1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "memory/allocation.inline.hpp" 26 #include "opto/addnode.hpp" 27 #include "opto/castnode.hpp" 28 #include "opto/cfgnode.hpp" 29 #include "opto/connode.hpp" 30 #include "opto/machnode.hpp" 31 #include "opto/movenode.hpp" 32 #include "opto/mulnode.hpp" 33 #include "opto/phaseX.hpp" 34 #include "opto/subnode.hpp" 35 #include "runtime/stubRoutines.hpp" 36 #include "opto/utilities/xor.hpp" 37 38 // Portions of code courtesy of Clifford Click 39 40 // Classic Add functionality. This covers all the usual 'add' behaviors for 41 // an algebraic ring. Add-integer, add-float, add-double, and binary-or are 42 // all inherited from this class. The various identity values are supplied 43 // by virtual functions. 44 45 46 //============================================================================= 47 //------------------------------hash------------------------------------------- 48 // Hash function over AddNodes. Needs to be commutative; i.e., I swap 49 // (commute) inputs to AddNodes willy-nilly so the hash function must return 50 // the same value in the presence of edge swapping. 51 uint AddNode::hash() const { 52 return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode(); 53 } 54 55 //------------------------------Identity--------------------------------------- 56 // If either input is a constant 0, return the other input. 57 Node* AddNode::Identity(PhaseGVN* phase) { 58 const Type *zero = add_id(); // The additive identity 59 if( phase->type( in(1) )->higher_equal( zero ) ) return in(2); 60 if( phase->type( in(2) )->higher_equal( zero ) ) return in(1); 61 return this; 62 } 63 64 //------------------------------commute---------------------------------------- 65 // Commute operands to move loads and constants to the right. 66 static bool commute(PhaseGVN* phase, Node* add) { 67 Node *in1 = add->in(1); 68 Node *in2 = add->in(2); 69 70 // convert "max(a,b) + min(a,b)" into "a+b". 71 if ((in1->Opcode() == add->as_Add()->max_opcode() && in2->Opcode() == add->as_Add()->min_opcode()) 72 || (in1->Opcode() == add->as_Add()->min_opcode() && in2->Opcode() == add->as_Add()->max_opcode())) { 73 Node *in11 = in1->in(1); 74 Node *in12 = in1->in(2); 75 76 Node *in21 = in2->in(1); 77 Node *in22 = in2->in(2); 78 79 if ((in11 == in21 && in12 == in22) || 80 (in11 == in22 && in12 == in21)) { 81 add->set_req_X(1, in11, phase); 82 add->set_req_X(2, in12, phase); 83 return true; 84 } 85 } 86 87 bool con_left = phase->type(in1)->singleton(); 88 bool con_right = phase->type(in2)->singleton(); 89 90 // Convert "1+x" into "x+1". 91 // Right is a constant; leave it 92 if( con_right ) return false; 93 // Left is a constant; move it right. 94 if( con_left ) { 95 add->swap_edges(1, 2); 96 return true; 97 } 98 99 // Convert "Load+x" into "x+Load". 100 // Now check for loads 101 if (in2->is_Load()) { 102 if (!in1->is_Load()) { 103 // already x+Load to return 104 return false; 105 } 106 // both are loads, so fall through to sort inputs by idx 107 } else if( in1->is_Load() ) { 108 // Left is a Load and Right is not; move it right. 109 add->swap_edges(1, 2); 110 return true; 111 } 112 113 PhiNode *phi; 114 // Check for tight loop increments: Loop-phi of Add of loop-phi 115 if (in1->is_Phi() && (phi = in1->as_Phi()) && phi->region()->is_Loop() && phi->in(2) == add) 116 return false; 117 if (in2->is_Phi() && (phi = in2->as_Phi()) && phi->region()->is_Loop() && phi->in(2) == add) { 118 add->swap_edges(1, 2); 119 return true; 120 } 121 122 // Otherwise, sort inputs (commutativity) to help value numbering. 123 if( in1->_idx > in2->_idx ) { 124 add->swap_edges(1, 2); 125 return true; 126 } 127 return false; 128 } 129 130 //------------------------------Idealize--------------------------------------- 131 // If we get here, we assume we are associative! 132 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) { 133 const Type *t1 = phase->type(in(1)); 134 const Type *t2 = phase->type(in(2)); 135 bool con_left = t1->singleton(); 136 bool con_right = t2->singleton(); 137 138 // Check for commutative operation desired 139 if (commute(phase, this)) return this; 140 141 AddNode *progress = nullptr; // Progress flag 142 143 // Convert "(x+1)+2" into "x+(1+2)". If the right input is a 144 // constant, and the left input is an add of a constant, flatten the 145 // expression tree. 146 Node *add1 = in(1); 147 Node *add2 = in(2); 148 int add1_op = add1->Opcode(); 149 int this_op = Opcode(); 150 if (con_right && t2 != Type::TOP && // Right input is a constant? 151 add1_op == this_op) { // Left input is an Add? 152 153 // Type of left _in right input 154 const Type *t12 = phase->type(add1->in(2)); 155 if (t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant? 156 // Check for rare case of closed data cycle which can happen inside 157 // unreachable loops. In these cases the computation is undefined. 158 #ifdef ASSERT 159 Node *add11 = add1->in(1); 160 int add11_op = add11->Opcode(); 161 if ((add1 == add1->in(1)) 162 || (add11_op == this_op && add11->in(1) == add1)) { 163 assert(false, "dead loop in AddNode::Ideal"); 164 } 165 #endif 166 // The Add of the flattened expression 167 Node *x1 = add1->in(1); 168 Node *x2 = phase->makecon(add1->as_Add()->add_ring(t2, t12)); 169 set_req_X(2, x2, phase); 170 set_req_X(1, x1, phase); 171 progress = this; // Made progress 172 add1 = in(1); 173 add1_op = add1->Opcode(); 174 } 175 } 176 177 // Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree. 178 if (add1_op == this_op && !con_right) { 179 Node *a12 = add1->in(2); 180 const Type *t12 = phase->type( a12 ); 181 if (t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) && 182 !(add1->in(1)->is_Phi() && (add1->in(1)->as_Phi()->is_tripcount(T_INT) || add1->in(1)->as_Phi()->is_tripcount(T_LONG)))) { 183 assert(add1->in(1) != this, "dead loop in AddNode::Ideal"); 184 add2 = add1->clone(); 185 add2->set_req(2, in(2)); 186 add2 = phase->transform(add2); 187 set_req_X(1, add2, phase); 188 set_req_X(2, a12, phase); 189 progress = this; 190 add2 = a12; 191 } 192 } 193 194 // Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree. 195 int add2_op = add2->Opcode(); 196 if (add2_op == this_op && !con_left) { 197 Node *a22 = add2->in(2); 198 const Type *t22 = phase->type( a22 ); 199 if (t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) && 200 !(add2->in(1)->is_Phi() && (add2->in(1)->as_Phi()->is_tripcount(T_INT) || add2->in(1)->as_Phi()->is_tripcount(T_LONG)))) { 201 assert(add2->in(1) != this, "dead loop in AddNode::Ideal"); 202 Node *addx = add2->clone(); 203 addx->set_req(1, in(1)); 204 addx->set_req(2, add2->in(1)); 205 addx = phase->transform(addx); 206 set_req_X(1, addx, phase); 207 set_req_X(2, a22, phase); 208 progress = this; 209 } 210 } 211 212 return progress; 213 } 214 215 //------------------------------Value----------------------------------------- 216 // An add node sums it's two _in. If one input is an RSD, we must mixin 217 // the other input's symbols. 218 const Type* AddNode::Value(PhaseGVN* phase) const { 219 // Either input is TOP ==> the result is TOP 220 const Type* t1 = phase->type(in(1)); 221 const Type* t2 = phase->type(in(2)); 222 if (t1 == Type::TOP || t2 == Type::TOP) { 223 return Type::TOP; 224 } 225 226 // Check for an addition involving the additive identity 227 const Type* tadd = add_of_identity(t1, t2); 228 if (tadd != nullptr) { 229 return tadd; 230 } 231 232 return add_ring(t1, t2); // Local flavor of type addition 233 } 234 235 //------------------------------add_identity----------------------------------- 236 // Check for addition of the identity 237 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const { 238 const Type *zero = add_id(); // The additive identity 239 if( t1->higher_equal( zero ) ) return t2; 240 if( t2->higher_equal( zero ) ) return t1; 241 242 return nullptr; 243 } 244 245 AddNode* AddNode::make(Node* in1, Node* in2, BasicType bt) { 246 switch (bt) { 247 case T_INT: 248 return new AddINode(in1, in2); 249 case T_LONG: 250 return new AddLNode(in1, in2); 251 default: 252 fatal("Not implemented for %s", type2name(bt)); 253 } 254 return nullptr; 255 } 256 257 bool AddNode::is_not(PhaseGVN* phase, Node* n, BasicType bt) { 258 return n->Opcode() == Op_Xor(bt) && phase->type(n->in(2)) == TypeInteger::minus_1(bt); 259 } 260 261 AddNode* AddNode::make_not(PhaseGVN* phase, Node* n, BasicType bt) { 262 switch (bt) { 263 case T_INT: 264 return new XorINode(n, phase->intcon(-1)); 265 case T_LONG: 266 return new XorLNode(n, phase->longcon(-1L)); 267 default: 268 fatal("Not implemented for %s", type2name(bt)); 269 } 270 return nullptr; 271 } 272 273 //============================================================================= 274 //------------------------------Idealize--------------------------------------- 275 Node* AddNode::IdealIL(PhaseGVN* phase, bool can_reshape, BasicType bt) { 276 Node* in1 = in(1); 277 Node* in2 = in(2); 278 int op1 = in1->Opcode(); 279 int op2 = in2->Opcode(); 280 // Fold (con1-x)+con2 into (con1+con2)-x 281 if (op1 == Op_Add(bt) && op2 == Op_Sub(bt)) { 282 // Swap edges to try optimizations below 283 in1 = in2; 284 in2 = in(1); 285 op1 = op2; 286 op2 = in2->Opcode(); 287 } 288 if (op1 == Op_Sub(bt)) { 289 const Type* t_sub1 = phase->type(in1->in(1)); 290 const Type* t_2 = phase->type(in2 ); 291 if (t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP) { 292 return SubNode::make(phase->makecon(add_ring(t_sub1, t_2)), in1->in(2), bt); 293 } 294 // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)" 295 if (op2 == Op_Sub(bt)) { 296 // Check for dead cycle: d = (a-b)+(c-d) 297 assert( in1->in(2) != this && in2->in(2) != this, 298 "dead loop in AddINode::Ideal" ); 299 Node* sub = SubNode::make(nullptr, nullptr, bt); 300 Node* sub_in1; 301 PhaseIterGVN* igvn = phase->is_IterGVN(); 302 // During IGVN, if both inputs of the new AddNode are a tree of SubNodes, this same transformation will be applied 303 // to every node of the tree. Calling transform() causes the transformation to be applied recursively, once per 304 // tree node whether some subtrees are identical or not. Pushing to the IGVN worklist instead, causes the transform 305 // to be applied once per unique subtrees (because all uses of a subtree are updated with the result of the 306 // transformation). In case of a large tree, this can make a difference in compilation time. 307 if (igvn != nullptr) { 308 sub_in1 = igvn->register_new_node_with_optimizer(AddNode::make(in1->in(1), in2->in(1), bt)); 309 } else { 310 sub_in1 = phase->transform(AddNode::make(in1->in(1), in2->in(1), bt)); 311 } 312 Node* sub_in2; 313 if (igvn != nullptr) { 314 sub_in2 = igvn->register_new_node_with_optimizer(AddNode::make(in1->in(2), in2->in(2), bt)); 315 } else { 316 sub_in2 = phase->transform(AddNode::make(in1->in(2), in2->in(2), bt)); 317 } 318 sub->init_req(1, sub_in1); 319 sub->init_req(2, sub_in2); 320 return sub; 321 } 322 // Convert "(a-b)+(b+c)" into "(a+c)" 323 if (op2 == Op_Add(bt) && in1->in(2) == in2->in(1)) { 324 assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal/AddLNode::Ideal"); 325 return AddNode::make(in1->in(1), in2->in(2), bt); 326 } 327 // Convert "(a-b)+(c+b)" into "(a+c)" 328 if (op2 == Op_Add(bt) && in1->in(2) == in2->in(2)) { 329 assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal/AddLNode::Ideal"); 330 return AddNode::make(in1->in(1), in2->in(1), bt); 331 } 332 } 333 334 // Convert (con - y) + x into "(x - y) + con" 335 if (op1 == Op_Sub(bt) && in1->in(1)->Opcode() == Op_ConIL(bt) 336 && in1 != in1->in(2) && !(in1->in(2)->is_Phi() && in1->in(2)->as_Phi()->is_tripcount(bt))) { 337 return AddNode::make(phase->transform(SubNode::make(in2, in1->in(2), bt)), in1->in(1), bt); 338 } 339 340 // Convert x + (con - y) into "(x - y) + con" 341 if (op2 == Op_Sub(bt) && in2->in(1)->Opcode() == Op_ConIL(bt) 342 && in2 != in2->in(2) && !(in2->in(2)->is_Phi() && in2->in(2)->as_Phi()->is_tripcount(bt))) { 343 return AddNode::make(phase->transform(SubNode::make(in1, in2->in(2), bt)), in2->in(1), bt); 344 } 345 346 // Associative 347 if (op1 == Op_Mul(bt) && op2 == Op_Mul(bt)) { 348 Node* add_in1 = nullptr; 349 Node* add_in2 = nullptr; 350 Node* mul_in = nullptr; 351 352 if (in1->in(1) == in2->in(1)) { 353 // Convert "a*b+a*c into a*(b+c) 354 add_in1 = in1->in(2); 355 add_in2 = in2->in(2); 356 mul_in = in1->in(1); 357 } else if (in1->in(2) == in2->in(1)) { 358 // Convert a*b+b*c into b*(a+c) 359 add_in1 = in1->in(1); 360 add_in2 = in2->in(2); 361 mul_in = in1->in(2); 362 } else if (in1->in(2) == in2->in(2)) { 363 // Convert a*c+b*c into (a+b)*c 364 add_in1 = in1->in(1); 365 add_in2 = in2->in(1); 366 mul_in = in1->in(2); 367 } else if (in1->in(1) == in2->in(2)) { 368 // Convert a*b+c*a into a*(b+c) 369 add_in1 = in1->in(2); 370 add_in2 = in2->in(1); 371 mul_in = in1->in(1); 372 } 373 374 if (mul_in != nullptr) { 375 Node* add = phase->transform(AddNode::make(add_in1, add_in2, bt)); 376 return MulNode::make(mul_in, add, bt); 377 } 378 } 379 380 // Convert (x >>> rshift) + (x << lshift) into RotateRight(x, rshift) 381 if (Matcher::match_rule_supported(Op_RotateRight) && 382 ((op1 == Op_URShift(bt) && op2 == Op_LShift(bt)) || (op1 == Op_LShift(bt) && op2 == Op_URShift(bt))) && 383 in1->in(1) != nullptr && in1->in(1) == in2->in(1)) { 384 Node* rshift = op1 == Op_URShift(bt) ? in1->in(2) : in2->in(2); 385 Node* lshift = op1 == Op_URShift(bt) ? in2->in(2) : in1->in(2); 386 if (rshift != nullptr && lshift != nullptr) { 387 const TypeInt* rshift_t = phase->type(rshift)->isa_int(); 388 const TypeInt* lshift_t = phase->type(lshift)->isa_int(); 389 int bits = bt == T_INT ? 32 : 64; 390 int mask = bt == T_INT ? 0x1F : 0x3F; 391 if (lshift_t != nullptr && lshift_t->is_con() && 392 rshift_t != nullptr && rshift_t->is_con() && 393 ((lshift_t->get_con() & mask) == (bits - (rshift_t->get_con() & mask)))) { 394 return new RotateRightNode(in1->in(1), phase->intcon(rshift_t->get_con() & mask), TypeInteger::bottom(bt)); 395 } 396 } 397 } 398 399 return AddNode::Ideal(phase, can_reshape); 400 } 401 402 403 Node* AddINode::Ideal(PhaseGVN* phase, bool can_reshape) { 404 Node* in1 = in(1); 405 Node* in2 = in(2); 406 int op1 = in1->Opcode(); 407 int op2 = in2->Opcode(); 408 409 // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y. 410 // Helps with array allocation math constant folding 411 // See 4790063: 412 // Unrestricted transformation is unsafe for some runtime values of 'x' 413 // ( x == 0, z == 1, y == -1 ) fails 414 // ( x == -5, z == 1, y == 1 ) fails 415 // Transform works for small z and small negative y when the addition 416 // (x + (y << z)) does not cross zero. 417 // Implement support for negative y and (x >= -(y << z)) 418 // Have not observed cases where type information exists to support 419 // positive y and (x <= -(y << z)) 420 if (op1 == Op_URShiftI && op2 == Op_ConI && 421 in1->in(2)->Opcode() == Op_ConI) { 422 jint z = phase->type(in1->in(2))->is_int()->get_con() & 0x1f; // only least significant 5 bits matter 423 jint y = phase->type(in2)->is_int()->get_con(); 424 425 if (z < 5 && -5 < y && y < 0) { 426 const Type* t_in11 = phase->type(in1->in(1)); 427 if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z))) { 428 Node* a = phase->transform(new AddINode( in1->in(1), phase->intcon(y<<z))); 429 return new URShiftINode(a, in1->in(2)); 430 } 431 } 432 } 433 434 return AddNode::IdealIL(phase, can_reshape, T_INT); 435 } 436 437 438 //------------------------------Identity--------------------------------------- 439 // Fold (x-y)+y OR y+(x-y) into x 440 Node* AddINode::Identity(PhaseGVN* phase) { 441 if (in(1)->Opcode() == Op_SubI && in(1)->in(2) == in(2)) { 442 return in(1)->in(1); 443 } else if (in(2)->Opcode() == Op_SubI && in(2)->in(2) == in(1)) { 444 return in(2)->in(1); 445 } 446 return AddNode::Identity(phase); 447 } 448 449 450 //------------------------------add_ring--------------------------------------- 451 // Supplied function returns the sum of the inputs. Guaranteed never 452 // to be passed a TOP or BOTTOM type, these are filtered out by 453 // pre-check. 454 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const { 455 const TypeInt *r0 = t0->is_int(); // Handy access 456 const TypeInt *r1 = t1->is_int(); 457 int lo = java_add(r0->_lo, r1->_lo); 458 int hi = java_add(r0->_hi, r1->_hi); 459 if( !(r0->is_con() && r1->is_con()) ) { 460 // Not both constants, compute approximate result 461 if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { 462 lo = min_jint; hi = max_jint; // Underflow on the low side 463 } 464 if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { 465 lo = min_jint; hi = max_jint; // Overflow on the high side 466 } 467 if( lo > hi ) { // Handle overflow 468 lo = min_jint; hi = max_jint; 469 } 470 } else { 471 // both constants, compute precise result using 'lo' and 'hi' 472 // Semantics define overflow and underflow for integer addition 473 // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 474 } 475 return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); 476 } 477 478 479 //============================================================================= 480 //------------------------------Idealize--------------------------------------- 481 Node* AddLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 482 return AddNode::IdealIL(phase, can_reshape, T_LONG); 483 } 484 485 486 //------------------------------Identity--------------------------------------- 487 // Fold (x-y)+y OR y+(x-y) into x 488 Node* AddLNode::Identity(PhaseGVN* phase) { 489 if (in(1)->Opcode() == Op_SubL && in(1)->in(2) == in(2)) { 490 return in(1)->in(1); 491 } else if (in(2)->Opcode() == Op_SubL && in(2)->in(2) == in(1)) { 492 return in(2)->in(1); 493 } 494 return AddNode::Identity(phase); 495 } 496 497 498 //------------------------------add_ring--------------------------------------- 499 // Supplied function returns the sum of the inputs. Guaranteed never 500 // to be passed a TOP or BOTTOM type, these are filtered out by 501 // pre-check. 502 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const { 503 const TypeLong *r0 = t0->is_long(); // Handy access 504 const TypeLong *r1 = t1->is_long(); 505 jlong lo = java_add(r0->_lo, r1->_lo); 506 jlong hi = java_add(r0->_hi, r1->_hi); 507 if( !(r0->is_con() && r1->is_con()) ) { 508 // Not both constants, compute approximate result 509 if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { 510 lo =min_jlong; hi = max_jlong; // Underflow on the low side 511 } 512 if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { 513 lo = min_jlong; hi = max_jlong; // Overflow on the high side 514 } 515 if( lo > hi ) { // Handle overflow 516 lo = min_jlong; hi = max_jlong; 517 } 518 } else { 519 // both constants, compute precise result using 'lo' and 'hi' 520 // Semantics define overflow and underflow for integer addition 521 // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 522 } 523 return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); 524 } 525 526 527 //============================================================================= 528 //------------------------------add_of_identity-------------------------------- 529 // Check for addition of the identity 530 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const { 531 // x ADD 0 should return x unless 'x' is a -zero 532 // 533 // const Type *zero = add_id(); // The additive identity 534 // jfloat f1 = t1->getf(); 535 // jfloat f2 = t2->getf(); 536 // 537 // if( t1->higher_equal( zero ) ) return t2; 538 // if( t2->higher_equal( zero ) ) return t1; 539 540 return nullptr; 541 } 542 543 //------------------------------add_ring--------------------------------------- 544 // Supplied function returns the sum of the inputs. 545 // This also type-checks the inputs for sanity. Guaranteed never to 546 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 547 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const { 548 if (!t0->isa_float_constant() || !t1->isa_float_constant()) { 549 return bottom_type(); 550 } 551 return TypeF::make( t0->getf() + t1->getf() ); 552 } 553 554 //------------------------------Ideal------------------------------------------ 555 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) { 556 // Floating point additions are not associative because of boundary conditions (infinity) 557 return commute(phase, this) ? this : nullptr; 558 } 559 560 //============================================================================= 561 //------------------------------add_of_identity-------------------------------- 562 // Check for addition of the identity 563 const Type* AddHFNode::add_of_identity(const Type* t1, const Type* t2) const { 564 return nullptr; 565 } 566 567 // Supplied function returns the sum of the inputs. 568 // This also type-checks the inputs for sanity. Guaranteed never to 569 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 570 const Type* AddHFNode::add_ring(const Type* t0, const Type* t1) const { 571 if (!t0->isa_half_float_constant() || !t1->isa_half_float_constant()) { 572 return bottom_type(); 573 } 574 return TypeH::make(t0->getf() + t1->getf()); 575 } 576 577 //============================================================================= 578 //------------------------------add_of_identity-------------------------------- 579 // Check for addition of the identity 580 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const { 581 // x ADD 0 should return x unless 'x' is a -zero 582 // 583 // const Type *zero = add_id(); // The additive identity 584 // jfloat f1 = t1->getf(); 585 // jfloat f2 = t2->getf(); 586 // 587 // if( t1->higher_equal( zero ) ) return t2; 588 // if( t2->higher_equal( zero ) ) return t1; 589 590 return nullptr; 591 } 592 //------------------------------add_ring--------------------------------------- 593 // Supplied function returns the sum of the inputs. 594 // This also type-checks the inputs for sanity. Guaranteed never to 595 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 596 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const { 597 if (!t0->isa_double_constant() || !t1->isa_double_constant()) { 598 return bottom_type(); 599 } 600 return TypeD::make( t0->getd() + t1->getd() ); 601 } 602 603 //------------------------------Ideal------------------------------------------ 604 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) { 605 // Floating point additions are not associative because of boundary conditions (infinity) 606 return commute(phase, this) ? this : nullptr; 607 } 608 609 610 //============================================================================= 611 //------------------------------Identity--------------------------------------- 612 // If one input is a constant 0, return the other input. 613 Node* AddPNode::Identity(PhaseGVN* phase) { 614 return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this; 615 } 616 617 //------------------------------Idealize--------------------------------------- 618 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) { 619 // Bail out if dead inputs 620 if( phase->type( in(Address) ) == Type::TOP ) return nullptr; 621 622 // If the left input is an add of a constant, flatten the expression tree. 623 const Node *n = in(Address); 624 if (n->is_AddP() && n->in(Base) == in(Base)) { 625 const AddPNode *addp = n->as_AddP(); // Left input is an AddP 626 assert( !addp->in(Address)->is_AddP() || 627 addp->in(Address)->as_AddP() != addp, 628 "dead loop in AddPNode::Ideal" ); 629 // Type of left input's right input 630 const Type *t = phase->type( addp->in(Offset) ); 631 if( t == Type::TOP ) return nullptr; 632 const TypeX *t12 = t->is_intptr_t(); 633 if( t12->is_con() ) { // Left input is an add of a constant? 634 // If the right input is a constant, combine constants 635 const Type *temp_t2 = phase->type( in(Offset) ); 636 if( temp_t2 == Type::TOP ) return nullptr; 637 const TypeX *t2 = temp_t2->is_intptr_t(); 638 Node* address; 639 Node* offset; 640 if( t2->is_con() ) { 641 // The Add of the flattened expression 642 address = addp->in(Address); 643 offset = phase->MakeConX(t2->get_con() + t12->get_con()); 644 } else { 645 // Else move the constant to the right. ((A+con)+B) into ((A+B)+con) 646 address = phase->transform(new AddPNode(in(Base),addp->in(Address),in(Offset))); 647 offset = addp->in(Offset); 648 } 649 set_req_X(Address, address, phase); 650 set_req_X(Offset, offset, phase); 651 return this; 652 } 653 } 654 655 // Raw pointers? 656 if( in(Base)->bottom_type() == Type::TOP ) { 657 // If this is a null+long form (from unsafe accesses), switch to a rawptr. 658 if (phase->type(in(Address)) == TypePtr::NULL_PTR) { 659 Node* offset = in(Offset); 660 return new CastX2PNode(offset); 661 } 662 } 663 664 // If the right is an add of a constant, push the offset down. 665 // Convert: (ptr + (offset+con)) into (ptr+offset)+con. 666 // The idea is to merge array_base+scaled_index groups together, 667 // and only have different constant offsets from the same base. 668 const Node *add = in(Offset); 669 if( add->Opcode() == Op_AddX && add->in(1) != add ) { 670 const Type *t22 = phase->type( add->in(2) ); 671 if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant? 672 set_req(Address, phase->transform(new AddPNode(in(Base),in(Address),add->in(1)))); 673 set_req_X(Offset, add->in(2), phase); // puts add on igvn worklist if needed 674 return this; // Made progress 675 } 676 } 677 678 return nullptr; // No progress 679 } 680 681 //------------------------------bottom_type------------------------------------ 682 // Bottom-type is the pointer-type with unknown offset. 683 const Type *AddPNode::bottom_type() const { 684 if (in(Address) == nullptr) return TypePtr::BOTTOM; 685 const TypePtr *tp = in(Address)->bottom_type()->isa_ptr(); 686 if( !tp ) return Type::TOP; // TOP input means TOP output 687 assert( in(Offset)->Opcode() != Op_ConP, "" ); 688 const Type *t = in(Offset)->bottom_type(); 689 if( t == Type::TOP ) 690 return tp->add_offset(Type::OffsetTop); 691 const TypeX *tx = t->is_intptr_t(); 692 intptr_t txoffset = Type::OffsetBot; 693 if (tx->is_con()) { // Left input is an add of a constant? 694 txoffset = tx->get_con(); 695 } 696 return tp->add_offset(txoffset); 697 } 698 699 //------------------------------Value------------------------------------------ 700 const Type* AddPNode::Value(PhaseGVN* phase) const { 701 // Either input is TOP ==> the result is TOP 702 const Type *t1 = phase->type( in(Address) ); 703 const Type *t2 = phase->type( in(Offset) ); 704 if( t1 == Type::TOP ) return Type::TOP; 705 if( t2 == Type::TOP ) return Type::TOP; 706 707 // Left input is a pointer 708 const TypePtr *p1 = t1->isa_ptr(); 709 // Right input is an int 710 const TypeX *p2 = t2->is_intptr_t(); 711 // Add 'em 712 intptr_t p2offset = Type::OffsetBot; 713 if (p2->is_con()) { // Left input is an add of a constant? 714 p2offset = p2->get_con(); 715 } 716 return p1->add_offset(p2offset); 717 } 718 719 //------------------------Ideal_base_and_offset-------------------------------- 720 // Split an oop pointer into a base and offset. 721 // (The offset might be Type::OffsetBot in the case of an array.) 722 // Return the base, or null if failure. 723 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseValues* phase, 724 // second return value: 725 intptr_t& offset) { 726 if (ptr->is_AddP()) { 727 Node* base = ptr->in(AddPNode::Base); 728 Node* addr = ptr->in(AddPNode::Address); 729 Node* offs = ptr->in(AddPNode::Offset); 730 if (base == addr || base->is_top()) { 731 offset = phase->find_intptr_t_con(offs, Type::OffsetBot); 732 if (offset != Type::OffsetBot) { 733 return addr; 734 } 735 } 736 } 737 offset = Type::OffsetBot; 738 return nullptr; 739 } 740 741 //------------------------------unpack_offsets---------------------------------- 742 // Collect the AddP offset values into the elements array, giving up 743 // if there are more than length. 744 int AddPNode::unpack_offsets(Node* elements[], int length) const { 745 int count = 0; 746 Node const* addr = this; 747 Node* base = addr->in(AddPNode::Base); 748 while (addr->is_AddP()) { 749 if (addr->in(AddPNode::Base) != base) { 750 // give up 751 return -1; 752 } 753 elements[count++] = addr->in(AddPNode::Offset); 754 if (count == length) { 755 // give up 756 return -1; 757 } 758 addr = addr->in(AddPNode::Address); 759 } 760 if (addr != base) { 761 return -1; 762 } 763 return count; 764 } 765 766 //------------------------------match_edge------------------------------------- 767 // Do we Match on this edge index or not? Do not match base pointer edge 768 uint AddPNode::match_edge(uint idx) const { 769 return idx > Base; 770 } 771 772 //============================================================================= 773 //------------------------------Identity--------------------------------------- 774 Node* OrINode::Identity(PhaseGVN* phase) { 775 // x | x => x 776 if (in(1) == in(2)) { 777 return in(1); 778 } 779 780 return AddNode::Identity(phase); 781 } 782 783 // Find shift value for Integer or Long OR. 784 static Node* rotate_shift(PhaseGVN* phase, Node* lshift, Node* rshift, int mask) { 785 // val << norm_con_shift | val >> ({32|64} - norm_con_shift) => rotate_left val, norm_con_shift 786 const TypeInt* lshift_t = phase->type(lshift)->isa_int(); 787 const TypeInt* rshift_t = phase->type(rshift)->isa_int(); 788 if (lshift_t != nullptr && lshift_t->is_con() && 789 rshift_t != nullptr && rshift_t->is_con() && 790 ((lshift_t->get_con() & mask) == ((mask + 1) - (rshift_t->get_con() & mask)))) { 791 return phase->intcon(lshift_t->get_con() & mask); 792 } 793 // val << var_shift | val >> ({0|32|64} - var_shift) => rotate_left val, var_shift 794 if (rshift->Opcode() == Op_SubI && rshift->in(2) == lshift && rshift->in(1)->is_Con()){ 795 const TypeInt* shift_t = phase->type(rshift->in(1))->isa_int(); 796 if (shift_t != nullptr && shift_t->is_con() && 797 (shift_t->get_con() == 0 || shift_t->get_con() == (mask + 1))) { 798 return lshift; 799 } 800 } 801 return nullptr; 802 } 803 804 Node* OrINode::Ideal(PhaseGVN* phase, bool can_reshape) { 805 int lopcode = in(1)->Opcode(); 806 int ropcode = in(2)->Opcode(); 807 if (Matcher::match_rule_supported(Op_RotateLeft) && 808 lopcode == Op_LShiftI && ropcode == Op_URShiftI && in(1)->in(1) == in(2)->in(1)) { 809 Node* lshift = in(1)->in(2); 810 Node* rshift = in(2)->in(2); 811 Node* shift = rotate_shift(phase, lshift, rshift, 0x1F); 812 if (shift != nullptr) { 813 return new RotateLeftNode(in(1)->in(1), shift, TypeInt::INT); 814 } 815 return nullptr; 816 } 817 if (Matcher::match_rule_supported(Op_RotateRight) && 818 lopcode == Op_URShiftI && ropcode == Op_LShiftI && in(1)->in(1) == in(2)->in(1)) { 819 Node* rshift = in(1)->in(2); 820 Node* lshift = in(2)->in(2); 821 Node* shift = rotate_shift(phase, rshift, lshift, 0x1F); 822 if (shift != nullptr) { 823 return new RotateRightNode(in(1)->in(1), shift, TypeInt::INT); 824 } 825 } 826 827 // Convert "~a | ~b" into "~(a & b)" 828 if (AddNode::is_not(phase, in(1), T_INT) && AddNode::is_not(phase, in(2), T_INT)) { 829 Node* and_a_b = new AndINode(in(1)->in(1), in(2)->in(1)); 830 Node* tn = phase->transform(and_a_b); 831 return AddNode::make_not(phase, tn, T_INT); 832 } 833 return AddNode::Ideal(phase, can_reshape); 834 } 835 836 //------------------------------add_ring--------------------------------------- 837 // Supplied function returns the sum of the inputs IN THE CURRENT RING. For 838 // the logical operations the ring's ADD is really a logical OR function. 839 // This also type-checks the inputs for sanity. Guaranteed never to 840 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 841 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const { 842 const TypeInt *r0 = t0->is_int(); // Handy access 843 const TypeInt *r1 = t1->is_int(); 844 845 // If both args are bool, can figure out better types 846 if ( r0 == TypeInt::BOOL ) { 847 if ( r1 == TypeInt::ONE) { 848 return TypeInt::ONE; 849 } else if ( r1 == TypeInt::BOOL ) { 850 return TypeInt::BOOL; 851 } 852 } else if ( r0 == TypeInt::ONE ) { 853 if ( r1 == TypeInt::BOOL ) { 854 return TypeInt::ONE; 855 } 856 } 857 858 // If either input is all ones, the output is all ones. 859 // x | ~0 == ~0 <==> x | -1 == -1 860 if (r0 == TypeInt::MINUS_1 || r1 == TypeInt::MINUS_1) { 861 return TypeInt::MINUS_1; 862 } 863 864 // If either input is not a constant, just return all integers. 865 if( !r0->is_con() || !r1->is_con() ) 866 return TypeInt::INT; // Any integer, but still no symbols. 867 868 // Otherwise just OR them bits. 869 return TypeInt::make( r0->get_con() | r1->get_con() ); 870 } 871 872 //============================================================================= 873 //------------------------------Identity--------------------------------------- 874 Node* OrLNode::Identity(PhaseGVN* phase) { 875 // x | x => x 876 if (in(1) == in(2)) { 877 return in(1); 878 } 879 880 return AddNode::Identity(phase); 881 } 882 883 Node* OrLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 884 int lopcode = in(1)->Opcode(); 885 int ropcode = in(2)->Opcode(); 886 if (Matcher::match_rule_supported(Op_RotateLeft) && 887 lopcode == Op_LShiftL && ropcode == Op_URShiftL && in(1)->in(1) == in(2)->in(1)) { 888 Node* lshift = in(1)->in(2); 889 Node* rshift = in(2)->in(2); 890 Node* shift = rotate_shift(phase, lshift, rshift, 0x3F); 891 if (shift != nullptr) { 892 return new RotateLeftNode(in(1)->in(1), shift, TypeLong::LONG); 893 } 894 return nullptr; 895 } 896 if (Matcher::match_rule_supported(Op_RotateRight) && 897 lopcode == Op_URShiftL && ropcode == Op_LShiftL && in(1)->in(1) == in(2)->in(1)) { 898 Node* rshift = in(1)->in(2); 899 Node* lshift = in(2)->in(2); 900 Node* shift = rotate_shift(phase, rshift, lshift, 0x3F); 901 if (shift != nullptr) { 902 return new RotateRightNode(in(1)->in(1), shift, TypeLong::LONG); 903 } 904 } 905 906 // Convert "~a | ~b" into "~(a & b)" 907 if (AddNode::is_not(phase, in(1), T_LONG) && AddNode::is_not(phase, in(2), T_LONG)) { 908 Node* and_a_b = new AndLNode(in(1)->in(1), in(2)->in(1)); 909 Node* tn = phase->transform(and_a_b); 910 return AddNode::make_not(phase, tn, T_LONG); 911 } 912 913 return AddNode::Ideal(phase, can_reshape); 914 } 915 916 //------------------------------add_ring--------------------------------------- 917 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const { 918 const TypeLong *r0 = t0->is_long(); // Handy access 919 const TypeLong *r1 = t1->is_long(); 920 921 // If either input is all ones, the output is all ones. 922 // x | ~0 == ~0 <==> x | -1 == -1 923 if (r0 == TypeLong::MINUS_1 || r1 == TypeLong::MINUS_1) { 924 return TypeLong::MINUS_1; 925 } 926 927 // If either input is not a constant, just return all integers. 928 if( !r0->is_con() || !r1->is_con() ) 929 return TypeLong::LONG; // Any integer, but still no symbols. 930 931 // Otherwise just OR them bits. 932 return TypeLong::make( r0->get_con() | r1->get_con() ); 933 } 934 935 //---------------------------Helper ------------------------------------------- 936 /* Decide if the given node is used only in arithmetic expressions(add or sub). 937 */ 938 static bool is_used_in_only_arithmetic(Node* n, BasicType bt) { 939 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 940 Node* u = n->fast_out(i); 941 if (u->Opcode() != Op_Add(bt) && u->Opcode() != Op_Sub(bt)) { 942 return false; 943 } 944 } 945 return true; 946 } 947 948 //============================================================================= 949 //------------------------------Idealize--------------------------------------- 950 Node* XorINode::Ideal(PhaseGVN* phase, bool can_reshape) { 951 Node* in1 = in(1); 952 Node* in2 = in(2); 953 954 // Convert ~x into -1-x when ~x is used in an arithmetic expression 955 // or x itself is an expression. 956 if (phase->type(in2) == TypeInt::MINUS_1) { // follows LHS^(-1), i.e., ~LHS 957 if (phase->is_IterGVN()) { 958 if (is_used_in_only_arithmetic(this, T_INT) 959 // LHS is arithmetic 960 || (in1->Opcode() == Op_AddI || in1->Opcode() == Op_SubI)) { 961 return new SubINode(in2, in1); 962 } 963 } else { 964 // graph could be incomplete in GVN so we postpone to IGVN 965 phase->record_for_igvn(this); 966 } 967 } 968 969 // Propagate xor through constant cmoves. This pattern can occur after expansion of Conv2B nodes. 970 const TypeInt* in2_type = phase->type(in2)->isa_int(); 971 if (in1->Opcode() == Op_CMoveI && in2_type != nullptr && in2_type->is_con()) { 972 int in2_val = in2_type->get_con(); 973 974 // Get types of both sides of the CMove 975 const TypeInt* left = phase->type(in1->in(CMoveNode::IfFalse))->isa_int(); 976 const TypeInt* right = phase->type(in1->in(CMoveNode::IfTrue))->isa_int(); 977 978 // Ensure that both sides are int constants 979 if (left != nullptr && right != nullptr && left->is_con() && right->is_con()) { 980 Node* cond = in1->in(CMoveNode::Condition); 981 982 // Check that the comparison is a bool and that the cmp node type is correct 983 if (cond->is_Bool()) { 984 int cmp_op = cond->in(1)->Opcode(); 985 986 if (cmp_op == Op_CmpI || cmp_op == Op_CmpP) { 987 int l_val = left->get_con(); 988 int r_val = right->get_con(); 989 990 return new CMoveINode(cond, phase->intcon(l_val ^ in2_val), phase->intcon(r_val ^ in2_val), TypeInt::INT); 991 } 992 } 993 } 994 } 995 996 return AddNode::Ideal(phase, can_reshape); 997 } 998 999 const Type* XorINode::Value(PhaseGVN* phase) const { 1000 Node* in1 = in(1); 1001 Node* in2 = in(2); 1002 const Type* t1 = phase->type(in1); 1003 const Type* t2 = phase->type(in2); 1004 if (t1 == Type::TOP || t2 == Type::TOP) { 1005 return Type::TOP; 1006 } 1007 // x ^ x ==> 0 1008 if (in1->eqv_uncast(in2)) { 1009 return add_id(); 1010 } 1011 return AddNode::Value(phase); 1012 } 1013 1014 //------------------------------add_ring--------------------------------------- 1015 // Supplied function returns the sum of the inputs IN THE CURRENT RING. For 1016 // the logical operations the ring's ADD is really a logical OR function. 1017 // This also type-checks the inputs for sanity. Guaranteed never to 1018 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 1019 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const { 1020 const TypeInt *r0 = t0->is_int(); // Handy access 1021 const TypeInt *r1 = t1->is_int(); 1022 1023 if (r0->is_con() && r1->is_con()) { 1024 // compute constant result 1025 return TypeInt::make(r0->get_con() ^ r1->get_con()); 1026 } 1027 1028 // At least one of the arguments is not constant 1029 1030 if (r0->_lo >= 0 && r1->_lo >= 0) { 1031 // Combine [r0->_lo, r0->_hi] ^ [r0->_lo, r1->_hi] -> [0, upper_bound] 1032 jint upper_bound = xor_upper_bound_for_ranges<jint, juint>(r0->_hi, r1->_hi); 1033 return TypeInt::make(0, upper_bound, MAX2(r0->_widen, r1->_widen)); 1034 } 1035 1036 return TypeInt::INT; 1037 } 1038 1039 //============================================================================= 1040 //------------------------------add_ring--------------------------------------- 1041 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const { 1042 const TypeLong *r0 = t0->is_long(); // Handy access 1043 const TypeLong *r1 = t1->is_long(); 1044 1045 if (r0->is_con() && r1->is_con()) { 1046 // compute constant result 1047 return TypeLong::make(r0->get_con() ^ r1->get_con()); 1048 } 1049 1050 // At least one of the arguments is not constant 1051 1052 if (r0->_lo >= 0 && r1->_lo >= 0) { 1053 // Combine [r0->_lo, r0->_hi] ^ [r0->_lo, r1->_hi] -> [0, upper_bound] 1054 julong upper_bound = xor_upper_bound_for_ranges<jlong, julong>(r0->_hi, r1->_hi); 1055 return TypeLong::make(0, upper_bound, MAX2(r0->_widen, r1->_widen)); 1056 } 1057 1058 return TypeLong::LONG; 1059 } 1060 1061 Node* XorLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1062 Node* in1 = in(1); 1063 Node* in2 = in(2); 1064 1065 // Convert ~x into -1-x when ~x is used in an arithmetic expression 1066 // or x itself is an arithmetic expression. 1067 if (phase->type(in2) == TypeLong::MINUS_1) { // follows LHS^(-1), i.e., ~LHS 1068 if (phase->is_IterGVN()) { 1069 if (is_used_in_only_arithmetic(this, T_LONG) 1070 // LHS is arithmetic 1071 || (in1->Opcode() == Op_AddL || in1->Opcode() == Op_SubL)) { 1072 return new SubLNode(in2, in1); 1073 } 1074 } else { 1075 // graph could be incomplete in GVN so we postpone to IGVN 1076 phase->record_for_igvn(this); 1077 } 1078 } 1079 return AddNode::Ideal(phase, can_reshape); 1080 } 1081 1082 const Type* XorLNode::Value(PhaseGVN* phase) const { 1083 Node* in1 = in(1); 1084 Node* in2 = in(2); 1085 const Type* t1 = phase->type(in1); 1086 const Type* t2 = phase->type(in2); 1087 if (t1 == Type::TOP || t2 == Type::TOP) { 1088 return Type::TOP; 1089 } 1090 // x ^ x ==> 0 1091 if (in1->eqv_uncast(in2)) { 1092 return add_id(); 1093 } 1094 1095 return AddNode::Value(phase); 1096 } 1097 1098 Node* MaxNode::build_min_max_int(Node* a, Node* b, bool is_max) { 1099 if (is_max) { 1100 return new MaxINode(a, b); 1101 } else { 1102 return new MinINode(a, b); 1103 } 1104 } 1105 1106 Node* MaxNode::build_min_max_long(PhaseGVN* phase, Node* a, Node* b, bool is_max) { 1107 if (is_max) { 1108 return new MaxLNode(phase->C, a, b); 1109 } else { 1110 return new MinLNode(phase->C, a, b); 1111 } 1112 } 1113 1114 Node* MaxNode::build_min_max(Node* a, Node* b, bool is_max, bool is_unsigned, const Type* t, PhaseGVN& gvn) { 1115 bool is_int = gvn.type(a)->isa_int(); 1116 assert(is_int || gvn.type(a)->isa_long(), "int or long inputs"); 1117 assert(is_int == (gvn.type(b)->isa_int() != nullptr), "inconsistent inputs"); 1118 BasicType bt = is_int ? T_INT: T_LONG; 1119 Node* hook = nullptr; 1120 if (gvn.is_IterGVN()) { 1121 // Make sure a and b are not destroyed 1122 hook = new Node(2); 1123 hook->init_req(0, a); 1124 hook->init_req(1, b); 1125 } 1126 Node* res = nullptr; 1127 if (is_int && !is_unsigned) { 1128 res = gvn.transform(build_min_max_int(a, b, is_max)); 1129 assert(gvn.type(res)->is_int()->_lo >= t->is_int()->_lo && gvn.type(res)->is_int()->_hi <= t->is_int()->_hi, "type doesn't match"); 1130 } else { 1131 Node* cmp = nullptr; 1132 if (is_max) { 1133 cmp = gvn.transform(CmpNode::make(a, b, bt, is_unsigned)); 1134 } else { 1135 cmp = gvn.transform(CmpNode::make(b, a, bt, is_unsigned)); 1136 } 1137 Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1138 res = gvn.transform(CMoveNode::make(bol, a, b, t)); 1139 } 1140 if (hook != nullptr) { 1141 hook->destruct(&gvn); 1142 } 1143 return res; 1144 } 1145 1146 Node* MaxNode::build_min_max_diff_with_zero(Node* a, Node* b, bool is_max, const Type* t, PhaseGVN& gvn) { 1147 bool is_int = gvn.type(a)->isa_int(); 1148 assert(is_int || gvn.type(a)->isa_long(), "int or long inputs"); 1149 assert(is_int == (gvn.type(b)->isa_int() != nullptr), "inconsistent inputs"); 1150 BasicType bt = is_int ? T_INT: T_LONG; 1151 Node* zero = gvn.integercon(0, bt); 1152 Node* hook = nullptr; 1153 if (gvn.is_IterGVN()) { 1154 // Make sure a and b are not destroyed 1155 hook = new Node(2); 1156 hook->init_req(0, a); 1157 hook->init_req(1, b); 1158 } 1159 Node* cmp = nullptr; 1160 if (is_max) { 1161 cmp = gvn.transform(CmpNode::make(a, b, bt, false)); 1162 } else { 1163 cmp = gvn.transform(CmpNode::make(b, a, bt, false)); 1164 } 1165 Node* sub = gvn.transform(SubNode::make(a, b, bt)); 1166 Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1167 Node* res = gvn.transform(CMoveNode::make(bol, sub, zero, t)); 1168 if (hook != nullptr) { 1169 hook->destruct(&gvn); 1170 } 1171 return res; 1172 } 1173 1174 // Check if addition of an integer with type 't' and a constant 'c' can overflow. 1175 static bool can_overflow(const TypeInt* t, jint c) { 1176 jint t_lo = t->_lo; 1177 jint t_hi = t->_hi; 1178 return ((c < 0 && (java_add(t_lo, c) > t_lo)) || 1179 (c > 0 && (java_add(t_hi, c) < t_hi))); 1180 } 1181 1182 // Check if addition of a long with type 't' and a constant 'c' can overflow. 1183 static bool can_overflow(const TypeLong* t, jlong c) { 1184 jlong t_lo = t->_lo; 1185 jlong t_hi = t->_hi; 1186 return ((c < 0 && (java_add(t_lo, c) > t_lo)) || 1187 (c > 0 && (java_add(t_hi, c) < t_hi))); 1188 } 1189 1190 // Let <x, x_off> = x_operands and <y, y_off> = y_operands. 1191 // If x == y and neither add(x, x_off) nor add(y, y_off) overflow, return 1192 // add(x, op(x_off, y_off)). Otherwise, return nullptr. 1193 Node* MaxNode::extract_add(PhaseGVN* phase, ConstAddOperands x_operands, ConstAddOperands y_operands) { 1194 Node* x = x_operands.first; 1195 Node* y = y_operands.first; 1196 int opcode = Opcode(); 1197 assert(opcode == Op_MaxI || opcode == Op_MinI, "Unexpected opcode"); 1198 const TypeInt* tx = phase->type(x)->isa_int(); 1199 jint x_off = x_operands.second; 1200 jint y_off = y_operands.second; 1201 if (x == y && tx != nullptr && 1202 !can_overflow(tx, x_off) && 1203 !can_overflow(tx, y_off)) { 1204 jint c = opcode == Op_MinI ? MIN2(x_off, y_off) : MAX2(x_off, y_off); 1205 return new AddINode(x, phase->intcon(c)); 1206 } 1207 return nullptr; 1208 } 1209 1210 // Try to cast n as an integer addition with a constant. Return: 1211 // <x, C>, if n == add(x, C), where 'C' is a non-TOP constant; 1212 // <nullptr, 0>, if n == add(x, C), where 'C' is a TOP constant; or 1213 // <n, 0>, otherwise. 1214 static ConstAddOperands as_add_with_constant(Node* n) { 1215 if (n->Opcode() != Op_AddI) { 1216 return ConstAddOperands(n, 0); 1217 } 1218 Node* x = n->in(1); 1219 Node* c = n->in(2); 1220 if (!c->is_Con()) { 1221 return ConstAddOperands(n, 0); 1222 } 1223 const Type* c_type = c->bottom_type(); 1224 if (c_type == Type::TOP) { 1225 return ConstAddOperands(nullptr, 0); 1226 } 1227 return ConstAddOperands(x, c_type->is_int()->get_con()); 1228 } 1229 1230 Node* MaxNode::IdealI(PhaseGVN* phase, bool can_reshape) { 1231 int opcode = Opcode(); 1232 assert(opcode == Op_MinI || opcode == Op_MaxI, "Unexpected opcode"); 1233 // Try to transform the following pattern, in any of its four possible 1234 // permutations induced by op's commutativity: 1235 // op(op(add(inner, inner_off), inner_other), add(outer, outer_off)) 1236 // into 1237 // op(add(inner, op(inner_off, outer_off)), inner_other), 1238 // where: 1239 // op is either MinI or MaxI, and 1240 // inner == outer, and 1241 // the additions cannot overflow. 1242 for (uint inner_op_index = 1; inner_op_index <= 2; inner_op_index++) { 1243 if (in(inner_op_index)->Opcode() != opcode) { 1244 continue; 1245 } 1246 Node* outer_add = in(inner_op_index == 1 ? 2 : 1); 1247 ConstAddOperands outer_add_operands = as_add_with_constant(outer_add); 1248 if (outer_add_operands.first == nullptr) { 1249 return nullptr; // outer_add has a TOP input, no need to continue. 1250 } 1251 // One operand is a MinI/MaxI and the other is an integer addition with 1252 // constant. Test the operands of the inner MinI/MaxI. 1253 for (uint inner_add_index = 1; inner_add_index <= 2; inner_add_index++) { 1254 Node* inner_op = in(inner_op_index); 1255 Node* inner_add = inner_op->in(inner_add_index); 1256 ConstAddOperands inner_add_operands = as_add_with_constant(inner_add); 1257 if (inner_add_operands.first == nullptr) { 1258 return nullptr; // inner_add has a TOP input, no need to continue. 1259 } 1260 // Try to extract the inner add. 1261 Node* add_extracted = extract_add(phase, inner_add_operands, outer_add_operands); 1262 if (add_extracted == nullptr) { 1263 continue; 1264 } 1265 Node* add_transformed = phase->transform(add_extracted); 1266 Node* inner_other = inner_op->in(inner_add_index == 1 ? 2 : 1); 1267 return build_min_max_int(add_transformed, inner_other, opcode == Op_MaxI); 1268 } 1269 } 1270 // Try to transform 1271 // op(add(x, x_off), add(y, y_off)) 1272 // into 1273 // add(x, op(x_off, y_off)), 1274 // where: 1275 // op is either MinI or MaxI, and 1276 // inner == outer, and 1277 // the additions cannot overflow. 1278 ConstAddOperands xC = as_add_with_constant(in(1)); 1279 ConstAddOperands yC = as_add_with_constant(in(2)); 1280 if (xC.first == nullptr || yC.first == nullptr) return nullptr; 1281 return extract_add(phase, xC, yC); 1282 } 1283 1284 // Ideal transformations for MaxINode 1285 Node* MaxINode::Ideal(PhaseGVN* phase, bool can_reshape) { 1286 return IdealI(phase, can_reshape); 1287 } 1288 1289 Node* MaxINode::Identity(PhaseGVN* phase) { 1290 const TypeInt* t1 = phase->type(in(1))->is_int(); 1291 const TypeInt* t2 = phase->type(in(2))->is_int(); 1292 1293 // Can we determine the maximum statically? 1294 if (t1->_lo >= t2->_hi) { 1295 return in(1); 1296 } else if (t2->_lo >= t1->_hi) { 1297 return in(2); 1298 } 1299 1300 return MaxNode::Identity(phase); 1301 } 1302 1303 //============================================================================= 1304 //------------------------------add_ring--------------------------------------- 1305 // Supplied function returns the sum of the inputs. 1306 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const { 1307 const TypeInt *r0 = t0->is_int(); // Handy access 1308 const TypeInt *r1 = t1->is_int(); 1309 1310 // Otherwise just MAX them bits. 1311 return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); 1312 } 1313 1314 //============================================================================= 1315 //------------------------------Idealize--------------------------------------- 1316 // MINs show up in range-check loop limit calculations. Look for 1317 // "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)" 1318 Node* MinINode::Ideal(PhaseGVN* phase, bool can_reshape) { 1319 return IdealI(phase, can_reshape); 1320 } 1321 1322 Node* MinINode::Identity(PhaseGVN* phase) { 1323 const TypeInt* t1 = phase->type(in(1))->is_int(); 1324 const TypeInt* t2 = phase->type(in(2))->is_int(); 1325 1326 // Can we determine the minimum statically? 1327 if (t1->_lo >= t2->_hi) { 1328 return in(2); 1329 } else if (t2->_lo >= t1->_hi) { 1330 return in(1); 1331 } 1332 1333 return MaxNode::Identity(phase); 1334 } 1335 1336 //------------------------------add_ring--------------------------------------- 1337 // Supplied function returns the sum of the inputs. 1338 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const { 1339 const TypeInt *r0 = t0->is_int(); // Handy access 1340 const TypeInt *r1 = t1->is_int(); 1341 1342 // Otherwise just MIN them bits. 1343 return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); 1344 } 1345 1346 // Collapse the "addition with overflow-protection" pattern, and the symmetrical 1347 // "subtraction with underflow-protection" pattern. These are created during the 1348 // unrolling, when we have to adjust the limit by subtracting the stride, but want 1349 // to protect against underflow: MaxL(SubL(limit, stride), min_jint). 1350 // If we have more than one of those in a sequence: 1351 // 1352 // x con2 1353 // | | 1354 // AddL clamp2 1355 // | | 1356 // Max/MinL con1 1357 // | | 1358 // AddL clamp1 1359 // | | 1360 // Max/MinL (n) 1361 // 1362 // We want to collapse it to: 1363 // 1364 // x con1 con2 1365 // | | | 1366 // | AddLNode (new_con) 1367 // | | 1368 // AddLNode clamp1 1369 // | | 1370 // Max/MinL (n) 1371 // 1372 // Note: we assume that SubL was already replaced by an AddL, and that the stride 1373 // has its sign flipped: SubL(limit, stride) -> AddL(limit, -stride). 1374 // 1375 // Proof MaxL collapsed version equivalent to original (MinL version similar): 1376 // is_sub_con ensures that con1, con2 ∈ [min_int, 0[ 1377 // 1378 // Original: 1379 // - AddL2 underflow => x + con2 ∈ ]max_long - min_int, max_long], ALWAYS BAILOUT as x + con1 + con2 surely fails can_overflow (*) 1380 // - AddL2 no underflow => x + con2 ∈ [min_long, max_long] 1381 // - MaxL2 clamp => min_int 1382 // - AddL1 underflow: NOT POSSIBLE: cannot underflow since min_int + con1 ∈ [2 * min_int, min_int] always > min_long 1383 // - AddL1 no underflow => min_int + con1 ∈ [2 * min_int, min_int] 1384 // - MaxL1 clamp => min_int (RESULT 1) 1385 // - MaxL1 no clamp: NOT POSSIBLE: min_int + con1 ∈ [2 * min_int, min_int] always <= min_int, so clamp always taken 1386 // - MaxL2 no clamp => x + con2 ∈ [min_int, max_long] 1387 // - AddL1 underflow: NOT POSSIBLE: cannot underflow since x + con2 + con1 ∈ [2 * min_int, max_long] always > min_long 1388 // - AddL1 no underflow => x + con2 + con1 ∈ [2 * min_int, max_long] 1389 // - MaxL1 clamp => min_int (RESULT 2) 1390 // - MaxL1 no clamp => x + con2 + con1 ∈ ]min_int, max_long] (RESULT 3) 1391 // 1392 // Collapsed: 1393 // - AddL2 (cannot underflow) => con2 + con1 ∈ [2 * min_int, 0] 1394 // - AddL1 underflow: NOT POSSIBLE: would have bailed out at can_overflow (*) 1395 // - AddL1 no underflow => x + con2 + con1 ∈ [min_long, max_long] 1396 // - MaxL clamp => min_int (RESULT 1 and RESULT 2) 1397 // - MaxL no clamp => x + con2 + con1 ∈ ]min_int, max_long] (RESULT 3) 1398 // 1399 static Node* fold_subI_no_underflow_pattern(Node* n, PhaseGVN* phase) { 1400 assert(n->Opcode() == Op_MaxL || n->Opcode() == Op_MinL, "sanity"); 1401 // Check that the two clamps have the correct values. 1402 jlong clamp = (n->Opcode() == Op_MaxL) ? min_jint : max_jint; 1403 auto is_clamp = [&](Node* c) { 1404 const TypeLong* t = phase->type(c)->isa_long(); 1405 return t != nullptr && t->is_con() && 1406 t->get_con() == clamp; 1407 }; 1408 // Check that the constants are negative if MaxL, and positive if MinL. 1409 auto is_sub_con = [&](Node* c) { 1410 const TypeLong* t = phase->type(c)->isa_long(); 1411 return t != nullptr && t->is_con() && 1412 t->get_con() < max_jint && t->get_con() > min_jint && 1413 (t->get_con() < 0) == (n->Opcode() == Op_MaxL); 1414 }; 1415 // Verify the graph level by level: 1416 Node* add1 = n->in(1); 1417 Node* clamp1 = n->in(2); 1418 if (add1->Opcode() == Op_AddL && is_clamp(clamp1)) { 1419 Node* max2 = add1->in(1); 1420 Node* con1 = add1->in(2); 1421 if (max2->Opcode() == n->Opcode() && is_sub_con(con1)) { 1422 Node* add2 = max2->in(1); 1423 Node* clamp2 = max2->in(2); 1424 if (add2->Opcode() == Op_AddL && is_clamp(clamp2)) { 1425 Node* x = add2->in(1); 1426 Node* con2 = add2->in(2); 1427 if (is_sub_con(con2)) { 1428 // Collapsed graph not equivalent if potential over/underflow -> bailing out (*) 1429 if (can_overflow(phase->type(x)->is_long(), con1->get_long() + con2->get_long())) { 1430 return nullptr; 1431 } 1432 Node* new_con = phase->transform(new AddLNode(con1, con2)); 1433 Node* new_sub = phase->transform(new AddLNode(x, new_con)); 1434 n->set_req_X(1, new_sub, phase); 1435 return n; 1436 } 1437 } 1438 } 1439 } 1440 return nullptr; 1441 } 1442 1443 const Type* MaxLNode::add_ring(const Type* t0, const Type* t1) const { 1444 const TypeLong* r0 = t0->is_long(); 1445 const TypeLong* r1 = t1->is_long(); 1446 1447 return TypeLong::make(MAX2(r0->_lo, r1->_lo), MAX2(r0->_hi, r1->_hi), MAX2(r0->_widen, r1->_widen)); 1448 } 1449 1450 Node* MaxLNode::Identity(PhaseGVN* phase) { 1451 const TypeLong* t1 = phase->type(in(1))->is_long(); 1452 const TypeLong* t2 = phase->type(in(2))->is_long(); 1453 1454 // Can we determine maximum statically? 1455 if (t1->_lo >= t2->_hi) { 1456 return in(1); 1457 } else if (t2->_lo >= t1->_hi) { 1458 return in(2); 1459 } 1460 1461 return MaxNode::Identity(phase); 1462 } 1463 1464 Node* MaxLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1465 Node* n = AddNode::Ideal(phase, can_reshape); 1466 if (n != nullptr) { 1467 return n; 1468 } 1469 if (can_reshape) { 1470 return fold_subI_no_underflow_pattern(this, phase); 1471 } 1472 return nullptr; 1473 } 1474 1475 const Type* MinLNode::add_ring(const Type* t0, const Type* t1) const { 1476 const TypeLong* r0 = t0->is_long(); 1477 const TypeLong* r1 = t1->is_long(); 1478 1479 return TypeLong::make(MIN2(r0->_lo, r1->_lo), MIN2(r0->_hi, r1->_hi), MAX2(r0->_widen, r1->_widen)); 1480 } 1481 1482 Node* MinLNode::Identity(PhaseGVN* phase) { 1483 const TypeLong* t1 = phase->type(in(1))->is_long(); 1484 const TypeLong* t2 = phase->type(in(2))->is_long(); 1485 1486 // Can we determine minimum statically? 1487 if (t1->_lo >= t2->_hi) { 1488 return in(2); 1489 } else if (t2->_lo >= t1->_hi) { 1490 return in(1); 1491 } 1492 1493 return MaxNode::Identity(phase); 1494 } 1495 1496 Node* MinLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1497 Node* n = AddNode::Ideal(phase, can_reshape); 1498 if (n != nullptr) { 1499 return n; 1500 } 1501 if (can_reshape) { 1502 return fold_subI_no_underflow_pattern(this, phase); 1503 } 1504 return nullptr; 1505 } 1506 1507 int MaxNode::opposite_opcode() const { 1508 if (Opcode() == max_opcode()) { 1509 return min_opcode(); 1510 } else { 1511 assert(Opcode() == min_opcode(), "Caller should be either %s or %s, but is %s", NodeClassNames[max_opcode()], NodeClassNames[min_opcode()], NodeClassNames[Opcode()]); 1512 return max_opcode(); 1513 } 1514 } 1515 1516 // Given a redundant structure such as Max/Min(A, Max/Min(B, C)) where A == B or A == C, return the useful part of the structure. 1517 // 'operation' is the node expected to be the inner 'Max/Min(B, C)', and 'operand' is the node expected to be the 'A' operand of the outer node. 1518 Node* MaxNode::find_identity_operation(Node* operation, Node* operand) { 1519 if (operation->Opcode() == Opcode() || operation->Opcode() == opposite_opcode()) { 1520 Node* n1 = operation->in(1); 1521 Node* n2 = operation->in(2); 1522 1523 // Given Op(A, Op(B, C)), see if either A == B or A == C is true. 1524 if (n1 == operand || n2 == operand) { 1525 // If the operations are the same return the inner operation, as Max(A, Max(A, B)) == Max(A, B). 1526 if (operation->Opcode() == Opcode()) { 1527 return operation; 1528 } 1529 1530 // If the operations are different return the operand 'A', as Max(A, Min(A, B)) == A if the value isn't floating point. 1531 // With floating point values, the identity doesn't hold if B == NaN. 1532 const Type* type = bottom_type(); 1533 if (type->isa_int() || type->isa_long()) { 1534 return operand; 1535 } 1536 } 1537 } 1538 1539 return nullptr; 1540 } 1541 1542 Node* MaxNode::Identity(PhaseGVN* phase) { 1543 if (in(1) == in(2)) { 1544 return in(1); 1545 } 1546 1547 Node* identity_1 = MaxNode::find_identity_operation(in(2), in(1)); 1548 if (identity_1 != nullptr) { 1549 return identity_1; 1550 } 1551 1552 Node* identity_2 = MaxNode::find_identity_operation(in(1), in(2)); 1553 if (identity_2 != nullptr) { 1554 return identity_2; 1555 } 1556 1557 return AddNode::Identity(phase); 1558 } 1559 1560 //------------------------------add_ring--------------------------------------- 1561 const Type* MinHFNode::add_ring(const Type* t0, const Type* t1) const { 1562 const TypeH* r0 = t0->isa_half_float_constant(); 1563 const TypeH* r1 = t1->isa_half_float_constant(); 1564 if (r0 == nullptr || r1 == nullptr) { 1565 return bottom_type(); 1566 } 1567 1568 if (r0->is_nan()) { 1569 return r0; 1570 } 1571 if (r1->is_nan()) { 1572 return r1; 1573 } 1574 1575 float f0 = r0->getf(); 1576 float f1 = r1->getf(); 1577 if (f0 != 0.0f || f1 != 0.0f) { 1578 return f0 < f1 ? r0 : r1; 1579 } 1580 1581 // As per IEEE 754 specification, floating point comparison consider +ve and -ve 1582 // zeros as equals. Thus, performing signed integral comparison for min value 1583 // detection. 1584 return (jint_cast(f0) < jint_cast(f1)) ? r0 : r1; 1585 } 1586 1587 //------------------------------add_ring--------------------------------------- 1588 const Type* MinFNode::add_ring(const Type* t0, const Type* t1 ) const { 1589 const TypeF* r0 = t0->isa_float_constant(); 1590 const TypeF* r1 = t1->isa_float_constant(); 1591 if (r0 == nullptr || r1 == nullptr) { 1592 return bottom_type(); 1593 } 1594 1595 if (r0->is_nan()) { 1596 return r0; 1597 } 1598 if (r1->is_nan()) { 1599 return r1; 1600 } 1601 1602 float f0 = r0->getf(); 1603 float f1 = r1->getf(); 1604 if (f0 != 0.0f || f1 != 0.0f) { 1605 return f0 < f1 ? r0 : r1; 1606 } 1607 1608 // handle min of 0.0, -0.0 case. 1609 return (jint_cast(f0) < jint_cast(f1)) ? r0 : r1; 1610 } 1611 1612 //------------------------------add_ring--------------------------------------- 1613 const Type* MinDNode::add_ring(const Type* t0, const Type* t1) const { 1614 const TypeD* r0 = t0->isa_double_constant(); 1615 const TypeD* r1 = t1->isa_double_constant(); 1616 if (r0 == nullptr || r1 == nullptr) { 1617 return bottom_type(); 1618 } 1619 1620 if (r0->is_nan()) { 1621 return r0; 1622 } 1623 if (r1->is_nan()) { 1624 return r1; 1625 } 1626 1627 double d0 = r0->getd(); 1628 double d1 = r1->getd(); 1629 if (d0 != 0.0 || d1 != 0.0) { 1630 return d0 < d1 ? r0 : r1; 1631 } 1632 1633 // handle min of 0.0, -0.0 case. 1634 return (jlong_cast(d0) < jlong_cast(d1)) ? r0 : r1; 1635 } 1636 1637 //------------------------------add_ring--------------------------------------- 1638 const Type* MaxHFNode::add_ring(const Type* t0, const Type* t1) const { 1639 const TypeH* r0 = t0->isa_half_float_constant(); 1640 const TypeH* r1 = t1->isa_half_float_constant(); 1641 if (r0 == nullptr || r1 == nullptr) { 1642 return bottom_type(); 1643 } 1644 1645 if (r0->is_nan()) { 1646 return r0; 1647 } 1648 if (r1->is_nan()) { 1649 return r1; 1650 } 1651 1652 float f0 = r0->getf(); 1653 float f1 = r1->getf(); 1654 if (f0 != 0.0f || f1 != 0.0f) { 1655 return f0 > f1 ? r0 : r1; 1656 } 1657 1658 // As per IEEE 754 specification, floating point comparison consider +ve and -ve 1659 // zeros as equals. Thus, performing signed integral comparison for max value 1660 // detection. 1661 return (jint_cast(f0) > jint_cast(f1)) ? r0 : r1; 1662 } 1663 1664 1665 //------------------------------add_ring--------------------------------------- 1666 const Type* MaxFNode::add_ring(const Type* t0, const Type* t1) const { 1667 const TypeF* r0 = t0->isa_float_constant(); 1668 const TypeF* r1 = t1->isa_float_constant(); 1669 if (r0 == nullptr || r1 == nullptr) { 1670 return bottom_type(); 1671 } 1672 1673 if (r0->is_nan()) { 1674 return r0; 1675 } 1676 if (r1->is_nan()) { 1677 return r1; 1678 } 1679 1680 float f0 = r0->getf(); 1681 float f1 = r1->getf(); 1682 if (f0 != 0.0f || f1 != 0.0f) { 1683 return f0 > f1 ? r0 : r1; 1684 } 1685 1686 // handle max of 0.0,-0.0 case. 1687 return (jint_cast(f0) > jint_cast(f1)) ? r0 : r1; 1688 } 1689 1690 //------------------------------add_ring--------------------------------------- 1691 const Type* MaxDNode::add_ring(const Type* t0, const Type* t1) const { 1692 const TypeD* r0 = t0->isa_double_constant(); 1693 const TypeD* r1 = t1->isa_double_constant(); 1694 if (r0 == nullptr || r1 == nullptr) { 1695 return bottom_type(); 1696 } 1697 1698 if (r0->is_nan()) { 1699 return r0; 1700 } 1701 if (r1->is_nan()) { 1702 return r1; 1703 } 1704 1705 double d0 = r0->getd(); 1706 double d1 = r1->getd(); 1707 if (d0 != 0.0 || d1 != 0.0) { 1708 return d0 > d1 ? r0 : r1; 1709 } 1710 1711 // handle max of 0.0, -0.0 case. 1712 return (jlong_cast(d0) > jlong_cast(d1)) ? r0 : r1; 1713 }