1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "memory/allocation.inline.hpp" 27 #include "opto/addnode.hpp" 28 #include "opto/castnode.hpp" 29 #include "opto/cfgnode.hpp" 30 #include "opto/connode.hpp" 31 #include "opto/machnode.hpp" 32 #include "opto/movenode.hpp" 33 #include "opto/mulnode.hpp" 34 #include "opto/phaseX.hpp" 35 #include "opto/subnode.hpp" 36 37 // Portions of code courtesy of Clifford Click 38 39 // Classic Add functionality. This covers all the usual 'add' behaviors for 40 // an algebraic ring. Add-integer, add-float, add-double, and binary-or are 41 // all inherited from this class. The various identity values are supplied 42 // by virtual functions. 43 44 45 //============================================================================= 46 //------------------------------hash------------------------------------------- 47 // Hash function over AddNodes. Needs to be commutative; i.e., I swap 48 // (commute) inputs to AddNodes willy-nilly so the hash function must return 49 // the same value in the presence of edge swapping. 50 uint AddNode::hash() const { 51 return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode(); 52 } 53 54 //------------------------------Identity--------------------------------------- 55 // If either input is a constant 0, return the other input. 56 Node* AddNode::Identity(PhaseGVN* phase) { 57 const Type *zero = add_id(); // The additive identity 58 if( phase->type( in(1) )->higher_equal( zero ) ) return in(2); 59 if( phase->type( in(2) )->higher_equal( zero ) ) return in(1); 60 return this; 61 } 62 63 //------------------------------commute---------------------------------------- 64 // Commute operands to move loads and constants to the right. 65 static bool commute(PhaseGVN* phase, Node* add) { 66 Node *in1 = add->in(1); 67 Node *in2 = add->in(2); 68 69 // convert "max(a,b) + min(a,b)" into "a+b". 70 if ((in1->Opcode() == add->as_Add()->max_opcode() && in2->Opcode() == add->as_Add()->min_opcode()) 71 || (in1->Opcode() == add->as_Add()->min_opcode() && in2->Opcode() == add->as_Add()->max_opcode())) { 72 Node *in11 = in1->in(1); 73 Node *in12 = in1->in(2); 74 75 Node *in21 = in2->in(1); 76 Node *in22 = in2->in(2); 77 78 if ((in11 == in21 && in12 == in22) || 79 (in11 == in22 && in12 == in21)) { 80 add->set_req_X(1, in11, phase); 81 add->set_req_X(2, in12, phase); 82 return true; 83 } 84 } 85 86 bool con_left = phase->type(in1)->singleton(); 87 bool con_right = phase->type(in2)->singleton(); 88 89 // Convert "1+x" into "x+1". 90 // Right is a constant; leave it 91 if( con_right ) return false; 92 // Left is a constant; move it right. 93 if( con_left ) { 94 add->swap_edges(1, 2); 95 return true; 96 } 97 98 // Convert "Load+x" into "x+Load". 99 // Now check for loads 100 if (in2->is_Load()) { 101 if (!in1->is_Load()) { 102 // already x+Load to return 103 return false; 104 } 105 // both are loads, so fall through to sort inputs by idx 106 } else if( in1->is_Load() ) { 107 // Left is a Load and Right is not; move it right. 108 add->swap_edges(1, 2); 109 return true; 110 } 111 112 PhiNode *phi; 113 // Check for tight loop increments: Loop-phi of Add of loop-phi 114 if (in1->is_Phi() && (phi = in1->as_Phi()) && phi->region()->is_Loop() && phi->in(2) == add) 115 return false; 116 if (in2->is_Phi() && (phi = in2->as_Phi()) && phi->region()->is_Loop() && phi->in(2) == add) { 117 add->swap_edges(1, 2); 118 return true; 119 } 120 121 // Otherwise, sort inputs (commutativity) to help value numbering. 122 if( in1->_idx > in2->_idx ) { 123 add->swap_edges(1, 2); 124 return true; 125 } 126 return false; 127 } 128 129 //------------------------------Idealize--------------------------------------- 130 // If we get here, we assume we are associative! 131 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) { 132 const Type *t1 = phase->type(in(1)); 133 const Type *t2 = phase->type(in(2)); 134 bool con_left = t1->singleton(); 135 bool con_right = t2->singleton(); 136 137 // Check for commutative operation desired 138 if (commute(phase, this)) return this; 139 140 AddNode *progress = nullptr; // Progress flag 141 142 // Convert "(x+1)+2" into "x+(1+2)". If the right input is a 143 // constant, and the left input is an add of a constant, flatten the 144 // expression tree. 145 Node *add1 = in(1); 146 Node *add2 = in(2); 147 int add1_op = add1->Opcode(); 148 int this_op = Opcode(); 149 if (con_right && t2 != Type::TOP && // Right input is a constant? 150 add1_op == this_op) { // Left input is an Add? 151 152 // Type of left _in right input 153 const Type *t12 = phase->type(add1->in(2)); 154 if (t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant? 155 // Check for rare case of closed data cycle which can happen inside 156 // unreachable loops. In these cases the computation is undefined. 157 #ifdef ASSERT 158 Node *add11 = add1->in(1); 159 int add11_op = add11->Opcode(); 160 if ((add1 == add1->in(1)) 161 || (add11_op == this_op && add11->in(1) == add1)) { 162 assert(false, "dead loop in AddNode::Ideal"); 163 } 164 #endif 165 // The Add of the flattened expression 166 Node *x1 = add1->in(1); 167 Node *x2 = phase->makecon(add1->as_Add()->add_ring(t2, t12)); 168 set_req_X(2, x2, phase); 169 set_req_X(1, x1, phase); 170 progress = this; // Made progress 171 add1 = in(1); 172 add1_op = add1->Opcode(); 173 } 174 } 175 176 // Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree. 177 if (add1_op == this_op && !con_right) { 178 Node *a12 = add1->in(2); 179 const Type *t12 = phase->type( a12 ); 180 if (t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) && 181 !(add1->in(1)->is_Phi() && (add1->in(1)->as_Phi()->is_tripcount(T_INT) || add1->in(1)->as_Phi()->is_tripcount(T_LONG)))) { 182 assert(add1->in(1) != this, "dead loop in AddNode::Ideal"); 183 add2 = add1->clone(); 184 add2->set_req(2, in(2)); 185 add2 = phase->transform(add2); 186 set_req_X(1, add2, phase); 187 set_req_X(2, a12, phase); 188 progress = this; 189 add2 = a12; 190 } 191 } 192 193 // Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree. 194 int add2_op = add2->Opcode(); 195 if (add2_op == this_op && !con_left) { 196 Node *a22 = add2->in(2); 197 const Type *t22 = phase->type( a22 ); 198 if (t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) && 199 !(add2->in(1)->is_Phi() && (add2->in(1)->as_Phi()->is_tripcount(T_INT) || add2->in(1)->as_Phi()->is_tripcount(T_LONG)))) { 200 assert(add2->in(1) != this, "dead loop in AddNode::Ideal"); 201 Node *addx = add2->clone(); 202 addx->set_req(1, in(1)); 203 addx->set_req(2, add2->in(1)); 204 addx = phase->transform(addx); 205 set_req_X(1, addx, phase); 206 set_req_X(2, a22, phase); 207 progress = this; 208 } 209 } 210 211 return progress; 212 } 213 214 //------------------------------Value----------------------------------------- 215 // An add node sums it's two _in. If one input is an RSD, we must mixin 216 // the other input's symbols. 217 const Type* AddNode::Value(PhaseGVN* phase) const { 218 // Either input is TOP ==> the result is TOP 219 const Type *t1 = phase->type( in(1) ); 220 const Type *t2 = phase->type( in(2) ); 221 if( t1 == Type::TOP ) return Type::TOP; 222 if( t2 == Type::TOP ) return Type::TOP; 223 224 // Either input is BOTTOM ==> the result is the local BOTTOM 225 const Type *bot = bottom_type(); 226 if( (t1 == bot) || (t2 == bot) || 227 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) 228 return bot; 229 230 // Check for an addition involving the additive identity 231 const Type *tadd = add_of_identity( t1, t2 ); 232 if( tadd ) return tadd; 233 234 return add_ring(t1,t2); // Local flavor of type addition 235 } 236 237 //------------------------------add_identity----------------------------------- 238 // Check for addition of the identity 239 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const { 240 const Type *zero = add_id(); // The additive identity 241 if( t1->higher_equal( zero ) ) return t2; 242 if( t2->higher_equal( zero ) ) return t1; 243 244 return nullptr; 245 } 246 247 AddNode* AddNode::make(Node* in1, Node* in2, BasicType bt) { 248 switch (bt) { 249 case T_INT: 250 return new AddINode(in1, in2); 251 case T_LONG: 252 return new AddLNode(in1, in2); 253 default: 254 fatal("Not implemented for %s", type2name(bt)); 255 } 256 return nullptr; 257 } 258 259 //============================================================================= 260 //------------------------------Idealize--------------------------------------- 261 Node* AddNode::IdealIL(PhaseGVN* phase, bool can_reshape, BasicType bt) { 262 Node* in1 = in(1); 263 Node* in2 = in(2); 264 int op1 = in1->Opcode(); 265 int op2 = in2->Opcode(); 266 // Fold (con1-x)+con2 into (con1+con2)-x 267 if (op1 == Op_Add(bt) && op2 == Op_Sub(bt)) { 268 // Swap edges to try optimizations below 269 in1 = in2; 270 in2 = in(1); 271 op1 = op2; 272 op2 = in2->Opcode(); 273 } 274 if (op1 == Op_Sub(bt)) { 275 const Type* t_sub1 = phase->type(in1->in(1)); 276 const Type* t_2 = phase->type(in2 ); 277 if (t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP) { 278 return SubNode::make(phase->makecon(add_ring(t_sub1, t_2)), in1->in(2), bt); 279 } 280 // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)" 281 if (op2 == Op_Sub(bt)) { 282 // Check for dead cycle: d = (a-b)+(c-d) 283 assert( in1->in(2) != this && in2->in(2) != this, 284 "dead loop in AddINode::Ideal" ); 285 Node* sub = SubNode::make(nullptr, nullptr, bt); 286 sub->init_req(1, phase->transform(AddNode::make(in1->in(1), in2->in(1), bt))); 287 sub->init_req(2, phase->transform(AddNode::make(in1->in(2), in2->in(2), bt))); 288 return sub; 289 } 290 // Convert "(a-b)+(b+c)" into "(a+c)" 291 if (op2 == Op_Add(bt) && in1->in(2) == in2->in(1)) { 292 assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal/AddLNode::Ideal"); 293 return AddNode::make(in1->in(1), in2->in(2), bt); 294 } 295 // Convert "(a-b)+(c+b)" into "(a+c)" 296 if (op2 == Op_Add(bt) && in1->in(2) == in2->in(2)) { 297 assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal/AddLNode::Ideal"); 298 return AddNode::make(in1->in(1), in2->in(1), bt); 299 } 300 } 301 302 // Convert (con - y) + x into "(x - y) + con" 303 if (op1 == Op_Sub(bt) && in1->in(1)->Opcode() == Op_ConIL(bt) 304 && in1 != in1->in(2) && !(in1->in(2)->is_Phi() && in1->in(2)->as_Phi()->is_tripcount(bt))) { 305 return AddNode::make(phase->transform(SubNode::make(in2, in1->in(2), bt)), in1->in(1), bt); 306 } 307 308 // Convert x + (con - y) into "(x - y) + con" 309 if (op2 == Op_Sub(bt) && in2->in(1)->Opcode() == Op_ConIL(bt) 310 && in2 != in2->in(2) && !(in2->in(2)->is_Phi() && in2->in(2)->as_Phi()->is_tripcount(bt))) { 311 return AddNode::make(phase->transform(SubNode::make(in1, in2->in(2), bt)), in2->in(1), bt); 312 } 313 314 // Associative 315 if (op1 == Op_Mul(bt) && op2 == Op_Mul(bt)) { 316 Node* add_in1 = nullptr; 317 Node* add_in2 = nullptr; 318 Node* mul_in = nullptr; 319 320 if (in1->in(1) == in2->in(1)) { 321 // Convert "a*b+a*c into a*(b+c) 322 add_in1 = in1->in(2); 323 add_in2 = in2->in(2); 324 mul_in = in1->in(1); 325 } else if (in1->in(2) == in2->in(1)) { 326 // Convert a*b+b*c into b*(a+c) 327 add_in1 = in1->in(1); 328 add_in2 = in2->in(2); 329 mul_in = in1->in(2); 330 } else if (in1->in(2) == in2->in(2)) { 331 // Convert a*c+b*c into (a+b)*c 332 add_in1 = in1->in(1); 333 add_in2 = in2->in(1); 334 mul_in = in1->in(2); 335 } else if (in1->in(1) == in2->in(2)) { 336 // Convert a*b+c*a into a*(b+c) 337 add_in1 = in1->in(2); 338 add_in2 = in2->in(1); 339 mul_in = in1->in(1); 340 } 341 342 if (mul_in != nullptr) { 343 Node* add = phase->transform(AddNode::make(add_in1, add_in2, bt)); 344 return MulNode::make(mul_in, add, bt); 345 } 346 } 347 348 // Convert (x >>> rshift) + (x << lshift) into RotateRight(x, rshift) 349 if (Matcher::match_rule_supported(Op_RotateRight) && 350 ((op1 == Op_URShift(bt) && op2 == Op_LShift(bt)) || (op1 == Op_LShift(bt) && op2 == Op_URShift(bt))) && 351 in1->in(1) != nullptr && in1->in(1) == in2->in(1)) { 352 Node* rshift = op1 == Op_URShift(bt) ? in1->in(2) : in2->in(2); 353 Node* lshift = op1 == Op_URShift(bt) ? in2->in(2) : in1->in(2); 354 if (rshift != nullptr && lshift != nullptr) { 355 const TypeInt* rshift_t = phase->type(rshift)->isa_int(); 356 const TypeInt* lshift_t = phase->type(lshift)->isa_int(); 357 int bits = bt == T_INT ? 32 : 64; 358 int mask = bt == T_INT ? 0x1F : 0x3F; 359 if (lshift_t != nullptr && lshift_t->is_con() && 360 rshift_t != nullptr && rshift_t->is_con() && 361 ((lshift_t->get_con() & mask) == (bits - (rshift_t->get_con() & mask)))) { 362 return new RotateRightNode(in1->in(1), phase->intcon(rshift_t->get_con() & mask), TypeInteger::bottom(bt)); 363 } 364 } 365 } 366 367 return AddNode::Ideal(phase, can_reshape); 368 } 369 370 371 Node* AddINode::Ideal(PhaseGVN* phase, bool can_reshape) { 372 Node* in1 = in(1); 373 Node* in2 = in(2); 374 int op1 = in1->Opcode(); 375 int op2 = in2->Opcode(); 376 377 // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y. 378 // Helps with array allocation math constant folding 379 // See 4790063: 380 // Unrestricted transformation is unsafe for some runtime values of 'x' 381 // ( x == 0, z == 1, y == -1 ) fails 382 // ( x == -5, z == 1, y == 1 ) fails 383 // Transform works for small z and small negative y when the addition 384 // (x + (y << z)) does not cross zero. 385 // Implement support for negative y and (x >= -(y << z)) 386 // Have not observed cases where type information exists to support 387 // positive y and (x <= -(y << z)) 388 if (op1 == Op_URShiftI && op2 == Op_ConI && 389 in1->in(2)->Opcode() == Op_ConI) { 390 jint z = phase->type(in1->in(2))->is_int()->get_con() & 0x1f; // only least significant 5 bits matter 391 jint y = phase->type(in2)->is_int()->get_con(); 392 393 if (z < 5 && -5 < y && y < 0) { 394 const Type* t_in11 = phase->type(in1->in(1)); 395 if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z))) { 396 Node* a = phase->transform(new AddINode( in1->in(1), phase->intcon(y<<z))); 397 return new URShiftINode(a, in1->in(2)); 398 } 399 } 400 } 401 402 return AddNode::IdealIL(phase, can_reshape, T_INT); 403 } 404 405 406 //------------------------------Identity--------------------------------------- 407 // Fold (x-y)+y OR y+(x-y) into x 408 Node* AddINode::Identity(PhaseGVN* phase) { 409 if (in(1)->Opcode() == Op_SubI && in(1)->in(2) == in(2)) { 410 return in(1)->in(1); 411 } else if (in(2)->Opcode() == Op_SubI && in(2)->in(2) == in(1)) { 412 return in(2)->in(1); 413 } 414 return AddNode::Identity(phase); 415 } 416 417 418 //------------------------------add_ring--------------------------------------- 419 // Supplied function returns the sum of the inputs. Guaranteed never 420 // to be passed a TOP or BOTTOM type, these are filtered out by 421 // pre-check. 422 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const { 423 const TypeInt *r0 = t0->is_int(); // Handy access 424 const TypeInt *r1 = t1->is_int(); 425 int lo = java_add(r0->_lo, r1->_lo); 426 int hi = java_add(r0->_hi, r1->_hi); 427 if( !(r0->is_con() && r1->is_con()) ) { 428 // Not both constants, compute approximate result 429 if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { 430 lo = min_jint; hi = max_jint; // Underflow on the low side 431 } 432 if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { 433 lo = min_jint; hi = max_jint; // Overflow on the high side 434 } 435 if( lo > hi ) { // Handle overflow 436 lo = min_jint; hi = max_jint; 437 } 438 } else { 439 // both constants, compute precise result using 'lo' and 'hi' 440 // Semantics define overflow and underflow for integer addition 441 // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 442 } 443 return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); 444 } 445 446 447 //============================================================================= 448 //------------------------------Idealize--------------------------------------- 449 Node* AddLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 450 return AddNode::IdealIL(phase, can_reshape, T_LONG); 451 } 452 453 454 //------------------------------Identity--------------------------------------- 455 // Fold (x-y)+y OR y+(x-y) into x 456 Node* AddLNode::Identity(PhaseGVN* phase) { 457 if (in(1)->Opcode() == Op_SubL && in(1)->in(2) == in(2)) { 458 return in(1)->in(1); 459 } else if (in(2)->Opcode() == Op_SubL && in(2)->in(2) == in(1)) { 460 return in(2)->in(1); 461 } 462 return AddNode::Identity(phase); 463 } 464 465 466 //------------------------------add_ring--------------------------------------- 467 // Supplied function returns the sum of the inputs. Guaranteed never 468 // to be passed a TOP or BOTTOM type, these are filtered out by 469 // pre-check. 470 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const { 471 const TypeLong *r0 = t0->is_long(); // Handy access 472 const TypeLong *r1 = t1->is_long(); 473 jlong lo = java_add(r0->_lo, r1->_lo); 474 jlong hi = java_add(r0->_hi, r1->_hi); 475 if( !(r0->is_con() && r1->is_con()) ) { 476 // Not both constants, compute approximate result 477 if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { 478 lo =min_jlong; hi = max_jlong; // Underflow on the low side 479 } 480 if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { 481 lo = min_jlong; hi = max_jlong; // Overflow on the high side 482 } 483 if( lo > hi ) { // Handle overflow 484 lo = min_jlong; hi = max_jlong; 485 } 486 } else { 487 // both constants, compute precise result using 'lo' and 'hi' 488 // Semantics define overflow and underflow for integer addition 489 // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 490 } 491 return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); 492 } 493 494 495 //============================================================================= 496 //------------------------------add_of_identity-------------------------------- 497 // Check for addition of the identity 498 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const { 499 // x ADD 0 should return x unless 'x' is a -zero 500 // 501 // const Type *zero = add_id(); // The additive identity 502 // jfloat f1 = t1->getf(); 503 // jfloat f2 = t2->getf(); 504 // 505 // if( t1->higher_equal( zero ) ) return t2; 506 // if( t2->higher_equal( zero ) ) return t1; 507 508 return nullptr; 509 } 510 511 //------------------------------add_ring--------------------------------------- 512 // Supplied function returns the sum of the inputs. 513 // This also type-checks the inputs for sanity. Guaranteed never to 514 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 515 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const { 516 // We must be adding 2 float constants. 517 return TypeF::make( t0->getf() + t1->getf() ); 518 } 519 520 //------------------------------Ideal------------------------------------------ 521 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) { 522 // Floating point additions are not associative because of boundary conditions (infinity) 523 return commute(phase, this) ? this : nullptr; 524 } 525 526 527 //============================================================================= 528 //------------------------------add_of_identity-------------------------------- 529 // Check for addition of the identity 530 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const { 531 // x ADD 0 should return x unless 'x' is a -zero 532 // 533 // const Type *zero = add_id(); // The additive identity 534 // jfloat f1 = t1->getf(); 535 // jfloat f2 = t2->getf(); 536 // 537 // if( t1->higher_equal( zero ) ) return t2; 538 // if( t2->higher_equal( zero ) ) return t1; 539 540 return nullptr; 541 } 542 //------------------------------add_ring--------------------------------------- 543 // Supplied function returns the sum of the inputs. 544 // This also type-checks the inputs for sanity. Guaranteed never to 545 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 546 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const { 547 // We must be adding 2 double constants. 548 return TypeD::make( t0->getd() + t1->getd() ); 549 } 550 551 //------------------------------Ideal------------------------------------------ 552 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) { 553 // Floating point additions are not associative because of boundary conditions (infinity) 554 return commute(phase, this) ? this : nullptr; 555 } 556 557 558 //============================================================================= 559 //------------------------------Identity--------------------------------------- 560 // If one input is a constant 0, return the other input. 561 Node* AddPNode::Identity(PhaseGVN* phase) { 562 return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this; 563 } 564 565 //------------------------------Idealize--------------------------------------- 566 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) { 567 // Bail out if dead inputs 568 if( phase->type( in(Address) ) == Type::TOP ) return nullptr; 569 570 // If the left input is an add of a constant, flatten the expression tree. 571 const Node *n = in(Address); 572 if (n->is_AddP() && n->in(Base) == in(Base)) { 573 const AddPNode *addp = n->as_AddP(); // Left input is an AddP 574 assert( !addp->in(Address)->is_AddP() || 575 addp->in(Address)->as_AddP() != addp, 576 "dead loop in AddPNode::Ideal" ); 577 // Type of left input's right input 578 const Type *t = phase->type( addp->in(Offset) ); 579 if( t == Type::TOP ) return nullptr; 580 const TypeX *t12 = t->is_intptr_t(); 581 if( t12->is_con() ) { // Left input is an add of a constant? 582 // If the right input is a constant, combine constants 583 const Type *temp_t2 = phase->type( in(Offset) ); 584 if( temp_t2 == Type::TOP ) return nullptr; 585 const TypeX *t2 = temp_t2->is_intptr_t(); 586 Node* address; 587 Node* offset; 588 if( t2->is_con() ) { 589 // The Add of the flattened expression 590 address = addp->in(Address); 591 offset = phase->MakeConX(t2->get_con() + t12->get_con()); 592 } else { 593 // Else move the constant to the right. ((A+con)+B) into ((A+B)+con) 594 address = phase->transform(new AddPNode(in(Base),addp->in(Address),in(Offset))); 595 offset = addp->in(Offset); 596 } 597 set_req_X(Address, address, phase); 598 set_req_X(Offset, offset, phase); 599 return this; 600 } 601 } 602 603 // Raw pointers? 604 if( in(Base)->bottom_type() == Type::TOP ) { 605 // If this is a null+long form (from unsafe accesses), switch to a rawptr. 606 if (phase->type(in(Address)) == TypePtr::NULL_PTR) { 607 Node* offset = in(Offset); 608 return new CastX2PNode(offset); 609 } 610 } 611 612 // If the right is an add of a constant, push the offset down. 613 // Convert: (ptr + (offset+con)) into (ptr+offset)+con. 614 // The idea is to merge array_base+scaled_index groups together, 615 // and only have different constant offsets from the same base. 616 const Node *add = in(Offset); 617 if( add->Opcode() == Op_AddX && add->in(1) != add ) { 618 const Type *t22 = phase->type( add->in(2) ); 619 if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant? 620 set_req(Address, phase->transform(new AddPNode(in(Base),in(Address),add->in(1)))); 621 set_req_X(Offset, add->in(2), phase); // puts add on igvn worklist if needed 622 return this; // Made progress 623 } 624 } 625 626 return nullptr; // No progress 627 } 628 629 //------------------------------bottom_type------------------------------------ 630 // Bottom-type is the pointer-type with unknown offset. 631 const Type *AddPNode::bottom_type() const { 632 if (in(Address) == nullptr) return TypePtr::BOTTOM; 633 const TypePtr *tp = in(Address)->bottom_type()->isa_ptr(); 634 if( !tp ) return Type::TOP; // TOP input means TOP output 635 assert( in(Offset)->Opcode() != Op_ConP, "" ); 636 const Type *t = in(Offset)->bottom_type(); 637 if( t == Type::TOP ) 638 return tp->add_offset(Type::OffsetTop); 639 const TypeX *tx = t->is_intptr_t(); 640 intptr_t txoffset = Type::OffsetBot; 641 if (tx->is_con()) { // Left input is an add of a constant? 642 txoffset = tx->get_con(); 643 } 644 return tp->add_offset(txoffset); 645 } 646 647 //------------------------------Value------------------------------------------ 648 const Type* AddPNode::Value(PhaseGVN* phase) const { 649 // Either input is TOP ==> the result is TOP 650 const Type *t1 = phase->type( in(Address) ); 651 const Type *t2 = phase->type( in(Offset) ); 652 if( t1 == Type::TOP ) return Type::TOP; 653 if( t2 == Type::TOP ) return Type::TOP; 654 655 // Left input is a pointer 656 const TypePtr *p1 = t1->isa_ptr(); 657 // Right input is an int 658 const TypeX *p2 = t2->is_intptr_t(); 659 // Add 'em 660 intptr_t p2offset = Type::OffsetBot; 661 if (p2->is_con()) { // Left input is an add of a constant? 662 p2offset = p2->get_con(); 663 } 664 return p1->add_offset(p2offset); 665 } 666 667 //------------------------Ideal_base_and_offset-------------------------------- 668 // Split an oop pointer into a base and offset. 669 // (The offset might be Type::OffsetBot in the case of an array.) 670 // Return the base, or null if failure. 671 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseValues* phase, 672 // second return value: 673 intptr_t& offset) { 674 if (ptr->is_AddP()) { 675 Node* base = ptr->in(AddPNode::Base); 676 Node* addr = ptr->in(AddPNode::Address); 677 Node* offs = ptr->in(AddPNode::Offset); 678 if (base == addr || base->is_top()) { 679 offset = phase->find_intptr_t_con(offs, Type::OffsetBot); 680 if (offset != Type::OffsetBot) { 681 return addr; 682 } 683 } 684 } 685 offset = Type::OffsetBot; 686 return nullptr; 687 } 688 689 //------------------------------unpack_offsets---------------------------------- 690 // Collect the AddP offset values into the elements array, giving up 691 // if there are more than length. 692 int AddPNode::unpack_offsets(Node* elements[], int length) { 693 int count = 0; 694 Node* addr = this; 695 Node* base = addr->in(AddPNode::Base); 696 while (addr->is_AddP()) { 697 if (addr->in(AddPNode::Base) != base) { 698 // give up 699 return -1; 700 } 701 elements[count++] = addr->in(AddPNode::Offset); 702 if (count == length) { 703 // give up 704 return -1; 705 } 706 addr = addr->in(AddPNode::Address); 707 } 708 if (addr != base) { 709 return -1; 710 } 711 return count; 712 } 713 714 //------------------------------match_edge------------------------------------- 715 // Do we Match on this edge index or not? Do not match base pointer edge 716 uint AddPNode::match_edge(uint idx) const { 717 return idx > Base; 718 } 719 720 //============================================================================= 721 //------------------------------Identity--------------------------------------- 722 Node* OrINode::Identity(PhaseGVN* phase) { 723 // x | x => x 724 if (in(1) == in(2)) { 725 return in(1); 726 } 727 728 return AddNode::Identity(phase); 729 } 730 731 // Find shift value for Integer or Long OR. 732 Node* rotate_shift(PhaseGVN* phase, Node* lshift, Node* rshift, int mask) { 733 // val << norm_con_shift | val >> ({32|64} - norm_con_shift) => rotate_left val, norm_con_shift 734 const TypeInt* lshift_t = phase->type(lshift)->isa_int(); 735 const TypeInt* rshift_t = phase->type(rshift)->isa_int(); 736 if (lshift_t != nullptr && lshift_t->is_con() && 737 rshift_t != nullptr && rshift_t->is_con() && 738 ((lshift_t->get_con() & mask) == ((mask + 1) - (rshift_t->get_con() & mask)))) { 739 return phase->intcon(lshift_t->get_con() & mask); 740 } 741 // val << var_shift | val >> ({0|32|64} - var_shift) => rotate_left val, var_shift 742 if (rshift->Opcode() == Op_SubI && rshift->in(2) == lshift && rshift->in(1)->is_Con()){ 743 const TypeInt* shift_t = phase->type(rshift->in(1))->isa_int(); 744 if (shift_t != nullptr && shift_t->is_con() && 745 (shift_t->get_con() == 0 || shift_t->get_con() == (mask + 1))) { 746 return lshift; 747 } 748 } 749 return nullptr; 750 } 751 752 Node* OrINode::Ideal(PhaseGVN* phase, bool can_reshape) { 753 int lopcode = in(1)->Opcode(); 754 int ropcode = in(2)->Opcode(); 755 if (Matcher::match_rule_supported(Op_RotateLeft) && 756 lopcode == Op_LShiftI && ropcode == Op_URShiftI && in(1)->in(1) == in(2)->in(1)) { 757 Node* lshift = in(1)->in(2); 758 Node* rshift = in(2)->in(2); 759 Node* shift = rotate_shift(phase, lshift, rshift, 0x1F); 760 if (shift != nullptr) { 761 return new RotateLeftNode(in(1)->in(1), shift, TypeInt::INT); 762 } 763 return nullptr; 764 } 765 if (Matcher::match_rule_supported(Op_RotateRight) && 766 lopcode == Op_URShiftI && ropcode == Op_LShiftI && in(1)->in(1) == in(2)->in(1)) { 767 Node* rshift = in(1)->in(2); 768 Node* lshift = in(2)->in(2); 769 Node* shift = rotate_shift(phase, rshift, lshift, 0x1F); 770 if (shift != nullptr) { 771 return new RotateRightNode(in(1)->in(1), shift, TypeInt::INT); 772 } 773 } 774 return nullptr; 775 } 776 777 //------------------------------add_ring--------------------------------------- 778 // Supplied function returns the sum of the inputs IN THE CURRENT RING. For 779 // the logical operations the ring's ADD is really a logical OR function. 780 // This also type-checks the inputs for sanity. Guaranteed never to 781 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 782 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const { 783 const TypeInt *r0 = t0->is_int(); // Handy access 784 const TypeInt *r1 = t1->is_int(); 785 786 // If both args are bool, can figure out better types 787 if ( r0 == TypeInt::BOOL ) { 788 if ( r1 == TypeInt::ONE) { 789 return TypeInt::ONE; 790 } else if ( r1 == TypeInt::BOOL ) { 791 return TypeInt::BOOL; 792 } 793 } else if ( r0 == TypeInt::ONE ) { 794 if ( r1 == TypeInt::BOOL ) { 795 return TypeInt::ONE; 796 } 797 } 798 799 // If either input is not a constant, just return all integers. 800 if( !r0->is_con() || !r1->is_con() ) 801 return TypeInt::INT; // Any integer, but still no symbols. 802 803 // Otherwise just OR them bits. 804 return TypeInt::make( r0->get_con() | r1->get_con() ); 805 } 806 807 //============================================================================= 808 //------------------------------Identity--------------------------------------- 809 Node* OrLNode::Identity(PhaseGVN* phase) { 810 // x | x => x 811 if (in(1) == in(2)) { 812 return in(1); 813 } 814 815 return AddNode::Identity(phase); 816 } 817 818 Node* OrLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 819 int lopcode = in(1)->Opcode(); 820 int ropcode = in(2)->Opcode(); 821 if (Matcher::match_rule_supported(Op_RotateLeft) && 822 lopcode == Op_LShiftL && ropcode == Op_URShiftL && in(1)->in(1) == in(2)->in(1)) { 823 Node* lshift = in(1)->in(2); 824 Node* rshift = in(2)->in(2); 825 Node* shift = rotate_shift(phase, lshift, rshift, 0x3F); 826 if (shift != nullptr) { 827 return new RotateLeftNode(in(1)->in(1), shift, TypeLong::LONG); 828 } 829 return nullptr; 830 } 831 if (Matcher::match_rule_supported(Op_RotateRight) && 832 lopcode == Op_URShiftL && ropcode == Op_LShiftL && in(1)->in(1) == in(2)->in(1)) { 833 Node* rshift = in(1)->in(2); 834 Node* lshift = in(2)->in(2); 835 Node* shift = rotate_shift(phase, rshift, lshift, 0x3F); 836 if (shift != nullptr) { 837 return new RotateRightNode(in(1)->in(1), shift, TypeLong::LONG); 838 } 839 } 840 return nullptr; 841 } 842 843 //------------------------------add_ring--------------------------------------- 844 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const { 845 const TypeLong *r0 = t0->is_long(); // Handy access 846 const TypeLong *r1 = t1->is_long(); 847 848 // If either input is not a constant, just return all integers. 849 if( !r0->is_con() || !r1->is_con() ) 850 return TypeLong::LONG; // Any integer, but still no symbols. 851 852 // Otherwise just OR them bits. 853 return TypeLong::make( r0->get_con() | r1->get_con() ); 854 } 855 856 //---------------------------Helper ------------------------------------------- 857 /* Decide if the given node is used only in arithmetic expressions(add or sub). 858 */ 859 static bool is_used_in_only_arithmetic(Node* n, BasicType bt) { 860 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 861 Node* u = n->fast_out(i); 862 if (u->Opcode() != Op_Add(bt) && u->Opcode() != Op_Sub(bt)) { 863 return false; 864 } 865 } 866 return true; 867 } 868 869 //============================================================================= 870 //------------------------------Idealize--------------------------------------- 871 Node* XorINode::Ideal(PhaseGVN* phase, bool can_reshape) { 872 Node* in1 = in(1); 873 Node* in2 = in(2); 874 875 // Convert ~x into -1-x when ~x is used in an arithmetic expression 876 // or x itself is an expression. 877 if (phase->type(in2) == TypeInt::MINUS_1) { // follows LHS^(-1), i.e., ~LHS 878 if (phase->is_IterGVN()) { 879 if (is_used_in_only_arithmetic(this, T_INT) 880 // LHS is arithmetic 881 || (in1->Opcode() == Op_AddI || in1->Opcode() == Op_SubI)) { 882 return new SubINode(in2, in1); 883 } 884 } else { 885 // graph could be incomplete in GVN so we postpone to IGVN 886 phase->record_for_igvn(this); 887 } 888 } 889 890 // Propagate xor through constant cmoves. This pattern can occur after expansion of Conv2B nodes. 891 const TypeInt* in2_type = phase->type(in2)->isa_int(); 892 if (in1->Opcode() == Op_CMoveI && in2_type != nullptr && in2_type->is_con()) { 893 int in2_val = in2_type->get_con(); 894 895 // Get types of both sides of the CMove 896 const TypeInt* left = phase->type(in1->in(CMoveNode::IfFalse))->isa_int(); 897 const TypeInt* right = phase->type(in1->in(CMoveNode::IfTrue))->isa_int(); 898 899 // Ensure that both sides are int constants 900 if (left != nullptr && right != nullptr && left->is_con() && right->is_con()) { 901 Node* cond = in1->in(CMoveNode::Condition); 902 903 // Check that the comparison is a bool and that the cmp node type is correct 904 if (cond->is_Bool()) { 905 int cmp_op = cond->in(1)->Opcode(); 906 907 if (cmp_op == Op_CmpI || cmp_op == Op_CmpP) { 908 int l_val = left->get_con(); 909 int r_val = right->get_con(); 910 911 return new CMoveINode(cond, phase->intcon(l_val ^ in2_val), phase->intcon(r_val ^ in2_val), TypeInt::INT); 912 } 913 } 914 } 915 } 916 917 return AddNode::Ideal(phase, can_reshape); 918 } 919 920 const Type* XorINode::Value(PhaseGVN* phase) const { 921 Node* in1 = in(1); 922 Node* in2 = in(2); 923 const Type* t1 = phase->type(in1); 924 const Type* t2 = phase->type(in2); 925 if (t1 == Type::TOP || t2 == Type::TOP) { 926 return Type::TOP; 927 } 928 // x ^ x ==> 0 929 if (in1->eqv_uncast(in2)) { 930 return add_id(); 931 } 932 // result of xor can only have bits sets where any of the 933 // inputs have bits set. lo can always become 0. 934 const TypeInt* t1i = t1->is_int(); 935 const TypeInt* t2i = t2->is_int(); 936 if ((t1i->_lo >= 0) && 937 (t1i->_hi > 0) && 938 (t2i->_lo >= 0) && 939 (t2i->_hi > 0)) { 940 // hi - set all bits below the highest bit. Using round_down to avoid overflow. 941 const TypeInt* t1x = TypeInt::make(0, round_down_power_of_2(t1i->_hi) + (round_down_power_of_2(t1i->_hi) - 1), t1i->_widen); 942 const TypeInt* t2x = TypeInt::make(0, round_down_power_of_2(t2i->_hi) + (round_down_power_of_2(t2i->_hi) - 1), t2i->_widen); 943 return t1x->meet(t2x); 944 } 945 return AddNode::Value(phase); 946 } 947 948 949 //------------------------------add_ring--------------------------------------- 950 // Supplied function returns the sum of the inputs IN THE CURRENT RING. For 951 // the logical operations the ring's ADD is really a logical OR function. 952 // This also type-checks the inputs for sanity. Guaranteed never to 953 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 954 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const { 955 const TypeInt *r0 = t0->is_int(); // Handy access 956 const TypeInt *r1 = t1->is_int(); 957 958 // Complementing a boolean? 959 if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE 960 || r1 == TypeInt::BOOL)) 961 return TypeInt::BOOL; 962 963 if( !r0->is_con() || !r1->is_con() ) // Not constants 964 return TypeInt::INT; // Any integer, but still no symbols. 965 966 // Otherwise just XOR them bits. 967 return TypeInt::make( r0->get_con() ^ r1->get_con() ); 968 } 969 970 //============================================================================= 971 //------------------------------add_ring--------------------------------------- 972 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const { 973 const TypeLong *r0 = t0->is_long(); // Handy access 974 const TypeLong *r1 = t1->is_long(); 975 976 // If either input is not a constant, just return all integers. 977 if( !r0->is_con() || !r1->is_con() ) 978 return TypeLong::LONG; // Any integer, but still no symbols. 979 980 // Otherwise just OR them bits. 981 return TypeLong::make( r0->get_con() ^ r1->get_con() ); 982 } 983 984 Node* XorLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 985 Node* in1 = in(1); 986 Node* in2 = in(2); 987 988 // Convert ~x into -1-x when ~x is used in an arithmetic expression 989 // or x itself is an arithmetic expression. 990 if (phase->type(in2) == TypeLong::MINUS_1) { // follows LHS^(-1), i.e., ~LHS 991 if (phase->is_IterGVN()) { 992 if (is_used_in_only_arithmetic(this, T_LONG) 993 // LHS is arithmetic 994 || (in1->Opcode() == Op_AddL || in1->Opcode() == Op_SubL)) { 995 return new SubLNode(in2, in1); 996 } 997 } else { 998 // graph could be incomplete in GVN so we postpone to IGVN 999 phase->record_for_igvn(this); 1000 } 1001 } 1002 return AddNode::Ideal(phase, can_reshape); 1003 } 1004 1005 const Type* XorLNode::Value(PhaseGVN* phase) const { 1006 Node* in1 = in(1); 1007 Node* in2 = in(2); 1008 const Type* t1 = phase->type(in1); 1009 const Type* t2 = phase->type(in2); 1010 if (t1 == Type::TOP || t2 == Type::TOP) { 1011 return Type::TOP; 1012 } 1013 // x ^ x ==> 0 1014 if (in1->eqv_uncast(in2)) { 1015 return add_id(); 1016 } 1017 // result of xor can only have bits sets where any of the 1018 // inputs have bits set. lo can always become 0. 1019 const TypeLong* t1l = t1->is_long(); 1020 const TypeLong* t2l = t2->is_long(); 1021 if ((t1l->_lo >= 0) && 1022 (t1l->_hi > 0) && 1023 (t2l->_lo >= 0) && 1024 (t2l->_hi > 0)) { 1025 // hi - set all bits below the highest bit. Using round_down to avoid overflow. 1026 const TypeLong* t1x = TypeLong::make(0, round_down_power_of_2(t1l->_hi) + (round_down_power_of_2(t1l->_hi) - 1), t1l->_widen); 1027 const TypeLong* t2x = TypeLong::make(0, round_down_power_of_2(t2l->_hi) + (round_down_power_of_2(t2l->_hi) - 1), t2l->_widen); 1028 return t1x->meet(t2x); 1029 } 1030 return AddNode::Value(phase); 1031 } 1032 1033 Node* build_min_max_int(Node* a, Node* b, bool is_max) { 1034 if (is_max) { 1035 return new MaxINode(a, b); 1036 } else { 1037 return new MinINode(a, b); 1038 } 1039 } 1040 1041 Node* MaxNode::build_min_max(Node* a, Node* b, bool is_max, bool is_unsigned, const Type* t, PhaseGVN& gvn) { 1042 bool is_int = gvn.type(a)->isa_int(); 1043 assert(is_int || gvn.type(a)->isa_long(), "int or long inputs"); 1044 assert(is_int == (gvn.type(b)->isa_int() != nullptr), "inconsistent inputs"); 1045 BasicType bt = is_int ? T_INT: T_LONG; 1046 Node* hook = nullptr; 1047 if (gvn.is_IterGVN()) { 1048 // Make sure a and b are not destroyed 1049 hook = new Node(2); 1050 hook->init_req(0, a); 1051 hook->init_req(1, b); 1052 } 1053 Node* res = nullptr; 1054 if (is_int && !is_unsigned) { 1055 res = gvn.transform(build_min_max_int(a, b, is_max)); 1056 assert(gvn.type(res)->is_int()->_lo >= t->is_int()->_lo && gvn.type(res)->is_int()->_hi <= t->is_int()->_hi, "type doesn't match"); 1057 } else { 1058 Node* cmp = nullptr; 1059 if (is_max) { 1060 cmp = gvn.transform(CmpNode::make(a, b, bt, is_unsigned)); 1061 } else { 1062 cmp = gvn.transform(CmpNode::make(b, a, bt, is_unsigned)); 1063 } 1064 Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1065 res = gvn.transform(CMoveNode::make(nullptr, bol, a, b, t)); 1066 } 1067 if (hook != nullptr) { 1068 hook->destruct(&gvn); 1069 } 1070 return res; 1071 } 1072 1073 Node* MaxNode::build_min_max_diff_with_zero(Node* a, Node* b, bool is_max, const Type* t, PhaseGVN& gvn) { 1074 bool is_int = gvn.type(a)->isa_int(); 1075 assert(is_int || gvn.type(a)->isa_long(), "int or long inputs"); 1076 assert(is_int == (gvn.type(b)->isa_int() != nullptr), "inconsistent inputs"); 1077 BasicType bt = is_int ? T_INT: T_LONG; 1078 Node* zero = gvn.integercon(0, bt); 1079 Node* hook = nullptr; 1080 if (gvn.is_IterGVN()) { 1081 // Make sure a and b are not destroyed 1082 hook = new Node(2); 1083 hook->init_req(0, a); 1084 hook->init_req(1, b); 1085 } 1086 Node* cmp = nullptr; 1087 if (is_max) { 1088 cmp = gvn.transform(CmpNode::make(a, b, bt, false)); 1089 } else { 1090 cmp = gvn.transform(CmpNode::make(b, a, bt, false)); 1091 } 1092 Node* sub = gvn.transform(SubNode::make(a, b, bt)); 1093 Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1094 Node* res = gvn.transform(CMoveNode::make(nullptr, bol, sub, zero, t)); 1095 if (hook != nullptr) { 1096 hook->destruct(&gvn); 1097 } 1098 return res; 1099 } 1100 1101 // Check if addition of an integer with type 't' and a constant 'c' can overflow. 1102 static bool can_overflow(const TypeInt* t, jint c) { 1103 jint t_lo = t->_lo; 1104 jint t_hi = t->_hi; 1105 return ((c < 0 && (java_add(t_lo, c) > t_lo)) || 1106 (c > 0 && (java_add(t_hi, c) < t_hi))); 1107 } 1108 1109 // Let <x, x_off> = x_operands and <y, y_off> = y_operands. 1110 // If x == y and neither add(x, x_off) nor add(y, y_off) overflow, return 1111 // add(x, op(x_off, y_off)). Otherwise, return nullptr. 1112 Node* MaxNode::extract_add(PhaseGVN* phase, ConstAddOperands x_operands, ConstAddOperands y_operands) { 1113 Node* x = x_operands.first; 1114 Node* y = y_operands.first; 1115 int opcode = Opcode(); 1116 assert(opcode == Op_MaxI || opcode == Op_MinI, "Unexpected opcode"); 1117 const TypeInt* tx = phase->type(x)->isa_int(); 1118 jint x_off = x_operands.second; 1119 jint y_off = y_operands.second; 1120 if (x == y && tx != nullptr && 1121 !can_overflow(tx, x_off) && 1122 !can_overflow(tx, y_off)) { 1123 jint c = opcode == Op_MinI ? MIN2(x_off, y_off) : MAX2(x_off, y_off); 1124 return new AddINode(x, phase->intcon(c)); 1125 } 1126 return nullptr; 1127 } 1128 1129 // Try to cast n as an integer addition with a constant. Return: 1130 // <x, C>, if n == add(x, C), where 'C' is a non-TOP constant; 1131 // <nullptr, 0>, if n == add(x, C), where 'C' is a TOP constant; or 1132 // <n, 0>, otherwise. 1133 static ConstAddOperands as_add_with_constant(Node* n) { 1134 if (n->Opcode() != Op_AddI) { 1135 return ConstAddOperands(n, 0); 1136 } 1137 Node* x = n->in(1); 1138 Node* c = n->in(2); 1139 if (!c->is_Con()) { 1140 return ConstAddOperands(n, 0); 1141 } 1142 const Type* c_type = c->bottom_type(); 1143 if (c_type == Type::TOP) { 1144 return ConstAddOperands(nullptr, 0); 1145 } 1146 return ConstAddOperands(x, c_type->is_int()->get_con()); 1147 } 1148 1149 Node* MaxNode::IdealI(PhaseGVN* phase, bool can_reshape) { 1150 int opcode = Opcode(); 1151 assert(opcode == Op_MinI || opcode == Op_MaxI, "Unexpected opcode"); 1152 // Try to transform the following pattern, in any of its four possible 1153 // permutations induced by op's commutativity: 1154 // op(op(add(inner, inner_off), inner_other), add(outer, outer_off)) 1155 // into 1156 // op(add(inner, op(inner_off, outer_off)), inner_other), 1157 // where: 1158 // op is either MinI or MaxI, and 1159 // inner == outer, and 1160 // the additions cannot overflow. 1161 for (uint inner_op_index = 1; inner_op_index <= 2; inner_op_index++) { 1162 if (in(inner_op_index)->Opcode() != opcode) { 1163 continue; 1164 } 1165 Node* outer_add = in(inner_op_index == 1 ? 2 : 1); 1166 ConstAddOperands outer_add_operands = as_add_with_constant(outer_add); 1167 if (outer_add_operands.first == nullptr) { 1168 return nullptr; // outer_add has a TOP input, no need to continue. 1169 } 1170 // One operand is a MinI/MaxI and the other is an integer addition with 1171 // constant. Test the operands of the inner MinI/MaxI. 1172 for (uint inner_add_index = 1; inner_add_index <= 2; inner_add_index++) { 1173 Node* inner_op = in(inner_op_index); 1174 Node* inner_add = inner_op->in(inner_add_index); 1175 ConstAddOperands inner_add_operands = as_add_with_constant(inner_add); 1176 if (inner_add_operands.first == nullptr) { 1177 return nullptr; // inner_add has a TOP input, no need to continue. 1178 } 1179 // Try to extract the inner add. 1180 Node* add_extracted = extract_add(phase, inner_add_operands, outer_add_operands); 1181 if (add_extracted == nullptr) { 1182 continue; 1183 } 1184 Node* add_transformed = phase->transform(add_extracted); 1185 Node* inner_other = inner_op->in(inner_add_index == 1 ? 2 : 1); 1186 return build_min_max_int(add_transformed, inner_other, opcode == Op_MaxI); 1187 } 1188 } 1189 // Try to transform 1190 // op(add(x, x_off), add(y, y_off)) 1191 // into 1192 // add(x, op(x_off, y_off)), 1193 // where: 1194 // op is either MinI or MaxI, and 1195 // inner == outer, and 1196 // the additions cannot overflow. 1197 ConstAddOperands xC = as_add_with_constant(in(1)); 1198 ConstAddOperands yC = as_add_with_constant(in(2)); 1199 if (xC.first == nullptr || yC.first == nullptr) return nullptr; 1200 return extract_add(phase, xC, yC); 1201 } 1202 1203 // Ideal transformations for MaxINode 1204 Node* MaxINode::Ideal(PhaseGVN* phase, bool can_reshape) { 1205 return IdealI(phase, can_reshape); 1206 } 1207 1208 //============================================================================= 1209 //------------------------------add_ring--------------------------------------- 1210 // Supplied function returns the sum of the inputs. 1211 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const { 1212 const TypeInt *r0 = t0->is_int(); // Handy access 1213 const TypeInt *r1 = t1->is_int(); 1214 1215 // Otherwise just MAX them bits. 1216 return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); 1217 } 1218 1219 //============================================================================= 1220 //------------------------------Idealize--------------------------------------- 1221 // MINs show up in range-check loop limit calculations. Look for 1222 // "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)" 1223 Node* MinINode::Ideal(PhaseGVN* phase, bool can_reshape) { 1224 return IdealI(phase, can_reshape); 1225 } 1226 1227 //------------------------------add_ring--------------------------------------- 1228 // Supplied function returns the sum of the inputs. 1229 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const { 1230 const TypeInt *r0 = t0->is_int(); // Handy access 1231 const TypeInt *r1 = t1->is_int(); 1232 1233 // Otherwise just MIN them bits. 1234 return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); 1235 } 1236 1237 // Collapse the "addition with overflow-protection" pattern, and the symmetrical 1238 // "subtraction with underflow-protection" pattern. These are created during the 1239 // unrolling, when we have to adjust the limit by subtracting the stride, but want 1240 // to protect against underflow: MaxL(SubL(limit, stride), min_jint). 1241 // If we have more than one of those in a sequence: 1242 // 1243 // x con2 1244 // | | 1245 // AddL clamp2 1246 // | | 1247 // Max/MinL con1 1248 // | | 1249 // AddL clamp1 1250 // | | 1251 // Max/MinL (n) 1252 // 1253 // We want to collapse it to: 1254 // 1255 // x con1 con2 1256 // | | | 1257 // | AddLNode (new_con) 1258 // | | 1259 // AddLNode clamp1 1260 // | | 1261 // Max/MinL (n) 1262 // 1263 // Note: we assume that SubL was already replaced by an AddL, and that the stride 1264 // has its sign flipped: SubL(limit, stride) -> AddL(limit, -stride). 1265 Node* fold_subI_no_underflow_pattern(Node* n, PhaseGVN* phase) { 1266 assert(n->Opcode() == Op_MaxL || n->Opcode() == Op_MinL, "sanity"); 1267 // Check that the two clamps have the correct values. 1268 jlong clamp = (n->Opcode() == Op_MaxL) ? min_jint : max_jint; 1269 auto is_clamp = [&](Node* c) { 1270 const TypeLong* t = phase->type(c)->isa_long(); 1271 return t != nullptr && t->is_con() && 1272 t->get_con() == clamp; 1273 }; 1274 // Check that the constants are negative if MaxL, and positive if MinL. 1275 auto is_sub_con = [&](Node* c) { 1276 const TypeLong* t = phase->type(c)->isa_long(); 1277 return t != nullptr && t->is_con() && 1278 t->get_con() < max_jint && t->get_con() > min_jint && 1279 (t->get_con() < 0) == (n->Opcode() == Op_MaxL); 1280 }; 1281 // Verify the graph level by level: 1282 Node* add1 = n->in(1); 1283 Node* clamp1 = n->in(2); 1284 if (add1->Opcode() == Op_AddL && is_clamp(clamp1)) { 1285 Node* max2 = add1->in(1); 1286 Node* con1 = add1->in(2); 1287 if (max2->Opcode() == n->Opcode() && is_sub_con(con1)) { 1288 Node* add2 = max2->in(1); 1289 Node* clamp2 = max2->in(2); 1290 if (add2->Opcode() == Op_AddL && is_clamp(clamp2)) { 1291 Node* x = add2->in(1); 1292 Node* con2 = add2->in(2); 1293 if (is_sub_con(con2)) { 1294 Node* new_con = phase->transform(new AddLNode(con1, con2)); 1295 Node* new_sub = phase->transform(new AddLNode(x, new_con)); 1296 n->set_req_X(1, new_sub, phase); 1297 return n; 1298 } 1299 } 1300 } 1301 } 1302 return nullptr; 1303 } 1304 1305 const Type* MaxLNode::add_ring(const Type* t0, const Type* t1) const { 1306 const TypeLong* r0 = t0->is_long(); 1307 const TypeLong* r1 = t1->is_long(); 1308 1309 return TypeLong::make(MAX2(r0->_lo, r1->_lo), MAX2(r0->_hi, r1->_hi), MAX2(r0->_widen, r1->_widen)); 1310 } 1311 1312 Node* MaxLNode::Identity(PhaseGVN* phase) { 1313 const TypeLong* t1 = phase->type(in(1))->is_long(); 1314 const TypeLong* t2 = phase->type(in(2))->is_long(); 1315 1316 // Can we determine maximum statically? 1317 if (t1->_lo >= t2->_hi) { 1318 return in(1); 1319 } else if (t2->_lo >= t1->_hi) { 1320 return in(2); 1321 } 1322 1323 return MaxNode::Identity(phase); 1324 } 1325 1326 Node* MaxLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1327 Node* n = AddNode::Ideal(phase, can_reshape); 1328 if (n != nullptr) { 1329 return n; 1330 } 1331 if (can_reshape) { 1332 return fold_subI_no_underflow_pattern(this, phase); 1333 } 1334 return nullptr; 1335 } 1336 1337 const Type* MinLNode::add_ring(const Type* t0, const Type* t1) const { 1338 const TypeLong* r0 = t0->is_long(); 1339 const TypeLong* r1 = t1->is_long(); 1340 1341 return TypeLong::make(MIN2(r0->_lo, r1->_lo), MIN2(r0->_hi, r1->_hi), MIN2(r0->_widen, r1->_widen)); 1342 } 1343 1344 Node* MinLNode::Identity(PhaseGVN* phase) { 1345 const TypeLong* t1 = phase->type(in(1))->is_long(); 1346 const TypeLong* t2 = phase->type(in(2))->is_long(); 1347 1348 // Can we determine minimum statically? 1349 if (t1->_lo >= t2->_hi) { 1350 return in(2); 1351 } else if (t2->_lo >= t1->_hi) { 1352 return in(1); 1353 } 1354 1355 return MaxNode::Identity(phase); 1356 } 1357 1358 Node* MinLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1359 Node* n = AddNode::Ideal(phase, can_reshape); 1360 if (n != nullptr) { 1361 return n; 1362 } 1363 if (can_reshape) { 1364 return fold_subI_no_underflow_pattern(this, phase); 1365 } 1366 return nullptr; 1367 } 1368 1369 //------------------------------add_ring--------------------------------------- 1370 const Type *MinFNode::add_ring( const Type *t0, const Type *t1 ) const { 1371 const TypeF *r0 = t0->is_float_constant(); 1372 const TypeF *r1 = t1->is_float_constant(); 1373 1374 if (r0->is_nan()) { 1375 return r0; 1376 } 1377 if (r1->is_nan()) { 1378 return r1; 1379 } 1380 1381 float f0 = r0->getf(); 1382 float f1 = r1->getf(); 1383 if (f0 != 0.0f || f1 != 0.0f) { 1384 return f0 < f1 ? r0 : r1; 1385 } 1386 1387 // handle min of 0.0, -0.0 case. 1388 return (jint_cast(f0) < jint_cast(f1)) ? r0 : r1; 1389 } 1390 1391 //------------------------------add_ring--------------------------------------- 1392 const Type *MinDNode::add_ring( const Type *t0, const Type *t1 ) const { 1393 const TypeD *r0 = t0->is_double_constant(); 1394 const TypeD *r1 = t1->is_double_constant(); 1395 1396 if (r0->is_nan()) { 1397 return r0; 1398 } 1399 if (r1->is_nan()) { 1400 return r1; 1401 } 1402 1403 double d0 = r0->getd(); 1404 double d1 = r1->getd(); 1405 if (d0 != 0.0 || d1 != 0.0) { 1406 return d0 < d1 ? r0 : r1; 1407 } 1408 1409 // handle min of 0.0, -0.0 case. 1410 return (jlong_cast(d0) < jlong_cast(d1)) ? r0 : r1; 1411 } 1412 1413 //------------------------------add_ring--------------------------------------- 1414 const Type *MaxFNode::add_ring( const Type *t0, const Type *t1 ) const { 1415 const TypeF *r0 = t0->is_float_constant(); 1416 const TypeF *r1 = t1->is_float_constant(); 1417 1418 if (r0->is_nan()) { 1419 return r0; 1420 } 1421 if (r1->is_nan()) { 1422 return r1; 1423 } 1424 1425 float f0 = r0->getf(); 1426 float f1 = r1->getf(); 1427 if (f0 != 0.0f || f1 != 0.0f) { 1428 return f0 > f1 ? r0 : r1; 1429 } 1430 1431 // handle max of 0.0,-0.0 case. 1432 return (jint_cast(f0) > jint_cast(f1)) ? r0 : r1; 1433 } 1434 1435 //------------------------------add_ring--------------------------------------- 1436 const Type *MaxDNode::add_ring( const Type *t0, const Type *t1 ) const { 1437 const TypeD *r0 = t0->is_double_constant(); 1438 const TypeD *r1 = t1->is_double_constant(); 1439 1440 if (r0->is_nan()) { 1441 return r0; 1442 } 1443 if (r1->is_nan()) { 1444 return r1; 1445 } 1446 1447 double d0 = r0->getd(); 1448 double d1 = r1->getd(); 1449 if (d0 != 0.0 || d1 != 0.0) { 1450 return d0 > d1 ? r0 : r1; 1451 } 1452 1453 // handle max of 0.0, -0.0 case. 1454 return (jlong_cast(d0) > jlong_cast(d1)) ? r0 : r1; 1455 }