a ReceiverTypeData for JVMCI, the nonprofiled_count 1200 // must also be reset (see "Description of the different counters" above) 1201 set_nonprofiled_count(0); 1202 } 1203 #endif 1204 } 1205 1206 // Code generation support 1207 static ByteSize receiver_offset(uint row) { 1208 return cell_offset(receiver_cell_index(row)); 1209 } 1210 static ByteSize receiver_count_offset(uint row) { 1211 return cell_offset(receiver_count_cell_index(row)); 1212 } 1213 #if INCLUDE_JVMCI 1214 static ByteSize nonprofiled_receiver_count_offset() { 1215 return cell_offset(nonprofiled_count_off_set); 1216 } 1217 uint nonprofiled_count() const { 1218 return uint_at(nonprofiled_count_off_set); 1219 } 1220 void set_nonprofiled_count(uint count) { 1221 set_uint_at(nonprofiled_count_off_set, count); 1222 } 1223 #endif // INCLUDE_JVMCI 1224 static ByteSize receiver_type_data_size() { 1225 return cell_offset(static_cell_count()); 1226 } 1227 1228 // GC support 1229 virtual void clean_weak_klass_links(bool always_clean); 1230 1231 void print_receiver_data_on(outputStream* st) const; 1232 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1233 }; 1234 1235 // VirtualCallData 1236 // 1237 // A VirtualCallData is used to access profiling information about a 1238 // virtual call. For now, it has nothing more than a ReceiverTypeData. 1239 class VirtualCallData : public ReceiverTypeData { 1240 public: 1241 VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) { 1242 assert(layout->tag() == DataLayout::virtual_call_data_tag || 1243 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1244 } 1245 1246 virtual bool is_VirtualCallData() const { return true; } 1247 1248 static int static_cell_count() { 1249 // At this point we could add more profile state, e.g., for arguments. 1250 // But for now it's the same size as the base record type. 1251 return ReceiverTypeData::static_cell_count(); 1252 } 1253 1254 virtual int cell_count() const { 1255 return static_cell_count(); 1256 } 1257 1258 // Direct accessors 1259 static ByteSize virtual_call_data_size() { 1260 return cell_offset(static_cell_count()); 1261 } 1262 1263 void print_method_data_on(outputStream* st) const NOT_JVMCI_RETURN; 1264 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1265 }; 1266 1267 // VirtualCallTypeData 1268 // 1269 // A VirtualCallTypeData is used to access profiling information about 1270 // a virtual call for which we collect type information about 1271 // arguments and return value. 1272 class VirtualCallTypeData : public VirtualCallData { 1273 private: 1274 // entries for arguments if any 1275 TypeStackSlotEntries _args; 1276 // entry for return type if any 1277 SingleTypeEntry _ret; 1278 1279 int cell_count_global_offset() const { 1280 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset(); 1281 } 1282 1283 // number of cells not counting the header 1284 int cell_count_no_header() const { 1285 return uint_at(cell_count_global_offset()); 1286 } 1287 1288 void check_number_of_arguments(int total) { 1289 assert(number_of_arguments() == total, "should be set in DataLayout::initialize"); 1290 } 1291 1292 public: 1293 VirtualCallTypeData(DataLayout* layout) : 1294 VirtualCallData(layout), 1295 _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()), 1296 _ret(cell_count() - SingleTypeEntry::static_cell_count()) 1297 { 1298 assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1299 // Some compilers (VC++) don't want this passed in member initialization list 1300 _args.set_profile_data(this); 1301 _ret.set_profile_data(this); 1302 } 1303 1304 const TypeStackSlotEntries* args() const { 1305 assert(has_arguments(), "no profiling of arguments"); 1306 return &_args; 1307 } 1308 1309 const SingleTypeEntry* ret() const { 1310 assert(has_return(), "no profiling of return value"); 1311 return &_ret; 1312 } 1313 1314 virtual bool is_VirtualCallTypeData() const { return true; } 1315 1316 static int static_cell_count() { 1317 return -1; 1318 } 1319 1320 static int compute_cell_count(BytecodeStream* stream) { 1321 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream); 1322 } 1323 1324 static void initialize(DataLayout* dl, int cell_count) { 1325 TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count); 1326 } 1327 1328 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1329 1330 virtual int cell_count() const { 1331 return VirtualCallData::static_cell_count() + 1332 TypeEntriesAtCall::header_cell_count() + 1333 int_at_unchecked(cell_count_global_offset()); 1334 } 1335 1336 int number_of_arguments() const { 1337 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count(); 1338 } 1339 1340 void set_argument_type(int i, Klass* k) { 1341 assert(has_arguments(), "no arguments!"); 1342 intptr_t current = _args.type(i); 1343 _args.set_type(i, TypeEntries::with_status(k, current)); 1344 } 1345 1346 void set_return_type(Klass* k) { 1347 assert(has_return(), "no return!"); 1348 intptr_t current = _ret.type(); 1349 _ret.set_type(TypeEntries::with_status(k, current)); 1350 } 1351 1352 // An entry for a return value takes less space than an entry for an 1353 // argument, so if the remainder of the number of cells divided by 1354 // the number of cells for an argument is not null, a return value 1355 // is profiled in this object. 1356 bool has_return() const { 1357 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0; 1358 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values"); 1359 return res; 1360 } 1361 1362 // An entry for a return value takes less space than an entry for an 1363 // argument so if the number of cells exceeds the number of cells 1364 // needed for an argument, this object contains type information for 1365 // at least one argument. 1366 bool has_arguments() const { 1367 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count(); 1368 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments"); 1369 return res; 1370 } 1371 1372 // Code generation support 1373 static ByteSize args_data_offset() { 1374 return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset(); 1375 } 1376 1377 ByteSize argument_type_offset(int i) { 1378 return _args.type_offset(i); 1379 } 1380 1381 ByteSize return_type_offset() { 1382 return _ret.type_offset(); 1383 } 1384 1385 // GC support 1386 virtual void clean_weak_klass_links(bool always_clean) { 1387 ReceiverTypeData::clean_weak_klass_links(always_clean); 1388 if (has_arguments()) { 1389 _args.clean_weak_klass_links(always_clean); 1390 } 1391 if (has_return()) { 1392 _ret.clean_weak_klass_links(always_clean); 1393 } 1394 } 1395 1396 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1397 }; 1398 1399 // RetData 1400 // 1401 // A RetData is used to access profiling information for a ret bytecode. 1402 // It is composed of a count of the number of times that the ret has 1403 // been executed, followed by a series of triples of the form 1404 // (bci, count, di) which count the number of times that some bci was the 1405 // target of the ret and cache a corresponding data displacement. 1406 class RetData : public CounterData { 1407 protected: 1408 enum { 1409 bci0_offset = counter_cell_count, 1410 count0_offset, 1411 displacement0_offset, 1412 ret_row_cell_count = (displacement0_offset + 1) - bci0_offset 1413 }; 1414 1415 void set_bci(uint row, int bci) { 1416 assert((uint)row < row_limit(), "oob"); 1417 set_int_at(bci0_offset + row * ret_row_cell_count, bci); 1418 } 1419 void release_set_bci(uint row, int bci); 1420 void set_bci_count(uint row, uint count) { 1421 assert((uint)row < row_limit(), "oob"); 1422 set_uint_at(count0_offset + row * ret_row_cell_count, count); 1423 } 1424 void set_bci_displacement(uint row, int disp) { 1425 set_int_at(displacement0_offset + row * ret_row_cell_count, disp); 1426 } 1427 1428 public: 1429 RetData(DataLayout* layout) : CounterData(layout) { 1430 assert(layout->tag() == DataLayout::ret_data_tag, "wrong type"); 1431 } 1432 1433 virtual bool is_RetData() const { return true; } 1434 1435 enum { 1436 no_bci = -1 // value of bci when bci1/2 are not in use. 1437 }; 1438 1439 static int static_cell_count() { 1440 return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count; 1441 } 1442 1443 virtual int cell_count() const { 1444 return static_cell_count(); 1445 } 1446 1447 static uint row_limit() { 1448 return BciProfileWidth; 1449 } 1450 static int bci_cell_index(uint row) { 1451 return bci0_offset + row * ret_row_cell_count; 1452 } 1453 static int bci_count_cell_index(uint row) { 1454 return count0_offset + row * ret_row_cell_count; 1455 } 1456 static int bci_displacement_cell_index(uint row) { 1457 return displacement0_offset + row * ret_row_cell_count; 1458 } 1459 1460 // Direct accessors 1461 int bci(uint row) const { 1462 return int_at(bci_cell_index(row)); 1463 } 1464 uint bci_count(uint row) const { 1465 return uint_at(bci_count_cell_index(row)); 1466 } 1467 int bci_displacement(uint row) const { 1468 return int_at(bci_displacement_cell_index(row)); 1469 } 1470 1471 // Interpreter Runtime support 1472 address fixup_ret(int return_bci, MethodData* mdo); 1473 1474 // Code generation support 1475 static ByteSize bci_offset(uint row) { 1476 return cell_offset(bci_cell_index(row)); 1477 } 1478 static ByteSize bci_count_offset(uint row) { 1479 return cell_offset(bci_count_cell_index(row)); 1480 } 1481 static ByteSize bci_displacement_offset(uint row) { 1482 return cell_offset(bci_displacement_cell_index(row)); 1483 } 1484 1485 // Specific initialization. 1486 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1487 1488 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1489 }; 1490 1491 // BranchData 1492 // 1493 // A BranchData is used to access profiling data for a two-way branch. 1494 // It consists of taken and not_taken counts as well as a data displacement 1495 // for the taken case. 1496 class BranchData : public JumpData { 1497 friend class VMStructs; 1498 friend class JVMCIVMStructs; 1499 protected: 1500 enum { 1501 not_taken_off_set = jump_cell_count, 1502 branch_cell_count 1503 }; 1504 1505 void set_displacement(int displacement) { 1506 set_int_at(displacement_off_set, displacement); 1507 } 1508 1509 public: 1510 BranchData(DataLayout* layout) : JumpData(layout) { 1511 assert(layout->tag() == DataLayout::branch_data_tag || layout->tag() == DataLayout::acmp_data_tag, "wrong type"); 1512 } 1513 1514 virtual bool is_BranchData() const { return true; } 1515 1516 static int static_cell_count() { 1517 return branch_cell_count; 1518 } 1519 1520 virtual int cell_count() const { 1521 return static_cell_count(); 1522 } 1523 1524 // Direct accessor 1525 uint not_taken() const { 1526 return uint_at(not_taken_off_set); 1527 } 1528 1529 void set_not_taken(uint cnt) { 1530 set_uint_at(not_taken_off_set, cnt); 1531 } 1532 1533 uint inc_not_taken() { 1534 uint cnt = not_taken() + 1; 1535 // Did we wrap? Will compiler screw us?? 1536 if (cnt == 0) cnt--; 1537 set_uint_at(not_taken_off_set, cnt); 1538 return cnt; 1539 } 1540 1541 // Code generation support 1542 static ByteSize not_taken_offset() { 1543 return cell_offset(not_taken_off_set); 1544 } 1545 static ByteSize branch_data_size() { 1546 return cell_offset(branch_cell_count); 1547 } 1548 1549 // Specific initialization. 1550 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1551 1552 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1553 }; 1554 1555 // ArrayData 1556 // 1557 // A ArrayData is a base class for accessing profiling data which does 1558 // not have a statically known size. It consists of an array length 1559 // and an array start. 1560 class ArrayData : public ProfileData { 1561 friend class VMStructs; 1562 friend class JVMCIVMStructs; 1563 protected: 1564 friend class DataLayout; 1565 1566 enum { 1567 array_len_off_set, 1568 array_start_off_set 1569 }; 1570 1571 uint array_uint_at(int index) const { 1572 int aindex = index + array_start_off_set; 1573 return uint_at(aindex); 1574 } 1575 int array_int_at(int index) const { 1576 int aindex = index + array_start_off_set; 1577 return int_at(aindex); 1578 } 1579 oop array_oop_at(int index) const { 1580 int aindex = index + array_start_off_set; 1581 return oop_at(aindex); 1582 } 1583 void array_set_int_at(int index, int value) { 1584 int aindex = index + array_start_off_set; 1585 set_int_at(aindex, value); 1586 } 1587 1588 // Code generation support for subclasses. 1589 static ByteSize array_element_offset(int index) { 1590 return cell_offset(array_start_off_set + index); 1591 } 1592 1593 public: 1594 ArrayData(DataLayout* layout) : ProfileData(layout) {} 1595 1596 virtual bool is_ArrayData() const { return true; } 1597 1598 static int static_cell_count() { 1599 return -1; 1600 } 1601 1602 int array_len() const { 1603 return int_at_unchecked(array_len_off_set); 1604 } 1605 1606 virtual int cell_count() const { 1607 return array_len() + 1; 1608 } 1609 1610 // Code generation support 1611 static ByteSize array_len_offset() { 1612 return cell_offset(array_len_off_set); 1613 } 1614 static ByteSize array_start_offset() { 1615 return cell_offset(array_start_off_set); 1616 } 1617 }; 1618 1619 // MultiBranchData 1620 // 1621 // A MultiBranchData is used to access profiling information for 1622 // a multi-way branch (*switch bytecodes). It consists of a series 1623 // of (count, displacement) pairs, which count the number of times each 1624 // case was taken and specify the data displacement for each branch target. 1625 class MultiBranchData : public ArrayData { 1626 friend class VMStructs; 1627 friend class JVMCIVMStructs; 1628 protected: 1629 enum { 1630 default_count_off_set, 1631 default_disaplacement_off_set, 1632 case_array_start 1633 }; 1634 enum { 1635 relative_count_off_set, 1636 relative_displacement_off_set, 1637 per_case_cell_count 1638 }; 1639 1640 void set_default_displacement(int displacement) { 1641 array_set_int_at(default_disaplacement_off_set, displacement); 1642 } 1643 void set_displacement_at(int index, int displacement) { 1644 array_set_int_at(case_array_start + 1645 index * per_case_cell_count + 1646 relative_displacement_off_set, 1647 displacement); 1648 } 1649 1650 public: 1651 MultiBranchData(DataLayout* layout) : ArrayData(layout) { 1652 assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type"); 1653 } 1654 1655 virtual bool is_MultiBranchData() const { return true; } 1656 1657 static int compute_cell_count(BytecodeStream* stream); 1658 1659 int number_of_cases() const { 1660 int alen = array_len() - 2; // get rid of default case here. 1661 assert(alen % per_case_cell_count == 0, "must be even"); 1662 return (alen / per_case_cell_count); 1663 } 1664 1665 uint default_count() const { 1666 return array_uint_at(default_count_off_set); 1667 } 1668 int default_displacement() const { 1669 return array_int_at(default_disaplacement_off_set); 1670 } 1671 1672 uint count_at(int index) const { 1673 return array_uint_at(case_array_start + 1674 index * per_case_cell_count + 1675 relative_count_off_set); 1676 } 1677 int displacement_at(int index) const { 1678 return array_int_at(case_array_start + 1679 index * per_case_cell_count + 1680 relative_displacement_off_set); 1681 } 1682 1683 // Code generation support 1684 static ByteSize default_count_offset() { 1685 return array_element_offset(default_count_off_set); 1686 } 1687 static ByteSize default_displacement_offset() { 1688 return array_element_offset(default_disaplacement_off_set); 1689 } 1690 static ByteSize case_count_offset(int index) { 1691 return case_array_offset() + 1692 (per_case_size() * index) + 1693 relative_count_offset(); 1694 } 1695 static ByteSize case_array_offset() { 1696 return array_element_offset(case_array_start); 1697 } 1698 static ByteSize per_case_size() { 1699 return in_ByteSize(per_case_cell_count) * cell_size; 1700 } 1701 static ByteSize relative_count_offset() { 1702 return in_ByteSize(relative_count_off_set) * cell_size; 1703 } 1704 static ByteSize relative_displacement_offset() { 1705 return in_ByteSize(relative_displacement_off_set) * cell_size; 1706 } 1707 1708 // Specific initialization. 1709 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1710 1711 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1712 }; 1713 1714 class ArgInfoData : public ArrayData { 1715 1716 public: 1717 ArgInfoData(DataLayout* layout) : ArrayData(layout) { 1718 assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type"); 1719 } 1720 1721 virtual bool is_ArgInfoData() const { return true; } 1722 1723 1724 int number_of_args() const { 1725 return array_len(); 1726 } 1727 1728 uint arg_modified(int arg) const { 1729 return array_uint_at(arg); 1730 } 1731 1732 void set_arg_modified(int arg, uint val) { 1733 array_set_int_at(arg, val); 1734 } 1735 1736 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1737 }; 1738 1739 // ParametersTypeData 1740 // 1741 // A ParametersTypeData is used to access profiling information about 1742 // types of parameters to a method 1743 class ParametersTypeData : public ArrayData { 1744 1745 private: 1746 TypeStackSlotEntries _parameters; 1747 1748 static int stack_slot_local_offset(int i) { 1749 assert_profiling_enabled(); 1750 return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i); 1751 } 1752 1753 static int type_local_offset(int i) { 1754 assert_profiling_enabled(); 1755 return array_start_off_set + TypeStackSlotEntries::type_local_offset(i); 1756 } 1757 1758 static bool profiling_enabled(); 1759 static void assert_profiling_enabled() { 1760 assert(profiling_enabled(), "method parameters profiling should be on"); 1761 } 1762 1763 public: 1764 ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) { 1765 assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type"); 1766 // Some compilers (VC++) don't want this passed in member initialization list 1767 _parameters.set_profile_data(this); 1768 } 1769 1770 static int compute_cell_count(Method* m); 1771 1772 virtual bool is_ParametersTypeData() const { return true; } 1773 1774 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1775 1776 int number_of_parameters() const { 1777 return array_len() / TypeStackSlotEntries::per_arg_count(); 1778 } 1779 1780 const TypeStackSlotEntries* parameters() const { return &_parameters; } 1781 1782 uint stack_slot(int i) const { 1783 return _parameters.stack_slot(i); 1784 } 1785 1786 void set_type(int i, Klass* k) { 1787 intptr_t current = _parameters.type(i); 1788 _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current)); 1789 } 1790 1791 virtual void clean_weak_klass_links(bool always_clean) { 1792 _parameters.clean_weak_klass_links(always_clean); 1793 } 1794 1795 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1796 1797 static ByteSize stack_slot_offset(int i) { 1798 return cell_offset(stack_slot_local_offset(i)); 1799 } 1800 1801 static ByteSize type_offset(int i) { 1802 return cell_offset(type_local_offset(i)); 1803 } 1804 }; 1805 1806 // SpeculativeTrapData 1807 // 1808 // A SpeculativeTrapData is used to record traps due to type 1809 // speculation. It records the root of the compilation: that type 1810 // speculation is wrong in the context of one compilation (for 1811 // method1) doesn't mean it's wrong in the context of another one (for 1812 // method2). Type speculation could have more/different data in the 1813 // context of the compilation of method2 and it's worthwhile to try an 1814 // optimization that failed for compilation of method1 in the context 1815 // of compilation of method2. 1816 // Space for SpeculativeTrapData entries is allocated from the extra 1817 // data space in the MDO. If we run out of space, the trap data for 1818 // the ProfileData at that bci is updated. 1819 class SpeculativeTrapData : public ProfileData { 1820 protected: 1821 enum { 1822 speculative_trap_method, 1823 #ifndef _LP64 1824 // The size of the area for traps is a multiple of the header 1825 // size, 2 cells on 32 bits. Packed at the end of this area are 1826 // argument info entries (with tag 1827 // DataLayout::arg_info_data_tag). The logic in 1828 // MethodData::bci_to_extra_data() that guarantees traps don't 1829 // overflow over argument info entries assumes the size of a 1830 // SpeculativeTrapData is twice the header size. On 32 bits, a 1831 // SpeculativeTrapData must be 4 cells. 1832 padding, 1833 #endif 1834 speculative_trap_cell_count 1835 }; 1836 public: 1837 SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) { 1838 assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type"); 1839 } 1840 1841 virtual bool is_SpeculativeTrapData() const { return true; } 1842 1843 static int static_cell_count() { 1844 return speculative_trap_cell_count; 1845 } 1846 1847 virtual int cell_count() const { 1848 return static_cell_count(); 1849 } 1850 1851 // Direct accessor 1852 Method* method() const { 1853 return (Method*)intptr_at(speculative_trap_method); 1854 } 1855 1856 void set_method(Method* m) { 1857 assert(!m->is_old(), "cannot add old methods"); 1858 set_intptr_at(speculative_trap_method, (intptr_t)m); 1859 } 1860 1861 static ByteSize method_offset() { 1862 return cell_offset(speculative_trap_method); 1863 } 1864 1865 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1866 }; 1867 1868 class ArrayLoadStoreData : public ProfileData { 1869 private: 1870 enum { 1871 flat_array_flag = DataLayout::first_flag, 1872 null_free_array_flag = flat_array_flag + 1, 1873 }; 1874 1875 SingleTypeEntry _array; 1876 SingleTypeEntry _element; 1877 1878 public: 1879 ArrayLoadStoreData(DataLayout* layout) : 1880 ProfileData(layout), 1881 _array(0), 1882 _element(SingleTypeEntry::static_cell_count()) { 1883 assert(layout->tag() == DataLayout::array_load_store_data_tag, "wrong type"); 1884 _array.set_profile_data(this); 1885 _element.set_profile_data(this); 1886 } 1887 1888 const SingleTypeEntry* array() const { 1889 return &_array; 1890 } 1891 1892 const SingleTypeEntry* element() const { 1893 return &_element; 1894 } 1895 1896 virtual bool is_ArrayLoadStoreData() const { return true; } 1897 1898 static int static_cell_count() { 1899 return SingleTypeEntry::static_cell_count() * 2; 1900 } 1901 1902 virtual int cell_count() const { 1903 return static_cell_count(); 1904 } 1905 1906 void set_flat_array() { set_flag_at(flat_array_flag); } 1907 bool flat_array() const { return flag_at(flat_array_flag); } 1908 1909 void set_null_free_array() { set_flag_at(null_free_array_flag); } 1910 bool null_free_array() const { return flag_at(null_free_array_flag); } 1911 1912 // Code generation support 1913 static int flat_array_byte_constant() { 1914 return flag_number_to_constant(flat_array_flag); 1915 } 1916 1917 static int null_free_array_byte_constant() { 1918 return flag_number_to_constant(null_free_array_flag); 1919 } 1920 1921 static ByteSize array_offset() { 1922 return cell_offset(0); 1923 } 1924 1925 static ByteSize element_offset() { 1926 return cell_offset(SingleTypeEntry::static_cell_count()); 1927 } 1928 1929 virtual void clean_weak_klass_links(bool always_clean) { 1930 _array.clean_weak_klass_links(always_clean); 1931 _element.clean_weak_klass_links(always_clean); 1932 } 1933 1934 static ByteSize array_load_store_data_size() { 1935 return cell_offset(static_cell_count()); 1936 } 1937 1938 virtual void print_data_on(outputStream* st, const char* extra = NULL) const; 1939 }; 1940 1941 class ACmpData : public BranchData { 1942 private: 1943 enum { 1944 left_inline_type_flag = DataLayout::first_flag, 1945 right_inline_type_flag 1946 }; 1947 1948 SingleTypeEntry _left; 1949 SingleTypeEntry _right; 1950 1951 public: 1952 ACmpData(DataLayout* layout) : 1953 BranchData(layout), 1954 _left(BranchData::static_cell_count()), 1955 _right(BranchData::static_cell_count() + SingleTypeEntry::static_cell_count()) { 1956 assert(layout->tag() == DataLayout::acmp_data_tag, "wrong type"); 1957 _left.set_profile_data(this); 1958 _right.set_profile_data(this); 1959 } 1960 1961 const SingleTypeEntry* left() const { 1962 return &_left; 1963 } 1964 1965 const SingleTypeEntry* right() const { 1966 return &_right; 1967 } 1968 1969 virtual bool is_ACmpData() const { return true; } 1970 1971 static int static_cell_count() { 1972 return BranchData::static_cell_count() + SingleTypeEntry::static_cell_count() * 2; 1973 } 1974 1975 virtual int cell_count() const { 1976 return static_cell_count(); 1977 } 1978 1979 void set_left_inline_type() { set_flag_at(left_inline_type_flag); } 1980 bool left_inline_type() const { return flag_at(left_inline_type_flag); } 1981 1982 void set_right_inline_type() { set_flag_at(right_inline_type_flag); } 1983 bool right_inline_type() const { return flag_at(right_inline_type_flag); } 1984 1985 // Code generation support 1986 static int left_inline_type_byte_constant() { 1987 return flag_number_to_constant(left_inline_type_flag); 1988 } 1989 1990 static int right_inline_type_byte_constant() { 1991 return flag_number_to_constant(right_inline_type_flag); 1992 } 1993 1994 static ByteSize left_offset() { 1995 return cell_offset(BranchData::static_cell_count()); 1996 } 1997 1998 static ByteSize right_offset() { 1999 return cell_offset(BranchData::static_cell_count() + SingleTypeEntry::static_cell_count()); 2000 } 2001 2002 virtual void clean_weak_klass_links(bool always_clean) { 2003 _left.clean_weak_klass_links(always_clean); 2004 _right.clean_weak_klass_links(always_clean); 2005 } 2006 2007 static ByteSize acmp_data_size() { 2008 return cell_offset(static_cell_count()); 2009 } 2010 2011 virtual void print_data_on(outputStream* st, const char* extra = NULL) const; 2012 }; 2013 2014 // MethodData* 2015 // 2016 // A MethodData* holds information which has been collected about 2017 // a method. Its layout looks like this: 2018 // 2019 // ----------------------------- 2020 // | header | 2021 // | klass | 2022 // ----------------------------- 2023 // | method | 2024 // | size of the MethodData* | 2025 // ----------------------------- 2026 // | Data entries... | 2027 // | (variable size) | 2028 // | | 2029 // . . 2030 // . . 2031 // . . 2032 // | | 2033 // ----------------------------- 2034 // 2035 // The data entry area is a heterogeneous array of DataLayouts. Each 2036 // DataLayout in the array corresponds to a specific bytecode in the 2037 // method. The entries in the array are sorted by the corresponding 2038 // bytecode. Access to the data is via resource-allocated ProfileData, 2039 // which point to the underlying blocks of DataLayout structures. 2040 // 2041 // During interpretation, if profiling in enabled, the interpreter 2042 // maintains a method data pointer (mdp), which points at the entry 2043 // in the array corresponding to the current bci. In the course of 2044 // interpretation, when a bytecode is encountered that has profile data 2045 // associated with it, the entry pointed to by mdp is updated, then the 2046 // mdp is adjusted to point to the next appropriate DataLayout. If mdp 2047 // is null to begin with, the interpreter assumes that the current method 2048 // is not (yet) being profiled. 2049 // 2050 // In MethodData* parlance, "dp" is a "data pointer", the actual address 2051 // of a DataLayout element. A "di" is a "data index", the offset in bytes 2052 // from the base of the data entry array. A "displacement" is the byte offset 2053 // in certain ProfileData objects that indicate the amount the mdp must be 2054 // adjusted in the event of a change in control flow. 2055 // 2056 2057 class CleanExtraDataClosure : public StackObj { 2058 public: 2059 virtual bool is_live(Method* m) = 0; 2060 }; 2061 2062 2063 #if INCLUDE_JVMCI 2064 // Encapsulates an encoded speculation reason. These are linked together in 2065 // a list that is atomically appended to during deoptimization. Entries are 2066 // never removed from the list. 2067 // @see jdk.vm.ci.hotspot.HotSpotSpeculationLog.HotSpotSpeculationEncoding 2068 class FailedSpeculation: public CHeapObj<mtCompiler> { 2069 private: 2070 // The length of HotSpotSpeculationEncoding.toByteArray(). The data itself 2071 // is an array embedded at the end of this object. 2072 int _data_len; 2073 2074 // Next entry in a linked list. 2075 FailedSpeculation* _next; 2076 2077 FailedSpeculation(address data, int data_len); 2078 2079 FailedSpeculation** next_adr() { return &_next; } 2080 2081 // Placement new operator for inlining the speculation data into 2082 // the FailedSpeculation object. 2083 void* operator new(size_t size, size_t fs_size) throw(); 2084 2085 public: 2086 char* data() { return (char*)(((address) this) + sizeof(FailedSpeculation)); } 2087 int data_len() const { return _data_len; } 2088 FailedSpeculation* next() const { return _next; } 2089 2090 // Atomically appends a speculation from nm to the list whose head is at (*failed_speculations_address). 2091 // Returns false if the FailedSpeculation object could not be allocated. 2092 static bool add_failed_speculation(nmethod* nm, FailedSpeculation** failed_speculations_address, address speculation, int speculation_len); 2093 2094 // Frees all entries in the linked list whose head is at (*failed_speculations_address). 2095 static void free_failed_speculations(FailedSpeculation** failed_speculations_address); 2096 }; 2097 #endif 2098 2099 class ciMethodData; 2100 2101 class MethodData : public Metadata { 2102 friend class VMStructs; 2103 friend class JVMCIVMStructs; 2104 private: 2105 friend class ProfileData; 2106 friend class TypeEntriesAtCall; 2107 friend class ciMethodData; 2108 2109 // If you add a new field that points to any metaspace object, you 2110 // must add this field to MethodData::metaspace_pointers_do(). 2111 2112 // Back pointer to the Method* 2113 Method* _method; 2114 2115 // Size of this oop in bytes 2116 int _size; 2117 2118 // Cached hint for bci_to_dp and bci_to_data 2119 int _hint_di; 2120 2121 Mutex _extra_data_lock; 2122 2123 MethodData(const methodHandle& method); 2124 public: 2125 static MethodData* allocate(ClassLoaderData* loader_data, const methodHandle& method, TRAPS); 2126 2127 virtual bool is_methodData() const { return true; } 2128 void initialize(); 2129 2130 // Whole-method sticky bits and flags 2131 enum { 2132 _trap_hist_limit = Deoptimization::Reason_TRAP_HISTORY_LENGTH, 2133 _trap_hist_mask = max_jubyte, 2134 _extra_data_count = 4 // extra DataLayout headers, for trap history 2135 }; // Public flag values 2136 2137 // Compiler-related counters. 2138 class CompilerCounters { 2139 friend class VMStructs; 2140 friend class JVMCIVMStructs; 2141 2142 uint _nof_decompiles; // count of all nmethod removals 2143 uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits 2144 uint _nof_overflow_traps; // trap count, excluding _trap_hist 2145 union { 2146 intptr_t _align; 2147 // JVMCI separates trap history for OSR compilations from normal compilations 2148 u1 _array[JVMCI_ONLY(2 *) MethodData::_trap_hist_limit]; 2149 } _trap_hist; 2150 2151 public: 2152 CompilerCounters() : _nof_decompiles(0), _nof_overflow_recompiles(0), _nof_overflow_traps(0) { 2153 #ifndef ZERO 2154 // Some Zero platforms do not have expected alignment, and do not use 2155 // this code. static_assert would still fire and fail for them. 2156 static_assert(sizeof(_trap_hist) % HeapWordSize == 0, "align"); 2157 #endif 2158 uint size_in_words = sizeof(_trap_hist) / HeapWordSize; 2159 Copy::zero_to_words((HeapWord*) &_trap_hist, size_in_words); 2160 } 2161 2162 // Return (uint)-1 for overflow. 2163 uint trap_count(int reason) const { 2164 assert((uint)reason < ARRAY_SIZE(_trap_hist._array), "oob"); 2165 return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1; 2166 } 2167 2168 uint inc_trap_count(int reason) { 2169 // Count another trap, anywhere in this method. 2170 assert(reason >= 0, "must be single trap"); 2171 assert((uint)reason < ARRAY_SIZE(_trap_hist._array), "oob"); 2172 uint cnt1 = 1 + _trap_hist._array[reason]; 2173 if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow... 2174 _trap_hist._array[reason] = cnt1; 2175 return cnt1; 2176 } else { 2177 return _trap_hist_mask + (++_nof_overflow_traps); 2178 } 2179 } 2180 2181 uint overflow_trap_count() const { 2182 return _nof_overflow_traps; 2183 } 2184 uint overflow_recompile_count() const { 2185 return _nof_overflow_recompiles; 2186 } 2187 uint inc_overflow_recompile_count() { 2188 return ++_nof_overflow_recompiles; 2189 } 2190 uint decompile_count() const { 2191 return _nof_decompiles; 2192 } 2193 uint inc_decompile_count() { 2194 return ++_nof_decompiles; 2195 } 2196 2197 // Support for code generation 2198 static ByteSize trap_history_offset() { 2199 return byte_offset_of(CompilerCounters, _trap_hist._array); 2200 } 2201 }; 2202 2203 private: 2204 CompilerCounters _compiler_counters; 2205 2206 // Support for interprocedural escape analysis, from Thomas Kotzmann. 2207 intx _eflags; // flags on escape information 2208 intx _arg_local; // bit set of non-escaping arguments 2209 intx _arg_stack; // bit set of stack-allocatable arguments 2210 intx _arg_returned; // bit set of returned arguments 2211 2212 int _creation_mileage; // method mileage at MDO creation 2213 2214 // How many invocations has this MDO seen? 2215 // These counters are used to determine the exact age of MDO. 2216 // We need those because in tiered a method can be concurrently 2217 // executed at different levels. 2218 InvocationCounter _invocation_counter; 2219 // Same for backedges. 2220 InvocationCounter _backedge_counter; 2221 // Counter values at the time profiling started. 2222 int _invocation_counter_start; 2223 int _backedge_counter_start; 2224 uint _tenure_traps; 2225 int _invoke_mask; // per-method Tier0InvokeNotifyFreqLog 2226 int _backedge_mask; // per-method Tier0BackedgeNotifyFreqLog 2227 2228 #if INCLUDE_RTM_OPT 2229 // State of RTM code generation during compilation of the method 2230 int _rtm_state; 2231 #endif 2232 2233 // Number of loops and blocks is computed when compiling the first 2234 // time with C1. It is used to determine if method is trivial. 2235 short _num_loops; 2236 short _num_blocks; 2237 // Does this method contain anything worth profiling? 2238 enum WouldProfile {unknown, no_profile, profile}; 2239 WouldProfile _would_profile; 2240 2241 #if INCLUDE_JVMCI 2242 // Support for HotSpotMethodData.setCompiledIRSize(int) 2243 int _jvmci_ir_size; 2244 FailedSpeculation* _failed_speculations; 2245 #endif 2246 2247 // Size of _data array in bytes. (Excludes header and extra_data fields.) 2248 int _data_size; 2249 2250 // data index for the area dedicated to parameters. -1 if no 2251 // parameter profiling. 2252 enum { no_parameters = -2, parameters_uninitialized = -1 }; 2253 int _parameters_type_data_di; 2254 2255 // Beginning of the data entries 2256 intptr_t _data[1]; 2257 2258 // Helper for size computation 2259 static int compute_data_size(BytecodeStream* stream); 2260 static int bytecode_cell_count(Bytecodes::Code code); 2261 static bool is_speculative_trap_bytecode(Bytecodes::Code code); 2262 enum { no_profile_data = -1, variable_cell_count = -2 }; 2263 2264 // Helper for initialization 2265 DataLayout* data_layout_at(int data_index) const { 2266 assert(data_index % sizeof(intptr_t) == 0, "unaligned"); 2267 return (DataLayout*) (((address)_data) + data_index); 2268 } 2269 2270 // Initialize an individual data segment. Returns the size of 2271 // the segment in bytes. 2272 int initialize_data(BytecodeStream* stream, int data_index); 2273 2274 // Helper for data_at 2275 DataLayout* limit_data_position() const { 2276 return data_layout_at(_data_size); 2277 } 2278 bool out_of_bounds(int data_index) const { 2279 return data_index >= data_size(); 2280 } 2281 2282 // Give each of the data entries a chance to perform specific 2283 // data initialization. 2284 void post_initialize(BytecodeStream* stream); 2285 2286 // hint accessors 2287 int hint_di() const { return _hint_di; } 2288 void set_hint_di(int di) { 2289 assert(!out_of_bounds(di), "hint_di out of bounds"); 2290 _hint_di = di; 2291 } 2292 2293 DataLayout* data_layout_before(int bci) { 2294 // avoid SEGV on this edge case 2295 if (data_size() == 0) 2296 return nullptr; 2297 DataLayout* layout = data_layout_at(hint_di()); 2298 if (layout->bci() <= bci) 2299 return layout; 2300 return data_layout_at(first_di()); 2301 } 2302 2303 // What is the index of the first data entry? 2304 int first_di() const { return 0; } 2305 2306 ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp, bool concurrent); 2307 // Find or create an extra ProfileData: 2308 ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing); 2309 2310 // return the argument info cell 2311 ArgInfoData *arg_info(); 2312 2313 enum { 2314 no_type_profile = 0, 2315 type_profile_jsr292 = 1, 2316 type_profile_all = 2 2317 }; 2318 2319 static bool profile_jsr292(const methodHandle& m, int bci); 2320 static bool profile_unsafe(const methodHandle& m, int bci); 2321 static bool profile_memory_access(const methodHandle& m, int bci); 2322 static int profile_arguments_flag(); 2323 static bool profile_all_arguments(); 2324 static bool profile_arguments_for_invoke(const methodHandle& m, int bci); 2325 static int profile_return_flag(); 2326 static bool profile_all_return(); 2327 static bool profile_return_for_invoke(const methodHandle& m, int bci); 2328 static int profile_parameters_flag(); 2329 static bool profile_parameters_jsr292_only(); 2330 static bool profile_all_parameters(); 2331 2332 void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false); 2333 void verify_extra_data_clean(CleanExtraDataClosure* cl); 2334 2335 public: 2336 void clean_extra_data(CleanExtraDataClosure* cl); 2337 2338 static int header_size() { 2339 return sizeof(MethodData)/wordSize; 2340 } 2341 2342 // Compute the size of a MethodData* before it is created. 2343 static int compute_allocation_size_in_bytes(const methodHandle& method); 2344 static int compute_allocation_size_in_words(const methodHandle& method); 2345 static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps); 2346 2347 // Determine if a given bytecode can have profile information. 2348 static bool bytecode_has_profile(Bytecodes::Code code) { 2349 return bytecode_cell_count(code) != no_profile_data; 2350 } 2351 2352 // reset into original state 2353 void init(); 2354 2355 // My size 2356 int size_in_bytes() const { return _size; } 2357 int size() const { return align_metadata_size(align_up(_size, BytesPerWord)/BytesPerWord); } 2358 2359 int creation_mileage() const { return _creation_mileage; } 2360 void set_creation_mileage(int x) { _creation_mileage = x; } 2361 2362 int invocation_count() { 2363 if (invocation_counter()->carry()) { 2364 return InvocationCounter::count_limit; 2365 } 2366 return invocation_counter()->count(); 2367 } 2368 int backedge_count() { 2369 if (backedge_counter()->carry()) { 2370 return InvocationCounter::count_limit; 2371 } 2372 return backedge_counter()->count(); 2373 } 2374 2375 int invocation_count_start() { 2376 if (invocation_counter()->carry()) { 2377 return 0; 2378 } 2379 return _invocation_counter_start; 2380 } 2381 2382 int backedge_count_start() { 2383 if (backedge_counter()->carry()) { 2384 return 0; 2385 } 2386 return _backedge_counter_start; 2387 } 2388 2389 int invocation_count_delta() { return invocation_count() - invocation_count_start(); } 2390 int backedge_count_delta() { return backedge_count() - backedge_count_start(); } 2391 2392 void reset_start_counters() { 2393 _invocation_counter_start = invocation_count(); 2394 _backedge_counter_start = backedge_count(); 2395 } 2396 2397 InvocationCounter* invocation_counter() { return &_invocation_counter; } 2398 InvocationCounter* backedge_counter() { return &_backedge_counter; } 2399 2400 #if INCLUDE_JVMCI 2401 FailedSpeculation** get_failed_speculations_address() { 2402 return &_failed_speculations; 2403 } 2404 #endif 2405 2406 #if INCLUDE_RTM_OPT 2407 int rtm_state() const { 2408 return _rtm_state; 2409 } 2410 void set_rtm_state(RTMState rstate) { 2411 _rtm_state = (int)rstate; 2412 } 2413 void atomic_set_rtm_state(RTMState rstate) { 2414 Atomic::store(&_rtm_state, (int)rstate); 2415 } 2416 2417 static ByteSize rtm_state_offset() { 2418 return byte_offset_of(MethodData, _rtm_state); 2419 } 2420 #endif 2421 2422 void set_would_profile(bool p) { _would_profile = p ? profile : no_profile; } 2423 bool would_profile() const { return _would_profile != no_profile; } 2424 2425 int num_loops() const { return _num_loops; } 2426 void set_num_loops(int n) { _num_loops = n; } 2427 int num_blocks() const { return _num_blocks; } 2428 void set_num_blocks(int n) { _num_blocks = n; } 2429 2430 bool is_mature() const; // consult mileage and ProfileMaturityPercentage 2431 static int mileage_of(Method* m); 2432 2433 // Support for interprocedural escape analysis, from Thomas Kotzmann. 2434 enum EscapeFlag { 2435 estimated = 1 << 0, 2436 return_local = 1 << 1, 2437 return_allocated = 1 << 2, 2438 allocated_escapes = 1 << 3, 2439 unknown_modified = 1 << 4 2440 }; 2441 2442 intx eflags() { return _eflags; } 2443 intx arg_local() { return _arg_local; } 2444 intx arg_stack() { return _arg_stack; } 2445 intx arg_returned() { return _arg_returned; } 2446 uint arg_modified(int a) { ArgInfoData *aid = arg_info(); 2447 assert(aid != nullptr, "arg_info must be not null"); 2448 assert(a >= 0 && a < aid->number_of_args(), "valid argument number"); 2449 return aid->arg_modified(a); } 2450 2451 void set_eflags(intx v) { _eflags = v; } 2452 void set_arg_local(intx v) { _arg_local = v; } 2453 void set_arg_stack(intx v) { _arg_stack = v; } 2454 void set_arg_returned(intx v) { _arg_returned = v; } 2455 void set_arg_modified(int a, uint v) { ArgInfoData *aid = arg_info(); 2456 assert(aid != nullptr, "arg_info must be not null"); 2457 assert(a >= 0 && a < aid->number_of_args(), "valid argument number"); 2458 aid->set_arg_modified(a, v); } 2459 2460 void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; } 2461 2462 // Location and size of data area 2463 address data_base() const { 2464 return (address) _data; 2465 } 2466 int data_size() const { 2467 return _data_size; 2468 } 2469 2470 int parameters_size_in_bytes() const { 2471 ParametersTypeData* param = parameters_type_data(); 2472 return param == nullptr ? 0 : param->size_in_bytes(); 2473 } 2474 2475 // Accessors 2476 Method* method() const { return _method; } 2477 2478 // Get the data at an arbitrary (sort of) data index. 2479 ProfileData* data_at(int data_index) const; 2480 2481 // Walk through the data in order. 2482 ProfileData* first_data() const { return data_at(first_di()); } 2483 ProfileData* next_data(ProfileData* current) const; 2484 DataLayout* next_data_layout(DataLayout* current) const; 2485 bool is_valid(ProfileData* current) const { return current != nullptr; } 2486 bool is_valid(DataLayout* current) const { return current != nullptr; } 2487 2488 // Convert a dp (data pointer) to a di (data index). 2489 int dp_to_di(address dp) const { 2490 return dp - ((address)_data); 2491 } 2492 2493 // bci to di/dp conversion. 2494 address bci_to_dp(int bci); 2495 int bci_to_di(int bci) { 2496 return dp_to_di(bci_to_dp(bci)); 2497 } 2498 2499 // Get the data at an arbitrary bci, or null if there is none. 2500 ProfileData* bci_to_data(int bci); 2501 2502 // Same, but try to create an extra_data record if one is needed: 2503 ProfileData* allocate_bci_to_data(int bci, Method* m) { 2504 ProfileData* data = nullptr; 2505 // If m not null, try to allocate a SpeculativeTrapData entry 2506 if (m == nullptr) { 2507 data = bci_to_data(bci); 2508 } 2509 if (data != nullptr) { 2510 return data; 2511 } 2512 data = bci_to_extra_data(bci, m, true); 2513 if (data != nullptr) { 2514 return data; 2515 } 2516 // If SpeculativeTrapData allocation fails try to allocate a 2517 // regular entry 2518 data = bci_to_data(bci); 2519 if (data != nullptr) { 2520 return data; 2521 } 2522 return bci_to_extra_data(bci, nullptr, true); 2523 } 2524 2525 // Add a handful of extra data records, for trap tracking. 2526 DataLayout* extra_data_base() const { return limit_data_position(); } 2527 DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); } 2528 DataLayout* args_data_limit() const { return (DataLayout*)((address)this + size_in_bytes() - 2529 parameters_size_in_bytes()); } 2530 int extra_data_size() const { return (address)extra_data_limit() - (address)extra_data_base(); } 2531 static DataLayout* next_extra(DataLayout* dp); 2532 2533 // Return (uint)-1 for overflow. 2534 uint trap_count(int reason) const { 2535 return _compiler_counters.trap_count(reason); 2536 } 2537 // For loops: 2538 static uint trap_reason_limit() { return _trap_hist_limit; } 2539 static uint trap_count_limit() { return _trap_hist_mask; } 2540 uint inc_trap_count(int reason) { 2541 return _compiler_counters.inc_trap_count(reason); 2542 } 2543 2544 uint overflow_trap_count() const { 2545 return _compiler_counters.overflow_trap_count(); 2546 } 2547 uint overflow_recompile_count() const { 2548 return _compiler_counters.overflow_recompile_count(); 2549 } 2550 uint inc_overflow_recompile_count() { 2551 return _compiler_counters.inc_overflow_recompile_count(); 2552 } 2553 uint decompile_count() const { 2554 return _compiler_counters.decompile_count(); 2555 } 2556 uint inc_decompile_count() { 2557 uint dec_count = _compiler_counters.inc_decompile_count(); 2558 if (dec_count > (uint)PerMethodRecompilationCutoff) { 2559 method()->set_not_compilable("decompile_count > PerMethodRecompilationCutoff", CompLevel_full_optimization); 2560 } 2561 return dec_count; 2562 } 2563 uint tenure_traps() const { 2564 return _tenure_traps; 2565 } 2566 void inc_tenure_traps() { 2567 _tenure_traps += 1; 2568 } 2569 2570 // Return pointer to area dedicated to parameters in MDO 2571 ParametersTypeData* parameters_type_data() const { 2572 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2573 return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : nullptr; 2574 } 2575 2576 int parameters_type_data_di() const { 2577 assert(_parameters_type_data_di != parameters_uninitialized && _parameters_type_data_di != no_parameters, "no args type data"); 2578 return _parameters_type_data_di; 2579 } 2580 2581 // Support for code generation 2582 static ByteSize data_offset() { 2583 return byte_offset_of(MethodData, _data[0]); 2584 } 2585 2586 static ByteSize trap_history_offset() { 2587 return byte_offset_of(MethodData, _compiler_counters) + CompilerCounters::trap_history_offset(); 2588 } 2589 2590 static ByteSize invocation_counter_offset() { 2591 return byte_offset_of(MethodData, _invocation_counter); 2592 } 2593 2594 static ByteSize backedge_counter_offset() { 2595 return byte_offset_of(MethodData, _backedge_counter); 2596 } 2597 2598 static ByteSize invoke_mask_offset() { 2599 return byte_offset_of(MethodData, _invoke_mask); 2600 } 2601 2602 static ByteSize backedge_mask_offset() { 2603 return byte_offset_of(MethodData, _backedge_mask); 2604 } 2605 2606 static ByteSize parameters_type_data_di_offset() { 2607 return byte_offset_of(MethodData, _parameters_type_data_di); 2608 } 2609 2610 virtual void metaspace_pointers_do(MetaspaceClosure* iter); 2611 virtual MetaspaceObj::Type type() const { return MethodDataType; } 2612 2613 // Deallocation support 2614 void deallocate_contents(ClassLoaderData* loader_data); 2615 void release_C_heap_structures(); 2616 2617 // GC support 2618 void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; } 2619 2620 // Printing 2621 void print_on (outputStream* st) const; 2622 void print_value_on(outputStream* st) const; 2623 2624 // printing support for method data 2625 void print_data_on(outputStream* st) const; 2626 2627 const char* internal_name() const { return "{method data}"; } 2628 2629 // verification 2630 void verify_on(outputStream* st); 2631 void verify_data_on(outputStream* st); 2632 2633 static bool profile_parameters_for_method(const methodHandle& m); 2634 static bool profile_arguments(); 2635 static bool profile_arguments_jsr292_only(); 2636 static bool profile_return(); 2637 static bool profile_parameters(); 2638 static bool profile_return_jsr292_only(); 2639 2640 void clean_method_data(bool always_clean); 2641 void clean_weak_method_links(); 2642 Mutex* extra_data_lock() { return &_extra_data_lock; } 2643 }; 2644 2645 #endif // SHARE_OOPS_METHODDATA_HPP