1 /* 2 * Copyright (c) 2002, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "code/vmreg.inline.hpp" 26 #include "compiler/oopMap.hpp" 27 #include "memory/resourceArea.hpp" 28 #include "opto/addnode.hpp" 29 #include "opto/callnode.hpp" 30 #include "opto/compile.hpp" 31 #include "opto/machnode.hpp" 32 #include "opto/matcher.hpp" 33 #include "opto/output.hpp" 34 #include "opto/phase.hpp" 35 #include "opto/regalloc.hpp" 36 #include "opto/rootnode.hpp" 37 #include "utilities/align.hpp" 38 39 // The functions in this file builds OopMaps after all scheduling is done. 40 // 41 // OopMaps contain a list of all registers and stack-slots containing oops (so 42 // they can be updated by GC). OopMaps also contain a list of derived-pointer 43 // base-pointer pairs. When the base is moved, the derived pointer moves to 44 // follow it. Finally, any registers holding callee-save values are also 45 // recorded. These might contain oops, but only the caller knows. 46 // 47 // BuildOopMaps implements a simple forward reaching-defs solution. At each 48 // GC point we'll have the reaching-def Nodes. If the reaching Nodes are 49 // typed as pointers (no offset), then they are oops. Pointers+offsets are 50 // derived pointers, and bases can be found from them. Finally, we'll also 51 // track reaching callee-save values. Note that a copy of a callee-save value 52 // "kills" it's source, so that only 1 copy of a callee-save value is alive at 53 // a time. 54 // 55 // We run a simple bitvector liveness pass to help trim out dead oops. Due to 56 // irreducible loops, we can have a reaching def of an oop that only reaches 57 // along one path and no way to know if it's valid or not on the other path. 58 // The bitvectors are quite dense and the liveness pass is fast. 59 // 60 // At GC points, we consult this information to build OopMaps. All reaching 61 // defs typed as oops are added to the OopMap. Only 1 instance of a 62 // callee-save register can be recorded. For derived pointers, we'll have to 63 // find and record the register holding the base. 64 // 65 // The reaching def's is a simple 1-pass worklist approach. I tried a clever 66 // breadth-first approach but it was worse (showed O(n^2) in the 67 // pick-next-block code). 68 // 69 // The relevant data is kept in a struct of arrays (it could just as well be 70 // an array of structs, but the struct-of-arrays is generally a little more 71 // efficient). The arrays are indexed by register number (including 72 // stack-slots as registers) and so is bounded by 200 to 300 elements in 73 // practice. One array will map to a reaching def Node (or null for 74 // conflict/dead). The other array will map to a callee-saved register or 75 // OptoReg::Bad for not-callee-saved. 76 77 78 // Structure to pass around 79 struct OopFlow : public ArenaObj { 80 short *_callees; // Array mapping register to callee-saved 81 Node **_defs; // array mapping register to reaching def 82 // or null if dead/conflict 83 // OopFlow structs, when not being actively modified, describe the _end_ of 84 // this block. 85 Block *_b; // Block for this struct 86 OopFlow *_next; // Next free OopFlow 87 // or null if dead/conflict 88 Compile* C; 89 90 OopFlow( short *callees, Node **defs, Compile* c ) : _callees(callees), _defs(defs), 91 _b(nullptr), _next(nullptr), C(c) { } 92 93 // Given reaching-defs for this block start, compute it for this block end 94 void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ); 95 96 // Merge these two OopFlows into the 'this' pointer. 97 void merge( OopFlow *flow, int max_reg ); 98 99 // Copy a 'flow' over an existing flow 100 void clone( OopFlow *flow, int max_size); 101 102 // Make a new OopFlow from scratch 103 static OopFlow *make( Arena *A, int max_size, Compile* C ); 104 105 // Build an oopmap from the current flow info 106 OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ); 107 }; 108 109 // Given reaching-defs for this block start, compute it for this block end 110 void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) { 111 112 for( uint i=0; i<_b->number_of_nodes(); i++ ) { 113 Node *n = _b->get_node(i); 114 115 if( n->jvms() ) { // Build an OopMap here? 116 JVMState *jvms = n->jvms(); 117 // no map needed for leaf calls 118 if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) { 119 int *live = (int*) (*safehash)[n]; 120 assert( live, "must find live" ); 121 n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) ); 122 } 123 } 124 125 // Assign new reaching def's. 126 // Note that I padded the _defs and _callees arrays so it's legal 127 // to index at _defs[OptoReg::Bad]. 128 OptoReg::Name first = regalloc->get_reg_first(n); 129 OptoReg::Name second = regalloc->get_reg_second(n); 130 _defs[first] = n; 131 _defs[second] = n; 132 133 // Pass callee-save info around copies 134 int idx = n->is_Copy(); 135 if( idx ) { // Copies move callee-save info 136 OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx)); 137 OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx)); 138 int tmp_first = _callees[old_first]; 139 int tmp_second = _callees[old_second]; 140 _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location 141 _callees[old_second] = OptoReg::Bad; 142 _callees[first] = tmp_first; 143 _callees[second] = tmp_second; 144 } else if( n->is_Phi() ) { // Phis do not mod callee-saves 145 assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" ); 146 assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" ); 147 assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" ); 148 assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" ); 149 } else { 150 _callees[first] = OptoReg::Bad; // No longer holding a callee-save value 151 _callees[second] = OptoReg::Bad; 152 153 // Find base case for callee saves 154 if( n->is_Proj() && n->in(0)->is_Start() ) { 155 if( OptoReg::is_reg(first) && 156 regalloc->_matcher.is_save_on_entry(first) ) 157 _callees[first] = first; 158 if( OptoReg::is_reg(second) && 159 regalloc->_matcher.is_save_on_entry(second) ) 160 _callees[second] = second; 161 } 162 } 163 } 164 } 165 166 // Merge the given flow into the 'this' flow 167 void OopFlow::merge( OopFlow *flow, int max_reg ) { 168 assert( _b == nullptr, "merging into a happy flow" ); 169 assert( flow->_b, "this flow is still alive" ); 170 assert( flow != this, "no self flow" ); 171 172 // Do the merge. If there are any differences, drop to 'bottom' which 173 // is OptoReg::Bad or null depending. 174 for( int i=0; i<max_reg; i++ ) { 175 // Merge the callee-save's 176 if( _callees[i] != flow->_callees[i] ) 177 _callees[i] = OptoReg::Bad; 178 // Merge the reaching defs 179 if( _defs[i] != flow->_defs[i] ) 180 _defs[i] = nullptr; 181 } 182 183 } 184 185 void OopFlow::clone( OopFlow *flow, int max_size ) { 186 _b = flow->_b; 187 memcpy( _callees, flow->_callees, sizeof(short)*max_size); 188 memcpy( _defs , flow->_defs , sizeof(Node*)*max_size); 189 } 190 191 OopFlow *OopFlow::make( Arena *A, int max_size, Compile* C ) { 192 short *callees = NEW_ARENA_ARRAY(A,short,max_size+1); 193 Node **defs = NEW_ARENA_ARRAY(A,Node*,max_size+1); 194 debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) ); 195 OopFlow *flow = new (A) OopFlow(callees+1, defs+1, C); 196 assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" ); 197 assert( &flow->_defs [OptoReg::Bad] == defs , "Ok to index at OptoReg::Bad" ); 198 return flow; 199 } 200 201 static int get_live_bit( int *live, int reg ) { 202 return live[reg>>LogBitsPerInt] & (1<<(reg&(BitsPerInt-1))); } 203 static void set_live_bit( int *live, int reg ) { 204 live[reg>>LogBitsPerInt] |= (1<<(reg&(BitsPerInt-1))); } 205 static void clr_live_bit( int *live, int reg ) { 206 live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); } 207 208 // Build an oopmap from the current flow info 209 OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) { 210 int framesize = regalloc->_framesize; 211 int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP); 212 debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0()); 213 memset(dup_check,0,OptoReg::stack0()) ); 214 215 OopMap *omap = new OopMap( framesize, max_inarg_slot ); 216 MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : nullptr; 217 JVMState* jvms = n->jvms(); 218 219 // For all registers do... 220 for( int reg=0; reg<max_reg; reg++ ) { 221 if( get_live_bit(live,reg) == 0 ) 222 continue; // Ignore if not live 223 224 // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit 225 // register in that case we'll get an non-concrete register for the second 226 // half. We only need to tell the map the register once! 227 // 228 // However for the moment we disable this change and leave things as they 229 // were. 230 231 VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot); 232 233 // See if dead (no reaching def). 234 Node *def = _defs[reg]; // Get reaching def 235 assert( def, "since live better have reaching def" ); 236 237 if (def->is_MachTemp()) { 238 assert(!def->bottom_type()->isa_oop_ptr(), 239 "ADLC only assigns OOP types to MachTemp defs corresponding to xRegN operands"); 240 // Exclude MachTemp definitions even if they are typed as oops. 241 continue; 242 } 243 244 // Classify the reaching def as oop, derived, callee-save, dead, or other 245 const Type *t = def->bottom_type(); 246 if( t->isa_oop_ptr() ) { // Oop or derived? 247 assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" ); 248 #ifdef _LP64 249 // 64-bit pointers record oop-ishness on 2 aligned adjacent registers. 250 // Make sure both are record from the same reaching def, but do not 251 // put both into the oopmap. 252 if( (reg&1) == 1 ) { // High half of oop-pair? 253 assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" ); 254 continue; // Do not record high parts in oopmap 255 } 256 #endif 257 258 // Check for a legal reg name in the oopMap and bailout if it is not. 259 if (!omap->legal_vm_reg_name(r)) { 260 stringStream ss; 261 ss.print("illegal oopMap register name: "); 262 r->print_on(&ss); 263 assert(false, "%s", ss.as_string()); 264 regalloc->C->record_method_not_compilable(ss.as_string()); 265 continue; 266 } 267 if( t->is_ptr()->_offset == 0 ) { // Not derived? 268 if( mcall ) { 269 // Outgoing argument GC mask responsibility belongs to the callee, 270 // not the caller. Inspect the inputs to the call, to see if 271 // this live-range is one of them. 272 uint cnt = mcall->tf()->domain()->cnt(); 273 uint j; 274 for( j = TypeFunc::Parms; j < cnt; j++) 275 if( mcall->in(j) == def ) 276 break; // reaching def is an argument oop 277 if( j < cnt ) // arg oops dont go in GC map 278 continue; // Continue on to the next register 279 } 280 omap->set_oop(r); 281 } else { // Else it's derived. 282 // Find the base of the derived value. 283 uint i; 284 // Fast, common case, scan 285 for( i = jvms->oopoff(); i < n->req(); i+=2 ) 286 if( n->in(i) == def ) break; // Common case 287 if( i == n->req() ) { // Missed, try a more generous scan 288 // Scan again, but this time peek through copies 289 for( i = jvms->oopoff(); i < n->req(); i+=2 ) { 290 Node *m = n->in(i); // Get initial derived value 291 while( 1 ) { 292 Node *d = def; // Get initial reaching def 293 while( 1 ) { // Follow copies of reaching def to end 294 if( m == d ) goto found; // breaks 3 loops 295 int idx = d->is_Copy(); 296 if( !idx ) break; 297 d = d->in(idx); // Link through copy 298 } 299 int idx = m->is_Copy(); 300 if( !idx ) break; 301 m = m->in(idx); 302 } 303 } 304 guarantee( 0, "must find derived/base pair" ); 305 } 306 found: ; 307 Node *base = n->in(i+1); // Base is other half of pair 308 int breg = regalloc->get_reg_first(base); 309 VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot); 310 311 // I record liveness at safepoints BEFORE I make the inputs 312 // live. This is because argument oops are NOT live at a 313 // safepoint (or at least they cannot appear in the oopmap). 314 // Thus bases of base/derived pairs might not be in the 315 // liveness data but they need to appear in the oopmap. 316 if( get_live_bit(live,breg) == 0 ) {// Not live? 317 // Flag it, so next derived pointer won't re-insert into oopmap 318 set_live_bit(live,breg); 319 // Already missed our turn? 320 if( breg < reg ) { 321 omap->set_oop(b); 322 } 323 } 324 omap->set_derived_oop(r, b); 325 } 326 327 } else if( t->isa_narrowoop() ) { 328 assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" ); 329 // Check for a legal reg name in the oopMap and bailout if it is not. 330 if (!omap->legal_vm_reg_name(r)) { 331 stringStream ss; 332 ss.print("illegal oopMap register name: "); 333 r->print_on(&ss); 334 assert(false, "%s", ss.as_string()); 335 regalloc->C->record_method_not_compilable(ss.as_string()); 336 continue; 337 } 338 if( mcall ) { 339 // Outgoing argument GC mask responsibility belongs to the callee, 340 // not the caller. Inspect the inputs to the call, to see if 341 // this live-range is one of them. 342 uint cnt = mcall->tf()->domain()->cnt(); 343 uint j; 344 for( j = TypeFunc::Parms; j < cnt; j++) 345 if( mcall->in(j) == def ) 346 break; // reaching def is an argument oop 347 if( j < cnt ) // arg oops dont go in GC map 348 continue; // Continue on to the next register 349 } 350 omap->set_narrowoop(r); 351 } else if( OptoReg::is_valid(_callees[reg])) { // callee-save? 352 // It's a callee-save value 353 assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" ); 354 debug_only( dup_check[_callees[reg]]=1; ) 355 VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg])); 356 omap->set_callee_saved(r, callee); 357 358 } else { 359 // Other - some reaching non-oop value 360 #ifdef ASSERT 361 if (t->isa_rawptr()) { 362 ResourceMark rm; 363 Unique_Node_List worklist; 364 worklist.push(def); 365 for (uint i = 0; i < worklist.size(); i++) { 366 Node* m = worklist.at(i); 367 if (C->cfg()->_raw_oops.member(m)) { 368 def->dump(); 369 m->dump(); 370 n->dump(); 371 assert(false, "there should be an oop in OopMap instead of a live raw oop at safepoint"); 372 } 373 // Check users as well because def might be spilled 374 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 375 Node* u = m->fast_out(j); 376 if ((u->is_SpillCopy() && u->in(1) == m) || u->is_Phi()) { 377 worklist.push(u); 378 } 379 } 380 } 381 } 382 #endif 383 } 384 385 } 386 387 #ifdef ASSERT 388 /* Nice, Intel-only assert 389 int cnt_callee_saves=0; 390 int reg2 = 0; 391 while (OptoReg::is_reg(reg2)) { 392 if( dup_check[reg2] != 0) cnt_callee_saves++; 393 assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" ); 394 reg2++; 395 } 396 */ 397 #endif 398 399 #ifdef ASSERT 400 bool has_derived_oops = false; 401 for( OopMapStream oms1(omap); !oms1.is_done(); oms1.next()) { 402 OopMapValue omv1 = oms1.current(); 403 if (omv1.type() != OopMapValue::derived_oop_value) { 404 continue; 405 } 406 has_derived_oops = true; 407 bool found = false; 408 for( OopMapStream oms2(omap); !oms2.is_done(); oms2.next()) { 409 OopMapValue omv2 = oms2.current(); 410 if (omv2.type() != OopMapValue::oop_value) { 411 continue; 412 } 413 if( omv1.content_reg() == omv2.reg() ) { 414 found = true; 415 break; 416 } 417 } 418 assert(has_derived_oops == omap->has_derived_oops(), ""); 419 assert( found, "derived with no base in oopmap" ); 420 } 421 422 int num_oops = 0; 423 for (OopMapStream oms2(omap); !oms2.is_done(); oms2.next()) { 424 OopMapValue omv = oms2.current(); 425 if (omv.type() == OopMapValue::oop_value || omv.type() == OopMapValue::narrowoop_value) { 426 num_oops++; 427 } 428 } 429 assert(num_oops == omap->num_oops(), "num_oops: %d omap->num_oops(): %d", num_oops, omap->num_oops()); 430 #endif 431 432 return omap; 433 } 434 435 // Compute backwards liveness on registers 436 static void do_liveness(PhaseRegAlloc* regalloc, PhaseCFG* cfg, Block_List* worklist, int max_reg_ints, Arena* A, Dict* safehash) { 437 int* live = NEW_ARENA_ARRAY(A, int, (cfg->number_of_blocks() + 1) * max_reg_ints); 438 int* tmp_live = &live[cfg->number_of_blocks() * max_reg_ints]; 439 Node* root = cfg->get_root_node(); 440 // On CISC platforms, get the node representing the stack pointer that regalloc 441 // used for spills 442 Node *fp = NodeSentinel; 443 if (UseCISCSpill && root->req() > 1) { 444 fp = root->in(1)->in(TypeFunc::FramePtr); 445 } 446 memset(live, 0, cfg->number_of_blocks() * (max_reg_ints << LogBytesPerInt)); 447 // Push preds onto worklist 448 for (uint i = 1; i < root->req(); i++) { 449 Block* block = cfg->get_block_for_node(root->in(i)); 450 worklist->push(block); 451 } 452 453 // ZKM.jar includes tiny infinite loops which are unreached from below. 454 // If we missed any blocks, we'll retry here after pushing all missed 455 // blocks on the worklist. Normally this outer loop never trips more 456 // than once. 457 while (1) { 458 459 while( worklist->size() ) { // Standard worklist algorithm 460 Block *b = worklist->rpop(); 461 462 // Copy first successor into my tmp_live space 463 int s0num = b->_succs[0]->_pre_order; 464 int *t = &live[s0num*max_reg_ints]; 465 for( int i=0; i<max_reg_ints; i++ ) 466 tmp_live[i] = t[i]; 467 468 // OR in the remaining live registers 469 for( uint j=1; j<b->_num_succs; j++ ) { 470 uint sjnum = b->_succs[j]->_pre_order; 471 int *t = &live[sjnum*max_reg_ints]; 472 for( int i=0; i<max_reg_ints; i++ ) 473 tmp_live[i] |= t[i]; 474 } 475 476 // Now walk tmp_live up the block backwards, computing live 477 for( int k=b->number_of_nodes()-1; k>=0; k-- ) { 478 Node *n = b->get_node(k); 479 // KILL def'd bits 480 int first = regalloc->get_reg_first(n); 481 int second = regalloc->get_reg_second(n); 482 if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first); 483 if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second); 484 485 MachNode *m = n->is_Mach() ? n->as_Mach() : nullptr; 486 487 // Check if m is potentially a CISC alternate instruction (i.e, possibly 488 // synthesized by RegAlloc from a conventional instruction and a 489 // spilled input) 490 bool is_cisc_alternate = false; 491 if (UseCISCSpill && m) { 492 is_cisc_alternate = m->is_cisc_alternate(); 493 } 494 495 // GEN use'd bits 496 for( uint l=1; l<n->req(); l++ ) { 497 Node *def = n->in(l); 498 assert(def != nullptr, "input edge required"); 499 int first = regalloc->get_reg_first(def); 500 int second = regalloc->get_reg_second(def); 501 //If peephole had removed the node,do not set live bit for it. 502 if (!(def->is_Mach() && def->as_Mach()->get_removed())) { 503 if (OptoReg::is_valid(first)) set_live_bit(tmp_live,first); 504 if (OptoReg::is_valid(second)) set_live_bit(tmp_live,second); 505 } 506 // If we use the stack pointer in a cisc-alternative instruction, 507 // check for use as a memory operand. Then reconstruct the RegName 508 // for this stack location, and set the appropriate bit in the 509 // live vector 4987749. 510 if (is_cisc_alternate && def == fp) { 511 const TypePtr *adr_type = nullptr; 512 intptr_t offset; 513 const Node* base = m->get_base_and_disp(offset, adr_type); 514 if (base == NodeSentinel) { 515 // Machnode has multiple memory inputs. We are unable to reason 516 // with these, but are presuming (with trepidation) that not any of 517 // them are oops. This can be fixed by making get_base_and_disp() 518 // look at a specific input instead of all inputs. 519 assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input"); 520 } else if (base != fp || offset == Type::OffsetBot) { 521 // Do nothing: the fp operand is either not from a memory use 522 // (base == nullptr) OR the fp is used in a non-memory context 523 // (base is some other register) OR the offset is not constant, 524 // so it is not a stack slot. 525 } else { 526 assert(offset >= 0, "unexpected negative offset"); 527 offset -= (offset % jintSize); // count the whole word 528 int stack_reg = regalloc->offset2reg(offset); 529 if (OptoReg::is_stack(stack_reg)) { 530 set_live_bit(tmp_live, stack_reg); 531 } else { 532 assert(false, "stack_reg not on stack?"); 533 } 534 } 535 } 536 } 537 538 if( n->jvms() ) { // Record liveness at safepoint 539 540 // This placement of this stanza means inputs to calls are 541 // considered live at the callsite's OopMap. Argument oops are 542 // hence live, but NOT included in the oopmap. See cutout in 543 // build_oop_map. Debug oops are live (and in OopMap). 544 int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints); 545 for( int l=0; l<max_reg_ints; l++ ) 546 n_live[l] = tmp_live[l]; 547 safehash->Insert(n,n_live); 548 } 549 550 } 551 552 // Now at block top, see if we have any changes. If so, propagate 553 // to prior blocks. 554 int *old_live = &live[b->_pre_order*max_reg_ints]; 555 int l; 556 for( l=0; l<max_reg_ints; l++ ) 557 if( tmp_live[l] != old_live[l] ) 558 break; 559 if( l<max_reg_ints ) { // Change! 560 // Copy in new value 561 for( l=0; l<max_reg_ints; l++ ) 562 old_live[l] = tmp_live[l]; 563 // Push preds onto worklist 564 for (l = 1; l < (int)b->num_preds(); l++) { 565 Block* block = cfg->get_block_for_node(b->pred(l)); 566 worklist->push(block); 567 } 568 } 569 } 570 571 // Scan for any missing safepoints. Happens to infinite loops 572 // ala ZKM.jar 573 uint i; 574 for (i = 1; i < cfg->number_of_blocks(); i++) { 575 Block* block = cfg->get_block(i); 576 uint j; 577 for (j = 1; j < block->number_of_nodes(); j++) { 578 if (block->get_node(j)->jvms() && (*safehash)[block->get_node(j)] == nullptr) { 579 break; 580 } 581 } 582 if (j < block->number_of_nodes()) { 583 break; 584 } 585 } 586 if (i == cfg->number_of_blocks()) { 587 break; // Got 'em all 588 } 589 590 if (PrintOpto && Verbose) { 591 tty->print_cr("retripping live calc"); 592 } 593 594 // Force the issue (expensively): recheck everybody 595 for (i = 1; i < cfg->number_of_blocks(); i++) { 596 worklist->push(cfg->get_block(i)); 597 } 598 } 599 } 600 601 // Collect GC mask info - where are all the OOPs? 602 void PhaseOutput::BuildOopMaps() { 603 Compile::TracePhase tp(_t_buildOopMaps); 604 // Can't resource-mark because I need to leave all those OopMaps around, 605 // or else I need to resource-mark some arena other than the default. 606 // ResourceMark rm; // Reclaim all OopFlows when done 607 int max_reg = C->regalloc()->_max_reg; // Current array extent 608 609 Arena *A = Thread::current()->resource_area(); 610 Block_List worklist; // Worklist of pending blocks 611 612 int max_reg_ints = align_up(max_reg, BitsPerInt)>>LogBitsPerInt; 613 Dict *safehash = nullptr; // Used for assert only 614 // Compute a backwards liveness per register. Needs a bitarray of 615 // #blocks x (#registers, rounded up to ints) 616 safehash = new Dict(cmpkey,hashkey,A); 617 do_liveness( C->regalloc(), C->cfg(), &worklist, max_reg_ints, A, safehash ); 618 OopFlow *free_list = nullptr; // Free, unused 619 620 // Array mapping blocks to completed oopflows 621 OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, C->cfg()->number_of_blocks()); 622 memset( flows, 0, C->cfg()->number_of_blocks() * sizeof(OopFlow*) ); 623 624 625 // Do the first block 'by hand' to prime the worklist 626 Block *entry = C->cfg()->get_block(1); 627 OopFlow *rootflow = OopFlow::make(A,max_reg,C); 628 // Initialize to 'bottom' (not 'top') 629 memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) ); 630 memset( rootflow->_defs , 0, max_reg*sizeof(Node*) ); 631 flows[entry->_pre_order] = rootflow; 632 633 // Do the first block 'by hand' to prime the worklist 634 rootflow->_b = entry; 635 rootflow->compute_reach( C->regalloc(), max_reg, safehash ); 636 for( uint i=0; i<entry->_num_succs; i++ ) 637 worklist.push(entry->_succs[i]); 638 639 // Now worklist contains blocks which have some, but perhaps not all, 640 // predecessors visited. 641 while( worklist.size() ) { 642 // Scan for a block with all predecessors visited, or any randoms slob 643 // otherwise. All-preds-visited order allows me to recycle OopFlow 644 // structures rapidly and cut down on the memory footprint. 645 // Note: not all predecessors might be visited yet (must happen for 646 // irreducible loops). This is OK, since every live value must have the 647 // SAME reaching def for the block, so any reaching def is OK. 648 uint i; 649 650 Block *b = worklist.pop(); 651 // Ignore root block 652 if (b == C->cfg()->get_root_block()) { 653 continue; 654 } 655 // Block is already done? Happens if block has several predecessors, 656 // he can get on the worklist more than once. 657 if( flows[b->_pre_order] ) continue; 658 659 // If this block has a visited predecessor AND that predecessor has this 660 // last block as his only undone child, we can move the OopFlow from the 661 // pred to this block. Otherwise we have to grab a new OopFlow. 662 OopFlow *flow = nullptr; // Flag for finding optimized flow 663 Block *pred = (Block*)((intptr_t)0xdeadbeef); 664 // Scan this block's preds to find a done predecessor 665 for (uint j = 1; j < b->num_preds(); j++) { 666 Block* p = C->cfg()->get_block_for_node(b->pred(j)); 667 OopFlow *p_flow = flows[p->_pre_order]; 668 if( p_flow ) { // Predecessor is done 669 assert( p_flow->_b == p, "cross check" ); 670 pred = p; // Record some predecessor 671 // If all successors of p are done except for 'b', then we can carry 672 // p_flow forward to 'b' without copying, otherwise we have to draw 673 // from the free_list and clone data. 674 uint k; 675 for( k=0; k<p->_num_succs; k++ ) 676 if( !flows[p->_succs[k]->_pre_order] && 677 p->_succs[k] != b ) 678 break; 679 680 // Either carry-forward the now-unused OopFlow for b's use 681 // or draw a new one from the free list 682 if( k==p->_num_succs ) { 683 flow = p_flow; 684 break; // Found an ideal pred, use him 685 } 686 } 687 } 688 689 if( flow ) { 690 // We have an OopFlow that's the last-use of a predecessor. 691 // Carry it forward. 692 } else { // Draw a new OopFlow from the freelist 693 if( !free_list ) 694 free_list = OopFlow::make(A,max_reg,C); 695 flow = free_list; 696 assert( flow->_b == nullptr, "oopFlow is not free" ); 697 free_list = flow->_next; 698 flow->_next = nullptr; 699 700 // Copy/clone over the data 701 flow->clone(flows[pred->_pre_order], max_reg); 702 } 703 704 // Mark flow for block. Blocks can only be flowed over once, 705 // because after the first time they are guarded from entering 706 // this code again. 707 assert( flow->_b == pred, "have some prior flow" ); 708 flow->_b = nullptr; 709 710 // Now push flow forward 711 flows[b->_pre_order] = flow;// Mark flow for this block 712 flow->_b = b; 713 flow->compute_reach( C->regalloc(), max_reg, safehash ); 714 715 // Now push children onto worklist 716 for( i=0; i<b->_num_succs; i++ ) 717 worklist.push(b->_succs[i]); 718 719 } 720 }