1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "memory/allocation.inline.hpp"
  26 #include "opto/addnode.hpp"
  27 #include "opto/castnode.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/machnode.hpp"
  31 #include "opto/movenode.hpp"
  32 #include "opto/mulnode.hpp"
  33 #include "opto/phaseX.hpp"
  34 #include "opto/subnode.hpp"
  35 #include "runtime/stubRoutines.hpp"
  36 #include "opto/utilities/xor.hpp"
  37 
  38 // Portions of code courtesy of Clifford Click
  39 
  40 // Classic Add functionality.  This covers all the usual 'add' behaviors for
  41 // an algebraic ring.  Add-integer, add-float, add-double, and binary-or are
  42 // all inherited from this class.  The various identity values are supplied
  43 // by virtual functions.
  44 
  45 
  46 //=============================================================================
  47 //------------------------------hash-------------------------------------------
  48 // Hash function over AddNodes.  Needs to be commutative; i.e., I swap
  49 // (commute) inputs to AddNodes willy-nilly so the hash function must return
  50 // the same value in the presence of edge swapping.
  51 uint AddNode::hash() const {
  52   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
  53 }
  54 
  55 //------------------------------Identity---------------------------------------
  56 // If either input is a constant 0, return the other input.
  57 Node* AddNode::Identity(PhaseGVN* phase) {
  58   const Type *zero = add_id();  // The additive identity
  59   if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
  60   if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
  61   return this;
  62 }
  63 
  64 //------------------------------commute----------------------------------------
  65 // Commute operands to move loads and constants to the right.
  66 static bool commute(PhaseGVN* phase, Node* add) {
  67   Node *in1 = add->in(1);
  68   Node *in2 = add->in(2);
  69 
  70   // convert "max(a,b) + min(a,b)" into "a+b".
  71   if ((in1->Opcode() == add->as_Add()->max_opcode() && in2->Opcode() == add->as_Add()->min_opcode())
  72       || (in1->Opcode() == add->as_Add()->min_opcode() && in2->Opcode() == add->as_Add()->max_opcode())) {
  73     Node *in11 = in1->in(1);
  74     Node *in12 = in1->in(2);
  75 
  76     Node *in21 = in2->in(1);
  77     Node *in22 = in2->in(2);
  78 
  79     if ((in11 == in21 && in12 == in22) ||
  80         (in11 == in22 && in12 == in21)) {
  81       add->set_req_X(1, in11, phase);
  82       add->set_req_X(2, in12, phase);
  83       return true;
  84     }
  85   }
  86 
  87   bool con_left = phase->type(in1)->singleton();
  88   bool con_right = phase->type(in2)->singleton();
  89 
  90   // Convert "1+x" into "x+1".
  91   // Right is a constant; leave it
  92   if( con_right ) return false;
  93   // Left is a constant; move it right.
  94   if( con_left ) {
  95     add->swap_edges(1, 2);
  96     return true;
  97   }
  98 
  99   // Convert "Load+x" into "x+Load".
 100   // Now check for loads
 101   if (in2->is_Load()) {
 102     if (!in1->is_Load()) {
 103       // already x+Load to return
 104       return false;
 105     }
 106     // both are loads, so fall through to sort inputs by idx
 107   } else if( in1->is_Load() ) {
 108     // Left is a Load and Right is not; move it right.
 109     add->swap_edges(1, 2);
 110     return true;
 111   }
 112 
 113   PhiNode *phi;
 114   // Check for tight loop increments: Loop-phi of Add of loop-phi
 115   if (in1->is_Phi() && (phi = in1->as_Phi()) && phi->region()->is_Loop() && phi->in(2) == add)
 116     return false;
 117   if (in2->is_Phi() && (phi = in2->as_Phi()) && phi->region()->is_Loop() && phi->in(2) == add) {
 118     add->swap_edges(1, 2);
 119     return true;
 120   }
 121 
 122   // Otherwise, sort inputs (commutativity) to help value numbering.
 123   if( in1->_idx > in2->_idx ) {
 124     add->swap_edges(1, 2);
 125     return true;
 126   }
 127   return false;
 128 }
 129 
 130 //------------------------------Idealize---------------------------------------
 131 // If we get here, we assume we are associative!
 132 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 133   const Type *t1 = phase->type(in(1));
 134   const Type *t2 = phase->type(in(2));
 135   bool con_left  = t1->singleton();
 136   bool con_right = t2->singleton();
 137 
 138   // Check for commutative operation desired
 139   if (commute(phase, this)) return this;
 140 
 141   AddNode *progress = nullptr;             // Progress flag
 142 
 143   // Convert "(x+1)+2" into "x+(1+2)".  If the right input is a
 144   // constant, and the left input is an add of a constant, flatten the
 145   // expression tree.
 146   Node *add1 = in(1);
 147   Node *add2 = in(2);
 148   int add1_op = add1->Opcode();
 149   int this_op = Opcode();
 150   if (con_right && t2 != Type::TOP && // Right input is a constant?
 151       add1_op == this_op) { // Left input is an Add?
 152 
 153     // Type of left _in right input
 154     const Type *t12 = phase->type(add1->in(2));
 155     if (t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
 156       // Check for rare case of closed data cycle which can happen inside
 157       // unreachable loops. In these cases the computation is undefined.
 158 #ifdef ASSERT
 159       Node *add11    = add1->in(1);
 160       int   add11_op = add11->Opcode();
 161       if ((add1 == add1->in(1))
 162           || (add11_op == this_op && add11->in(1) == add1)) {
 163         assert(false, "dead loop in AddNode::Ideal");
 164       }
 165 #endif
 166       // The Add of the flattened expression
 167       Node *x1 = add1->in(1);
 168       Node *x2 = phase->makecon(add1->as_Add()->add_ring(t2, t12));
 169       set_req_X(2, x2, phase);
 170       set_req_X(1, x1, phase);
 171       progress = this;            // Made progress
 172       add1 = in(1);
 173       add1_op = add1->Opcode();
 174     }
 175   }
 176 
 177   // Convert "(x+1)+y" into "(x+y)+1".  Push constants down the expression tree.
 178   if (add1_op == this_op && !con_right) {
 179     Node *a12 = add1->in(2);
 180     const Type *t12 = phase->type( a12 );
 181     if (t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) &&
 182         !(add1->in(1)->is_Phi() && (add1->in(1)->as_Phi()->is_tripcount(T_INT) || add1->in(1)->as_Phi()->is_tripcount(T_LONG)))) {
 183       assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
 184       add2 = add1->clone();
 185       add2->set_req(2, in(2));
 186       add2 = phase->transform(add2);
 187       set_req_X(1, add2, phase);
 188       set_req_X(2, a12, phase);
 189       progress = this;
 190       add2 = a12;
 191     }
 192   }
 193 
 194   // Convert "x+(y+1)" into "(x+y)+1".  Push constants down the expression tree.
 195   int add2_op = add2->Opcode();
 196   if (add2_op == this_op && !con_left) {
 197     Node *a22 = add2->in(2);
 198     const Type *t22 = phase->type( a22 );
 199     if (t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) &&
 200         !(add2->in(1)->is_Phi() && (add2->in(1)->as_Phi()->is_tripcount(T_INT) || add2->in(1)->as_Phi()->is_tripcount(T_LONG)))) {
 201       assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
 202       Node *addx = add2->clone();
 203       addx->set_req(1, in(1));
 204       addx->set_req(2, add2->in(1));
 205       addx = phase->transform(addx);
 206       set_req_X(1, addx, phase);
 207       set_req_X(2, a22, phase);
 208       progress = this;
 209     }
 210   }
 211 
 212   return progress;
 213 }
 214 
 215 //------------------------------Value-----------------------------------------
 216 // An add node sums it's two _in.  If one input is an RSD, we must mixin
 217 // the other input's symbols.
 218 const Type* AddNode::Value(PhaseGVN* phase) const {
 219   // Either input is TOP ==> the result is TOP
 220   const Type* t1 = phase->type(in(1));
 221   const Type* t2 = phase->type(in(2));
 222   if (t1 == Type::TOP || t2 == Type::TOP) {
 223     return Type::TOP;
 224   }
 225 
 226   // Check for an addition involving the additive identity
 227   const Type* tadd = add_of_identity(t1, t2);
 228   if (tadd != nullptr) {
 229     return tadd;
 230   }
 231 
 232   return add_ring(t1, t2);               // Local flavor of type addition
 233 }
 234 
 235 //------------------------------add_identity-----------------------------------
 236 // Check for addition of the identity
 237 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
 238   const Type *zero = add_id();  // The additive identity
 239   if( t1->higher_equal( zero ) ) return t2;
 240   if( t2->higher_equal( zero ) ) return t1;
 241 
 242   return nullptr;
 243 }
 244 
 245 AddNode* AddNode::make(Node* in1, Node* in2, BasicType bt) {
 246   switch (bt) {
 247     case T_INT:
 248       return new AddINode(in1, in2);
 249     case T_LONG:
 250       return new AddLNode(in1, in2);
 251     default:
 252       fatal("Not implemented for %s", type2name(bt));
 253   }
 254   return nullptr;
 255 }
 256 
 257 bool AddNode::is_not(PhaseGVN* phase, Node* n, BasicType bt) {
 258   return n->Opcode() == Op_Xor(bt) && phase->type(n->in(2)) == TypeInteger::minus_1(bt);
 259 }
 260 
 261 AddNode* AddNode::make_not(PhaseGVN* phase, Node* n, BasicType bt) {
 262   switch (bt) {
 263     case T_INT:
 264       return new XorINode(n, phase->intcon(-1));
 265     case T_LONG:
 266       return new XorLNode(n, phase->longcon(-1L));
 267     default:
 268       fatal("Not implemented for %s", type2name(bt));
 269   }
 270   return nullptr;
 271 }
 272 
 273 //=============================================================================
 274 //------------------------------Idealize---------------------------------------
 275 Node* AddNode::IdealIL(PhaseGVN* phase, bool can_reshape, BasicType bt) {
 276   Node* in1 = in(1);
 277   Node* in2 = in(2);
 278   int op1 = in1->Opcode();
 279   int op2 = in2->Opcode();
 280   // Fold (con1-x)+con2 into (con1+con2)-x
 281   if (op1 == Op_Add(bt) && op2 == Op_Sub(bt)) {
 282     // Swap edges to try optimizations below
 283     in1 = in2;
 284     in2 = in(1);
 285     op1 = op2;
 286     op2 = in2->Opcode();
 287   }
 288   if (op1 == Op_Sub(bt)) {
 289     const Type* t_sub1 = phase->type(in1->in(1));
 290     const Type* t_2    = phase->type(in2       );
 291     if (t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP) {
 292       return SubNode::make(phase->makecon(add_ring(t_sub1, t_2)), in1->in(2), bt);
 293     }
 294     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
 295     if (op2 == Op_Sub(bt)) {
 296       // Check for dead cycle: d = (a-b)+(c-d)
 297       assert( in1->in(2) != this && in2->in(2) != this,
 298               "dead loop in AddINode::Ideal" );
 299       Node* sub = SubNode::make(nullptr, nullptr, bt);
 300       Node* sub_in1;
 301       PhaseIterGVN* igvn = phase->is_IterGVN();
 302       // During IGVN, if both inputs of the new AddNode are a tree of SubNodes, this same transformation will be applied
 303       // to every node of the tree. Calling transform() causes the transformation to be applied recursively, once per
 304       // tree node whether some subtrees are identical or not. Pushing to the IGVN worklist instead, causes the transform
 305       // to be applied once per unique subtrees (because all uses of a subtree are updated with the result of the
 306       // transformation). In case of a large tree, this can make a difference in compilation time.
 307       if (igvn != nullptr) {
 308         sub_in1 = igvn->register_new_node_with_optimizer(AddNode::make(in1->in(1), in2->in(1), bt));
 309       } else {
 310         sub_in1 = phase->transform(AddNode::make(in1->in(1), in2->in(1), bt));
 311       }
 312       Node* sub_in2;
 313       if (igvn != nullptr) {
 314         sub_in2 = igvn->register_new_node_with_optimizer(AddNode::make(in1->in(2), in2->in(2), bt));
 315       } else {
 316         sub_in2 = phase->transform(AddNode::make(in1->in(2), in2->in(2), bt));
 317       }
 318       sub->init_req(1, sub_in1);
 319       sub->init_req(2, sub_in2);
 320       return sub;
 321     }
 322     // Convert "(a-b)+(b+c)" into "(a+c)"
 323     if (op2 == Op_Add(bt) && in1->in(2) == in2->in(1)) {
 324       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal/AddLNode::Ideal");
 325       return AddNode::make(in1->in(1), in2->in(2), bt);
 326     }
 327     // Convert "(a-b)+(c+b)" into "(a+c)"
 328     if (op2 == Op_Add(bt) && in1->in(2) == in2->in(2)) {
 329       assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal/AddLNode::Ideal");
 330       return AddNode::make(in1->in(1), in2->in(1), bt);
 331     }
 332   }
 333 
 334   // Convert (con - y) + x into "(x - y) + con"
 335   if (op1 == Op_Sub(bt) && in1->in(1)->Opcode() == Op_ConIL(bt)
 336       && in1 != in1->in(2) && !(in1->in(2)->is_Phi() && in1->in(2)->as_Phi()->is_tripcount(bt))) {
 337     return AddNode::make(phase->transform(SubNode::make(in2, in1->in(2), bt)), in1->in(1), bt);
 338   }
 339 
 340   // Convert x + (con - y) into "(x - y) + con"
 341   if (op2 == Op_Sub(bt) && in2->in(1)->Opcode() == Op_ConIL(bt)
 342       && in2 != in2->in(2) && !(in2->in(2)->is_Phi() && in2->in(2)->as_Phi()->is_tripcount(bt))) {
 343     return AddNode::make(phase->transform(SubNode::make(in1, in2->in(2), bt)), in2->in(1), bt);
 344   }
 345 
 346   // Associative
 347   if (op1 == Op_Mul(bt) && op2 == Op_Mul(bt)) {
 348     Node* add_in1 = nullptr;
 349     Node* add_in2 = nullptr;
 350     Node* mul_in = nullptr;
 351 
 352     if (in1->in(1) == in2->in(1)) {
 353       // Convert "a*b+a*c into a*(b+c)
 354       add_in1 = in1->in(2);
 355       add_in2 = in2->in(2);
 356       mul_in = in1->in(1);
 357     } else if (in1->in(2) == in2->in(1)) {
 358       // Convert a*b+b*c into b*(a+c)
 359       add_in1 = in1->in(1);
 360       add_in2 = in2->in(2);
 361       mul_in = in1->in(2);
 362     } else if (in1->in(2) == in2->in(2)) {
 363       // Convert a*c+b*c into (a+b)*c
 364       add_in1 = in1->in(1);
 365       add_in2 = in2->in(1);
 366       mul_in = in1->in(2);
 367     } else if (in1->in(1) == in2->in(2)) {
 368       // Convert a*b+c*a into a*(b+c)
 369       add_in1 = in1->in(2);
 370       add_in2 = in2->in(1);
 371       mul_in = in1->in(1);
 372     }
 373 
 374     if (mul_in != nullptr) {
 375       Node* add = phase->transform(AddNode::make(add_in1, add_in2, bt));
 376       return MulNode::make(mul_in, add, bt);
 377     }
 378   }
 379 
 380   // Convert (x >>> rshift) + (x << lshift) into RotateRight(x, rshift)
 381   if (Matcher::match_rule_supported(Op_RotateRight) &&
 382       ((op1 == Op_URShift(bt) && op2 == Op_LShift(bt)) || (op1 == Op_LShift(bt) && op2 == Op_URShift(bt))) &&
 383       in1->in(1) != nullptr && in1->in(1) == in2->in(1)) {
 384     Node* rshift = op1 == Op_URShift(bt) ? in1->in(2) : in2->in(2);
 385     Node* lshift = op1 == Op_URShift(bt) ? in2->in(2) : in1->in(2);
 386     if (rshift != nullptr && lshift != nullptr) {
 387       const TypeInt* rshift_t = phase->type(rshift)->isa_int();
 388       const TypeInt* lshift_t = phase->type(lshift)->isa_int();
 389       int bits = bt == T_INT ? 32 : 64;
 390       int mask = bt == T_INT ? 0x1F : 0x3F;
 391       if (lshift_t != nullptr && lshift_t->is_con() &&
 392           rshift_t != nullptr && rshift_t->is_con() &&
 393           ((lshift_t->get_con() & mask) == (bits - (rshift_t->get_con() & mask)))) {
 394         return new RotateRightNode(in1->in(1), phase->intcon(rshift_t->get_con() & mask), TypeInteger::bottom(bt));
 395       }
 396     }
 397   }
 398 
 399   return AddNode::Ideal(phase, can_reshape);
 400 }
 401 
 402 
 403 Node* AddINode::Ideal(PhaseGVN* phase, bool can_reshape) {
 404   Node* in1 = in(1);
 405   Node* in2 = in(2);
 406   int op1 = in1->Opcode();
 407   int op2 = in2->Opcode();
 408 
 409   // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
 410   // Helps with array allocation math constant folding
 411   // See 4790063:
 412   // Unrestricted transformation is unsafe for some runtime values of 'x'
 413   // ( x ==  0, z == 1, y == -1 ) fails
 414   // ( x == -5, z == 1, y ==  1 ) fails
 415   // Transform works for small z and small negative y when the addition
 416   // (x + (y << z)) does not cross zero.
 417   // Implement support for negative y and (x >= -(y << z))
 418   // Have not observed cases where type information exists to support
 419   // positive y and (x <= -(y << z))
 420   if (op1 == Op_URShiftI && op2 == Op_ConI &&
 421       in1->in(2)->Opcode() == Op_ConI) {
 422     jint z = phase->type(in1->in(2))->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
 423     jint y = phase->type(in2)->is_int()->get_con();
 424 
 425     if (z < 5 && -5 < y && y < 0) {
 426       const Type* t_in11 = phase->type(in1->in(1));
 427       if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z))) {
 428         Node* a = phase->transform(new AddINode( in1->in(1), phase->intcon(y<<z)));
 429         return new URShiftINode(a, in1->in(2));
 430       }
 431     }
 432   }
 433 
 434   return AddNode::IdealIL(phase, can_reshape, T_INT);
 435 }
 436 
 437 
 438 //------------------------------Identity---------------------------------------
 439 // Fold (x-y)+y  OR  y+(x-y)  into  x
 440 Node* AddINode::Identity(PhaseGVN* phase) {
 441   if (in(1)->Opcode() == Op_SubI && in(1)->in(2) == in(2)) {
 442     return in(1)->in(1);
 443   } else if (in(2)->Opcode() == Op_SubI && in(2)->in(2) == in(1)) {
 444     return in(2)->in(1);
 445   }
 446   return AddNode::Identity(phase);
 447 }
 448 
 449 
 450 //------------------------------add_ring---------------------------------------
 451 // Supplied function returns the sum of the inputs.  Guaranteed never
 452 // to be passed a TOP or BOTTOM type, these are filtered out by
 453 // pre-check.
 454 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
 455   const TypeInt *r0 = t0->is_int(); // Handy access
 456   const TypeInt *r1 = t1->is_int();
 457   int lo = java_add(r0->_lo, r1->_lo);
 458   int hi = java_add(r0->_hi, r1->_hi);
 459   if( !(r0->is_con() && r1->is_con()) ) {
 460     // Not both constants, compute approximate result
 461     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
 462       lo = min_jint; hi = max_jint; // Underflow on the low side
 463     }
 464     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
 465       lo = min_jint; hi = max_jint; // Overflow on the high side
 466     }
 467     if( lo > hi ) {               // Handle overflow
 468       lo = min_jint; hi = max_jint;
 469     }
 470   } else {
 471     // both constants, compute precise result using 'lo' and 'hi'
 472     // Semantics define overflow and underflow for integer addition
 473     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
 474   }
 475   return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
 476 }
 477 
 478 
 479 //=============================================================================
 480 //------------------------------Idealize---------------------------------------
 481 Node* AddLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 482   return AddNode::IdealIL(phase, can_reshape, T_LONG);
 483 }
 484 
 485 
 486 //------------------------------Identity---------------------------------------
 487 // Fold (x-y)+y  OR  y+(x-y)  into  x
 488 Node* AddLNode::Identity(PhaseGVN* phase) {
 489   if (in(1)->Opcode() == Op_SubL && in(1)->in(2) == in(2)) {
 490     return in(1)->in(1);
 491   } else if (in(2)->Opcode() == Op_SubL && in(2)->in(2) == in(1)) {
 492     return in(2)->in(1);
 493   }
 494   return AddNode::Identity(phase);
 495 }
 496 
 497 
 498 //------------------------------add_ring---------------------------------------
 499 // Supplied function returns the sum of the inputs.  Guaranteed never
 500 // to be passed a TOP or BOTTOM type, these are filtered out by
 501 // pre-check.
 502 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
 503   const TypeLong *r0 = t0->is_long(); // Handy access
 504   const TypeLong *r1 = t1->is_long();
 505   jlong lo = java_add(r0->_lo, r1->_lo);
 506   jlong hi = java_add(r0->_hi, r1->_hi);
 507   if( !(r0->is_con() && r1->is_con()) ) {
 508     // Not both constants, compute approximate result
 509     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
 510       lo =min_jlong; hi = max_jlong; // Underflow on the low side
 511     }
 512     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
 513       lo = min_jlong; hi = max_jlong; // Overflow on the high side
 514     }
 515     if( lo > hi ) {               // Handle overflow
 516       lo = min_jlong; hi = max_jlong;
 517     }
 518   } else {
 519     // both constants, compute precise result using 'lo' and 'hi'
 520     // Semantics define overflow and underflow for integer addition
 521     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
 522   }
 523   return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
 524 }
 525 
 526 
 527 //=============================================================================
 528 //------------------------------add_of_identity--------------------------------
 529 // Check for addition of the identity
 530 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
 531   // x ADD 0  should return x unless 'x' is a -zero
 532   //
 533   // const Type *zero = add_id();     // The additive identity
 534   // jfloat f1 = t1->getf();
 535   // jfloat f2 = t2->getf();
 536   //
 537   // if( t1->higher_equal( zero ) ) return t2;
 538   // if( t2->higher_equal( zero ) ) return t1;
 539 
 540   return nullptr;
 541 }
 542 
 543 //------------------------------add_ring---------------------------------------
 544 // Supplied function returns the sum of the inputs.
 545 // This also type-checks the inputs for sanity.  Guaranteed never to
 546 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 547 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
 548   if (!t0->isa_float_constant() || !t1->isa_float_constant()) {
 549     return bottom_type();
 550   }
 551   return TypeF::make( t0->getf() + t1->getf() );
 552 }
 553 
 554 //------------------------------Ideal------------------------------------------
 555 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 556   // Floating point additions are not associative because of boundary conditions (infinity)
 557   return commute(phase, this) ? this : nullptr;
 558 }
 559 
 560 //=============================================================================
 561 //------------------------------add_of_identity--------------------------------
 562 // Check for addition of the identity
 563 const Type* AddHFNode::add_of_identity(const Type* t1, const Type* t2) const {
 564   return nullptr;
 565 }
 566 
 567 // Supplied function returns the sum of the inputs.
 568 // This also type-checks the inputs for sanity.  Guaranteed never to
 569 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 570 const Type* AddHFNode::add_ring(const Type* t0, const Type* t1) const {
 571   if (!t0->isa_half_float_constant() || !t1->isa_half_float_constant()) {
 572     return bottom_type();
 573   }
 574   return TypeH::make(t0->getf() + t1->getf());
 575 }
 576 
 577 //=============================================================================
 578 //------------------------------add_of_identity--------------------------------
 579 // Check for addition of the identity
 580 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
 581   // x ADD 0  should return x unless 'x' is a -zero
 582   //
 583   // const Type *zero = add_id();     // The additive identity
 584   // jfloat f1 = t1->getf();
 585   // jfloat f2 = t2->getf();
 586   //
 587   // if( t1->higher_equal( zero ) ) return t2;
 588   // if( t2->higher_equal( zero ) ) return t1;
 589 
 590   return nullptr;
 591 }
 592 //------------------------------add_ring---------------------------------------
 593 // Supplied function returns the sum of the inputs.
 594 // This also type-checks the inputs for sanity.  Guaranteed never to
 595 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 596 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
 597   if (!t0->isa_double_constant() || !t1->isa_double_constant()) {
 598     return bottom_type();
 599   }
 600   return TypeD::make( t0->getd() + t1->getd() );
 601 }
 602 
 603 //------------------------------Ideal------------------------------------------
 604 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 605   // Floating point additions are not associative because of boundary conditions (infinity)
 606   return commute(phase, this) ? this : nullptr;
 607 }
 608 
 609 
 610 //=============================================================================
 611 //------------------------------Identity---------------------------------------
 612 // If one input is a constant 0, return the other input.
 613 Node* AddPNode::Identity(PhaseGVN* phase) {
 614   return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
 615 }
 616 
 617 //------------------------------Idealize---------------------------------------
 618 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 619   // Bail out if dead inputs
 620   if( phase->type( in(Address) ) == Type::TOP ) return nullptr;
 621 
 622   // If the left input is an add of a constant, flatten the expression tree.
 623   const Node *n = in(Address);
 624   if (n->is_AddP() && n->in(Base) == in(Base)) {
 625     const AddPNode *addp = n->as_AddP(); // Left input is an AddP
 626     assert( !addp->in(Address)->is_AddP() ||
 627              addp->in(Address)->as_AddP() != addp,
 628             "dead loop in AddPNode::Ideal" );
 629     // Type of left input's right input
 630     const Type *t = phase->type( addp->in(Offset) );
 631     if( t == Type::TOP ) return nullptr;
 632     const TypeX *t12 = t->is_intptr_t();
 633     if( t12->is_con() ) {       // Left input is an add of a constant?
 634       // If the right input is a constant, combine constants
 635       const Type *temp_t2 = phase->type( in(Offset) );
 636       if( temp_t2 == Type::TOP ) return nullptr;
 637       const TypeX *t2 = temp_t2->is_intptr_t();
 638       Node* address;
 639       Node* offset;
 640       if( t2->is_con() ) {
 641         // The Add of the flattened expression
 642         address = addp->in(Address);
 643         offset  = phase->MakeConX(t2->get_con() + t12->get_con());
 644       } else {
 645         // Else move the constant to the right.  ((A+con)+B) into ((A+B)+con)
 646         address = phase->transform(new AddPNode(in(Base),addp->in(Address),in(Offset)));
 647         offset  = addp->in(Offset);
 648       }
 649       set_req_X(Address, address, phase);
 650       set_req_X(Offset, offset, phase);
 651       return this;
 652     }
 653   }
 654 
 655   // Raw pointers?
 656   if( in(Base)->bottom_type() == Type::TOP ) {
 657     // If this is a null+long form (from unsafe accesses), switch to a rawptr.
 658     if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
 659       Node* offset = in(Offset);
 660       return new CastX2PNode(offset);
 661     }
 662   }
 663 
 664   // If the right is an add of a constant, push the offset down.
 665   // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
 666   // The idea is to merge array_base+scaled_index groups together,
 667   // and only have different constant offsets from the same base.
 668   const Node *add = in(Offset);
 669   if( add->Opcode() == Op_AddX && add->in(1) != add ) {
 670     const Type *t22 = phase->type( add->in(2) );
 671     if( t22->singleton() && (t22 != Type::TOP) ) {  // Right input is an add of a constant?
 672       set_req(Address, phase->transform(new AddPNode(in(Base),in(Address),add->in(1))));
 673       set_req_X(Offset, add->in(2), phase); // puts add on igvn worklist if needed
 674       return this;              // Made progress
 675     }
 676   }
 677 
 678   return nullptr;                  // No progress
 679 }
 680 
 681 //------------------------------bottom_type------------------------------------
 682 // Bottom-type is the pointer-type with unknown offset.
 683 const Type *AddPNode::bottom_type() const {
 684   if (in(Address) == nullptr)  return TypePtr::BOTTOM;
 685   const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
 686   if( !tp ) return Type::TOP;   // TOP input means TOP output
 687   assert( in(Offset)->Opcode() != Op_ConP, "" );
 688   const Type *t = in(Offset)->bottom_type();
 689   if( t == Type::TOP )
 690     return tp->add_offset(Type::OffsetTop);
 691   const TypeX *tx = t->is_intptr_t();
 692   intptr_t txoffset = Type::OffsetBot;
 693   if (tx->is_con()) {   // Left input is an add of a constant?
 694     txoffset = tx->get_con();
 695   }
 696   if (tp->isa_aryptr()) {
 697     // In the case of a flat inline type array, each field has its
 698     // own slice so we need to extract the field being accessed from
 699     // the address computation
 700     return tp->is_aryptr()->add_field_offset_and_offset(txoffset);
 701   }
 702   return tp->add_offset(txoffset);
 703 }
 704 
 705 //------------------------------Value------------------------------------------
 706 const Type* AddPNode::Value(PhaseGVN* phase) const {
 707   // Either input is TOP ==> the result is TOP
 708   const Type *t1 = phase->type( in(Address) );
 709   const Type *t2 = phase->type( in(Offset) );
 710   if( t1 == Type::TOP ) return Type::TOP;
 711   if( t2 == Type::TOP ) return Type::TOP;
 712 
 713   // Left input is a pointer
 714   const TypePtr *p1 = t1->isa_ptr();
 715   // Right input is an int
 716   const TypeX *p2 = t2->is_intptr_t();
 717   // Add 'em
 718   intptr_t p2offset = Type::OffsetBot;
 719   if (p2->is_con()) {   // Left input is an add of a constant?
 720     p2offset = p2->get_con();
 721   }
 722   if (p1->isa_aryptr()) {
 723     // In the case of a flat inline type array, each field has its
 724     // own slice so we need to extract the field being accessed from
 725     // the address computation
 726     return p1->is_aryptr()->add_field_offset_and_offset(p2offset);
 727   }
 728   return p1->add_offset(p2offset);
 729 }
 730 
 731 //------------------------Ideal_base_and_offset--------------------------------
 732 // Split an oop pointer into a base and offset.
 733 // (The offset might be Type::OffsetBot in the case of an array.)
 734 // Return the base, or null if failure.
 735 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseValues* phase,
 736                                       // second return value:
 737                                       intptr_t& offset) {
 738   if (ptr->is_AddP()) {
 739     Node* base = ptr->in(AddPNode::Base);
 740     Node* addr = ptr->in(AddPNode::Address);
 741     Node* offs = ptr->in(AddPNode::Offset);
 742     if (base == addr || base->is_top()) {
 743       offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
 744       if (offset != Type::OffsetBot) {
 745         return addr;
 746       }
 747     }
 748   }
 749   offset = Type::OffsetBot;
 750   return nullptr;
 751 }
 752 
 753 //------------------------------unpack_offsets----------------------------------
 754 // Collect the AddP offset values into the elements array, giving up
 755 // if there are more than length.
 756 int AddPNode::unpack_offsets(Node* elements[], int length) const {
 757   int count = 0;
 758   Node const* addr = this;
 759   Node* base = addr->in(AddPNode::Base);
 760   while (addr->is_AddP()) {
 761     if (addr->in(AddPNode::Base) != base) {
 762       // give up
 763       return -1;
 764     }
 765     elements[count++] = addr->in(AddPNode::Offset);
 766     if (count == length) {
 767       // give up
 768       return -1;
 769     }
 770     addr = addr->in(AddPNode::Address);
 771   }
 772   if (addr != base) {
 773     return -1;
 774   }
 775   return count;
 776 }
 777 
 778 //------------------------------match_edge-------------------------------------
 779 // Do we Match on this edge index or not?  Do not match base pointer edge
 780 uint AddPNode::match_edge(uint idx) const {
 781   return idx > Base;
 782 }
 783 
 784 //=============================================================================
 785 //------------------------------Identity---------------------------------------
 786 Node* OrINode::Identity(PhaseGVN* phase) {
 787   // x | x => x
 788   if (in(1) == in(2)) {
 789     return in(1);
 790   }
 791 
 792   return AddNode::Identity(phase);
 793 }
 794 
 795 // Find shift value for Integer or Long OR.
 796 static Node* rotate_shift(PhaseGVN* phase, Node* lshift, Node* rshift, int mask) {
 797   // val << norm_con_shift | val >> ({32|64} - norm_con_shift) => rotate_left val, norm_con_shift
 798   const TypeInt* lshift_t = phase->type(lshift)->isa_int();
 799   const TypeInt* rshift_t = phase->type(rshift)->isa_int();
 800   if (lshift_t != nullptr && lshift_t->is_con() &&
 801       rshift_t != nullptr && rshift_t->is_con() &&
 802       ((lshift_t->get_con() & mask) == ((mask + 1) - (rshift_t->get_con() & mask)))) {
 803     return phase->intcon(lshift_t->get_con() & mask);
 804   }
 805   // val << var_shift | val >> ({0|32|64} - var_shift) => rotate_left val, var_shift
 806   if (rshift->Opcode() == Op_SubI && rshift->in(2) == lshift && rshift->in(1)->is_Con()){
 807     const TypeInt* shift_t = phase->type(rshift->in(1))->isa_int();
 808     if (shift_t != nullptr && shift_t->is_con() &&
 809         (shift_t->get_con() == 0 || shift_t->get_con() == (mask + 1))) {
 810       return lshift;
 811     }
 812   }
 813   return nullptr;
 814 }
 815 
 816 Node* OrINode::Ideal(PhaseGVN* phase, bool can_reshape) {
 817   int lopcode = in(1)->Opcode();
 818   int ropcode = in(2)->Opcode();
 819   if (Matcher::match_rule_supported(Op_RotateLeft) &&
 820       lopcode == Op_LShiftI && ropcode == Op_URShiftI && in(1)->in(1) == in(2)->in(1)) {
 821     Node* lshift = in(1)->in(2);
 822     Node* rshift = in(2)->in(2);
 823     Node* shift = rotate_shift(phase, lshift, rshift, 0x1F);
 824     if (shift != nullptr) {
 825       return new RotateLeftNode(in(1)->in(1), shift, TypeInt::INT);
 826     }
 827     return nullptr;
 828   }
 829   if (Matcher::match_rule_supported(Op_RotateRight) &&
 830       lopcode == Op_URShiftI && ropcode == Op_LShiftI && in(1)->in(1) == in(2)->in(1)) {
 831     Node* rshift = in(1)->in(2);
 832     Node* lshift = in(2)->in(2);
 833     Node* shift = rotate_shift(phase, rshift, lshift, 0x1F);
 834     if (shift != nullptr) {
 835       return new RotateRightNode(in(1)->in(1), shift, TypeInt::INT);
 836     }
 837   }
 838 
 839   // Convert "~a | ~b" into "~(a & b)"
 840   if (AddNode::is_not(phase, in(1), T_INT) && AddNode::is_not(phase, in(2), T_INT)) {
 841     Node* and_a_b = new AndINode(in(1)->in(1), in(2)->in(1));
 842     Node* tn = phase->transform(and_a_b);
 843     return AddNode::make_not(phase, tn, T_INT);
 844   }
 845   return AddNode::Ideal(phase, can_reshape);
 846 }
 847 
 848 //------------------------------add_ring---------------------------------------
 849 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
 850 // the logical operations the ring's ADD is really a logical OR function.
 851 // This also type-checks the inputs for sanity.  Guaranteed never to
 852 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 853 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
 854   const TypeInt *r0 = t0->is_int(); // Handy access
 855   const TypeInt *r1 = t1->is_int();
 856 
 857   // If both args are bool, can figure out better types
 858   if ( r0 == TypeInt::BOOL ) {
 859     if ( r1 == TypeInt::ONE) {
 860       return TypeInt::ONE;
 861     } else if ( r1 == TypeInt::BOOL ) {
 862       return TypeInt::BOOL;
 863     }
 864   } else if ( r0 == TypeInt::ONE ) {
 865     if ( r1 == TypeInt::BOOL ) {
 866       return TypeInt::ONE;
 867     }
 868   }
 869 
 870   // If either input is all ones, the output is all ones.
 871   // x | ~0 == ~0 <==> x | -1 == -1
 872   if (r0 == TypeInt::MINUS_1 || r1 == TypeInt::MINUS_1) {
 873     return TypeInt::MINUS_1;
 874   }
 875 
 876   // If either input is not a constant, just return all integers.
 877   if( !r0->is_con() || !r1->is_con() )
 878     return TypeInt::INT;        // Any integer, but still no symbols.
 879 
 880   // Otherwise just OR them bits.
 881   return TypeInt::make( r0->get_con() | r1->get_con() );
 882 }
 883 
 884 //=============================================================================
 885 //------------------------------Identity---------------------------------------
 886 Node* OrLNode::Identity(PhaseGVN* phase) {
 887   // x | x => x
 888   if (in(1) == in(2)) {
 889     return in(1);
 890   }
 891 
 892   return AddNode::Identity(phase);
 893 }
 894 
 895 Node* OrLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 896   int lopcode = in(1)->Opcode();
 897   int ropcode = in(2)->Opcode();
 898   if (Matcher::match_rule_supported(Op_RotateLeft) &&
 899       lopcode == Op_LShiftL && ropcode == Op_URShiftL && in(1)->in(1) == in(2)->in(1)) {
 900     Node* lshift = in(1)->in(2);
 901     Node* rshift = in(2)->in(2);
 902     Node* shift = rotate_shift(phase, lshift, rshift, 0x3F);
 903     if (shift != nullptr) {
 904       return new RotateLeftNode(in(1)->in(1), shift, TypeLong::LONG);
 905     }
 906     return nullptr;
 907   }
 908   if (Matcher::match_rule_supported(Op_RotateRight) &&
 909       lopcode == Op_URShiftL && ropcode == Op_LShiftL && in(1)->in(1) == in(2)->in(1)) {
 910     Node* rshift = in(1)->in(2);
 911     Node* lshift = in(2)->in(2);
 912     Node* shift = rotate_shift(phase, rshift, lshift, 0x3F);
 913     if (shift != nullptr) {
 914       return new RotateRightNode(in(1)->in(1), shift, TypeLong::LONG);
 915     }
 916   }
 917 
 918   // Convert "~a | ~b" into "~(a & b)"
 919   if (AddNode::is_not(phase, in(1), T_LONG) && AddNode::is_not(phase, in(2), T_LONG)) {
 920     Node* and_a_b = new AndLNode(in(1)->in(1), in(2)->in(1));
 921     Node* tn = phase->transform(and_a_b);
 922     return AddNode::make_not(phase, tn, T_LONG);
 923   }
 924 
 925   return AddNode::Ideal(phase, can_reshape);
 926 }
 927 
 928 //------------------------------add_ring---------------------------------------
 929 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
 930   const TypeLong *r0 = t0->is_long(); // Handy access
 931   const TypeLong *r1 = t1->is_long();
 932 
 933   // If either input is all ones, the output is all ones.
 934   // x | ~0 == ~0 <==> x | -1 == -1
 935   if (r0 == TypeLong::MINUS_1 || r1 == TypeLong::MINUS_1) {
 936     return TypeLong::MINUS_1;
 937   }
 938 
 939   // If either input is not a constant, just return all integers.
 940   if( !r0->is_con() || !r1->is_con() )
 941     return TypeLong::LONG;      // Any integer, but still no symbols.
 942 
 943   // Otherwise just OR them bits.
 944   return TypeLong::make( r0->get_con() | r1->get_con() );
 945 }
 946 
 947 //---------------------------Helper -------------------------------------------
 948 /* Decide if the given node is used only in arithmetic expressions(add or sub).
 949  */
 950 static bool is_used_in_only_arithmetic(Node* n, BasicType bt) {
 951   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 952     Node* u = n->fast_out(i);
 953     if (u->Opcode() != Op_Add(bt) && u->Opcode() != Op_Sub(bt)) {
 954       return false;
 955     }
 956   }
 957   return true;
 958 }
 959 
 960 //=============================================================================
 961 //------------------------------Idealize---------------------------------------
 962 Node* XorINode::Ideal(PhaseGVN* phase, bool can_reshape) {
 963   Node* in1 = in(1);
 964   Node* in2 = in(2);
 965 
 966   // Convert ~x into -1-x when ~x is used in an arithmetic expression
 967   // or x itself is an expression.
 968   if (phase->type(in2) == TypeInt::MINUS_1) { // follows LHS^(-1), i.e., ~LHS
 969     if (phase->is_IterGVN()) {
 970       if (is_used_in_only_arithmetic(this, T_INT)
 971           // LHS is arithmetic
 972           || (in1->Opcode() == Op_AddI || in1->Opcode() == Op_SubI)) {
 973         return new SubINode(in2, in1);
 974       }
 975     } else {
 976       // graph could be incomplete in GVN so we postpone to IGVN
 977       phase->record_for_igvn(this);
 978     }
 979   }
 980 
 981   // Propagate xor through constant cmoves. This pattern can occur after expansion of Conv2B nodes.
 982   const TypeInt* in2_type = phase->type(in2)->isa_int();
 983   if (in1->Opcode() == Op_CMoveI && in2_type != nullptr && in2_type->is_con()) {
 984     int in2_val = in2_type->get_con();
 985 
 986     // Get types of both sides of the CMove
 987     const TypeInt* left = phase->type(in1->in(CMoveNode::IfFalse))->isa_int();
 988     const TypeInt* right = phase->type(in1->in(CMoveNode::IfTrue))->isa_int();
 989 
 990     // Ensure that both sides are int constants
 991     if (left != nullptr && right != nullptr && left->is_con() && right->is_con()) {
 992       Node* cond = in1->in(CMoveNode::Condition);
 993 
 994       // Check that the comparison is a bool and that the cmp node type is correct
 995       if (cond->is_Bool()) {
 996         int cmp_op = cond->in(1)->Opcode();
 997 
 998         if (cmp_op == Op_CmpI || cmp_op == Op_CmpP) {
 999           int l_val = left->get_con();
1000           int r_val = right->get_con();
1001 
1002           return new CMoveINode(cond, phase->intcon(l_val ^ in2_val), phase->intcon(r_val ^ in2_val), TypeInt::INT);
1003         }
1004       }
1005     }
1006   }
1007 
1008   return AddNode::Ideal(phase, can_reshape);
1009 }
1010 
1011 const Type* XorINode::Value(PhaseGVN* phase) const {
1012   Node* in1 = in(1);
1013   Node* in2 = in(2);
1014   const Type* t1 = phase->type(in1);
1015   const Type* t2 = phase->type(in2);
1016   if (t1 == Type::TOP || t2 == Type::TOP) {
1017     return Type::TOP;
1018   }
1019   // x ^ x ==> 0
1020   if (in1->eqv_uncast(in2)) {
1021     return add_id();
1022   }
1023   return AddNode::Value(phase);
1024 }
1025 
1026 //------------------------------add_ring---------------------------------------
1027 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
1028 // the logical operations the ring's ADD is really a logical OR function.
1029 // This also type-checks the inputs for sanity.  Guaranteed never to
1030 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
1031 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
1032   const TypeInt *r0 = t0->is_int(); // Handy access
1033   const TypeInt *r1 = t1->is_int();
1034 
1035   if (r0->is_con() && r1->is_con()) {
1036     // compute constant result
1037     return TypeInt::make(r0->get_con() ^ r1->get_con());
1038   }
1039 
1040   // At least one of the arguments is not constant
1041 
1042   if (r0->_lo >= 0 && r1->_lo >= 0) {
1043       // Combine [r0->_lo, r0->_hi] ^ [r0->_lo, r1->_hi] -> [0, upper_bound]
1044       jint upper_bound = xor_upper_bound_for_ranges<jint, juint>(r0->_hi, r1->_hi);
1045       return TypeInt::make(0, upper_bound, MAX2(r0->_widen, r1->_widen));
1046   }
1047 
1048   return TypeInt::INT;
1049 }
1050 
1051 //=============================================================================
1052 //------------------------------add_ring---------------------------------------
1053 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
1054   const TypeLong *r0 = t0->is_long(); // Handy access
1055   const TypeLong *r1 = t1->is_long();
1056 
1057   if (r0->is_con() && r1->is_con()) {
1058     // compute constant result
1059     return TypeLong::make(r0->get_con() ^ r1->get_con());
1060   }
1061 
1062   // At least one of the arguments is not constant
1063 
1064   if (r0->_lo >= 0 && r1->_lo >= 0) {
1065       // Combine [r0->_lo, r0->_hi] ^ [r0->_lo, r1->_hi] -> [0, upper_bound]
1066       julong upper_bound = xor_upper_bound_for_ranges<jlong, julong>(r0->_hi, r1->_hi);
1067       return TypeLong::make(0, upper_bound, MAX2(r0->_widen, r1->_widen));
1068   }
1069 
1070   return TypeLong::LONG;
1071 }
1072 
1073 Node* XorLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1074   Node* in1 = in(1);
1075   Node* in2 = in(2);
1076 
1077   // Convert ~x into -1-x when ~x is used in an arithmetic expression
1078   // or x itself is an arithmetic expression.
1079   if (phase->type(in2) == TypeLong::MINUS_1) { // follows LHS^(-1), i.e., ~LHS
1080     if (phase->is_IterGVN()) {
1081       if (is_used_in_only_arithmetic(this, T_LONG)
1082           // LHS is arithmetic
1083           || (in1->Opcode() == Op_AddL || in1->Opcode() == Op_SubL)) {
1084         return new SubLNode(in2, in1);
1085       }
1086     } else {
1087       // graph could be incomplete in GVN so we postpone to IGVN
1088       phase->record_for_igvn(this);
1089     }
1090   }
1091   return AddNode::Ideal(phase, can_reshape);
1092 }
1093 
1094 const Type* XorLNode::Value(PhaseGVN* phase) const {
1095   Node* in1 = in(1);
1096   Node* in2 = in(2);
1097   const Type* t1 = phase->type(in1);
1098   const Type* t2 = phase->type(in2);
1099   if (t1 == Type::TOP || t2 == Type::TOP) {
1100     return Type::TOP;
1101   }
1102   // x ^ x ==> 0
1103   if (in1->eqv_uncast(in2)) {
1104     return add_id();
1105   }
1106 
1107   return AddNode::Value(phase);
1108 }
1109 
1110 Node* MaxNode::build_min_max_int(Node* a, Node* b, bool is_max) {
1111   if (is_max) {
1112     return new MaxINode(a, b);
1113   } else {
1114     return new MinINode(a, b);
1115   }
1116 }
1117 
1118 Node* MaxNode::build_min_max_long(PhaseGVN* phase, Node* a, Node* b, bool is_max) {
1119   if (is_max) {
1120     return new MaxLNode(phase->C, a, b);
1121   } else {
1122     return new MinLNode(phase->C, a, b);
1123   }
1124 }
1125 
1126 Node* MaxNode::build_min_max(Node* a, Node* b, bool is_max, bool is_unsigned, const Type* t, PhaseGVN& gvn) {
1127   bool is_int = gvn.type(a)->isa_int();
1128   assert(is_int || gvn.type(a)->isa_long(), "int or long inputs");
1129   assert(is_int == (gvn.type(b)->isa_int() != nullptr), "inconsistent inputs");
1130   BasicType bt = is_int ? T_INT: T_LONG;
1131   Node* hook = nullptr;
1132   if (gvn.is_IterGVN()) {
1133     // Make sure a and b are not destroyed
1134     hook = new Node(2);
1135     hook->init_req(0, a);
1136     hook->init_req(1, b);
1137   }
1138   Node* res = nullptr;
1139   if (is_int && !is_unsigned) {
1140     res = gvn.transform(build_min_max_int(a, b, is_max));
1141     assert(gvn.type(res)->is_int()->_lo >= t->is_int()->_lo && gvn.type(res)->is_int()->_hi <= t->is_int()->_hi, "type doesn't match");
1142   } else {
1143     Node* cmp = nullptr;
1144     if (is_max) {
1145       cmp = gvn.transform(CmpNode::make(a, b, bt, is_unsigned));
1146     } else {
1147       cmp = gvn.transform(CmpNode::make(b, a, bt, is_unsigned));
1148     }
1149     Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
1150     res = gvn.transform(CMoveNode::make(bol, a, b, t));
1151   }
1152   if (hook != nullptr) {
1153     hook->destruct(&gvn);
1154   }
1155   return res;
1156 }
1157 
1158 Node* MaxNode::build_min_max_diff_with_zero(Node* a, Node* b, bool is_max, const Type* t, PhaseGVN& gvn) {
1159   bool is_int = gvn.type(a)->isa_int();
1160   assert(is_int || gvn.type(a)->isa_long(), "int or long inputs");
1161   assert(is_int == (gvn.type(b)->isa_int() != nullptr), "inconsistent inputs");
1162   BasicType bt = is_int ? T_INT: T_LONG;
1163   Node* zero = gvn.integercon(0, bt);
1164   Node* hook = nullptr;
1165   if (gvn.is_IterGVN()) {
1166     // Make sure a and b are not destroyed
1167     hook = new Node(2);
1168     hook->init_req(0, a);
1169     hook->init_req(1, b);
1170   }
1171   Node* cmp = nullptr;
1172   if (is_max) {
1173     cmp = gvn.transform(CmpNode::make(a, b, bt, false));
1174   } else {
1175     cmp = gvn.transform(CmpNode::make(b, a, bt, false));
1176   }
1177   Node* sub = gvn.transform(SubNode::make(a, b, bt));
1178   Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
1179   Node* res = gvn.transform(CMoveNode::make(bol, sub, zero, t));
1180   if (hook != nullptr) {
1181     hook->destruct(&gvn);
1182   }
1183   return res;
1184 }
1185 
1186 // Check if addition of an integer with type 't' and a constant 'c' can overflow.
1187 static bool can_overflow(const TypeInt* t, jint c) {
1188   jint t_lo = t->_lo;
1189   jint t_hi = t->_hi;
1190   return ((c < 0 && (java_add(t_lo, c) > t_lo)) ||
1191           (c > 0 && (java_add(t_hi, c) < t_hi)));
1192 }
1193 
1194 // Check if addition of a long with type 't' and a constant 'c' can overflow.
1195 static bool can_overflow(const TypeLong* t, jlong c) {
1196   jlong t_lo = t->_lo;
1197   jlong t_hi = t->_hi;
1198   return ((c < 0 && (java_add(t_lo, c) > t_lo)) ||
1199           (c > 0 && (java_add(t_hi, c) < t_hi)));
1200 }
1201 
1202 // Let <x, x_off> = x_operands and <y, y_off> = y_operands.
1203 // If x == y and neither add(x, x_off) nor add(y, y_off) overflow, return
1204 // add(x, op(x_off, y_off)). Otherwise, return nullptr.
1205 Node* MaxNode::extract_add(PhaseGVN* phase, ConstAddOperands x_operands, ConstAddOperands y_operands) {
1206   Node* x = x_operands.first;
1207   Node* y = y_operands.first;
1208   int opcode = Opcode();
1209   assert(opcode == Op_MaxI || opcode == Op_MinI, "Unexpected opcode");
1210   const TypeInt* tx = phase->type(x)->isa_int();
1211   jint x_off = x_operands.second;
1212   jint y_off = y_operands.second;
1213   if (x == y && tx != nullptr &&
1214       !can_overflow(tx, x_off) &&
1215       !can_overflow(tx, y_off)) {
1216     jint c = opcode == Op_MinI ? MIN2(x_off, y_off) : MAX2(x_off, y_off);
1217     return new AddINode(x, phase->intcon(c));
1218   }
1219   return nullptr;
1220 }
1221 
1222 // Try to cast n as an integer addition with a constant. Return:
1223 //   <x, C>,       if n == add(x, C), where 'C' is a non-TOP constant;
1224 //   <nullptr, 0>, if n == add(x, C), where 'C' is a TOP constant; or
1225 //   <n, 0>,       otherwise.
1226 static ConstAddOperands as_add_with_constant(Node* n) {
1227   if (n->Opcode() != Op_AddI) {
1228     return ConstAddOperands(n, 0);
1229   }
1230   Node* x = n->in(1);
1231   Node* c = n->in(2);
1232   if (!c->is_Con()) {
1233     return ConstAddOperands(n, 0);
1234   }
1235   const Type* c_type = c->bottom_type();
1236   if (c_type == Type::TOP) {
1237     return ConstAddOperands(nullptr, 0);
1238   }
1239   return ConstAddOperands(x, c_type->is_int()->get_con());
1240 }
1241 
1242 Node* MaxNode::IdealI(PhaseGVN* phase, bool can_reshape) {
1243   int opcode = Opcode();
1244   assert(opcode == Op_MinI || opcode == Op_MaxI, "Unexpected opcode");
1245   // Try to transform the following pattern, in any of its four possible
1246   // permutations induced by op's commutativity:
1247   //     op(op(add(inner, inner_off), inner_other), add(outer, outer_off))
1248   // into
1249   //     op(add(inner, op(inner_off, outer_off)), inner_other),
1250   // where:
1251   //     op is either MinI or MaxI, and
1252   //     inner == outer, and
1253   //     the additions cannot overflow.
1254   for (uint inner_op_index = 1; inner_op_index <= 2; inner_op_index++) {
1255     if (in(inner_op_index)->Opcode() != opcode) {
1256       continue;
1257     }
1258     Node* outer_add = in(inner_op_index == 1 ? 2 : 1);
1259     ConstAddOperands outer_add_operands = as_add_with_constant(outer_add);
1260     if (outer_add_operands.first == nullptr) {
1261       return nullptr; // outer_add has a TOP input, no need to continue.
1262     }
1263     // One operand is a MinI/MaxI and the other is an integer addition with
1264     // constant. Test the operands of the inner MinI/MaxI.
1265     for (uint inner_add_index = 1; inner_add_index <= 2; inner_add_index++) {
1266       Node* inner_op = in(inner_op_index);
1267       Node* inner_add = inner_op->in(inner_add_index);
1268       ConstAddOperands inner_add_operands = as_add_with_constant(inner_add);
1269       if (inner_add_operands.first == nullptr) {
1270         return nullptr; // inner_add has a TOP input, no need to continue.
1271       }
1272       // Try to extract the inner add.
1273       Node* add_extracted = extract_add(phase, inner_add_operands, outer_add_operands);
1274       if (add_extracted == nullptr) {
1275         continue;
1276       }
1277       Node* add_transformed = phase->transform(add_extracted);
1278       Node* inner_other = inner_op->in(inner_add_index == 1 ? 2 : 1);
1279       return build_min_max_int(add_transformed, inner_other, opcode == Op_MaxI);
1280     }
1281   }
1282   // Try to transform
1283   //     op(add(x, x_off), add(y, y_off))
1284   // into
1285   //     add(x, op(x_off, y_off)),
1286   // where:
1287   //     op is either MinI or MaxI, and
1288   //     inner == outer, and
1289   //     the additions cannot overflow.
1290   ConstAddOperands xC = as_add_with_constant(in(1));
1291   ConstAddOperands yC = as_add_with_constant(in(2));
1292   if (xC.first == nullptr || yC.first == nullptr) return nullptr;
1293   return extract_add(phase, xC, yC);
1294 }
1295 
1296 // Ideal transformations for MaxINode
1297 Node* MaxINode::Ideal(PhaseGVN* phase, bool can_reshape) {
1298   return IdealI(phase, can_reshape);
1299 }
1300 
1301 Node* MaxINode::Identity(PhaseGVN* phase) {
1302   const TypeInt* t1 = phase->type(in(1))->is_int();
1303   const TypeInt* t2 = phase->type(in(2))->is_int();
1304 
1305   // Can we determine the maximum statically?
1306   if (t1->_lo >= t2->_hi) {
1307     return in(1);
1308   } else if (t2->_lo >= t1->_hi) {
1309     return in(2);
1310   }
1311 
1312   return MaxNode::Identity(phase);
1313 }
1314 
1315 //=============================================================================
1316 //------------------------------add_ring---------------------------------------
1317 // Supplied function returns the sum of the inputs.
1318 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
1319   const TypeInt *r0 = t0->is_int(); // Handy access
1320   const TypeInt *r1 = t1->is_int();
1321 
1322   // Otherwise just MAX them bits.
1323   return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
1324 }
1325 
1326 //=============================================================================
1327 //------------------------------Idealize---------------------------------------
1328 // MINs show up in range-check loop limit calculations.  Look for
1329 // "MIN2(x+c0,MIN2(y,x+c1))".  Pick the smaller constant: "MIN2(x+c0,y)"
1330 Node* MinINode::Ideal(PhaseGVN* phase, bool can_reshape) {
1331   return IdealI(phase, can_reshape);
1332 }
1333 
1334 Node* MinINode::Identity(PhaseGVN* phase) {
1335   const TypeInt* t1 = phase->type(in(1))->is_int();
1336   const TypeInt* t2 = phase->type(in(2))->is_int();
1337 
1338   // Can we determine the minimum statically?
1339   if (t1->_lo >= t2->_hi) {
1340     return in(2);
1341   } else if (t2->_lo >= t1->_hi) {
1342     return in(1);
1343   }
1344 
1345   return MaxNode::Identity(phase);
1346 }
1347 
1348 //------------------------------add_ring---------------------------------------
1349 // Supplied function returns the sum of the inputs.
1350 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
1351   const TypeInt *r0 = t0->is_int(); // Handy access
1352   const TypeInt *r1 = t1->is_int();
1353 
1354   // Otherwise just MIN them bits.
1355   return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
1356 }
1357 
1358 // Collapse the "addition with overflow-protection" pattern, and the symmetrical
1359 // "subtraction with underflow-protection" pattern. These are created during the
1360 // unrolling, when we have to adjust the limit by subtracting the stride, but want
1361 // to protect against underflow: MaxL(SubL(limit, stride), min_jint).
1362 // If we have more than one of those in a sequence:
1363 //
1364 //   x  con2
1365 //   |  |
1366 //   AddL  clamp2
1367 //     |    |
1368 //    Max/MinL con1
1369 //          |  |
1370 //          AddL  clamp1
1371 //            |    |
1372 //           Max/MinL (n)
1373 //
1374 // We want to collapse it to:
1375 //
1376 //   x  con1  con2
1377 //   |    |    |
1378 //   |   AddLNode (new_con)
1379 //   |    |
1380 //  AddLNode  clamp1
1381 //        |    |
1382 //       Max/MinL (n)
1383 //
1384 // Note: we assume that SubL was already replaced by an AddL, and that the stride
1385 // has its sign flipped: SubL(limit, stride) -> AddL(limit, -stride).
1386 //
1387 // Proof MaxL collapsed version equivalent to original (MinL version similar):
1388 // is_sub_con ensures that con1, con2 ∈ [min_int, 0[
1389 //
1390 // Original:
1391 // - AddL2 underflow => x + con2 ∈ ]max_long - min_int, max_long], ALWAYS BAILOUT as x + con1 + con2 surely fails can_overflow (*)
1392 // - AddL2 no underflow => x + con2 ∈ [min_long, max_long]
1393 //   - MaxL2 clamp => min_int
1394 //     - AddL1 underflow: NOT POSSIBLE: cannot underflow since min_int + con1 ∈ [2 * min_int, min_int] always > min_long
1395 //     - AddL1 no underflow => min_int + con1 ∈ [2 * min_int, min_int]
1396 //       - MaxL1 clamp => min_int (RESULT 1)
1397 //       - MaxL1 no clamp: NOT POSSIBLE: min_int + con1 ∈ [2 * min_int, min_int] always <= min_int, so clamp always taken
1398 //   - MaxL2 no clamp => x + con2 ∈ [min_int, max_long]
1399 //     - AddL1 underflow: NOT POSSIBLE: cannot underflow since x + con2 + con1 ∈ [2 * min_int, max_long] always > min_long
1400 //     - AddL1 no underflow => x + con2 + con1 ∈ [2 * min_int, max_long]
1401 //       - MaxL1 clamp => min_int (RESULT 2)
1402 //       - MaxL1 no clamp => x + con2 + con1 ∈ ]min_int, max_long] (RESULT 3)
1403 //
1404 // Collapsed:
1405 // - AddL2 (cannot underflow) => con2 + con1 ∈ [2 * min_int, 0]
1406 //   - AddL1 underflow: NOT POSSIBLE: would have bailed out at can_overflow (*)
1407 //   - AddL1 no underflow => x + con2 + con1 ∈ [min_long, max_long]
1408 //     - MaxL clamp => min_int (RESULT 1 and RESULT 2)
1409 //     - MaxL no clamp => x + con2 + con1 ∈ ]min_int, max_long] (RESULT 3)
1410 //
1411 static Node* fold_subI_no_underflow_pattern(Node* n, PhaseGVN* phase) {
1412   assert(n->Opcode() == Op_MaxL || n->Opcode() == Op_MinL, "sanity");
1413   // Check that the two clamps have the correct values.
1414   jlong clamp = (n->Opcode() == Op_MaxL) ? min_jint : max_jint;
1415   auto is_clamp = [&](Node* c) {
1416     const TypeLong* t = phase->type(c)->isa_long();
1417     return t != nullptr && t->is_con() &&
1418            t->get_con() == clamp;
1419   };
1420   // Check that the constants are negative if MaxL, and positive if MinL.
1421   auto is_sub_con = [&](Node* c) {
1422     const TypeLong* t = phase->type(c)->isa_long();
1423     return t != nullptr && t->is_con() &&
1424            t->get_con() < max_jint && t->get_con() > min_jint &&
1425            (t->get_con() < 0) == (n->Opcode() == Op_MaxL);
1426   };
1427   // Verify the graph level by level:
1428   Node* add1   = n->in(1);
1429   Node* clamp1 = n->in(2);
1430   if (add1->Opcode() == Op_AddL && is_clamp(clamp1)) {
1431     Node* max2 = add1->in(1);
1432     Node* con1 = add1->in(2);
1433     if (max2->Opcode() == n->Opcode() && is_sub_con(con1)) {
1434       Node* add2   = max2->in(1);
1435       Node* clamp2 = max2->in(2);
1436       if (add2->Opcode() == Op_AddL && is_clamp(clamp2)) {
1437         Node* x    = add2->in(1);
1438         Node* con2 = add2->in(2);
1439         if (is_sub_con(con2)) {
1440           // Collapsed graph not equivalent if potential over/underflow -> bailing out (*)
1441           if (can_overflow(phase->type(x)->is_long(), con1->get_long() + con2->get_long())) {
1442             return nullptr;
1443           }
1444           Node* new_con = phase->transform(new AddLNode(con1, con2));
1445           Node* new_sub = phase->transform(new AddLNode(x, new_con));
1446           n->set_req_X(1, new_sub, phase);
1447           return n;
1448         }
1449       }
1450     }
1451   }
1452   return nullptr;
1453 }
1454 
1455 const Type* MaxLNode::add_ring(const Type* t0, const Type* t1) const {
1456   const TypeLong* r0 = t0->is_long();
1457   const TypeLong* r1 = t1->is_long();
1458 
1459   return TypeLong::make(MAX2(r0->_lo, r1->_lo), MAX2(r0->_hi, r1->_hi), MAX2(r0->_widen, r1->_widen));
1460 }
1461 
1462 Node* MaxLNode::Identity(PhaseGVN* phase) {
1463   const TypeLong* t1 = phase->type(in(1))->is_long();
1464   const TypeLong* t2 = phase->type(in(2))->is_long();
1465 
1466   // Can we determine maximum statically?
1467   if (t1->_lo >= t2->_hi) {
1468     return in(1);
1469   } else if (t2->_lo >= t1->_hi) {
1470     return in(2);
1471   }
1472 
1473   return MaxNode::Identity(phase);
1474 }
1475 
1476 Node* MaxLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1477   Node* n = AddNode::Ideal(phase, can_reshape);
1478   if (n != nullptr) {
1479     return n;
1480   }
1481   if (can_reshape) {
1482     return fold_subI_no_underflow_pattern(this, phase);
1483   }
1484   return nullptr;
1485 }
1486 
1487 const Type* MinLNode::add_ring(const Type* t0, const Type* t1) const {
1488   const TypeLong* r0 = t0->is_long();
1489   const TypeLong* r1 = t1->is_long();
1490 
1491   return TypeLong::make(MIN2(r0->_lo, r1->_lo), MIN2(r0->_hi, r1->_hi), MAX2(r0->_widen, r1->_widen));
1492 }
1493 
1494 Node* MinLNode::Identity(PhaseGVN* phase) {
1495   const TypeLong* t1 = phase->type(in(1))->is_long();
1496   const TypeLong* t2 = phase->type(in(2))->is_long();
1497 
1498   // Can we determine minimum statically?
1499   if (t1->_lo >= t2->_hi) {
1500     return in(2);
1501   } else if (t2->_lo >= t1->_hi) {
1502     return in(1);
1503   }
1504 
1505   return MaxNode::Identity(phase);
1506 }
1507 
1508 Node* MinLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1509   Node* n = AddNode::Ideal(phase, can_reshape);
1510   if (n != nullptr) {
1511     return n;
1512   }
1513   if (can_reshape) {
1514     return fold_subI_no_underflow_pattern(this, phase);
1515   }
1516   return nullptr;
1517 }
1518 
1519 int MaxNode::opposite_opcode() const {
1520   if (Opcode() == max_opcode()) {
1521     return min_opcode();
1522   } else {
1523     assert(Opcode() == min_opcode(), "Caller should be either %s or %s, but is %s", NodeClassNames[max_opcode()], NodeClassNames[min_opcode()], NodeClassNames[Opcode()]);
1524     return max_opcode();
1525   }
1526 }
1527 
1528 // Given a redundant structure such as Max/Min(A, Max/Min(B, C)) where A == B or A == C, return the useful part of the structure.
1529 // 'operation' is the node expected to be the inner 'Max/Min(B, C)', and 'operand' is the node expected to be the 'A' operand of the outer node.
1530 Node* MaxNode::find_identity_operation(Node* operation, Node* operand) {
1531   if (operation->Opcode() == Opcode() || operation->Opcode() == opposite_opcode()) {
1532     Node* n1 = operation->in(1);
1533     Node* n2 = operation->in(2);
1534 
1535     // Given Op(A, Op(B, C)), see if either A == B or A == C is true.
1536     if (n1 == operand || n2 == operand) {
1537       // If the operations are the same return the inner operation, as Max(A, Max(A, B)) == Max(A, B).
1538       if (operation->Opcode() == Opcode()) {
1539         return operation;
1540       }
1541 
1542       // If the operations are different return the operand 'A', as Max(A, Min(A, B)) == A if the value isn't floating point.
1543       // With floating point values, the identity doesn't hold if B == NaN.
1544       const Type* type = bottom_type();
1545       if (type->isa_int() || type->isa_long()) {
1546         return operand;
1547       }
1548     }
1549   }
1550 
1551   return nullptr;
1552 }
1553 
1554 Node* MaxNode::Identity(PhaseGVN* phase) {
1555   if (in(1) == in(2)) {
1556       return in(1);
1557   }
1558 
1559   Node* identity_1 = MaxNode::find_identity_operation(in(2), in(1));
1560   if (identity_1 != nullptr) {
1561     return identity_1;
1562   }
1563 
1564   Node* identity_2 = MaxNode::find_identity_operation(in(1), in(2));
1565   if (identity_2 != nullptr) {
1566     return identity_2;
1567   }
1568 
1569   return AddNode::Identity(phase);
1570 }
1571 
1572 //------------------------------add_ring---------------------------------------
1573 const Type* MinHFNode::add_ring(const Type* t0, const Type* t1) const {
1574   const TypeH* r0 = t0->isa_half_float_constant();
1575   const TypeH* r1 = t1->isa_half_float_constant();
1576   if (r0 == nullptr || r1 == nullptr) {
1577     return bottom_type();
1578   }
1579 
1580   if (r0->is_nan()) {
1581     return r0;
1582   }
1583   if (r1->is_nan()) {
1584     return r1;
1585   }
1586 
1587   float f0 = r0->getf();
1588   float f1 = r1->getf();
1589   if (f0 != 0.0f || f1 != 0.0f) {
1590     return f0 < f1 ? r0 : r1;
1591   }
1592 
1593   // As per IEEE 754 specification, floating point comparison consider +ve and -ve
1594   // zeros as equals. Thus, performing signed integral comparison for min value
1595   // detection.
1596   return (jint_cast(f0) < jint_cast(f1)) ? r0 : r1;
1597 }
1598 
1599 //------------------------------add_ring---------------------------------------
1600 const Type* MinFNode::add_ring(const Type* t0, const Type* t1 ) const {
1601   const TypeF* r0 = t0->isa_float_constant();
1602   const TypeF* r1 = t1->isa_float_constant();
1603   if (r0 == nullptr || r1 == nullptr) {
1604     return bottom_type();
1605   }
1606 
1607   if (r0->is_nan()) {
1608     return r0;
1609   }
1610   if (r1->is_nan()) {
1611     return r1;
1612   }
1613 
1614   float f0 = r0->getf();
1615   float f1 = r1->getf();
1616   if (f0 != 0.0f || f1 != 0.0f) {
1617     return f0 < f1 ? r0 : r1;
1618   }
1619 
1620   // handle min of 0.0, -0.0 case.
1621   return (jint_cast(f0) < jint_cast(f1)) ? r0 : r1;
1622 }
1623 
1624 //------------------------------add_ring---------------------------------------
1625 const Type* MinDNode::add_ring(const Type* t0, const Type* t1) const {
1626   const TypeD* r0 = t0->isa_double_constant();
1627   const TypeD* r1 = t1->isa_double_constant();
1628   if (r0 == nullptr || r1 == nullptr) {
1629     return bottom_type();
1630   }
1631 
1632   if (r0->is_nan()) {
1633     return r0;
1634   }
1635   if (r1->is_nan()) {
1636     return r1;
1637   }
1638 
1639   double d0 = r0->getd();
1640   double d1 = r1->getd();
1641   if (d0 != 0.0 || d1 != 0.0) {
1642     return d0 < d1 ? r0 : r1;
1643   }
1644 
1645   // handle min of 0.0, -0.0 case.
1646   return (jlong_cast(d0) < jlong_cast(d1)) ? r0 : r1;
1647 }
1648 
1649 //------------------------------add_ring---------------------------------------
1650 const Type* MaxHFNode::add_ring(const Type* t0, const Type* t1) const {
1651   const TypeH* r0 = t0->isa_half_float_constant();
1652   const TypeH* r1 = t1->isa_half_float_constant();
1653   if (r0 == nullptr || r1 == nullptr) {
1654     return bottom_type();
1655   }
1656 
1657   if (r0->is_nan()) {
1658     return r0;
1659   }
1660   if (r1->is_nan()) {
1661     return r1;
1662   }
1663 
1664   float f0 = r0->getf();
1665   float f1 = r1->getf();
1666   if (f0 != 0.0f || f1 != 0.0f) {
1667     return f0 > f1 ? r0 : r1;
1668   }
1669 
1670   // As per IEEE 754 specification, floating point comparison consider +ve and -ve
1671   // zeros as equals. Thus, performing signed integral comparison for max value
1672   // detection.
1673   return (jint_cast(f0) > jint_cast(f1)) ? r0 : r1;
1674 }
1675 
1676 
1677 //------------------------------add_ring---------------------------------------
1678 const Type* MaxFNode::add_ring(const Type* t0, const Type* t1) const {
1679   const TypeF* r0 = t0->isa_float_constant();
1680   const TypeF* r1 = t1->isa_float_constant();
1681   if (r0 == nullptr || r1 == nullptr) {
1682     return bottom_type();
1683   }
1684 
1685   if (r0->is_nan()) {
1686     return r0;
1687   }
1688   if (r1->is_nan()) {
1689     return r1;
1690   }
1691 
1692   float f0 = r0->getf();
1693   float f1 = r1->getf();
1694   if (f0 != 0.0f || f1 != 0.0f) {
1695     return f0 > f1 ? r0 : r1;
1696   }
1697 
1698   // handle max of 0.0,-0.0 case.
1699   return (jint_cast(f0) > jint_cast(f1)) ? r0 : r1;
1700 }
1701 
1702 //------------------------------add_ring---------------------------------------
1703 const Type* MaxDNode::add_ring(const Type* t0, const Type* t1) const {
1704   const TypeD* r0 = t0->isa_double_constant();
1705   const TypeD* r1 = t1->isa_double_constant();
1706   if (r0 == nullptr || r1 == nullptr) {
1707     return bottom_type();
1708   }
1709 
1710   if (r0->is_nan()) {
1711     return r0;
1712   }
1713   if (r1->is_nan()) {
1714     return r1;
1715   }
1716 
1717   double d0 = r0->getd();
1718   double d1 = r1->getd();
1719   if (d0 != 0.0 || d1 != 0.0) {
1720     return d0 > d1 ? r0 : r1;
1721   }
1722 
1723   // handle max of 0.0, -0.0 case.
1724   return (jlong_cast(d0) > jlong_cast(d1)) ? r0 : r1;
1725 }