1 /*
  2  * Copyright (c) 2016, 2023, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "gc/shared/barrierSet.hpp"
 27 #include "gc/shared/c2/barrierSetC2.hpp"
 28 #include "gc/shared/c2/cardTableBarrierSetC2.hpp"
 29 #include "gc/shared/gc_globals.hpp"
 30 #include "opto/arraycopynode.hpp"
 31 #include "opto/graphKit.hpp"
 32 #include "runtime/sharedRuntime.hpp"
 33 #include "utilities/macros.hpp"
 34 #include "utilities/powerOfTwo.hpp"
 35 
 36 ArrayCopyNode::ArrayCopyNode(Compile* C, bool alloc_tightly_coupled, bool has_negative_length_guard)
 37   : CallNode(arraycopy_type(), nullptr, TypePtr::BOTTOM),
 38     _kind(None),
 39     _alloc_tightly_coupled(alloc_tightly_coupled),
 40     _has_negative_length_guard(has_negative_length_guard),
 41     _arguments_validated(false),
 42     _src_type(TypeOopPtr::BOTTOM),
 43     _dest_type(TypeOopPtr::BOTTOM) {
 44   init_class_id(Class_ArrayCopy);
 45   init_flags(Flag_is_macro);
 46   C->add_macro_node(this);
 47 }
 48 
 49 uint ArrayCopyNode::size_of() const { return sizeof(*this); }
 50 
 51 ArrayCopyNode* ArrayCopyNode::make(GraphKit* kit, bool may_throw,
 52                                    Node* src, Node* src_offset,
 53                                    Node* dest, Node* dest_offset,
 54                                    Node* length,
 55                                    bool alloc_tightly_coupled,
 56                                    bool has_negative_length_guard,
 57                                    Node* src_klass, Node* dest_klass,
 58                                    Node* src_length, Node* dest_length) {
 59 
 60   ArrayCopyNode* ac = new ArrayCopyNode(kit->C, alloc_tightly_coupled, has_negative_length_guard);
 61   kit->set_predefined_input_for_runtime_call(ac);
 62 
 63   ac->init_req(ArrayCopyNode::Src, src);
 64   ac->init_req(ArrayCopyNode::SrcPos, src_offset);
 65   ac->init_req(ArrayCopyNode::Dest, dest);
 66   ac->init_req(ArrayCopyNode::DestPos, dest_offset);
 67   ac->init_req(ArrayCopyNode::Length, length);
 68   ac->init_req(ArrayCopyNode::SrcLen, src_length);
 69   ac->init_req(ArrayCopyNode::DestLen, dest_length);
 70   ac->init_req(ArrayCopyNode::SrcKlass, src_klass);
 71   ac->init_req(ArrayCopyNode::DestKlass, dest_klass);
 72 
 73   if (may_throw) {
 74     ac->set_req(TypeFunc::I_O , kit->i_o());
 75     kit->add_safepoint_edges(ac, false);
 76   }
 77 
 78   return ac;
 79 }
 80 
 81 void ArrayCopyNode::connect_outputs(GraphKit* kit, bool deoptimize_on_exception) {
 82   kit->set_all_memory_call(this, true);
 83   kit->set_control(kit->gvn().transform(new ProjNode(this,TypeFunc::Control)));
 84   kit->set_i_o(kit->gvn().transform(new ProjNode(this, TypeFunc::I_O)));
 85   kit->make_slow_call_ex(this, kit->env()->Throwable_klass(), true, deoptimize_on_exception);
 86   kit->set_all_memory_call(this);
 87 }
 88 
 89 #ifndef PRODUCT
 90 const char* ArrayCopyNode::_kind_names[] = {"arraycopy", "arraycopy, validated arguments", "clone", "oop array clone", "CopyOf", "CopyOfRange"};
 91 
 92 void ArrayCopyNode::dump_spec(outputStream *st) const {
 93   CallNode::dump_spec(st);
 94   st->print(" (%s%s)", _kind_names[_kind], _alloc_tightly_coupled ? ", tightly coupled allocation" : "");
 95 }
 96 
 97 void ArrayCopyNode::dump_compact_spec(outputStream* st) const {
 98   st->print("%s%s", _kind_names[_kind], _alloc_tightly_coupled ? ",tight" : "");
 99 }
100 #endif
101 
102 intptr_t ArrayCopyNode::get_length_if_constant(PhaseGVN *phase) const {
103   // check that length is constant
104   Node* length = in(ArrayCopyNode::Length);
105   const Type* length_type = phase->type(length);
106 
107   if (length_type == Type::TOP) {
108     return -1;
109   }
110 
111   assert(is_clonebasic() || is_arraycopy() || is_copyof() || is_copyofrange(), "unexpected array copy type");
112 
113   return is_clonebasic() ? length->find_intptr_t_con(-1) : length->find_int_con(-1);
114 }
115 
116 int ArrayCopyNode::get_count(PhaseGVN *phase) const {
117   Node* src = in(ArrayCopyNode::Src);
118   const Type* src_type = phase->type(src);
119 
120   if (is_clonebasic()) {
121     if (src_type->isa_instptr()) {
122       const TypeInstPtr* inst_src = src_type->is_instptr();
123       ciInstanceKlass* ik = inst_src->instance_klass();
124       // ciInstanceKlass::nof_nonstatic_fields() doesn't take injected
125       // fields into account. They are rare anyway so easier to simply
126       // skip instances with injected fields.
127       if ((!inst_src->klass_is_exact() && (ik->is_interface() || ik->has_subklass())) || ik->has_injected_fields()) {
128         return -1;
129       }
130       int nb_fields = ik->nof_nonstatic_fields();
131       return nb_fields;
132     } else {
133       const TypeAryPtr* ary_src = src_type->isa_aryptr();
134       assert (ary_src != nullptr, "not an array or instance?");
135       // clone passes a length as a rounded number of longs. If we're
136       // cloning an array we'll do it element by element. If the
137       // length of the input array is constant, ArrayCopyNode::Length
138       // must be too. Note that the opposite does not need to hold,
139       // because different input array lengths (e.g. int arrays with
140       // 3 or 4 elements) might lead to the same length input
141       // (e.g. 2 double-words).
142       assert(!ary_src->size()->is_con() || (get_length_if_constant(phase) >= 0) ||
143              phase->is_IterGVN() || phase->C->inlining_incrementally() || StressReflectiveCode, "inconsistent");
144       if (ary_src->size()->is_con()) {
145         return ary_src->size()->get_con();
146       }
147       return -1;
148     }
149   }
150 
151   return get_length_if_constant(phase);
152 }
153 
154 Node* ArrayCopyNode::load(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, const Type *type, BasicType bt) {
155   // Pin the load: if this is an array load, it's going to be dependent on a condition that's not a range check for that
156   // access. If that condition is replaced by an identical dominating one, then an unpinned load would risk floating
157   // above runtime checks that guarantee it is within bounds.
158   DecoratorSet decorators = C2_READ_ACCESS | C2_CONTROL_DEPENDENT_LOAD | IN_HEAP | C2_ARRAY_COPY | C2_UNKNOWN_CONTROL_LOAD;
159   C2AccessValuePtr addr(adr, adr_type);
160   C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
161   Node* res = bs->load_at(access, type);
162   ctl = access.ctl();
163   return res;
164 }
165 
166 void ArrayCopyNode::store(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, Node* val, const Type *type, BasicType bt) {
167   DecoratorSet decorators = C2_WRITE_ACCESS | IN_HEAP | C2_ARRAY_COPY;
168   if (is_alloc_tightly_coupled()) {
169     decorators |= C2_TIGHTLY_COUPLED_ALLOC;
170   }
171   C2AccessValuePtr addr(adr, adr_type);
172   C2AccessValue value(val, type);
173   C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
174   bs->store_at(access, value);
175   ctl = access.ctl();
176 }
177 
178 
179 Node* ArrayCopyNode::try_clone_instance(PhaseGVN *phase, bool can_reshape, int count) {
180   if (!is_clonebasic()) {
181     return nullptr;
182   }
183 
184   Node* base_src = in(ArrayCopyNode::Src);
185   Node* base_dest = in(ArrayCopyNode::Dest);
186   Node* ctl = in(TypeFunc::Control);
187   Node* in_mem = in(TypeFunc::Memory);
188 
189   const Type* src_type = phase->type(base_src);
190   const TypeInstPtr* inst_src = src_type->isa_instptr();
191   if (inst_src == nullptr) {
192     return nullptr;
193   }
194 
195   MergeMemNode* mem = phase->transform(MergeMemNode::make(in_mem))->as_MergeMem();
196   if (can_reshape) {
197     phase->is_IterGVN()->_worklist.push(mem);
198   }
199 
200 
201   ciInstanceKlass* ik = inst_src->instance_klass();
202 
203   if (!inst_src->klass_is_exact()) {
204     assert(!ik->is_interface(), "inconsistent klass hierarchy");
205     if (ik->has_subklass()) {
206       // Concurrent class loading.
207       // Fail fast and return NodeSentinel to indicate that the transform failed.
208       return NodeSentinel;
209     } else {
210       phase->C->dependencies()->assert_leaf_type(ik);
211     }
212   }
213 
214   assert(ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem, "too many fields");
215 
216   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
217   for (int i = 0; i < count; i++) {
218     ciField* field = ik->nonstatic_field_at(i);
219     const TypePtr* adr_type = phase->C->alias_type(field)->adr_type();
220     Node* off = phase->MakeConX(field->offset_in_bytes());
221     Node* next_src = phase->transform(new AddPNode(base_src,base_src,off));
222     Node* next_dest = phase->transform(new AddPNode(base_dest,base_dest,off));
223     BasicType bt = field->layout_type();
224 
225     const Type *type;
226     if (bt == T_OBJECT) {
227       if (!field->type()->is_loaded()) {
228         type = TypeInstPtr::BOTTOM;
229       } else {
230         ciType* field_klass = field->type();
231         type = TypeOopPtr::make_from_klass(field_klass->as_klass());
232       }
233     } else {
234       type = Type::get_const_basic_type(bt);
235     }
236 
237     Node* v = load(bs, phase, ctl, mem, next_src, adr_type, type, bt);
238     store(bs, phase, ctl, mem, next_dest, adr_type, v, type, bt);
239   }
240 
241   if (!finish_transform(phase, can_reshape, ctl, mem)) {
242     // Return NodeSentinel to indicate that the transform failed
243     return NodeSentinel;
244   }
245 
246   return mem;
247 }
248 
249 bool ArrayCopyNode::prepare_array_copy(PhaseGVN *phase, bool can_reshape,
250                                        Node*& adr_src,
251                                        Node*& base_src,
252                                        Node*& adr_dest,
253                                        Node*& base_dest,
254                                        BasicType& copy_type,
255                                        const Type*& value_type,
256                                        bool& disjoint_bases) {
257   base_src = in(ArrayCopyNode::Src);
258   base_dest = in(ArrayCopyNode::Dest);
259   const Type* src_type = phase->type(base_src);
260   const TypeAryPtr* ary_src = src_type->isa_aryptr();
261 
262   Node* src_offset = in(ArrayCopyNode::SrcPos);
263   Node* dest_offset = in(ArrayCopyNode::DestPos);
264 
265   if (is_arraycopy() || is_copyofrange() || is_copyof()) {
266     const Type* dest_type = phase->type(base_dest);
267     const TypeAryPtr* ary_dest = dest_type->isa_aryptr();
268 
269     // newly allocated object is guaranteed to not overlap with source object
270     disjoint_bases = is_alloc_tightly_coupled();
271     if (ary_src  == nullptr || ary_src->elem()  == Type::BOTTOM ||
272         ary_dest == nullptr || ary_dest->elem() == Type::BOTTOM) {
273       // We don't know if arguments are arrays
274       return false;
275     }
276 
277     BasicType src_elem = ary_src->elem()->array_element_basic_type();
278     BasicType dest_elem = ary_dest->elem()->array_element_basic_type();
279     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
280     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
281 
282     if (src_elem != dest_elem || dest_elem == T_VOID) {
283       // We don't know if arguments are arrays of the same type
284       return false;
285     }
286 
287     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
288     if (bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), dest_elem, false, false, BarrierSetC2::Optimization)) {
289       // It's an object array copy but we can't emit the card marking
290       // that is needed
291       return false;
292     }
293 
294     value_type = ary_src->elem();
295 
296     uint shift  = exact_log2(type2aelembytes(dest_elem));
297     uint header = arrayOopDesc::base_offset_in_bytes(dest_elem);
298 
299     src_offset = Compile::conv_I2X_index(phase, src_offset, ary_src->size());
300     if (src_offset->is_top()) {
301       // Offset is out of bounds (the ArrayCopyNode will be removed)
302       return false;
303     }
304     dest_offset = Compile::conv_I2X_index(phase, dest_offset, ary_dest->size());
305     if (dest_offset->is_top()) {
306       // Offset is out of bounds (the ArrayCopyNode will be removed)
307       if (can_reshape) {
308         // record src_offset, so it can be deleted later (if it is dead)
309         phase->is_IterGVN()->_worklist.push(src_offset);
310       }
311       return false;
312     }
313 
314     Node* hook = new Node(1);
315     hook->init_req(0, dest_offset);
316 
317     Node* src_scale  = phase->transform(new LShiftXNode(src_offset, phase->intcon(shift)));
318 
319     hook->destruct(phase);
320 
321     Node* dest_scale = phase->transform(new LShiftXNode(dest_offset, phase->intcon(shift)));
322 
323     adr_src          = phase->transform(new AddPNode(base_src, base_src, src_scale));
324     adr_dest         = phase->transform(new AddPNode(base_dest, base_dest, dest_scale));
325 
326     adr_src          = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(header)));
327     adr_dest         = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(header)));
328 
329     copy_type = dest_elem;
330   } else {
331     assert(ary_src != nullptr, "should be a clone");
332     assert(is_clonebasic(), "should be");
333 
334     disjoint_bases = true;
335 
336     BasicType elem = ary_src->isa_aryptr()->elem()->array_element_basic_type();
337     if (is_reference_type(elem, true)) {
338       elem = T_OBJECT;
339     }
340 
341     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
342     if (bs->array_copy_requires_gc_barriers(true, elem, true, is_clone_inst(), BarrierSetC2::Optimization)) {
343       return false;
344     }
345 
346     adr_src  = phase->transform(new AddPNode(base_src, base_src, src_offset));
347     adr_dest = phase->transform(new AddPNode(base_dest, base_dest, dest_offset));
348 
349     // The address is offsetted to an aligned address where a raw copy would start.
350     // If the clone copy is decomposed into load-stores - the address is adjusted to
351     // point at where the array starts.
352     const Type* toff = phase->type(src_offset);
353     int offset = toff->isa_long() ? (int) toff->is_long()->get_con() : (int) toff->is_int()->get_con();
354     int diff = arrayOopDesc::base_offset_in_bytes(elem) - offset;
355     assert(diff >= 0, "clone should not start after 1st array element");
356     if (diff > 0) {
357       adr_src = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(diff)));
358       adr_dest = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(diff)));
359     }
360     copy_type = elem;
361     value_type = ary_src->elem();
362   }
363   return true;
364 }
365 
366 const TypePtr* ArrayCopyNode::get_address_type(PhaseGVN* phase, const TypePtr* atp, Node* n) {
367   if (atp == TypeOopPtr::BOTTOM) {
368     atp = phase->type(n)->isa_ptr();
369   }
370   // adjust atp to be the correct array element address type
371   return atp->add_offset(Type::OffsetBot);
372 }
373 
374 void ArrayCopyNode::array_copy_test_overlap(PhaseGVN *phase, bool can_reshape, bool disjoint_bases, int count, Node*& forward_ctl, Node*& backward_ctl) {
375   Node* ctl = in(TypeFunc::Control);
376   if (!disjoint_bases && count > 1) {
377     Node* src_offset = in(ArrayCopyNode::SrcPos);
378     Node* dest_offset = in(ArrayCopyNode::DestPos);
379     assert(src_offset != nullptr && dest_offset != nullptr, "should be");
380     Node* cmp = phase->transform(new CmpINode(src_offset, dest_offset));
381     Node *bol = phase->transform(new BoolNode(cmp, BoolTest::lt));
382     IfNode *iff = new IfNode(ctl, bol, PROB_FAIR, COUNT_UNKNOWN);
383 
384     phase->transform(iff);
385 
386     forward_ctl = phase->transform(new IfFalseNode(iff));
387     backward_ctl = phase->transform(new IfTrueNode(iff));
388   } else {
389     forward_ctl = ctl;
390   }
391 }
392 
393 Node* ArrayCopyNode::array_copy_forward(PhaseGVN *phase,
394                                         bool can_reshape,
395                                         Node*& forward_ctl,
396                                         Node* mem,
397                                         const TypePtr* atp_src,
398                                         const TypePtr* atp_dest,
399                                         Node* adr_src,
400                                         Node* base_src,
401                                         Node* adr_dest,
402                                         Node* base_dest,
403                                         BasicType copy_type,
404                                         const Type* value_type,
405                                         int count) {
406   if (!forward_ctl->is_top()) {
407     // copy forward
408     MergeMemNode* mm = MergeMemNode::make(mem);
409 
410     if (count > 0) {
411       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
412       Node* v = load(bs, phase, forward_ctl, mm, adr_src, atp_src, value_type, copy_type);
413       store(bs, phase, forward_ctl, mm, adr_dest, atp_dest, v, value_type, copy_type);
414       for (int i = 1; i < count; i++) {
415         Node* off  = phase->MakeConX(type2aelembytes(copy_type) * i);
416         Node* next_src = phase->transform(new AddPNode(base_src,adr_src,off));
417         Node* next_dest = phase->transform(new AddPNode(base_dest,adr_dest,off));
418         v = load(bs, phase, forward_ctl, mm, next_src, atp_src, value_type, copy_type);
419         store(bs, phase, forward_ctl, mm, next_dest, atp_dest, v, value_type, copy_type);
420       }
421     } else if (can_reshape) {
422       PhaseIterGVN* igvn = phase->is_IterGVN();
423       igvn->_worklist.push(adr_src);
424       igvn->_worklist.push(adr_dest);
425     }
426     return mm;
427   }
428   return phase->C->top();
429 }
430 
431 Node* ArrayCopyNode::array_copy_backward(PhaseGVN *phase,
432                                          bool can_reshape,
433                                          Node*& backward_ctl,
434                                          Node* mem,
435                                          const TypePtr* atp_src,
436                                          const TypePtr* atp_dest,
437                                          Node* adr_src,
438                                          Node* base_src,
439                                          Node* adr_dest,
440                                          Node* base_dest,
441                                          BasicType copy_type,
442                                          const Type* value_type,
443                                          int count) {
444   if (!backward_ctl->is_top()) {
445     // copy backward
446     MergeMemNode* mm = MergeMemNode::make(mem);
447 
448     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
449     assert(copy_type != T_OBJECT || !bs->array_copy_requires_gc_barriers(false, T_OBJECT, false, false, BarrierSetC2::Optimization), "only tightly coupled allocations for object arrays");
450 
451     if (count > 0) {
452       for (int i = count-1; i >= 1; i--) {
453         Node* off  = phase->MakeConX(type2aelembytes(copy_type) * i);
454         Node* next_src = phase->transform(new AddPNode(base_src,adr_src,off));
455         Node* next_dest = phase->transform(new AddPNode(base_dest,adr_dest,off));
456         Node* v = load(bs, phase, backward_ctl, mm, next_src, atp_src, value_type, copy_type);
457         store(bs, phase, backward_ctl, mm, next_dest, atp_dest, v, value_type, copy_type);
458       }
459       Node* v = load(bs, phase, backward_ctl, mm, adr_src, atp_src, value_type, copy_type);
460       store(bs, phase, backward_ctl, mm, adr_dest, atp_dest, v, value_type, copy_type);
461     } else if (can_reshape) {
462       PhaseIterGVN* igvn = phase->is_IterGVN();
463       igvn->_worklist.push(adr_src);
464       igvn->_worklist.push(adr_dest);
465     }
466     return phase->transform(mm);
467   }
468   return phase->C->top();
469 }
470 
471 bool ArrayCopyNode::finish_transform(PhaseGVN *phase, bool can_reshape,
472                                      Node* ctl, Node *mem) {
473   if (can_reshape) {
474     PhaseIterGVN* igvn = phase->is_IterGVN();
475     igvn->set_delay_transform(false);
476     if (is_clonebasic()) {
477       Node* out_mem = proj_out(TypeFunc::Memory);
478 
479       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
480       if (out_mem->outcnt() != 1 || !out_mem->raw_out(0)->is_MergeMem() ||
481           out_mem->raw_out(0)->outcnt() != 1 || !out_mem->raw_out(0)->raw_out(0)->is_MemBar()) {
482         assert(bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, is_clone_inst(), BarrierSetC2::Optimization), "can only happen with card marking");
483         return false;
484       }
485 
486       igvn->replace_node(out_mem->raw_out(0), mem);
487 
488       Node* out_ctl = proj_out(TypeFunc::Control);
489       igvn->replace_node(out_ctl, ctl);
490     } else {
491       // replace fallthrough projections of the ArrayCopyNode by the
492       // new memory, control and the input IO.
493       CallProjections callprojs;
494       extract_projections(&callprojs, true, false);
495 
496       if (callprojs.fallthrough_ioproj != nullptr) {
497         igvn->replace_node(callprojs.fallthrough_ioproj, in(TypeFunc::I_O));
498       }
499       if (callprojs.fallthrough_memproj != nullptr) {
500         igvn->replace_node(callprojs.fallthrough_memproj, mem);
501       }
502       if (callprojs.fallthrough_catchproj != nullptr) {
503         igvn->replace_node(callprojs.fallthrough_catchproj, ctl);
504       }
505 
506       // The ArrayCopyNode is not disconnected. It still has the
507       // projections for the exception case. Replace current
508       // ArrayCopyNode with a dummy new one with a top() control so
509       // that this part of the graph stays consistent but is
510       // eventually removed.
511 
512       set_req(0, phase->C->top());
513       remove_dead_region(phase, can_reshape);
514     }
515   } else {
516     if (in(TypeFunc::Control) != ctl) {
517       // we can't return new memory and control from Ideal at parse time
518       assert(!is_clonebasic() || UseShenandoahGC, "added control for clone?");
519       phase->record_for_igvn(this);
520       return false;
521     }
522   }
523   return true;
524 }
525 
526 
527 Node *ArrayCopyNode::Ideal(PhaseGVN *phase, bool can_reshape) {
528   if (remove_dead_region(phase, can_reshape))  return this;
529 
530   if (StressArrayCopyMacroNode && !can_reshape) {
531     phase->record_for_igvn(this);
532     return nullptr;
533   }
534 
535   // See if it's a small array copy and we can inline it as
536   // loads/stores
537   // Here we can only do:
538   // - arraycopy if all arguments were validated before and we don't
539   // need card marking
540   // - clone for which we don't need to do card marking
541 
542   if (!is_clonebasic() && !is_arraycopy_validated() &&
543       !is_copyofrange_validated() && !is_copyof_validated()) {
544     return nullptr;
545   }
546 
547   assert(in(TypeFunc::Control) != nullptr &&
548          in(TypeFunc::Memory) != nullptr &&
549          in(ArrayCopyNode::Src) != nullptr &&
550          in(ArrayCopyNode::Dest) != nullptr &&
551          in(ArrayCopyNode::Length) != nullptr &&
552          in(ArrayCopyNode::SrcPos) != nullptr &&
553          in(ArrayCopyNode::DestPos) != nullptr, "broken inputs");
554 
555   if (in(TypeFunc::Control)->is_top() ||
556       in(TypeFunc::Memory)->is_top() ||
557       phase->type(in(ArrayCopyNode::Src)) == Type::TOP ||
558       phase->type(in(ArrayCopyNode::Dest)) == Type::TOP ||
559       (in(ArrayCopyNode::SrcPos) != nullptr && in(ArrayCopyNode::SrcPos)->is_top()) ||
560       (in(ArrayCopyNode::DestPos) != nullptr && in(ArrayCopyNode::DestPos)->is_top())) {
561     return nullptr;
562   }
563 
564   int count = get_count(phase);
565 
566   if (count < 0 || count > ArrayCopyLoadStoreMaxElem) {
567     return nullptr;
568   }
569 
570   Node* mem = try_clone_instance(phase, can_reshape, count);
571   if (mem != nullptr) {
572     return (mem == NodeSentinel) ? nullptr : mem;
573   }
574 
575   Node* adr_src = nullptr;
576   Node* base_src = nullptr;
577   Node* adr_dest = nullptr;
578   Node* base_dest = nullptr;
579   BasicType copy_type = T_ILLEGAL;
580   const Type* value_type = nullptr;
581   bool disjoint_bases = false;
582 
583   if (!prepare_array_copy(phase, can_reshape,
584                           adr_src, base_src, adr_dest, base_dest,
585                           copy_type, value_type, disjoint_bases)) {
586     assert(adr_src == nullptr, "no node can be left behind");
587     assert(adr_dest == nullptr, "no node can be left behind");
588     return nullptr;
589   }
590 
591   Node* src = in(ArrayCopyNode::Src);
592   Node* dest = in(ArrayCopyNode::Dest);
593   const TypePtr* atp_src = get_address_type(phase, _src_type, src);
594   const TypePtr* atp_dest = get_address_type(phase, _dest_type, dest);
595   Node* in_mem = in(TypeFunc::Memory);
596 
597   if (can_reshape) {
598     assert(!phase->is_IterGVN()->delay_transform(), "cannot delay transforms");
599     phase->is_IterGVN()->set_delay_transform(true);
600   }
601 
602   Node* backward_ctl = phase->C->top();
603   Node* forward_ctl = phase->C->top();
604   array_copy_test_overlap(phase, can_reshape, disjoint_bases, count, forward_ctl, backward_ctl);
605 
606   Node* forward_mem = array_copy_forward(phase, can_reshape, forward_ctl,
607                                          in_mem,
608                                          atp_src, atp_dest,
609                                          adr_src, base_src, adr_dest, base_dest,
610                                          copy_type, value_type, count);
611 
612   Node* backward_mem = array_copy_backward(phase, can_reshape, backward_ctl,
613                                            in_mem,
614                                            atp_src, atp_dest,
615                                            adr_src, base_src, adr_dest, base_dest,
616                                            copy_type, value_type, count);
617 
618   Node* ctl = nullptr;
619   if (!forward_ctl->is_top() && !backward_ctl->is_top()) {
620     ctl = new RegionNode(3);
621     ctl->init_req(1, forward_ctl);
622     ctl->init_req(2, backward_ctl);
623     ctl = phase->transform(ctl);
624     MergeMemNode* forward_mm = forward_mem->as_MergeMem();
625     MergeMemNode* backward_mm = backward_mem->as_MergeMem();
626     for (MergeMemStream mms(forward_mm, backward_mm); mms.next_non_empty2(); ) {
627       if (mms.memory() != mms.memory2()) {
628         Node* phi = new PhiNode(ctl, Type::MEMORY, phase->C->get_adr_type(mms.alias_idx()));
629         phi->init_req(1, mms.memory());
630         phi->init_req(2, mms.memory2());
631         phi = phase->transform(phi);
632         mms.set_memory(phi);
633       }
634     }
635     mem = forward_mem;
636   } else if (!forward_ctl->is_top()) {
637     ctl = forward_ctl;
638     mem = forward_mem;
639   } else {
640     assert(!backward_ctl->is_top(), "no copy?");
641     ctl = backward_ctl;
642     mem = backward_mem;
643   }
644 
645   if (can_reshape) {
646     assert(phase->is_IterGVN()->delay_transform(), "should be delaying transforms");
647     phase->is_IterGVN()->set_delay_transform(false);
648   }
649 
650   if (!finish_transform(phase, can_reshape, ctl, mem)) {
651     if (can_reshape) {
652       // put in worklist, so that if it happens to be dead it is removed
653       phase->is_IterGVN()->_worklist.push(mem);
654     }
655     return nullptr;
656   }
657 
658   return mem;
659 }
660 
661 bool ArrayCopyNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
662   Node* dest = in(ArrayCopyNode::Dest);
663   if (dest->is_top()) {
664     return false;
665   }
666   const TypeOopPtr* dest_t = phase->type(dest)->is_oopptr();
667   assert(!dest_t->is_known_instance() || _dest_type->is_known_instance(), "result of EA not recorded");
668   assert(in(ArrayCopyNode::Src)->is_top() || !phase->type(in(ArrayCopyNode::Src))->is_oopptr()->is_known_instance() ||
669          _src_type->is_known_instance(), "result of EA not recorded");
670 
671   if (_dest_type != TypeOopPtr::BOTTOM || t_oop->is_known_instance()) {
672     assert(_dest_type == TypeOopPtr::BOTTOM || _dest_type->is_known_instance(), "result of EA is known instance");
673     return t_oop->instance_id() == _dest_type->instance_id();
674   }
675 
676   return CallNode::may_modify_arraycopy_helper(dest_t, t_oop, phase);
677 }
678 
679 bool ArrayCopyNode::may_modify_helper(const TypeOopPtr* t_oop, Node* n, PhaseValues* phase, CallNode*& call) {
680   if (n != nullptr &&
681       n->is_Call() &&
682       n->as_Call()->may_modify(t_oop, phase) &&
683       (n->as_Call()->is_ArrayCopy() || n->as_Call()->is_call_to_arraycopystub())) {
684     call = n->as_Call();
685     return true;
686   }
687   return false;
688 }
689 
690 bool ArrayCopyNode::may_modify(const TypeOopPtr* t_oop, MemBarNode* mb, PhaseValues* phase, ArrayCopyNode*& ac) {
691   Node* c = mb->in(0);
692 
693   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
694   // step over g1 gc barrier if we're at e.g. a clone with ReduceInitialCardMarks off
695   c = bs->step_over_gc_barrier(c);
696 
697   CallNode* call = nullptr;
698   guarantee(c != nullptr, "step_over_gc_barrier failed, there must be something to step to.");
699   if (c->is_Region()) {
700     for (uint i = 1; i < c->req(); i++) {
701       if (c->in(i) != nullptr) {
702         Node* n = c->in(i)->in(0);
703         if (may_modify_helper(t_oop, n, phase, call)) {
704           ac = call->isa_ArrayCopy();
705           assert(c == mb->in(0), "only for clone");
706           return true;
707         }
708       }
709     }
710   } else if (may_modify_helper(t_oop, c->in(0), phase, call)) {
711     ac = call->isa_ArrayCopy();
712 #ifdef ASSERT
713     bool use_ReduceInitialCardMarks = BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) &&
714       static_cast<CardTableBarrierSetC2*>(bs)->use_ReduceInitialCardMarks();
715     assert(c == mb->in(0) || (ac != nullptr && ac->is_clonebasic() && !use_ReduceInitialCardMarks), "only for clone");
716 #endif
717     return true;
718   } else if (mb->trailing_partial_array_copy()) {
719     return true;
720   }
721 
722   return false;
723 }
724 
725 // Does this array copy modify offsets between offset_lo and offset_hi
726 // in the destination array
727 // if must_modify is false, return true if the copy could write
728 // between offset_lo and offset_hi
729 // if must_modify is true, return true if the copy is guaranteed to
730 // write between offset_lo and offset_hi
731 bool ArrayCopyNode::modifies(intptr_t offset_lo, intptr_t offset_hi, PhaseValues* phase, bool must_modify) const {
732   assert(_kind == ArrayCopy || _kind == CopyOf || _kind == CopyOfRange, "only for real array copies");
733 
734   Node* dest = in(Dest);
735   Node* dest_pos = in(DestPos);
736   Node* len = in(Length);
737 
738   const TypeInt *dest_pos_t = phase->type(dest_pos)->isa_int();
739   const TypeInt *len_t = phase->type(len)->isa_int();
740   const TypeAryPtr* ary_t = phase->type(dest)->isa_aryptr();
741 
742   if (dest_pos_t == nullptr || len_t == nullptr || ary_t == nullptr) {
743     return !must_modify;
744   }
745 
746   BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type();
747   if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT;
748 
749   uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
750   uint elemsize = type2aelembytes(ary_elem);
751 
752   jlong dest_pos_plus_len_lo = (((jlong)dest_pos_t->_lo) + len_t->_lo) * elemsize + header;
753   jlong dest_pos_plus_len_hi = (((jlong)dest_pos_t->_hi) + len_t->_hi) * elemsize + header;
754   jlong dest_pos_lo = ((jlong)dest_pos_t->_lo) * elemsize + header;
755   jlong dest_pos_hi = ((jlong)dest_pos_t->_hi) * elemsize + header;
756 
757   if (must_modify) {
758     if (offset_lo >= dest_pos_hi && offset_hi < dest_pos_plus_len_lo) {
759       return true;
760     }
761   } else {
762     if (offset_hi >= dest_pos_lo && offset_lo < dest_pos_plus_len_hi) {
763       return true;
764     }
765   }
766   return false;
767 }
768 
769 // As an optimization, choose optimum vector size for copy length known at compile time.
770 int ArrayCopyNode::get_partial_inline_vector_lane_count(BasicType type, int const_len) {
771   int lane_count = ArrayOperationPartialInlineSize/type2aelembytes(type);
772   if (const_len > 0) {
773     int size_in_bytes = const_len * type2aelembytes(type);
774     if (size_in_bytes <= 16)
775       lane_count = 16/type2aelembytes(type);
776     else if (size_in_bytes > 16 && size_in_bytes <= 32)
777       lane_count = 32/type2aelembytes(type);
778   }
779   return lane_count;
780 }