1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "memory/allocation.inline.hpp" 27 #include "opto/addnode.hpp" 28 #include "opto/castnode.hpp" 29 #include "opto/cfgnode.hpp" 30 #include "opto/connode.hpp" 31 #include "opto/machnode.hpp" 32 #include "opto/movenode.hpp" 33 #include "opto/mulnode.hpp" 34 #include "opto/phaseX.hpp" 35 #include "opto/subnode.hpp" 36 37 // Portions of code courtesy of Clifford Click 38 39 // Classic Add functionality. This covers all the usual 'add' behaviors for 40 // an algebraic ring. Add-integer, add-float, add-double, and binary-or are 41 // all inherited from this class. The various identity values are supplied 42 // by virtual functions. 43 44 45 //============================================================================= 46 //------------------------------hash------------------------------------------- 47 // Hash function over AddNodes. Needs to be commutative; i.e., I swap 48 // (commute) inputs to AddNodes willy-nilly so the hash function must return 49 // the same value in the presence of edge swapping. 50 uint AddNode::hash() const { 51 return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode(); 52 } 53 54 //------------------------------Identity--------------------------------------- 55 // If either input is a constant 0, return the other input. 56 Node* AddNode::Identity(PhaseGVN* phase) { 57 const Type *zero = add_id(); // The additive identity 58 if( phase->type( in(1) )->higher_equal( zero ) ) return in(2); 59 if( phase->type( in(2) )->higher_equal( zero ) ) return in(1); 60 return this; 61 } 62 63 //------------------------------commute---------------------------------------- 64 // Commute operands to move loads and constants to the right. 65 static bool commute(PhaseGVN* phase, Node* add) { 66 Node *in1 = add->in(1); 67 Node *in2 = add->in(2); 68 69 // convert "max(a,b) + min(a,b)" into "a+b". 70 if ((in1->Opcode() == add->as_Add()->max_opcode() && in2->Opcode() == add->as_Add()->min_opcode()) 71 || (in1->Opcode() == add->as_Add()->min_opcode() && in2->Opcode() == add->as_Add()->max_opcode())) { 72 Node *in11 = in1->in(1); 73 Node *in12 = in1->in(2); 74 75 Node *in21 = in2->in(1); 76 Node *in22 = in2->in(2); 77 78 if ((in11 == in21 && in12 == in22) || 79 (in11 == in22 && in12 == in21)) { 80 add->set_req_X(1, in11, phase); 81 add->set_req_X(2, in12, phase); 82 return true; 83 } 84 } 85 86 bool con_left = phase->type(in1)->singleton(); 87 bool con_right = phase->type(in2)->singleton(); 88 89 // Convert "1+x" into "x+1". 90 // Right is a constant; leave it 91 if( con_right ) return false; 92 // Left is a constant; move it right. 93 if( con_left ) { 94 add->swap_edges(1, 2); 95 return true; 96 } 97 98 // Convert "Load+x" into "x+Load". 99 // Now check for loads 100 if (in2->is_Load()) { 101 if (!in1->is_Load()) { 102 // already x+Load to return 103 return false; 104 } 105 // both are loads, so fall through to sort inputs by idx 106 } else if( in1->is_Load() ) { 107 // Left is a Load and Right is not; move it right. 108 add->swap_edges(1, 2); 109 return true; 110 } 111 112 PhiNode *phi; 113 // Check for tight loop increments: Loop-phi of Add of loop-phi 114 if (in1->is_Phi() && (phi = in1->as_Phi()) && phi->region()->is_Loop() && phi->in(2) == add) 115 return false; 116 if (in2->is_Phi() && (phi = in2->as_Phi()) && phi->region()->is_Loop() && phi->in(2) == add) { 117 add->swap_edges(1, 2); 118 return true; 119 } 120 121 // Otherwise, sort inputs (commutativity) to help value numbering. 122 if( in1->_idx > in2->_idx ) { 123 add->swap_edges(1, 2); 124 return true; 125 } 126 return false; 127 } 128 129 //------------------------------Idealize--------------------------------------- 130 // If we get here, we assume we are associative! 131 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) { 132 const Type *t1 = phase->type(in(1)); 133 const Type *t2 = phase->type(in(2)); 134 bool con_left = t1->singleton(); 135 bool con_right = t2->singleton(); 136 137 // Check for commutative operation desired 138 if (commute(phase, this)) return this; 139 140 AddNode *progress = nullptr; // Progress flag 141 142 // Convert "(x+1)+2" into "x+(1+2)". If the right input is a 143 // constant, and the left input is an add of a constant, flatten the 144 // expression tree. 145 Node *add1 = in(1); 146 Node *add2 = in(2); 147 int add1_op = add1->Opcode(); 148 int this_op = Opcode(); 149 if (con_right && t2 != Type::TOP && // Right input is a constant? 150 add1_op == this_op) { // Left input is an Add? 151 152 // Type of left _in right input 153 const Type *t12 = phase->type(add1->in(2)); 154 if (t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant? 155 // Check for rare case of closed data cycle which can happen inside 156 // unreachable loops. In these cases the computation is undefined. 157 #ifdef ASSERT 158 Node *add11 = add1->in(1); 159 int add11_op = add11->Opcode(); 160 if ((add1 == add1->in(1)) 161 || (add11_op == this_op && add11->in(1) == add1)) { 162 assert(false, "dead loop in AddNode::Ideal"); 163 } 164 #endif 165 // The Add of the flattened expression 166 Node *x1 = add1->in(1); 167 Node *x2 = phase->makecon(add1->as_Add()->add_ring(t2, t12)); 168 set_req_X(2, x2, phase); 169 set_req_X(1, x1, phase); 170 progress = this; // Made progress 171 add1 = in(1); 172 add1_op = add1->Opcode(); 173 } 174 } 175 176 // Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree. 177 if (add1_op == this_op && !con_right) { 178 Node *a12 = add1->in(2); 179 const Type *t12 = phase->type( a12 ); 180 if (t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) && 181 !(add1->in(1)->is_Phi() && (add1->in(1)->as_Phi()->is_tripcount(T_INT) || add1->in(1)->as_Phi()->is_tripcount(T_LONG)))) { 182 assert(add1->in(1) != this, "dead loop in AddNode::Ideal"); 183 add2 = add1->clone(); 184 add2->set_req(2, in(2)); 185 add2 = phase->transform(add2); 186 set_req_X(1, add2, phase); 187 set_req_X(2, a12, phase); 188 progress = this; 189 add2 = a12; 190 } 191 } 192 193 // Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree. 194 int add2_op = add2->Opcode(); 195 if (add2_op == this_op && !con_left) { 196 Node *a22 = add2->in(2); 197 const Type *t22 = phase->type( a22 ); 198 if (t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) && 199 !(add2->in(1)->is_Phi() && (add2->in(1)->as_Phi()->is_tripcount(T_INT) || add2->in(1)->as_Phi()->is_tripcount(T_LONG)))) { 200 assert(add2->in(1) != this, "dead loop in AddNode::Ideal"); 201 Node *addx = add2->clone(); 202 addx->set_req(1, in(1)); 203 addx->set_req(2, add2->in(1)); 204 addx = phase->transform(addx); 205 set_req_X(1, addx, phase); 206 set_req_X(2, a22, phase); 207 progress = this; 208 } 209 } 210 211 return progress; 212 } 213 214 //------------------------------Value----------------------------------------- 215 // An add node sums it's two _in. If one input is an RSD, we must mixin 216 // the other input's symbols. 217 const Type* AddNode::Value(PhaseGVN* phase) const { 218 // Either input is TOP ==> the result is TOP 219 const Type* t1 = phase->type(in(1)); 220 const Type* t2 = phase->type(in(2)); 221 if (t1 == Type::TOP || t2 == Type::TOP) { 222 return Type::TOP; 223 } 224 225 // Check for an addition involving the additive identity 226 const Type* tadd = add_of_identity(t1, t2); 227 if (tadd != nullptr) { 228 return tadd; 229 } 230 231 return add_ring(t1, t2); // Local flavor of type addition 232 } 233 234 //------------------------------add_identity----------------------------------- 235 // Check for addition of the identity 236 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const { 237 const Type *zero = add_id(); // The additive identity 238 if( t1->higher_equal( zero ) ) return t2; 239 if( t2->higher_equal( zero ) ) return t1; 240 241 return nullptr; 242 } 243 244 AddNode* AddNode::make(Node* in1, Node* in2, BasicType bt) { 245 switch (bt) { 246 case T_INT: 247 return new AddINode(in1, in2); 248 case T_LONG: 249 return new AddLNode(in1, in2); 250 default: 251 fatal("Not implemented for %s", type2name(bt)); 252 } 253 return nullptr; 254 } 255 256 bool AddNode::is_not(PhaseGVN* phase, Node* n, BasicType bt) { 257 return n->Opcode() == Op_Xor(bt) && phase->type(n->in(2)) == TypeInteger::minus_1(bt); 258 } 259 260 AddNode* AddNode::make_not(PhaseGVN* phase, Node* n, BasicType bt) { 261 switch (bt) { 262 case T_INT: 263 return new XorINode(n, phase->intcon(-1)); 264 case T_LONG: 265 return new XorLNode(n, phase->longcon(-1L)); 266 default: 267 fatal("Not implemented for %s", type2name(bt)); 268 } 269 return nullptr; 270 } 271 272 //============================================================================= 273 //------------------------------Idealize--------------------------------------- 274 Node* AddNode::IdealIL(PhaseGVN* phase, bool can_reshape, BasicType bt) { 275 Node* in1 = in(1); 276 Node* in2 = in(2); 277 int op1 = in1->Opcode(); 278 int op2 = in2->Opcode(); 279 // Fold (con1-x)+con2 into (con1+con2)-x 280 if (op1 == Op_Add(bt) && op2 == Op_Sub(bt)) { 281 // Swap edges to try optimizations below 282 in1 = in2; 283 in2 = in(1); 284 op1 = op2; 285 op2 = in2->Opcode(); 286 } 287 if (op1 == Op_Sub(bt)) { 288 const Type* t_sub1 = phase->type(in1->in(1)); 289 const Type* t_2 = phase->type(in2 ); 290 if (t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP) { 291 return SubNode::make(phase->makecon(add_ring(t_sub1, t_2)), in1->in(2), bt); 292 } 293 // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)" 294 if (op2 == Op_Sub(bt)) { 295 // Check for dead cycle: d = (a-b)+(c-d) 296 assert( in1->in(2) != this && in2->in(2) != this, 297 "dead loop in AddINode::Ideal" ); 298 Node* sub = SubNode::make(nullptr, nullptr, bt); 299 Node* sub_in1; 300 PhaseIterGVN* igvn = phase->is_IterGVN(); 301 // During IGVN, if both inputs of the new AddNode are a tree of SubNodes, this same transformation will be applied 302 // to every node of the tree. Calling transform() causes the transformation to be applied recursively, once per 303 // tree node whether some subtrees are identical or not. Pushing to the IGVN worklist instead, causes the transform 304 // to be applied once per unique subtrees (because all uses of a subtree are updated with the result of the 305 // transformation). In case of a large tree, this can make a difference in compilation time. 306 if (igvn != nullptr) { 307 sub_in1 = igvn->register_new_node_with_optimizer(AddNode::make(in1->in(1), in2->in(1), bt)); 308 } else { 309 sub_in1 = phase->transform(AddNode::make(in1->in(1), in2->in(1), bt)); 310 } 311 Node* sub_in2; 312 if (igvn != nullptr) { 313 sub_in2 = igvn->register_new_node_with_optimizer(AddNode::make(in1->in(2), in2->in(2), bt)); 314 } else { 315 sub_in2 = phase->transform(AddNode::make(in1->in(2), in2->in(2), bt)); 316 } 317 sub->init_req(1, sub_in1); 318 sub->init_req(2, sub_in2); 319 return sub; 320 } 321 // Convert "(a-b)+(b+c)" into "(a+c)" 322 if (op2 == Op_Add(bt) && in1->in(2) == in2->in(1)) { 323 assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal/AddLNode::Ideal"); 324 return AddNode::make(in1->in(1), in2->in(2), bt); 325 } 326 // Convert "(a-b)+(c+b)" into "(a+c)" 327 if (op2 == Op_Add(bt) && in1->in(2) == in2->in(2)) { 328 assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal/AddLNode::Ideal"); 329 return AddNode::make(in1->in(1), in2->in(1), bt); 330 } 331 } 332 333 // Convert (con - y) + x into "(x - y) + con" 334 if (op1 == Op_Sub(bt) && in1->in(1)->Opcode() == Op_ConIL(bt) 335 && in1 != in1->in(2) && !(in1->in(2)->is_Phi() && in1->in(2)->as_Phi()->is_tripcount(bt))) { 336 return AddNode::make(phase->transform(SubNode::make(in2, in1->in(2), bt)), in1->in(1), bt); 337 } 338 339 // Convert x + (con - y) into "(x - y) + con" 340 if (op2 == Op_Sub(bt) && in2->in(1)->Opcode() == Op_ConIL(bt) 341 && in2 != in2->in(2) && !(in2->in(2)->is_Phi() && in2->in(2)->as_Phi()->is_tripcount(bt))) { 342 return AddNode::make(phase->transform(SubNode::make(in1, in2->in(2), bt)), in2->in(1), bt); 343 } 344 345 // Associative 346 if (op1 == Op_Mul(bt) && op2 == Op_Mul(bt)) { 347 Node* add_in1 = nullptr; 348 Node* add_in2 = nullptr; 349 Node* mul_in = nullptr; 350 351 if (in1->in(1) == in2->in(1)) { 352 // Convert "a*b+a*c into a*(b+c) 353 add_in1 = in1->in(2); 354 add_in2 = in2->in(2); 355 mul_in = in1->in(1); 356 } else if (in1->in(2) == in2->in(1)) { 357 // Convert a*b+b*c into b*(a+c) 358 add_in1 = in1->in(1); 359 add_in2 = in2->in(2); 360 mul_in = in1->in(2); 361 } else if (in1->in(2) == in2->in(2)) { 362 // Convert a*c+b*c into (a+b)*c 363 add_in1 = in1->in(1); 364 add_in2 = in2->in(1); 365 mul_in = in1->in(2); 366 } else if (in1->in(1) == in2->in(2)) { 367 // Convert a*b+c*a into a*(b+c) 368 add_in1 = in1->in(2); 369 add_in2 = in2->in(1); 370 mul_in = in1->in(1); 371 } 372 373 if (mul_in != nullptr) { 374 Node* add = phase->transform(AddNode::make(add_in1, add_in2, bt)); 375 return MulNode::make(mul_in, add, bt); 376 } 377 } 378 379 // Convert (x >>> rshift) + (x << lshift) into RotateRight(x, rshift) 380 if (Matcher::match_rule_supported(Op_RotateRight) && 381 ((op1 == Op_URShift(bt) && op2 == Op_LShift(bt)) || (op1 == Op_LShift(bt) && op2 == Op_URShift(bt))) && 382 in1->in(1) != nullptr && in1->in(1) == in2->in(1)) { 383 Node* rshift = op1 == Op_URShift(bt) ? in1->in(2) : in2->in(2); 384 Node* lshift = op1 == Op_URShift(bt) ? in2->in(2) : in1->in(2); 385 if (rshift != nullptr && lshift != nullptr) { 386 const TypeInt* rshift_t = phase->type(rshift)->isa_int(); 387 const TypeInt* lshift_t = phase->type(lshift)->isa_int(); 388 int bits = bt == T_INT ? 32 : 64; 389 int mask = bt == T_INT ? 0x1F : 0x3F; 390 if (lshift_t != nullptr && lshift_t->is_con() && 391 rshift_t != nullptr && rshift_t->is_con() && 392 ((lshift_t->get_con() & mask) == (bits - (rshift_t->get_con() & mask)))) { 393 return new RotateRightNode(in1->in(1), phase->intcon(rshift_t->get_con() & mask), TypeInteger::bottom(bt)); 394 } 395 } 396 } 397 398 // Convert a + a + ... + a into a*n 399 Node* serial_additions = convert_serial_additions(phase, bt); 400 if (serial_additions != nullptr) { 401 return serial_additions; 402 } 403 404 return AddNode::Ideal(phase, can_reshape); 405 } 406 407 // Try to convert a serial of additions into a single multiplication. Also convert `(a * CON) + a` to `(CON + 1) * a` as 408 // a side effect. On success, a new MulNode is returned. 409 Node* AddNode::convert_serial_additions(PhaseGVN* phase, BasicType bt) { 410 // We need to make sure that the current AddNode is not part of a MulNode that has already been optimized to a 411 // power-of-2 addition (e.g., 3 * a => (a << 2) + a). Without this check, GVN would keep trying to optimize the same 412 // node and can't progress. For example, 3 * a => (a << 2) + a => 3 * a => (a << 2) + a => ... 413 if (find_power_of_two_addition_pattern(this, bt, nullptr) != nullptr) { 414 return nullptr; 415 } 416 417 Node* in1 = in(1); 418 Node* in2 = in(2); 419 jlong multiplier; 420 421 // While multiplications can be potentially optimized to power-of-2 subtractions (e.g., a * 7 => (a << 3) - a), 422 // (x - y) + y => x is already handled by the Identity() methods. So, we don't need to check for that pattern here. 423 if (find_simple_addition_pattern(in1, bt, &multiplier) == in2 424 || find_simple_lshift_pattern(in1, bt, &multiplier) == in2 425 || find_simple_multiplication_pattern(in1, bt, &multiplier) == in2 426 || find_power_of_two_addition_pattern(in1, bt, &multiplier) == in2) { 427 multiplier++; // +1 for the in2 term 428 429 Node* con = (bt == T_INT) 430 ? (Node*) phase->intcon((jint) multiplier) // intentional type narrowing to allow overflow at max_jint 431 : (Node*) phase->longcon(multiplier); 432 return MulNode::make(con, in2, bt); 433 } 434 435 return nullptr; 436 } 437 438 // Try to match `a + a`. On success, return `a` and set `2` as `multiplier`. 439 // The method matches `n` for pattern: AddNode(a, a). 440 Node* AddNode::find_simple_addition_pattern(Node* n, BasicType bt, jlong* multiplier) { 441 if (n->Opcode() == Op_Add(bt) && n->in(1) == n->in(2)) { 442 *multiplier = 2; 443 return n->in(1); 444 } 445 446 return nullptr; 447 } 448 449 // Try to match `a << CON`. On success, return `a` and set `1 << CON` as `multiplier`. 450 // Match `n` for pattern: LShiftNode(a, CON). 451 // Note that the power-of-2 multiplication optimization could potentially convert a MulNode to this pattern. 452 Node* AddNode::find_simple_lshift_pattern(Node* n, BasicType bt, jlong* multiplier) { 453 // Note that power-of-2 multiplication optimization could potentially convert a MulNode to this pattern 454 if (n->Opcode() == Op_LShift(bt) && n->in(2)->is_Con()) { 455 Node* con = n->in(2); 456 if (con->is_top()) { 457 return nullptr; 458 } 459 460 *multiplier = ((jlong) 1 << con->get_int()); 461 return n->in(1); 462 } 463 464 return nullptr; 465 } 466 467 // Try to match `CON * a`. On success, return `a` and set `CON` as `multiplier`. 468 // Match `n` for patterns: 469 // - MulNode(CON, a) 470 // - MulNode(a, CON) 471 Node* AddNode::find_simple_multiplication_pattern(Node* n, BasicType bt, jlong* multiplier) { 472 // This optimization technically only produces MulNode(CON, a), but we might as match MulNode(a, CON), too. 473 if (n->Opcode() == Op_Mul(bt) && (n->in(1)->is_Con() || n->in(2)->is_Con())) { 474 Node* con = n->in(1); 475 Node* base = n->in(2); 476 477 // swap ConNode to lhs for easier matching 478 if (!con->is_Con()) { 479 swap(con, base); 480 } 481 482 if (con->is_top()) { 483 return nullptr; 484 } 485 486 *multiplier = con->get_integer_as_long(bt); 487 return base; 488 } 489 490 return nullptr; 491 } 492 493 // Try to match `(a << CON1) + (a << CON2)`. On success, return `a` and set `(1 << CON1) + (1 << CON2)` as `multiplier`. 494 // Match `n` for patterns: 495 // - AddNode(LShiftNode(a, CON), LShiftNode(a, CON)/a) 496 // - AddNode(LShiftNode(a, CON)/a, LShiftNode(a, CON)) 497 // given that lhs is different from rhs. 498 // Note that one of the term of the addition could simply be `a` (i.e., a << 0). Calling this function with `multiplier` 499 // being null is safe. 500 Node* AddNode::find_power_of_two_addition_pattern(Node* n, BasicType bt, jlong* multiplier) { 501 if (n->Opcode() == Op_Add(bt) && n->in(1) != n->in(2)) { 502 Node* lhs = n->in(1); 503 Node* rhs = n->in(2); 504 505 // swap LShiftNode to lhs for easier matching 506 if (lhs->Opcode() != Op_LShift(bt)) { 507 swap(lhs, rhs); 508 } 509 510 // AddNode(LShiftNode(a, CON), *)? 511 if (lhs->Opcode() != Op_LShift(bt) || !lhs->in(2)->is_Con()) { 512 return nullptr; 513 } 514 515 jlong lhs_multiplier = 0; 516 if (multiplier != nullptr) { 517 Node* con = lhs->in(2); 518 if (con->is_top()) { 519 return nullptr; 520 } 521 522 lhs_multiplier = (jlong) 1 << con->get_int(); 523 } 524 525 // AddNode(LShiftNode(a, CON), a)? 526 if (lhs->in(1) == rhs) { 527 if (multiplier != nullptr) { 528 *multiplier = lhs_multiplier + 1; 529 } 530 531 return rhs; 532 } 533 534 // AddNode(LShiftNode(a, CON), LShiftNode(a, CON2))? 535 if (rhs->Opcode() == Op_LShift(bt) && lhs->in(1) == rhs->in(1) && rhs->in(2)->is_Con()) { 536 if (multiplier != nullptr) { 537 Node* con = rhs->in(2); 538 if (con->is_top()) { 539 return nullptr; 540 } 541 542 *multiplier = lhs_multiplier + ((jlong) 1 << con->get_int()); 543 } 544 545 return lhs->in(1); 546 } 547 return nullptr; 548 } 549 return nullptr; 550 } 551 552 Node* AddINode::Ideal(PhaseGVN* phase, bool can_reshape) { 553 Node* in1 = in(1); 554 Node* in2 = in(2); 555 int op1 = in1->Opcode(); 556 int op2 = in2->Opcode(); 557 558 // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y. 559 // Helps with array allocation math constant folding 560 // See 4790063: 561 // Unrestricted transformation is unsafe for some runtime values of 'x' 562 // ( x == 0, z == 1, y == -1 ) fails 563 // ( x == -5, z == 1, y == 1 ) fails 564 // Transform works for small z and small negative y when the addition 565 // (x + (y << z)) does not cross zero. 566 // Implement support for negative y and (x >= -(y << z)) 567 // Have not observed cases where type information exists to support 568 // positive y and (x <= -(y << z)) 569 if (op1 == Op_URShiftI && op2 == Op_ConI && 570 in1->in(2)->Opcode() == Op_ConI) { 571 jint z = phase->type(in1->in(2))->is_int()->get_con() & 0x1f; // only least significant 5 bits matter 572 jint y = phase->type(in2)->is_int()->get_con(); 573 574 if (z < 5 && -5 < y && y < 0) { 575 const Type* t_in11 = phase->type(in1->in(1)); 576 if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z))) { 577 Node* a = phase->transform(new AddINode( in1->in(1), phase->intcon(y<<z))); 578 return new URShiftINode(a, in1->in(2)); 579 } 580 } 581 } 582 583 return AddNode::IdealIL(phase, can_reshape, T_INT); 584 } 585 586 587 //------------------------------Identity--------------------------------------- 588 // Fold (x-y)+y OR y+(x-y) into x 589 Node* AddINode::Identity(PhaseGVN* phase) { 590 if (in(1)->Opcode() == Op_SubI && in(1)->in(2) == in(2)) { 591 return in(1)->in(1); 592 } else if (in(2)->Opcode() == Op_SubI && in(2)->in(2) == in(1)) { 593 return in(2)->in(1); 594 } 595 return AddNode::Identity(phase); 596 } 597 598 599 //------------------------------add_ring--------------------------------------- 600 // Supplied function returns the sum of the inputs. Guaranteed never 601 // to be passed a TOP or BOTTOM type, these are filtered out by 602 // pre-check. 603 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const { 604 const TypeInt *r0 = t0->is_int(); // Handy access 605 const TypeInt *r1 = t1->is_int(); 606 int lo = java_add(r0->_lo, r1->_lo); 607 int hi = java_add(r0->_hi, r1->_hi); 608 if( !(r0->is_con() && r1->is_con()) ) { 609 // Not both constants, compute approximate result 610 if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { 611 lo = min_jint; hi = max_jint; // Underflow on the low side 612 } 613 if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { 614 lo = min_jint; hi = max_jint; // Overflow on the high side 615 } 616 if( lo > hi ) { // Handle overflow 617 lo = min_jint; hi = max_jint; 618 } 619 } else { 620 // both constants, compute precise result using 'lo' and 'hi' 621 // Semantics define overflow and underflow for integer addition 622 // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 623 } 624 return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); 625 } 626 627 628 //============================================================================= 629 //------------------------------Idealize--------------------------------------- 630 Node* AddLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 631 return AddNode::IdealIL(phase, can_reshape, T_LONG); 632 } 633 634 635 //------------------------------Identity--------------------------------------- 636 // Fold (x-y)+y OR y+(x-y) into x 637 Node* AddLNode::Identity(PhaseGVN* phase) { 638 if (in(1)->Opcode() == Op_SubL && in(1)->in(2) == in(2)) { 639 return in(1)->in(1); 640 } else if (in(2)->Opcode() == Op_SubL && in(2)->in(2) == in(1)) { 641 return in(2)->in(1); 642 } 643 return AddNode::Identity(phase); 644 } 645 646 647 //------------------------------add_ring--------------------------------------- 648 // Supplied function returns the sum of the inputs. Guaranteed never 649 // to be passed a TOP or BOTTOM type, these are filtered out by 650 // pre-check. 651 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const { 652 const TypeLong *r0 = t0->is_long(); // Handy access 653 const TypeLong *r1 = t1->is_long(); 654 jlong lo = java_add(r0->_lo, r1->_lo); 655 jlong hi = java_add(r0->_hi, r1->_hi); 656 if( !(r0->is_con() && r1->is_con()) ) { 657 // Not both constants, compute approximate result 658 if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { 659 lo =min_jlong; hi = max_jlong; // Underflow on the low side 660 } 661 if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { 662 lo = min_jlong; hi = max_jlong; // Overflow on the high side 663 } 664 if( lo > hi ) { // Handle overflow 665 lo = min_jlong; hi = max_jlong; 666 } 667 } else { 668 // both constants, compute precise result using 'lo' and 'hi' 669 // Semantics define overflow and underflow for integer addition 670 // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 671 } 672 return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); 673 } 674 675 676 //============================================================================= 677 //------------------------------add_of_identity-------------------------------- 678 // Check for addition of the identity 679 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const { 680 // x ADD 0 should return x unless 'x' is a -zero 681 // 682 // const Type *zero = add_id(); // The additive identity 683 // jfloat f1 = t1->getf(); 684 // jfloat f2 = t2->getf(); 685 // 686 // if( t1->higher_equal( zero ) ) return t2; 687 // if( t2->higher_equal( zero ) ) return t1; 688 689 return nullptr; 690 } 691 692 //------------------------------add_ring--------------------------------------- 693 // Supplied function returns the sum of the inputs. 694 // This also type-checks the inputs for sanity. Guaranteed never to 695 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 696 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const { 697 if (!t0->isa_float_constant() || !t1->isa_float_constant()) { 698 return bottom_type(); 699 } 700 return TypeF::make( t0->getf() + t1->getf() ); 701 } 702 703 //------------------------------Ideal------------------------------------------ 704 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) { 705 // Floating point additions are not associative because of boundary conditions (infinity) 706 return commute(phase, this) ? this : nullptr; 707 } 708 709 710 //============================================================================= 711 //------------------------------add_of_identity-------------------------------- 712 // Check for addition of the identity 713 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const { 714 // x ADD 0 should return x unless 'x' is a -zero 715 // 716 // const Type *zero = add_id(); // The additive identity 717 // jfloat f1 = t1->getf(); 718 // jfloat f2 = t2->getf(); 719 // 720 // if( t1->higher_equal( zero ) ) return t2; 721 // if( t2->higher_equal( zero ) ) return t1; 722 723 return nullptr; 724 } 725 //------------------------------add_ring--------------------------------------- 726 // Supplied function returns the sum of the inputs. 727 // This also type-checks the inputs for sanity. Guaranteed never to 728 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 729 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const { 730 if (!t0->isa_double_constant() || !t1->isa_double_constant()) { 731 return bottom_type(); 732 } 733 return TypeD::make( t0->getd() + t1->getd() ); 734 } 735 736 //------------------------------Ideal------------------------------------------ 737 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) { 738 // Floating point additions are not associative because of boundary conditions (infinity) 739 return commute(phase, this) ? this : nullptr; 740 } 741 742 743 //============================================================================= 744 //------------------------------Identity--------------------------------------- 745 // If one input is a constant 0, return the other input. 746 Node* AddPNode::Identity(PhaseGVN* phase) { 747 return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this; 748 } 749 750 //------------------------------Idealize--------------------------------------- 751 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) { 752 // Bail out if dead inputs 753 if( phase->type( in(Address) ) == Type::TOP ) return nullptr; 754 755 // If the left input is an add of a constant, flatten the expression tree. 756 const Node *n = in(Address); 757 if (n->is_AddP() && n->in(Base) == in(Base)) { 758 const AddPNode *addp = n->as_AddP(); // Left input is an AddP 759 assert( !addp->in(Address)->is_AddP() || 760 addp->in(Address)->as_AddP() != addp, 761 "dead loop in AddPNode::Ideal" ); 762 // Type of left input's right input 763 const Type *t = phase->type( addp->in(Offset) ); 764 if( t == Type::TOP ) return nullptr; 765 const TypeX *t12 = t->is_intptr_t(); 766 if( t12->is_con() ) { // Left input is an add of a constant? 767 // If the right input is a constant, combine constants 768 const Type *temp_t2 = phase->type( in(Offset) ); 769 if( temp_t2 == Type::TOP ) return nullptr; 770 const TypeX *t2 = temp_t2->is_intptr_t(); 771 Node* address; 772 Node* offset; 773 if( t2->is_con() ) { 774 // The Add of the flattened expression 775 address = addp->in(Address); 776 offset = phase->MakeConX(t2->get_con() + t12->get_con()); 777 } else { 778 // Else move the constant to the right. ((A+con)+B) into ((A+B)+con) 779 address = phase->transform(new AddPNode(in(Base),addp->in(Address),in(Offset))); 780 offset = addp->in(Offset); 781 } 782 set_req_X(Address, address, phase); 783 set_req_X(Offset, offset, phase); 784 return this; 785 } 786 } 787 788 // Raw pointers? 789 if( in(Base)->bottom_type() == Type::TOP ) { 790 // If this is a null+long form (from unsafe accesses), switch to a rawptr. 791 if (phase->type(in(Address)) == TypePtr::NULL_PTR) { 792 Node* offset = in(Offset); 793 return new CastX2PNode(offset); 794 } 795 } 796 797 // If the right is an add of a constant, push the offset down. 798 // Convert: (ptr + (offset+con)) into (ptr+offset)+con. 799 // The idea is to merge array_base+scaled_index groups together, 800 // and only have different constant offsets from the same base. 801 const Node *add = in(Offset); 802 if( add->Opcode() == Op_AddX && add->in(1) != add ) { 803 const Type *t22 = phase->type( add->in(2) ); 804 if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant? 805 set_req(Address, phase->transform(new AddPNode(in(Base),in(Address),add->in(1)))); 806 set_req_X(Offset, add->in(2), phase); // puts add on igvn worklist if needed 807 return this; // Made progress 808 } 809 } 810 811 return nullptr; // No progress 812 } 813 814 //------------------------------bottom_type------------------------------------ 815 // Bottom-type is the pointer-type with unknown offset. 816 const Type *AddPNode::bottom_type() const { 817 if (in(Address) == nullptr) return TypePtr::BOTTOM; 818 const TypePtr *tp = in(Address)->bottom_type()->isa_ptr(); 819 if( !tp ) return Type::TOP; // TOP input means TOP output 820 assert( in(Offset)->Opcode() != Op_ConP, "" ); 821 const Type *t = in(Offset)->bottom_type(); 822 if( t == Type::TOP ) 823 return tp->add_offset(Type::OffsetTop); 824 const TypeX *tx = t->is_intptr_t(); 825 intptr_t txoffset = Type::OffsetBot; 826 if (tx->is_con()) { // Left input is an add of a constant? 827 txoffset = tx->get_con(); 828 } 829 if (tp->isa_aryptr()) { 830 // In the case of a flat inline type array, each field has its 831 // own slice so we need to extract the field being accessed from 832 // the address computation 833 return tp->is_aryptr()->add_field_offset_and_offset(txoffset); 834 } 835 return tp->add_offset(txoffset); 836 } 837 838 //------------------------------Value------------------------------------------ 839 const Type* AddPNode::Value(PhaseGVN* phase) const { 840 // Either input is TOP ==> the result is TOP 841 const Type *t1 = phase->type( in(Address) ); 842 const Type *t2 = phase->type( in(Offset) ); 843 if( t1 == Type::TOP ) return Type::TOP; 844 if( t2 == Type::TOP ) return Type::TOP; 845 846 // Left input is a pointer 847 const TypePtr *p1 = t1->isa_ptr(); 848 // Right input is an int 849 const TypeX *p2 = t2->is_intptr_t(); 850 // Add 'em 851 intptr_t p2offset = Type::OffsetBot; 852 if (p2->is_con()) { // Left input is an add of a constant? 853 p2offset = p2->get_con(); 854 } 855 if (p1->isa_aryptr()) { 856 // In the case of a flat inline type array, each field has its 857 // own slice so we need to extract the field being accessed from 858 // the address computation 859 return p1->is_aryptr()->add_field_offset_and_offset(p2offset); 860 } 861 return p1->add_offset(p2offset); 862 } 863 864 //------------------------Ideal_base_and_offset-------------------------------- 865 // Split an oop pointer into a base and offset. 866 // (The offset might be Type::OffsetBot in the case of an array.) 867 // Return the base, or null if failure. 868 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseValues* phase, 869 // second return value: 870 intptr_t& offset) { 871 if (ptr->is_AddP()) { 872 Node* base = ptr->in(AddPNode::Base); 873 Node* addr = ptr->in(AddPNode::Address); 874 Node* offs = ptr->in(AddPNode::Offset); 875 if (base == addr || base->is_top()) { 876 offset = phase->find_intptr_t_con(offs, Type::OffsetBot); 877 if (offset != Type::OffsetBot) { 878 return addr; 879 } 880 } 881 } 882 offset = Type::OffsetBot; 883 return nullptr; 884 } 885 886 //------------------------------unpack_offsets---------------------------------- 887 // Collect the AddP offset values into the elements array, giving up 888 // if there are more than length. 889 int AddPNode::unpack_offsets(Node* elements[], int length) const { 890 int count = 0; 891 Node const* addr = this; 892 Node* base = addr->in(AddPNode::Base); 893 while (addr->is_AddP()) { 894 if (addr->in(AddPNode::Base) != base) { 895 // give up 896 return -1; 897 } 898 elements[count++] = addr->in(AddPNode::Offset); 899 if (count == length) { 900 // give up 901 return -1; 902 } 903 addr = addr->in(AddPNode::Address); 904 } 905 if (addr != base) { 906 return -1; 907 } 908 return count; 909 } 910 911 //------------------------------match_edge------------------------------------- 912 // Do we Match on this edge index or not? Do not match base pointer edge 913 uint AddPNode::match_edge(uint idx) const { 914 return idx > Base; 915 } 916 917 //============================================================================= 918 //------------------------------Identity--------------------------------------- 919 Node* OrINode::Identity(PhaseGVN* phase) { 920 // x | x => x 921 if (in(1) == in(2)) { 922 return in(1); 923 } 924 925 return AddNode::Identity(phase); 926 } 927 928 // Find shift value for Integer or Long OR. 929 static Node* rotate_shift(PhaseGVN* phase, Node* lshift, Node* rshift, int mask) { 930 // val << norm_con_shift | val >> ({32|64} - norm_con_shift) => rotate_left val, norm_con_shift 931 const TypeInt* lshift_t = phase->type(lshift)->isa_int(); 932 const TypeInt* rshift_t = phase->type(rshift)->isa_int(); 933 if (lshift_t != nullptr && lshift_t->is_con() && 934 rshift_t != nullptr && rshift_t->is_con() && 935 ((lshift_t->get_con() & mask) == ((mask + 1) - (rshift_t->get_con() & mask)))) { 936 return phase->intcon(lshift_t->get_con() & mask); 937 } 938 // val << var_shift | val >> ({0|32|64} - var_shift) => rotate_left val, var_shift 939 if (rshift->Opcode() == Op_SubI && rshift->in(2) == lshift && rshift->in(1)->is_Con()){ 940 const TypeInt* shift_t = phase->type(rshift->in(1))->isa_int(); 941 if (shift_t != nullptr && shift_t->is_con() && 942 (shift_t->get_con() == 0 || shift_t->get_con() == (mask + 1))) { 943 return lshift; 944 } 945 } 946 return nullptr; 947 } 948 949 Node* OrINode::Ideal(PhaseGVN* phase, bool can_reshape) { 950 int lopcode = in(1)->Opcode(); 951 int ropcode = in(2)->Opcode(); 952 if (Matcher::match_rule_supported(Op_RotateLeft) && 953 lopcode == Op_LShiftI && ropcode == Op_URShiftI && in(1)->in(1) == in(2)->in(1)) { 954 Node* lshift = in(1)->in(2); 955 Node* rshift = in(2)->in(2); 956 Node* shift = rotate_shift(phase, lshift, rshift, 0x1F); 957 if (shift != nullptr) { 958 return new RotateLeftNode(in(1)->in(1), shift, TypeInt::INT); 959 } 960 return nullptr; 961 } 962 if (Matcher::match_rule_supported(Op_RotateRight) && 963 lopcode == Op_URShiftI && ropcode == Op_LShiftI && in(1)->in(1) == in(2)->in(1)) { 964 Node* rshift = in(1)->in(2); 965 Node* lshift = in(2)->in(2); 966 Node* shift = rotate_shift(phase, rshift, lshift, 0x1F); 967 if (shift != nullptr) { 968 return new RotateRightNode(in(1)->in(1), shift, TypeInt::INT); 969 } 970 } 971 972 // Convert "~a | ~b" into "~(a & b)" 973 if (AddNode::is_not(phase, in(1), T_INT) && AddNode::is_not(phase, in(2), T_INT)) { 974 Node* and_a_b = new AndINode(in(1)->in(1), in(2)->in(1)); 975 Node* tn = phase->transform(and_a_b); 976 return AddNode::make_not(phase, tn, T_INT); 977 } 978 return nullptr; 979 } 980 981 //------------------------------add_ring--------------------------------------- 982 // Supplied function returns the sum of the inputs IN THE CURRENT RING. For 983 // the logical operations the ring's ADD is really a logical OR function. 984 // This also type-checks the inputs for sanity. Guaranteed never to 985 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 986 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const { 987 const TypeInt *r0 = t0->is_int(); // Handy access 988 const TypeInt *r1 = t1->is_int(); 989 990 // If both args are bool, can figure out better types 991 if ( r0 == TypeInt::BOOL ) { 992 if ( r1 == TypeInt::ONE) { 993 return TypeInt::ONE; 994 } else if ( r1 == TypeInt::BOOL ) { 995 return TypeInt::BOOL; 996 } 997 } else if ( r0 == TypeInt::ONE ) { 998 if ( r1 == TypeInt::BOOL ) { 999 return TypeInt::ONE; 1000 } 1001 } 1002 1003 // If either input is not a constant, just return all integers. 1004 if( !r0->is_con() || !r1->is_con() ) 1005 return TypeInt::INT; // Any integer, but still no symbols. 1006 1007 // Otherwise just OR them bits. 1008 return TypeInt::make( r0->get_con() | r1->get_con() ); 1009 } 1010 1011 //============================================================================= 1012 //------------------------------Identity--------------------------------------- 1013 Node* OrLNode::Identity(PhaseGVN* phase) { 1014 // x | x => x 1015 if (in(1) == in(2)) { 1016 return in(1); 1017 } 1018 1019 return AddNode::Identity(phase); 1020 } 1021 1022 Node* OrLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1023 int lopcode = in(1)->Opcode(); 1024 int ropcode = in(2)->Opcode(); 1025 if (Matcher::match_rule_supported(Op_RotateLeft) && 1026 lopcode == Op_LShiftL && ropcode == Op_URShiftL && in(1)->in(1) == in(2)->in(1)) { 1027 Node* lshift = in(1)->in(2); 1028 Node* rshift = in(2)->in(2); 1029 Node* shift = rotate_shift(phase, lshift, rshift, 0x3F); 1030 if (shift != nullptr) { 1031 return new RotateLeftNode(in(1)->in(1), shift, TypeLong::LONG); 1032 } 1033 return nullptr; 1034 } 1035 if (Matcher::match_rule_supported(Op_RotateRight) && 1036 lopcode == Op_URShiftL && ropcode == Op_LShiftL && in(1)->in(1) == in(2)->in(1)) { 1037 Node* rshift = in(1)->in(2); 1038 Node* lshift = in(2)->in(2); 1039 Node* shift = rotate_shift(phase, rshift, lshift, 0x3F); 1040 if (shift != nullptr) { 1041 return new RotateRightNode(in(1)->in(1), shift, TypeLong::LONG); 1042 } 1043 } 1044 1045 // Convert "~a | ~b" into "~(a & b)" 1046 if (AddNode::is_not(phase, in(1), T_LONG) && AddNode::is_not(phase, in(2), T_LONG)) { 1047 Node* and_a_b = new AndLNode(in(1)->in(1), in(2)->in(1)); 1048 Node* tn = phase->transform(and_a_b); 1049 return AddNode::make_not(phase, tn, T_LONG); 1050 } 1051 1052 return nullptr; 1053 } 1054 1055 //------------------------------add_ring--------------------------------------- 1056 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const { 1057 const TypeLong *r0 = t0->is_long(); // Handy access 1058 const TypeLong *r1 = t1->is_long(); 1059 1060 // If either input is not a constant, just return all integers. 1061 if( !r0->is_con() || !r1->is_con() ) 1062 return TypeLong::LONG; // Any integer, but still no symbols. 1063 1064 // Otherwise just OR them bits. 1065 return TypeLong::make( r0->get_con() | r1->get_con() ); 1066 } 1067 1068 //---------------------------Helper ------------------------------------------- 1069 /* Decide if the given node is used only in arithmetic expressions(add or sub). 1070 */ 1071 static bool is_used_in_only_arithmetic(Node* n, BasicType bt) { 1072 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1073 Node* u = n->fast_out(i); 1074 if (u->Opcode() != Op_Add(bt) && u->Opcode() != Op_Sub(bt)) { 1075 return false; 1076 } 1077 } 1078 return true; 1079 } 1080 1081 //============================================================================= 1082 //------------------------------Idealize--------------------------------------- 1083 Node* XorINode::Ideal(PhaseGVN* phase, bool can_reshape) { 1084 Node* in1 = in(1); 1085 Node* in2 = in(2); 1086 1087 // Convert ~x into -1-x when ~x is used in an arithmetic expression 1088 // or x itself is an expression. 1089 if (phase->type(in2) == TypeInt::MINUS_1) { // follows LHS^(-1), i.e., ~LHS 1090 if (phase->is_IterGVN()) { 1091 if (is_used_in_only_arithmetic(this, T_INT) 1092 // LHS is arithmetic 1093 || (in1->Opcode() == Op_AddI || in1->Opcode() == Op_SubI)) { 1094 return new SubINode(in2, in1); 1095 } 1096 } else { 1097 // graph could be incomplete in GVN so we postpone to IGVN 1098 phase->record_for_igvn(this); 1099 } 1100 } 1101 1102 // Propagate xor through constant cmoves. This pattern can occur after expansion of Conv2B nodes. 1103 const TypeInt* in2_type = phase->type(in2)->isa_int(); 1104 if (in1->Opcode() == Op_CMoveI && in2_type != nullptr && in2_type->is_con()) { 1105 int in2_val = in2_type->get_con(); 1106 1107 // Get types of both sides of the CMove 1108 const TypeInt* left = phase->type(in1->in(CMoveNode::IfFalse))->isa_int(); 1109 const TypeInt* right = phase->type(in1->in(CMoveNode::IfTrue))->isa_int(); 1110 1111 // Ensure that both sides are int constants 1112 if (left != nullptr && right != nullptr && left->is_con() && right->is_con()) { 1113 Node* cond = in1->in(CMoveNode::Condition); 1114 1115 // Check that the comparison is a bool and that the cmp node type is correct 1116 if (cond->is_Bool()) { 1117 int cmp_op = cond->in(1)->Opcode(); 1118 1119 if (cmp_op == Op_CmpI || cmp_op == Op_CmpP) { 1120 int l_val = left->get_con(); 1121 int r_val = right->get_con(); 1122 1123 return new CMoveINode(cond, phase->intcon(l_val ^ in2_val), phase->intcon(r_val ^ in2_val), TypeInt::INT); 1124 } 1125 } 1126 } 1127 } 1128 1129 return AddNode::Ideal(phase, can_reshape); 1130 } 1131 1132 const Type* XorINode::Value(PhaseGVN* phase) const { 1133 Node* in1 = in(1); 1134 Node* in2 = in(2); 1135 const Type* t1 = phase->type(in1); 1136 const Type* t2 = phase->type(in2); 1137 if (t1 == Type::TOP || t2 == Type::TOP) { 1138 return Type::TOP; 1139 } 1140 // x ^ x ==> 0 1141 if (in1->eqv_uncast(in2)) { 1142 return add_id(); 1143 } 1144 // result of xor can only have bits sets where any of the 1145 // inputs have bits set. lo can always become 0. 1146 const TypeInt* t1i = t1->is_int(); 1147 const TypeInt* t2i = t2->is_int(); 1148 if ((t1i->_lo >= 0) && 1149 (t1i->_hi > 0) && 1150 (t2i->_lo >= 0) && 1151 (t2i->_hi > 0)) { 1152 // hi - set all bits below the highest bit. Using round_down to avoid overflow. 1153 const TypeInt* t1x = TypeInt::make(0, round_down_power_of_2(t1i->_hi) + (round_down_power_of_2(t1i->_hi) - 1), t1i->_widen); 1154 const TypeInt* t2x = TypeInt::make(0, round_down_power_of_2(t2i->_hi) + (round_down_power_of_2(t2i->_hi) - 1), t2i->_widen); 1155 return t1x->meet(t2x); 1156 } 1157 return AddNode::Value(phase); 1158 } 1159 1160 1161 //------------------------------add_ring--------------------------------------- 1162 // Supplied function returns the sum of the inputs IN THE CURRENT RING. For 1163 // the logical operations the ring's ADD is really a logical OR function. 1164 // This also type-checks the inputs for sanity. Guaranteed never to 1165 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 1166 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const { 1167 const TypeInt *r0 = t0->is_int(); // Handy access 1168 const TypeInt *r1 = t1->is_int(); 1169 1170 // Complementing a boolean? 1171 if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE 1172 || r1 == TypeInt::BOOL)) 1173 return TypeInt::BOOL; 1174 1175 if( !r0->is_con() || !r1->is_con() ) // Not constants 1176 return TypeInt::INT; // Any integer, but still no symbols. 1177 1178 // Otherwise just XOR them bits. 1179 return TypeInt::make( r0->get_con() ^ r1->get_con() ); 1180 } 1181 1182 //============================================================================= 1183 //------------------------------add_ring--------------------------------------- 1184 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const { 1185 const TypeLong *r0 = t0->is_long(); // Handy access 1186 const TypeLong *r1 = t1->is_long(); 1187 1188 // If either input is not a constant, just return all integers. 1189 if( !r0->is_con() || !r1->is_con() ) 1190 return TypeLong::LONG; // Any integer, but still no symbols. 1191 1192 // Otherwise just OR them bits. 1193 return TypeLong::make( r0->get_con() ^ r1->get_con() ); 1194 } 1195 1196 Node* XorLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1197 Node* in1 = in(1); 1198 Node* in2 = in(2); 1199 1200 // Convert ~x into -1-x when ~x is used in an arithmetic expression 1201 // or x itself is an arithmetic expression. 1202 if (phase->type(in2) == TypeLong::MINUS_1) { // follows LHS^(-1), i.e., ~LHS 1203 if (phase->is_IterGVN()) { 1204 if (is_used_in_only_arithmetic(this, T_LONG) 1205 // LHS is arithmetic 1206 || (in1->Opcode() == Op_AddL || in1->Opcode() == Op_SubL)) { 1207 return new SubLNode(in2, in1); 1208 } 1209 } else { 1210 // graph could be incomplete in GVN so we postpone to IGVN 1211 phase->record_for_igvn(this); 1212 } 1213 } 1214 return AddNode::Ideal(phase, can_reshape); 1215 } 1216 1217 const Type* XorLNode::Value(PhaseGVN* phase) const { 1218 Node* in1 = in(1); 1219 Node* in2 = in(2); 1220 const Type* t1 = phase->type(in1); 1221 const Type* t2 = phase->type(in2); 1222 if (t1 == Type::TOP || t2 == Type::TOP) { 1223 return Type::TOP; 1224 } 1225 // x ^ x ==> 0 1226 if (in1->eqv_uncast(in2)) { 1227 return add_id(); 1228 } 1229 // result of xor can only have bits sets where any of the 1230 // inputs have bits set. lo can always become 0. 1231 const TypeLong* t1l = t1->is_long(); 1232 const TypeLong* t2l = t2->is_long(); 1233 if ((t1l->_lo >= 0) && 1234 (t1l->_hi > 0) && 1235 (t2l->_lo >= 0) && 1236 (t2l->_hi > 0)) { 1237 // hi - set all bits below the highest bit. Using round_down to avoid overflow. 1238 const TypeLong* t1x = TypeLong::make(0, round_down_power_of_2(t1l->_hi) + (round_down_power_of_2(t1l->_hi) - 1), t1l->_widen); 1239 const TypeLong* t2x = TypeLong::make(0, round_down_power_of_2(t2l->_hi) + (round_down_power_of_2(t2l->_hi) - 1), t2l->_widen); 1240 return t1x->meet(t2x); 1241 } 1242 return AddNode::Value(phase); 1243 } 1244 1245 Node* MaxNode::build_min_max_int(Node* a, Node* b, bool is_max) { 1246 if (is_max) { 1247 return new MaxINode(a, b); 1248 } else { 1249 return new MinINode(a, b); 1250 } 1251 } 1252 1253 Node* MaxNode::build_min_max_long(PhaseGVN* phase, Node* a, Node* b, bool is_max) { 1254 if (is_max) { 1255 return new MaxLNode(phase->C, a, b); 1256 } else { 1257 return new MinLNode(phase->C, a, b); 1258 } 1259 } 1260 1261 Node* MaxNode::build_min_max(Node* a, Node* b, bool is_max, bool is_unsigned, const Type* t, PhaseGVN& gvn) { 1262 bool is_int = gvn.type(a)->isa_int(); 1263 assert(is_int || gvn.type(a)->isa_long(), "int or long inputs"); 1264 assert(is_int == (gvn.type(b)->isa_int() != nullptr), "inconsistent inputs"); 1265 BasicType bt = is_int ? T_INT: T_LONG; 1266 Node* hook = nullptr; 1267 if (gvn.is_IterGVN()) { 1268 // Make sure a and b are not destroyed 1269 hook = new Node(2); 1270 hook->init_req(0, a); 1271 hook->init_req(1, b); 1272 } 1273 Node* res = nullptr; 1274 if (is_int && !is_unsigned) { 1275 res = gvn.transform(build_min_max_int(a, b, is_max)); 1276 assert(gvn.type(res)->is_int()->_lo >= t->is_int()->_lo && gvn.type(res)->is_int()->_hi <= t->is_int()->_hi, "type doesn't match"); 1277 } else { 1278 Node* cmp = nullptr; 1279 if (is_max) { 1280 cmp = gvn.transform(CmpNode::make(a, b, bt, is_unsigned)); 1281 } else { 1282 cmp = gvn.transform(CmpNode::make(b, a, bt, is_unsigned)); 1283 } 1284 Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1285 res = gvn.transform(CMoveNode::make(nullptr, bol, a, b, t)); 1286 } 1287 if (hook != nullptr) { 1288 hook->destruct(&gvn); 1289 } 1290 return res; 1291 } 1292 1293 Node* MaxNode::build_min_max_diff_with_zero(Node* a, Node* b, bool is_max, const Type* t, PhaseGVN& gvn) { 1294 bool is_int = gvn.type(a)->isa_int(); 1295 assert(is_int || gvn.type(a)->isa_long(), "int or long inputs"); 1296 assert(is_int == (gvn.type(b)->isa_int() != nullptr), "inconsistent inputs"); 1297 BasicType bt = is_int ? T_INT: T_LONG; 1298 Node* zero = gvn.integercon(0, bt); 1299 Node* hook = nullptr; 1300 if (gvn.is_IterGVN()) { 1301 // Make sure a and b are not destroyed 1302 hook = new Node(2); 1303 hook->init_req(0, a); 1304 hook->init_req(1, b); 1305 } 1306 Node* cmp = nullptr; 1307 if (is_max) { 1308 cmp = gvn.transform(CmpNode::make(a, b, bt, false)); 1309 } else { 1310 cmp = gvn.transform(CmpNode::make(b, a, bt, false)); 1311 } 1312 Node* sub = gvn.transform(SubNode::make(a, b, bt)); 1313 Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1314 Node* res = gvn.transform(CMoveNode::make(nullptr, bol, sub, zero, t)); 1315 if (hook != nullptr) { 1316 hook->destruct(&gvn); 1317 } 1318 return res; 1319 } 1320 1321 // Check if addition of an integer with type 't' and a constant 'c' can overflow. 1322 static bool can_overflow(const TypeInt* t, jint c) { 1323 jint t_lo = t->_lo; 1324 jint t_hi = t->_hi; 1325 return ((c < 0 && (java_add(t_lo, c) > t_lo)) || 1326 (c > 0 && (java_add(t_hi, c) < t_hi))); 1327 } 1328 1329 // Let <x, x_off> = x_operands and <y, y_off> = y_operands. 1330 // If x == y and neither add(x, x_off) nor add(y, y_off) overflow, return 1331 // add(x, op(x_off, y_off)). Otherwise, return nullptr. 1332 Node* MaxNode::extract_add(PhaseGVN* phase, ConstAddOperands x_operands, ConstAddOperands y_operands) { 1333 Node* x = x_operands.first; 1334 Node* y = y_operands.first; 1335 int opcode = Opcode(); 1336 assert(opcode == Op_MaxI || opcode == Op_MinI, "Unexpected opcode"); 1337 const TypeInt* tx = phase->type(x)->isa_int(); 1338 jint x_off = x_operands.second; 1339 jint y_off = y_operands.second; 1340 if (x == y && tx != nullptr && 1341 !can_overflow(tx, x_off) && 1342 !can_overflow(tx, y_off)) { 1343 jint c = opcode == Op_MinI ? MIN2(x_off, y_off) : MAX2(x_off, y_off); 1344 return new AddINode(x, phase->intcon(c)); 1345 } 1346 return nullptr; 1347 } 1348 1349 // Try to cast n as an integer addition with a constant. Return: 1350 // <x, C>, if n == add(x, C), where 'C' is a non-TOP constant; 1351 // <nullptr, 0>, if n == add(x, C), where 'C' is a TOP constant; or 1352 // <n, 0>, otherwise. 1353 static ConstAddOperands as_add_with_constant(Node* n) { 1354 if (n->Opcode() != Op_AddI) { 1355 return ConstAddOperands(n, 0); 1356 } 1357 Node* x = n->in(1); 1358 Node* c = n->in(2); 1359 if (!c->is_Con()) { 1360 return ConstAddOperands(n, 0); 1361 } 1362 const Type* c_type = c->bottom_type(); 1363 if (c_type == Type::TOP) { 1364 return ConstAddOperands(nullptr, 0); 1365 } 1366 return ConstAddOperands(x, c_type->is_int()->get_con()); 1367 } 1368 1369 Node* MaxNode::IdealI(PhaseGVN* phase, bool can_reshape) { 1370 int opcode = Opcode(); 1371 assert(opcode == Op_MinI || opcode == Op_MaxI, "Unexpected opcode"); 1372 // Try to transform the following pattern, in any of its four possible 1373 // permutations induced by op's commutativity: 1374 // op(op(add(inner, inner_off), inner_other), add(outer, outer_off)) 1375 // into 1376 // op(add(inner, op(inner_off, outer_off)), inner_other), 1377 // where: 1378 // op is either MinI or MaxI, and 1379 // inner == outer, and 1380 // the additions cannot overflow. 1381 for (uint inner_op_index = 1; inner_op_index <= 2; inner_op_index++) { 1382 if (in(inner_op_index)->Opcode() != opcode) { 1383 continue; 1384 } 1385 Node* outer_add = in(inner_op_index == 1 ? 2 : 1); 1386 ConstAddOperands outer_add_operands = as_add_with_constant(outer_add); 1387 if (outer_add_operands.first == nullptr) { 1388 return nullptr; // outer_add has a TOP input, no need to continue. 1389 } 1390 // One operand is a MinI/MaxI and the other is an integer addition with 1391 // constant. Test the operands of the inner MinI/MaxI. 1392 for (uint inner_add_index = 1; inner_add_index <= 2; inner_add_index++) { 1393 Node* inner_op = in(inner_op_index); 1394 Node* inner_add = inner_op->in(inner_add_index); 1395 ConstAddOperands inner_add_operands = as_add_with_constant(inner_add); 1396 if (inner_add_operands.first == nullptr) { 1397 return nullptr; // inner_add has a TOP input, no need to continue. 1398 } 1399 // Try to extract the inner add. 1400 Node* add_extracted = extract_add(phase, inner_add_operands, outer_add_operands); 1401 if (add_extracted == nullptr) { 1402 continue; 1403 } 1404 Node* add_transformed = phase->transform(add_extracted); 1405 Node* inner_other = inner_op->in(inner_add_index == 1 ? 2 : 1); 1406 return build_min_max_int(add_transformed, inner_other, opcode == Op_MaxI); 1407 } 1408 } 1409 // Try to transform 1410 // op(add(x, x_off), add(y, y_off)) 1411 // into 1412 // add(x, op(x_off, y_off)), 1413 // where: 1414 // op is either MinI or MaxI, and 1415 // inner == outer, and 1416 // the additions cannot overflow. 1417 ConstAddOperands xC = as_add_with_constant(in(1)); 1418 ConstAddOperands yC = as_add_with_constant(in(2)); 1419 if (xC.first == nullptr || yC.first == nullptr) return nullptr; 1420 return extract_add(phase, xC, yC); 1421 } 1422 1423 // Ideal transformations for MaxINode 1424 Node* MaxINode::Ideal(PhaseGVN* phase, bool can_reshape) { 1425 return IdealI(phase, can_reshape); 1426 } 1427 1428 //============================================================================= 1429 //------------------------------add_ring--------------------------------------- 1430 // Supplied function returns the sum of the inputs. 1431 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const { 1432 const TypeInt *r0 = t0->is_int(); // Handy access 1433 const TypeInt *r1 = t1->is_int(); 1434 1435 // Otherwise just MAX them bits. 1436 return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); 1437 } 1438 1439 //============================================================================= 1440 //------------------------------Idealize--------------------------------------- 1441 // MINs show up in range-check loop limit calculations. Look for 1442 // "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)" 1443 Node* MinINode::Ideal(PhaseGVN* phase, bool can_reshape) { 1444 return IdealI(phase, can_reshape); 1445 } 1446 1447 //------------------------------add_ring--------------------------------------- 1448 // Supplied function returns the sum of the inputs. 1449 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const { 1450 const TypeInt *r0 = t0->is_int(); // Handy access 1451 const TypeInt *r1 = t1->is_int(); 1452 1453 // Otherwise just MIN them bits. 1454 return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); 1455 } 1456 1457 // Collapse the "addition with overflow-protection" pattern, and the symmetrical 1458 // "subtraction with underflow-protection" pattern. These are created during the 1459 // unrolling, when we have to adjust the limit by subtracting the stride, but want 1460 // to protect against underflow: MaxL(SubL(limit, stride), min_jint). 1461 // If we have more than one of those in a sequence: 1462 // 1463 // x con2 1464 // | | 1465 // AddL clamp2 1466 // | | 1467 // Max/MinL con1 1468 // | | 1469 // AddL clamp1 1470 // | | 1471 // Max/MinL (n) 1472 // 1473 // We want to collapse it to: 1474 // 1475 // x con1 con2 1476 // | | | 1477 // | AddLNode (new_con) 1478 // | | 1479 // AddLNode clamp1 1480 // | | 1481 // Max/MinL (n) 1482 // 1483 // Note: we assume that SubL was already replaced by an AddL, and that the stride 1484 // has its sign flipped: SubL(limit, stride) -> AddL(limit, -stride). 1485 static Node* fold_subI_no_underflow_pattern(Node* n, PhaseGVN* phase) { 1486 assert(n->Opcode() == Op_MaxL || n->Opcode() == Op_MinL, "sanity"); 1487 // Check that the two clamps have the correct values. 1488 jlong clamp = (n->Opcode() == Op_MaxL) ? min_jint : max_jint; 1489 auto is_clamp = [&](Node* c) { 1490 const TypeLong* t = phase->type(c)->isa_long(); 1491 return t != nullptr && t->is_con() && 1492 t->get_con() == clamp; 1493 }; 1494 // Check that the constants are negative if MaxL, and positive if MinL. 1495 auto is_sub_con = [&](Node* c) { 1496 const TypeLong* t = phase->type(c)->isa_long(); 1497 return t != nullptr && t->is_con() && 1498 t->get_con() < max_jint && t->get_con() > min_jint && 1499 (t->get_con() < 0) == (n->Opcode() == Op_MaxL); 1500 }; 1501 // Verify the graph level by level: 1502 Node* add1 = n->in(1); 1503 Node* clamp1 = n->in(2); 1504 if (add1->Opcode() == Op_AddL && is_clamp(clamp1)) { 1505 Node* max2 = add1->in(1); 1506 Node* con1 = add1->in(2); 1507 if (max2->Opcode() == n->Opcode() && is_sub_con(con1)) { 1508 Node* add2 = max2->in(1); 1509 Node* clamp2 = max2->in(2); 1510 if (add2->Opcode() == Op_AddL && is_clamp(clamp2)) { 1511 Node* x = add2->in(1); 1512 Node* con2 = add2->in(2); 1513 if (is_sub_con(con2)) { 1514 Node* new_con = phase->transform(new AddLNode(con1, con2)); 1515 Node* new_sub = phase->transform(new AddLNode(x, new_con)); 1516 n->set_req_X(1, new_sub, phase); 1517 return n; 1518 } 1519 } 1520 } 1521 } 1522 return nullptr; 1523 } 1524 1525 const Type* MaxLNode::add_ring(const Type* t0, const Type* t1) const { 1526 const TypeLong* r0 = t0->is_long(); 1527 const TypeLong* r1 = t1->is_long(); 1528 1529 return TypeLong::make(MAX2(r0->_lo, r1->_lo), MAX2(r0->_hi, r1->_hi), MAX2(r0->_widen, r1->_widen)); 1530 } 1531 1532 Node* MaxLNode::Identity(PhaseGVN* phase) { 1533 const TypeLong* t1 = phase->type(in(1))->is_long(); 1534 const TypeLong* t2 = phase->type(in(2))->is_long(); 1535 1536 // Can we determine maximum statically? 1537 if (t1->_lo >= t2->_hi) { 1538 return in(1); 1539 } else if (t2->_lo >= t1->_hi) { 1540 return in(2); 1541 } 1542 1543 return MaxNode::Identity(phase); 1544 } 1545 1546 Node* MaxLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1547 Node* n = AddNode::Ideal(phase, can_reshape); 1548 if (n != nullptr) { 1549 return n; 1550 } 1551 if (can_reshape) { 1552 return fold_subI_no_underflow_pattern(this, phase); 1553 } 1554 return nullptr; 1555 } 1556 1557 const Type* MinLNode::add_ring(const Type* t0, const Type* t1) const { 1558 const TypeLong* r0 = t0->is_long(); 1559 const TypeLong* r1 = t1->is_long(); 1560 1561 return TypeLong::make(MIN2(r0->_lo, r1->_lo), MIN2(r0->_hi, r1->_hi), MIN2(r0->_widen, r1->_widen)); 1562 } 1563 1564 Node* MinLNode::Identity(PhaseGVN* phase) { 1565 const TypeLong* t1 = phase->type(in(1))->is_long(); 1566 const TypeLong* t2 = phase->type(in(2))->is_long(); 1567 1568 // Can we determine minimum statically? 1569 if (t1->_lo >= t2->_hi) { 1570 return in(2); 1571 } else if (t2->_lo >= t1->_hi) { 1572 return in(1); 1573 } 1574 1575 return MaxNode::Identity(phase); 1576 } 1577 1578 Node* MinLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1579 Node* n = AddNode::Ideal(phase, can_reshape); 1580 if (n != nullptr) { 1581 return n; 1582 } 1583 if (can_reshape) { 1584 return fold_subI_no_underflow_pattern(this, phase); 1585 } 1586 return nullptr; 1587 } 1588 1589 Node* MaxNode::Identity(PhaseGVN* phase) { 1590 if (in(1) == in(2)) { 1591 return in(1); 1592 } 1593 1594 return AddNode::Identity(phase); 1595 } 1596 1597 //------------------------------add_ring--------------------------------------- 1598 const Type* MinFNode::add_ring(const Type* t0, const Type* t1 ) const { 1599 const TypeF* r0 = t0->isa_float_constant(); 1600 const TypeF* r1 = t1->isa_float_constant(); 1601 if (r0 == nullptr || r1 == nullptr) { 1602 return bottom_type(); 1603 } 1604 1605 if (r0->is_nan()) { 1606 return r0; 1607 } 1608 if (r1->is_nan()) { 1609 return r1; 1610 } 1611 1612 float f0 = r0->getf(); 1613 float f1 = r1->getf(); 1614 if (f0 != 0.0f || f1 != 0.0f) { 1615 return f0 < f1 ? r0 : r1; 1616 } 1617 1618 // handle min of 0.0, -0.0 case. 1619 return (jint_cast(f0) < jint_cast(f1)) ? r0 : r1; 1620 } 1621 1622 //------------------------------add_ring--------------------------------------- 1623 const Type* MinDNode::add_ring(const Type* t0, const Type* t1) const { 1624 const TypeD* r0 = t0->isa_double_constant(); 1625 const TypeD* r1 = t1->isa_double_constant(); 1626 if (r0 == nullptr || r1 == nullptr) { 1627 return bottom_type(); 1628 } 1629 1630 if (r0->is_nan()) { 1631 return r0; 1632 } 1633 if (r1->is_nan()) { 1634 return r1; 1635 } 1636 1637 double d0 = r0->getd(); 1638 double d1 = r1->getd(); 1639 if (d0 != 0.0 || d1 != 0.0) { 1640 return d0 < d1 ? r0 : r1; 1641 } 1642 1643 // handle min of 0.0, -0.0 case. 1644 return (jlong_cast(d0) < jlong_cast(d1)) ? r0 : r1; 1645 } 1646 1647 //------------------------------add_ring--------------------------------------- 1648 const Type* MaxFNode::add_ring(const Type* t0, const Type* t1) const { 1649 const TypeF* r0 = t0->isa_float_constant(); 1650 const TypeF* r1 = t1->isa_float_constant(); 1651 if (r0 == nullptr || r1 == nullptr) { 1652 return bottom_type(); 1653 } 1654 1655 if (r0->is_nan()) { 1656 return r0; 1657 } 1658 if (r1->is_nan()) { 1659 return r1; 1660 } 1661 1662 float f0 = r0->getf(); 1663 float f1 = r1->getf(); 1664 if (f0 != 0.0f || f1 != 0.0f) { 1665 return f0 > f1 ? r0 : r1; 1666 } 1667 1668 // handle max of 0.0,-0.0 case. 1669 return (jint_cast(f0) > jint_cast(f1)) ? r0 : r1; 1670 } 1671 1672 //------------------------------add_ring--------------------------------------- 1673 const Type* MaxDNode::add_ring(const Type* t0, const Type* t1) const { 1674 const TypeD* r0 = t0->isa_double_constant(); 1675 const TypeD* r1 = t1->isa_double_constant(); 1676 if (r0 == nullptr || r1 == nullptr) { 1677 return bottom_type(); 1678 } 1679 1680 if (r0->is_nan()) { 1681 return r0; 1682 } 1683 if (r1->is_nan()) { 1684 return r1; 1685 } 1686 1687 double d0 = r0->getd(); 1688 double d1 = r1->getd(); 1689 if (d0 != 0.0 || d1 != 0.0) { 1690 return d0 > d1 ? r0 : r1; 1691 } 1692 1693 // handle max of 0.0, -0.0 case. 1694 return (jlong_cast(d0) > jlong_cast(d1)) ? r0 : r1; 1695 }