1 /*
  2  * Copyright (c) 2016, 2023, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "gc/shared/barrierSet.hpp"
 27 #include "gc/shared/c2/barrierSetC2.hpp"
 28 #include "gc/shared/c2/cardTableBarrierSetC2.hpp"
 29 #include "gc/shared/gc_globals.hpp"
 30 #include "opto/arraycopynode.hpp"
 31 #include "opto/graphKit.hpp"
 32 #include "runtime/sharedRuntime.hpp"
 33 #include "utilities/macros.hpp"
 34 #include "utilities/powerOfTwo.hpp"
 35 
 36 ArrayCopyNode::ArrayCopyNode(Compile* C, bool alloc_tightly_coupled, bool has_negative_length_guard)
 37   : CallNode(arraycopy_type(), nullptr, TypePtr::BOTTOM),
 38     _kind(None),
 39     _alloc_tightly_coupled(alloc_tightly_coupled),
 40     _has_negative_length_guard(has_negative_length_guard),
 41     _arguments_validated(false),
 42     _src_type(TypeOopPtr::BOTTOM),
 43     _dest_type(TypeOopPtr::BOTTOM) {
 44   init_class_id(Class_ArrayCopy);
 45   init_flags(Flag_is_macro);
 46   C->add_macro_node(this);
 47 }
 48 
 49 uint ArrayCopyNode::size_of() const { return sizeof(*this); }
 50 
 51 ArrayCopyNode* ArrayCopyNode::make(GraphKit* kit, bool may_throw,
 52                                    Node* src, Node* src_offset,
 53                                    Node* dest, Node* dest_offset,
 54                                    Node* length,
 55                                    bool alloc_tightly_coupled,
 56                                    bool has_negative_length_guard,
 57                                    Node* src_klass, Node* dest_klass,
 58                                    Node* src_length, Node* dest_length) {
 59 
 60   ArrayCopyNode* ac = new ArrayCopyNode(kit->C, alloc_tightly_coupled, has_negative_length_guard);
 61   kit->set_predefined_input_for_runtime_call(ac);
 62 
 63   ac->init_req(ArrayCopyNode::Src, src);
 64   ac->init_req(ArrayCopyNode::SrcPos, src_offset);
 65   ac->init_req(ArrayCopyNode::Dest, dest);
 66   ac->init_req(ArrayCopyNode::DestPos, dest_offset);
 67   ac->init_req(ArrayCopyNode::Length, length);
 68   ac->init_req(ArrayCopyNode::SrcLen, src_length);
 69   ac->init_req(ArrayCopyNode::DestLen, dest_length);
 70   ac->init_req(ArrayCopyNode::SrcKlass, src_klass);
 71   ac->init_req(ArrayCopyNode::DestKlass, dest_klass);
 72 
 73   if (may_throw) {
 74     ac->set_req(TypeFunc::I_O , kit->i_o());
 75     kit->add_safepoint_edges(ac, false);
 76   }
 77 
 78   return ac;
 79 }
 80 
 81 void ArrayCopyNode::connect_outputs(GraphKit* kit, bool deoptimize_on_exception) {
 82   kit->set_all_memory_call(this, true);
 83   kit->set_control(kit->gvn().transform(new ProjNode(this,TypeFunc::Control)));
 84   kit->set_i_o(kit->gvn().transform(new ProjNode(this, TypeFunc::I_O)));
 85   kit->make_slow_call_ex(this, kit->env()->Throwable_klass(), true, deoptimize_on_exception);
 86   kit->set_all_memory_call(this);
 87 }
 88 
 89 #ifndef PRODUCT
 90 const char* ArrayCopyNode::_kind_names[] = {"arraycopy", "arraycopy, validated arguments", "clone", "oop array clone", "CopyOf", "CopyOfRange"};
 91 
 92 void ArrayCopyNode::dump_spec(outputStream *st) const {
 93   CallNode::dump_spec(st);
 94   st->print(" (%s%s)", _kind_names[_kind], _alloc_tightly_coupled ? ", tightly coupled allocation" : "");
 95 }
 96 
 97 void ArrayCopyNode::dump_compact_spec(outputStream* st) const {
 98   st->print("%s%s", _kind_names[_kind], _alloc_tightly_coupled ? ",tight" : "");
 99 }
100 #endif
101 
102 intptr_t ArrayCopyNode::get_length_if_constant(PhaseGVN *phase) const {
103   // check that length is constant
104   Node* length = in(ArrayCopyNode::Length);
105   const Type* length_type = phase->type(length);
106 
107   if (length_type == Type::TOP) {
108     return -1;
109   }
110 
111   assert(is_clonebasic() || is_arraycopy() || is_copyof() || is_copyofrange(), "unexpected array copy type");
112 
113   return is_clonebasic() ? length->find_intptr_t_con(-1) : length->find_int_con(-1);
114 }
115 
116 int ArrayCopyNode::get_count(PhaseGVN *phase) const {
117   Node* src = in(ArrayCopyNode::Src);
118   const Type* src_type = phase->type(src);
119 
120   if (is_clonebasic()) {
121     if (src_type->isa_instptr()) {
122       const TypeInstPtr* inst_src = src_type->is_instptr();
123       ciInstanceKlass* ik = inst_src->instance_klass();
124       // ciInstanceKlass::nof_nonstatic_fields() doesn't take injected
125       // fields into account. They are rare anyway so easier to simply
126       // skip instances with injected fields.
127       if ((!inst_src->klass_is_exact() && (ik->is_interface() || ik->has_subklass())) || ik->has_injected_fields()) {
128         return -1;
129       }
130       int nb_fields = ik->nof_nonstatic_fields();
131       return nb_fields;
132     } else {
133       const TypeAryPtr* ary_src = src_type->isa_aryptr();
134       assert (ary_src != nullptr, "not an array or instance?");
135       // clone passes a length as a rounded number of longs. If we're
136       // cloning an array we'll do it element by element. If the
137       // length input to ArrayCopyNode is constant, length of input
138       // array must be too.
139 
140       assert((get_length_if_constant(phase) == -1) != ary_src->size()->is_con() ||
141              phase->is_IterGVN() || phase->C->inlining_incrementally() || StressReflectiveCode, "inconsistent");
142 
143       if (ary_src->size()->is_con()) {
144         return ary_src->size()->get_con();
145       }
146       return -1;
147     }
148   }
149 
150   return get_length_if_constant(phase);
151 }
152 
153 Node* ArrayCopyNode::load(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, const Type *type, BasicType bt) {
154   DecoratorSet decorators = C2_READ_ACCESS | C2_CONTROL_DEPENDENT_LOAD | IN_HEAP | C2_ARRAY_COPY;
155   C2AccessValuePtr addr(adr, adr_type);
156   C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
157   Node* res = bs->load_at(access, type);
158   ctl = access.ctl();
159   return res;
160 }
161 
162 void ArrayCopyNode::store(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, Node* val, const Type *type, BasicType bt) {
163   DecoratorSet decorators = C2_WRITE_ACCESS | IN_HEAP | C2_ARRAY_COPY;
164   if (is_alloc_tightly_coupled()) {
165     decorators |= C2_TIGHTLY_COUPLED_ALLOC;
166   }
167   C2AccessValuePtr addr(adr, adr_type);
168   C2AccessValue value(val, type);
169   C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
170   bs->store_at(access, value);
171   ctl = access.ctl();
172 }
173 
174 
175 Node* ArrayCopyNode::try_clone_instance(PhaseGVN *phase, bool can_reshape, int count) {
176   if (!is_clonebasic()) {
177     return nullptr;
178   }
179 
180   Node* base_src = in(ArrayCopyNode::Src);
181   Node* base_dest = in(ArrayCopyNode::Dest);
182   Node* ctl = in(TypeFunc::Control);
183   Node* in_mem = in(TypeFunc::Memory);
184 
185   const Type* src_type = phase->type(base_src);
186   const TypeInstPtr* inst_src = src_type->isa_instptr();
187   if (inst_src == nullptr) {
188     return nullptr;
189   }
190 
191   MergeMemNode* mem = phase->transform(MergeMemNode::make(in_mem))->as_MergeMem();
192   if (can_reshape) {
193     phase->is_IterGVN()->_worklist.push(mem);
194   }
195 
196 
197   ciInstanceKlass* ik = inst_src->instance_klass();
198 
199   if (!inst_src->klass_is_exact()) {
200     assert(!ik->is_interface(), "inconsistent klass hierarchy");
201     if (ik->has_subklass()) {
202       // Concurrent class loading.
203       // Fail fast and return NodeSentinel to indicate that the transform failed.
204       return NodeSentinel;
205     } else {
206       phase->C->dependencies()->assert_leaf_type(ik);
207     }
208   }
209 
210   assert(ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem, "too many fields");
211 
212   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
213   for (int i = 0; i < count; i++) {
214     ciField* field = ik->nonstatic_field_at(i);
215     const TypePtr* adr_type = phase->C->alias_type(field)->adr_type();
216     Node* off = phase->MakeConX(field->offset_in_bytes());
217     Node* next_src = phase->transform(new AddPNode(base_src,base_src,off));
218     Node* next_dest = phase->transform(new AddPNode(base_dest,base_dest,off));
219     BasicType bt = field->layout_type();
220 
221     const Type *type;
222     if (bt == T_OBJECT) {
223       if (!field->type()->is_loaded()) {
224         type = TypeInstPtr::BOTTOM;
225       } else {
226         ciType* field_klass = field->type();
227         type = TypeOopPtr::make_from_klass(field_klass->as_klass());
228       }
229     } else {
230       type = Type::get_const_basic_type(bt);
231     }
232 
233     Node* v = load(bs, phase, ctl, mem, next_src, adr_type, type, bt);
234     store(bs, phase, ctl, mem, next_dest, adr_type, v, type, bt);
235   }
236 
237   if (!finish_transform(phase, can_reshape, ctl, mem)) {
238     // Return NodeSentinel to indicate that the transform failed
239     return NodeSentinel;
240   }
241 
242   return mem;
243 }
244 
245 bool ArrayCopyNode::prepare_array_copy(PhaseGVN *phase, bool can_reshape,
246                                        Node*& adr_src,
247                                        Node*& base_src,
248                                        Node*& adr_dest,
249                                        Node*& base_dest,
250                                        BasicType& copy_type,
251                                        const Type*& value_type,
252                                        bool& disjoint_bases) {
253   base_src = in(ArrayCopyNode::Src);
254   base_dest = in(ArrayCopyNode::Dest);
255   const Type* src_type = phase->type(base_src);
256   const TypeAryPtr* ary_src = src_type->isa_aryptr();
257 
258   Node* src_offset = in(ArrayCopyNode::SrcPos);
259   Node* dest_offset = in(ArrayCopyNode::DestPos);
260 
261   if (is_arraycopy() || is_copyofrange() || is_copyof()) {
262     const Type* dest_type = phase->type(base_dest);
263     const TypeAryPtr* ary_dest = dest_type->isa_aryptr();
264 
265     // newly allocated object is guaranteed to not overlap with source object
266     disjoint_bases = is_alloc_tightly_coupled();
267     if (ary_src  == nullptr || ary_src->elem()  == Type::BOTTOM ||
268         ary_dest == nullptr || ary_dest->elem() == Type::BOTTOM) {
269       // We don't know if arguments are arrays
270       return false;
271     }
272 
273     BasicType src_elem = ary_src->elem()->array_element_basic_type();
274     BasicType dest_elem = ary_dest->elem()->array_element_basic_type();
275     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
276     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
277 
278     if (src_elem != dest_elem || dest_elem == T_VOID) {
279       // We don't know if arguments are arrays of the same type
280       return false;
281     }
282 
283     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
284     if (bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), dest_elem, false, false, BarrierSetC2::Optimization)) {
285       // It's an object array copy but we can't emit the card marking
286       // that is needed
287       return false;
288     }
289 
290     value_type = ary_src->elem();
291 
292     uint shift  = exact_log2(type2aelembytes(dest_elem));
293     uint header = arrayOopDesc::base_offset_in_bytes(dest_elem);
294 
295     src_offset = Compile::conv_I2X_index(phase, src_offset, ary_src->size());
296     if (src_offset->is_top()) {
297       // Offset is out of bounds (the ArrayCopyNode will be removed)
298       return false;
299     }
300     dest_offset = Compile::conv_I2X_index(phase, dest_offset, ary_dest->size());
301     if (dest_offset->is_top()) {
302       // Offset is out of bounds (the ArrayCopyNode will be removed)
303       if (can_reshape) {
304         // record src_offset, so it can be deleted later (if it is dead)
305         phase->is_IterGVN()->_worklist.push(src_offset);
306       }
307       return false;
308     }
309 
310     Node* hook = new Node(1);
311     hook->init_req(0, dest_offset);
312 
313     Node* src_scale  = phase->transform(new LShiftXNode(src_offset, phase->intcon(shift)));
314 
315     hook->destruct(phase);
316 
317     Node* dest_scale = phase->transform(new LShiftXNode(dest_offset, phase->intcon(shift)));
318 
319     adr_src          = phase->transform(new AddPNode(base_src, base_src, src_scale));
320     adr_dest         = phase->transform(new AddPNode(base_dest, base_dest, dest_scale));
321 
322     adr_src          = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(header)));
323     adr_dest         = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(header)));
324 
325     copy_type = dest_elem;
326   } else {
327     assert(ary_src != nullptr, "should be a clone");
328     assert(is_clonebasic(), "should be");
329 
330     disjoint_bases = true;
331 
332     BasicType elem = ary_src->isa_aryptr()->elem()->array_element_basic_type();
333     if (is_reference_type(elem, true)) {
334       elem = T_OBJECT;
335     }
336 
337     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
338     if (bs->array_copy_requires_gc_barriers(true, elem, true, is_clone_inst(), BarrierSetC2::Optimization)) {
339       return false;
340     }
341 
342     adr_src  = phase->transform(new AddPNode(base_src, base_src, src_offset));
343     adr_dest = phase->transform(new AddPNode(base_dest, base_dest, dest_offset));
344 
345     // The address is offsetted to an aligned address where a raw copy would start.
346     // If the clone copy is decomposed into load-stores - the address is adjusted to
347     // point at where the array starts.
348     const Type* toff = phase->type(src_offset);
349     int offset = toff->isa_long() ? (int) toff->is_long()->get_con() : (int) toff->is_int()->get_con();
350     int diff = arrayOopDesc::base_offset_in_bytes(elem) - offset;
351     assert(diff >= 0, "clone should not start after 1st array element");
352     if (diff > 0) {
353       adr_src = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(diff)));
354       adr_dest = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(diff)));
355     }
356     copy_type = elem;
357     value_type = ary_src->elem();
358   }
359   return true;
360 }
361 
362 const TypePtr* ArrayCopyNode::get_address_type(PhaseGVN* phase, const TypePtr* atp, Node* n) {
363   if (atp == TypeOopPtr::BOTTOM) {
364     atp = phase->type(n)->isa_ptr();
365   }
366   // adjust atp to be the correct array element address type
367   return atp->add_offset(Type::OffsetBot);
368 }
369 
370 void ArrayCopyNode::array_copy_test_overlap(PhaseGVN *phase, bool can_reshape, bool disjoint_bases, int count, Node*& forward_ctl, Node*& backward_ctl) {
371   Node* ctl = in(TypeFunc::Control);
372   if (!disjoint_bases && count > 1) {
373     Node* src_offset = in(ArrayCopyNode::SrcPos);
374     Node* dest_offset = in(ArrayCopyNode::DestPos);
375     assert(src_offset != nullptr && dest_offset != nullptr, "should be");
376     Node* cmp = phase->transform(new CmpINode(src_offset, dest_offset));
377     Node *bol = phase->transform(new BoolNode(cmp, BoolTest::lt));
378     IfNode *iff = new IfNode(ctl, bol, PROB_FAIR, COUNT_UNKNOWN);
379 
380     phase->transform(iff);
381 
382     forward_ctl = phase->transform(new IfFalseNode(iff));
383     backward_ctl = phase->transform(new IfTrueNode(iff));
384   } else {
385     forward_ctl = ctl;
386   }
387 }
388 
389 Node* ArrayCopyNode::array_copy_forward(PhaseGVN *phase,
390                                         bool can_reshape,
391                                         Node*& forward_ctl,
392                                         Node* mem,
393                                         const TypePtr* atp_src,
394                                         const TypePtr* atp_dest,
395                                         Node* adr_src,
396                                         Node* base_src,
397                                         Node* adr_dest,
398                                         Node* base_dest,
399                                         BasicType copy_type,
400                                         const Type* value_type,
401                                         int count) {
402   if (!forward_ctl->is_top()) {
403     // copy forward
404     MergeMemNode* mm = MergeMemNode::make(mem);
405 
406     if (count > 0) {
407       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
408       Node* v = load(bs, phase, forward_ctl, mm, adr_src, atp_src, value_type, copy_type);
409       store(bs, phase, forward_ctl, mm, adr_dest, atp_dest, v, value_type, copy_type);
410       for (int i = 1; i < count; i++) {
411         Node* off  = phase->MakeConX(type2aelembytes(copy_type) * i);
412         Node* next_src = phase->transform(new AddPNode(base_src,adr_src,off));
413         Node* next_dest = phase->transform(new AddPNode(base_dest,adr_dest,off));
414         v = load(bs, phase, forward_ctl, mm, next_src, atp_src, value_type, copy_type);
415         store(bs, phase, forward_ctl, mm, next_dest, atp_dest, v, value_type, copy_type);
416       }
417     } else if (can_reshape) {
418       PhaseIterGVN* igvn = phase->is_IterGVN();
419       igvn->_worklist.push(adr_src);
420       igvn->_worklist.push(adr_dest);
421     }
422     return mm;
423   }
424   return phase->C->top();
425 }
426 
427 Node* ArrayCopyNode::array_copy_backward(PhaseGVN *phase,
428                                          bool can_reshape,
429                                          Node*& backward_ctl,
430                                          Node* mem,
431                                          const TypePtr* atp_src,
432                                          const TypePtr* atp_dest,
433                                          Node* adr_src,
434                                          Node* base_src,
435                                          Node* adr_dest,
436                                          Node* base_dest,
437                                          BasicType copy_type,
438                                          const Type* value_type,
439                                          int count) {
440   if (!backward_ctl->is_top()) {
441     // copy backward
442     MergeMemNode* mm = MergeMemNode::make(mem);
443 
444     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
445     assert(copy_type != T_OBJECT || !bs->array_copy_requires_gc_barriers(false, T_OBJECT, false, false, BarrierSetC2::Optimization), "only tightly coupled allocations for object arrays");
446 
447     if (count > 0) {
448       for (int i = count-1; i >= 1; i--) {
449         Node* off  = phase->MakeConX(type2aelembytes(copy_type) * i);
450         Node* next_src = phase->transform(new AddPNode(base_src,adr_src,off));
451         Node* next_dest = phase->transform(new AddPNode(base_dest,adr_dest,off));
452         Node* v = load(bs, phase, backward_ctl, mm, next_src, atp_src, value_type, copy_type);
453         store(bs, phase, backward_ctl, mm, next_dest, atp_dest, v, value_type, copy_type);
454       }
455       Node* v = load(bs, phase, backward_ctl, mm, adr_src, atp_src, value_type, copy_type);
456       store(bs, phase, backward_ctl, mm, adr_dest, atp_dest, v, value_type, copy_type);
457     } else if (can_reshape) {
458       PhaseIterGVN* igvn = phase->is_IterGVN();
459       igvn->_worklist.push(adr_src);
460       igvn->_worklist.push(adr_dest);
461     }
462     return phase->transform(mm);
463   }
464   return phase->C->top();
465 }
466 
467 bool ArrayCopyNode::finish_transform(PhaseGVN *phase, bool can_reshape,
468                                      Node* ctl, Node *mem) {
469   if (can_reshape) {
470     PhaseIterGVN* igvn = phase->is_IterGVN();
471     igvn->set_delay_transform(false);
472     if (is_clonebasic()) {
473       Node* out_mem = proj_out(TypeFunc::Memory);
474 
475       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
476       if (out_mem->outcnt() != 1 || !out_mem->raw_out(0)->is_MergeMem() ||
477           out_mem->raw_out(0)->outcnt() != 1 || !out_mem->raw_out(0)->raw_out(0)->is_MemBar()) {
478         assert(bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, is_clone_inst(), BarrierSetC2::Optimization), "can only happen with card marking");
479         return false;
480       }
481 
482       igvn->replace_node(out_mem->raw_out(0), mem);
483 
484       Node* out_ctl = proj_out(TypeFunc::Control);
485       igvn->replace_node(out_ctl, ctl);
486     } else {
487       // replace fallthrough projections of the ArrayCopyNode by the
488       // new memory, control and the input IO.
489       CallProjections callprojs;
490       extract_projections(&callprojs, true, false);
491 
492       if (callprojs.fallthrough_ioproj != nullptr) {
493         igvn->replace_node(callprojs.fallthrough_ioproj, in(TypeFunc::I_O));
494       }
495       if (callprojs.fallthrough_memproj != nullptr) {
496         igvn->replace_node(callprojs.fallthrough_memproj, mem);
497       }
498       if (callprojs.fallthrough_catchproj != nullptr) {
499         igvn->replace_node(callprojs.fallthrough_catchproj, ctl);
500       }
501 
502       // The ArrayCopyNode is not disconnected. It still has the
503       // projections for the exception case. Replace current
504       // ArrayCopyNode with a dummy new one with a top() control so
505       // that this part of the graph stays consistent but is
506       // eventually removed.
507 
508       set_req(0, phase->C->top());
509       remove_dead_region(phase, can_reshape);
510     }
511   } else {
512     if (in(TypeFunc::Control) != ctl) {
513       // we can't return new memory and control from Ideal at parse time
514       assert(!is_clonebasic() || UseShenandoahGC, "added control for clone?");
515       phase->record_for_igvn(this);
516       return false;
517     }
518   }
519   return true;
520 }
521 
522 
523 Node *ArrayCopyNode::Ideal(PhaseGVN *phase, bool can_reshape) {
524   if (remove_dead_region(phase, can_reshape))  return this;
525 
526   if (StressArrayCopyMacroNode && !can_reshape) {
527     phase->record_for_igvn(this);
528     return nullptr;
529   }
530 
531   // See if it's a small array copy and we can inline it as
532   // loads/stores
533   // Here we can only do:
534   // - arraycopy if all arguments were validated before and we don't
535   // need card marking
536   // - clone for which we don't need to do card marking
537 
538   if (!is_clonebasic() && !is_arraycopy_validated() &&
539       !is_copyofrange_validated() && !is_copyof_validated()) {
540     return nullptr;
541   }
542 
543   assert(in(TypeFunc::Control) != nullptr &&
544          in(TypeFunc::Memory) != nullptr &&
545          in(ArrayCopyNode::Src) != nullptr &&
546          in(ArrayCopyNode::Dest) != nullptr &&
547          in(ArrayCopyNode::Length) != nullptr &&
548          in(ArrayCopyNode::SrcPos) != nullptr &&
549          in(ArrayCopyNode::DestPos) != nullptr, "broken inputs");
550 
551   if (in(TypeFunc::Control)->is_top() ||
552       in(TypeFunc::Memory)->is_top() ||
553       phase->type(in(ArrayCopyNode::Src)) == Type::TOP ||
554       phase->type(in(ArrayCopyNode::Dest)) == Type::TOP ||
555       (in(ArrayCopyNode::SrcPos) != nullptr && in(ArrayCopyNode::SrcPos)->is_top()) ||
556       (in(ArrayCopyNode::DestPos) != nullptr && in(ArrayCopyNode::DestPos)->is_top())) {
557     return nullptr;
558   }
559 
560   int count = get_count(phase);
561 
562   if (count < 0 || count > ArrayCopyLoadStoreMaxElem) {
563     return nullptr;
564   }
565 
566   Node* mem = try_clone_instance(phase, can_reshape, count);
567   if (mem != nullptr) {
568     return (mem == NodeSentinel) ? nullptr : mem;
569   }
570 
571   Node* adr_src = nullptr;
572   Node* base_src = nullptr;
573   Node* adr_dest = nullptr;
574   Node* base_dest = nullptr;
575   BasicType copy_type = T_ILLEGAL;
576   const Type* value_type = nullptr;
577   bool disjoint_bases = false;
578 
579   if (!prepare_array_copy(phase, can_reshape,
580                           adr_src, base_src, adr_dest, base_dest,
581                           copy_type, value_type, disjoint_bases)) {
582     assert(adr_src == nullptr, "no node can be left behind");
583     assert(adr_dest == nullptr, "no node can be left behind");
584     return nullptr;
585   }
586 
587   Node* src = in(ArrayCopyNode::Src);
588   Node* dest = in(ArrayCopyNode::Dest);
589   const TypePtr* atp_src = get_address_type(phase, _src_type, src);
590   const TypePtr* atp_dest = get_address_type(phase, _dest_type, dest);
591   Node* in_mem = in(TypeFunc::Memory);
592 
593   if (can_reshape) {
594     assert(!phase->is_IterGVN()->delay_transform(), "cannot delay transforms");
595     phase->is_IterGVN()->set_delay_transform(true);
596   }
597 
598   Node* backward_ctl = phase->C->top();
599   Node* forward_ctl = phase->C->top();
600   array_copy_test_overlap(phase, can_reshape, disjoint_bases, count, forward_ctl, backward_ctl);
601 
602   Node* forward_mem = array_copy_forward(phase, can_reshape, forward_ctl,
603                                          in_mem,
604                                          atp_src, atp_dest,
605                                          adr_src, base_src, adr_dest, base_dest,
606                                          copy_type, value_type, count);
607 
608   Node* backward_mem = array_copy_backward(phase, can_reshape, backward_ctl,
609                                            in_mem,
610                                            atp_src, atp_dest,
611                                            adr_src, base_src, adr_dest, base_dest,
612                                            copy_type, value_type, count);
613 
614   Node* ctl = nullptr;
615   if (!forward_ctl->is_top() && !backward_ctl->is_top()) {
616     ctl = new RegionNode(3);
617     ctl->init_req(1, forward_ctl);
618     ctl->init_req(2, backward_ctl);
619     ctl = phase->transform(ctl);
620     MergeMemNode* forward_mm = forward_mem->as_MergeMem();
621     MergeMemNode* backward_mm = backward_mem->as_MergeMem();
622     for (MergeMemStream mms(forward_mm, backward_mm); mms.next_non_empty2(); ) {
623       if (mms.memory() != mms.memory2()) {
624         Node* phi = new PhiNode(ctl, Type::MEMORY, phase->C->get_adr_type(mms.alias_idx()));
625         phi->init_req(1, mms.memory());
626         phi->init_req(2, mms.memory2());
627         phi = phase->transform(phi);
628         mms.set_memory(phi);
629       }
630     }
631     mem = forward_mem;
632   } else if (!forward_ctl->is_top()) {
633     ctl = forward_ctl;
634     mem = forward_mem;
635   } else {
636     assert(!backward_ctl->is_top(), "no copy?");
637     ctl = backward_ctl;
638     mem = backward_mem;
639   }
640 
641   if (can_reshape) {
642     assert(phase->is_IterGVN()->delay_transform(), "should be delaying transforms");
643     phase->is_IterGVN()->set_delay_transform(false);
644   }
645 
646   if (!finish_transform(phase, can_reshape, ctl, mem)) {
647     if (can_reshape) {
648       // put in worklist, so that if it happens to be dead it is removed
649       phase->is_IterGVN()->_worklist.push(mem);
650     }
651     return nullptr;
652   }
653 
654   return mem;
655 }
656 
657 bool ArrayCopyNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
658   Node* dest = in(ArrayCopyNode::Dest);
659   if (dest->is_top()) {
660     return false;
661   }
662   const TypeOopPtr* dest_t = phase->type(dest)->is_oopptr();
663   assert(!dest_t->is_known_instance() || _dest_type->is_known_instance(), "result of EA not recorded");
664   assert(in(ArrayCopyNode::Src)->is_top() || !phase->type(in(ArrayCopyNode::Src))->is_oopptr()->is_known_instance() ||
665          _src_type->is_known_instance(), "result of EA not recorded");
666 
667   if (_dest_type != TypeOopPtr::BOTTOM || t_oop->is_known_instance()) {
668     assert(_dest_type == TypeOopPtr::BOTTOM || _dest_type->is_known_instance(), "result of EA is known instance");
669     return t_oop->instance_id() == _dest_type->instance_id();
670   }
671 
672   return CallNode::may_modify_arraycopy_helper(dest_t, t_oop, phase);
673 }
674 
675 bool ArrayCopyNode::may_modify_helper(const TypeOopPtr* t_oop, Node* n, PhaseValues* phase, CallNode*& call) {
676   if (n != nullptr &&
677       n->is_Call() &&
678       n->as_Call()->may_modify(t_oop, phase) &&
679       (n->as_Call()->is_ArrayCopy() || n->as_Call()->is_call_to_arraycopystub())) {
680     call = n->as_Call();
681     return true;
682   }
683   return false;
684 }
685 
686 bool ArrayCopyNode::may_modify(const TypeOopPtr* t_oop, MemBarNode* mb, PhaseValues* phase, ArrayCopyNode*& ac) {
687   Node* c = mb->in(0);
688 
689   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
690   // step over g1 gc barrier if we're at e.g. a clone with ReduceInitialCardMarks off
691   c = bs->step_over_gc_barrier(c);
692 
693   CallNode* call = nullptr;
694   guarantee(c != nullptr, "step_over_gc_barrier failed, there must be something to step to.");
695   if (c->is_Region()) {
696     for (uint i = 1; i < c->req(); i++) {
697       if (c->in(i) != nullptr) {
698         Node* n = c->in(i)->in(0);
699         if (may_modify_helper(t_oop, n, phase, call)) {
700           ac = call->isa_ArrayCopy();
701           assert(c == mb->in(0), "only for clone");
702           return true;
703         }
704       }
705     }
706   } else if (may_modify_helper(t_oop, c->in(0), phase, call)) {
707     ac = call->isa_ArrayCopy();
708 #ifdef ASSERT
709     bool use_ReduceInitialCardMarks = BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) &&
710       static_cast<CardTableBarrierSetC2*>(bs)->use_ReduceInitialCardMarks();
711     assert(c == mb->in(0) || (ac != nullptr && ac->is_clonebasic() && !use_ReduceInitialCardMarks), "only for clone");
712 #endif
713     return true;
714   } else if (mb->trailing_partial_array_copy()) {
715     return true;
716   }
717 
718   return false;
719 }
720 
721 // Does this array copy modify offsets between offset_lo and offset_hi
722 // in the destination array
723 // if must_modify is false, return true if the copy could write
724 // between offset_lo and offset_hi
725 // if must_modify is true, return true if the copy is guaranteed to
726 // write between offset_lo and offset_hi
727 bool ArrayCopyNode::modifies(intptr_t offset_lo, intptr_t offset_hi, PhaseValues* phase, bool must_modify) const {
728   assert(_kind == ArrayCopy || _kind == CopyOf || _kind == CopyOfRange, "only for real array copies");
729 
730   Node* dest = in(Dest);
731   Node* dest_pos = in(DestPos);
732   Node* len = in(Length);
733 
734   const TypeInt *dest_pos_t = phase->type(dest_pos)->isa_int();
735   const TypeInt *len_t = phase->type(len)->isa_int();
736   const TypeAryPtr* ary_t = phase->type(dest)->isa_aryptr();
737 
738   if (dest_pos_t == nullptr || len_t == nullptr || ary_t == nullptr) {
739     return !must_modify;
740   }
741 
742   BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type();
743   if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT;
744 
745   uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
746   uint elemsize = type2aelembytes(ary_elem);
747 
748   jlong dest_pos_plus_len_lo = (((jlong)dest_pos_t->_lo) + len_t->_lo) * elemsize + header;
749   jlong dest_pos_plus_len_hi = (((jlong)dest_pos_t->_hi) + len_t->_hi) * elemsize + header;
750   jlong dest_pos_lo = ((jlong)dest_pos_t->_lo) * elemsize + header;
751   jlong dest_pos_hi = ((jlong)dest_pos_t->_hi) * elemsize + header;
752 
753   if (must_modify) {
754     if (offset_lo >= dest_pos_hi && offset_hi < dest_pos_plus_len_lo) {
755       return true;
756     }
757   } else {
758     if (offset_hi >= dest_pos_lo && offset_lo < dest_pos_plus_len_hi) {
759       return true;
760     }
761   }
762   return false;
763 }
764 
765 // As an optimization, choose optimum vector size for copy length known at compile time.
766 int ArrayCopyNode::get_partial_inline_vector_lane_count(BasicType type, int const_len) {
767   int lane_count = ArrayOperationPartialInlineSize/type2aelembytes(type);
768   if (const_len > 0) {
769     int size_in_bytes = const_len * type2aelembytes(type);
770     if (size_in_bytes <= 16)
771       lane_count = 16/type2aelembytes(type);
772     else if (size_in_bytes > 16 && size_in_bytes <= 32)
773       lane_count = 32/type2aelembytes(type);
774   }
775   return lane_count;
776 }