< prev index next >

src/hotspot/share/opto/arraycopynode.cpp

Print this page

  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"

 26 #include "gc/shared/barrierSet.hpp"
 27 #include "gc/shared/c2/barrierSetC2.hpp"
 28 #include "gc/shared/c2/cardTableBarrierSetC2.hpp"
 29 #include "gc/shared/gc_globals.hpp"
 30 #include "opto/arraycopynode.hpp"
 31 #include "opto/graphKit.hpp"

 32 #include "runtime/sharedRuntime.hpp"
 33 #include "utilities/macros.hpp"
 34 #include "utilities/powerOfTwo.hpp"
 35 
 36 ArrayCopyNode::ArrayCopyNode(Compile* C, bool alloc_tightly_coupled, bool has_negative_length_guard)
 37   : CallNode(arraycopy_type(), nullptr, TypePtr::BOTTOM),
 38     _kind(None),
 39     _alloc_tightly_coupled(alloc_tightly_coupled),
 40     _has_negative_length_guard(has_negative_length_guard),
 41     _arguments_validated(false),
 42     _src_type(TypeOopPtr::BOTTOM),
 43     _dest_type(TypeOopPtr::BOTTOM) {
 44   init_class_id(Class_ArrayCopy);
 45   init_flags(Flag_is_macro);
 46   C->add_macro_node(this);
 47 }
 48 
 49 uint ArrayCopyNode::size_of() const { return sizeof(*this); }
 50 
 51 ArrayCopyNode* ArrayCopyNode::make(GraphKit* kit, bool may_throw,

 97 void ArrayCopyNode::dump_compact_spec(outputStream* st) const {
 98   st->print("%s%s", _kind_names[_kind], _alloc_tightly_coupled ? ",tight" : "");
 99 }
100 #endif
101 
102 intptr_t ArrayCopyNode::get_length_if_constant(PhaseGVN *phase) const {
103   // check that length is constant
104   Node* length = in(ArrayCopyNode::Length);
105   const Type* length_type = phase->type(length);
106 
107   if (length_type == Type::TOP) {
108     return -1;
109   }
110 
111   assert(is_clonebasic() || is_arraycopy() || is_copyof() || is_copyofrange(), "unexpected array copy type");
112 
113   return is_clonebasic() ? length->find_intptr_t_con(-1) : length->find_int_con(-1);
114 }
115 
116 int ArrayCopyNode::get_count(PhaseGVN *phase) const {
117   Node* src = in(ArrayCopyNode::Src);
118   const Type* src_type = phase->type(src);
119 
120   if (is_clonebasic()) {







121     if (src_type->isa_instptr()) {
122       const TypeInstPtr* inst_src = src_type->is_instptr();
123       ciInstanceKlass* ik = inst_src->instance_klass();
124       // ciInstanceKlass::nof_nonstatic_fields() doesn't take injected
125       // fields into account. They are rare anyway so easier to simply
126       // skip instances with injected fields.
127       if ((!inst_src->klass_is_exact() && (ik->is_interface() || ik->has_subklass())) || ik->has_injected_fields()) {
128         return -1;
129       }
130       int nb_fields = ik->nof_nonstatic_fields();
131       return nb_fields;
132     } else {
133       const TypeAryPtr* ary_src = src_type->isa_aryptr();
134       assert (ary_src != nullptr, "not an array or instance?");
135       // clone passes a length as a rounded number of longs. If we're
136       // cloning an array we'll do it element by element. If the
137       // length of the input array is constant, ArrayCopyNode::Length
138       // must be too. Note that the opposite does not need to hold,
139       // because different input array lengths (e.g. int arrays with
140       // 3 or 4 elements) might lead to the same length input
141       // (e.g. 2 double-words).
142       assert(!ary_src->size()->is_con() || (get_length_if_constant(phase) >= 0) ||

143              phase->is_IterGVN() || phase->C->inlining_incrementally() || StressReflectiveCode, "inconsistent");
144       if (ary_src->size()->is_con()) {
145         return ary_src->size()->get_con();
146       }
147       return -1;
148     }
149   }
150 
151   return get_length_if_constant(phase);
152 }
153 
154 Node* ArrayCopyNode::load(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, const Type *type, BasicType bt) {
155   DecoratorSet decorators = C2_READ_ACCESS | C2_CONTROL_DEPENDENT_LOAD | IN_HEAP | C2_ARRAY_COPY;
156   C2AccessValuePtr addr(adr, adr_type);
157   C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
158   Node* res = bs->load_at(access, type);
159   ctl = access.ctl();
160   return res;
161 }
162 

173 }
174 
175 
176 Node* ArrayCopyNode::try_clone_instance(PhaseGVN *phase, bool can_reshape, int count) {
177   if (!is_clonebasic()) {
178     return nullptr;
179   }
180 
181   Node* base_src = in(ArrayCopyNode::Src);
182   Node* base_dest = in(ArrayCopyNode::Dest);
183   Node* ctl = in(TypeFunc::Control);
184   Node* in_mem = in(TypeFunc::Memory);
185 
186   const Type* src_type = phase->type(base_src);
187   const TypeInstPtr* inst_src = src_type->isa_instptr();
188   if (inst_src == nullptr) {
189     return nullptr;
190   }
191 
192   MergeMemNode* mem = phase->transform(MergeMemNode::make(in_mem))->as_MergeMem();

193   if (can_reshape) {
194     phase->is_IterGVN()->_worklist.push(mem);
195   }
196 
197 
198   ciInstanceKlass* ik = inst_src->instance_klass();
199 
200   if (!inst_src->klass_is_exact()) {
201     assert(!ik->is_interface(), "inconsistent klass hierarchy");
202     if (ik->has_subklass()) {
203       // Concurrent class loading.
204       // Fail fast and return NodeSentinel to indicate that the transform failed.
205       return NodeSentinel;
206     } else {
207       phase->C->dependencies()->assert_leaf_type(ik);
208     }
209   }
210 
211   assert(ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem, "too many fields");
212 

259   Node* src_offset = in(ArrayCopyNode::SrcPos);
260   Node* dest_offset = in(ArrayCopyNode::DestPos);
261 
262   if (is_arraycopy() || is_copyofrange() || is_copyof()) {
263     const Type* dest_type = phase->type(base_dest);
264     const TypeAryPtr* ary_dest = dest_type->isa_aryptr();
265 
266     // newly allocated object is guaranteed to not overlap with source object
267     disjoint_bases = is_alloc_tightly_coupled();
268     if (ary_src  == nullptr || ary_src->elem()  == Type::BOTTOM ||
269         ary_dest == nullptr || ary_dest->elem() == Type::BOTTOM) {
270       // We don't know if arguments are arrays
271       return false;
272     }
273 
274     BasicType src_elem = ary_src->elem()->array_element_basic_type();
275     BasicType dest_elem = ary_dest->elem()->array_element_basic_type();
276     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
277     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
278 
279     if (src_elem != dest_elem || dest_elem == T_VOID) {
280       // We don't know if arguments are arrays of the same type
281       return false;
282     }
283 
284     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
285     if (bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), dest_elem, false, false, BarrierSetC2::Optimization)) {
286       // It's an object array copy but we can't emit the card marking
287       // that is needed

288       return false;
289     }
290 
291     value_type = ary_src->elem();
292 
293     uint shift  = exact_log2(type2aelembytes(dest_elem));



294     uint header = arrayOopDesc::base_offset_in_bytes(dest_elem);
295 
296     src_offset = Compile::conv_I2X_index(phase, src_offset, ary_src->size());
297     if (src_offset->is_top()) {
298       // Offset is out of bounds (the ArrayCopyNode will be removed)
299       return false;
300     }
301     dest_offset = Compile::conv_I2X_index(phase, dest_offset, ary_dest->size());
302     if (dest_offset->is_top()) {
303       // Offset is out of bounds (the ArrayCopyNode will be removed)
304       if (can_reshape) {
305         // record src_offset, so it can be deleted later (if it is dead)
306         phase->is_IterGVN()->_worklist.push(src_offset);
307       }
308       return false;
309     }
310 
311     Node* hook = new Node(1);
312     hook->init_req(0, dest_offset);
313 
314     Node* src_scale  = phase->transform(new LShiftXNode(src_offset, phase->intcon(shift)));
315 
316     hook->destruct(phase);
317 
318     Node* dest_scale = phase->transform(new LShiftXNode(dest_offset, phase->intcon(shift)));
319 
320     adr_src          = phase->transform(new AddPNode(base_src, base_src, src_scale));
321     adr_dest         = phase->transform(new AddPNode(base_dest, base_dest, dest_scale));
322 
323     adr_src          = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(header)));
324     adr_dest         = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(header)));
325 
326     copy_type = dest_elem;
327   } else {
328     assert(ary_src != nullptr, "should be a clone");
329     assert(is_clonebasic(), "should be");
330 
331     disjoint_bases = true;
332 





333     BasicType elem = ary_src->isa_aryptr()->elem()->array_element_basic_type();
334     if (is_reference_type(elem, true)) {
335       elem = T_OBJECT;
336     }
337 
338     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
339     if (bs->array_copy_requires_gc_barriers(true, elem, true, is_clone_inst(), BarrierSetC2::Optimization)) {



340       return false;
341     }
342 
343     adr_src  = phase->transform(new AddPNode(base_src, base_src, src_offset));
344     adr_dest = phase->transform(new AddPNode(base_dest, base_dest, dest_offset));
345 
346     // The address is offsetted to an aligned address where a raw copy would start.
347     // If the clone copy is decomposed into load-stores - the address is adjusted to
348     // point at where the array starts.
349     const Type* toff = phase->type(src_offset);
350     int offset = toff->isa_long() ? (int) toff->is_long()->get_con() : (int) toff->is_int()->get_con();
351     int diff = arrayOopDesc::base_offset_in_bytes(elem) - offset;
352     assert(diff >= 0, "clone should not start after 1st array element");
353     if (diff > 0) {
354       adr_src = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(diff)));
355       adr_dest = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(diff)));
356     }
357     copy_type = elem;
358     value_type = ary_src->elem();
359   }
360   return true;
361 }
362 
363 const TypePtr* ArrayCopyNode::get_address_type(PhaseGVN* phase, const TypePtr* atp, Node* n) {
364   if (atp == TypeOopPtr::BOTTOM) {
365     atp = phase->type(n)->isa_ptr();
366   }
367   // adjust atp to be the correct array element address type
368   return atp->add_offset(Type::OffsetBot);
369 }
370 
371 void ArrayCopyNode::array_copy_test_overlap(PhaseGVN *phase, bool can_reshape, bool disjoint_bases, int count, Node*& forward_ctl, Node*& backward_ctl) {
372   Node* ctl = in(TypeFunc::Control);
373   if (!disjoint_bases && count > 1) {

374     Node* src_offset = in(ArrayCopyNode::SrcPos);
375     Node* dest_offset = in(ArrayCopyNode::DestPos);
376     assert(src_offset != nullptr && dest_offset != nullptr, "should be");
377     Node* cmp = phase->transform(new CmpINode(src_offset, dest_offset));
378     Node *bol = phase->transform(new BoolNode(cmp, BoolTest::lt));
379     IfNode *iff = new IfNode(ctl, bol, PROB_FAIR, COUNT_UNKNOWN);
380 
381     phase->transform(iff);





382 
383     forward_ctl = phase->transform(new IfFalseNode(iff));
384     backward_ctl = phase->transform(new IfTrueNode(iff));



























385   } else {
386     forward_ctl = ctl;




387   }

388 }
389 
390 Node* ArrayCopyNode::array_copy_forward(PhaseGVN *phase,
391                                         bool can_reshape,
392                                         Node*& forward_ctl,
393                                         Node* mem,
394                                         const TypePtr* atp_src,
395                                         const TypePtr* atp_dest,
396                                         Node* adr_src,
397                                         Node* base_src,
398                                         Node* adr_dest,
399                                         Node* base_dest,
400                                         BasicType copy_type,
401                                         const Type* value_type,
402                                         int count) {
403   if (!forward_ctl->is_top()) {
404     // copy forward
405     MergeMemNode* mm = MergeMemNode::make(mem);
406 













407     if (count > 0) {
408       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
409       Node* v = load(bs, phase, forward_ctl, mm, adr_src, atp_src, value_type, copy_type);
410       store(bs, phase, forward_ctl, mm, adr_dest, atp_dest, v, value_type, copy_type);
411       for (int i = 1; i < count; i++) {
412         Node* off  = phase->MakeConX(type2aelembytes(copy_type) * i);
413         Node* next_src = phase->transform(new AddPNode(base_src,adr_src,off));
414         Node* next_dest = phase->transform(new AddPNode(base_dest,adr_dest,off));
415         v = load(bs, phase, forward_ctl, mm, next_src, atp_src, value_type, copy_type);
416         store(bs, phase, forward_ctl, mm, next_dest, atp_dest, v, value_type, copy_type);
417       }
418     } else if (can_reshape) {
419       PhaseIterGVN* igvn = phase->is_IterGVN();
420       igvn->_worklist.push(adr_src);
421       igvn->_worklist.push(adr_dest);

422     }
423     return mm;
424   }
425   return phase->C->top();
426 }
427 
428 Node* ArrayCopyNode::array_copy_backward(PhaseGVN *phase,
429                                          bool can_reshape,
430                                          Node*& backward_ctl,
431                                          Node* mem,
432                                          const TypePtr* atp_src,
433                                          const TypePtr* atp_dest,
434                                          Node* adr_src,
435                                          Node* base_src,
436                                          Node* adr_dest,
437                                          Node* base_dest,
438                                          BasicType copy_type,
439                                          const Type* value_type,
440                                          int count) {
441   if (!backward_ctl->is_top()) {
442     // copy backward
443     MergeMemNode* mm = MergeMemNode::make(mem);
444 
445     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
446     assert(copy_type != T_OBJECT || !bs->array_copy_requires_gc_barriers(false, T_OBJECT, false, false, BarrierSetC2::Optimization), "only tightly coupled allocations for object arrays");
447 
448     if (count > 0) {
449       for (int i = count-1; i >= 1; i--) {
450         Node* off  = phase->MakeConX(type2aelembytes(copy_type) * i);
451         Node* next_src = phase->transform(new AddPNode(base_src,adr_src,off));
452         Node* next_dest = phase->transform(new AddPNode(base_dest,adr_dest,off));
453         Node* v = load(bs, phase, backward_ctl, mm, next_src, atp_src, value_type, copy_type);
454         store(bs, phase, backward_ctl, mm, next_dest, atp_dest, v, value_type, copy_type);
455       }
456       Node* v = load(bs, phase, backward_ctl, mm, adr_src, atp_src, value_type, copy_type);
457       store(bs, phase, backward_ctl, mm, adr_dest, atp_dest, v, value_type, copy_type);
458     } else if (can_reshape) {
459       PhaseIterGVN* igvn = phase->is_IterGVN();
460       igvn->_worklist.push(adr_src);
461       igvn->_worklist.push(adr_dest);
462     }
463     return phase->transform(mm);
464   }
465   return phase->C->top();
466 }
467 
468 bool ArrayCopyNode::finish_transform(PhaseGVN *phase, bool can_reshape,
469                                      Node* ctl, Node *mem) {
470   if (can_reshape) {
471     PhaseIterGVN* igvn = phase->is_IterGVN();
472     igvn->set_delay_transform(false);
473     if (is_clonebasic()) {
474       Node* out_mem = proj_out(TypeFunc::Memory);
475 
476       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
477       if (out_mem->outcnt() != 1 || !out_mem->raw_out(0)->is_MergeMem() ||
478           out_mem->raw_out(0)->outcnt() != 1 || !out_mem->raw_out(0)->raw_out(0)->is_MemBar()) {
479         assert(bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, is_clone_inst(), BarrierSetC2::Optimization), "can only happen with card marking");
480         return false;
481       }
482 
483       igvn->replace_node(out_mem->raw_out(0), mem);
484 
485       Node* out_ctl = proj_out(TypeFunc::Control);
486       igvn->replace_node(out_ctl, ctl);
487     } else {
488       // replace fallthrough projections of the ArrayCopyNode by the
489       // new memory, control and the input IO.
490       CallProjections callprojs;
491       extract_projections(&callprojs, true, false);
492 
493       if (callprojs.fallthrough_ioproj != nullptr) {
494         igvn->replace_node(callprojs.fallthrough_ioproj, in(TypeFunc::I_O));
495       }
496       if (callprojs.fallthrough_memproj != nullptr) {
497         igvn->replace_node(callprojs.fallthrough_memproj, mem);
498       }
499       if (callprojs.fallthrough_catchproj != nullptr) {
500         igvn->replace_node(callprojs.fallthrough_catchproj, ctl);
501       }
502 
503       // The ArrayCopyNode is not disconnected. It still has the
504       // projections for the exception case. Replace current
505       // ArrayCopyNode with a dummy new one with a top() control so
506       // that this part of the graph stays consistent but is
507       // eventually removed.
508 
509       set_req(0, phase->C->top());
510       remove_dead_region(phase, can_reshape);
511     }
512   } else {
513     if (in(TypeFunc::Control) != ctl) {
514       // we can't return new memory and control from Ideal at parse time
515       assert(!is_clonebasic() || UseShenandoahGC, "added control for clone?");
516       phase->record_for_igvn(this);
517       return false;
518     }
519   }
520   return true;
521 }
522 
523 
524 Node *ArrayCopyNode::Ideal(PhaseGVN *phase, bool can_reshape) {
525   if (remove_dead_region(phase, can_reshape))  return this;




526 
527   if (StressArrayCopyMacroNode && !can_reshape) {
528     phase->record_for_igvn(this);
529     return nullptr;
530   }
531 
532   // See if it's a small array copy and we can inline it as
533   // loads/stores
534   // Here we can only do:
535   // - arraycopy if all arguments were validated before and we don't
536   // need card marking
537   // - clone for which we don't need to do card marking
538 
539   if (!is_clonebasic() && !is_arraycopy_validated() &&
540       !is_copyofrange_validated() && !is_copyof_validated()) {
541     return nullptr;
542   }
543 
544   assert(in(TypeFunc::Control) != nullptr &&
545          in(TypeFunc::Memory) != nullptr &&

547          in(ArrayCopyNode::Dest) != nullptr &&
548          in(ArrayCopyNode::Length) != nullptr &&
549          in(ArrayCopyNode::SrcPos) != nullptr &&
550          in(ArrayCopyNode::DestPos) != nullptr, "broken inputs");
551 
552   if (in(TypeFunc::Control)->is_top() ||
553       in(TypeFunc::Memory)->is_top() ||
554       phase->type(in(ArrayCopyNode::Src)) == Type::TOP ||
555       phase->type(in(ArrayCopyNode::Dest)) == Type::TOP ||
556       (in(ArrayCopyNode::SrcPos) != nullptr && in(ArrayCopyNode::SrcPos)->is_top()) ||
557       (in(ArrayCopyNode::DestPos) != nullptr && in(ArrayCopyNode::DestPos)->is_top())) {
558     return nullptr;
559   }
560 
561   int count = get_count(phase);
562 
563   if (count < 0 || count > ArrayCopyLoadStoreMaxElem) {
564     return nullptr;
565   }
566 











567   Node* mem = try_clone_instance(phase, can_reshape, count);
568   if (mem != nullptr) {
569     return (mem == NodeSentinel) ? nullptr : mem;
570   }
571 
572   Node* adr_src = nullptr;
573   Node* base_src = nullptr;
574   Node* adr_dest = nullptr;
575   Node* base_dest = nullptr;
576   BasicType copy_type = T_ILLEGAL;
577   const Type* value_type = nullptr;
578   bool disjoint_bases = false;
579 
580   if (!prepare_array_copy(phase, can_reshape,
581                           adr_src, base_src, adr_dest, base_dest,
582                           copy_type, value_type, disjoint_bases)) {
583     assert(adr_src == nullptr, "no node can be left behind");
584     assert(adr_dest == nullptr, "no node can be left behind");
585     return nullptr;
586   }
587 
588   Node* src = in(ArrayCopyNode::Src);
589   Node* dest = in(ArrayCopyNode::Dest);
590   const TypePtr* atp_src = get_address_type(phase, _src_type, src);
591   const TypePtr* atp_dest = get_address_type(phase, _dest_type, dest);
592   Node* in_mem = in(TypeFunc::Memory);
















593 
594   if (can_reshape) {
595     assert(!phase->is_IterGVN()->delay_transform(), "cannot delay transforms");
596     phase->is_IterGVN()->set_delay_transform(true);
597   }
598 




599   Node* backward_ctl = phase->C->top();
600   Node* forward_ctl = phase->C->top();
601   array_copy_test_overlap(phase, can_reshape, disjoint_bases, count, forward_ctl, backward_ctl);
602 
603   Node* forward_mem = array_copy_forward(phase, can_reshape, forward_ctl,
604                                          in_mem,
605                                          atp_src, atp_dest,
606                                          adr_src, base_src, adr_dest, base_dest,
607                                          copy_type, value_type, count);
608 
609   Node* backward_mem = array_copy_backward(phase, can_reshape, backward_ctl,
610                                            in_mem,
611                                            atp_src, atp_dest,
612                                            adr_src, base_src, adr_dest, base_dest,
613                                            copy_type, value_type, count);
614 
615   Node* ctl = nullptr;
616   if (!forward_ctl->is_top() && !backward_ctl->is_top()) {
617     ctl = new RegionNode(3);
618     ctl->init_req(1, forward_ctl);
619     ctl->init_req(2, backward_ctl);
620     ctl = phase->transform(ctl);
621     MergeMemNode* forward_mm = forward_mem->as_MergeMem();
622     MergeMemNode* backward_mm = backward_mem->as_MergeMem();
623     for (MergeMemStream mms(forward_mm, backward_mm); mms.next_non_empty2(); ) {
624       if (mms.memory() != mms.memory2()) {
625         Node* phi = new PhiNode(ctl, Type::MEMORY, phase->C->get_adr_type(mms.alias_idx()));
626         phi->init_req(1, mms.memory());
627         phi->init_req(2, mms.memory2());
628         phi = phase->transform(phi);
629         mms.set_memory(phi);
630       }
631     }
632     mem = forward_mem;
633   } else if (!forward_ctl->is_top()) {
634     ctl = forward_ctl;
635     mem = forward_mem;
636   } else {
637     assert(!backward_ctl->is_top(), "no copy?");
638     ctl = backward_ctl;
639     mem = backward_mem;
640   }
641 
642   if (can_reshape) {
643     assert(phase->is_IterGVN()->delay_transform(), "should be delaying transforms");
644     phase->is_IterGVN()->set_delay_transform(false);
645   }
646 
647   if (!finish_transform(phase, can_reshape, ctl, mem)) {
648     if (can_reshape) {



649       // put in worklist, so that if it happens to be dead it is removed
650       phase->is_IterGVN()->_worklist.push(mem);
651     }
652     return nullptr;
653   }
654 
655   return mem;
656 }
657 
658 bool ArrayCopyNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
659   Node* dest = in(ArrayCopyNode::Dest);
660   if (dest->is_top()) {
661     return false;
662   }
663   const TypeOopPtr* dest_t = phase->type(dest)->is_oopptr();
664   assert(!dest_t->is_known_instance() || _dest_type->is_known_instance(), "result of EA not recorded");
665   assert(in(ArrayCopyNode::Src)->is_top() || !phase->type(in(ArrayCopyNode::Src))->is_oopptr()->is_known_instance() ||
666          _src_type->is_known_instance(), "result of EA not recorded");
667 
668   if (_dest_type != TypeOopPtr::BOTTOM || t_oop->is_known_instance()) {

727 // write between offset_lo and offset_hi
728 bool ArrayCopyNode::modifies(intptr_t offset_lo, intptr_t offset_hi, PhaseValues* phase, bool must_modify) const {
729   assert(_kind == ArrayCopy || _kind == CopyOf || _kind == CopyOfRange, "only for real array copies");
730 
731   Node* dest = in(Dest);
732   Node* dest_pos = in(DestPos);
733   Node* len = in(Length);
734 
735   const TypeInt *dest_pos_t = phase->type(dest_pos)->isa_int();
736   const TypeInt *len_t = phase->type(len)->isa_int();
737   const TypeAryPtr* ary_t = phase->type(dest)->isa_aryptr();
738 
739   if (dest_pos_t == nullptr || len_t == nullptr || ary_t == nullptr) {
740     return !must_modify;
741   }
742 
743   BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type();
744   if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT;
745 
746   uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
747   uint elemsize = type2aelembytes(ary_elem);
748 
749   jlong dest_pos_plus_len_lo = (((jlong)dest_pos_t->_lo) + len_t->_lo) * elemsize + header;
750   jlong dest_pos_plus_len_hi = (((jlong)dest_pos_t->_hi) + len_t->_hi) * elemsize + header;
751   jlong dest_pos_lo = ((jlong)dest_pos_t->_lo) * elemsize + header;
752   jlong dest_pos_hi = ((jlong)dest_pos_t->_hi) * elemsize + header;
753 
754   if (must_modify) {
755     if (offset_lo >= dest_pos_hi && offset_hi < dest_pos_plus_len_lo) {
756       return true;
757     }
758   } else {
759     if (offset_hi >= dest_pos_lo && offset_lo < dest_pos_plus_len_hi) {
760       return true;
761     }
762   }
763   return false;
764 }
765 
766 // As an optimization, choose optimum vector size for copy length known at compile time.
767 int ArrayCopyNode::get_partial_inline_vector_lane_count(BasicType type, int const_len) {

  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "ci/ciFlatArrayKlass.hpp"
 27 #include "gc/shared/barrierSet.hpp"
 28 #include "gc/shared/c2/barrierSetC2.hpp"
 29 #include "gc/shared/c2/cardTableBarrierSetC2.hpp"
 30 #include "gc/shared/gc_globals.hpp"
 31 #include "opto/arraycopynode.hpp"
 32 #include "opto/graphKit.hpp"
 33 #include "opto/inlinetypenode.hpp"
 34 #include "runtime/sharedRuntime.hpp"
 35 #include "utilities/macros.hpp"
 36 #include "utilities/powerOfTwo.hpp"
 37 
 38 ArrayCopyNode::ArrayCopyNode(Compile* C, bool alloc_tightly_coupled, bool has_negative_length_guard)
 39   : CallNode(arraycopy_type(), nullptr, TypePtr::BOTTOM),
 40     _kind(None),
 41     _alloc_tightly_coupled(alloc_tightly_coupled),
 42     _has_negative_length_guard(has_negative_length_guard),
 43     _arguments_validated(false),
 44     _src_type(TypeOopPtr::BOTTOM),
 45     _dest_type(TypeOopPtr::BOTTOM) {
 46   init_class_id(Class_ArrayCopy);
 47   init_flags(Flag_is_macro);
 48   C->add_macro_node(this);
 49 }
 50 
 51 uint ArrayCopyNode::size_of() const { return sizeof(*this); }
 52 
 53 ArrayCopyNode* ArrayCopyNode::make(GraphKit* kit, bool may_throw,

 99 void ArrayCopyNode::dump_compact_spec(outputStream* st) const {
100   st->print("%s%s", _kind_names[_kind], _alloc_tightly_coupled ? ",tight" : "");
101 }
102 #endif
103 
104 intptr_t ArrayCopyNode::get_length_if_constant(PhaseGVN *phase) const {
105   // check that length is constant
106   Node* length = in(ArrayCopyNode::Length);
107   const Type* length_type = phase->type(length);
108 
109   if (length_type == Type::TOP) {
110     return -1;
111   }
112 
113   assert(is_clonebasic() || is_arraycopy() || is_copyof() || is_copyofrange(), "unexpected array copy type");
114 
115   return is_clonebasic() ? length->find_intptr_t_con(-1) : length->find_int_con(-1);
116 }
117 
118 int ArrayCopyNode::get_count(PhaseGVN *phase) const {



119   if (is_clonebasic()) {
120     Node* src = in(ArrayCopyNode::Src);
121     const Type* src_type = phase->type(src);
122 
123     if (src_type == Type::TOP) {
124       return -1;
125     }
126 
127     if (src_type->isa_instptr()) {
128       const TypeInstPtr* inst_src = src_type->is_instptr();
129       ciInstanceKlass* ik = inst_src->instance_klass();
130       // ciInstanceKlass::nof_nonstatic_fields() doesn't take injected
131       // fields into account. They are rare anyway so easier to simply
132       // skip instances with injected fields.
133       if ((!inst_src->klass_is_exact() && (ik->is_interface() || ik->has_subklass())) || ik->has_injected_fields()) {
134         return -1;
135       }
136       int nb_fields = ik->nof_nonstatic_fields();
137       return nb_fields;
138     } else {
139       const TypeAryPtr* ary_src = src_type->isa_aryptr();
140       assert (ary_src != nullptr, "not an array or instance?");
141       // clone passes a length as a rounded number of longs. If we're
142       // cloning an array we'll do it element by element. If the
143       // length of the input array is constant, ArrayCopyNode::Length
144       // must be too. Note that the opposite does not need to hold,
145       // because different input array lengths (e.g. int arrays with
146       // 3 or 4 elements) might lead to the same length input
147       // (e.g. 2 double-words).
148       assert(!ary_src->size()->is_con() || (get_length_if_constant(phase) >= 0) ||
149              (UseFlatArray && ary_src->elem()->make_oopptr() != nullptr && ary_src->elem()->make_oopptr()->can_be_inline_type()) ||
150              phase->is_IterGVN() || phase->C->inlining_incrementally() || StressReflectiveCode, "inconsistent");
151       if (ary_src->size()->is_con()) {
152         return ary_src->size()->get_con();
153       }
154       return -1;
155     }
156   }
157 
158   return get_length_if_constant(phase);
159 }
160 
161 Node* ArrayCopyNode::load(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, const Type *type, BasicType bt) {
162   DecoratorSet decorators = C2_READ_ACCESS | C2_CONTROL_DEPENDENT_LOAD | IN_HEAP | C2_ARRAY_COPY;
163   C2AccessValuePtr addr(adr, adr_type);
164   C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
165   Node* res = bs->load_at(access, type);
166   ctl = access.ctl();
167   return res;
168 }
169 

180 }
181 
182 
183 Node* ArrayCopyNode::try_clone_instance(PhaseGVN *phase, bool can_reshape, int count) {
184   if (!is_clonebasic()) {
185     return nullptr;
186   }
187 
188   Node* base_src = in(ArrayCopyNode::Src);
189   Node* base_dest = in(ArrayCopyNode::Dest);
190   Node* ctl = in(TypeFunc::Control);
191   Node* in_mem = in(TypeFunc::Memory);
192 
193   const Type* src_type = phase->type(base_src);
194   const TypeInstPtr* inst_src = src_type->isa_instptr();
195   if (inst_src == nullptr) {
196     return nullptr;
197   }
198 
199   MergeMemNode* mem = phase->transform(MergeMemNode::make(in_mem))->as_MergeMem();
200   phase->record_for_igvn(mem);
201   if (can_reshape) {
202     phase->is_IterGVN()->_worklist.push(mem);
203   }
204 
205 
206   ciInstanceKlass* ik = inst_src->instance_klass();
207 
208   if (!inst_src->klass_is_exact()) {
209     assert(!ik->is_interface(), "inconsistent klass hierarchy");
210     if (ik->has_subklass()) {
211       // Concurrent class loading.
212       // Fail fast and return NodeSentinel to indicate that the transform failed.
213       return NodeSentinel;
214     } else {
215       phase->C->dependencies()->assert_leaf_type(ik);
216     }
217   }
218 
219   assert(ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem, "too many fields");
220 

267   Node* src_offset = in(ArrayCopyNode::SrcPos);
268   Node* dest_offset = in(ArrayCopyNode::DestPos);
269 
270   if (is_arraycopy() || is_copyofrange() || is_copyof()) {
271     const Type* dest_type = phase->type(base_dest);
272     const TypeAryPtr* ary_dest = dest_type->isa_aryptr();
273 
274     // newly allocated object is guaranteed to not overlap with source object
275     disjoint_bases = is_alloc_tightly_coupled();
276     if (ary_src  == nullptr || ary_src->elem()  == Type::BOTTOM ||
277         ary_dest == nullptr || ary_dest->elem() == Type::BOTTOM) {
278       // We don't know if arguments are arrays
279       return false;
280     }
281 
282     BasicType src_elem = ary_src->elem()->array_element_basic_type();
283     BasicType dest_elem = ary_dest->elem()->array_element_basic_type();
284     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
285     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
286 
287     if (src_elem != dest_elem || ary_src->is_flat() != ary_dest->is_flat() || dest_elem == T_VOID) {
288       // We don't know if arguments are arrays of the same type
289       return false;
290     }
291 
292     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
293     if ((!ary_dest->is_flat() && bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), dest_elem, false, false, BarrierSetC2::Optimization)) ||
294         (ary_dest->is_flat() && ary_src->elem()->inline_klass()->contains_oops() &&
295          bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), T_OBJECT, false, false, BarrierSetC2::Optimization))) {
296       // It's an object array copy but we can't emit the card marking that is needed
297       return false;
298     }
299 
300     value_type = ary_src->elem();
301 
302     uint shift  = exact_log2(type2aelembytes(dest_elem));
303     if (ary_dest->is_flat()) {
304       shift = ary_src->flat_log_elem_size();
305     }
306     uint header = arrayOopDesc::base_offset_in_bytes(dest_elem);
307 
308     src_offset = Compile::conv_I2X_index(phase, src_offset, ary_src->size());
309     if (src_offset->is_top()) {
310       // Offset is out of bounds (the ArrayCopyNode will be removed)
311       return false;
312     }
313     dest_offset = Compile::conv_I2X_index(phase, dest_offset, ary_dest->size());
314     if (dest_offset->is_top()) {
315       // Offset is out of bounds (the ArrayCopyNode will be removed)
316       if (can_reshape) {
317         // record src_offset, so it can be deleted later (if it is dead)
318         phase->is_IterGVN()->_worklist.push(src_offset);
319       }
320       return false;
321     }
322 
323     Node* hook = new Node(1);
324     hook->init_req(0, dest_offset);
325 
326     Node* src_scale  = phase->transform(new LShiftXNode(src_offset, phase->intcon(shift)));
327 
328     hook->destruct(phase);
329 
330     Node* dest_scale = phase->transform(new LShiftXNode(dest_offset, phase->intcon(shift)));
331 
332     adr_src          = phase->transform(new AddPNode(base_src, base_src, src_scale));
333     adr_dest         = phase->transform(new AddPNode(base_dest, base_dest, dest_scale));
334 
335     adr_src          = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(header)));
336     adr_dest         = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(header)));
337 
338     copy_type = dest_elem;
339   } else {
340     assert(ary_src != nullptr, "should be a clone");
341     assert(is_clonebasic(), "should be");
342 
343     disjoint_bases = true;
344 
345     if (ary_src->elem()->make_oopptr() != nullptr &&
346         ary_src->elem()->make_oopptr()->can_be_inline_type()) {
347       return false;
348     }
349 
350     BasicType elem = ary_src->isa_aryptr()->elem()->array_element_basic_type();
351     if (is_reference_type(elem, true)) {
352       elem = T_OBJECT;
353     }
354 
355     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
356     if ((!ary_src->is_flat() && bs->array_copy_requires_gc_barriers(true, elem, true, is_clone_inst(), BarrierSetC2::Optimization)) ||
357         (ary_src->is_flat() && ary_src->elem()->inline_klass()->contains_oops() &&
358          bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, is_clone_inst(), BarrierSetC2::Optimization))) {
359       // It's an object array copy but we can't emit the card marking that is needed
360       return false;
361     }
362 
363     adr_src  = phase->transform(new AddPNode(base_src, base_src, src_offset));
364     adr_dest = phase->transform(new AddPNode(base_dest, base_dest, dest_offset));
365 
366     // The address is offsetted to an aligned address where a raw copy would start.
367     // If the clone copy is decomposed into load-stores - the address is adjusted to
368     // point at where the array starts.
369     const Type* toff = phase->type(src_offset);
370     int offset = toff->isa_long() ? (int) toff->is_long()->get_con() : (int) toff->is_int()->get_con();
371     int diff = arrayOopDesc::base_offset_in_bytes(elem) - offset;
372     assert(diff >= 0, "clone should not start after 1st array element");
373     if (diff > 0) {
374       adr_src = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(diff)));
375       adr_dest = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(diff)));
376     }
377     copy_type = elem;
378     value_type = ary_src->elem();
379   }
380   return true;
381 }
382 
383 const TypeAryPtr* ArrayCopyNode::get_address_type(PhaseGVN* phase, const TypePtr* atp, Node* n) {
384   if (atp == TypeOopPtr::BOTTOM) {
385     atp = phase->type(n)->isa_ptr();
386   }
387   // adjust atp to be the correct array element address type
388   return atp->add_offset(Type::OffsetBot)->is_aryptr();
389 }
390 
391 void ArrayCopyNode::array_copy_test_overlap(GraphKit& kit, bool disjoint_bases, int count, Node*& backward_ctl) {
392   Node* ctl = kit.control();
393   if (!disjoint_bases && count > 1) {
394     PhaseGVN& gvn = kit.gvn();
395     Node* src_offset = in(ArrayCopyNode::SrcPos);
396     Node* dest_offset = in(ArrayCopyNode::DestPos);
397     assert(src_offset != nullptr && dest_offset != nullptr, "should be");
398     Node* cmp = gvn.transform(new CmpINode(src_offset, dest_offset));
399     Node *bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
400     IfNode *iff = new IfNode(ctl, bol, PROB_FAIR, COUNT_UNKNOWN);
401 
402     gvn.transform(iff);
403 
404     kit.set_control(gvn.transform(new IfFalseNode(iff)));
405     backward_ctl = gvn.transform(new IfTrueNode(iff));
406   }
407 }
408 
409 void ArrayCopyNode::copy(GraphKit& kit,
410                          const TypeAryPtr* atp_src,
411                          const TypeAryPtr* atp_dest,
412                          int i,
413                          Node* base_src,
414                          Node* base_dest,
415                          Node* adr_src,
416                          Node* adr_dest,
417                          BasicType copy_type,
418                          const Type* value_type) {
419   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
420   Node* ctl = kit.control();
421   if (atp_dest->is_flat()) {
422     ciInlineKlass* vk = atp_src->elem()->inline_klass();
423     for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
424       ciField* field = vk->nonstatic_field_at(j);
425       int off_in_vt = field->offset_in_bytes() - vk->first_field_offset();
426       Node* off  = kit.MakeConX(off_in_vt + i * atp_src->flat_elem_size());
427       ciType* ft = field->type();
428       BasicType bt = type2field[ft->basic_type()];
429       assert(!field->is_flat(), "flat field encountered");
430       const Type* rt = Type::get_const_type(ft);
431       const TypePtr* adr_type = atp_src->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
432       assert(!bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), bt, false, false, BarrierSetC2::Optimization), "GC barriers required");
433       Node* next_src = kit.gvn().transform(new AddPNode(base_src, adr_src, off));
434       Node* next_dest = kit.gvn().transform(new AddPNode(base_dest, adr_dest, off));
435       Node* v = load(bs, &kit.gvn(), ctl, kit.merged_memory(), next_src, adr_type, rt, bt);
436       store(bs, &kit.gvn(), ctl, kit.merged_memory(), next_dest, adr_type, v, rt, bt);
437     }
438   } else {
439     Node* off = kit.MakeConX(type2aelembytes(copy_type) * i);
440     Node* next_src = kit.gvn().transform(new AddPNode(base_src, adr_src, off));
441     Node* next_dest = kit.gvn().transform(new AddPNode(base_dest, adr_dest, off));
442     Node* v = load(bs, &kit.gvn(), ctl, kit.merged_memory(), next_src, atp_src, value_type, copy_type);
443     store(bs, &kit.gvn(), ctl, kit.merged_memory(), next_dest, atp_dest, v, value_type, copy_type);
444   }
445   kit.set_control(ctl);
446 }
447 
















448 
449 void ArrayCopyNode::array_copy_forward(GraphKit& kit,
450                                        bool can_reshape,
451                                        const TypeAryPtr* atp_src,
452                                        const TypeAryPtr* atp_dest,
453                                        Node* adr_src,
454                                        Node* base_src,
455                                        Node* adr_dest,
456                                        Node* base_dest,
457                                        BasicType copy_type,
458                                        const Type* value_type,
459                                        int count) {
460   if (!kit.stopped()) {
461     // copy forward
462     if (count > 0) {
463       for (int i = 0; i < count; i++) {
464         copy(kit, atp_src, atp_dest, i, base_src, base_dest, adr_src, adr_dest, copy_type, value_type);







465       }
466     } else if (can_reshape) {
467       PhaseGVN& gvn = kit.gvn();
468       assert(gvn.is_IterGVN(), "");
469       gvn.record_for_igvn(adr_src);
470       gvn.record_for_igvn(adr_dest);
471     }

472   }

473 }
474 
475 void ArrayCopyNode::array_copy_backward(GraphKit& kit,
476                                         bool can_reshape,
477                                         const TypeAryPtr* atp_src,
478                                         const TypeAryPtr* atp_dest,
479                                         Node* adr_src,
480                                         Node* base_src,
481                                         Node* adr_dest,
482                                         Node* base_dest,
483                                         BasicType copy_type,
484                                         const Type* value_type,
485                                         int count) {
486   if (!kit.stopped()) {


487     // copy backward
488     PhaseGVN& gvn = kit.gvn();



489 
490     if (count > 0) {
491       for (int i = count-1; i >= 0; i--) {
492         copy(kit, atp_src, atp_dest, i, base_src, base_dest, adr_src, adr_dest, copy_type, value_type);




493       }
494     } else if(can_reshape) {
495       PhaseGVN& gvn = kit.gvn();
496       assert(gvn.is_IterGVN(), "");
497       gvn.record_for_igvn(adr_src);
498       gvn.record_for_igvn(adr_dest);

499     }

500   }

501 }
502 
503 bool ArrayCopyNode::finish_transform(PhaseGVN *phase, bool can_reshape,
504                                      Node* ctl, Node *mem) {
505   if (can_reshape) {
506     PhaseIterGVN* igvn = phase->is_IterGVN();
507     igvn->set_delay_transform(false);
508     if (is_clonebasic()) {
509       Node* out_mem = proj_out(TypeFunc::Memory);
510 
511       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
512       if (out_mem->outcnt() != 1 || !out_mem->raw_out(0)->is_MergeMem() ||
513           out_mem->raw_out(0)->outcnt() != 1 || !out_mem->raw_out(0)->raw_out(0)->is_MemBar()) {
514         assert(bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, is_clone_inst(), BarrierSetC2::Optimization), "can only happen with card marking");
515         return false;
516       }
517 
518       igvn->replace_node(out_mem->raw_out(0), mem);
519 
520       Node* out_ctl = proj_out(TypeFunc::Control);
521       igvn->replace_node(out_ctl, ctl);
522     } else {
523       // replace fallthrough projections of the ArrayCopyNode by the
524       // new memory, control and the input IO.
525       CallProjections* callprojs = extract_projections(true, false);

526 
527       if (callprojs->fallthrough_ioproj != nullptr) {
528         igvn->replace_node(callprojs->fallthrough_ioproj, in(TypeFunc::I_O));
529       }
530       if (callprojs->fallthrough_memproj != nullptr) {
531         igvn->replace_node(callprojs->fallthrough_memproj, mem);
532       }
533       if (callprojs->fallthrough_catchproj != nullptr) {
534         igvn->replace_node(callprojs->fallthrough_catchproj, ctl);
535       }
536 
537       // The ArrayCopyNode is not disconnected. It still has the
538       // projections for the exception case. Replace current
539       // ArrayCopyNode with a dummy new one with a top() control so
540       // that this part of the graph stays consistent but is
541       // eventually removed.
542 
543       set_req(0, phase->C->top());
544       remove_dead_region(phase, can_reshape);
545     }
546   } else {
547     if (in(TypeFunc::Control) != ctl) {
548       // we can't return new memory and control from Ideal at parse time
549       assert(!is_clonebasic() || UseShenandoahGC, "added control for clone?");
550       phase->record_for_igvn(this);
551       return false;
552     }
553   }
554   return true;
555 }
556 
557 
558 Node *ArrayCopyNode::Ideal(PhaseGVN *phase, bool can_reshape) {
559   // Perform any generic optimizations first
560   Node* result = SafePointNode::Ideal(phase, can_reshape);
561   if (result != nullptr) {
562     return result;
563   }
564 
565   if (StressArrayCopyMacroNode && !can_reshape) {
566     phase->record_for_igvn(this);
567     return nullptr;
568   }
569 
570   // See if it's a small array copy and we can inline it as
571   // loads/stores
572   // Here we can only do:
573   // - arraycopy if all arguments were validated before and we don't
574   // need card marking
575   // - clone for which we don't need to do card marking
576 
577   if (!is_clonebasic() && !is_arraycopy_validated() &&
578       !is_copyofrange_validated() && !is_copyof_validated()) {
579     return nullptr;
580   }
581 
582   assert(in(TypeFunc::Control) != nullptr &&
583          in(TypeFunc::Memory) != nullptr &&

585          in(ArrayCopyNode::Dest) != nullptr &&
586          in(ArrayCopyNode::Length) != nullptr &&
587          in(ArrayCopyNode::SrcPos) != nullptr &&
588          in(ArrayCopyNode::DestPos) != nullptr, "broken inputs");
589 
590   if (in(TypeFunc::Control)->is_top() ||
591       in(TypeFunc::Memory)->is_top() ||
592       phase->type(in(ArrayCopyNode::Src)) == Type::TOP ||
593       phase->type(in(ArrayCopyNode::Dest)) == Type::TOP ||
594       (in(ArrayCopyNode::SrcPos) != nullptr && in(ArrayCopyNode::SrcPos)->is_top()) ||
595       (in(ArrayCopyNode::DestPos) != nullptr && in(ArrayCopyNode::DestPos)->is_top())) {
596     return nullptr;
597   }
598 
599   int count = get_count(phase);
600 
601   if (count < 0 || count > ArrayCopyLoadStoreMaxElem) {
602     return nullptr;
603   }
604 
605   Node* src = in(ArrayCopyNode::Src);
606   Node* dest = in(ArrayCopyNode::Dest);
607   const Type* src_type = phase->type(src);
608   const Type* dest_type = phase->type(dest);
609 
610   if (src_type->isa_aryptr() && dest_type->isa_instptr()) {
611     // clone used for load of unknown inline type can't be optimized at
612     // this point
613     return nullptr;
614   }
615 
616   Node* mem = try_clone_instance(phase, can_reshape, count);
617   if (mem != nullptr) {
618     return (mem == NodeSentinel) ? nullptr : mem;
619   }
620 
621   Node* adr_src = nullptr;
622   Node* base_src = nullptr;
623   Node* adr_dest = nullptr;
624   Node* base_dest = nullptr;
625   BasicType copy_type = T_ILLEGAL;
626   const Type* value_type = nullptr;
627   bool disjoint_bases = false;
628 
629   if (!prepare_array_copy(phase, can_reshape,
630                           adr_src, base_src, adr_dest, base_dest,
631                           copy_type, value_type, disjoint_bases)) {
632     assert(adr_src == nullptr, "no node can be left behind");
633     assert(adr_dest == nullptr, "no node can be left behind");
634     return nullptr;
635   }
636 
637   JVMState* new_jvms = nullptr;
638   SafePointNode* new_map = nullptr;
639   if (!is_clonebasic()) {
640     new_jvms = jvms()->clone_shallow(phase->C);
641     new_map = new SafePointNode(req(), new_jvms);
642     for (uint i = TypeFunc::FramePtr; i < req(); i++) {
643       new_map->init_req(i, in(i));
644     }
645     new_jvms->set_map(new_map);
646   } else {
647     new_jvms = new (phase->C) JVMState(0);
648     new_map = new SafePointNode(TypeFunc::Parms, new_jvms);
649     new_jvms->set_map(new_map);
650   }
651   new_map->set_control(in(TypeFunc::Control));
652   new_map->set_memory(MergeMemNode::make(in(TypeFunc::Memory)));
653   new_map->set_i_o(in(TypeFunc::I_O));
654   phase->record_for_igvn(new_map);
655 
656   const TypeAryPtr* atp_src = get_address_type(phase, _src_type, src);
657   const TypeAryPtr* atp_dest = get_address_type(phase, _dest_type, dest);
658 
659   if (can_reshape) {
660     assert(!phase->is_IterGVN()->delay_transform(), "cannot delay transforms");
661     phase->is_IterGVN()->set_delay_transform(true);
662   }
663 
664   GraphKit kit(new_jvms, phase);
665 
666   SafePointNode* backward_map = nullptr;
667   SafePointNode* forward_map = nullptr;
668   Node* backward_ctl = phase->C->top();
669 
670   array_copy_test_overlap(kit, disjoint_bases, count, backward_ctl);
671 
672   {
673     PreserveJVMState pjvms(&kit);
674 
675     array_copy_forward(kit, can_reshape,
676                        atp_src, atp_dest,
677                        adr_src, base_src, adr_dest, base_dest,
678                        copy_type, value_type, count);
679 
680     forward_map = kit.stop();
681   }
682 
683   kit.set_control(backward_ctl);
684   array_copy_backward(kit, can_reshape,
685                       atp_src, atp_dest,
686                       adr_src, base_src, adr_dest, base_dest,
687                       copy_type, value_type, count);
688 
689   backward_map = kit.stop();
690 
691   if (!forward_map->control()->is_top() && !backward_map->control()->is_top()) {
692     assert(forward_map->i_o() == backward_map->i_o(), "need a phi on IO?");
693     Node* ctl = new RegionNode(3);
694     Node* mem = new PhiNode(ctl, Type::MEMORY, TypePtr::BOTTOM);
695     kit.set_map(forward_map);
696     ctl->init_req(1, kit.control());
697     mem->init_req(1, kit.reset_memory());
698     kit.set_map(backward_map);
699     ctl->init_req(2, kit.control());
700     mem->init_req(2, kit.reset_memory());
701     kit.set_control(phase->transform(ctl));
702     kit.set_all_memory(phase->transform(mem));
703   } else if (!forward_map->control()->is_top()) {
704     kit.set_map(forward_map);
705   } else {
706     assert(!backward_map->control()->is_top(), "no copy?");
707     kit.set_map(backward_map);

708   }
709 
710   if (can_reshape) {
711     assert(phase->is_IterGVN()->delay_transform(), "should be delaying transforms");
712     phase->is_IterGVN()->set_delay_transform(false);
713   }
714 
715   mem = kit.map()->memory();
716   if (!finish_transform(phase, can_reshape, kit.control(), mem)) {
717     if (!can_reshape) {
718       phase->record_for_igvn(this);
719     } else {
720       // put in worklist, so that if it happens to be dead it is removed
721       phase->is_IterGVN()->_worklist.push(mem);
722     }
723     return nullptr;
724   }
725 
726   return mem;
727 }
728 
729 bool ArrayCopyNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
730   Node* dest = in(ArrayCopyNode::Dest);
731   if (dest->is_top()) {
732     return false;
733   }
734   const TypeOopPtr* dest_t = phase->type(dest)->is_oopptr();
735   assert(!dest_t->is_known_instance() || _dest_type->is_known_instance(), "result of EA not recorded");
736   assert(in(ArrayCopyNode::Src)->is_top() || !phase->type(in(ArrayCopyNode::Src))->is_oopptr()->is_known_instance() ||
737          _src_type->is_known_instance(), "result of EA not recorded");
738 
739   if (_dest_type != TypeOopPtr::BOTTOM || t_oop->is_known_instance()) {

798 // write between offset_lo and offset_hi
799 bool ArrayCopyNode::modifies(intptr_t offset_lo, intptr_t offset_hi, PhaseValues* phase, bool must_modify) const {
800   assert(_kind == ArrayCopy || _kind == CopyOf || _kind == CopyOfRange, "only for real array copies");
801 
802   Node* dest = in(Dest);
803   Node* dest_pos = in(DestPos);
804   Node* len = in(Length);
805 
806   const TypeInt *dest_pos_t = phase->type(dest_pos)->isa_int();
807   const TypeInt *len_t = phase->type(len)->isa_int();
808   const TypeAryPtr* ary_t = phase->type(dest)->isa_aryptr();
809 
810   if (dest_pos_t == nullptr || len_t == nullptr || ary_t == nullptr) {
811     return !must_modify;
812   }
813 
814   BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type();
815   if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT;
816 
817   uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
818   uint elemsize = ary_t->is_flat() ? ary_t->flat_elem_size() : type2aelembytes(ary_elem);
819 
820   jlong dest_pos_plus_len_lo = (((jlong)dest_pos_t->_lo) + len_t->_lo) * elemsize + header;
821   jlong dest_pos_plus_len_hi = (((jlong)dest_pos_t->_hi) + len_t->_hi) * elemsize + header;
822   jlong dest_pos_lo = ((jlong)dest_pos_t->_lo) * elemsize + header;
823   jlong dest_pos_hi = ((jlong)dest_pos_t->_hi) * elemsize + header;
824 
825   if (must_modify) {
826     if (offset_lo >= dest_pos_hi && offset_hi < dest_pos_plus_len_lo) {
827       return true;
828     }
829   } else {
830     if (offset_hi >= dest_pos_lo && offset_lo < dest_pos_plus_len_hi) {
831       return true;
832     }
833   }
834   return false;
835 }
836 
837 // As an optimization, choose optimum vector size for copy length known at compile time.
838 int ArrayCopyNode::get_partial_inline_vector_lane_count(BasicType type, int const_len) {
< prev index next >