1 /*
  2  * Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "gc/shared/barrierSet.hpp"
 26 #include "gc/shared/c2/barrierSetC2.hpp"
 27 #include "gc/shared/c2/cardTableBarrierSetC2.hpp"
 28 #include "gc/shared/gc_globals.hpp"
 29 #include "opto/arraycopynode.hpp"
 30 #include "opto/graphKit.hpp"
 31 #include "runtime/sharedRuntime.hpp"
 32 #include "utilities/macros.hpp"
 33 #include "utilities/powerOfTwo.hpp"
 34 
 35 const TypeFunc* ArrayCopyNode::_arraycopy_type_Type = nullptr;
 36 
 37 ArrayCopyNode::ArrayCopyNode(Compile* C, bool alloc_tightly_coupled, bool has_negative_length_guard)
 38   : CallNode(arraycopy_type(), nullptr, TypePtr::BOTTOM),
 39     _kind(None),
 40     _alloc_tightly_coupled(alloc_tightly_coupled),
 41     _has_negative_length_guard(has_negative_length_guard),
 42     _arguments_validated(false),
 43     _src_type(TypeOopPtr::BOTTOM),
 44     _dest_type(TypeOopPtr::BOTTOM) {
 45   init_class_id(Class_ArrayCopy);
 46   init_flags(Flag_is_macro);
 47   C->add_macro_node(this);
 48 }
 49 
 50 uint ArrayCopyNode::size_of() const { return sizeof(*this); }
 51 
 52 ArrayCopyNode* ArrayCopyNode::make(GraphKit* kit, bool may_throw,
 53                                    Node* src, Node* src_offset,
 54                                    Node* dest, Node* dest_offset,
 55                                    Node* length,
 56                                    bool alloc_tightly_coupled,
 57                                    bool has_negative_length_guard,
 58                                    Node* src_klass, Node* dest_klass,
 59                                    Node* src_length, Node* dest_length) {
 60 
 61   ArrayCopyNode* ac = new ArrayCopyNode(kit->C, alloc_tightly_coupled, has_negative_length_guard);
 62   kit->set_predefined_input_for_runtime_call(ac);
 63 
 64   ac->init_req(ArrayCopyNode::Src, src);
 65   ac->init_req(ArrayCopyNode::SrcPos, src_offset);
 66   ac->init_req(ArrayCopyNode::Dest, dest);
 67   ac->init_req(ArrayCopyNode::DestPos, dest_offset);
 68   ac->init_req(ArrayCopyNode::Length, length);
 69   ac->init_req(ArrayCopyNode::SrcLen, src_length);
 70   ac->init_req(ArrayCopyNode::DestLen, dest_length);
 71   ac->init_req(ArrayCopyNode::SrcKlass, src_klass);
 72   ac->init_req(ArrayCopyNode::DestKlass, dest_klass);
 73 
 74   if (may_throw) {
 75     ac->set_req(TypeFunc::I_O , kit->i_o());
 76     kit->add_safepoint_edges(ac, false);
 77   }
 78 
 79   return ac;
 80 }
 81 
 82 void ArrayCopyNode::connect_outputs(GraphKit* kit, bool deoptimize_on_exception) {
 83   kit->set_all_memory_call(this, true);
 84   kit->set_control(kit->gvn().transform(new ProjNode(this,TypeFunc::Control)));
 85   kit->set_i_o(kit->gvn().transform(new ProjNode(this, TypeFunc::I_O)));
 86   kit->make_slow_call_ex(this, kit->env()->Throwable_klass(), true, deoptimize_on_exception);
 87   kit->set_all_memory_call(this);
 88 }
 89 
 90 #ifndef PRODUCT
 91 const char* ArrayCopyNode::_kind_names[] = {"arraycopy", "arraycopy, validated arguments", "clone", "oop array clone", "CopyOf", "CopyOfRange"};
 92 
 93 void ArrayCopyNode::dump_spec(outputStream *st) const {
 94   CallNode::dump_spec(st);
 95   st->print(" (%s%s)", _kind_names[_kind], _alloc_tightly_coupled ? ", tightly coupled allocation" : "");
 96 }
 97 
 98 void ArrayCopyNode::dump_compact_spec(outputStream* st) const {
 99   st->print("%s%s", _kind_names[_kind], _alloc_tightly_coupled ? ",tight" : "");
100 }
101 #endif
102 
103 intptr_t ArrayCopyNode::get_length_if_constant(PhaseGVN *phase) const {
104   // check that length is constant
105   Node* length = in(ArrayCopyNode::Length);
106   const Type* length_type = phase->type(length);
107 
108   if (length_type == Type::TOP) {
109     return -1;
110   }
111 
112   assert(is_clonebasic() || is_arraycopy() || is_copyof() || is_copyofrange(), "unexpected array copy type");
113 
114   return is_clonebasic() ? length->find_intptr_t_con(-1) : length->find_int_con(-1);
115 }
116 
117 int ArrayCopyNode::get_count(PhaseGVN *phase) const {
118   Node* src = in(ArrayCopyNode::Src);
119   const Type* src_type = phase->type(src);
120 
121   if (is_clonebasic()) {
122     if (src_type->isa_instptr()) {
123       const TypeInstPtr* inst_src = src_type->is_instptr();
124       ciInstanceKlass* ik = inst_src->instance_klass();
125       // ciInstanceKlass::nof_nonstatic_fields() doesn't take injected
126       // fields into account. They are rare anyway so easier to simply
127       // skip instances with injected fields.
128       if ((!inst_src->klass_is_exact() && (ik->is_interface() || ik->has_subklass())) || ik->has_injected_fields()) {
129         return -1;
130       }
131       int nb_fields = ik->nof_nonstatic_fields();
132       return nb_fields;
133     } else {
134       const TypeAryPtr* ary_src = src_type->isa_aryptr();
135       assert (ary_src != nullptr, "not an array or instance?");
136       // clone passes a length as a rounded number of longs. If we're
137       // cloning an array we'll do it element by element. If the
138       // length of the input array is constant, ArrayCopyNode::Length
139       // must be too. Note that the opposite does not need to hold,
140       // because different input array lengths (e.g. int arrays with
141       // 3 or 4 elements) might lead to the same length input
142       // (e.g. 2 double-words).
143       assert(!ary_src->size()->is_con() || (get_length_if_constant(phase) >= 0) ||
144              phase->is_IterGVN() || phase->C->inlining_incrementally() || StressReflectiveCode, "inconsistent");
145       if (ary_src->size()->is_con()) {
146         return ary_src->size()->get_con();
147       }
148       return -1;
149     }
150   }
151 
152   return get_length_if_constant(phase);
153 }
154 
155 Node* ArrayCopyNode::load(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, const Type *type, BasicType bt) {
156   // Pin the load: if this is an array load, it's going to be dependent on a condition that's not a range check for that
157   // access. If that condition is replaced by an identical dominating one, then an unpinned load would risk floating
158   // above runtime checks that guarantee it is within bounds.
159   DecoratorSet decorators = C2_READ_ACCESS | C2_CONTROL_DEPENDENT_LOAD | IN_HEAP | C2_ARRAY_COPY | C2_UNKNOWN_CONTROL_LOAD;
160   C2AccessValuePtr addr(adr, adr_type);
161   C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
162   Node* res = bs->load_at(access, type);
163   ctl = access.ctl();
164   return res;
165 }
166 
167 void ArrayCopyNode::store(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, Node* val, const Type *type, BasicType bt) {
168   DecoratorSet decorators = C2_WRITE_ACCESS | IN_HEAP | C2_ARRAY_COPY;
169   if (is_alloc_tightly_coupled()) {
170     decorators |= C2_TIGHTLY_COUPLED_ALLOC;
171   }
172   C2AccessValuePtr addr(adr, adr_type);
173   C2AccessValue value(val, type);
174   C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
175   bs->store_at(access, value);
176   ctl = access.ctl();
177 }
178 
179 
180 Node* ArrayCopyNode::try_clone_instance(PhaseGVN *phase, bool can_reshape, int count) {
181   if (!is_clonebasic()) {
182     return nullptr;
183   }
184 
185   Node* base_src = in(ArrayCopyNode::Src);
186   Node* base_dest = in(ArrayCopyNode::Dest);
187   Node* ctl = in(TypeFunc::Control);
188   Node* in_mem = in(TypeFunc::Memory);
189 
190   const Type* src_type = phase->type(base_src);
191   const TypeInstPtr* inst_src = src_type->isa_instptr();
192   if (inst_src == nullptr) {
193     return nullptr;
194   }
195 
196   MergeMemNode* mem = phase->transform(MergeMemNode::make(in_mem))->as_MergeMem();
197   if (can_reshape) {
198     phase->is_IterGVN()->_worklist.push(mem);
199   }
200 
201 
202   ciInstanceKlass* ik = inst_src->instance_klass();
203 
204   if (!inst_src->klass_is_exact()) {
205     assert(!ik->is_interface(), "inconsistent klass hierarchy");
206     if (ik->has_subklass()) {
207       // Concurrent class loading.
208       // Fail fast and return NodeSentinel to indicate that the transform failed.
209       return NodeSentinel;
210     } else {
211       phase->C->dependencies()->assert_leaf_type(ik);
212     }
213   }
214 
215   const TypeInstPtr* dest_type = phase->type(base_dest)->is_instptr();
216   if (dest_type->instance_klass() != ik) {
217     // At parse time, the exact type of the object to clone was not known. That inexact type was captured by the CheckCastPP
218     // of the newly allocated cloned object (in dest). The exact type is now known (in src), but the type for the cloned object
219     // (dest) was not updated. When copying the fields below, Store nodes may write to offsets for fields that don't exist in
220     // the inexact class. The stores would then be assigned an incorrect slice.
221     return NodeSentinel;
222   }
223 
224   assert(ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem, "too many fields");
225 
226   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
227   for (int i = 0; i < count; i++) {
228     ciField* field = ik->nonstatic_field_at(i);
229     const TypePtr* adr_type = phase->C->alias_type(field)->adr_type();
230     Node* off = phase->MakeConX(field->offset_in_bytes());
231     Node* next_src = phase->transform(new AddPNode(base_src,base_src,off));
232     Node* next_dest = phase->transform(new AddPNode(base_dest,base_dest,off));
233     assert(phase->C->get_alias_index(adr_type) == phase->C->get_alias_index(phase->type(next_src)->isa_ptr()),
234       "slice of address and input slice don't match");
235     assert(phase->C->get_alias_index(adr_type) == phase->C->get_alias_index(phase->type(next_dest)->isa_ptr()),
236       "slice of address and input slice don't match");
237     BasicType bt = field->layout_type();
238 
239     const Type *type;
240     if (bt == T_OBJECT) {
241       if (!field->type()->is_loaded()) {
242         type = TypeInstPtr::BOTTOM;
243       } else {
244         ciType* field_klass = field->type();
245         type = TypeOopPtr::make_from_klass(field_klass->as_klass());
246       }
247     } else {
248       type = Type::get_const_basic_type(bt);
249     }
250 
251     Node* v = load(bs, phase, ctl, mem, next_src, adr_type, type, bt);
252     store(bs, phase, ctl, mem, next_dest, adr_type, v, type, bt);
253   }
254 
255   if (!finish_transform(phase, can_reshape, ctl, mem)) {
256     // Return NodeSentinel to indicate that the transform failed
257     return NodeSentinel;
258   }
259 
260   return mem;
261 }
262 
263 bool ArrayCopyNode::prepare_array_copy(PhaseGVN *phase, bool can_reshape,
264                                        Node*& adr_src,
265                                        Node*& base_src,
266                                        Node*& adr_dest,
267                                        Node*& base_dest,
268                                        BasicType& copy_type,
269                                        const Type*& value_type,
270                                        bool& disjoint_bases) {
271   base_src = in(ArrayCopyNode::Src);
272   base_dest = in(ArrayCopyNode::Dest);
273   const Type* src_type = phase->type(base_src);
274   const TypeAryPtr* ary_src = src_type->isa_aryptr();
275 
276   Node* src_offset = in(ArrayCopyNode::SrcPos);
277   Node* dest_offset = in(ArrayCopyNode::DestPos);
278 
279   if (is_arraycopy() || is_copyofrange() || is_copyof()) {
280     const Type* dest_type = phase->type(base_dest);
281     const TypeAryPtr* ary_dest = dest_type->isa_aryptr();
282 
283     // newly allocated object is guaranteed to not overlap with source object
284     disjoint_bases = is_alloc_tightly_coupled();
285     if (ary_src  == nullptr || ary_src->elem()  == Type::BOTTOM ||
286         ary_dest == nullptr || ary_dest->elem() == Type::BOTTOM) {
287       // We don't know if arguments are arrays
288       return false;
289     }
290 
291     BasicType src_elem = ary_src->elem()->array_element_basic_type();
292     BasicType dest_elem = ary_dest->elem()->array_element_basic_type();
293     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
294     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
295 
296     if (src_elem != dest_elem || dest_elem == T_VOID) {
297       // We don't know if arguments are arrays of the same type
298       return false;
299     }
300 
301     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
302     if (bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), dest_elem, false, false, BarrierSetC2::Optimization)) {
303       // It's an object array copy but we can't emit the card marking
304       // that is needed
305       return false;
306     }
307 
308     value_type = ary_src->elem();
309 
310     uint shift  = exact_log2(type2aelembytes(dest_elem));
311     uint header = arrayOopDesc::base_offset_in_bytes(dest_elem);
312 
313     src_offset = Compile::conv_I2X_index(phase, src_offset, ary_src->size());
314     if (src_offset->is_top()) {
315       // Offset is out of bounds (the ArrayCopyNode will be removed)
316       return false;
317     }
318     dest_offset = Compile::conv_I2X_index(phase, dest_offset, ary_dest->size());
319     if (dest_offset->is_top()) {
320       // Offset is out of bounds (the ArrayCopyNode will be removed)
321       if (can_reshape) {
322         // record src_offset, so it can be deleted later (if it is dead)
323         phase->is_IterGVN()->_worklist.push(src_offset);
324       }
325       return false;
326     }
327 
328     Node* hook = new Node(1);
329     hook->init_req(0, dest_offset);
330 
331     Node* src_scale  = phase->transform(new LShiftXNode(src_offset, phase->intcon(shift)));
332 
333     hook->destruct(phase);
334 
335     Node* dest_scale = phase->transform(new LShiftXNode(dest_offset, phase->intcon(shift)));
336 
337     adr_src          = phase->transform(new AddPNode(base_src, base_src, src_scale));
338     adr_dest         = phase->transform(new AddPNode(base_dest, base_dest, dest_scale));
339 
340     adr_src          = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(header)));
341     adr_dest         = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(header)));
342 
343     copy_type = dest_elem;
344   } else {
345     assert(ary_src != nullptr, "should be a clone");
346     assert(is_clonebasic(), "should be");
347 
348     disjoint_bases = true;
349 
350     BasicType elem = ary_src->isa_aryptr()->elem()->array_element_basic_type();
351     if (is_reference_type(elem, true)) {
352       elem = T_OBJECT;
353     }
354 
355     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
356     if (bs->array_copy_requires_gc_barriers(true, elem, true, is_clone_inst(), BarrierSetC2::Optimization)) {
357       return false;
358     }
359 
360     adr_src  = phase->transform(new AddPNode(base_src, base_src, src_offset));
361     adr_dest = phase->transform(new AddPNode(base_dest, base_dest, dest_offset));
362 
363     // The address is offsetted to an aligned address where a raw copy would start.
364     // If the clone copy is decomposed into load-stores - the address is adjusted to
365     // point at where the array starts.
366     const Type* toff = phase->type(src_offset);
367     int offset = toff->isa_long() ? (int) toff->is_long()->get_con() : (int) toff->is_int()->get_con();
368     int diff = arrayOopDesc::base_offset_in_bytes(elem) - offset;
369     assert(diff >= 0, "clone should not start after 1st array element");
370     if (diff > 0) {
371       adr_src = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(diff)));
372       adr_dest = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(diff)));
373     }
374     copy_type = elem;
375     value_type = ary_src->elem();
376   }
377   return true;
378 }
379 
380 const TypePtr* ArrayCopyNode::get_address_type(PhaseGVN* phase, const TypePtr* atp, Node* n) {
381   if (atp == TypeOopPtr::BOTTOM) {
382     atp = phase->type(n)->isa_ptr();
383   }
384   // adjust atp to be the correct array element address type
385   return atp->add_offset(Type::OffsetBot);
386 }
387 
388 void ArrayCopyNode::array_copy_test_overlap(PhaseGVN *phase, bool can_reshape, bool disjoint_bases, int count, Node*& forward_ctl, Node*& backward_ctl) {
389   Node* ctl = in(TypeFunc::Control);
390   if (!disjoint_bases && count > 1) {
391     Node* src_offset = in(ArrayCopyNode::SrcPos);
392     Node* dest_offset = in(ArrayCopyNode::DestPos);
393     assert(src_offset != nullptr && dest_offset != nullptr, "should be");
394     Node* cmp = phase->transform(new CmpINode(src_offset, dest_offset));
395     Node *bol = phase->transform(new BoolNode(cmp, BoolTest::lt));
396     IfNode *iff = new IfNode(ctl, bol, PROB_FAIR, COUNT_UNKNOWN);
397 
398     phase->transform(iff);
399 
400     forward_ctl = phase->transform(new IfFalseNode(iff));
401     backward_ctl = phase->transform(new IfTrueNode(iff));
402   } else {
403     forward_ctl = ctl;
404   }
405 }
406 
407 Node* ArrayCopyNode::array_copy_forward(PhaseGVN *phase,
408                                         bool can_reshape,
409                                         Node*& forward_ctl,
410                                         Node* mem,
411                                         const TypePtr* atp_src,
412                                         const TypePtr* atp_dest,
413                                         Node* adr_src,
414                                         Node* base_src,
415                                         Node* adr_dest,
416                                         Node* base_dest,
417                                         BasicType copy_type,
418                                         const Type* value_type,
419                                         int count) {
420   if (!forward_ctl->is_top()) {
421     // copy forward
422     MergeMemNode* mm = MergeMemNode::make(mem);
423 
424     if (count > 0) {
425       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
426       Node* v = load(bs, phase, forward_ctl, mm, adr_src, atp_src, value_type, copy_type);
427       store(bs, phase, forward_ctl, mm, adr_dest, atp_dest, v, value_type, copy_type);
428       for (int i = 1; i < count; i++) {
429         Node* off  = phase->MakeConX(type2aelembytes(copy_type) * i);
430         Node* next_src = phase->transform(new AddPNode(base_src,adr_src,off));
431         Node* next_dest = phase->transform(new AddPNode(base_dest,adr_dest,off));
432         v = load(bs, phase, forward_ctl, mm, next_src, atp_src, value_type, copy_type);
433         store(bs, phase, forward_ctl, mm, next_dest, atp_dest, v, value_type, copy_type);
434       }
435     } else if (can_reshape) {
436       PhaseIterGVN* igvn = phase->is_IterGVN();
437       igvn->_worklist.push(adr_src);
438       igvn->_worklist.push(adr_dest);
439     }
440     return mm;
441   }
442   return phase->C->top();
443 }
444 
445 Node* ArrayCopyNode::array_copy_backward(PhaseGVN *phase,
446                                          bool can_reshape,
447                                          Node*& backward_ctl,
448                                          Node* mem,
449                                          const TypePtr* atp_src,
450                                          const TypePtr* atp_dest,
451                                          Node* adr_src,
452                                          Node* base_src,
453                                          Node* adr_dest,
454                                          Node* base_dest,
455                                          BasicType copy_type,
456                                          const Type* value_type,
457                                          int count) {
458   if (!backward_ctl->is_top()) {
459     // copy backward
460     MergeMemNode* mm = MergeMemNode::make(mem);
461 
462     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
463     assert(copy_type != T_OBJECT || !bs->array_copy_requires_gc_barriers(false, T_OBJECT, false, false, BarrierSetC2::Optimization), "only tightly coupled allocations for object arrays");
464 
465     if (count > 0) {
466       for (int i = count-1; i >= 1; i--) {
467         Node* off  = phase->MakeConX(type2aelembytes(copy_type) * i);
468         Node* next_src = phase->transform(new AddPNode(base_src,adr_src,off));
469         Node* next_dest = phase->transform(new AddPNode(base_dest,adr_dest,off));
470         Node* v = load(bs, phase, backward_ctl, mm, next_src, atp_src, value_type, copy_type);
471         store(bs, phase, backward_ctl, mm, next_dest, atp_dest, v, value_type, copy_type);
472       }
473       Node* v = load(bs, phase, backward_ctl, mm, adr_src, atp_src, value_type, copy_type);
474       store(bs, phase, backward_ctl, mm, adr_dest, atp_dest, v, value_type, copy_type);
475     } else if (can_reshape) {
476       PhaseIterGVN* igvn = phase->is_IterGVN();
477       igvn->_worklist.push(adr_src);
478       igvn->_worklist.push(adr_dest);
479     }
480     return phase->transform(mm);
481   }
482   return phase->C->top();
483 }
484 
485 bool ArrayCopyNode::finish_transform(PhaseGVN *phase, bool can_reshape,
486                                      Node* ctl, Node *mem) {
487   if (can_reshape) {
488     PhaseIterGVN* igvn = phase->is_IterGVN();
489     igvn->set_delay_transform(false);
490     if (is_clonebasic()) {
491       Node* out_mem = proj_out(TypeFunc::Memory);
492 
493       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
494       if (out_mem->outcnt() != 1 || !out_mem->raw_out(0)->is_MergeMem() ||
495           out_mem->raw_out(0)->outcnt() != 1 || !out_mem->raw_out(0)->raw_out(0)->is_MemBar()) {
496         assert(bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, is_clone_inst(), BarrierSetC2::Optimization), "can only happen with card marking");
497         return false;
498       }
499 
500       igvn->replace_node(out_mem->raw_out(0), mem);
501 
502       Node* out_ctl = proj_out(TypeFunc::Control);
503       igvn->replace_node(out_ctl, ctl);
504     } else {
505       // replace fallthrough projections of the ArrayCopyNode by the
506       // new memory, control and the input IO.
507       CallProjections callprojs;
508       extract_projections(&callprojs, true, false);
509 
510       if (callprojs.fallthrough_ioproj != nullptr) {
511         igvn->replace_node(callprojs.fallthrough_ioproj, in(TypeFunc::I_O));
512       }
513       if (callprojs.fallthrough_memproj != nullptr) {
514         igvn->replace_node(callprojs.fallthrough_memproj, mem);
515       }
516       if (callprojs.fallthrough_catchproj != nullptr) {
517         igvn->replace_node(callprojs.fallthrough_catchproj, ctl);
518       }
519 
520       // The ArrayCopyNode is not disconnected. It still has the
521       // projections for the exception case. Replace current
522       // ArrayCopyNode with a dummy new one with a top() control so
523       // that this part of the graph stays consistent but is
524       // eventually removed.
525 
526       set_req(0, phase->C->top());
527       remove_dead_region(phase, can_reshape);
528     }
529   } else {
530     if (in(TypeFunc::Control) != ctl) {
531       // we can't return new memory and control from Ideal at parse time
532       assert(!is_clonebasic() || UseShenandoahGC, "added control for clone?");
533       phase->record_for_igvn(this);
534       return false;
535     }
536   }
537   return true;
538 }
539 
540 
541 Node *ArrayCopyNode::Ideal(PhaseGVN *phase, bool can_reshape) {
542   if (remove_dead_region(phase, can_reshape))  return this;
543 
544   if (StressArrayCopyMacroNode && !can_reshape) {
545     phase->record_for_igvn(this);
546     return nullptr;
547   }
548 
549   // See if it's a small array copy and we can inline it as
550   // loads/stores
551   // Here we can only do:
552   // - arraycopy if all arguments were validated before and we don't
553   // need card marking
554   // - clone for which we don't need to do card marking
555 
556   if (!is_clonebasic() && !is_arraycopy_validated() &&
557       !is_copyofrange_validated() && !is_copyof_validated()) {
558     return nullptr;
559   }
560 
561   assert(in(TypeFunc::Control) != nullptr &&
562          in(TypeFunc::Memory) != nullptr &&
563          in(ArrayCopyNode::Src) != nullptr &&
564          in(ArrayCopyNode::Dest) != nullptr &&
565          in(ArrayCopyNode::Length) != nullptr &&
566          in(ArrayCopyNode::SrcPos) != nullptr &&
567          in(ArrayCopyNode::DestPos) != nullptr, "broken inputs");
568 
569   if (in(TypeFunc::Control)->is_top() ||
570       in(TypeFunc::Memory)->is_top() ||
571       phase->type(in(ArrayCopyNode::Src)) == Type::TOP ||
572       phase->type(in(ArrayCopyNode::Dest)) == Type::TOP ||
573       (in(ArrayCopyNode::SrcPos) != nullptr && in(ArrayCopyNode::SrcPos)->is_top()) ||
574       (in(ArrayCopyNode::DestPos) != nullptr && in(ArrayCopyNode::DestPos)->is_top())) {
575     return nullptr;
576   }
577 
578   int count = get_count(phase);
579 
580   if (count < 0 || count > ArrayCopyLoadStoreMaxElem) {
581     return nullptr;
582   }
583 
584   Node* mem = try_clone_instance(phase, can_reshape, count);
585   if (mem != nullptr) {
586     return (mem == NodeSentinel) ? nullptr : mem;
587   }
588 
589   Node* adr_src = nullptr;
590   Node* base_src = nullptr;
591   Node* adr_dest = nullptr;
592   Node* base_dest = nullptr;
593   BasicType copy_type = T_ILLEGAL;
594   const Type* value_type = nullptr;
595   bool disjoint_bases = false;
596 
597   if (!prepare_array_copy(phase, can_reshape,
598                           adr_src, base_src, adr_dest, base_dest,
599                           copy_type, value_type, disjoint_bases)) {
600     assert(adr_src == nullptr, "no node can be left behind");
601     assert(adr_dest == nullptr, "no node can be left behind");
602     return nullptr;
603   }
604 
605   Node* src = in(ArrayCopyNode::Src);
606   Node* dest = in(ArrayCopyNode::Dest);
607   const TypePtr* atp_src = get_address_type(phase, _src_type, src);
608   const TypePtr* atp_dest = get_address_type(phase, _dest_type, dest);
609   Node* in_mem = in(TypeFunc::Memory);
610 
611   if (can_reshape) {
612     assert(!phase->is_IterGVN()->delay_transform(), "cannot delay transforms");
613     phase->is_IterGVN()->set_delay_transform(true);
614   }
615 
616   Node* backward_ctl = phase->C->top();
617   Node* forward_ctl = phase->C->top();
618   array_copy_test_overlap(phase, can_reshape, disjoint_bases, count, forward_ctl, backward_ctl);
619 
620   Node* forward_mem = array_copy_forward(phase, can_reshape, forward_ctl,
621                                          in_mem,
622                                          atp_src, atp_dest,
623                                          adr_src, base_src, adr_dest, base_dest,
624                                          copy_type, value_type, count);
625 
626   Node* backward_mem = array_copy_backward(phase, can_reshape, backward_ctl,
627                                            in_mem,
628                                            atp_src, atp_dest,
629                                            adr_src, base_src, adr_dest, base_dest,
630                                            copy_type, value_type, count);
631 
632   Node* ctl = nullptr;
633   if (!forward_ctl->is_top() && !backward_ctl->is_top()) {
634     ctl = new RegionNode(3);
635     ctl->init_req(1, forward_ctl);
636     ctl->init_req(2, backward_ctl);
637     ctl = phase->transform(ctl);
638     MergeMemNode* forward_mm = forward_mem->as_MergeMem();
639     MergeMemNode* backward_mm = backward_mem->as_MergeMem();
640     for (MergeMemStream mms(forward_mm, backward_mm); mms.next_non_empty2(); ) {
641       if (mms.memory() != mms.memory2()) {
642         Node* phi = new PhiNode(ctl, Type::MEMORY, phase->C->get_adr_type(mms.alias_idx()));
643         phi->init_req(1, mms.memory());
644         phi->init_req(2, mms.memory2());
645         phi = phase->transform(phi);
646         mms.set_memory(phi);
647       }
648     }
649     mem = forward_mem;
650   } else if (!forward_ctl->is_top()) {
651     ctl = forward_ctl;
652     mem = forward_mem;
653   } else {
654     assert(!backward_ctl->is_top(), "no copy?");
655     ctl = backward_ctl;
656     mem = backward_mem;
657   }
658 
659   if (can_reshape) {
660     assert(phase->is_IterGVN()->delay_transform(), "should be delaying transforms");
661     phase->is_IterGVN()->set_delay_transform(false);
662   }
663 
664   if (!finish_transform(phase, can_reshape, ctl, mem)) {
665     if (can_reshape) {
666       // put in worklist, so that if it happens to be dead it is removed
667       phase->is_IterGVN()->_worklist.push(mem);
668     }
669     return nullptr;
670   }
671 
672   return mem;
673 }
674 
675 bool ArrayCopyNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
676   Node* dest = in(ArrayCopyNode::Dest);
677   if (dest->is_top()) {
678     return false;
679   }
680   const TypeOopPtr* dest_t = phase->type(dest)->is_oopptr();
681   assert(!dest_t->is_known_instance() || _dest_type->is_known_instance(), "result of EA not recorded");
682   assert(in(ArrayCopyNode::Src)->is_top() || !phase->type(in(ArrayCopyNode::Src))->is_oopptr()->is_known_instance() ||
683          _src_type->is_known_instance(), "result of EA not recorded");
684 
685   if (_dest_type != TypeOopPtr::BOTTOM || t_oop->is_known_instance()) {
686     assert(_dest_type == TypeOopPtr::BOTTOM || _dest_type->is_known_instance(), "result of EA is known instance");
687     return t_oop->instance_id() == _dest_type->instance_id();
688   }
689 
690   return CallNode::may_modify_arraycopy_helper(dest_t, t_oop, phase);
691 }
692 
693 bool ArrayCopyNode::may_modify_helper(const TypeOopPtr* t_oop, Node* n, PhaseValues* phase, ArrayCopyNode*& ac) {
694   if (n != nullptr &&
695       n->is_ArrayCopy() &&
696       n->as_ArrayCopy()->may_modify(t_oop, phase)) {
697     ac = n->as_ArrayCopy();
698     return true;
699   }
700   return false;
701 }
702 
703 bool ArrayCopyNode::may_modify(const TypeOopPtr* t_oop, MemBarNode* mb, PhaseValues* phase, ArrayCopyNode*& ac) {
704   if (mb->trailing_expanded_array_copy()) {
705     return true;
706   }
707 
708   Node* c = mb->in(0);
709 
710   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
711   // step over g1 gc barrier if we're at e.g. a clone with ReduceInitialCardMarks off
712   c = bs->step_over_gc_barrier(c);
713 
714   CallNode* call = nullptr;
715   guarantee(c != nullptr, "step_over_gc_barrier failed, there must be something to step to.");
716   if (c->is_Region()) {
717     for (uint i = 1; i < c->req(); i++) {
718       if (c->in(i) != nullptr) {
719         Node* n = c->in(i)->in(0);
720         if (may_modify_helper(t_oop, n, phase, ac)) {
721           assert(c == mb->in(0), "only for clone");
722           return true;
723         }
724       }
725     }
726   } else if (may_modify_helper(t_oop, c->in(0), phase, ac)) {
727 #ifdef ASSERT
728     bool use_ReduceInitialCardMarks = BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) &&
729       static_cast<CardTableBarrierSetC2*>(bs)->use_ReduceInitialCardMarks();
730     assert(c == mb->in(0) || (ac->is_clonebasic() && !use_ReduceInitialCardMarks), "only for clone");
731 #endif
732     return true;
733   }
734 
735   return false;
736 }
737 
738 // Does this array copy modify offsets between offset_lo and offset_hi
739 // in the destination array
740 // if must_modify is false, return true if the copy could write
741 // between offset_lo and offset_hi
742 // if must_modify is true, return true if the copy is guaranteed to
743 // write between offset_lo and offset_hi
744 bool ArrayCopyNode::modifies(intptr_t offset_lo, intptr_t offset_hi, PhaseValues* phase, bool must_modify) const {
745   assert(_kind == ArrayCopy || _kind == CopyOf || _kind == CopyOfRange, "only for real array copies");
746 
747   Node* dest = in(Dest);
748   Node* dest_pos = in(DestPos);
749   Node* len = in(Length);
750 
751   const TypeInt *dest_pos_t = phase->type(dest_pos)->isa_int();
752   const TypeInt *len_t = phase->type(len)->isa_int();
753   const TypeAryPtr* ary_t = phase->type(dest)->isa_aryptr();
754 
755   if (dest_pos_t == nullptr || len_t == nullptr || ary_t == nullptr) {
756     return !must_modify;
757   }
758 
759   BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type();
760   if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT;
761 
762   uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
763   uint elemsize = type2aelembytes(ary_elem);
764 
765   jlong dest_pos_plus_len_lo = (((jlong)dest_pos_t->_lo) + len_t->_lo) * elemsize + header;
766   jlong dest_pos_plus_len_hi = (((jlong)dest_pos_t->_hi) + len_t->_hi) * elemsize + header;
767   jlong dest_pos_lo = ((jlong)dest_pos_t->_lo) * elemsize + header;
768   jlong dest_pos_hi = ((jlong)dest_pos_t->_hi) * elemsize + header;
769 
770   if (must_modify) {
771     if (offset_lo >= dest_pos_hi && offset_hi < dest_pos_plus_len_lo) {
772       return true;
773     }
774   } else {
775     if (offset_hi >= dest_pos_lo && offset_lo < dest_pos_plus_len_hi) {
776       return true;
777     }
778   }
779   return false;
780 }
781 
782 // As an optimization, choose optimum vector size for copy length known at compile time.
783 int ArrayCopyNode::get_partial_inline_vector_lane_count(BasicType type, int const_len) {
784   int lane_count = ArrayOperationPartialInlineSize/type2aelembytes(type);
785   if (const_len > 0) {
786     int size_in_bytes = const_len * type2aelembytes(type);
787     if (size_in_bytes <= 16)
788       lane_count = 16/type2aelembytes(type);
789     else if (size_in_bytes > 16 && size_in_bytes <= 32)
790       lane_count = 32/type2aelembytes(type);
791   }
792   return lane_count;
793 }