1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "memory/allocation.inline.hpp" 26 #include "opto/addnode.hpp" 27 #include "opto/castnode.hpp" 28 #include "opto/cfgnode.hpp" 29 #include "opto/connode.hpp" 30 #include "opto/machnode.hpp" 31 #include "opto/movenode.hpp" 32 #include "opto/mulnode.hpp" 33 #include "opto/phaseX.hpp" 34 #include "opto/subnode.hpp" 35 #include "runtime/stubRoutines.hpp" 36 #include "opto/utilities/xor.hpp" 37 38 // Portions of code courtesy of Clifford Click 39 40 // Classic Add functionality. This covers all the usual 'add' behaviors for 41 // an algebraic ring. Add-integer, add-float, add-double, and binary-or are 42 // all inherited from this class. The various identity values are supplied 43 // by virtual functions. 44 45 46 //============================================================================= 47 //------------------------------hash------------------------------------------- 48 // Hash function over AddNodes. Needs to be commutative; i.e., I swap 49 // (commute) inputs to AddNodes willy-nilly so the hash function must return 50 // the same value in the presence of edge swapping. 51 uint AddNode::hash() const { 52 return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode(); 53 } 54 55 //------------------------------Identity--------------------------------------- 56 // If either input is a constant 0, return the other input. 57 Node* AddNode::Identity(PhaseGVN* phase) { 58 const Type *zero = add_id(); // The additive identity 59 if( phase->type( in(1) )->higher_equal( zero ) ) return in(2); 60 if( phase->type( in(2) )->higher_equal( zero ) ) return in(1); 61 return this; 62 } 63 64 //------------------------------commute---------------------------------------- 65 // Commute operands to move loads and constants to the right. 66 static bool commute(PhaseGVN* phase, Node* add) { 67 Node *in1 = add->in(1); 68 Node *in2 = add->in(2); 69 70 // convert "max(a,b) + min(a,b)" into "a+b". 71 if ((in1->Opcode() == add->as_Add()->max_opcode() && in2->Opcode() == add->as_Add()->min_opcode()) 72 || (in1->Opcode() == add->as_Add()->min_opcode() && in2->Opcode() == add->as_Add()->max_opcode())) { 73 Node *in11 = in1->in(1); 74 Node *in12 = in1->in(2); 75 76 Node *in21 = in2->in(1); 77 Node *in22 = in2->in(2); 78 79 if ((in11 == in21 && in12 == in22) || 80 (in11 == in22 && in12 == in21)) { 81 add->set_req_X(1, in11, phase); 82 add->set_req_X(2, in12, phase); 83 return true; 84 } 85 } 86 87 bool con_left = phase->type(in1)->singleton(); 88 bool con_right = phase->type(in2)->singleton(); 89 90 // Convert "1+x" into "x+1". 91 // Right is a constant; leave it 92 if( con_right ) return false; 93 // Left is a constant; move it right. 94 if( con_left ) { 95 add->swap_edges(1, 2); 96 return true; 97 } 98 99 // Convert "Load+x" into "x+Load". 100 // Now check for loads 101 if (in2->is_Load()) { 102 if (!in1->is_Load()) { 103 // already x+Load to return 104 return false; 105 } 106 // both are loads, so fall through to sort inputs by idx 107 } else if( in1->is_Load() ) { 108 // Left is a Load and Right is not; move it right. 109 add->swap_edges(1, 2); 110 return true; 111 } 112 113 PhiNode *phi; 114 // Check for tight loop increments: Loop-phi of Add of loop-phi 115 if (in1->is_Phi() && (phi = in1->as_Phi()) && phi->region()->is_Loop() && phi->in(2) == add) 116 return false; 117 if (in2->is_Phi() && (phi = in2->as_Phi()) && phi->region()->is_Loop() && phi->in(2) == add) { 118 add->swap_edges(1, 2); 119 return true; 120 } 121 122 // Otherwise, sort inputs (commutativity) to help value numbering. 123 if( in1->_idx > in2->_idx ) { 124 add->swap_edges(1, 2); 125 return true; 126 } 127 return false; 128 } 129 130 //------------------------------Idealize--------------------------------------- 131 // If we get here, we assume we are associative! 132 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) { 133 const Type *t1 = phase->type(in(1)); 134 const Type *t2 = phase->type(in(2)); 135 bool con_left = t1->singleton(); 136 bool con_right = t2->singleton(); 137 138 // Check for commutative operation desired 139 if (commute(phase, this)) return this; 140 141 AddNode *progress = nullptr; // Progress flag 142 143 // Convert "(x+1)+2" into "x+(1+2)". If the right input is a 144 // constant, and the left input is an add of a constant, flatten the 145 // expression tree. 146 Node *add1 = in(1); 147 Node *add2 = in(2); 148 int add1_op = add1->Opcode(); 149 int this_op = Opcode(); 150 if (con_right && t2 != Type::TOP && // Right input is a constant? 151 add1_op == this_op) { // Left input is an Add? 152 153 // Type of left _in right input 154 const Type *t12 = phase->type(add1->in(2)); 155 if (t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant? 156 // Check for rare case of closed data cycle which can happen inside 157 // unreachable loops. In these cases the computation is undefined. 158 #ifdef ASSERT 159 Node *add11 = add1->in(1); 160 int add11_op = add11->Opcode(); 161 if ((add1 == add1->in(1)) 162 || (add11_op == this_op && add11->in(1) == add1)) { 163 assert(false, "dead loop in AddNode::Ideal"); 164 } 165 #endif 166 // The Add of the flattened expression 167 Node *x1 = add1->in(1); 168 Node *x2 = phase->makecon(add1->as_Add()->add_ring(t2, t12)); 169 set_req_X(2, x2, phase); 170 set_req_X(1, x1, phase); 171 progress = this; // Made progress 172 add1 = in(1); 173 add1_op = add1->Opcode(); 174 } 175 } 176 177 // Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree. 178 if (add1_op == this_op && !con_right) { 179 Node *a12 = add1->in(2); 180 const Type *t12 = phase->type( a12 ); 181 if (t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) && 182 !(add1->in(1)->is_Phi() && (add1->in(1)->as_Phi()->is_tripcount(T_INT) || add1->in(1)->as_Phi()->is_tripcount(T_LONG)))) { 183 assert(add1->in(1) != this, "dead loop in AddNode::Ideal"); 184 add2 = add1->clone(); 185 add2->set_req(2, in(2)); 186 add2 = phase->transform(add2); 187 set_req_X(1, add2, phase); 188 set_req_X(2, a12, phase); 189 progress = this; 190 add2 = a12; 191 } 192 } 193 194 // Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree. 195 int add2_op = add2->Opcode(); 196 if (add2_op == this_op && !con_left) { 197 Node *a22 = add2->in(2); 198 const Type *t22 = phase->type( a22 ); 199 if (t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) && 200 !(add2->in(1)->is_Phi() && (add2->in(1)->as_Phi()->is_tripcount(T_INT) || add2->in(1)->as_Phi()->is_tripcount(T_LONG)))) { 201 assert(add2->in(1) != this, "dead loop in AddNode::Ideal"); 202 Node *addx = add2->clone(); 203 addx->set_req(1, in(1)); 204 addx->set_req(2, add2->in(1)); 205 addx = phase->transform(addx); 206 set_req_X(1, addx, phase); 207 set_req_X(2, a22, phase); 208 progress = this; 209 } 210 } 211 212 return progress; 213 } 214 215 //------------------------------Value----------------------------------------- 216 // An add node sums it's two _in. If one input is an RSD, we must mixin 217 // the other input's symbols. 218 const Type* AddNode::Value(PhaseGVN* phase) const { 219 // Either input is TOP ==> the result is TOP 220 const Type* t1 = phase->type(in(1)); 221 const Type* t2 = phase->type(in(2)); 222 if (t1 == Type::TOP || t2 == Type::TOP) { 223 return Type::TOP; 224 } 225 226 // Check for an addition involving the additive identity 227 const Type* tadd = add_of_identity(t1, t2); 228 if (tadd != nullptr) { 229 return tadd; 230 } 231 232 return add_ring(t1, t2); // Local flavor of type addition 233 } 234 235 //------------------------------add_identity----------------------------------- 236 // Check for addition of the identity 237 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const { 238 const Type *zero = add_id(); // The additive identity 239 if( t1->higher_equal( zero ) ) return t2; 240 if( t2->higher_equal( zero ) ) return t1; 241 242 return nullptr; 243 } 244 245 AddNode* AddNode::make(Node* in1, Node* in2, BasicType bt) { 246 switch (bt) { 247 case T_INT: 248 return new AddINode(in1, in2); 249 case T_LONG: 250 return new AddLNode(in1, in2); 251 default: 252 fatal("Not implemented for %s", type2name(bt)); 253 } 254 return nullptr; 255 } 256 257 bool AddNode::is_not(PhaseGVN* phase, Node* n, BasicType bt) { 258 return n->Opcode() == Op_Xor(bt) && phase->type(n->in(2)) == TypeInteger::minus_1(bt); 259 } 260 261 AddNode* AddNode::make_not(PhaseGVN* phase, Node* n, BasicType bt) { 262 switch (bt) { 263 case T_INT: 264 return new XorINode(n, phase->intcon(-1)); 265 case T_LONG: 266 return new XorLNode(n, phase->longcon(-1L)); 267 default: 268 fatal("Not implemented for %s", type2name(bt)); 269 } 270 return nullptr; 271 } 272 273 //============================================================================= 274 //------------------------------Idealize--------------------------------------- 275 Node* AddNode::IdealIL(PhaseGVN* phase, bool can_reshape, BasicType bt) { 276 Node* in1 = in(1); 277 Node* in2 = in(2); 278 int op1 = in1->Opcode(); 279 int op2 = in2->Opcode(); 280 // Fold (con1-x)+con2 into (con1+con2)-x 281 if (op1 == Op_Add(bt) && op2 == Op_Sub(bt)) { 282 // Swap edges to try optimizations below 283 in1 = in2; 284 in2 = in(1); 285 op1 = op2; 286 op2 = in2->Opcode(); 287 } 288 if (op1 == Op_Sub(bt)) { 289 const Type* t_sub1 = phase->type(in1->in(1)); 290 const Type* t_2 = phase->type(in2 ); 291 if (t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP) { 292 return SubNode::make(phase->makecon(add_ring(t_sub1, t_2)), in1->in(2), bt); 293 } 294 // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)" 295 if (op2 == Op_Sub(bt)) { 296 // Check for dead cycle: d = (a-b)+(c-d) 297 assert( in1->in(2) != this && in2->in(2) != this, 298 "dead loop in AddINode::Ideal" ); 299 Node* sub = SubNode::make(nullptr, nullptr, bt); 300 Node* sub_in1; 301 PhaseIterGVN* igvn = phase->is_IterGVN(); 302 // During IGVN, if both inputs of the new AddNode are a tree of SubNodes, this same transformation will be applied 303 // to every node of the tree. Calling transform() causes the transformation to be applied recursively, once per 304 // tree node whether some subtrees are identical or not. Pushing to the IGVN worklist instead, causes the transform 305 // to be applied once per unique subtrees (because all uses of a subtree are updated with the result of the 306 // transformation). In case of a large tree, this can make a difference in compilation time. 307 if (igvn != nullptr) { 308 sub_in1 = igvn->register_new_node_with_optimizer(AddNode::make(in1->in(1), in2->in(1), bt)); 309 } else { 310 sub_in1 = phase->transform(AddNode::make(in1->in(1), in2->in(1), bt)); 311 } 312 Node* sub_in2; 313 if (igvn != nullptr) { 314 sub_in2 = igvn->register_new_node_with_optimizer(AddNode::make(in1->in(2), in2->in(2), bt)); 315 } else { 316 sub_in2 = phase->transform(AddNode::make(in1->in(2), in2->in(2), bt)); 317 } 318 sub->init_req(1, sub_in1); 319 sub->init_req(2, sub_in2); 320 return sub; 321 } 322 // Convert "(a-b)+(b+c)" into "(a+c)" 323 if (op2 == Op_Add(bt) && in1->in(2) == in2->in(1)) { 324 assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal/AddLNode::Ideal"); 325 return AddNode::make(in1->in(1), in2->in(2), bt); 326 } 327 // Convert "(a-b)+(c+b)" into "(a+c)" 328 if (op2 == Op_Add(bt) && in1->in(2) == in2->in(2)) { 329 assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal/AddLNode::Ideal"); 330 return AddNode::make(in1->in(1), in2->in(1), bt); 331 } 332 } 333 334 // Convert (con - y) + x into "(x - y) + con" 335 if (op1 == Op_Sub(bt) && in1->in(1)->Opcode() == Op_ConIL(bt) 336 && in1 != in1->in(2) && !(in1->in(2)->is_Phi() && in1->in(2)->as_Phi()->is_tripcount(bt))) { 337 return AddNode::make(phase->transform(SubNode::make(in2, in1->in(2), bt)), in1->in(1), bt); 338 } 339 340 // Convert x + (con - y) into "(x - y) + con" 341 if (op2 == Op_Sub(bt) && in2->in(1)->Opcode() == Op_ConIL(bt) 342 && in2 != in2->in(2) && !(in2->in(2)->is_Phi() && in2->in(2)->as_Phi()->is_tripcount(bt))) { 343 return AddNode::make(phase->transform(SubNode::make(in1, in2->in(2), bt)), in2->in(1), bt); 344 } 345 346 // Associative 347 if (op1 == Op_Mul(bt) && op2 == Op_Mul(bt)) { 348 Node* add_in1 = nullptr; 349 Node* add_in2 = nullptr; 350 Node* mul_in = nullptr; 351 352 if (in1->in(1) == in2->in(1)) { 353 // Convert "a*b+a*c into a*(b+c) 354 add_in1 = in1->in(2); 355 add_in2 = in2->in(2); 356 mul_in = in1->in(1); 357 } else if (in1->in(2) == in2->in(1)) { 358 // Convert a*b+b*c into b*(a+c) 359 add_in1 = in1->in(1); 360 add_in2 = in2->in(2); 361 mul_in = in1->in(2); 362 } else if (in1->in(2) == in2->in(2)) { 363 // Convert a*c+b*c into (a+b)*c 364 add_in1 = in1->in(1); 365 add_in2 = in2->in(1); 366 mul_in = in1->in(2); 367 } else if (in1->in(1) == in2->in(2)) { 368 // Convert a*b+c*a into a*(b+c) 369 add_in1 = in1->in(2); 370 add_in2 = in2->in(1); 371 mul_in = in1->in(1); 372 } 373 374 if (mul_in != nullptr) { 375 Node* add = phase->transform(AddNode::make(add_in1, add_in2, bt)); 376 return MulNode::make(mul_in, add, bt); 377 } 378 } 379 380 // Convert (x >>> rshift) + (x << lshift) into RotateRight(x, rshift) 381 if (Matcher::match_rule_supported(Op_RotateRight) && 382 ((op1 == Op_URShift(bt) && op2 == Op_LShift(bt)) || (op1 == Op_LShift(bt) && op2 == Op_URShift(bt))) && 383 in1->in(1) != nullptr && in1->in(1) == in2->in(1)) { 384 Node* rshift = op1 == Op_URShift(bt) ? in1->in(2) : in2->in(2); 385 Node* lshift = op1 == Op_URShift(bt) ? in2->in(2) : in1->in(2); 386 if (rshift != nullptr && lshift != nullptr) { 387 const TypeInt* rshift_t = phase->type(rshift)->isa_int(); 388 const TypeInt* lshift_t = phase->type(lshift)->isa_int(); 389 int bits = bt == T_INT ? 32 : 64; 390 int mask = bt == T_INT ? 0x1F : 0x3F; 391 if (lshift_t != nullptr && lshift_t->is_con() && 392 rshift_t != nullptr && rshift_t->is_con() && 393 ((lshift_t->get_con() & mask) == (bits - (rshift_t->get_con() & mask)))) { 394 return new RotateRightNode(in1->in(1), phase->intcon(rshift_t->get_con() & mask), TypeInteger::bottom(bt)); 395 } 396 } 397 } 398 399 return AddNode::Ideal(phase, can_reshape); 400 } 401 402 403 Node* AddINode::Ideal(PhaseGVN* phase, bool can_reshape) { 404 Node* in1 = in(1); 405 Node* in2 = in(2); 406 int op1 = in1->Opcode(); 407 int op2 = in2->Opcode(); 408 409 // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y. 410 // Helps with array allocation math constant folding 411 // See 4790063: 412 // Unrestricted transformation is unsafe for some runtime values of 'x' 413 // ( x == 0, z == 1, y == -1 ) fails 414 // ( x == -5, z == 1, y == 1 ) fails 415 // Transform works for small z and small negative y when the addition 416 // (x + (y << z)) does not cross zero. 417 // Implement support for negative y and (x >= -(y << z)) 418 // Have not observed cases where type information exists to support 419 // positive y and (x <= -(y << z)) 420 if (op1 == Op_URShiftI && op2 == Op_ConI && 421 in1->in(2)->Opcode() == Op_ConI) { 422 jint z = phase->type(in1->in(2))->is_int()->get_con() & 0x1f; // only least significant 5 bits matter 423 jint y = phase->type(in2)->is_int()->get_con(); 424 425 if (z < 5 && -5 < y && y < 0) { 426 const Type* t_in11 = phase->type(in1->in(1)); 427 if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z))) { 428 Node* a = phase->transform(new AddINode( in1->in(1), phase->intcon(y<<z))); 429 return new URShiftINode(a, in1->in(2)); 430 } 431 } 432 } 433 434 return AddNode::IdealIL(phase, can_reshape, T_INT); 435 } 436 437 438 //------------------------------Identity--------------------------------------- 439 // Fold (x-y)+y OR y+(x-y) into x 440 Node* AddINode::Identity(PhaseGVN* phase) { 441 if (in(1)->Opcode() == Op_SubI && in(1)->in(2) == in(2)) { 442 return in(1)->in(1); 443 } else if (in(2)->Opcode() == Op_SubI && in(2)->in(2) == in(1)) { 444 return in(2)->in(1); 445 } 446 return AddNode::Identity(phase); 447 } 448 449 450 //------------------------------add_ring--------------------------------------- 451 // Supplied function returns the sum of the inputs. Guaranteed never 452 // to be passed a TOP or BOTTOM type, these are filtered out by 453 // pre-check. 454 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const { 455 const TypeInt *r0 = t0->is_int(); // Handy access 456 const TypeInt *r1 = t1->is_int(); 457 int lo = java_add(r0->_lo, r1->_lo); 458 int hi = java_add(r0->_hi, r1->_hi); 459 if( !(r0->is_con() && r1->is_con()) ) { 460 // Not both constants, compute approximate result 461 if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { 462 lo = min_jint; hi = max_jint; // Underflow on the low side 463 } 464 if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { 465 lo = min_jint; hi = max_jint; // Overflow on the high side 466 } 467 if( lo > hi ) { // Handle overflow 468 lo = min_jint; hi = max_jint; 469 } 470 } else { 471 // both constants, compute precise result using 'lo' and 'hi' 472 // Semantics define overflow and underflow for integer addition 473 // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 474 } 475 return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); 476 } 477 478 479 //============================================================================= 480 //------------------------------Idealize--------------------------------------- 481 Node* AddLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 482 return AddNode::IdealIL(phase, can_reshape, T_LONG); 483 } 484 485 486 //------------------------------Identity--------------------------------------- 487 // Fold (x-y)+y OR y+(x-y) into x 488 Node* AddLNode::Identity(PhaseGVN* phase) { 489 if (in(1)->Opcode() == Op_SubL && in(1)->in(2) == in(2)) { 490 return in(1)->in(1); 491 } else if (in(2)->Opcode() == Op_SubL && in(2)->in(2) == in(1)) { 492 return in(2)->in(1); 493 } 494 return AddNode::Identity(phase); 495 } 496 497 498 //------------------------------add_ring--------------------------------------- 499 // Supplied function returns the sum of the inputs. Guaranteed never 500 // to be passed a TOP or BOTTOM type, these are filtered out by 501 // pre-check. 502 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const { 503 const TypeLong *r0 = t0->is_long(); // Handy access 504 const TypeLong *r1 = t1->is_long(); 505 jlong lo = java_add(r0->_lo, r1->_lo); 506 jlong hi = java_add(r0->_hi, r1->_hi); 507 if( !(r0->is_con() && r1->is_con()) ) { 508 // Not both constants, compute approximate result 509 if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { 510 lo =min_jlong; hi = max_jlong; // Underflow on the low side 511 } 512 if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { 513 lo = min_jlong; hi = max_jlong; // Overflow on the high side 514 } 515 if( lo > hi ) { // Handle overflow 516 lo = min_jlong; hi = max_jlong; 517 } 518 } else { 519 // both constants, compute precise result using 'lo' and 'hi' 520 // Semantics define overflow and underflow for integer addition 521 // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 522 } 523 return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); 524 } 525 526 527 //============================================================================= 528 //------------------------------add_of_identity-------------------------------- 529 // Check for addition of the identity 530 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const { 531 // x ADD 0 should return x unless 'x' is a -zero 532 // 533 // const Type *zero = add_id(); // The additive identity 534 // jfloat f1 = t1->getf(); 535 // jfloat f2 = t2->getf(); 536 // 537 // if( t1->higher_equal( zero ) ) return t2; 538 // if( t2->higher_equal( zero ) ) return t1; 539 540 return nullptr; 541 } 542 543 //------------------------------add_ring--------------------------------------- 544 // Supplied function returns the sum of the inputs. 545 // This also type-checks the inputs for sanity. Guaranteed never to 546 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 547 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const { 548 if (!t0->isa_float_constant() || !t1->isa_float_constant()) { 549 return bottom_type(); 550 } 551 return TypeF::make( t0->getf() + t1->getf() ); 552 } 553 554 //------------------------------Ideal------------------------------------------ 555 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) { 556 // Floating point additions are not associative because of boundary conditions (infinity) 557 return commute(phase, this) ? this : nullptr; 558 } 559 560 //============================================================================= 561 //------------------------------add_of_identity-------------------------------- 562 // Check for addition of the identity 563 const Type* AddHFNode::add_of_identity(const Type* t1, const Type* t2) const { 564 return nullptr; 565 } 566 567 // Supplied function returns the sum of the inputs. 568 // This also type-checks the inputs for sanity. Guaranteed never to 569 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 570 const Type* AddHFNode::add_ring(const Type* t0, const Type* t1) const { 571 if (!t0->isa_half_float_constant() || !t1->isa_half_float_constant()) { 572 return bottom_type(); 573 } 574 return TypeH::make(t0->getf() + t1->getf()); 575 } 576 577 //============================================================================= 578 //------------------------------add_of_identity-------------------------------- 579 // Check for addition of the identity 580 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const { 581 // x ADD 0 should return x unless 'x' is a -zero 582 // 583 // const Type *zero = add_id(); // The additive identity 584 // jfloat f1 = t1->getf(); 585 // jfloat f2 = t2->getf(); 586 // 587 // if( t1->higher_equal( zero ) ) return t2; 588 // if( t2->higher_equal( zero ) ) return t1; 589 590 return nullptr; 591 } 592 //------------------------------add_ring--------------------------------------- 593 // Supplied function returns the sum of the inputs. 594 // This also type-checks the inputs for sanity. Guaranteed never to 595 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 596 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const { 597 if (!t0->isa_double_constant() || !t1->isa_double_constant()) { 598 return bottom_type(); 599 } 600 return TypeD::make( t0->getd() + t1->getd() ); 601 } 602 603 //------------------------------Ideal------------------------------------------ 604 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) { 605 // Floating point additions are not associative because of boundary conditions (infinity) 606 return commute(phase, this) ? this : nullptr; 607 } 608 609 610 //============================================================================= 611 //------------------------------Identity--------------------------------------- 612 // If one input is a constant 0, return the other input. 613 Node* AddPNode::Identity(PhaseGVN* phase) { 614 return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this; 615 } 616 617 //------------------------------Idealize--------------------------------------- 618 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) { 619 // Bail out if dead inputs 620 if( phase->type( in(Address) ) == Type::TOP ) return nullptr; 621 622 // If the left input is an add of a constant, flatten the expression tree. 623 const Node *n = in(Address); 624 if (n->is_AddP() && n->in(Base) == in(Base)) { 625 const AddPNode *addp = n->as_AddP(); // Left input is an AddP 626 assert( !addp->in(Address)->is_AddP() || 627 addp->in(Address)->as_AddP() != addp, 628 "dead loop in AddPNode::Ideal" ); 629 // Type of left input's right input 630 const Type *t = phase->type( addp->in(Offset) ); 631 if( t == Type::TOP ) return nullptr; 632 const TypeX *t12 = t->is_intptr_t(); 633 if( t12->is_con() ) { // Left input is an add of a constant? 634 // If the right input is a constant, combine constants 635 const Type *temp_t2 = phase->type( in(Offset) ); 636 if( temp_t2 == Type::TOP ) return nullptr; 637 const TypeX *t2 = temp_t2->is_intptr_t(); 638 Node* address; 639 Node* offset; 640 if( t2->is_con() ) { 641 // The Add of the flattened expression 642 address = addp->in(Address); 643 offset = phase->MakeConX(t2->get_con() + t12->get_con()); 644 } else { 645 // Else move the constant to the right. ((A+con)+B) into ((A+B)+con) 646 address = phase->transform(new AddPNode(in(Base),addp->in(Address),in(Offset))); 647 offset = addp->in(Offset); 648 } 649 set_req_X(Address, address, phase); 650 set_req_X(Offset, offset, phase); 651 return this; 652 } 653 } 654 655 // Raw pointers? 656 if( in(Base)->bottom_type() == Type::TOP ) { 657 // If this is a null+long form (from unsafe accesses), switch to a rawptr. 658 if (phase->type(in(Address)) == TypePtr::NULL_PTR) { 659 Node* offset = in(Offset); 660 return new CastX2PNode(offset); 661 } 662 } 663 664 // If the right is an add of a constant, push the offset down. 665 // Convert: (ptr + (offset+con)) into (ptr+offset)+con. 666 // The idea is to merge array_base+scaled_index groups together, 667 // and only have different constant offsets from the same base. 668 const Node *add = in(Offset); 669 if( add->Opcode() == Op_AddX && add->in(1) != add ) { 670 const Type *t22 = phase->type( add->in(2) ); 671 if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant? 672 set_req(Address, phase->transform(new AddPNode(in(Base),in(Address),add->in(1)))); 673 set_req_X(Offset, add->in(2), phase); // puts add on igvn worklist if needed 674 return this; // Made progress 675 } 676 } 677 678 return nullptr; // No progress 679 } 680 681 //------------------------------bottom_type------------------------------------ 682 // Bottom-type is the pointer-type with unknown offset. 683 const Type *AddPNode::bottom_type() const { 684 if (in(Address) == nullptr) return TypePtr::BOTTOM; 685 const TypePtr *tp = in(Address)->bottom_type()->isa_ptr(); 686 if( !tp ) return Type::TOP; // TOP input means TOP output 687 assert( in(Offset)->Opcode() != Op_ConP, "" ); 688 const Type *t = in(Offset)->bottom_type(); 689 if( t == Type::TOP ) 690 return tp->add_offset(Type::OffsetTop); 691 const TypeX *tx = t->is_intptr_t(); 692 intptr_t txoffset = Type::OffsetBot; 693 if (tx->is_con()) { // Left input is an add of a constant? 694 txoffset = tx->get_con(); 695 } 696 if (tp->isa_aryptr()) { 697 // In the case of a flat inline type array, each field has its 698 // own slice so we need to extract the field being accessed from 699 // the address computation 700 return tp->is_aryptr()->add_field_offset_and_offset(txoffset); 701 } 702 return tp->add_offset(txoffset); 703 } 704 705 //------------------------------Value------------------------------------------ 706 const Type* AddPNode::Value(PhaseGVN* phase) const { 707 // Either input is TOP ==> the result is TOP 708 const Type *t1 = phase->type( in(Address) ); 709 const Type *t2 = phase->type( in(Offset) ); 710 if( t1 == Type::TOP ) return Type::TOP; 711 if( t2 == Type::TOP ) return Type::TOP; 712 713 // Left input is a pointer 714 const TypePtr *p1 = t1->isa_ptr(); 715 // Right input is an int 716 const TypeX *p2 = t2->is_intptr_t(); 717 // Add 'em 718 intptr_t p2offset = Type::OffsetBot; 719 if (p2->is_con()) { // Left input is an add of a constant? 720 p2offset = p2->get_con(); 721 } 722 if (p1->isa_aryptr()) { 723 // In the case of a flat inline type array, each field has its 724 // own slice so we need to extract the field being accessed from 725 // the address computation 726 return p1->is_aryptr()->add_field_offset_and_offset(p2offset); 727 } 728 return p1->add_offset(p2offset); 729 } 730 731 //------------------------Ideal_base_and_offset-------------------------------- 732 // Split an oop pointer into a base and offset. 733 // (The offset might be Type::OffsetBot in the case of an array.) 734 // Return the base, or null if failure. 735 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseValues* phase, 736 // second return value: 737 intptr_t& offset) { 738 if (ptr->is_AddP()) { 739 Node* base = ptr->in(AddPNode::Base); 740 Node* addr = ptr->in(AddPNode::Address); 741 Node* offs = ptr->in(AddPNode::Offset); 742 if (base == addr || base->is_top()) { 743 offset = phase->find_intptr_t_con(offs, Type::OffsetBot); 744 if (offset != Type::OffsetBot) { 745 return addr; 746 } 747 } 748 } 749 offset = Type::OffsetBot; 750 return nullptr; 751 } 752 753 //------------------------------unpack_offsets---------------------------------- 754 // Collect the AddP offset values into the elements array, giving up 755 // if there are more than length. 756 int AddPNode::unpack_offsets(Node* elements[], int length) const { 757 int count = 0; 758 Node const* addr = this; 759 Node* base = addr->in(AddPNode::Base); 760 while (addr->is_AddP()) { 761 if (addr->in(AddPNode::Base) != base) { 762 // give up 763 return -1; 764 } 765 elements[count++] = addr->in(AddPNode::Offset); 766 if (count == length) { 767 // give up 768 return -1; 769 } 770 addr = addr->in(AddPNode::Address); 771 } 772 if (addr != base) { 773 return -1; 774 } 775 return count; 776 } 777 778 //------------------------------match_edge------------------------------------- 779 // Do we Match on this edge index or not? Do not match base pointer edge 780 uint AddPNode::match_edge(uint idx) const { 781 return idx > Base; 782 } 783 784 //============================================================================= 785 //------------------------------Identity--------------------------------------- 786 Node* OrINode::Identity(PhaseGVN* phase) { 787 // x | x => x 788 if (in(1) == in(2)) { 789 return in(1); 790 } 791 792 return AddNode::Identity(phase); 793 } 794 795 // Find shift value for Integer or Long OR. 796 static Node* rotate_shift(PhaseGVN* phase, Node* lshift, Node* rshift, int mask) { 797 // val << norm_con_shift | val >> ({32|64} - norm_con_shift) => rotate_left val, norm_con_shift 798 const TypeInt* lshift_t = phase->type(lshift)->isa_int(); 799 const TypeInt* rshift_t = phase->type(rshift)->isa_int(); 800 if (lshift_t != nullptr && lshift_t->is_con() && 801 rshift_t != nullptr && rshift_t->is_con() && 802 ((lshift_t->get_con() & mask) == ((mask + 1) - (rshift_t->get_con() & mask)))) { 803 return phase->intcon(lshift_t->get_con() & mask); 804 } 805 // val << var_shift | val >> ({0|32|64} - var_shift) => rotate_left val, var_shift 806 if (rshift->Opcode() == Op_SubI && rshift->in(2) == lshift && rshift->in(1)->is_Con()){ 807 const TypeInt* shift_t = phase->type(rshift->in(1))->isa_int(); 808 if (shift_t != nullptr && shift_t->is_con() && 809 (shift_t->get_con() == 0 || shift_t->get_con() == (mask + 1))) { 810 return lshift; 811 } 812 } 813 return nullptr; 814 } 815 816 Node* OrINode::Ideal(PhaseGVN* phase, bool can_reshape) { 817 int lopcode = in(1)->Opcode(); 818 int ropcode = in(2)->Opcode(); 819 if (Matcher::match_rule_supported(Op_RotateLeft) && 820 lopcode == Op_LShiftI && ropcode == Op_URShiftI && in(1)->in(1) == in(2)->in(1)) { 821 Node* lshift = in(1)->in(2); 822 Node* rshift = in(2)->in(2); 823 Node* shift = rotate_shift(phase, lshift, rshift, 0x1F); 824 if (shift != nullptr) { 825 return new RotateLeftNode(in(1)->in(1), shift, TypeInt::INT); 826 } 827 return nullptr; 828 } 829 if (Matcher::match_rule_supported(Op_RotateRight) && 830 lopcode == Op_URShiftI && ropcode == Op_LShiftI && in(1)->in(1) == in(2)->in(1)) { 831 Node* rshift = in(1)->in(2); 832 Node* lshift = in(2)->in(2); 833 Node* shift = rotate_shift(phase, rshift, lshift, 0x1F); 834 if (shift != nullptr) { 835 return new RotateRightNode(in(1)->in(1), shift, TypeInt::INT); 836 } 837 } 838 839 // Convert "~a | ~b" into "~(a & b)" 840 if (AddNode::is_not(phase, in(1), T_INT) && AddNode::is_not(phase, in(2), T_INT)) { 841 Node* and_a_b = new AndINode(in(1)->in(1), in(2)->in(1)); 842 Node* tn = phase->transform(and_a_b); 843 return AddNode::make_not(phase, tn, T_INT); 844 } 845 return AddNode::Ideal(phase, can_reshape); 846 } 847 848 //------------------------------add_ring--------------------------------------- 849 // Supplied function returns the sum of the inputs IN THE CURRENT RING. For 850 // the logical operations the ring's ADD is really a logical OR function. 851 // This also type-checks the inputs for sanity. Guaranteed never to 852 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 853 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const { 854 const TypeInt *r0 = t0->is_int(); // Handy access 855 const TypeInt *r1 = t1->is_int(); 856 857 // If both args are bool, can figure out better types 858 if ( r0 == TypeInt::BOOL ) { 859 if ( r1 == TypeInt::ONE) { 860 return TypeInt::ONE; 861 } else if ( r1 == TypeInt::BOOL ) { 862 return TypeInt::BOOL; 863 } 864 } else if ( r0 == TypeInt::ONE ) { 865 if ( r1 == TypeInt::BOOL ) { 866 return TypeInt::ONE; 867 } 868 } 869 870 // If either input is all ones, the output is all ones. 871 // x | ~0 == ~0 <==> x | -1 == -1 872 if (r0 == TypeInt::MINUS_1 || r1 == TypeInt::MINUS_1) { 873 return TypeInt::MINUS_1; 874 } 875 876 // If either input is not a constant, just return all integers. 877 if( !r0->is_con() || !r1->is_con() ) 878 return TypeInt::INT; // Any integer, but still no symbols. 879 880 // Otherwise just OR them bits. 881 return TypeInt::make( r0->get_con() | r1->get_con() ); 882 } 883 884 //============================================================================= 885 //------------------------------Identity--------------------------------------- 886 Node* OrLNode::Identity(PhaseGVN* phase) { 887 // x | x => x 888 if (in(1) == in(2)) { 889 return in(1); 890 } 891 892 return AddNode::Identity(phase); 893 } 894 895 Node* OrLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 896 int lopcode = in(1)->Opcode(); 897 int ropcode = in(2)->Opcode(); 898 if (Matcher::match_rule_supported(Op_RotateLeft) && 899 lopcode == Op_LShiftL && ropcode == Op_URShiftL && in(1)->in(1) == in(2)->in(1)) { 900 Node* lshift = in(1)->in(2); 901 Node* rshift = in(2)->in(2); 902 Node* shift = rotate_shift(phase, lshift, rshift, 0x3F); 903 if (shift != nullptr) { 904 return new RotateLeftNode(in(1)->in(1), shift, TypeLong::LONG); 905 } 906 return nullptr; 907 } 908 if (Matcher::match_rule_supported(Op_RotateRight) && 909 lopcode == Op_URShiftL && ropcode == Op_LShiftL && in(1)->in(1) == in(2)->in(1)) { 910 Node* rshift = in(1)->in(2); 911 Node* lshift = in(2)->in(2); 912 Node* shift = rotate_shift(phase, rshift, lshift, 0x3F); 913 if (shift != nullptr) { 914 return new RotateRightNode(in(1)->in(1), shift, TypeLong::LONG); 915 } 916 } 917 918 // Convert "~a | ~b" into "~(a & b)" 919 if (AddNode::is_not(phase, in(1), T_LONG) && AddNode::is_not(phase, in(2), T_LONG)) { 920 Node* and_a_b = new AndLNode(in(1)->in(1), in(2)->in(1)); 921 Node* tn = phase->transform(and_a_b); 922 return AddNode::make_not(phase, tn, T_LONG); 923 } 924 925 return AddNode::Ideal(phase, can_reshape); 926 } 927 928 //------------------------------add_ring--------------------------------------- 929 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const { 930 const TypeLong *r0 = t0->is_long(); // Handy access 931 const TypeLong *r1 = t1->is_long(); 932 933 // If either input is all ones, the output is all ones. 934 // x | ~0 == ~0 <==> x | -1 == -1 935 if (r0 == TypeLong::MINUS_1 || r1 == TypeLong::MINUS_1) { 936 return TypeLong::MINUS_1; 937 } 938 939 // If either input is not a constant, just return all integers. 940 if( !r0->is_con() || !r1->is_con() ) 941 return TypeLong::LONG; // Any integer, but still no symbols. 942 943 // Otherwise just OR them bits. 944 return TypeLong::make( r0->get_con() | r1->get_con() ); 945 } 946 947 //---------------------------Helper ------------------------------------------- 948 /* Decide if the given node is used only in arithmetic expressions(add or sub). 949 */ 950 static bool is_used_in_only_arithmetic(Node* n, BasicType bt) { 951 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 952 Node* u = n->fast_out(i); 953 if (u->Opcode() != Op_Add(bt) && u->Opcode() != Op_Sub(bt)) { 954 return false; 955 } 956 } 957 return true; 958 } 959 960 //============================================================================= 961 //------------------------------Idealize--------------------------------------- 962 Node* XorINode::Ideal(PhaseGVN* phase, bool can_reshape) { 963 Node* in1 = in(1); 964 Node* in2 = in(2); 965 966 // Convert ~x into -1-x when ~x is used in an arithmetic expression 967 // or x itself is an expression. 968 if (phase->type(in2) == TypeInt::MINUS_1) { // follows LHS^(-1), i.e., ~LHS 969 if (phase->is_IterGVN()) { 970 if (is_used_in_only_arithmetic(this, T_INT) 971 // LHS is arithmetic 972 || (in1->Opcode() == Op_AddI || in1->Opcode() == Op_SubI)) { 973 return new SubINode(in2, in1); 974 } 975 } else { 976 // graph could be incomplete in GVN so we postpone to IGVN 977 phase->record_for_igvn(this); 978 } 979 } 980 981 // Propagate xor through constant cmoves. This pattern can occur after expansion of Conv2B nodes. 982 const TypeInt* in2_type = phase->type(in2)->isa_int(); 983 if (in1->Opcode() == Op_CMoveI && in2_type != nullptr && in2_type->is_con()) { 984 int in2_val = in2_type->get_con(); 985 986 // Get types of both sides of the CMove 987 const TypeInt* left = phase->type(in1->in(CMoveNode::IfFalse))->isa_int(); 988 const TypeInt* right = phase->type(in1->in(CMoveNode::IfTrue))->isa_int(); 989 990 // Ensure that both sides are int constants 991 if (left != nullptr && right != nullptr && left->is_con() && right->is_con()) { 992 Node* cond = in1->in(CMoveNode::Condition); 993 994 // Check that the comparison is a bool and that the cmp node type is correct 995 if (cond->is_Bool()) { 996 int cmp_op = cond->in(1)->Opcode(); 997 998 if (cmp_op == Op_CmpI || cmp_op == Op_CmpP) { 999 int l_val = left->get_con(); 1000 int r_val = right->get_con(); 1001 1002 return new CMoveINode(cond, phase->intcon(l_val ^ in2_val), phase->intcon(r_val ^ in2_val), TypeInt::INT); 1003 } 1004 } 1005 } 1006 } 1007 1008 return AddNode::Ideal(phase, can_reshape); 1009 } 1010 1011 const Type* XorINode::Value(PhaseGVN* phase) const { 1012 Node* in1 = in(1); 1013 Node* in2 = in(2); 1014 const Type* t1 = phase->type(in1); 1015 const Type* t2 = phase->type(in2); 1016 if (t1 == Type::TOP || t2 == Type::TOP) { 1017 return Type::TOP; 1018 } 1019 // x ^ x ==> 0 1020 if (in1->eqv_uncast(in2)) { 1021 return add_id(); 1022 } 1023 return AddNode::Value(phase); 1024 } 1025 1026 //------------------------------add_ring--------------------------------------- 1027 // Supplied function returns the sum of the inputs IN THE CURRENT RING. For 1028 // the logical operations the ring's ADD is really a logical OR function. 1029 // This also type-checks the inputs for sanity. Guaranteed never to 1030 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 1031 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const { 1032 const TypeInt *r0 = t0->is_int(); // Handy access 1033 const TypeInt *r1 = t1->is_int(); 1034 1035 if (r0->is_con() && r1->is_con()) { 1036 // compute constant result 1037 return TypeInt::make(r0->get_con() ^ r1->get_con()); 1038 } 1039 1040 // At least one of the arguments is not constant 1041 1042 if (r0->_lo >= 0 && r1->_lo >= 0) { 1043 // Combine [r0->_lo, r0->_hi] ^ [r0->_lo, r1->_hi] -> [0, upper_bound] 1044 jint upper_bound = xor_upper_bound_for_ranges<jint, juint>(r0->_hi, r1->_hi); 1045 return TypeInt::make(0, upper_bound, MAX2(r0->_widen, r1->_widen)); 1046 } 1047 1048 return TypeInt::INT; 1049 } 1050 1051 //============================================================================= 1052 //------------------------------add_ring--------------------------------------- 1053 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const { 1054 const TypeLong *r0 = t0->is_long(); // Handy access 1055 const TypeLong *r1 = t1->is_long(); 1056 1057 if (r0->is_con() && r1->is_con()) { 1058 // compute constant result 1059 return TypeLong::make(r0->get_con() ^ r1->get_con()); 1060 } 1061 1062 // At least one of the arguments is not constant 1063 1064 if (r0->_lo >= 0 && r1->_lo >= 0) { 1065 // Combine [r0->_lo, r0->_hi] ^ [r0->_lo, r1->_hi] -> [0, upper_bound] 1066 julong upper_bound = xor_upper_bound_for_ranges<jlong, julong>(r0->_hi, r1->_hi); 1067 return TypeLong::make(0, upper_bound, MAX2(r0->_widen, r1->_widen)); 1068 } 1069 1070 return TypeLong::LONG; 1071 } 1072 1073 Node* XorLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1074 Node* in1 = in(1); 1075 Node* in2 = in(2); 1076 1077 // Convert ~x into -1-x when ~x is used in an arithmetic expression 1078 // or x itself is an arithmetic expression. 1079 if (phase->type(in2) == TypeLong::MINUS_1) { // follows LHS^(-1), i.e., ~LHS 1080 if (phase->is_IterGVN()) { 1081 if (is_used_in_only_arithmetic(this, T_LONG) 1082 // LHS is arithmetic 1083 || (in1->Opcode() == Op_AddL || in1->Opcode() == Op_SubL)) { 1084 return new SubLNode(in2, in1); 1085 } 1086 } else { 1087 // graph could be incomplete in GVN so we postpone to IGVN 1088 phase->record_for_igvn(this); 1089 } 1090 } 1091 return AddNode::Ideal(phase, can_reshape); 1092 } 1093 1094 const Type* XorLNode::Value(PhaseGVN* phase) const { 1095 Node* in1 = in(1); 1096 Node* in2 = in(2); 1097 const Type* t1 = phase->type(in1); 1098 const Type* t2 = phase->type(in2); 1099 if (t1 == Type::TOP || t2 == Type::TOP) { 1100 return Type::TOP; 1101 } 1102 // x ^ x ==> 0 1103 if (in1->eqv_uncast(in2)) { 1104 return add_id(); 1105 } 1106 1107 return AddNode::Value(phase); 1108 } 1109 1110 Node* MaxNode::build_min_max_int(Node* a, Node* b, bool is_max) { 1111 if (is_max) { 1112 return new MaxINode(a, b); 1113 } else { 1114 return new MinINode(a, b); 1115 } 1116 } 1117 1118 Node* MaxNode::build_min_max_long(PhaseGVN* phase, Node* a, Node* b, bool is_max) { 1119 if (is_max) { 1120 return new MaxLNode(phase->C, a, b); 1121 } else { 1122 return new MinLNode(phase->C, a, b); 1123 } 1124 } 1125 1126 Node* MaxNode::build_min_max(Node* a, Node* b, bool is_max, bool is_unsigned, const Type* t, PhaseGVN& gvn) { 1127 bool is_int = gvn.type(a)->isa_int(); 1128 assert(is_int || gvn.type(a)->isa_long(), "int or long inputs"); 1129 assert(is_int == (gvn.type(b)->isa_int() != nullptr), "inconsistent inputs"); 1130 BasicType bt = is_int ? T_INT: T_LONG; 1131 Node* hook = nullptr; 1132 if (gvn.is_IterGVN()) { 1133 // Make sure a and b are not destroyed 1134 hook = new Node(2); 1135 hook->init_req(0, a); 1136 hook->init_req(1, b); 1137 } 1138 Node* res = nullptr; 1139 if (is_int && !is_unsigned) { 1140 res = gvn.transform(build_min_max_int(a, b, is_max)); 1141 assert(gvn.type(res)->is_int()->_lo >= t->is_int()->_lo && gvn.type(res)->is_int()->_hi <= t->is_int()->_hi, "type doesn't match"); 1142 } else { 1143 Node* cmp = nullptr; 1144 if (is_max) { 1145 cmp = gvn.transform(CmpNode::make(a, b, bt, is_unsigned)); 1146 } else { 1147 cmp = gvn.transform(CmpNode::make(b, a, bt, is_unsigned)); 1148 } 1149 Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1150 res = gvn.transform(CMoveNode::make(bol, a, b, t)); 1151 } 1152 if (hook != nullptr) { 1153 hook->destruct(&gvn); 1154 } 1155 return res; 1156 } 1157 1158 Node* MaxNode::build_min_max_diff_with_zero(Node* a, Node* b, bool is_max, const Type* t, PhaseGVN& gvn) { 1159 bool is_int = gvn.type(a)->isa_int(); 1160 assert(is_int || gvn.type(a)->isa_long(), "int or long inputs"); 1161 assert(is_int == (gvn.type(b)->isa_int() != nullptr), "inconsistent inputs"); 1162 BasicType bt = is_int ? T_INT: T_LONG; 1163 Node* zero = gvn.integercon(0, bt); 1164 Node* hook = nullptr; 1165 if (gvn.is_IterGVN()) { 1166 // Make sure a and b are not destroyed 1167 hook = new Node(2); 1168 hook->init_req(0, a); 1169 hook->init_req(1, b); 1170 } 1171 Node* cmp = nullptr; 1172 if (is_max) { 1173 cmp = gvn.transform(CmpNode::make(a, b, bt, false)); 1174 } else { 1175 cmp = gvn.transform(CmpNode::make(b, a, bt, false)); 1176 } 1177 Node* sub = gvn.transform(SubNode::make(a, b, bt)); 1178 Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1179 Node* res = gvn.transform(CMoveNode::make(bol, sub, zero, t)); 1180 if (hook != nullptr) { 1181 hook->destruct(&gvn); 1182 } 1183 return res; 1184 } 1185 1186 // Check if addition of an integer with type 't' and a constant 'c' can overflow. 1187 static bool can_overflow(const TypeInt* t, jint c) { 1188 jint t_lo = t->_lo; 1189 jint t_hi = t->_hi; 1190 return ((c < 0 && (java_add(t_lo, c) > t_lo)) || 1191 (c > 0 && (java_add(t_hi, c) < t_hi))); 1192 } 1193 1194 // Check if addition of a long with type 't' and a constant 'c' can overflow. 1195 static bool can_overflow(const TypeLong* t, jlong c) { 1196 jlong t_lo = t->_lo; 1197 jlong t_hi = t->_hi; 1198 return ((c < 0 && (java_add(t_lo, c) > t_lo)) || 1199 (c > 0 && (java_add(t_hi, c) < t_hi))); 1200 } 1201 1202 // Let <x, x_off> = x_operands and <y, y_off> = y_operands. 1203 // If x == y and neither add(x, x_off) nor add(y, y_off) overflow, return 1204 // add(x, op(x_off, y_off)). Otherwise, return nullptr. 1205 Node* MaxNode::extract_add(PhaseGVN* phase, ConstAddOperands x_operands, ConstAddOperands y_operands) { 1206 Node* x = x_operands.first; 1207 Node* y = y_operands.first; 1208 int opcode = Opcode(); 1209 assert(opcode == Op_MaxI || opcode == Op_MinI, "Unexpected opcode"); 1210 const TypeInt* tx = phase->type(x)->isa_int(); 1211 jint x_off = x_operands.second; 1212 jint y_off = y_operands.second; 1213 if (x == y && tx != nullptr && 1214 !can_overflow(tx, x_off) && 1215 !can_overflow(tx, y_off)) { 1216 jint c = opcode == Op_MinI ? MIN2(x_off, y_off) : MAX2(x_off, y_off); 1217 return new AddINode(x, phase->intcon(c)); 1218 } 1219 return nullptr; 1220 } 1221 1222 // Try to cast n as an integer addition with a constant. Return: 1223 // <x, C>, if n == add(x, C), where 'C' is a non-TOP constant; 1224 // <nullptr, 0>, if n == add(x, C), where 'C' is a TOP constant; or 1225 // <n, 0>, otherwise. 1226 static ConstAddOperands as_add_with_constant(Node* n) { 1227 if (n->Opcode() != Op_AddI) { 1228 return ConstAddOperands(n, 0); 1229 } 1230 Node* x = n->in(1); 1231 Node* c = n->in(2); 1232 if (!c->is_Con()) { 1233 return ConstAddOperands(n, 0); 1234 } 1235 const Type* c_type = c->bottom_type(); 1236 if (c_type == Type::TOP) { 1237 return ConstAddOperands(nullptr, 0); 1238 } 1239 return ConstAddOperands(x, c_type->is_int()->get_con()); 1240 } 1241 1242 Node* MaxNode::IdealI(PhaseGVN* phase, bool can_reshape) { 1243 int opcode = Opcode(); 1244 assert(opcode == Op_MinI || opcode == Op_MaxI, "Unexpected opcode"); 1245 // Try to transform the following pattern, in any of its four possible 1246 // permutations induced by op's commutativity: 1247 // op(op(add(inner, inner_off), inner_other), add(outer, outer_off)) 1248 // into 1249 // op(add(inner, op(inner_off, outer_off)), inner_other), 1250 // where: 1251 // op is either MinI or MaxI, and 1252 // inner == outer, and 1253 // the additions cannot overflow. 1254 for (uint inner_op_index = 1; inner_op_index <= 2; inner_op_index++) { 1255 if (in(inner_op_index)->Opcode() != opcode) { 1256 continue; 1257 } 1258 Node* outer_add = in(inner_op_index == 1 ? 2 : 1); 1259 ConstAddOperands outer_add_operands = as_add_with_constant(outer_add); 1260 if (outer_add_operands.first == nullptr) { 1261 return nullptr; // outer_add has a TOP input, no need to continue. 1262 } 1263 // One operand is a MinI/MaxI and the other is an integer addition with 1264 // constant. Test the operands of the inner MinI/MaxI. 1265 for (uint inner_add_index = 1; inner_add_index <= 2; inner_add_index++) { 1266 Node* inner_op = in(inner_op_index); 1267 Node* inner_add = inner_op->in(inner_add_index); 1268 ConstAddOperands inner_add_operands = as_add_with_constant(inner_add); 1269 if (inner_add_operands.first == nullptr) { 1270 return nullptr; // inner_add has a TOP input, no need to continue. 1271 } 1272 // Try to extract the inner add. 1273 Node* add_extracted = extract_add(phase, inner_add_operands, outer_add_operands); 1274 if (add_extracted == nullptr) { 1275 continue; 1276 } 1277 Node* add_transformed = phase->transform(add_extracted); 1278 Node* inner_other = inner_op->in(inner_add_index == 1 ? 2 : 1); 1279 return build_min_max_int(add_transformed, inner_other, opcode == Op_MaxI); 1280 } 1281 } 1282 // Try to transform 1283 // op(add(x, x_off), add(y, y_off)) 1284 // into 1285 // add(x, op(x_off, y_off)), 1286 // where: 1287 // op is either MinI or MaxI, and 1288 // inner == outer, and 1289 // the additions cannot overflow. 1290 ConstAddOperands xC = as_add_with_constant(in(1)); 1291 ConstAddOperands yC = as_add_with_constant(in(2)); 1292 if (xC.first == nullptr || yC.first == nullptr) return nullptr; 1293 return extract_add(phase, xC, yC); 1294 } 1295 1296 // Ideal transformations for MaxINode 1297 Node* MaxINode::Ideal(PhaseGVN* phase, bool can_reshape) { 1298 return IdealI(phase, can_reshape); 1299 } 1300 1301 Node* MaxINode::Identity(PhaseGVN* phase) { 1302 const TypeInt* t1 = phase->type(in(1))->is_int(); 1303 const TypeInt* t2 = phase->type(in(2))->is_int(); 1304 1305 // Can we determine the maximum statically? 1306 if (t1->_lo >= t2->_hi) { 1307 return in(1); 1308 } else if (t2->_lo >= t1->_hi) { 1309 return in(2); 1310 } 1311 1312 return MaxNode::Identity(phase); 1313 } 1314 1315 //============================================================================= 1316 //------------------------------add_ring--------------------------------------- 1317 // Supplied function returns the sum of the inputs. 1318 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const { 1319 const TypeInt *r0 = t0->is_int(); // Handy access 1320 const TypeInt *r1 = t1->is_int(); 1321 1322 // Otherwise just MAX them bits. 1323 return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); 1324 } 1325 1326 //============================================================================= 1327 //------------------------------Idealize--------------------------------------- 1328 // MINs show up in range-check loop limit calculations. Look for 1329 // "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)" 1330 Node* MinINode::Ideal(PhaseGVN* phase, bool can_reshape) { 1331 return IdealI(phase, can_reshape); 1332 } 1333 1334 Node* MinINode::Identity(PhaseGVN* phase) { 1335 const TypeInt* t1 = phase->type(in(1))->is_int(); 1336 const TypeInt* t2 = phase->type(in(2))->is_int(); 1337 1338 // Can we determine the minimum statically? 1339 if (t1->_lo >= t2->_hi) { 1340 return in(2); 1341 } else if (t2->_lo >= t1->_hi) { 1342 return in(1); 1343 } 1344 1345 return MaxNode::Identity(phase); 1346 } 1347 1348 //------------------------------add_ring--------------------------------------- 1349 // Supplied function returns the sum of the inputs. 1350 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const { 1351 const TypeInt *r0 = t0->is_int(); // Handy access 1352 const TypeInt *r1 = t1->is_int(); 1353 1354 // Otherwise just MIN them bits. 1355 return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); 1356 } 1357 1358 // Collapse the "addition with overflow-protection" pattern, and the symmetrical 1359 // "subtraction with underflow-protection" pattern. These are created during the 1360 // unrolling, when we have to adjust the limit by subtracting the stride, but want 1361 // to protect against underflow: MaxL(SubL(limit, stride), min_jint). 1362 // If we have more than one of those in a sequence: 1363 // 1364 // x con2 1365 // | | 1366 // AddL clamp2 1367 // | | 1368 // Max/MinL con1 1369 // | | 1370 // AddL clamp1 1371 // | | 1372 // Max/MinL (n) 1373 // 1374 // We want to collapse it to: 1375 // 1376 // x con1 con2 1377 // | | | 1378 // | AddLNode (new_con) 1379 // | | 1380 // AddLNode clamp1 1381 // | | 1382 // Max/MinL (n) 1383 // 1384 // Note: we assume that SubL was already replaced by an AddL, and that the stride 1385 // has its sign flipped: SubL(limit, stride) -> AddL(limit, -stride). 1386 // 1387 // Proof MaxL collapsed version equivalent to original (MinL version similar): 1388 // is_sub_con ensures that con1, con2 ∈ [min_int, 0[ 1389 // 1390 // Original: 1391 // - AddL2 underflow => x + con2 ∈ ]max_long - min_int, max_long], ALWAYS BAILOUT as x + con1 + con2 surely fails can_overflow (*) 1392 // - AddL2 no underflow => x + con2 ∈ [min_long, max_long] 1393 // - MaxL2 clamp => min_int 1394 // - AddL1 underflow: NOT POSSIBLE: cannot underflow since min_int + con1 ∈ [2 * min_int, min_int] always > min_long 1395 // - AddL1 no underflow => min_int + con1 ∈ [2 * min_int, min_int] 1396 // - MaxL1 clamp => min_int (RESULT 1) 1397 // - MaxL1 no clamp: NOT POSSIBLE: min_int + con1 ∈ [2 * min_int, min_int] always <= min_int, so clamp always taken 1398 // - MaxL2 no clamp => x + con2 ∈ [min_int, max_long] 1399 // - AddL1 underflow: NOT POSSIBLE: cannot underflow since x + con2 + con1 ∈ [2 * min_int, max_long] always > min_long 1400 // - AddL1 no underflow => x + con2 + con1 ∈ [2 * min_int, max_long] 1401 // - MaxL1 clamp => min_int (RESULT 2) 1402 // - MaxL1 no clamp => x + con2 + con1 ∈ ]min_int, max_long] (RESULT 3) 1403 // 1404 // Collapsed: 1405 // - AddL2 (cannot underflow) => con2 + con1 ∈ [2 * min_int, 0] 1406 // - AddL1 underflow: NOT POSSIBLE: would have bailed out at can_overflow (*) 1407 // - AddL1 no underflow => x + con2 + con1 ∈ [min_long, max_long] 1408 // - MaxL clamp => min_int (RESULT 1 and RESULT 2) 1409 // - MaxL no clamp => x + con2 + con1 ∈ ]min_int, max_long] (RESULT 3) 1410 // 1411 static Node* fold_subI_no_underflow_pattern(Node* n, PhaseGVN* phase) { 1412 assert(n->Opcode() == Op_MaxL || n->Opcode() == Op_MinL, "sanity"); 1413 // Check that the two clamps have the correct values. 1414 jlong clamp = (n->Opcode() == Op_MaxL) ? min_jint : max_jint; 1415 auto is_clamp = [&](Node* c) { 1416 const TypeLong* t = phase->type(c)->isa_long(); 1417 return t != nullptr && t->is_con() && 1418 t->get_con() == clamp; 1419 }; 1420 // Check that the constants are negative if MaxL, and positive if MinL. 1421 auto is_sub_con = [&](Node* c) { 1422 const TypeLong* t = phase->type(c)->isa_long(); 1423 return t != nullptr && t->is_con() && 1424 t->get_con() < max_jint && t->get_con() > min_jint && 1425 (t->get_con() < 0) == (n->Opcode() == Op_MaxL); 1426 }; 1427 // Verify the graph level by level: 1428 Node* add1 = n->in(1); 1429 Node* clamp1 = n->in(2); 1430 if (add1->Opcode() == Op_AddL && is_clamp(clamp1)) { 1431 Node* max2 = add1->in(1); 1432 Node* con1 = add1->in(2); 1433 if (max2->Opcode() == n->Opcode() && is_sub_con(con1)) { 1434 Node* add2 = max2->in(1); 1435 Node* clamp2 = max2->in(2); 1436 if (add2->Opcode() == Op_AddL && is_clamp(clamp2)) { 1437 Node* x = add2->in(1); 1438 Node* con2 = add2->in(2); 1439 if (is_sub_con(con2)) { 1440 // Collapsed graph not equivalent if potential over/underflow -> bailing out (*) 1441 if (can_overflow(phase->type(x)->is_long(), con1->get_long() + con2->get_long())) { 1442 return nullptr; 1443 } 1444 Node* new_con = phase->transform(new AddLNode(con1, con2)); 1445 Node* new_sub = phase->transform(new AddLNode(x, new_con)); 1446 n->set_req_X(1, new_sub, phase); 1447 return n; 1448 } 1449 } 1450 } 1451 } 1452 return nullptr; 1453 } 1454 1455 const Type* MaxLNode::add_ring(const Type* t0, const Type* t1) const { 1456 const TypeLong* r0 = t0->is_long(); 1457 const TypeLong* r1 = t1->is_long(); 1458 1459 return TypeLong::make(MAX2(r0->_lo, r1->_lo), MAX2(r0->_hi, r1->_hi), MAX2(r0->_widen, r1->_widen)); 1460 } 1461 1462 Node* MaxLNode::Identity(PhaseGVN* phase) { 1463 const TypeLong* t1 = phase->type(in(1))->is_long(); 1464 const TypeLong* t2 = phase->type(in(2))->is_long(); 1465 1466 // Can we determine maximum statically? 1467 if (t1->_lo >= t2->_hi) { 1468 return in(1); 1469 } else if (t2->_lo >= t1->_hi) { 1470 return in(2); 1471 } 1472 1473 return MaxNode::Identity(phase); 1474 } 1475 1476 Node* MaxLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1477 Node* n = AddNode::Ideal(phase, can_reshape); 1478 if (n != nullptr) { 1479 return n; 1480 } 1481 if (can_reshape) { 1482 return fold_subI_no_underflow_pattern(this, phase); 1483 } 1484 return nullptr; 1485 } 1486 1487 const Type* MinLNode::add_ring(const Type* t0, const Type* t1) const { 1488 const TypeLong* r0 = t0->is_long(); 1489 const TypeLong* r1 = t1->is_long(); 1490 1491 return TypeLong::make(MIN2(r0->_lo, r1->_lo), MIN2(r0->_hi, r1->_hi), MAX2(r0->_widen, r1->_widen)); 1492 } 1493 1494 Node* MinLNode::Identity(PhaseGVN* phase) { 1495 const TypeLong* t1 = phase->type(in(1))->is_long(); 1496 const TypeLong* t2 = phase->type(in(2))->is_long(); 1497 1498 // Can we determine minimum statically? 1499 if (t1->_lo >= t2->_hi) { 1500 return in(2); 1501 } else if (t2->_lo >= t1->_hi) { 1502 return in(1); 1503 } 1504 1505 return MaxNode::Identity(phase); 1506 } 1507 1508 Node* MinLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1509 Node* n = AddNode::Ideal(phase, can_reshape); 1510 if (n != nullptr) { 1511 return n; 1512 } 1513 if (can_reshape) { 1514 return fold_subI_no_underflow_pattern(this, phase); 1515 } 1516 return nullptr; 1517 } 1518 1519 int MaxNode::opposite_opcode() const { 1520 if (Opcode() == max_opcode()) { 1521 return min_opcode(); 1522 } else { 1523 assert(Opcode() == min_opcode(), "Caller should be either %s or %s, but is %s", NodeClassNames[max_opcode()], NodeClassNames[min_opcode()], NodeClassNames[Opcode()]); 1524 return max_opcode(); 1525 } 1526 } 1527 1528 // Given a redundant structure such as Max/Min(A, Max/Min(B, C)) where A == B or A == C, return the useful part of the structure. 1529 // 'operation' is the node expected to be the inner 'Max/Min(B, C)', and 'operand' is the node expected to be the 'A' operand of the outer node. 1530 Node* MaxNode::find_identity_operation(Node* operation, Node* operand) { 1531 if (operation->Opcode() == Opcode() || operation->Opcode() == opposite_opcode()) { 1532 Node* n1 = operation->in(1); 1533 Node* n2 = operation->in(2); 1534 1535 // Given Op(A, Op(B, C)), see if either A == B or A == C is true. 1536 if (n1 == operand || n2 == operand) { 1537 // If the operations are the same return the inner operation, as Max(A, Max(A, B)) == Max(A, B). 1538 if (operation->Opcode() == Opcode()) { 1539 return operation; 1540 } 1541 1542 // If the operations are different return the operand 'A', as Max(A, Min(A, B)) == A if the value isn't floating point. 1543 // With floating point values, the identity doesn't hold if B == NaN. 1544 const Type* type = bottom_type(); 1545 if (type->isa_int() || type->isa_long()) { 1546 return operand; 1547 } 1548 } 1549 } 1550 1551 return nullptr; 1552 } 1553 1554 Node* MaxNode::Identity(PhaseGVN* phase) { 1555 if (in(1) == in(2)) { 1556 return in(1); 1557 } 1558 1559 Node* identity_1 = MaxNode::find_identity_operation(in(2), in(1)); 1560 if (identity_1 != nullptr) { 1561 return identity_1; 1562 } 1563 1564 Node* identity_2 = MaxNode::find_identity_operation(in(1), in(2)); 1565 if (identity_2 != nullptr) { 1566 return identity_2; 1567 } 1568 1569 return AddNode::Identity(phase); 1570 } 1571 1572 //------------------------------add_ring--------------------------------------- 1573 const Type* MinHFNode::add_ring(const Type* t0, const Type* t1) const { 1574 const TypeH* r0 = t0->isa_half_float_constant(); 1575 const TypeH* r1 = t1->isa_half_float_constant(); 1576 if (r0 == nullptr || r1 == nullptr) { 1577 return bottom_type(); 1578 } 1579 1580 if (r0->is_nan()) { 1581 return r0; 1582 } 1583 if (r1->is_nan()) { 1584 return r1; 1585 } 1586 1587 float f0 = r0->getf(); 1588 float f1 = r1->getf(); 1589 if (f0 != 0.0f || f1 != 0.0f) { 1590 return f0 < f1 ? r0 : r1; 1591 } 1592 1593 // As per IEEE 754 specification, floating point comparison consider +ve and -ve 1594 // zeros as equals. Thus, performing signed integral comparison for min value 1595 // detection. 1596 return (jint_cast(f0) < jint_cast(f1)) ? r0 : r1; 1597 } 1598 1599 //------------------------------add_ring--------------------------------------- 1600 const Type* MinFNode::add_ring(const Type* t0, const Type* t1 ) const { 1601 const TypeF* r0 = t0->isa_float_constant(); 1602 const TypeF* r1 = t1->isa_float_constant(); 1603 if (r0 == nullptr || r1 == nullptr) { 1604 return bottom_type(); 1605 } 1606 1607 if (r0->is_nan()) { 1608 return r0; 1609 } 1610 if (r1->is_nan()) { 1611 return r1; 1612 } 1613 1614 float f0 = r0->getf(); 1615 float f1 = r1->getf(); 1616 if (f0 != 0.0f || f1 != 0.0f) { 1617 return f0 < f1 ? r0 : r1; 1618 } 1619 1620 // handle min of 0.0, -0.0 case. 1621 return (jint_cast(f0) < jint_cast(f1)) ? r0 : r1; 1622 } 1623 1624 //------------------------------add_ring--------------------------------------- 1625 const Type* MinDNode::add_ring(const Type* t0, const Type* t1) const { 1626 const TypeD* r0 = t0->isa_double_constant(); 1627 const TypeD* r1 = t1->isa_double_constant(); 1628 if (r0 == nullptr || r1 == nullptr) { 1629 return bottom_type(); 1630 } 1631 1632 if (r0->is_nan()) { 1633 return r0; 1634 } 1635 if (r1->is_nan()) { 1636 return r1; 1637 } 1638 1639 double d0 = r0->getd(); 1640 double d1 = r1->getd(); 1641 if (d0 != 0.0 || d1 != 0.0) { 1642 return d0 < d1 ? r0 : r1; 1643 } 1644 1645 // handle min of 0.0, -0.0 case. 1646 return (jlong_cast(d0) < jlong_cast(d1)) ? r0 : r1; 1647 } 1648 1649 //------------------------------add_ring--------------------------------------- 1650 const Type* MaxHFNode::add_ring(const Type* t0, const Type* t1) const { 1651 const TypeH* r0 = t0->isa_half_float_constant(); 1652 const TypeH* r1 = t1->isa_half_float_constant(); 1653 if (r0 == nullptr || r1 == nullptr) { 1654 return bottom_type(); 1655 } 1656 1657 if (r0->is_nan()) { 1658 return r0; 1659 } 1660 if (r1->is_nan()) { 1661 return r1; 1662 } 1663 1664 float f0 = r0->getf(); 1665 float f1 = r1->getf(); 1666 if (f0 != 0.0f || f1 != 0.0f) { 1667 return f0 > f1 ? r0 : r1; 1668 } 1669 1670 // As per IEEE 754 specification, floating point comparison consider +ve and -ve 1671 // zeros as equals. Thus, performing signed integral comparison for max value 1672 // detection. 1673 return (jint_cast(f0) > jint_cast(f1)) ? r0 : r1; 1674 } 1675 1676 1677 //------------------------------add_ring--------------------------------------- 1678 const Type* MaxFNode::add_ring(const Type* t0, const Type* t1) const { 1679 const TypeF* r0 = t0->isa_float_constant(); 1680 const TypeF* r1 = t1->isa_float_constant(); 1681 if (r0 == nullptr || r1 == nullptr) { 1682 return bottom_type(); 1683 } 1684 1685 if (r0->is_nan()) { 1686 return r0; 1687 } 1688 if (r1->is_nan()) { 1689 return r1; 1690 } 1691 1692 float f0 = r0->getf(); 1693 float f1 = r1->getf(); 1694 if (f0 != 0.0f || f1 != 0.0f) { 1695 return f0 > f1 ? r0 : r1; 1696 } 1697 1698 // handle max of 0.0,-0.0 case. 1699 return (jint_cast(f0) > jint_cast(f1)) ? r0 : r1; 1700 } 1701 1702 //------------------------------add_ring--------------------------------------- 1703 const Type* MaxDNode::add_ring(const Type* t0, const Type* t1) const { 1704 const TypeD* r0 = t0->isa_double_constant(); 1705 const TypeD* r1 = t1->isa_double_constant(); 1706 if (r0 == nullptr || r1 == nullptr) { 1707 return bottom_type(); 1708 } 1709 1710 if (r0->is_nan()) { 1711 return r0; 1712 } 1713 if (r1->is_nan()) { 1714 return r1; 1715 } 1716 1717 double d0 = r0->getd(); 1718 double d1 = r1->getd(); 1719 if (d0 != 0.0 || d1 != 0.0) { 1720 return d0 > d1 ? r0 : r1; 1721 } 1722 1723 // handle max of 0.0, -0.0 case. 1724 return (jlong_cast(d0) > jlong_cast(d1)) ? r0 : r1; 1725 }