1 /*
  2  * Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "ci/ciFlatArrayKlass.hpp"
 26 #include "gc/shared/barrierSet.hpp"
 27 #include "gc/shared/c2/barrierSetC2.hpp"
 28 #include "gc/shared/c2/cardTableBarrierSetC2.hpp"
 29 #include "gc/shared/gc_globals.hpp"
 30 #include "opto/arraycopynode.hpp"
 31 #include "opto/graphKit.hpp"
 32 #include "opto/inlinetypenode.hpp"
 33 #include "runtime/sharedRuntime.hpp"
 34 #include "utilities/macros.hpp"
 35 #include "utilities/powerOfTwo.hpp"
 36 
 37 const TypeFunc* ArrayCopyNode::_arraycopy_type_Type = nullptr;
 38 
 39 ArrayCopyNode::ArrayCopyNode(Compile* C, bool alloc_tightly_coupled, bool has_negative_length_guard)
 40   : CallNode(arraycopy_type(), nullptr, TypePtr::BOTTOM),
 41     _kind(None),
 42     _alloc_tightly_coupled(alloc_tightly_coupled),
 43     _has_negative_length_guard(has_negative_length_guard),
 44     _arguments_validated(false),
 45     _src_type(TypeOopPtr::BOTTOM),
 46     _dest_type(TypeOopPtr::BOTTOM) {
 47   init_class_id(Class_ArrayCopy);
 48   init_flags(Flag_is_macro);
 49   C->add_macro_node(this);
 50 }
 51 
 52 uint ArrayCopyNode::size_of() const { return sizeof(*this); }
 53 
 54 ArrayCopyNode* ArrayCopyNode::make(GraphKit* kit, bool may_throw,
 55                                    Node* src, Node* src_offset,
 56                                    Node* dest, Node* dest_offset,
 57                                    Node* length,
 58                                    bool alloc_tightly_coupled,
 59                                    bool has_negative_length_guard,
 60                                    Node* src_klass, Node* dest_klass,
 61                                    Node* src_length, Node* dest_length) {
 62 
 63   ArrayCopyNode* ac = new ArrayCopyNode(kit->C, alloc_tightly_coupled, has_negative_length_guard);
 64   kit->set_predefined_input_for_runtime_call(ac);
 65 
 66   ac->init_req(ArrayCopyNode::Src, src);
 67   ac->init_req(ArrayCopyNode::SrcPos, src_offset);
 68   ac->init_req(ArrayCopyNode::Dest, dest);
 69   ac->init_req(ArrayCopyNode::DestPos, dest_offset);
 70   ac->init_req(ArrayCopyNode::Length, length);
 71   ac->init_req(ArrayCopyNode::SrcLen, src_length);
 72   ac->init_req(ArrayCopyNode::DestLen, dest_length);
 73   ac->init_req(ArrayCopyNode::SrcKlass, src_klass);
 74   ac->init_req(ArrayCopyNode::DestKlass, dest_klass);
 75 
 76   if (may_throw) {
 77     ac->set_req(TypeFunc::I_O , kit->i_o());
 78     kit->add_safepoint_edges(ac, false);
 79   }
 80 
 81   return ac;
 82 }
 83 
 84 void ArrayCopyNode::connect_outputs(GraphKit* kit, bool deoptimize_on_exception) {
 85   kit->set_all_memory_call(this, true);
 86   kit->set_control(kit->gvn().transform(new ProjNode(this,TypeFunc::Control)));
 87   kit->set_i_o(kit->gvn().transform(new ProjNode(this, TypeFunc::I_O)));
 88   kit->make_slow_call_ex(this, kit->env()->Throwable_klass(), true, deoptimize_on_exception);
 89   kit->set_all_memory_call(this);
 90 }
 91 
 92 #ifndef PRODUCT
 93 const char* ArrayCopyNode::_kind_names[] = {"arraycopy", "arraycopy, validated arguments", "clone", "oop array clone", "CopyOf", "CopyOfRange"};
 94 
 95 void ArrayCopyNode::dump_spec(outputStream *st) const {
 96   CallNode::dump_spec(st);
 97   st->print(" (%s%s)", _kind_names[_kind], _alloc_tightly_coupled ? ", tightly coupled allocation" : "");
 98 }
 99 
100 void ArrayCopyNode::dump_compact_spec(outputStream* st) const {
101   st->print("%s%s", _kind_names[_kind], _alloc_tightly_coupled ? ",tight" : "");
102 }
103 #endif
104 
105 intptr_t ArrayCopyNode::get_length_if_constant(PhaseGVN *phase) const {
106   // check that length is constant
107   Node* length = in(ArrayCopyNode::Length);
108   const Type* length_type = phase->type(length);
109 
110   if (length_type == Type::TOP) {
111     return -1;
112   }
113 
114   assert(is_clonebasic() || is_arraycopy() || is_copyof() || is_copyofrange(), "unexpected array copy type");
115 
116   return is_clonebasic() ? length->find_intptr_t_con(-1) : length->find_int_con(-1);
117 }
118 
119 int ArrayCopyNode::get_count(PhaseGVN *phase) const {
120   if (is_clonebasic()) {
121     Node* src = in(ArrayCopyNode::Src);
122     const Type* src_type = phase->type(src);
123 
124     if (src_type == Type::TOP) {
125       return -1;
126     }
127 
128     if (src_type->isa_instptr()) {
129       const TypeInstPtr* inst_src = src_type->is_instptr();
130       ciInstanceKlass* ik = inst_src->instance_klass();
131       // ciInstanceKlass::nof_nonstatic_fields() doesn't take injected
132       // fields into account. They are rare anyway so easier to simply
133       // skip instances with injected fields.
134       if ((!inst_src->klass_is_exact() && (ik->is_interface() || ik->has_subklass())) || ik->has_injected_fields()) {
135         return -1;
136       }
137       int nb_fields = ik->nof_nonstatic_fields();
138       return nb_fields;
139     } else {
140       const TypeAryPtr* ary_src = src_type->isa_aryptr();
141       assert (ary_src != nullptr, "not an array or instance?");
142       // clone passes a length as a rounded number of longs. If we're
143       // cloning an array we'll do it element by element. If the
144       // length of the input array is constant, ArrayCopyNode::Length
145       // must be too. Note that the opposite does not need to hold,
146       // because different input array lengths (e.g. int arrays with
147       // 3 or 4 elements) might lead to the same length input
148       // (e.g. 2 double-words).
149       assert(!ary_src->size()->is_con() || (get_length_if_constant(phase) >= 0) ||
150              (UseArrayFlattening && ary_src->elem()->make_oopptr() != nullptr && ary_src->elem()->make_oopptr()->can_be_inline_type()) ||
151              phase->is_IterGVN() || phase->C->inlining_incrementally() || StressReflectiveCode, "inconsistent");
152       if (ary_src->size()->is_con()) {
153         return ary_src->size()->get_con();
154       }
155       return -1;
156     }
157   }
158 
159   return get_length_if_constant(phase);
160 }
161 
162 Node* ArrayCopyNode::load(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, const Type *type, BasicType bt) {
163   // Pin the load: if this is an array load, it's going to be dependent on a condition that's not a range check for that
164   // access. If that condition is replaced by an identical dominating one, then an unpinned load would risk floating
165   // above runtime checks that guarantee it is within bounds.
166   DecoratorSet decorators = C2_READ_ACCESS | C2_CONTROL_DEPENDENT_LOAD | IN_HEAP | C2_ARRAY_COPY | C2_UNKNOWN_CONTROL_LOAD;
167   C2AccessValuePtr addr(adr, adr_type);
168   C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
169   Node* res = bs->load_at(access, type);
170   ctl = access.ctl();
171   return res;
172 }
173 
174 void ArrayCopyNode::store(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, Node* val, const Type *type, BasicType bt) {
175   DecoratorSet decorators = C2_WRITE_ACCESS | IN_HEAP | C2_ARRAY_COPY;
176   if (is_alloc_tightly_coupled()) {
177     decorators |= C2_TIGHTLY_COUPLED_ALLOC;
178   }
179   C2AccessValuePtr addr(adr, adr_type);
180   C2AccessValue value(val, type);
181   C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
182   bs->store_at(access, value);
183   ctl = access.ctl();
184 }
185 
186 
187 Node* ArrayCopyNode::try_clone_instance(PhaseGVN *phase, bool can_reshape, int count) {
188   if (!is_clonebasic()) {
189     return nullptr;
190   }
191 
192   Node* base_src = in(ArrayCopyNode::Src);
193   Node* base_dest = in(ArrayCopyNode::Dest);
194   Node* ctl = in(TypeFunc::Control);
195   Node* in_mem = in(TypeFunc::Memory);
196 
197   const Type* src_type = phase->type(base_src);
198   const TypeInstPtr* inst_src = src_type->isa_instptr();
199   if (inst_src == nullptr) {
200     return nullptr;
201   }
202 
203   MergeMemNode* mem = phase->transform(MergeMemNode::make(in_mem))->as_MergeMem();
204   phase->record_for_igvn(mem);
205   if (can_reshape) {
206     phase->is_IterGVN()->_worklist.push(mem);
207   }
208 
209 
210   ciInstanceKlass* ik = inst_src->instance_klass();
211 
212   if (!inst_src->klass_is_exact()) {
213     assert(!ik->is_interface(), "inconsistent klass hierarchy");
214     if (ik->has_subklass()) {
215       // Concurrent class loading.
216       // Fail fast and return NodeSentinel to indicate that the transform failed.
217       return NodeSentinel;
218     } else {
219       phase->C->dependencies()->assert_leaf_type(ik);
220     }
221   }
222 
223   const TypeInstPtr* dest_type = phase->type(base_dest)->is_instptr();
224   if (dest_type->instance_klass() != ik) {
225     // At parse time, the exact type of the object to clone was not known. That inexact type was captured by the CheckCastPP
226     // of the newly allocated cloned object (in dest). The exact type is now known (in src), but the type for the cloned object
227     // (dest) was not updated. When copying the fields below, Store nodes may write to offsets for fields that don't exist in
228     // the inexact class. The stores would then be assigned an incorrect slice.
229     return NodeSentinel;
230   }
231 
232   assert(ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem, "too many fields");
233 
234   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
235   for (int i = 0; i < count; i++) {
236     ciField* field = ik->nonstatic_field_at(i);
237     const TypePtr* adr_type = phase->C->alias_type(field)->adr_type();
238     Node* off = phase->MakeConX(field->offset_in_bytes());
239     Node* next_src = phase->transform(new AddPNode(base_src,base_src,off));
240     Node* next_dest = phase->transform(new AddPNode(base_dest,base_dest,off));
241     assert(phase->C->get_alias_index(adr_type) == phase->C->get_alias_index(phase->type(next_src)->isa_ptr()),
242       "slice of address and input slice don't match");
243     assert(phase->C->get_alias_index(adr_type) == phase->C->get_alias_index(phase->type(next_dest)->isa_ptr()),
244       "slice of address and input slice don't match");
245     BasicType bt = field->layout_type();
246 
247     const Type *type;
248     if (bt == T_OBJECT) {
249       if (!field->type()->is_loaded()) {
250         type = TypeInstPtr::BOTTOM;
251       } else {
252         ciType* field_klass = field->type();
253         type = TypeOopPtr::make_from_klass(field_klass->as_klass());
254       }
255     } else {
256       type = Type::get_const_basic_type(bt);
257     }
258 
259     Node* v = load(bs, phase, ctl, mem, next_src, adr_type, type, bt);
260     store(bs, phase, ctl, mem, next_dest, adr_type, v, type, bt);
261   }
262 
263   if (!finish_transform(phase, can_reshape, ctl, mem)) {
264     // Return NodeSentinel to indicate that the transform failed
265     return NodeSentinel;
266   }
267 
268   return mem;
269 }
270 
271 bool ArrayCopyNode::prepare_array_copy(PhaseGVN *phase, bool can_reshape,
272                                        Node*& adr_src,
273                                        Node*& base_src,
274                                        Node*& adr_dest,
275                                        Node*& base_dest,
276                                        BasicType& copy_type,
277                                        const Type*& value_type,
278                                        bool& disjoint_bases) {
279   base_src = in(ArrayCopyNode::Src);
280   base_dest = in(ArrayCopyNode::Dest);
281   const Type* src_type = phase->type(base_src);
282   const TypeAryPtr* ary_src = src_type->isa_aryptr();
283 
284   Node* src_offset = in(ArrayCopyNode::SrcPos);
285   Node* dest_offset = in(ArrayCopyNode::DestPos);
286 
287   if (is_arraycopy() || is_copyofrange() || is_copyof()) {
288     const Type* dest_type = phase->type(base_dest);
289     const TypeAryPtr* ary_dest = dest_type->isa_aryptr();
290 
291     // newly allocated object is guaranteed to not overlap with source object
292     disjoint_bases = is_alloc_tightly_coupled();
293     if (ary_src  == nullptr || ary_src->elem()  == Type::BOTTOM ||
294         ary_dest == nullptr || ary_dest->elem() == Type::BOTTOM) {
295       // We don't know if arguments are arrays
296       return false;
297     }
298 
299     BasicType src_elem = ary_src->elem()->array_element_basic_type();
300     BasicType dest_elem = ary_dest->elem()->array_element_basic_type();
301     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
302     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
303 
304     // TODO 8350865 What about atomicity?
305     if (src_elem != dest_elem || ary_src->is_null_free() != ary_dest->is_null_free() || ary_src->is_flat() != ary_dest->is_flat() || dest_elem == T_VOID) {
306       // We don't know if arguments are arrays of the same type
307       return false;
308     }
309 
310     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
311     if ((!ary_dest->is_flat() && bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), dest_elem, false, false, BarrierSetC2::Optimization)) ||
312         (ary_dest->is_flat() && ary_src->elem()->inline_klass()->contains_oops() &&
313          bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), T_OBJECT, false, false, BarrierSetC2::Optimization))) {
314       // It's an object array copy but we can't emit the card marking that is needed
315       return false;
316     }
317 
318     value_type = ary_src->elem();
319 
320     uint shift  = exact_log2(type2aelembytes(dest_elem));
321     if (ary_dest->is_flat()) {
322       assert(ary_src->is_flat(), "src and dest must be flat");
323       shift = ary_src->flat_log_elem_size();
324       src_elem = T_FLAT_ELEMENT;
325       dest_elem = T_FLAT_ELEMENT;
326     }
327 
328     const uint header = arrayOopDesc::base_offset_in_bytes(dest_elem);
329 
330     src_offset = Compile::conv_I2X_index(phase, src_offset, ary_src->size());
331     if (src_offset->is_top()) {
332       // Offset is out of bounds (the ArrayCopyNode will be removed)
333       return false;
334     }
335     dest_offset = Compile::conv_I2X_index(phase, dest_offset, ary_dest->size());
336     if (dest_offset->is_top()) {
337       // Offset is out of bounds (the ArrayCopyNode will be removed)
338       if (can_reshape) {
339         // record src_offset, so it can be deleted later (if it is dead)
340         phase->is_IterGVN()->_worklist.push(src_offset);
341       }
342       return false;
343     }
344 
345     Node* hook = new Node(1);
346     hook->init_req(0, dest_offset);
347 
348     Node* src_scale  = phase->transform(new LShiftXNode(src_offset, phase->intcon(shift)));
349 
350     hook->destruct(phase);
351 
352     Node* dest_scale = phase->transform(new LShiftXNode(dest_offset, phase->intcon(shift)));
353 
354     adr_src          = phase->transform(new AddPNode(base_src, base_src, src_scale));
355     adr_dest         = phase->transform(new AddPNode(base_dest, base_dest, dest_scale));
356 
357     adr_src          = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(header)));
358     adr_dest         = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(header)));
359 
360     copy_type = dest_elem;
361   } else {
362     assert(ary_src != nullptr, "should be a clone");
363     assert(is_clonebasic(), "should be");
364 
365     disjoint_bases = true;
366 
367     if (ary_src->elem()->make_oopptr() != nullptr &&
368         ary_src->elem()->make_oopptr()->can_be_inline_type()) {
369       return false;
370     }
371 
372     BasicType elem = ary_src->isa_aryptr()->elem()->array_element_basic_type();
373     if (is_reference_type(elem, true)) {
374       elem = T_OBJECT;
375     }
376 
377     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
378     if ((!ary_src->is_flat() && bs->array_copy_requires_gc_barriers(true, elem, true, is_clone_inst(), BarrierSetC2::Optimization)) ||
379         (ary_src->is_flat() && ary_src->elem()->inline_klass()->contains_oops() &&
380          bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, is_clone_inst(), BarrierSetC2::Optimization))) {
381       // It's an object array copy but we can't emit the card marking that is needed
382       return false;
383     }
384 
385     adr_src  = phase->transform(new AddPNode(base_src, base_src, src_offset));
386     adr_dest = phase->transform(new AddPNode(base_dest, base_dest, dest_offset));
387 
388     // The address is offsetted to an aligned address where a raw copy would start.
389     // If the clone copy is decomposed into load-stores - the address is adjusted to
390     // point at where the array starts.
391     const Type* toff = phase->type(src_offset);
392     int offset = toff->isa_long() ? (int) toff->is_long()->get_con() : (int) toff->is_int()->get_con();
393     int diff = arrayOopDesc::base_offset_in_bytes(elem) - offset;
394     assert(diff >= 0, "clone should not start after 1st array element");
395     if (diff > 0) {
396       adr_src = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(diff)));
397       adr_dest = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(diff)));
398     }
399     copy_type = elem;
400     value_type = ary_src->elem();
401   }
402   return true;
403 }
404 
405 const TypeAryPtr* ArrayCopyNode::get_address_type(PhaseGVN* phase, const TypePtr* atp, Node* n) {
406   if (atp == TypeOopPtr::BOTTOM) {
407     atp = phase->type(n)->isa_ptr();
408   }
409   // adjust atp to be the correct array element address type
410   return atp->add_offset(Type::OffsetBot)->is_aryptr();
411 }
412 
413 void ArrayCopyNode::array_copy_test_overlap(GraphKit& kit, bool disjoint_bases, int count, Node*& backward_ctl) {
414   Node* ctl = kit.control();
415   if (!disjoint_bases && count > 1) {
416     PhaseGVN& gvn = kit.gvn();
417     Node* src_offset = in(ArrayCopyNode::SrcPos);
418     Node* dest_offset = in(ArrayCopyNode::DestPos);
419     assert(src_offset != nullptr && dest_offset != nullptr, "should be");
420     Node* cmp = gvn.transform(new CmpINode(src_offset, dest_offset));
421     Node *bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
422     IfNode *iff = new IfNode(ctl, bol, PROB_FAIR, COUNT_UNKNOWN);
423 
424     gvn.transform(iff);
425 
426     kit.set_control(gvn.transform(new IfFalseNode(iff)));
427     backward_ctl = gvn.transform(new IfTrueNode(iff));
428   }
429 }
430 
431 void ArrayCopyNode::copy(GraphKit& kit,
432                          const TypeAryPtr* atp_src,
433                          const TypeAryPtr* atp_dest,
434                          int i,
435                          Node* base_src,
436                          Node* base_dest,
437                          Node* adr_src,
438                          Node* adr_dest,
439                          BasicType copy_type,
440                          const Type* value_type) {
441   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
442   Node* ctl = kit.control();
443   if (atp_dest->is_flat()) {
444     ciInlineKlass* vk = atp_src->elem()->inline_klass();
445     for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
446       ciField* field = vk->nonstatic_field_at(j);
447       int off_in_vt = field->offset_in_bytes() - vk->payload_offset();
448       Node* off  = kit.MakeConX(off_in_vt + i * atp_src->flat_elem_size());
449       ciType* ft = field->type();
450       BasicType bt = type2field[ft->basic_type()];
451       assert(!field->is_flat(), "flat field encountered");
452       const Type* rt = Type::get_const_type(ft);
453       const TypePtr* adr_type = atp_src->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
454       assert(!bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), bt, false, false, BarrierSetC2::Optimization), "GC barriers required");
455       Node* next_src = kit.gvn().transform(new AddPNode(base_src, adr_src, off));
456       Node* next_dest = kit.gvn().transform(new AddPNode(base_dest, adr_dest, off));
457       Node* v = load(bs, &kit.gvn(), ctl, kit.merged_memory(), next_src, adr_type, rt, bt);
458       store(bs, &kit.gvn(), ctl, kit.merged_memory(), next_dest, adr_type, v, rt, bt);
459     }
460   } else {
461     Node* off = kit.MakeConX(type2aelembytes(copy_type) * i);
462     Node* next_src = kit.gvn().transform(new AddPNode(base_src, adr_src, off));
463     Node* next_dest = kit.gvn().transform(new AddPNode(base_dest, adr_dest, off));
464     Node* v = load(bs, &kit.gvn(), ctl, kit.merged_memory(), next_src, atp_src, value_type, copy_type);
465     store(bs, &kit.gvn(), ctl, kit.merged_memory(), next_dest, atp_dest, v, value_type, copy_type);
466   }
467   kit.set_control(ctl);
468 }
469 
470 
471 void ArrayCopyNode::array_copy_forward(GraphKit& kit,
472                                        bool can_reshape,
473                                        const TypeAryPtr* atp_src,
474                                        const TypeAryPtr* atp_dest,
475                                        Node* adr_src,
476                                        Node* base_src,
477                                        Node* adr_dest,
478                                        Node* base_dest,
479                                        BasicType copy_type,
480                                        const Type* value_type,
481                                        int count) {
482   if (!kit.stopped()) {
483     // copy forward
484     if (count > 0) {
485       for (int i = 0; i < count; i++) {
486         copy(kit, atp_src, atp_dest, i, base_src, base_dest, adr_src, adr_dest, copy_type, value_type);
487       }
488     } else if (can_reshape) {
489       PhaseGVN& gvn = kit.gvn();
490       assert(gvn.is_IterGVN(), "");
491       gvn.record_for_igvn(adr_src);
492       gvn.record_for_igvn(adr_dest);
493     }
494   }
495 }
496 
497 void ArrayCopyNode::array_copy_backward(GraphKit& kit,
498                                         bool can_reshape,
499                                         const TypeAryPtr* atp_src,
500                                         const TypeAryPtr* atp_dest,
501                                         Node* adr_src,
502                                         Node* base_src,
503                                         Node* adr_dest,
504                                         Node* base_dest,
505                                         BasicType copy_type,
506                                         const Type* value_type,
507                                         int count) {
508   if (!kit.stopped()) {
509     // copy backward
510     PhaseGVN& gvn = kit.gvn();
511 
512     if (count > 0) {
513       for (int i = count-1; i >= 0; i--) {
514         copy(kit, atp_src, atp_dest, i, base_src, base_dest, adr_src, adr_dest, copy_type, value_type);
515       }
516     } else if(can_reshape) {
517       PhaseGVN& gvn = kit.gvn();
518       assert(gvn.is_IterGVN(), "");
519       gvn.record_for_igvn(adr_src);
520       gvn.record_for_igvn(adr_dest);
521     }
522   }
523 }
524 
525 bool ArrayCopyNode::finish_transform(PhaseGVN *phase, bool can_reshape,
526                                      Node* ctl, Node *mem) {
527   if (can_reshape) {
528     PhaseIterGVN* igvn = phase->is_IterGVN();
529     igvn->set_delay_transform(false);
530     if (is_clonebasic()) {
531       Node* out_mem = proj_out(TypeFunc::Memory);
532 
533       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
534       if (out_mem->outcnt() != 1 || !out_mem->raw_out(0)->is_MergeMem() ||
535           out_mem->raw_out(0)->outcnt() != 1 || !out_mem->raw_out(0)->raw_out(0)->is_MemBar()) {
536         assert(bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, is_clone_inst(), BarrierSetC2::Optimization), "can only happen with card marking");
537         return false;
538       }
539 
540       igvn->replace_node(out_mem->raw_out(0), mem);
541 
542       Node* out_ctl = proj_out(TypeFunc::Control);
543       igvn->replace_node(out_ctl, ctl);
544     } else {
545       // replace fallthrough projections of the ArrayCopyNode by the
546       // new memory, control and the input IO.
547       CallProjections* callprojs = extract_projections(true, false);
548 
549       if (callprojs->fallthrough_ioproj != nullptr) {
550         igvn->replace_node(callprojs->fallthrough_ioproj, in(TypeFunc::I_O));
551       }
552       if (callprojs->fallthrough_memproj != nullptr) {
553         igvn->replace_node(callprojs->fallthrough_memproj, mem);
554       }
555       if (callprojs->fallthrough_catchproj != nullptr) {
556         igvn->replace_node(callprojs->fallthrough_catchproj, ctl);
557       }
558 
559       // The ArrayCopyNode is not disconnected. It still has the
560       // projections for the exception case. Replace current
561       // ArrayCopyNode with a dummy new one with a top() control so
562       // that this part of the graph stays consistent but is
563       // eventually removed.
564 
565       set_req(0, phase->C->top());
566       remove_dead_region(phase, can_reshape);
567     }
568   } else {
569     if (in(TypeFunc::Control) != ctl) {
570       // we can't return new memory and control from Ideal at parse time
571       assert(!is_clonebasic() || UseShenandoahGC, "added control for clone?");
572       phase->record_for_igvn(this);
573       return false;
574     }
575   }
576   return true;
577 }
578 
579 
580 Node *ArrayCopyNode::Ideal(PhaseGVN *phase, bool can_reshape) {
581   // Perform any generic optimizations first
582   Node* result = SafePointNode::Ideal(phase, can_reshape);
583   if (result != nullptr) {
584     return result;
585   }
586 
587   if (StressArrayCopyMacroNode && !can_reshape) {
588     phase->record_for_igvn(this);
589     return nullptr;
590   }
591 
592   // See if it's a small array copy and we can inline it as
593   // loads/stores
594   // Here we can only do:
595   // - arraycopy if all arguments were validated before and we don't
596   // need card marking
597   // - clone for which we don't need to do card marking
598 
599   if (!is_clonebasic() && !is_arraycopy_validated() &&
600       !is_copyofrange_validated() && !is_copyof_validated()) {
601     return nullptr;
602   }
603 
604   assert(in(TypeFunc::Control) != nullptr &&
605          in(TypeFunc::Memory) != nullptr &&
606          in(ArrayCopyNode::Src) != nullptr &&
607          in(ArrayCopyNode::Dest) != nullptr &&
608          in(ArrayCopyNode::Length) != nullptr &&
609          in(ArrayCopyNode::SrcPos) != nullptr &&
610          in(ArrayCopyNode::DestPos) != nullptr, "broken inputs");
611 
612   if (in(TypeFunc::Control)->is_top() ||
613       in(TypeFunc::Memory)->is_top() ||
614       phase->type(in(ArrayCopyNode::Src)) == Type::TOP ||
615       phase->type(in(ArrayCopyNode::Dest)) == Type::TOP ||
616       (in(ArrayCopyNode::SrcPos) != nullptr && in(ArrayCopyNode::SrcPos)->is_top()) ||
617       (in(ArrayCopyNode::DestPos) != nullptr && in(ArrayCopyNode::DestPos)->is_top())) {
618     return nullptr;
619   }
620 
621   int count = get_count(phase);
622 
623   if (count < 0 || count > ArrayCopyLoadStoreMaxElem) {
624     return nullptr;
625   }
626 
627   Node* src = in(ArrayCopyNode::Src);
628   Node* dest = in(ArrayCopyNode::Dest);
629   const Type* src_type = phase->type(src);
630   const Type* dest_type = phase->type(dest);
631 
632   if (src_type->isa_aryptr() && dest_type->isa_instptr()) {
633     // clone used for load of unknown inline type can't be optimized at
634     // this point
635     return nullptr;
636   }
637 
638   Node* mem = try_clone_instance(phase, can_reshape, count);
639   if (mem != nullptr) {
640     return (mem == NodeSentinel) ? nullptr : mem;
641   }
642 
643   Node* adr_src = nullptr;
644   Node* base_src = nullptr;
645   Node* adr_dest = nullptr;
646   Node* base_dest = nullptr;
647   BasicType copy_type = T_ILLEGAL;
648   const Type* value_type = nullptr;
649   bool disjoint_bases = false;
650 
651   if (!prepare_array_copy(phase, can_reshape,
652                           adr_src, base_src, adr_dest, base_dest,
653                           copy_type, value_type, disjoint_bases)) {
654     assert(adr_src == nullptr, "no node can be left behind");
655     assert(adr_dest == nullptr, "no node can be left behind");
656     return nullptr;
657   }
658 
659   JVMState* new_jvms = nullptr;
660   SafePointNode* new_map = nullptr;
661   if (!is_clonebasic()) {
662     new_jvms = jvms()->clone_shallow(phase->C);
663     new_map = new SafePointNode(req(), new_jvms);
664     for (uint i = TypeFunc::FramePtr; i < req(); i++) {
665       new_map->init_req(i, in(i));
666     }
667     new_jvms->set_map(new_map);
668   } else {
669     new_jvms = new (phase->C) JVMState(0);
670     new_map = new SafePointNode(TypeFunc::Parms, new_jvms);
671     new_jvms->set_map(new_map);
672   }
673   new_map->set_control(in(TypeFunc::Control));
674   new_map->set_memory(MergeMemNode::make(in(TypeFunc::Memory)));
675   new_map->set_i_o(in(TypeFunc::I_O));
676   phase->record_for_igvn(new_map);
677 
678   const TypeAryPtr* atp_src = get_address_type(phase, _src_type, src);
679   const TypeAryPtr* atp_dest = get_address_type(phase, _dest_type, dest);
680 
681   if (can_reshape) {
682     assert(!phase->is_IterGVN()->delay_transform(), "cannot delay transforms");
683     phase->is_IterGVN()->set_delay_transform(true);
684   }
685 
686   GraphKit kit(new_jvms, phase);
687 
688   SafePointNode* backward_map = nullptr;
689   SafePointNode* forward_map = nullptr;
690   Node* backward_ctl = phase->C->top();
691 
692   array_copy_test_overlap(kit, disjoint_bases, count, backward_ctl);
693 
694   {
695     PreserveJVMState pjvms(&kit);
696 
697     array_copy_forward(kit, can_reshape,
698                        atp_src, atp_dest,
699                        adr_src, base_src, adr_dest, base_dest,
700                        copy_type, value_type, count);
701 
702     forward_map = kit.stop();
703   }
704 
705   kit.set_control(backward_ctl);
706   array_copy_backward(kit, can_reshape,
707                       atp_src, atp_dest,
708                       adr_src, base_src, adr_dest, base_dest,
709                       copy_type, value_type, count);
710 
711   backward_map = kit.stop();
712 
713   if (!forward_map->control()->is_top() && !backward_map->control()->is_top()) {
714     assert(forward_map->i_o() == backward_map->i_o(), "need a phi on IO?");
715     Node* ctl = new RegionNode(3);
716     Node* mem = new PhiNode(ctl, Type::MEMORY, TypePtr::BOTTOM);
717     kit.set_map(forward_map);
718     ctl->init_req(1, kit.control());
719     mem->init_req(1, kit.reset_memory());
720     kit.set_map(backward_map);
721     ctl->init_req(2, kit.control());
722     mem->init_req(2, kit.reset_memory());
723     kit.set_control(phase->transform(ctl));
724     kit.set_all_memory(phase->transform(mem));
725   } else if (!forward_map->control()->is_top()) {
726     kit.set_map(forward_map);
727   } else {
728     assert(!backward_map->control()->is_top(), "no copy?");
729     kit.set_map(backward_map);
730   }
731 
732   if (can_reshape) {
733     assert(phase->is_IterGVN()->delay_transform(), "should be delaying transforms");
734     phase->is_IterGVN()->set_delay_transform(false);
735   }
736 
737   mem = kit.map()->memory();
738   if (!finish_transform(phase, can_reshape, kit.control(), mem)) {
739     if (!can_reshape) {
740       phase->record_for_igvn(this);
741     } else {
742       // put in worklist, so that if it happens to be dead it is removed
743       phase->is_IterGVN()->_worklist.push(mem);
744     }
745     return nullptr;
746   }
747 
748   return mem;
749 }
750 
751 bool ArrayCopyNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
752   Node* dest = in(ArrayCopyNode::Dest);
753   if (dest->is_top()) {
754     return false;
755   }
756   const TypeOopPtr* dest_t = phase->type(dest)->is_oopptr();
757   assert(!dest_t->is_known_instance() || _dest_type->is_known_instance(), "result of EA not recorded");
758   assert(in(ArrayCopyNode::Src)->is_top() || !phase->type(in(ArrayCopyNode::Src))->is_oopptr()->is_known_instance() ||
759          _src_type->is_known_instance(), "result of EA not recorded");
760 
761   if (_dest_type != TypeOopPtr::BOTTOM || t_oop->is_known_instance()) {
762     assert(_dest_type == TypeOopPtr::BOTTOM || _dest_type->is_known_instance(), "result of EA is known instance");
763     return t_oop->instance_id() == _dest_type->instance_id();
764   }
765 
766   return CallNode::may_modify_arraycopy_helper(dest_t, t_oop, phase);
767 }
768 
769 bool ArrayCopyNode::may_modify_helper(const TypeOopPtr* t_oop, Node* n, PhaseValues* phase, ArrayCopyNode*& ac) {
770   if (n != nullptr &&
771       n->is_ArrayCopy() &&
772       n->as_ArrayCopy()->may_modify(t_oop, phase)) {
773     ac = n->as_ArrayCopy();
774     return true;
775   }
776   return false;
777 }
778 
779 bool ArrayCopyNode::may_modify(const TypeOopPtr* t_oop, MemBarNode* mb, PhaseValues* phase, ArrayCopyNode*& ac) {
780   if (mb->trailing_expanded_array_copy()) {
781     return true;
782   }
783 
784   Node* c = mb->in(0);
785 
786   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
787   // step over g1 gc barrier if we're at e.g. a clone with ReduceInitialCardMarks off
788   c = bs->step_over_gc_barrier(c);
789 
790   CallNode* call = nullptr;
791   guarantee(c != nullptr, "step_over_gc_barrier failed, there must be something to step to.");
792   if (c->is_Region()) {
793     for (uint i = 1; i < c->req(); i++) {
794       if (c->in(i) != nullptr) {
795         Node* n = c->in(i)->in(0);
796         if (may_modify_helper(t_oop, n, phase, ac)) {
797           assert(c == mb->in(0), "only for clone");
798           return true;
799         }
800       }
801     }
802   } else if (may_modify_helper(t_oop, c->in(0), phase, ac)) {
803 #ifdef ASSERT
804     bool use_ReduceInitialCardMarks = BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) &&
805       static_cast<CardTableBarrierSetC2*>(bs)->use_ReduceInitialCardMarks();
806     assert(c == mb->in(0) || (ac->is_clonebasic() && !use_ReduceInitialCardMarks), "only for clone");
807 #endif
808     return true;
809   }
810 
811   return false;
812 }
813 
814 // Does this array copy modify offsets between offset_lo and offset_hi
815 // in the destination array
816 // if must_modify is false, return true if the copy could write
817 // between offset_lo and offset_hi
818 // if must_modify is true, return true if the copy is guaranteed to
819 // write between offset_lo and offset_hi
820 bool ArrayCopyNode::modifies(intptr_t offset_lo, intptr_t offset_hi, PhaseValues* phase, bool must_modify) const {
821   assert(_kind == ArrayCopy || _kind == CopyOf || _kind == CopyOfRange, "only for real array copies");
822 
823   Node* dest = in(Dest);
824   Node* dest_pos = in(DestPos);
825   Node* len = in(Length);
826 
827   const TypeInt *dest_pos_t = phase->type(dest_pos)->isa_int();
828   const TypeInt *len_t = phase->type(len)->isa_int();
829   const TypeAryPtr* ary_t = phase->type(dest)->isa_aryptr();
830 
831   if (dest_pos_t == nullptr || len_t == nullptr || ary_t == nullptr) {
832     return !must_modify;
833   }
834 
835   BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type();
836   if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT;
837 
838   uint header;
839   uint elem_size;
840   if (ary_t->is_flat()) {
841     header = arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT);
842     elem_size = ary_t->flat_elem_size();
843   } else {
844     header = arrayOopDesc::base_offset_in_bytes(ary_elem);
845     elem_size = type2aelembytes(ary_elem);
846   }
847 
848   jlong dest_pos_plus_len_lo = (((jlong)dest_pos_t->_lo) + len_t->_lo) * elem_size + header;
849   jlong dest_pos_plus_len_hi = (((jlong)dest_pos_t->_hi) + len_t->_hi) * elem_size + header;
850   jlong dest_pos_lo = ((jlong)dest_pos_t->_lo) * elem_size + header;
851   jlong dest_pos_hi = ((jlong)dest_pos_t->_hi) * elem_size + header;
852 
853   if (must_modify) {
854     if (offset_lo >= dest_pos_hi && offset_hi < dest_pos_plus_len_lo) {
855       return true;
856     }
857   } else {
858     if (offset_hi >= dest_pos_lo && offset_lo < dest_pos_plus_len_hi) {
859       return true;
860     }
861   }
862   return false;
863 }
864 
865 // As an optimization, choose optimum vector size for copy length known at compile time.
866 int ArrayCopyNode::get_partial_inline_vector_lane_count(BasicType type, int const_len) {
867   int lane_count = ArrayOperationPartialInlineSize/type2aelembytes(type);
868   if (const_len > 0) {
869     int size_in_bytes = const_len * type2aelembytes(type);
870     if (size_in_bytes <= 16)
871       lane_count = 16/type2aelembytes(type);
872     else if (size_in_bytes > 16 && size_in_bytes <= 32)
873       lane_count = 32/type2aelembytes(type);
874   }
875   return lane_count;
876 }