1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OOPS_SYMBOL_HPP 26 #define SHARE_OOPS_SYMBOL_HPP 27 28 #include "memory/allocation.hpp" 29 #include "utilities/exceptions.hpp" 30 #include "utilities/macros.hpp" 31 #include "utilities/vmEnums.hpp" 32 33 // A Symbol is a canonicalized string. 34 // All Symbols reside in global SymbolTable and are reference counted. 35 36 // Reference counting 37 // 38 // All Symbols are allocated and added to the SymbolTable. 39 // When a class is unloaded, the reference counts of the Symbol pointers in 40 // the ConstantPool and in InstanceKlass (see release_C_heap_structures) are 41 // decremented. When the reference count for a Symbol goes to 0, the garbage 42 // collector can free the Symbol and remove it from the SymbolTable. 43 // 44 // 0) Symbols need to be reference counted when a pointer to the Symbol is 45 // saved in persistent storage. This does not include the pointer 46 // in the SymbolTable bucket (the _literal field in HashtableEntry) 47 // that points to the Symbol. All other stores of a Symbol* 48 // to a field of a persistent variable (e.g., the _name field in 49 // fieldDescriptor or symbol in a constant pool) is reference counted. 50 // 51 // 1) The lookup of a "name" in the SymbolTable either creates a Symbol F for 52 // "name" and returns a pointer to F or finds a pre-existing Symbol F for 53 // "name" and returns a pointer to it. In both cases the reference count for F 54 // is incremented under the assumption that a pointer to F will be created from 55 // the return value. Thus the increment of the reference count is on the lookup 56 // and not on the assignment to the new Symbol*. That is 57 // Symbol* G = lookup() 58 // ^ increment on lookup() 59 // and not 60 // Symbol* G = lookup() 61 // ^ increment on assignment 62 // The reference count must be decremented manually when the copy of the 63 // pointer G is destroyed. 64 // 65 // 2) For a local Symbol* A that is a copy of an existing Symbol* B, the 66 // reference counting is elided when the scope of B is greater than the scope 67 // of A. For example, in the code fragment 68 // below "klass" is passed as a parameter to the method. Symbol* "kn" 69 // is a copy of the name in "klass". 70 // 71 // Symbol* kn = klass->name(); 72 // unsigned int d_hash = dictionary()->compute_hash(kn, class_loader); 73 // 74 // The scope of "klass" is greater than the scope of "kn" so the reference 75 // counting for "kn" is elided. 76 // 77 // Symbol* copied from ConstantPool entries are good candidates for reference 78 // counting elision. The ConstantPool entries for a class C exist until C is 79 // unloaded. If a Symbol* is copied out of the ConstantPool into Symbol* X, 80 // the Symbol* in the ConstantPool will in general out live X so the reference 81 // counting on X can be elided. 82 // 83 // For cases where the scope of A is not greater than the scope of B, 84 // the reference counting is explicitly done. See ciSymbol, 85 // ResolutionErrorEntry and ClassVerifier for examples. 86 // 87 // 3) When a Symbol K is created for temporary use, generally for substrings of 88 // an existing symbol or to create a new symbol, assign it to a 89 // TempNewSymbol. The SymbolTable methods new_symbol(), lookup() 90 // and probe() all potentially return a pointer to a new Symbol. 91 // The allocation (or lookup) of K increments the reference count for K 92 // and the destructor decrements the reference count. 93 // 94 // This cannot be inherited from ResourceObj because it cannot have a vtable. 95 // Since sometimes this is allocated from Metadata, pick a base allocation 96 // type without virtual functions. 97 class ClassLoaderData; 98 99 // Set _refcount to PERM_REFCOUNT to prevent the Symbol from being freed. 100 #ifndef PERM_REFCOUNT 101 #define PERM_REFCOUNT 0xffff 102 #endif 103 104 class Symbol : public MetaspaceObj { 105 friend class VMStructs; 106 friend class SymbolTable; 107 friend class vmSymbols; 108 friend class JVMCIVMStructs; 109 110 private: 111 112 // This is an int because it needs atomic operation on the refcount. Mask hash 113 // in high half word. length is the number of UTF8 characters in the symbol 114 volatile uint32_t _hash_and_refcount; 115 u2 _length; 116 u1 _body[2]; 117 118 static Symbol* _vm_symbols[]; 119 120 enum { 121 max_symbol_length = 0xffff 122 }; 123 124 static int byte_size(int length) { 125 // minimum number of natural words needed to hold these bits (no non-heap version) 126 return (int)(sizeof(Symbol) + (length > 2 ? length - 2 : 0)); 127 } 128 static int size(int length) { 129 // minimum number of natural words needed to hold these bits (no non-heap version) 130 return (int)heap_word_size(byte_size(length)); 131 } 132 133 Symbol(const u1* name, int length, int refcount); 134 135 static short extract_hash(uint32_t value) { return (short)(value >> 16); } 136 static int extract_refcount(uint32_t value) { return value & 0xffff; } 137 static uint32_t pack_hash_and_refcount(short hash, int refcount); 138 139 int length() const { return _length; } 140 141 public: 142 Symbol(const Symbol& s1); 143 144 // Low-level access (used with care, since not GC-safe) 145 const u1* base() const { return &_body[0]; } 146 147 int size() const { return size(utf8_length()); } 148 int byte_size() const { return byte_size(utf8_length()); }; 149 // length without the _body 150 size_t effective_length() const { return (size_t)byte_size() - sizeof(Symbol); } 151 152 // Symbols should be stored in the read-only region of CDS archive. 153 static bool is_read_only_by_default() { return true; } 154 155 // Returns the largest size symbol we can safely hold. 156 static int max_length() { return max_symbol_length; } 157 unsigned identity_hash() const { 158 unsigned addr_bits = (unsigned)((uintptr_t)this >> LogBytesPerWord); 159 return ((unsigned)extract_hash(_hash_and_refcount) & 0xffff) | 160 ((addr_bits ^ (length() << 8) ^ (( _body[0] << 8) | _body[1])) << 16); 161 } 162 163 // Reference counting. See comments above this class for when to use. 164 int refcount() const { return extract_refcount(_hash_and_refcount); } 165 bool try_increment_refcount(); 166 void increment_refcount(); 167 void decrement_refcount(); 168 bool is_permanent() const { 169 return (refcount() == PERM_REFCOUNT); 170 } 171 void update_identity_hash() NOT_CDS_RETURN; 172 void set_permanent() NOT_CDS_RETURN; 173 void make_permanent(); 174 175 static void maybe_increment_refcount(Symbol* s) { 176 if (s != nullptr) { 177 s->increment_refcount(); 178 } 179 } 180 static void maybe_decrement_refcount(Symbol* s) { 181 if (s != nullptr) { 182 s->decrement_refcount(); 183 } 184 } 185 // Function char_at() returns the Symbol's selected u1 byte as a char type. 186 // 187 // Note that all multi-byte chars have the sign bit set on all their bytes. 188 // No single byte chars have their sign bit set. 189 char char_at(int index) const { 190 assert(index >=0 && index < length(), "symbol index overflow"); 191 return (char)base()[index]; 192 } 193 194 const u1* bytes() const { return base(); } 195 196 int utf8_length() const { return length(); } 197 198 // Compares the symbol with a string. 199 bool equals(const char* str, int len) const { 200 int l = utf8_length(); 201 if (l != len) return false; 202 return contains_utf8_at(0, str, len); 203 } 204 bool equals(const char* str) const { return equals(str, (int) strlen(str)); } 205 bool is_star_match(const char* pattern) const; 206 207 // Tests if the symbol starts with the given prefix. 208 bool starts_with(const char* prefix, int len) const { 209 return contains_utf8_at(0, prefix, len); 210 } 211 bool starts_with(const char* prefix) const { 212 return starts_with(prefix, (int) strlen(prefix)); 213 } 214 bool starts_with(char prefix_char) const { 215 return contains_byte_at(0, prefix_char); 216 } 217 // Tests if the symbol ends with the given suffix. 218 bool ends_with(const char* suffix, int len) const { 219 return contains_utf8_at(utf8_length() - len, suffix, len); 220 } 221 bool ends_with(const char* suffix) const { 222 return ends_with(suffix, (int) strlen(suffix)); 223 } 224 bool ends_with(char suffix_char) const { 225 return contains_byte_at(utf8_length() - 1, suffix_char); 226 } 227 228 // Tests if the symbol contains the given utf8 substring 229 // at the given byte position. 230 bool contains_utf8_at(int position, const char* substring, int len) const { 231 assert(len >= 0 && substring != nullptr, "substring must be valid"); 232 if (position < 0) return false; // can happen with ends_with 233 if (position + len > utf8_length()) return false; 234 return (memcmp((char*)base() + position, substring, len) == 0); 235 } 236 237 // Tests if the symbol contains the given byte at the given position. 238 bool contains_byte_at(int position, char code_byte) const { 239 if (position < 0) return false; // can happen with ends_with 240 if (position >= utf8_length()) return false; 241 return code_byte == char_at(position); 242 } 243 244 // True if this is a descriptor for a method with void return. 245 // (Assumes it is a valid descriptor.) 246 bool is_void_method_signature() const { 247 return starts_with('(') && ends_with('V'); 248 } 249 250 Symbol* fundamental_name(TRAPS); 251 bool is_same_fundamental_type(Symbol*) const; 252 253 // Test if the symbol has the give substring at or after the i-th char. 254 int index_of_at(int i, const char* substr, int substr_len) const; 255 256 // Three-way compare for sorting; returns -1/0/1 if receiver is </==/> than arg 257 // note that the ordering is not alfabetical 258 inline int fast_compare(const Symbol* other) const; 259 260 // Returns receiver converted to null-terminated UTF-8 string; string is 261 // allocated in resource area, or in the char buffer provided by caller. 262 char* as_C_string() const; 263 char* as_C_string(char* buf, int size) const; 264 265 // Returns an escaped form of a Java string. 266 char* as_quoted_ascii() const; 267 268 // Returns a null terminated utf8 string in a resource array 269 char* as_utf8() const { return as_C_string(); } 270 271 jchar* as_unicode(int& length) const; 272 273 // Treating this symbol as a class name, returns the Java name for the class. 274 // String is allocated in resource area if buffer is not provided. 275 // See Klass::external_name() 276 const char* as_klass_external_name() const; 277 const char* as_klass_external_name(char* buf, int size) const; 278 279 // Treating the symbol as a signature, print the return 280 // type to the outputStream. Prints external names as 'double' or 281 // 'java.lang.Object[][]'. 282 void print_as_signature_external_return_type(outputStream *os); 283 // Treating the symbol as a signature, print the parameter types 284 // separated by ', ' to the outputStream. Prints external names as 285 // 'double' or 'java.lang.Object[][]'. 286 void print_as_signature_external_parameters(outputStream *os); 287 void print_as_field_external_type(outputStream *os); 288 289 void metaspace_pointers_do(MetaspaceClosure* it); 290 MetaspaceObj::Type type() const { return SymbolType; } 291 292 // Printing 293 void print_symbol_on(outputStream* st = nullptr) const; 294 void print_utf8_on(outputStream* st) const; 295 void print_on(outputStream* st) const; // First level print 296 void print_value_on(outputStream* st) const; // Second level print. 297 298 // printing on default output stream 299 void print() const; 300 void print_value() const; 301 302 static bool is_valid(Symbol* s); 303 304 static bool is_valid_id(vmSymbolID vm_symbol_id) PRODUCT_RETURN_(return true;); 305 306 static Symbol* vm_symbol_at(vmSymbolID vm_symbol_id) { 307 assert(is_valid_id(vm_symbol_id), "must be"); 308 return _vm_symbols[static_cast<int>(vm_symbol_id)]; 309 } 310 311 static unsigned int compute_hash(const Symbol* const& name) { 312 return (unsigned int) name->identity_hash(); 313 } 314 315 #ifndef PRODUCT 316 // Empty constructor to create a dummy symbol object on stack 317 // only for getting its vtable pointer. 318 Symbol() { } 319 320 static size_t _total_count; 321 #endif 322 }; 323 324 // Note: this comparison is used for vtable sorting only; it doesn't matter 325 // what order it defines, as long as it is a total, time-invariant order 326 // Since Symbol*s are in C_HEAP, their relative order in memory never changes, 327 // so use address comparison for speed 328 int Symbol::fast_compare(const Symbol* other) const { 329 return (((uintptr_t)this < (uintptr_t)other) ? -1 330 : ((uintptr_t)this == (uintptr_t) other) ? 0 : 1); 331 } 332 #endif // SHARE_OOPS_SYMBOL_HPP --- EOF ---