1 /*
  2  * Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "ci/ciFlatArrayKlass.hpp"
 26 #include "gc/shared/barrierSet.hpp"
 27 #include "gc/shared/c2/barrierSetC2.hpp"
 28 #include "gc/shared/c2/cardTableBarrierSetC2.hpp"
 29 #include "gc/shared/gc_globals.hpp"
 30 #include "opto/arraycopynode.hpp"
 31 #include "opto/graphKit.hpp"
 32 #include "opto/inlinetypenode.hpp"
 33 #include "runtime/sharedRuntime.hpp"
 34 #include "utilities/macros.hpp"
 35 #include "utilities/powerOfTwo.hpp"
 36 
 37 const TypeFunc* ArrayCopyNode::_arraycopy_type_Type = nullptr;
 38 
 39 ArrayCopyNode::ArrayCopyNode(Compile* C, bool alloc_tightly_coupled, bool has_negative_length_guard)
 40   : CallNode(arraycopy_type(), nullptr, TypePtr::BOTTOM),
 41     _kind(None),
 42     _alloc_tightly_coupled(alloc_tightly_coupled),
 43     _has_negative_length_guard(has_negative_length_guard),
 44     _arguments_validated(false),
 45     _src_type(TypeOopPtr::BOTTOM),
 46     _dest_type(TypeOopPtr::BOTTOM) {
 47   init_class_id(Class_ArrayCopy);
 48   init_flags(Flag_is_macro);
 49   C->add_macro_node(this);
 50 }
 51 
 52 uint ArrayCopyNode::size_of() const { return sizeof(*this); }
 53 
 54 ArrayCopyNode* ArrayCopyNode::make(GraphKit* kit, bool may_throw,
 55                                    Node* src, Node* src_offset,
 56                                    Node* dest, Node* dest_offset,
 57                                    Node* length,
 58                                    bool alloc_tightly_coupled,
 59                                    bool has_negative_length_guard,
 60                                    Node* src_klass, Node* dest_klass,
 61                                    Node* src_length, Node* dest_length) {
 62 
 63   ArrayCopyNode* ac = new ArrayCopyNode(kit->C, alloc_tightly_coupled, has_negative_length_guard);
 64   kit->set_predefined_input_for_runtime_call(ac);
 65 
 66   ac->init_req(ArrayCopyNode::Src, src);
 67   ac->init_req(ArrayCopyNode::SrcPos, src_offset);
 68   ac->init_req(ArrayCopyNode::Dest, dest);
 69   ac->init_req(ArrayCopyNode::DestPos, dest_offset);
 70   ac->init_req(ArrayCopyNode::Length, length);
 71   ac->init_req(ArrayCopyNode::SrcLen, src_length);
 72   ac->init_req(ArrayCopyNode::DestLen, dest_length);
 73   ac->init_req(ArrayCopyNode::SrcKlass, src_klass);
 74   ac->init_req(ArrayCopyNode::DestKlass, dest_klass);
 75 
 76   if (may_throw) {
 77     ac->set_req(TypeFunc::I_O , kit->i_o());
 78     kit->add_safepoint_edges(ac, false);
 79   }
 80 
 81   return ac;
 82 }
 83 
 84 void ArrayCopyNode::connect_outputs(GraphKit* kit, bool deoptimize_on_exception) {
 85   kit->set_all_memory_call(this, true);
 86   kit->set_control(kit->gvn().transform(new ProjNode(this,TypeFunc::Control)));
 87   kit->set_i_o(kit->gvn().transform(new ProjNode(this, TypeFunc::I_O)));
 88   kit->make_slow_call_ex(this, kit->env()->Throwable_klass(), true, deoptimize_on_exception);
 89   kit->set_all_memory_call(this);
 90 }
 91 
 92 #ifndef PRODUCT
 93 const char* ArrayCopyNode::_kind_names[] = {"arraycopy", "arraycopy, validated arguments", "clone", "oop array clone", "CopyOf", "CopyOfRange"};
 94 
 95 void ArrayCopyNode::dump_spec(outputStream *st) const {
 96   CallNode::dump_spec(st);
 97   st->print(" (%s%s)", _kind_names[_kind], _alloc_tightly_coupled ? ", tightly coupled allocation" : "");
 98 }
 99 
100 void ArrayCopyNode::dump_compact_spec(outputStream* st) const {
101   st->print("%s%s", _kind_names[_kind], _alloc_tightly_coupled ? ",tight" : "");
102 }
103 #endif
104 
105 intptr_t ArrayCopyNode::get_length_if_constant(PhaseGVN *phase) const {
106   // check that length is constant
107   Node* length = in(ArrayCopyNode::Length);
108   const Type* length_type = phase->type(length);
109 
110   if (length_type == Type::TOP) {
111     return -1;
112   }
113 
114   assert(is_clonebasic() || is_arraycopy() || is_copyof() || is_copyofrange(), "unexpected array copy type");
115 
116   return is_clonebasic() ? length->find_intptr_t_con(-1) : length->find_int_con(-1);
117 }
118 
119 int ArrayCopyNode::get_count(PhaseGVN *phase) const {
120   if (is_clonebasic()) {
121     Node* src = in(ArrayCopyNode::Src);
122     const Type* src_type = phase->type(src);
123 
124     if (src_type == Type::TOP) {
125       return -1;
126     }
127 
128     if (src_type->isa_instptr()) {
129       const TypeInstPtr* inst_src = src_type->is_instptr();
130       ciInstanceKlass* ik = inst_src->instance_klass();
131       // ciInstanceKlass::nof_nonstatic_fields() doesn't take injected
132       // fields into account. They are rare anyway so easier to simply
133       // skip instances with injected fields.
134       if ((!inst_src->klass_is_exact() && (ik->is_interface() || ik->has_subklass())) || ik->has_injected_fields()) {
135         return -1;
136       }
137       int nb_fields = ik->nof_nonstatic_fields();
138       return nb_fields;
139     } else {
140       const TypeAryPtr* ary_src = src_type->isa_aryptr();
141       assert (ary_src != nullptr, "not an array or instance?");
142       // clone passes a length as a rounded number of longs. If we're
143       // cloning an array we'll do it element by element. If the
144       // length of the input array is constant, ArrayCopyNode::Length
145       // must be too. Note that the opposite does not need to hold,
146       // because different input array lengths (e.g. int arrays with
147       // 3 or 4 elements) might lead to the same length input
148       // (e.g. 2 double-words).
149       assert(!ary_src->size()->is_con() || (get_length_if_constant(phase) >= 0) ||
150              (UseArrayFlattening && ary_src->elem()->make_oopptr() != nullptr && ary_src->elem()->make_oopptr()->can_be_inline_type()) ||
151              phase->is_IterGVN() || phase->C->inlining_incrementally() || StressReflectiveCode, "inconsistent");
152       if (ary_src->size()->is_con()) {
153         return ary_src->size()->get_con();
154       }
155       return -1;
156     }
157   }
158 
159   return get_length_if_constant(phase);
160 }
161 
162 Node* ArrayCopyNode::load(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, const Type *type, BasicType bt) {
163   // Pin the load: if this is an array load, it's going to be dependent on a condition that's not a range check for that
164   // access. If that condition is replaced by an identical dominating one, then an unpinned load would risk floating
165   // above runtime checks that guarantee it is within bounds.
166   DecoratorSet decorators = C2_READ_ACCESS | C2_CONTROL_DEPENDENT_LOAD | IN_HEAP | C2_ARRAY_COPY | C2_UNKNOWN_CONTROL_LOAD;
167   C2AccessValuePtr addr(adr, adr_type);
168   C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
169   Node* res = bs->load_at(access, type);
170   ctl = access.ctl();
171   return res;
172 }
173 
174 void ArrayCopyNode::store(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, Node* val, const Type *type, BasicType bt) {
175   DecoratorSet decorators = C2_WRITE_ACCESS | IN_HEAP | C2_ARRAY_COPY;
176   if (is_alloc_tightly_coupled()) {
177     decorators |= C2_TIGHTLY_COUPLED_ALLOC;
178   }
179   C2AccessValuePtr addr(adr, adr_type);
180   C2AccessValue value(val, type);
181   C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
182   bs->store_at(access, value);
183   ctl = access.ctl();
184 }
185 
186 
187 Node* ArrayCopyNode::try_clone_instance(PhaseGVN *phase, bool can_reshape, int count) {
188   if (!is_clonebasic()) {
189     return nullptr;
190   }
191 
192   Node* base_src = in(ArrayCopyNode::Src);
193   Node* base_dest = in(ArrayCopyNode::Dest);
194   Node* ctl = in(TypeFunc::Control);
195   Node* in_mem = in(TypeFunc::Memory);
196 
197   const Type* src_type = phase->type(base_src);
198   const TypeInstPtr* inst_src = src_type->isa_instptr();
199   if (inst_src == nullptr) {
200     return nullptr;
201   }
202 
203   MergeMemNode* mem = phase->transform(MergeMemNode::make(in_mem))->as_MergeMem();
204   phase->record_for_igvn(mem);
205   if (can_reshape) {
206     phase->is_IterGVN()->_worklist.push(mem);
207   }
208 
209 
210   ciInstanceKlass* ik = inst_src->instance_klass();
211 
212   if (!inst_src->klass_is_exact()) {
213     assert(!ik->is_interface(), "inconsistent klass hierarchy");
214     if (ik->has_subklass()) {
215       // Concurrent class loading.
216       // Fail fast and return NodeSentinel to indicate that the transform failed.
217       return NodeSentinel;
218     } else {
219       phase->C->dependencies()->assert_leaf_type(ik);
220     }
221   }
222 
223   assert(ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem, "too many fields");
224 
225   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
226   for (int i = 0; i < count; i++) {
227     ciField* field = ik->nonstatic_field_at(i);
228     const TypePtr* adr_type = phase->C->alias_type(field)->adr_type();
229     Node* off = phase->MakeConX(field->offset_in_bytes());
230     Node* next_src = phase->transform(new AddPNode(base_src,base_src,off));
231     Node* next_dest = phase->transform(new AddPNode(base_dest,base_dest,off));
232     assert(phase->C->get_alias_index(adr_type) == phase->C->get_alias_index(phase->type(next_src)->isa_ptr()),
233       "slice of address and input slice don't match");
234     assert(phase->C->get_alias_index(adr_type) == phase->C->get_alias_index(phase->type(next_dest)->isa_ptr()),
235       "slice of address and input slice don't match");
236     BasicType bt = field->layout_type();
237 
238     const Type *type;
239     if (bt == T_OBJECT) {
240       if (!field->type()->is_loaded()) {
241         type = TypeInstPtr::BOTTOM;
242       } else {
243         ciType* field_klass = field->type();
244         type = TypeOopPtr::make_from_klass(field_klass->as_klass());
245       }
246     } else {
247       type = Type::get_const_basic_type(bt);
248     }
249 
250     Node* v = load(bs, phase, ctl, mem, next_src, adr_type, type, bt);
251     store(bs, phase, ctl, mem, next_dest, adr_type, v, type, bt);
252   }
253 
254   if (!finish_transform(phase, can_reshape, ctl, mem)) {
255     // Return NodeSentinel to indicate that the transform failed
256     return NodeSentinel;
257   }
258 
259   return mem;
260 }
261 
262 bool ArrayCopyNode::prepare_array_copy(PhaseGVN *phase, bool can_reshape,
263                                        Node*& adr_src,
264                                        Node*& base_src,
265                                        Node*& adr_dest,
266                                        Node*& base_dest,
267                                        BasicType& copy_type,
268                                        const Type*& value_type,
269                                        bool& disjoint_bases) {
270   base_src = in(ArrayCopyNode::Src);
271   base_dest = in(ArrayCopyNode::Dest);
272   const Type* src_type = phase->type(base_src);
273   const TypeAryPtr* ary_src = src_type->isa_aryptr();
274 
275   Node* src_offset = in(ArrayCopyNode::SrcPos);
276   Node* dest_offset = in(ArrayCopyNode::DestPos);
277 
278   if (is_arraycopy() || is_copyofrange() || is_copyof()) {
279     const Type* dest_type = phase->type(base_dest);
280     const TypeAryPtr* ary_dest = dest_type->isa_aryptr();
281 
282     // newly allocated object is guaranteed to not overlap with source object
283     disjoint_bases = is_alloc_tightly_coupled();
284     if (ary_src  == nullptr || ary_src->elem()  == Type::BOTTOM ||
285         ary_dest == nullptr || ary_dest->elem() == Type::BOTTOM) {
286       // We don't know if arguments are arrays
287       return false;
288     }
289 
290     BasicType src_elem = ary_src->elem()->array_element_basic_type();
291     BasicType dest_elem = ary_dest->elem()->array_element_basic_type();
292     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
293     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
294 
295     // TODO 8350865 What about atomicity?
296     if (src_elem != dest_elem || ary_src->is_null_free() != ary_dest->is_null_free() || ary_src->is_flat() != ary_dest->is_flat() || dest_elem == T_VOID) {
297       // We don't know if arguments are arrays of the same type
298       return false;
299     }
300 
301     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
302     if ((!ary_dest->is_flat() && bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), dest_elem, false, false, BarrierSetC2::Optimization)) ||
303         (ary_dest->is_flat() && ary_src->elem()->inline_klass()->contains_oops() &&
304          bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), T_OBJECT, false, false, BarrierSetC2::Optimization))) {
305       // It's an object array copy but we can't emit the card marking that is needed
306       return false;
307     }
308 
309     value_type = ary_src->elem();
310 
311     uint shift  = exact_log2(type2aelembytes(dest_elem));
312     if (ary_dest->is_flat()) {
313       shift = ary_src->flat_log_elem_size();
314     }
315     uint header = arrayOopDesc::base_offset_in_bytes(dest_elem);
316 
317     src_offset = Compile::conv_I2X_index(phase, src_offset, ary_src->size());
318     if (src_offset->is_top()) {
319       // Offset is out of bounds (the ArrayCopyNode will be removed)
320       return false;
321     }
322     dest_offset = Compile::conv_I2X_index(phase, dest_offset, ary_dest->size());
323     if (dest_offset->is_top()) {
324       // Offset is out of bounds (the ArrayCopyNode will be removed)
325       if (can_reshape) {
326         // record src_offset, so it can be deleted later (if it is dead)
327         phase->is_IterGVN()->_worklist.push(src_offset);
328       }
329       return false;
330     }
331 
332     Node* hook = new Node(1);
333     hook->init_req(0, dest_offset);
334 
335     Node* src_scale  = phase->transform(new LShiftXNode(src_offset, phase->intcon(shift)));
336 
337     hook->destruct(phase);
338 
339     Node* dest_scale = phase->transform(new LShiftXNode(dest_offset, phase->intcon(shift)));
340 
341     adr_src          = phase->transform(new AddPNode(base_src, base_src, src_scale));
342     adr_dest         = phase->transform(new AddPNode(base_dest, base_dest, dest_scale));
343 
344     adr_src          = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(header)));
345     adr_dest         = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(header)));
346 
347     copy_type = dest_elem;
348   } else {
349     assert(ary_src != nullptr, "should be a clone");
350     assert(is_clonebasic(), "should be");
351 
352     disjoint_bases = true;
353 
354     if (ary_src->elem()->make_oopptr() != nullptr &&
355         ary_src->elem()->make_oopptr()->can_be_inline_type()) {
356       return false;
357     }
358 
359     BasicType elem = ary_src->isa_aryptr()->elem()->array_element_basic_type();
360     if (is_reference_type(elem, true)) {
361       elem = T_OBJECT;
362     }
363 
364     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
365     if ((!ary_src->is_flat() && bs->array_copy_requires_gc_barriers(true, elem, true, is_clone_inst(), BarrierSetC2::Optimization)) ||
366         (ary_src->is_flat() && ary_src->elem()->inline_klass()->contains_oops() &&
367          bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, is_clone_inst(), BarrierSetC2::Optimization))) {
368       // It's an object array copy but we can't emit the card marking that is needed
369       return false;
370     }
371 
372     adr_src  = phase->transform(new AddPNode(base_src, base_src, src_offset));
373     adr_dest = phase->transform(new AddPNode(base_dest, base_dest, dest_offset));
374 
375     // The address is offsetted to an aligned address where a raw copy would start.
376     // If the clone copy is decomposed into load-stores - the address is adjusted to
377     // point at where the array starts.
378     const Type* toff = phase->type(src_offset);
379     int offset = toff->isa_long() ? (int) toff->is_long()->get_con() : (int) toff->is_int()->get_con();
380     int diff = arrayOopDesc::base_offset_in_bytes(elem) - offset;
381     assert(diff >= 0, "clone should not start after 1st array element");
382     if (diff > 0) {
383       adr_src = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(diff)));
384       adr_dest = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(diff)));
385     }
386     copy_type = elem;
387     value_type = ary_src->elem();
388   }
389   return true;
390 }
391 
392 const TypeAryPtr* ArrayCopyNode::get_address_type(PhaseGVN* phase, const TypePtr* atp, Node* n) {
393   if (atp == TypeOopPtr::BOTTOM) {
394     atp = phase->type(n)->isa_ptr();
395   }
396   // adjust atp to be the correct array element address type
397   return atp->add_offset(Type::OffsetBot)->is_aryptr();
398 }
399 
400 void ArrayCopyNode::array_copy_test_overlap(GraphKit& kit, bool disjoint_bases, int count, Node*& backward_ctl) {
401   Node* ctl = kit.control();
402   if (!disjoint_bases && count > 1) {
403     PhaseGVN& gvn = kit.gvn();
404     Node* src_offset = in(ArrayCopyNode::SrcPos);
405     Node* dest_offset = in(ArrayCopyNode::DestPos);
406     assert(src_offset != nullptr && dest_offset != nullptr, "should be");
407     Node* cmp = gvn.transform(new CmpINode(src_offset, dest_offset));
408     Node *bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
409     IfNode *iff = new IfNode(ctl, bol, PROB_FAIR, COUNT_UNKNOWN);
410 
411     gvn.transform(iff);
412 
413     kit.set_control(gvn.transform(new IfFalseNode(iff)));
414     backward_ctl = gvn.transform(new IfTrueNode(iff));
415   }
416 }
417 
418 void ArrayCopyNode::copy(GraphKit& kit,
419                          const TypeAryPtr* atp_src,
420                          const TypeAryPtr* atp_dest,
421                          int i,
422                          Node* base_src,
423                          Node* base_dest,
424                          Node* adr_src,
425                          Node* adr_dest,
426                          BasicType copy_type,
427                          const Type* value_type) {
428   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
429   Node* ctl = kit.control();
430   if (atp_dest->is_flat()) {
431     ciInlineKlass* vk = atp_src->elem()->inline_klass();
432     for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
433       ciField* field = vk->nonstatic_field_at(j);
434       int off_in_vt = field->offset_in_bytes() - vk->payload_offset();
435       Node* off  = kit.MakeConX(off_in_vt + i * atp_src->flat_elem_size());
436       ciType* ft = field->type();
437       BasicType bt = type2field[ft->basic_type()];
438       assert(!field->is_flat(), "flat field encountered");
439       const Type* rt = Type::get_const_type(ft);
440       const TypePtr* adr_type = atp_src->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
441       assert(!bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), bt, false, false, BarrierSetC2::Optimization), "GC barriers required");
442       Node* next_src = kit.gvn().transform(new AddPNode(base_src, adr_src, off));
443       Node* next_dest = kit.gvn().transform(new AddPNode(base_dest, adr_dest, off));
444       Node* v = load(bs, &kit.gvn(), ctl, kit.merged_memory(), next_src, adr_type, rt, bt);
445       store(bs, &kit.gvn(), ctl, kit.merged_memory(), next_dest, adr_type, v, rt, bt);
446     }
447   } else {
448     Node* off = kit.MakeConX(type2aelembytes(copy_type) * i);
449     Node* next_src = kit.gvn().transform(new AddPNode(base_src, adr_src, off));
450     Node* next_dest = kit.gvn().transform(new AddPNode(base_dest, adr_dest, off));
451     Node* v = load(bs, &kit.gvn(), ctl, kit.merged_memory(), next_src, atp_src, value_type, copy_type);
452     store(bs, &kit.gvn(), ctl, kit.merged_memory(), next_dest, atp_dest, v, value_type, copy_type);
453   }
454   kit.set_control(ctl);
455 }
456 
457 
458 void ArrayCopyNode::array_copy_forward(GraphKit& kit,
459                                        bool can_reshape,
460                                        const TypeAryPtr* atp_src,
461                                        const TypeAryPtr* atp_dest,
462                                        Node* adr_src,
463                                        Node* base_src,
464                                        Node* adr_dest,
465                                        Node* base_dest,
466                                        BasicType copy_type,
467                                        const Type* value_type,
468                                        int count) {
469   if (!kit.stopped()) {
470     // copy forward
471     if (count > 0) {
472       for (int i = 0; i < count; i++) {
473         copy(kit, atp_src, atp_dest, i, base_src, base_dest, adr_src, adr_dest, copy_type, value_type);
474       }
475     } else if (can_reshape) {
476       PhaseGVN& gvn = kit.gvn();
477       assert(gvn.is_IterGVN(), "");
478       gvn.record_for_igvn(adr_src);
479       gvn.record_for_igvn(adr_dest);
480     }
481   }
482 }
483 
484 void ArrayCopyNode::array_copy_backward(GraphKit& kit,
485                                         bool can_reshape,
486                                         const TypeAryPtr* atp_src,
487                                         const TypeAryPtr* atp_dest,
488                                         Node* adr_src,
489                                         Node* base_src,
490                                         Node* adr_dest,
491                                         Node* base_dest,
492                                         BasicType copy_type,
493                                         const Type* value_type,
494                                         int count) {
495   if (!kit.stopped()) {
496     // copy backward
497     PhaseGVN& gvn = kit.gvn();
498 
499     if (count > 0) {
500       for (int i = count-1; i >= 0; i--) {
501         copy(kit, atp_src, atp_dest, i, base_src, base_dest, adr_src, adr_dest, copy_type, value_type);
502       }
503     } else if(can_reshape) {
504       PhaseGVN& gvn = kit.gvn();
505       assert(gvn.is_IterGVN(), "");
506       gvn.record_for_igvn(adr_src);
507       gvn.record_for_igvn(adr_dest);
508     }
509   }
510 }
511 
512 bool ArrayCopyNode::finish_transform(PhaseGVN *phase, bool can_reshape,
513                                      Node* ctl, Node *mem) {
514   if (can_reshape) {
515     PhaseIterGVN* igvn = phase->is_IterGVN();
516     igvn->set_delay_transform(false);
517     if (is_clonebasic()) {
518       Node* out_mem = proj_out(TypeFunc::Memory);
519 
520       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
521       if (out_mem->outcnt() != 1 || !out_mem->raw_out(0)->is_MergeMem() ||
522           out_mem->raw_out(0)->outcnt() != 1 || !out_mem->raw_out(0)->raw_out(0)->is_MemBar()) {
523         assert(bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, is_clone_inst(), BarrierSetC2::Optimization), "can only happen with card marking");
524         return false;
525       }
526 
527       igvn->replace_node(out_mem->raw_out(0), mem);
528 
529       Node* out_ctl = proj_out(TypeFunc::Control);
530       igvn->replace_node(out_ctl, ctl);
531     } else {
532       // replace fallthrough projections of the ArrayCopyNode by the
533       // new memory, control and the input IO.
534       CallProjections* callprojs = extract_projections(true, false);
535 
536       if (callprojs->fallthrough_ioproj != nullptr) {
537         igvn->replace_node(callprojs->fallthrough_ioproj, in(TypeFunc::I_O));
538       }
539       if (callprojs->fallthrough_memproj != nullptr) {
540         igvn->replace_node(callprojs->fallthrough_memproj, mem);
541       }
542       if (callprojs->fallthrough_catchproj != nullptr) {
543         igvn->replace_node(callprojs->fallthrough_catchproj, ctl);
544       }
545 
546       // The ArrayCopyNode is not disconnected. It still has the
547       // projections for the exception case. Replace current
548       // ArrayCopyNode with a dummy new one with a top() control so
549       // that this part of the graph stays consistent but is
550       // eventually removed.
551 
552       set_req(0, phase->C->top());
553       remove_dead_region(phase, can_reshape);
554     }
555   } else {
556     if (in(TypeFunc::Control) != ctl) {
557       // we can't return new memory and control from Ideal at parse time
558       assert(!is_clonebasic() || UseShenandoahGC, "added control for clone?");
559       phase->record_for_igvn(this);
560       return false;
561     }
562   }
563   return true;
564 }
565 
566 
567 Node *ArrayCopyNode::Ideal(PhaseGVN *phase, bool can_reshape) {
568   // Perform any generic optimizations first
569   Node* result = SafePointNode::Ideal(phase, can_reshape);
570   if (result != nullptr) {
571     return result;
572   }
573 
574   if (StressArrayCopyMacroNode && !can_reshape) {
575     phase->record_for_igvn(this);
576     return nullptr;
577   }
578 
579   // See if it's a small array copy and we can inline it as
580   // loads/stores
581   // Here we can only do:
582   // - arraycopy if all arguments were validated before and we don't
583   // need card marking
584   // - clone for which we don't need to do card marking
585 
586   if (!is_clonebasic() && !is_arraycopy_validated() &&
587       !is_copyofrange_validated() && !is_copyof_validated()) {
588     return nullptr;
589   }
590 
591   assert(in(TypeFunc::Control) != nullptr &&
592          in(TypeFunc::Memory) != nullptr &&
593          in(ArrayCopyNode::Src) != nullptr &&
594          in(ArrayCopyNode::Dest) != nullptr &&
595          in(ArrayCopyNode::Length) != nullptr &&
596          in(ArrayCopyNode::SrcPos) != nullptr &&
597          in(ArrayCopyNode::DestPos) != nullptr, "broken inputs");
598 
599   if (in(TypeFunc::Control)->is_top() ||
600       in(TypeFunc::Memory)->is_top() ||
601       phase->type(in(ArrayCopyNode::Src)) == Type::TOP ||
602       phase->type(in(ArrayCopyNode::Dest)) == Type::TOP ||
603       (in(ArrayCopyNode::SrcPos) != nullptr && in(ArrayCopyNode::SrcPos)->is_top()) ||
604       (in(ArrayCopyNode::DestPos) != nullptr && in(ArrayCopyNode::DestPos)->is_top())) {
605     return nullptr;
606   }
607 
608   int count = get_count(phase);
609 
610   if (count < 0 || count > ArrayCopyLoadStoreMaxElem) {
611     return nullptr;
612   }
613 
614   Node* src = in(ArrayCopyNode::Src);
615   Node* dest = in(ArrayCopyNode::Dest);
616   const Type* src_type = phase->type(src);
617   const Type* dest_type = phase->type(dest);
618 
619   if (src_type->isa_aryptr() && dest_type->isa_instptr()) {
620     // clone used for load of unknown inline type can't be optimized at
621     // this point
622     return nullptr;
623   }
624 
625   Node* mem = try_clone_instance(phase, can_reshape, count);
626   if (mem != nullptr) {
627     return (mem == NodeSentinel) ? nullptr : mem;
628   }
629 
630   Node* adr_src = nullptr;
631   Node* base_src = nullptr;
632   Node* adr_dest = nullptr;
633   Node* base_dest = nullptr;
634   BasicType copy_type = T_ILLEGAL;
635   const Type* value_type = nullptr;
636   bool disjoint_bases = false;
637 
638   if (!prepare_array_copy(phase, can_reshape,
639                           adr_src, base_src, adr_dest, base_dest,
640                           copy_type, value_type, disjoint_bases)) {
641     assert(adr_src == nullptr, "no node can be left behind");
642     assert(adr_dest == nullptr, "no node can be left behind");
643     return nullptr;
644   }
645 
646   JVMState* new_jvms = nullptr;
647   SafePointNode* new_map = nullptr;
648   if (!is_clonebasic()) {
649     new_jvms = jvms()->clone_shallow(phase->C);
650     new_map = new SafePointNode(req(), new_jvms);
651     for (uint i = TypeFunc::FramePtr; i < req(); i++) {
652       new_map->init_req(i, in(i));
653     }
654     new_jvms->set_map(new_map);
655   } else {
656     new_jvms = new (phase->C) JVMState(0);
657     new_map = new SafePointNode(TypeFunc::Parms, new_jvms);
658     new_jvms->set_map(new_map);
659   }
660   new_map->set_control(in(TypeFunc::Control));
661   new_map->set_memory(MergeMemNode::make(in(TypeFunc::Memory)));
662   new_map->set_i_o(in(TypeFunc::I_O));
663   phase->record_for_igvn(new_map);
664 
665   const TypeAryPtr* atp_src = get_address_type(phase, _src_type, src);
666   const TypeAryPtr* atp_dest = get_address_type(phase, _dest_type, dest);
667 
668   if (can_reshape) {
669     assert(!phase->is_IterGVN()->delay_transform(), "cannot delay transforms");
670     phase->is_IterGVN()->set_delay_transform(true);
671   }
672 
673   GraphKit kit(new_jvms, phase);
674 
675   SafePointNode* backward_map = nullptr;
676   SafePointNode* forward_map = nullptr;
677   Node* backward_ctl = phase->C->top();
678 
679   array_copy_test_overlap(kit, disjoint_bases, count, backward_ctl);
680 
681   {
682     PreserveJVMState pjvms(&kit);
683 
684     array_copy_forward(kit, can_reshape,
685                        atp_src, atp_dest,
686                        adr_src, base_src, adr_dest, base_dest,
687                        copy_type, value_type, count);
688 
689     forward_map = kit.stop();
690   }
691 
692   kit.set_control(backward_ctl);
693   array_copy_backward(kit, can_reshape,
694                       atp_src, atp_dest,
695                       adr_src, base_src, adr_dest, base_dest,
696                       copy_type, value_type, count);
697 
698   backward_map = kit.stop();
699 
700   if (!forward_map->control()->is_top() && !backward_map->control()->is_top()) {
701     assert(forward_map->i_o() == backward_map->i_o(), "need a phi on IO?");
702     Node* ctl = new RegionNode(3);
703     Node* mem = new PhiNode(ctl, Type::MEMORY, TypePtr::BOTTOM);
704     kit.set_map(forward_map);
705     ctl->init_req(1, kit.control());
706     mem->init_req(1, kit.reset_memory());
707     kit.set_map(backward_map);
708     ctl->init_req(2, kit.control());
709     mem->init_req(2, kit.reset_memory());
710     kit.set_control(phase->transform(ctl));
711     kit.set_all_memory(phase->transform(mem));
712   } else if (!forward_map->control()->is_top()) {
713     kit.set_map(forward_map);
714   } else {
715     assert(!backward_map->control()->is_top(), "no copy?");
716     kit.set_map(backward_map);
717   }
718 
719   if (can_reshape) {
720     assert(phase->is_IterGVN()->delay_transform(), "should be delaying transforms");
721     phase->is_IterGVN()->set_delay_transform(false);
722   }
723 
724   mem = kit.map()->memory();
725   if (!finish_transform(phase, can_reshape, kit.control(), mem)) {
726     if (!can_reshape) {
727       phase->record_for_igvn(this);
728     } else {
729       // put in worklist, so that if it happens to be dead it is removed
730       phase->is_IterGVN()->_worklist.push(mem);
731     }
732     return nullptr;
733   }
734 
735   return mem;
736 }
737 
738 bool ArrayCopyNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
739   Node* dest = in(ArrayCopyNode::Dest);
740   if (dest->is_top()) {
741     return false;
742   }
743   const TypeOopPtr* dest_t = phase->type(dest)->is_oopptr();
744   assert(!dest_t->is_known_instance() || _dest_type->is_known_instance(), "result of EA not recorded");
745   assert(in(ArrayCopyNode::Src)->is_top() || !phase->type(in(ArrayCopyNode::Src))->is_oopptr()->is_known_instance() ||
746          _src_type->is_known_instance(), "result of EA not recorded");
747 
748   if (_dest_type != TypeOopPtr::BOTTOM || t_oop->is_known_instance()) {
749     assert(_dest_type == TypeOopPtr::BOTTOM || _dest_type->is_known_instance(), "result of EA is known instance");
750     return t_oop->instance_id() == _dest_type->instance_id();
751   }
752 
753   return CallNode::may_modify_arraycopy_helper(dest_t, t_oop, phase);
754 }
755 
756 bool ArrayCopyNode::may_modify_helper(const TypeOopPtr* t_oop, Node* n, PhaseValues* phase, CallNode*& call) {
757   if (n != nullptr &&
758       n->is_Call() &&
759       n->as_Call()->may_modify(t_oop, phase) &&
760       (n->as_Call()->is_ArrayCopy() || n->as_Call()->is_call_to_arraycopystub())) {
761     call = n->as_Call();
762     return true;
763   }
764   return false;
765 }
766 
767 bool ArrayCopyNode::may_modify(const TypeOopPtr* t_oop, MemBarNode* mb, PhaseValues* phase, ArrayCopyNode*& ac) {
768   Node* c = mb->in(0);
769 
770   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
771   // step over g1 gc barrier if we're at e.g. a clone with ReduceInitialCardMarks off
772   c = bs->step_over_gc_barrier(c);
773 
774   CallNode* call = nullptr;
775   guarantee(c != nullptr, "step_over_gc_barrier failed, there must be something to step to.");
776   if (c->is_Region()) {
777     for (uint i = 1; i < c->req(); i++) {
778       if (c->in(i) != nullptr) {
779         Node* n = c->in(i)->in(0);
780         if (may_modify_helper(t_oop, n, phase, call)) {
781           ac = call->isa_ArrayCopy();
782           assert(c == mb->in(0), "only for clone");
783           return true;
784         }
785       }
786     }
787   } else if (may_modify_helper(t_oop, c->in(0), phase, call)) {
788     ac = call->isa_ArrayCopy();
789 #ifdef ASSERT
790     bool use_ReduceInitialCardMarks = BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) &&
791       static_cast<CardTableBarrierSetC2*>(bs)->use_ReduceInitialCardMarks();
792     assert(c == mb->in(0) || (ac != nullptr && ac->is_clonebasic() && !use_ReduceInitialCardMarks), "only for clone");
793 #endif
794     return true;
795   } else if (mb->trailing_partial_array_copy()) {
796     return true;
797   }
798 
799   return false;
800 }
801 
802 // Does this array copy modify offsets between offset_lo and offset_hi
803 // in the destination array
804 // if must_modify is false, return true if the copy could write
805 // between offset_lo and offset_hi
806 // if must_modify is true, return true if the copy is guaranteed to
807 // write between offset_lo and offset_hi
808 bool ArrayCopyNode::modifies(intptr_t offset_lo, intptr_t offset_hi, PhaseValues* phase, bool must_modify) const {
809   assert(_kind == ArrayCopy || _kind == CopyOf || _kind == CopyOfRange, "only for real array copies");
810 
811   Node* dest = in(Dest);
812   Node* dest_pos = in(DestPos);
813   Node* len = in(Length);
814 
815   const TypeInt *dest_pos_t = phase->type(dest_pos)->isa_int();
816   const TypeInt *len_t = phase->type(len)->isa_int();
817   const TypeAryPtr* ary_t = phase->type(dest)->isa_aryptr();
818 
819   if (dest_pos_t == nullptr || len_t == nullptr || ary_t == nullptr) {
820     return !must_modify;
821   }
822 
823   BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type();
824   if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT;
825 
826   uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
827   uint elemsize = ary_t->is_flat() ? ary_t->flat_elem_size() : type2aelembytes(ary_elem);
828 
829   jlong dest_pos_plus_len_lo = (((jlong)dest_pos_t->_lo) + len_t->_lo) * elemsize + header;
830   jlong dest_pos_plus_len_hi = (((jlong)dest_pos_t->_hi) + len_t->_hi) * elemsize + header;
831   jlong dest_pos_lo = ((jlong)dest_pos_t->_lo) * elemsize + header;
832   jlong dest_pos_hi = ((jlong)dest_pos_t->_hi) * elemsize + header;
833 
834   if (must_modify) {
835     if (offset_lo >= dest_pos_hi && offset_hi < dest_pos_plus_len_lo) {
836       return true;
837     }
838   } else {
839     if (offset_hi >= dest_pos_lo && offset_lo < dest_pos_plus_len_hi) {
840       return true;
841     }
842   }
843   return false;
844 }
845 
846 // As an optimization, choose optimum vector size for copy length known at compile time.
847 int ArrayCopyNode::get_partial_inline_vector_lane_count(BasicType type, int const_len) {
848   int lane_count = ArrayOperationPartialInlineSize/type2aelembytes(type);
849   if (const_len > 0) {
850     int size_in_bytes = const_len * type2aelembytes(type);
851     if (size_in_bytes <= 16)
852       lane_count = 16/type2aelembytes(type);
853     else if (size_in_bytes > 16 && size_in_bytes <= 32)
854       lane_count = 32/type2aelembytes(type);
855   }
856   return lane_count;
857 }