5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "gc/shared/barrierSet.hpp"
26 #include "gc/shared/c2/barrierSetC2.hpp"
27 #include "gc/shared/c2/cardTableBarrierSetC2.hpp"
28 #include "gc/shared/gc_globals.hpp"
29 #include "opto/arraycopynode.hpp"
30 #include "opto/graphKit.hpp"
31 #include "runtime/sharedRuntime.hpp"
32 #include "utilities/macros.hpp"
33 #include "utilities/powerOfTwo.hpp"
34
35 const TypeFunc* ArrayCopyNode::_arraycopy_type_Type = nullptr;
36
37 ArrayCopyNode::ArrayCopyNode(Compile* C, bool alloc_tightly_coupled, bool has_negative_length_guard)
38 : CallNode(arraycopy_type(), nullptr, TypePtr::BOTTOM),
39 _kind(None),
40 _alloc_tightly_coupled(alloc_tightly_coupled),
41 _has_negative_length_guard(has_negative_length_guard),
42 _arguments_validated(false),
43 _src_type(TypeOopPtr::BOTTOM),
44 _dest_type(TypeOopPtr::BOTTOM) {
45 init_class_id(Class_ArrayCopy);
46 init_flags(Flag_is_macro);
47 C->add_macro_node(this);
48 }
49
50 uint ArrayCopyNode::size_of() const { return sizeof(*this); }
98 void ArrayCopyNode::dump_compact_spec(outputStream* st) const {
99 st->print("%s%s", _kind_names[_kind], _alloc_tightly_coupled ? ",tight" : "");
100 }
101 #endif
102
103 intptr_t ArrayCopyNode::get_length_if_constant(PhaseGVN *phase) const {
104 // check that length is constant
105 Node* length = in(ArrayCopyNode::Length);
106 const Type* length_type = phase->type(length);
107
108 if (length_type == Type::TOP) {
109 return -1;
110 }
111
112 assert(is_clonebasic() || is_arraycopy() || is_copyof() || is_copyofrange(), "unexpected array copy type");
113
114 return is_clonebasic() ? length->find_intptr_t_con(-1) : length->find_int_con(-1);
115 }
116
117 int ArrayCopyNode::get_count(PhaseGVN *phase) const {
118 Node* src = in(ArrayCopyNode::Src);
119 const Type* src_type = phase->type(src);
120
121 if (is_clonebasic()) {
122 if (src_type->isa_instptr()) {
123 const TypeInstPtr* inst_src = src_type->is_instptr();
124 ciInstanceKlass* ik = inst_src->instance_klass();
125 // ciInstanceKlass::nof_nonstatic_fields() doesn't take injected
126 // fields into account. They are rare anyway so easier to simply
127 // skip instances with injected fields.
128 if ((!inst_src->klass_is_exact() && (ik->is_interface() || ik->has_subklass())) || ik->has_injected_fields()) {
129 return -1;
130 }
131 int nb_fields = ik->nof_nonstatic_fields();
132 return nb_fields;
133 } else {
134 const TypeAryPtr* ary_src = src_type->isa_aryptr();
135 assert (ary_src != nullptr, "not an array or instance?");
136 // clone passes a length as a rounded number of longs. If we're
137 // cloning an array we'll do it element by element. If the
138 // length of the input array is constant, ArrayCopyNode::Length
139 // must be too. Note that the opposite does not need to hold,
140 // because different input array lengths (e.g. int arrays with
141 // 3 or 4 elements) might lead to the same length input
142 // (e.g. 2 double-words).
143 assert(!ary_src->size()->is_con() || (get_length_if_constant(phase) >= 0) ||
144 phase->is_IterGVN() || phase->C->inlining_incrementally() || StressReflectiveCode, "inconsistent");
145 if (ary_src->size()->is_con()) {
146 return ary_src->size()->get_con();
147 }
148 return -1;
149 }
150 }
151
152 return get_length_if_constant(phase);
153 }
154
155 Node* ArrayCopyNode::load(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, const Type *type, BasicType bt) {
156 // Pin the load: if this is an array load, it's going to be dependent on a condition that's not a range check for that
157 // access. If that condition is replaced by an identical dominating one, then an unpinned load would risk floating
158 // above runtime checks that guarantee it is within bounds.
159 DecoratorSet decorators = C2_READ_ACCESS | C2_CONTROL_DEPENDENT_LOAD | IN_HEAP | C2_ARRAY_COPY | C2_UNKNOWN_CONTROL_LOAD;
160 C2AccessValuePtr addr(adr, adr_type);
161 C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
162 Node* res = bs->load_at(access, type);
163 ctl = access.ctl();
177 }
178
179
180 Node* ArrayCopyNode::try_clone_instance(PhaseGVN *phase, bool can_reshape, int count) {
181 if (!is_clonebasic()) {
182 return nullptr;
183 }
184
185 Node* base_src = in(ArrayCopyNode::Src);
186 Node* base_dest = in(ArrayCopyNode::Dest);
187 Node* ctl = in(TypeFunc::Control);
188 Node* in_mem = in(TypeFunc::Memory);
189
190 const Type* src_type = phase->type(base_src);
191 const TypeInstPtr* inst_src = src_type->isa_instptr();
192 if (inst_src == nullptr) {
193 return nullptr;
194 }
195
196 MergeMemNode* mem = phase->transform(MergeMemNode::make(in_mem))->as_MergeMem();
197 if (can_reshape) {
198 phase->is_IterGVN()->_worklist.push(mem);
199 }
200
201
202 ciInstanceKlass* ik = inst_src->instance_klass();
203
204 if (!inst_src->klass_is_exact()) {
205 assert(!ik->is_interface(), "inconsistent klass hierarchy");
206 if (ik->has_subklass()) {
207 // Concurrent class loading.
208 // Fail fast and return NodeSentinel to indicate that the transform failed.
209 return NodeSentinel;
210 } else {
211 phase->C->dependencies()->assert_leaf_type(ik);
212 }
213 }
214
215 assert(ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem, "too many fields");
216
267 Node* src_offset = in(ArrayCopyNode::SrcPos);
268 Node* dest_offset = in(ArrayCopyNode::DestPos);
269
270 if (is_arraycopy() || is_copyofrange() || is_copyof()) {
271 const Type* dest_type = phase->type(base_dest);
272 const TypeAryPtr* ary_dest = dest_type->isa_aryptr();
273
274 // newly allocated object is guaranteed to not overlap with source object
275 disjoint_bases = is_alloc_tightly_coupled();
276 if (ary_src == nullptr || ary_src->elem() == Type::BOTTOM ||
277 ary_dest == nullptr || ary_dest->elem() == Type::BOTTOM) {
278 // We don't know if arguments are arrays
279 return false;
280 }
281
282 BasicType src_elem = ary_src->elem()->array_element_basic_type();
283 BasicType dest_elem = ary_dest->elem()->array_element_basic_type();
284 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
285 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
286
287 if (src_elem != dest_elem || dest_elem == T_VOID) {
288 // We don't know if arguments are arrays of the same type
289 return false;
290 }
291
292 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
293 if (bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), dest_elem, false, false, BarrierSetC2::Optimization)) {
294 // It's an object array copy but we can't emit the card marking
295 // that is needed
296 return false;
297 }
298
299 value_type = ary_src->elem();
300
301 uint shift = exact_log2(type2aelembytes(dest_elem));
302 uint header = arrayOopDesc::base_offset_in_bytes(dest_elem);
303
304 src_offset = Compile::conv_I2X_index(phase, src_offset, ary_src->size());
305 if (src_offset->is_top()) {
306 // Offset is out of bounds (the ArrayCopyNode will be removed)
307 return false;
308 }
309 dest_offset = Compile::conv_I2X_index(phase, dest_offset, ary_dest->size());
310 if (dest_offset->is_top()) {
311 // Offset is out of bounds (the ArrayCopyNode will be removed)
312 if (can_reshape) {
313 // record src_offset, so it can be deleted later (if it is dead)
314 phase->is_IterGVN()->_worklist.push(src_offset);
315 }
316 return false;
317 }
318
319 Node* hook = new Node(1);
320 hook->init_req(0, dest_offset);
321
322 Node* src_scale = phase->transform(new LShiftXNode(src_offset, phase->intcon(shift)));
323
324 hook->destruct(phase);
325
326 Node* dest_scale = phase->transform(new LShiftXNode(dest_offset, phase->intcon(shift)));
327
328 adr_src = phase->transform(new AddPNode(base_src, base_src, src_scale));
329 adr_dest = phase->transform(new AddPNode(base_dest, base_dest, dest_scale));
330
331 adr_src = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(header)));
332 adr_dest = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(header)));
333
334 copy_type = dest_elem;
335 } else {
336 assert(ary_src != nullptr, "should be a clone");
337 assert(is_clonebasic(), "should be");
338
339 disjoint_bases = true;
340
341 BasicType elem = ary_src->isa_aryptr()->elem()->array_element_basic_type();
342 if (is_reference_type(elem, true)) {
343 elem = T_OBJECT;
344 }
345
346 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
347 if (bs->array_copy_requires_gc_barriers(true, elem, true, is_clone_inst(), BarrierSetC2::Optimization)) {
348 return false;
349 }
350
351 adr_src = phase->transform(new AddPNode(base_src, base_src, src_offset));
352 adr_dest = phase->transform(new AddPNode(base_dest, base_dest, dest_offset));
353
354 // The address is offsetted to an aligned address where a raw copy would start.
355 // If the clone copy is decomposed into load-stores - the address is adjusted to
356 // point at where the array starts.
357 const Type* toff = phase->type(src_offset);
358 int offset = toff->isa_long() ? (int) toff->is_long()->get_con() : (int) toff->is_int()->get_con();
359 int diff = arrayOopDesc::base_offset_in_bytes(elem) - offset;
360 assert(diff >= 0, "clone should not start after 1st array element");
361 if (diff > 0) {
362 adr_src = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(diff)));
363 adr_dest = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(diff)));
364 }
365 copy_type = elem;
366 value_type = ary_src->elem();
367 }
368 return true;
369 }
370
371 const TypePtr* ArrayCopyNode::get_address_type(PhaseGVN* phase, const TypePtr* atp, Node* n) {
372 if (atp == TypeOopPtr::BOTTOM) {
373 atp = phase->type(n)->isa_ptr();
374 }
375 // adjust atp to be the correct array element address type
376 return atp->add_offset(Type::OffsetBot);
377 }
378
379 void ArrayCopyNode::array_copy_test_overlap(PhaseGVN *phase, bool can_reshape, bool disjoint_bases, int count, Node*& forward_ctl, Node*& backward_ctl) {
380 Node* ctl = in(TypeFunc::Control);
381 if (!disjoint_bases && count > 1) {
382 Node* src_offset = in(ArrayCopyNode::SrcPos);
383 Node* dest_offset = in(ArrayCopyNode::DestPos);
384 assert(src_offset != nullptr && dest_offset != nullptr, "should be");
385 Node* cmp = phase->transform(new CmpINode(src_offset, dest_offset));
386 Node *bol = phase->transform(new BoolNode(cmp, BoolTest::lt));
387 IfNode *iff = new IfNode(ctl, bol, PROB_FAIR, COUNT_UNKNOWN);
388
389 phase->transform(iff);
390
391 forward_ctl = phase->transform(new IfFalseNode(iff));
392 backward_ctl = phase->transform(new IfTrueNode(iff));
393 } else {
394 forward_ctl = ctl;
395 }
396 }
397
398 Node* ArrayCopyNode::array_copy_forward(PhaseGVN *phase,
399 bool can_reshape,
400 Node*& forward_ctl,
401 Node* mem,
402 const TypePtr* atp_src,
403 const TypePtr* atp_dest,
404 Node* adr_src,
405 Node* base_src,
406 Node* adr_dest,
407 Node* base_dest,
408 BasicType copy_type,
409 const Type* value_type,
410 int count) {
411 if (!forward_ctl->is_top()) {
412 // copy forward
413 MergeMemNode* mm = MergeMemNode::make(mem);
414
415 if (count > 0) {
416 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
417 Node* v = load(bs, phase, forward_ctl, mm, adr_src, atp_src, value_type, copy_type);
418 store(bs, phase, forward_ctl, mm, adr_dest, atp_dest, v, value_type, copy_type);
419 for (int i = 1; i < count; i++) {
420 Node* off = phase->MakeConX(type2aelembytes(copy_type) * i);
421 Node* next_src = phase->transform(new AddPNode(base_src,adr_src,off));
422 Node* next_dest = phase->transform(new AddPNode(base_dest,adr_dest,off));
423 v = load(bs, phase, forward_ctl, mm, next_src, atp_src, value_type, copy_type);
424 store(bs, phase, forward_ctl, mm, next_dest, atp_dest, v, value_type, copy_type);
425 }
426 } else if (can_reshape) {
427 PhaseIterGVN* igvn = phase->is_IterGVN();
428 igvn->_worklist.push(adr_src);
429 igvn->_worklist.push(adr_dest);
430 }
431 return mm;
432 }
433 return phase->C->top();
434 }
435
436 Node* ArrayCopyNode::array_copy_backward(PhaseGVN *phase,
437 bool can_reshape,
438 Node*& backward_ctl,
439 Node* mem,
440 const TypePtr* atp_src,
441 const TypePtr* atp_dest,
442 Node* adr_src,
443 Node* base_src,
444 Node* adr_dest,
445 Node* base_dest,
446 BasicType copy_type,
447 const Type* value_type,
448 int count) {
449 if (!backward_ctl->is_top()) {
450 // copy backward
451 MergeMemNode* mm = MergeMemNode::make(mem);
452
453 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
454 assert(copy_type != T_OBJECT || !bs->array_copy_requires_gc_barriers(false, T_OBJECT, false, false, BarrierSetC2::Optimization), "only tightly coupled allocations for object arrays");
455
456 if (count > 0) {
457 for (int i = count-1; i >= 1; i--) {
458 Node* off = phase->MakeConX(type2aelembytes(copy_type) * i);
459 Node* next_src = phase->transform(new AddPNode(base_src,adr_src,off));
460 Node* next_dest = phase->transform(new AddPNode(base_dest,adr_dest,off));
461 Node* v = load(bs, phase, backward_ctl, mm, next_src, atp_src, value_type, copy_type);
462 store(bs, phase, backward_ctl, mm, next_dest, atp_dest, v, value_type, copy_type);
463 }
464 Node* v = load(bs, phase, backward_ctl, mm, adr_src, atp_src, value_type, copy_type);
465 store(bs, phase, backward_ctl, mm, adr_dest, atp_dest, v, value_type, copy_type);
466 } else if (can_reshape) {
467 PhaseIterGVN* igvn = phase->is_IterGVN();
468 igvn->_worklist.push(adr_src);
469 igvn->_worklist.push(adr_dest);
470 }
471 return phase->transform(mm);
472 }
473 return phase->C->top();
474 }
475
476 bool ArrayCopyNode::finish_transform(PhaseGVN *phase, bool can_reshape,
477 Node* ctl, Node *mem) {
478 if (can_reshape) {
479 PhaseIterGVN* igvn = phase->is_IterGVN();
480 igvn->set_delay_transform(false);
481 if (is_clonebasic()) {
482 Node* out_mem = proj_out(TypeFunc::Memory);
483
484 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
485 if (out_mem->outcnt() != 1 || !out_mem->raw_out(0)->is_MergeMem() ||
486 out_mem->raw_out(0)->outcnt() != 1 || !out_mem->raw_out(0)->raw_out(0)->is_MemBar()) {
487 assert(bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, is_clone_inst(), BarrierSetC2::Optimization), "can only happen with card marking");
488 return false;
489 }
490
491 igvn->replace_node(out_mem->raw_out(0), mem);
492
493 Node* out_ctl = proj_out(TypeFunc::Control);
494 igvn->replace_node(out_ctl, ctl);
495 } else {
496 // replace fallthrough projections of the ArrayCopyNode by the
497 // new memory, control and the input IO.
498 CallProjections callprojs;
499 extract_projections(&callprojs, true, false);
500
501 if (callprojs.fallthrough_ioproj != nullptr) {
502 igvn->replace_node(callprojs.fallthrough_ioproj, in(TypeFunc::I_O));
503 }
504 if (callprojs.fallthrough_memproj != nullptr) {
505 igvn->replace_node(callprojs.fallthrough_memproj, mem);
506 }
507 if (callprojs.fallthrough_catchproj != nullptr) {
508 igvn->replace_node(callprojs.fallthrough_catchproj, ctl);
509 }
510
511 // The ArrayCopyNode is not disconnected. It still has the
512 // projections for the exception case. Replace current
513 // ArrayCopyNode with a dummy new one with a top() control so
514 // that this part of the graph stays consistent but is
515 // eventually removed.
516
517 set_req(0, phase->C->top());
518 remove_dead_region(phase, can_reshape);
519 }
520 } else {
521 if (in(TypeFunc::Control) != ctl) {
522 // we can't return new memory and control from Ideal at parse time
523 assert(!is_clonebasic() || UseShenandoahGC, "added control for clone?");
524 phase->record_for_igvn(this);
525 return false;
526 }
527 }
528 return true;
529 }
530
531
532 Node *ArrayCopyNode::Ideal(PhaseGVN *phase, bool can_reshape) {
533 if (remove_dead_region(phase, can_reshape)) return this;
534
535 if (StressArrayCopyMacroNode && !can_reshape) {
536 phase->record_for_igvn(this);
537 return nullptr;
538 }
539
540 // See if it's a small array copy and we can inline it as
541 // loads/stores
542 // Here we can only do:
543 // - arraycopy if all arguments were validated before and we don't
544 // need card marking
545 // - clone for which we don't need to do card marking
546
547 if (!is_clonebasic() && !is_arraycopy_validated() &&
548 !is_copyofrange_validated() && !is_copyof_validated()) {
549 return nullptr;
550 }
551
552 assert(in(TypeFunc::Control) != nullptr &&
553 in(TypeFunc::Memory) != nullptr &&
555 in(ArrayCopyNode::Dest) != nullptr &&
556 in(ArrayCopyNode::Length) != nullptr &&
557 in(ArrayCopyNode::SrcPos) != nullptr &&
558 in(ArrayCopyNode::DestPos) != nullptr, "broken inputs");
559
560 if (in(TypeFunc::Control)->is_top() ||
561 in(TypeFunc::Memory)->is_top() ||
562 phase->type(in(ArrayCopyNode::Src)) == Type::TOP ||
563 phase->type(in(ArrayCopyNode::Dest)) == Type::TOP ||
564 (in(ArrayCopyNode::SrcPos) != nullptr && in(ArrayCopyNode::SrcPos)->is_top()) ||
565 (in(ArrayCopyNode::DestPos) != nullptr && in(ArrayCopyNode::DestPos)->is_top())) {
566 return nullptr;
567 }
568
569 int count = get_count(phase);
570
571 if (count < 0 || count > ArrayCopyLoadStoreMaxElem) {
572 return nullptr;
573 }
574
575 Node* mem = try_clone_instance(phase, can_reshape, count);
576 if (mem != nullptr) {
577 return (mem == NodeSentinel) ? nullptr : mem;
578 }
579
580 Node* adr_src = nullptr;
581 Node* base_src = nullptr;
582 Node* adr_dest = nullptr;
583 Node* base_dest = nullptr;
584 BasicType copy_type = T_ILLEGAL;
585 const Type* value_type = nullptr;
586 bool disjoint_bases = false;
587
588 if (!prepare_array_copy(phase, can_reshape,
589 adr_src, base_src, adr_dest, base_dest,
590 copy_type, value_type, disjoint_bases)) {
591 assert(adr_src == nullptr, "no node can be left behind");
592 assert(adr_dest == nullptr, "no node can be left behind");
593 return nullptr;
594 }
595
596 Node* src = in(ArrayCopyNode::Src);
597 Node* dest = in(ArrayCopyNode::Dest);
598 const TypePtr* atp_src = get_address_type(phase, _src_type, src);
599 const TypePtr* atp_dest = get_address_type(phase, _dest_type, dest);
600 Node* in_mem = in(TypeFunc::Memory);
601
602 if (can_reshape) {
603 assert(!phase->is_IterGVN()->delay_transform(), "cannot delay transforms");
604 phase->is_IterGVN()->set_delay_transform(true);
605 }
606
607 Node* backward_ctl = phase->C->top();
608 Node* forward_ctl = phase->C->top();
609 array_copy_test_overlap(phase, can_reshape, disjoint_bases, count, forward_ctl, backward_ctl);
610
611 Node* forward_mem = array_copy_forward(phase, can_reshape, forward_ctl,
612 in_mem,
613 atp_src, atp_dest,
614 adr_src, base_src, adr_dest, base_dest,
615 copy_type, value_type, count);
616
617 Node* backward_mem = array_copy_backward(phase, can_reshape, backward_ctl,
618 in_mem,
619 atp_src, atp_dest,
620 adr_src, base_src, adr_dest, base_dest,
621 copy_type, value_type, count);
622
623 Node* ctl = nullptr;
624 if (!forward_ctl->is_top() && !backward_ctl->is_top()) {
625 ctl = new RegionNode(3);
626 ctl->init_req(1, forward_ctl);
627 ctl->init_req(2, backward_ctl);
628 ctl = phase->transform(ctl);
629 MergeMemNode* forward_mm = forward_mem->as_MergeMem();
630 MergeMemNode* backward_mm = backward_mem->as_MergeMem();
631 for (MergeMemStream mms(forward_mm, backward_mm); mms.next_non_empty2(); ) {
632 if (mms.memory() != mms.memory2()) {
633 Node* phi = new PhiNode(ctl, Type::MEMORY, phase->C->get_adr_type(mms.alias_idx()));
634 phi->init_req(1, mms.memory());
635 phi->init_req(2, mms.memory2());
636 phi = phase->transform(phi);
637 mms.set_memory(phi);
638 }
639 }
640 mem = forward_mem;
641 } else if (!forward_ctl->is_top()) {
642 ctl = forward_ctl;
643 mem = forward_mem;
644 } else {
645 assert(!backward_ctl->is_top(), "no copy?");
646 ctl = backward_ctl;
647 mem = backward_mem;
648 }
649
650 if (can_reshape) {
651 assert(phase->is_IterGVN()->delay_transform(), "should be delaying transforms");
652 phase->is_IterGVN()->set_delay_transform(false);
653 }
654
655 if (!finish_transform(phase, can_reshape, ctl, mem)) {
656 if (can_reshape) {
657 // put in worklist, so that if it happens to be dead it is removed
658 phase->is_IterGVN()->_worklist.push(mem);
659 }
660 return nullptr;
661 }
662
663 return mem;
664 }
665
666 bool ArrayCopyNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
667 Node* dest = in(ArrayCopyNode::Dest);
668 if (dest->is_top()) {
669 return false;
670 }
671 const TypeOopPtr* dest_t = phase->type(dest)->is_oopptr();
672 assert(!dest_t->is_known_instance() || _dest_type->is_known_instance(), "result of EA not recorded");
673 assert(in(ArrayCopyNode::Src)->is_top() || !phase->type(in(ArrayCopyNode::Src))->is_oopptr()->is_known_instance() ||
674 _src_type->is_known_instance(), "result of EA not recorded");
675
676 if (_dest_type != TypeOopPtr::BOTTOM || t_oop->is_known_instance()) {
733 // if must_modify is true, return true if the copy is guaranteed to
734 // write between offset_lo and offset_hi
735 bool ArrayCopyNode::modifies(intptr_t offset_lo, intptr_t offset_hi, PhaseValues* phase, bool must_modify) const {
736 assert(_kind == ArrayCopy || _kind == CopyOf || _kind == CopyOfRange, "only for real array copies");
737
738 Node* dest = in(Dest);
739 Node* dest_pos = in(DestPos);
740 Node* len = in(Length);
741
742 const TypeInt *dest_pos_t = phase->type(dest_pos)->isa_int();
743 const TypeInt *len_t = phase->type(len)->isa_int();
744 const TypeAryPtr* ary_t = phase->type(dest)->isa_aryptr();
745
746 if (dest_pos_t == nullptr || len_t == nullptr || ary_t == nullptr) {
747 return !must_modify;
748 }
749
750 BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type();
751 if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT;
752
753 uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
754 uint elemsize = type2aelembytes(ary_elem);
755
756 jlong dest_pos_plus_len_lo = (((jlong)dest_pos_t->_lo) + len_t->_lo) * elemsize + header;
757 jlong dest_pos_plus_len_hi = (((jlong)dest_pos_t->_hi) + len_t->_hi) * elemsize + header;
758 jlong dest_pos_lo = ((jlong)dest_pos_t->_lo) * elemsize + header;
759 jlong dest_pos_hi = ((jlong)dest_pos_t->_hi) * elemsize + header;
760
761 if (must_modify) {
762 if (offset_lo >= dest_pos_hi && offset_hi < dest_pos_plus_len_lo) {
763 return true;
764 }
765 } else {
766 if (offset_hi >= dest_pos_lo && offset_lo < dest_pos_plus_len_hi) {
767 return true;
768 }
769 }
770 return false;
771 }
772
773 // As an optimization, choose optimum vector size for copy length known at compile time.
774 int ArrayCopyNode::get_partial_inline_vector_lane_count(BasicType type, int const_len) {
775 int lane_count = ArrayOperationPartialInlineSize/type2aelembytes(type);
776 if (const_len > 0) {
777 int size_in_bytes = const_len * type2aelembytes(type);
778 if (size_in_bytes <= 16)
779 lane_count = 16/type2aelembytes(type);
|
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "ci/ciFlatArrayKlass.hpp"
26 #include "gc/shared/barrierSet.hpp"
27 #include "gc/shared/c2/barrierSetC2.hpp"
28 #include "gc/shared/c2/cardTableBarrierSetC2.hpp"
29 #include "gc/shared/gc_globals.hpp"
30 #include "opto/arraycopynode.hpp"
31 #include "opto/graphKit.hpp"
32 #include "opto/inlinetypenode.hpp"
33 #include "runtime/sharedRuntime.hpp"
34 #include "utilities/macros.hpp"
35 #include "utilities/powerOfTwo.hpp"
36
37 const TypeFunc* ArrayCopyNode::_arraycopy_type_Type = nullptr;
38
39 ArrayCopyNode::ArrayCopyNode(Compile* C, bool alloc_tightly_coupled, bool has_negative_length_guard)
40 : CallNode(arraycopy_type(), nullptr, TypePtr::BOTTOM),
41 _kind(None),
42 _alloc_tightly_coupled(alloc_tightly_coupled),
43 _has_negative_length_guard(has_negative_length_guard),
44 _arguments_validated(false),
45 _src_type(TypeOopPtr::BOTTOM),
46 _dest_type(TypeOopPtr::BOTTOM) {
47 init_class_id(Class_ArrayCopy);
48 init_flags(Flag_is_macro);
49 C->add_macro_node(this);
50 }
51
52 uint ArrayCopyNode::size_of() const { return sizeof(*this); }
100 void ArrayCopyNode::dump_compact_spec(outputStream* st) const {
101 st->print("%s%s", _kind_names[_kind], _alloc_tightly_coupled ? ",tight" : "");
102 }
103 #endif
104
105 intptr_t ArrayCopyNode::get_length_if_constant(PhaseGVN *phase) const {
106 // check that length is constant
107 Node* length = in(ArrayCopyNode::Length);
108 const Type* length_type = phase->type(length);
109
110 if (length_type == Type::TOP) {
111 return -1;
112 }
113
114 assert(is_clonebasic() || is_arraycopy() || is_copyof() || is_copyofrange(), "unexpected array copy type");
115
116 return is_clonebasic() ? length->find_intptr_t_con(-1) : length->find_int_con(-1);
117 }
118
119 int ArrayCopyNode::get_count(PhaseGVN *phase) const {
120 if (is_clonebasic()) {
121 Node* src = in(ArrayCopyNode::Src);
122 const Type* src_type = phase->type(src);
123
124 if (src_type == Type::TOP) {
125 return -1;
126 }
127
128 if (src_type->isa_instptr()) {
129 const TypeInstPtr* inst_src = src_type->is_instptr();
130 ciInstanceKlass* ik = inst_src->instance_klass();
131 // ciInstanceKlass::nof_nonstatic_fields() doesn't take injected
132 // fields into account. They are rare anyway so easier to simply
133 // skip instances with injected fields.
134 if ((!inst_src->klass_is_exact() && (ik->is_interface() || ik->has_subklass())) || ik->has_injected_fields()) {
135 return -1;
136 }
137 int nb_fields = ik->nof_nonstatic_fields();
138 return nb_fields;
139 } else {
140 const TypeAryPtr* ary_src = src_type->isa_aryptr();
141 assert (ary_src != nullptr, "not an array or instance?");
142 // clone passes a length as a rounded number of longs. If we're
143 // cloning an array we'll do it element by element. If the
144 // length of the input array is constant, ArrayCopyNode::Length
145 // must be too. Note that the opposite does not need to hold,
146 // because different input array lengths (e.g. int arrays with
147 // 3 or 4 elements) might lead to the same length input
148 // (e.g. 2 double-words).
149 assert(!ary_src->size()->is_con() || (get_length_if_constant(phase) >= 0) ||
150 (UseArrayFlattening && ary_src->elem()->make_oopptr() != nullptr && ary_src->elem()->make_oopptr()->can_be_inline_type()) ||
151 phase->is_IterGVN() || phase->C->inlining_incrementally() || StressReflectiveCode, "inconsistent");
152 if (ary_src->size()->is_con()) {
153 return ary_src->size()->get_con();
154 }
155 return -1;
156 }
157 }
158
159 return get_length_if_constant(phase);
160 }
161
162 Node* ArrayCopyNode::load(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, const Type *type, BasicType bt) {
163 // Pin the load: if this is an array load, it's going to be dependent on a condition that's not a range check for that
164 // access. If that condition is replaced by an identical dominating one, then an unpinned load would risk floating
165 // above runtime checks that guarantee it is within bounds.
166 DecoratorSet decorators = C2_READ_ACCESS | C2_CONTROL_DEPENDENT_LOAD | IN_HEAP | C2_ARRAY_COPY | C2_UNKNOWN_CONTROL_LOAD;
167 C2AccessValuePtr addr(adr, adr_type);
168 C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
169 Node* res = bs->load_at(access, type);
170 ctl = access.ctl();
184 }
185
186
187 Node* ArrayCopyNode::try_clone_instance(PhaseGVN *phase, bool can_reshape, int count) {
188 if (!is_clonebasic()) {
189 return nullptr;
190 }
191
192 Node* base_src = in(ArrayCopyNode::Src);
193 Node* base_dest = in(ArrayCopyNode::Dest);
194 Node* ctl = in(TypeFunc::Control);
195 Node* in_mem = in(TypeFunc::Memory);
196
197 const Type* src_type = phase->type(base_src);
198 const TypeInstPtr* inst_src = src_type->isa_instptr();
199 if (inst_src == nullptr) {
200 return nullptr;
201 }
202
203 MergeMemNode* mem = phase->transform(MergeMemNode::make(in_mem))->as_MergeMem();
204 phase->record_for_igvn(mem);
205 if (can_reshape) {
206 phase->is_IterGVN()->_worklist.push(mem);
207 }
208
209
210 ciInstanceKlass* ik = inst_src->instance_klass();
211
212 if (!inst_src->klass_is_exact()) {
213 assert(!ik->is_interface(), "inconsistent klass hierarchy");
214 if (ik->has_subklass()) {
215 // Concurrent class loading.
216 // Fail fast and return NodeSentinel to indicate that the transform failed.
217 return NodeSentinel;
218 } else {
219 phase->C->dependencies()->assert_leaf_type(ik);
220 }
221 }
222
223 assert(ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem, "too many fields");
224
275 Node* src_offset = in(ArrayCopyNode::SrcPos);
276 Node* dest_offset = in(ArrayCopyNode::DestPos);
277
278 if (is_arraycopy() || is_copyofrange() || is_copyof()) {
279 const Type* dest_type = phase->type(base_dest);
280 const TypeAryPtr* ary_dest = dest_type->isa_aryptr();
281
282 // newly allocated object is guaranteed to not overlap with source object
283 disjoint_bases = is_alloc_tightly_coupled();
284 if (ary_src == nullptr || ary_src->elem() == Type::BOTTOM ||
285 ary_dest == nullptr || ary_dest->elem() == Type::BOTTOM) {
286 // We don't know if arguments are arrays
287 return false;
288 }
289
290 BasicType src_elem = ary_src->elem()->array_element_basic_type();
291 BasicType dest_elem = ary_dest->elem()->array_element_basic_type();
292 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
293 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
294
295 // TODO 8350865 What about atomicity?
296 if (src_elem != dest_elem || ary_src->is_null_free() != ary_dest->is_null_free() || ary_src->is_flat() != ary_dest->is_flat() || dest_elem == T_VOID) {
297 // We don't know if arguments are arrays of the same type
298 return false;
299 }
300
301 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
302 if ((!ary_dest->is_flat() && bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), dest_elem, false, false, BarrierSetC2::Optimization)) ||
303 (ary_dest->is_flat() && ary_src->elem()->inline_klass()->contains_oops() &&
304 bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), T_OBJECT, false, false, BarrierSetC2::Optimization))) {
305 // It's an object array copy but we can't emit the card marking that is needed
306 return false;
307 }
308
309 value_type = ary_src->elem();
310
311 uint shift = exact_log2(type2aelembytes(dest_elem));
312 if (ary_dest->is_flat()) {
313 assert(ary_src->is_flat(), "src and dest must be flat");
314 shift = ary_src->flat_log_elem_size();
315 src_elem = T_FLAT_ELEMENT;
316 dest_elem = T_FLAT_ELEMENT;
317 }
318
319 const uint header = arrayOopDesc::base_offset_in_bytes(dest_elem);
320
321 src_offset = Compile::conv_I2X_index(phase, src_offset, ary_src->size());
322 if (src_offset->is_top()) {
323 // Offset is out of bounds (the ArrayCopyNode will be removed)
324 return false;
325 }
326 dest_offset = Compile::conv_I2X_index(phase, dest_offset, ary_dest->size());
327 if (dest_offset->is_top()) {
328 // Offset is out of bounds (the ArrayCopyNode will be removed)
329 if (can_reshape) {
330 // record src_offset, so it can be deleted later (if it is dead)
331 phase->is_IterGVN()->_worklist.push(src_offset);
332 }
333 return false;
334 }
335
336 Node* hook = new Node(1);
337 hook->init_req(0, dest_offset);
338
339 Node* src_scale = phase->transform(new LShiftXNode(src_offset, phase->intcon(shift)));
340
341 hook->destruct(phase);
342
343 Node* dest_scale = phase->transform(new LShiftXNode(dest_offset, phase->intcon(shift)));
344
345 adr_src = phase->transform(new AddPNode(base_src, base_src, src_scale));
346 adr_dest = phase->transform(new AddPNode(base_dest, base_dest, dest_scale));
347
348 adr_src = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(header)));
349 adr_dest = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(header)));
350
351 copy_type = dest_elem;
352 } else {
353 assert(ary_src != nullptr, "should be a clone");
354 assert(is_clonebasic(), "should be");
355
356 disjoint_bases = true;
357
358 if (ary_src->elem()->make_oopptr() != nullptr &&
359 ary_src->elem()->make_oopptr()->can_be_inline_type()) {
360 return false;
361 }
362
363 BasicType elem = ary_src->isa_aryptr()->elem()->array_element_basic_type();
364 if (is_reference_type(elem, true)) {
365 elem = T_OBJECT;
366 }
367
368 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
369 if ((!ary_src->is_flat() && bs->array_copy_requires_gc_barriers(true, elem, true, is_clone_inst(), BarrierSetC2::Optimization)) ||
370 (ary_src->is_flat() && ary_src->elem()->inline_klass()->contains_oops() &&
371 bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, is_clone_inst(), BarrierSetC2::Optimization))) {
372 // It's an object array copy but we can't emit the card marking that is needed
373 return false;
374 }
375
376 adr_src = phase->transform(new AddPNode(base_src, base_src, src_offset));
377 adr_dest = phase->transform(new AddPNode(base_dest, base_dest, dest_offset));
378
379 // The address is offsetted to an aligned address where a raw copy would start.
380 // If the clone copy is decomposed into load-stores - the address is adjusted to
381 // point at where the array starts.
382 const Type* toff = phase->type(src_offset);
383 int offset = toff->isa_long() ? (int) toff->is_long()->get_con() : (int) toff->is_int()->get_con();
384 int diff = arrayOopDesc::base_offset_in_bytes(elem) - offset;
385 assert(diff >= 0, "clone should not start after 1st array element");
386 if (diff > 0) {
387 adr_src = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(diff)));
388 adr_dest = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(diff)));
389 }
390 copy_type = elem;
391 value_type = ary_src->elem();
392 }
393 return true;
394 }
395
396 const TypeAryPtr* ArrayCopyNode::get_address_type(PhaseGVN* phase, const TypePtr* atp, Node* n) {
397 if (atp == TypeOopPtr::BOTTOM) {
398 atp = phase->type(n)->isa_ptr();
399 }
400 // adjust atp to be the correct array element address type
401 return atp->add_offset(Type::OffsetBot)->is_aryptr();
402 }
403
404 void ArrayCopyNode::array_copy_test_overlap(GraphKit& kit, bool disjoint_bases, int count, Node*& backward_ctl) {
405 Node* ctl = kit.control();
406 if (!disjoint_bases && count > 1) {
407 PhaseGVN& gvn = kit.gvn();
408 Node* src_offset = in(ArrayCopyNode::SrcPos);
409 Node* dest_offset = in(ArrayCopyNode::DestPos);
410 assert(src_offset != nullptr && dest_offset != nullptr, "should be");
411 Node* cmp = gvn.transform(new CmpINode(src_offset, dest_offset));
412 Node *bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
413 IfNode *iff = new IfNode(ctl, bol, PROB_FAIR, COUNT_UNKNOWN);
414
415 gvn.transform(iff);
416
417 kit.set_control(gvn.transform(new IfFalseNode(iff)));
418 backward_ctl = gvn.transform(new IfTrueNode(iff));
419 }
420 }
421
422 void ArrayCopyNode::copy(GraphKit& kit,
423 const TypeAryPtr* atp_src,
424 const TypeAryPtr* atp_dest,
425 int i,
426 Node* base_src,
427 Node* base_dest,
428 Node* adr_src,
429 Node* adr_dest,
430 BasicType copy_type,
431 const Type* value_type) {
432 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
433 Node* ctl = kit.control();
434 if (atp_dest->is_flat()) {
435 ciInlineKlass* vk = atp_src->elem()->inline_klass();
436 for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
437 ciField* field = vk->nonstatic_field_at(j);
438 int off_in_vt = field->offset_in_bytes() - vk->payload_offset();
439 Node* off = kit.MakeConX(off_in_vt + i * atp_src->flat_elem_size());
440 ciType* ft = field->type();
441 BasicType bt = type2field[ft->basic_type()];
442 assert(!field->is_flat(), "flat field encountered");
443 const Type* rt = Type::get_const_type(ft);
444 const TypePtr* adr_type = atp_src->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
445 assert(!bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), bt, false, false, BarrierSetC2::Optimization), "GC barriers required");
446 Node* next_src = kit.gvn().transform(new AddPNode(base_src, adr_src, off));
447 Node* next_dest = kit.gvn().transform(new AddPNode(base_dest, adr_dest, off));
448 Node* v = load(bs, &kit.gvn(), ctl, kit.merged_memory(), next_src, adr_type, rt, bt);
449 store(bs, &kit.gvn(), ctl, kit.merged_memory(), next_dest, adr_type, v, rt, bt);
450 }
451 } else {
452 Node* off = kit.MakeConX(type2aelembytes(copy_type) * i);
453 Node* next_src = kit.gvn().transform(new AddPNode(base_src, adr_src, off));
454 Node* next_dest = kit.gvn().transform(new AddPNode(base_dest, adr_dest, off));
455 Node* v = load(bs, &kit.gvn(), ctl, kit.merged_memory(), next_src, atp_src, value_type, copy_type);
456 store(bs, &kit.gvn(), ctl, kit.merged_memory(), next_dest, atp_dest, v, value_type, copy_type);
457 }
458 kit.set_control(ctl);
459 }
460
461
462 void ArrayCopyNode::array_copy_forward(GraphKit& kit,
463 bool can_reshape,
464 const TypeAryPtr* atp_src,
465 const TypeAryPtr* atp_dest,
466 Node* adr_src,
467 Node* base_src,
468 Node* adr_dest,
469 Node* base_dest,
470 BasicType copy_type,
471 const Type* value_type,
472 int count) {
473 if (!kit.stopped()) {
474 // copy forward
475 if (count > 0) {
476 for (int i = 0; i < count; i++) {
477 copy(kit, atp_src, atp_dest, i, base_src, base_dest, adr_src, adr_dest, copy_type, value_type);
478 }
479 } else if (can_reshape) {
480 PhaseGVN& gvn = kit.gvn();
481 assert(gvn.is_IterGVN(), "");
482 gvn.record_for_igvn(adr_src);
483 gvn.record_for_igvn(adr_dest);
484 }
485 }
486 }
487
488 void ArrayCopyNode::array_copy_backward(GraphKit& kit,
489 bool can_reshape,
490 const TypeAryPtr* atp_src,
491 const TypeAryPtr* atp_dest,
492 Node* adr_src,
493 Node* base_src,
494 Node* adr_dest,
495 Node* base_dest,
496 BasicType copy_type,
497 const Type* value_type,
498 int count) {
499 if (!kit.stopped()) {
500 // copy backward
501 PhaseGVN& gvn = kit.gvn();
502
503 if (count > 0) {
504 for (int i = count-1; i >= 0; i--) {
505 copy(kit, atp_src, atp_dest, i, base_src, base_dest, adr_src, adr_dest, copy_type, value_type);
506 }
507 } else if(can_reshape) {
508 PhaseGVN& gvn = kit.gvn();
509 assert(gvn.is_IterGVN(), "");
510 gvn.record_for_igvn(adr_src);
511 gvn.record_for_igvn(adr_dest);
512 }
513 }
514 }
515
516 bool ArrayCopyNode::finish_transform(PhaseGVN *phase, bool can_reshape,
517 Node* ctl, Node *mem) {
518 if (can_reshape) {
519 PhaseIterGVN* igvn = phase->is_IterGVN();
520 igvn->set_delay_transform(false);
521 if (is_clonebasic()) {
522 Node* out_mem = proj_out(TypeFunc::Memory);
523
524 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
525 if (out_mem->outcnt() != 1 || !out_mem->raw_out(0)->is_MergeMem() ||
526 out_mem->raw_out(0)->outcnt() != 1 || !out_mem->raw_out(0)->raw_out(0)->is_MemBar()) {
527 assert(bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, is_clone_inst(), BarrierSetC2::Optimization), "can only happen with card marking");
528 return false;
529 }
530
531 igvn->replace_node(out_mem->raw_out(0), mem);
532
533 Node* out_ctl = proj_out(TypeFunc::Control);
534 igvn->replace_node(out_ctl, ctl);
535 } else {
536 // replace fallthrough projections of the ArrayCopyNode by the
537 // new memory, control and the input IO.
538 CallProjections* callprojs = extract_projections(true, false);
539
540 if (callprojs->fallthrough_ioproj != nullptr) {
541 igvn->replace_node(callprojs->fallthrough_ioproj, in(TypeFunc::I_O));
542 }
543 if (callprojs->fallthrough_memproj != nullptr) {
544 igvn->replace_node(callprojs->fallthrough_memproj, mem);
545 }
546 if (callprojs->fallthrough_catchproj != nullptr) {
547 igvn->replace_node(callprojs->fallthrough_catchproj, ctl);
548 }
549
550 // The ArrayCopyNode is not disconnected. It still has the
551 // projections for the exception case. Replace current
552 // ArrayCopyNode with a dummy new one with a top() control so
553 // that this part of the graph stays consistent but is
554 // eventually removed.
555
556 set_req(0, phase->C->top());
557 remove_dead_region(phase, can_reshape);
558 }
559 } else {
560 if (in(TypeFunc::Control) != ctl) {
561 // we can't return new memory and control from Ideal at parse time
562 assert(!is_clonebasic() || UseShenandoahGC, "added control for clone?");
563 phase->record_for_igvn(this);
564 return false;
565 }
566 }
567 return true;
568 }
569
570
571 Node *ArrayCopyNode::Ideal(PhaseGVN *phase, bool can_reshape) {
572 // Perform any generic optimizations first
573 Node* result = SafePointNode::Ideal(phase, can_reshape);
574 if (result != nullptr) {
575 return result;
576 }
577
578 if (StressArrayCopyMacroNode && !can_reshape) {
579 phase->record_for_igvn(this);
580 return nullptr;
581 }
582
583 // See if it's a small array copy and we can inline it as
584 // loads/stores
585 // Here we can only do:
586 // - arraycopy if all arguments were validated before and we don't
587 // need card marking
588 // - clone for which we don't need to do card marking
589
590 if (!is_clonebasic() && !is_arraycopy_validated() &&
591 !is_copyofrange_validated() && !is_copyof_validated()) {
592 return nullptr;
593 }
594
595 assert(in(TypeFunc::Control) != nullptr &&
596 in(TypeFunc::Memory) != nullptr &&
598 in(ArrayCopyNode::Dest) != nullptr &&
599 in(ArrayCopyNode::Length) != nullptr &&
600 in(ArrayCopyNode::SrcPos) != nullptr &&
601 in(ArrayCopyNode::DestPos) != nullptr, "broken inputs");
602
603 if (in(TypeFunc::Control)->is_top() ||
604 in(TypeFunc::Memory)->is_top() ||
605 phase->type(in(ArrayCopyNode::Src)) == Type::TOP ||
606 phase->type(in(ArrayCopyNode::Dest)) == Type::TOP ||
607 (in(ArrayCopyNode::SrcPos) != nullptr && in(ArrayCopyNode::SrcPos)->is_top()) ||
608 (in(ArrayCopyNode::DestPos) != nullptr && in(ArrayCopyNode::DestPos)->is_top())) {
609 return nullptr;
610 }
611
612 int count = get_count(phase);
613
614 if (count < 0 || count > ArrayCopyLoadStoreMaxElem) {
615 return nullptr;
616 }
617
618 Node* src = in(ArrayCopyNode::Src);
619 Node* dest = in(ArrayCopyNode::Dest);
620 const Type* src_type = phase->type(src);
621 const Type* dest_type = phase->type(dest);
622
623 if (src_type->isa_aryptr() && dest_type->isa_instptr()) {
624 // clone used for load of unknown inline type can't be optimized at
625 // this point
626 return nullptr;
627 }
628
629 Node* mem = try_clone_instance(phase, can_reshape, count);
630 if (mem != nullptr) {
631 return (mem == NodeSentinel) ? nullptr : mem;
632 }
633
634 Node* adr_src = nullptr;
635 Node* base_src = nullptr;
636 Node* adr_dest = nullptr;
637 Node* base_dest = nullptr;
638 BasicType copy_type = T_ILLEGAL;
639 const Type* value_type = nullptr;
640 bool disjoint_bases = false;
641
642 if (!prepare_array_copy(phase, can_reshape,
643 adr_src, base_src, adr_dest, base_dest,
644 copy_type, value_type, disjoint_bases)) {
645 assert(adr_src == nullptr, "no node can be left behind");
646 assert(adr_dest == nullptr, "no node can be left behind");
647 return nullptr;
648 }
649
650 JVMState* new_jvms = nullptr;
651 SafePointNode* new_map = nullptr;
652 if (!is_clonebasic()) {
653 new_jvms = jvms()->clone_shallow(phase->C);
654 new_map = new SafePointNode(req(), new_jvms);
655 for (uint i = TypeFunc::FramePtr; i < req(); i++) {
656 new_map->init_req(i, in(i));
657 }
658 new_jvms->set_map(new_map);
659 } else {
660 new_jvms = new (phase->C) JVMState(0);
661 new_map = new SafePointNode(TypeFunc::Parms, new_jvms);
662 new_jvms->set_map(new_map);
663 }
664 new_map->set_control(in(TypeFunc::Control));
665 new_map->set_memory(MergeMemNode::make(in(TypeFunc::Memory)));
666 new_map->set_i_o(in(TypeFunc::I_O));
667 phase->record_for_igvn(new_map);
668
669 const TypeAryPtr* atp_src = get_address_type(phase, _src_type, src);
670 const TypeAryPtr* atp_dest = get_address_type(phase, _dest_type, dest);
671
672 if (can_reshape) {
673 assert(!phase->is_IterGVN()->delay_transform(), "cannot delay transforms");
674 phase->is_IterGVN()->set_delay_transform(true);
675 }
676
677 GraphKit kit(new_jvms, phase);
678
679 SafePointNode* backward_map = nullptr;
680 SafePointNode* forward_map = nullptr;
681 Node* backward_ctl = phase->C->top();
682
683 array_copy_test_overlap(kit, disjoint_bases, count, backward_ctl);
684
685 {
686 PreserveJVMState pjvms(&kit);
687
688 array_copy_forward(kit, can_reshape,
689 atp_src, atp_dest,
690 adr_src, base_src, adr_dest, base_dest,
691 copy_type, value_type, count);
692
693 forward_map = kit.stop();
694 }
695
696 kit.set_control(backward_ctl);
697 array_copy_backward(kit, can_reshape,
698 atp_src, atp_dest,
699 adr_src, base_src, adr_dest, base_dest,
700 copy_type, value_type, count);
701
702 backward_map = kit.stop();
703
704 if (!forward_map->control()->is_top() && !backward_map->control()->is_top()) {
705 assert(forward_map->i_o() == backward_map->i_o(), "need a phi on IO?");
706 Node* ctl = new RegionNode(3);
707 Node* mem = new PhiNode(ctl, Type::MEMORY, TypePtr::BOTTOM);
708 kit.set_map(forward_map);
709 ctl->init_req(1, kit.control());
710 mem->init_req(1, kit.reset_memory());
711 kit.set_map(backward_map);
712 ctl->init_req(2, kit.control());
713 mem->init_req(2, kit.reset_memory());
714 kit.set_control(phase->transform(ctl));
715 kit.set_all_memory(phase->transform(mem));
716 } else if (!forward_map->control()->is_top()) {
717 kit.set_map(forward_map);
718 } else {
719 assert(!backward_map->control()->is_top(), "no copy?");
720 kit.set_map(backward_map);
721 }
722
723 if (can_reshape) {
724 assert(phase->is_IterGVN()->delay_transform(), "should be delaying transforms");
725 phase->is_IterGVN()->set_delay_transform(false);
726 }
727
728 mem = kit.map()->memory();
729 if (!finish_transform(phase, can_reshape, kit.control(), mem)) {
730 if (!can_reshape) {
731 phase->record_for_igvn(this);
732 } else {
733 // put in worklist, so that if it happens to be dead it is removed
734 phase->is_IterGVN()->_worklist.push(mem);
735 }
736 return nullptr;
737 }
738
739 return mem;
740 }
741
742 bool ArrayCopyNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
743 Node* dest = in(ArrayCopyNode::Dest);
744 if (dest->is_top()) {
745 return false;
746 }
747 const TypeOopPtr* dest_t = phase->type(dest)->is_oopptr();
748 assert(!dest_t->is_known_instance() || _dest_type->is_known_instance(), "result of EA not recorded");
749 assert(in(ArrayCopyNode::Src)->is_top() || !phase->type(in(ArrayCopyNode::Src))->is_oopptr()->is_known_instance() ||
750 _src_type->is_known_instance(), "result of EA not recorded");
751
752 if (_dest_type != TypeOopPtr::BOTTOM || t_oop->is_known_instance()) {
809 // if must_modify is true, return true if the copy is guaranteed to
810 // write between offset_lo and offset_hi
811 bool ArrayCopyNode::modifies(intptr_t offset_lo, intptr_t offset_hi, PhaseValues* phase, bool must_modify) const {
812 assert(_kind == ArrayCopy || _kind == CopyOf || _kind == CopyOfRange, "only for real array copies");
813
814 Node* dest = in(Dest);
815 Node* dest_pos = in(DestPos);
816 Node* len = in(Length);
817
818 const TypeInt *dest_pos_t = phase->type(dest_pos)->isa_int();
819 const TypeInt *len_t = phase->type(len)->isa_int();
820 const TypeAryPtr* ary_t = phase->type(dest)->isa_aryptr();
821
822 if (dest_pos_t == nullptr || len_t == nullptr || ary_t == nullptr) {
823 return !must_modify;
824 }
825
826 BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type();
827 if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT;
828
829 uint header;
830 uint elem_size;
831 if (ary_t->is_flat()) {
832 header = arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT);
833 elem_size = ary_t->flat_elem_size();
834 } else {
835 header = arrayOopDesc::base_offset_in_bytes(ary_elem);
836 elem_size = type2aelembytes(ary_elem);
837 }
838
839 jlong dest_pos_plus_len_lo = (((jlong)dest_pos_t->_lo) + len_t->_lo) * elem_size + header;
840 jlong dest_pos_plus_len_hi = (((jlong)dest_pos_t->_hi) + len_t->_hi) * elem_size + header;
841 jlong dest_pos_lo = ((jlong)dest_pos_t->_lo) * elem_size + header;
842 jlong dest_pos_hi = ((jlong)dest_pos_t->_hi) * elem_size + header;
843
844 if (must_modify) {
845 if (offset_lo >= dest_pos_hi && offset_hi < dest_pos_plus_len_lo) {
846 return true;
847 }
848 } else {
849 if (offset_hi >= dest_pos_lo && offset_lo < dest_pos_plus_len_hi) {
850 return true;
851 }
852 }
853 return false;
854 }
855
856 // As an optimization, choose optimum vector size for copy length known at compile time.
857 int ArrayCopyNode::get_partial_inline_vector_lane_count(BasicType type, int const_len) {
858 int lane_count = ArrayOperationPartialInlineSize/type2aelembytes(type);
859 if (const_len > 0) {
860 int size_in_bytes = const_len * type2aelembytes(type);
861 if (size_in_bytes <= 16)
862 lane_count = 16/type2aelembytes(type);
|